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Kurzfassung

In letzter Zeit hat es aufgrund der Fortschritte im Bereich des Quantencomputings ein
bemerkenswertes Interesse an wissenschaftlichen Anwendungen gegeben, insbesondere
in Bereichen wie der Quantenchemie. Quantencomputing bietet eine vielversprechende
Möglichkeit, komplexe Probleme zu lösen. Darunter fällt zum Beispiel die Simulation
komplizierter Experimente, die darauf abzielen, Einblicke in Naturphänomene zu gewinnen.
Insbesondere in der Quantenchemie ist es gut vorstellbar, dass diese neue technologische
Möglichkeit konventionelle Berechnungsverfahren revolutioniert. Daher birgt diese neue
technologische Möglichkeit das Potenzial, wertvolle Ergebnisse, beispielsweise bei der
Unterstützung der Arzneimittelentwicklung und der Erforschung neuer molekularer
Verbindungen, zu liefern.
Allerdings sind derzeitige Quantenmaschinen hinsichtlich Verfügbarkeit und Zuverlässig-
keit limitiert. Während auf einige Quantencomputer über die Cloud zugegriffen werden
kann, bringt Cloud Computing seine eigenen Herausforderungen, wie erhöhte Latenz
und Netzwerküberlastung, mit sich. Die Nutzung von Quantumcomputing in der Cloud
stellt daher für Anwendung welche kurze Reaktionszeiten erwarten keine Option dar.
Als Lösung für diese Herausforderungen könnte das bereits weit verbreitet Edge-Geräte
Paradigma dienen. Am Netzwerkrand platziert, haben diese Geräte das Potenzial, Latenz
und Netzwerküberlastung zu reduzieren.
Variational Quantum Algorithms (VQAs) sind ein vielversprechender Ansatz zur Lösung
bestimmter Probleme im Zusammenhang mit der Quantenchemie. VQAs werden über
verschiedene Hyperparameter konfiguriert, die ihre Ergebnisse erheblich beeinflussen.
Darüber hinaus spielt die Wahl des zugrunde liegenden Backends eine wichtige Rolle für
das Endergebnis.
In unserer Studie kombinieren wir den Einsatz von VQAs zur Problemberechnung mit dem
Paradigma des Edge Computing. VQAs werden auf lokalen und Edge-Quantensimulatoren
ausgeführt, um Einblicke in ihr Verhalten zu gewinnen. Das Hauptziel dieser Arbeit
besteht darin, verschiedene Hyperparametereinstellungen für VQAs zu vergleichen und
ihre Leistung anhand von Metriken wie Genauigkeit, Laufzeit und Skalierbarkeit zu
bewerten. Schlussendlich sollen die optimalen Konfigurationen für die verschiedenen
VQAs ermittelt werden.
Die Ergebnisse zeigen, dass die Ausführungszeit für alle drei Algorithmen und Experimente
eng mit der Größe der Eingabeproblemstellung zusammenhängt und Hardwareressourcen
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eine entscheidende Rolle spielen. Darüber hinaus zeigen die Berechnungsergebnisse aus
den Quantensimulatoren, dass sie Annäherungen an reale Ergebnisse darstellen und
daher in Anwendungen nützlich sind, die keine exakte Werte erfordern, sondern mit
approximierten Ergebnissen arbeiten können.



Abstract

In recent times, there has been a notable interest in scientific applications, especially
within domains like quantum chemistry, driven by advancements in the area of quantum
computing. Quantum computing presents a promising opportunity for addressing complex
challenges, such as the simulation of complex natural phenomena. Its potential to
revolutionize conventional computational methods, particularly in quantum chemistry,
promises valuable real-world applications like drug design and the exploration of new
molecular compounds.

However, quantum machines currently face limitations in terms of availability and
reliability. While some quantum computers are accessible via the cloud, cloud computing
introduces its own challenges, including latency and network congestion. Consequently,
quantum computing in the cloud is not suitable for applications requiring fast response
times. As a solution to these challenges, edge devices have become popular in current
computing paradigms. Placed at the network edge, these devices have the potential to
reduce latency and network congestion.

Variational Quantum Algorithms (VQAs) are promising approaches to address certain
quantum chemistry-related problems. VQAs are configured through various hyperpa-
rameters that significantly impact the result output. Additionally, the choice of the
underlying backend, where the execution takes place, influences the final result.

In our study, we combine the use of VQAs for problem computation with the computing
paradigm of edge computing. VQAs are executed on local and edge quantum simulators
to gather insights into their behavior. The primary objective of this thesis is to compare
different hyperparameter settings for VQAs and evaluate their performance using metrics
such as accuracy, runtime, and scalability to determine the optimal configurations.

Our results indicate that, for all three algorithms and experiments, execution time is
closely related to the size of the input problem instance and hardware resources play a
crucial role. Furthermore, the calculation results from quantum simulators show that
they provide approximations to real results and are useful in applications that do not
require exact values but can work with approximated results.
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CHAPTER 1
Introduction

1.1 Introduction
As scientific problems and applications become increasingly complex, we are entering
in the Post-Moore era [S, t21], where classical computers may no longer provide the
extensive resources required to address challenges where the time for solving the problem
grows exponentially [EW06]. Quantum computing is a rapidly developing field that
has the potential to revolutionize the way we approach certain computational problems
[dLMPL19]. Quantum hardware can offer significant computational advantages and
guarantee an speedup for different computational problems, e.g., integer factorization
[Sho97], simulating real quantum systems such as Fermi Systems [AL97], search in
unsorted databases [Gro96]. Various fields, such as finance, logistics, physics, and
chemistry could experience significant improvements in solving complex computational
problems [GKS+22] such as estimating stock risks, storage usage, simulating molecules
and drug discovery. Quantum computers leverage quantum mechanical principles such
as superposition and entanglement to perform calculations in a fundamentally different
way than classical computers. Moreover quantum computers interact on quantum bits
(qubits), which can be in multiple states simultaneously, rather than on classical bits
[NC10].

One important area where quantum computing is showing promise is in the field of
quantum chemistry [MEAG+20], where quantum computers can be used to simulate the
behavior of molecules and materials. This deeper understanding holds the potential to
refine existing knowledge and even facilitate the design of compounds with both scientific
and industrial applications in the future. One promising approach could be the utilization
of Variational Quantum Algorithms (VQAs) for chemistry problems.

As availability of quantum computers is limited, moving them to the cloud is a promising
perspective. Quantum machines can be accessed from anywhere via the cloud and a
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1. Introduction

physical machine can be shared between multiple parties. That would offer cost efficient
possibilities for scientists to run experiments without the need to deploy their own
quantum systems [RSGC21]. For the deployment of quantum computers, specialized
software and hardware are needed, which can be both expensive and challenging to
develop and maintain [Kom20]. Therefore, many different Quantum Cloud Platforms are
available for utilizing quantum machines in the cloud. A few of them are listed below:

• IBM Quantum Experience1

• Google Quantum AI 2

• Microsoft Quantum Development Kit3

• Amazon Braket4

• Rigetti Forest and Cloud Computing Services (OCS)5

Listing 1.1: Overview of some Quantum Cloud Platforms

1.1.1 Problem Statement

A major problem with current quantum computers is limited availability. While quantum
computers hold potential for solving computational challenges across various scientific
domains, such as quantum chemistry, their effectiveness is constrained to a very limited
extent. Since not everyone can currently access a quantum computer, Quantum Cloud
Platforms as mentioned in 1.1 are an example of a way to use quantum computers in
the cloud. This arrangement allows multiple users to utilize a single quantum machine,
reducing the need for each user to handle the operation of such machines individually.
However, the utilization via a cloud environment has disadvantages when it comes to
solving problem instances, as latency and congestion can increase runtime [MYZ+17].
Furthermore, the ever-growing amount of data and the strain on network bandwidth
contribute to the issues mentioned above [AFG+09]. Near real-time responses are critical
in many applications and therefore the possibility of increased latency is a concern for
many applications that use the cloud. These problems are already known from current
cloud applications and have led to edge computing being established as a solution to
these problems [RSGC21]. For this reason, in this work we take up the principle of edge
computing and adapt it for quantum computers.

1https://quantum.ibm.com/
2https://quantumai.google/
3https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
4https://aws.amazon.com/de/braket/
5https://pyquil-docs.rigetti.com/en/v2.7.2/
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1.1. Introduction

1.1.2 Aim of Work
The objective of this thesis is to assess the feasibility of employing quantum simulators at
the network edge with the intention of investigating the potential for offloading certain
computational tasks to edge devices. We intend to build upon the observation that
practical access to quantum computers remains limited, while exclusively relying on local
processing might not be practically viable. Consequently, our focus lies in exploring the
possibilities of offloading quantum computing operations to the network edge. In more
detail we take a deeper look in Variational Quantum Algorithms (VQAs) and compare
their results under different hyperparameter settings. Results will always be carried out
remote and locally to analyze the difference in accuracy, speed and scalability. Our thesis
focus on investigating the following research questions:

• Which hyperparameter settings lead to the best results for the different VQAs?

• How does the choice of hyperparameters, such as the backend, ansatz and optimizer,
impact the runtime, accuracy and performance of VQAs?

• How does the runtime and accuracy of VQAs changes with increasing size of the
problem instance?

• Is it feasible to offload quantum computation to the network edge to leverage the
benefits of edge computing in the quantum domain?

To achieve the objective of benchmarking edge quantum simulators, this thesis compares
the performance of edge and local quantum computing simulators on a range of certain
problems and evaluate their effectiveness through benchmark tests. It examines the
runtime and error of both architectures, considering recent research and developments
in quantum algorithms, hardware, and software. Benchmarking of quantum algorithms
is crucial because the hyperparameters employed within the algorithm can significantly
impact both the runtime and the accuracy of the results. By systematically varying
and analyzing these hyperparameters, it is possible to gain insights into their effects on
the algorithm’s performance. Through benchmarking, it becomes possible to identify
the hyperparameter configurations that yield the best outcome, reducing runtime and
minimizing errors.

1.1.3 Expected Contributions
This study aims to establish a proof-of-concept for offloading quantum computations to
edge devices, thereby yielding valuable insights into how edge quantum simulators operate
and perform. The concept of offloading has the potential to offer notable advantages
in this domain by reducing latency and the risk for congestion between the application
and the edge quantum simulator. Scientific problems play a crucial role in quantum
computing, offering significant applications for this technology. We aim to demonstrate
how the different hyperparameters impact the accuracy and runtime for different VQAs,
which can be used for quantum chemistry problem solving.

3



1. Introduction

Based on our results, this thesis will offer first insights in the possibility of using VQAs
for different problem instances. Due to our findings we have provided benefits of using
VQAs at the network edge and on the other hand point out current limitations.

We expect this thesis to provide a comprehensive evaluation of edge and local quantum
simulators for certain problems, and to offer practical guidance for selecting the most
appropriate algorithm settings for a given problem. By doing so, this thesis will contribute
to the ongoing effort to develop practical applications for quantum computing and to
understand the role that this technology can play in solving some of the most challenging
problems in science and engineering.

1.1.4 Structure of Thesis
This thesis is structured as follows: Chapter 2 discusses the background of this thesis,
beginning with an explanation of the main differences between quantum computers
and classical computers. It covers important quantum mechanical principles, quantum
bits, quantum circuits and gates, Variational Quantum Algorithms, and quantum error
correction. Chapter 3 provides a overview of other studies with similar research goals
that have already been conducted. These studies focus on hybrid classical-quantum
systems, quantum computing, and Variational Quantum Algorithms. Chapter 4 covers
the methodology used for obtaining all the benchmark results. Moving forward, Chapter
5 describes the implementation in detail. We proceed with presenting the results of this
thesis and evaluating the implementation in Chapter 6, and conclude with a discussion
of potential future work in Chapter 7.

4



CHAPTER 2
Background

2.1 Quantum Computing Primer
The following chapter will cover the main terms, technologies, and techniques of quantum
computing, which are relevant for this thesis and will be briefly described.

2.1.1 Quantum Bits (Qubits)
In quantum computing, the qubit represents the basic unit of information, featuring a
two-dimensional state space. Its state vector |ψ(t)⟩ can be expressed as a combination of
orthonormal basis states |0⟩ and |1⟩, using complex coefficients C1(t) and C2(t) [NC10].
These two-state quantum systems may arise naturally or be intentionally crafted, like the
electron’s spin degrees of freedom, leading to spin-up and spin-down states. In the domain
of quantum computing, the basis states |0⟩ and |1⟩ are also denoted as computational
basis states and qubits serve as the building blocks of quantum computers. The crucial
distinction between classical and quantum information lies in quantum’s capacity to
superpose base states, while classical bits can only hold distinct states 0 or 1. With N
qubits, the Hilbert space dimension expands to 2N , necessitating 2N+1 − 2 real numbers
to represent an arbitrary superposition due to normalization and the constant phase
factor (eiϕ). Consequently, an N qubit system requires 2N+1 − 2 classical bits to describe
an arbitrary superposition [SMS23].

The behavior of qubits in quantum computing can be visualized as a sphere, known as
the Bloch sphere, that is a common representation in quantum algorithms and quantum
circuit analysis, aiding in the understanding of qubit dynamics. The Bloch sphere is a
unit sphere, where the north pole represents the |0⟩ state, and the south pole represents
the |1⟩ state. The equator of the sphere represents the equal superposition states, where
the qubit is in a linear combination of |0⟩ and |1⟩. Any pure state of a qubit can be
represented by a point on the surface of the Bloch sphere. For example, the state

5



2. Background

Figure 2.1: Schematic representation of a quantum state in a Bloch sphere. [JBTS19]

|ψ⟩ = α |0⟩ + β |1⟩, where α and β are complex numbers and |α|2 + |β|2 = 1 (to ensure
normalization), corresponds to a point on the surface of the sphere. The angles θ and ϕ
determine the position of the point on the sphere, and they are related to the complex
coefficients α and β [JBTS19, Wil11]. The Bloch sphere provides an intuitive way to
understand qubit operations. Quantum gates, which are transformations applied to
qubits, correspond to rotations of the qubit’s state vector on the Bloch sphere. A example
illustration of a Bloch sphere is shown in Figure 2.1.

Superposition

Superposition [Pos21, dLMPL19] is a fundamental principle of quantum mechanics that
allows a quantum system to exist in multiple states simultaneously. In the quantum
world, particles such as qubits can be in a state that represents a linear combination of
two or more basis states. For example, a qubit can be in a superposition of the states |0⟩
and |1⟩, represented as α |0⟩ + β |1⟩, where α and β are complex probability amplitudes.
The probabilities of measuring the qubit in state |0⟩ or |1⟩ are set by the square of α and
β given by

|α|2 + |β|2 = 1.

The matrix representations of the vectors |0⟩ and |1⟩ are usually given by

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
.

Superposition is a key concept in quantum computing that enables quantum systems
to perform multiple computations simultaneously, providing a computational advantage

6



2.1. Quantum Computing Primer

over classical systems. This principle is a cornerstone of quantum computing algorithms
and allows for the potential of exponential speedup in certain computations[YM08].

Entanglement

In quantum mechanics entanglement is a phenomenon where two or more particles become
intrinsically connected in such a way that the quantum state of one particle is dependent
on the state of the others, regardless of the spatial separation between them. When
particles become entangled, their individual quantum states can no longer be described
independently. Their combined state forms a single entangled state [EPR35].

As an example of entanglement, let us consider a two-qubit register |b1b2⟩ initially in the
state |00⟩ [Hom22b]. In this scenario, we apply the Hadamard transformation to the first
qubit and then the CNOT operation to the two qubits. This results in the following:

|00⟩ H⊗I2−→ 1√
2

(|0⟩ + |1⟩) |0⟩ = 1√
2

(|00⟩ + |10⟩)

CNOT−→ 1√
2

(|00⟩ + |11⟩).

Now, when we measure the first qubit, the result of this measurement is either |0⟩ or
|1⟩, each with a probability of 1

2 . In the first case, the subsequent state is |00⟩. If we
observe a measurement outcome of |1⟩ for the first qubit, the two-qubit quantum register
transitions into the state |11⟩. When we subsequently measure the second qubit, we
obtain the same result as for the first qubit: either both qubits are 0, or both are 1.
Before measuring |b1⟩, the outcome of a measurement on |b2⟩ was uncertain, both
outcomes were equally likely. However, if |b1⟩ has already been measured, the result of
the measurement on |b2⟩ is now predetermined. The same phenomenon occurs when we
first measure |b2⟩. The state generated in this process is also known as a Bell state, of
which there are four different varieties [dLMPL19]:

|||Φ+
>

= 1√
2

(|00⟩ + |11⟩)
||Φ−>

= 1√
2

(|00⟩ − |11⟩)|||Ψ+
>

= 1√
2

(|01⟩ + |10⟩)
||Ψ−>

= 1√
2

(|01⟩ − |10⟩)

Entanglement can occur between qubits in quantum systems, leading to a correlation
between their measurement outcomes, even when separated by large distances. This
property of entanglement plays a crucial role in quantum information processing, enabling
tasks like quantum teleportation and quantum communication. Moreover, entanglement
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2. Background

is essential in quantum algorithms, such as the quantum search algorithm (Grover’s
algorithm) [CBAK13] and quantum error correction [LB13]. Harnessing entanglement is
a key goal in quantum technologies, as it offers the potential for enhanced computation,
communication, and secure information transfer.

Measuring a Quantum State

In quantum computing, measuring a quantum circuit is a mandatory step to obtain a
result or outcome from a quantum computation. The process of measurement in quantum
mechanics is fundamentally different from classical measurements and is related to the
principles of quantum superposition and collapse of the wave function. When a quantum
circuit is executed, qubits are manipulated through quantum gates, allowing them to be
in a superposition of states, representing both |0⟩ and |1⟩ simultaneously. However, upon
measurement, the quantum state collapses to one of the basis states (|0⟩ or |1⟩) with a
certain probability. The outcome of the measurement is a classical bit, representing either
0 or 1.The probability of obtaining a particular measurement outcome is determined by

the state of the quantum system just before the measurement. In particular, for a qubit
in a superposition of states |0⟩ and |1⟩, the probabilities of obtaining the measurement
outcomes |0⟩ and |1⟩ are given by the square of the magnitudes of the coefficients of |0⟩
and |1⟩ in the superposition. For example, consider a qubit in the state α |0⟩+β |1⟩. Here,
α and β are complex probability amplitudes. Than the quantities |α|2 and |β|2 represent
the probabilities of measuring the qubit in the states |0⟩ and |1⟩ [dLMPL19, Hom22b].

After the measurement, the quantum state collapses to the measured state, and subsequent
measurements will always give the same result. This is known as the collapse of the
wave function in quantum mechanics. The Schrodinger’s cat thought experiment [Sch35]
describes the behaviour of quantum measuring. It places a cat inside a sealed box with a
radioactive atom that may or may not decay, triggering a poison release. According to
quantum theory, until observed, the cat is considered both alive and dead simultaneously
(superposition state). Until opening the box (measuring) it is not possible to decide
whether the cat is still alive (qunatum state). It is important to note that the measurement

in quantum computing is probabilistic, meaning that we can only obtain one of the
possible measurement outcomes with a certain probability. Repeated measurements on
the same quantum circuit may give different outcomes due to the probabilistic nature of
quantum mechanics [JJ12].

No-Cloning Theorem

In classical computing, it is possible to create copies of information by simply duplicating
bits. However, in the area of quantum computing, the No-Cloning Theorem stands as
a fundamental principle that restricts the direct copying of arbitrary quantum states.
Proposed by Wooters and Zurek in 1982, this theorem asserts that an arbitrary unknown
quantum state cannot be perfectly cloned [WZ82]. This has profound implications for
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the nature of quantum information and distinguishes quantum systems from classical
ones.

The No-Cloning Theorem has important consequences for various aspects of quantum
computing, such as quantum cryptography, quantum teleportation, and quantum commu-
nication [Wei09]. Quantum cryptographic protocols, like the Quantum Key Distribution
(QKD) schemes, rely on the principle that eavesdropping on quantum states would disturb
their integrity, making them detectable [AGM06]. The No-Cloning Theorem provides a
foundational basis for the security of such quantum communication protocols.

In essence, the No-Cloning Theorem underpins the delicate nature of quantum states
and highlights a profound difference between classical and quantum information. While
classical bits can be freely copied, in quantum computing qubits cannot be copied. This
unique principle raises challenges and opportunities in the development of quantum
algorithms and technologies [Hom22c].

Mathematical Formulation: We consider a quantum system in the state

|ϕ⟩ ⊗ |s⟩ ,

where |ϕ⟩ is arbitrary and |s⟩ is arbitrary but fixed. There is no unitary transformation
that transforms this system for every |ϕ⟩ into the state

|ϕ⟩ ⊗ |ϕ⟩ .

2.1.2 Quantum Circuits
Quantum Circuits

Quantum circuits serve as the fundamental framework underpinning quantum computing,
playing a crucial role in executing quantum computations. Analogous to classical circuits
that manipulate classical bits through logic gates, quantum circuits operate on qubits
using quantum gates to perform quantum operations[MM12]. For a classical circuit the
process is facilitated through logical gates like AND, OR, and NOT, which manipulate
the binary bits to perform computations and problem-solving tasks. The set of logical
gates can be further reduced, as OR can be expressed in terms of AND and NOT. By
utilizing these logical gates, a circuit is constructed to compute results[dLMPL19].

A quantum circuit is constructed by applying a series of quantum gates to qubits as
shown in Figure 2.2. Each quantum gate corresponds to a specific quantum operation,
such as rotations, flips, or entanglement, influencing the quantum state of the qubits. The
arrangement and order of quantum gates influence the overall computation executed by
the quantum circuit. By initializing the circuit with known initial qubit states, quantum
gates control the evolution of qubit states to perform computations. The operations
performed by the gates are always reversible [Wit14, dLMPL19].

9
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Quantum circuits follow the rules of quantum mechanics, including the concept of
superposition, which allows qubits to exist in multiple states simultaneously. Additionally,
quantum circuits harness entanglement, which correlates the states of entangled qubits,
even when physically separated. Knowing these quantum phenomena is vital for devising
efficient quantum algorithms and unlocking the potential of quantum computing.

|1⟩ • U H •

|0⟩ • X

|0⟩ • • H ×
|1⟩ • ×

Figure 2.2: A sample quantum circuit with different quantum gates

Quantum Gates

Quantum gates are the elementary building blocks of quantum circuits and are responsible
for performing specific quantum operations on qubits. Each quantum gate represents a
unitary transformation, which is a reversible operation that preserves the normalization
and overall quantum state of the qubits [Kas21a].

There are various types of quantum gates, each with its unique function. Some of the
commonly used quantum gates together with their gate symbols and transformation
matrices are listed below [Hid19]:
Pauli-X (NOT) gate: Flips the state of a qubit from |0⟩ to |1⟩ or vice versa.

X

[
0 1
1 0

]

Pauli-Y gate: Rotates the state of a qubit around the y-axis in the Bloch sphere.

Y

[
0 −i
i 0

]

Pauli-Z gate: Rotates the state of a qubit around the z-axis in the Bloch sphere,
introducing a phase flip.

Z

[
1 0
0 −1

]

Hadamard gate: Puts a qubit into a superposition state, creating an equal probability
of measuring |0⟩ or |1⟩.

10
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H
1√
2

[
1 1
1 −1

]

CNOT (Controlled-NOT) gate: A two-qubit gate that performs a NOT operation
on the target qubit if and only if the control qubit is in state |1⟩.

•
[||||

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]||||
SWAP gate: Exchanges the states of two qubits.

×
×

[||||
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]||||
Toffoli gate: A three-qubit gate that performs a NOT operation on the target qubit if
both control qubits are in state |1⟩.

•
•

[|||||||||||||

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

]|||||||||||||
These gates, along with other more complex gates, enable the implementation of quantum
algorithms and computations. Quantum gates exploit the unique properties of qubits,
such as superposition and entanglement, to perform parallel computations and achieve
quantum speedup for specific problems.

2.1.3 Hybrid Classic-Quantum Systems
The potential of quantum computers holds promise for accelerating problem-solving. A
combination of classical and quantum systems can be envisioned as a viable solution.
The main advantage lies in harnessing the strengths of classical computers for specific
tasks, such as error correction, while leveraging the benefits of quantum machines, such
as quantum parallelism [SLM+21]. Hybrid Classical-Quantum Systems involve a series
of steps to enable interoperability between the two systems which are shown in Figure
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2.3. Initially, data is pre-processed on the classical system (1) before being executed
on the quantum system. Next, the quantum state is prepared based on the provided
input (2). Utilizing quantum circuits to model the required computations (3), the state is
manipulated, and subsequently measured (4). Finally, the measured state is transferred
back to the classical system, where post-processing (5) takes place [CDMB+22].

1) Pre-Processing

5) Post-Processing

2) State Preparation

3) Circuit Execution

4) Measurement

Classic System

Quantum System

Figure 2.3: Hybrid Classic/Quantum Systems [CDMB+22]

2.1.4 Quantum Algorithms
Quantum algorithms leverage characteristics of quantum systems to address complex
computational challenges with potentially greater efficiency compared to classical methods.
Quantum algorithms are modeled through quantum circuits which moreover are build by
using quantum gates. The design and optimization of these circuits play a crucial role in
realizing the potential quantum speedup for specific computational tasks [BAAM20].

Variational quantum algorithms

Variational Quantum Algorithms (VQAs) use a classical optimizer to employ a quantum
circuit with adjustable parameters, as illustrated in Figure 2.4. This approach has become
popular for overcoming the limitations discussed previously [CAB+21].
In the following two variational quantum algorithms and one linear solver algorithm
closely aligned with the focus of this thesis, are described.

Variational Quantum Eigensolver Variational Quantum Eigensolver (VQE)
[PMS+14] yields the ground-state energy of a molecular Hamiltonian as result. VQE
operates by leveraging the principles of variational optimization, where a parameterized
quantum circuit is systematically adjusted to minimize the energy expectation value. The
algorithm optimizes a function with the aim to retrieve the lowest possible expectation
value of an observable relating to a trial wavefunction. To elaborate further, when a
Hamiltonian operator Ĥ and a trial wavefunction |ψ⟩ are provided, it becomes evident
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Figure 2.4: Schematic diagram of a Variational Quantum Algorithm (VQA) [CAB+21]

that the ground state energy E0 linked to this specific Hamiltonian is confined within
the bounds of

E0 ≤ ⟨ψ| Ĥ |ψ⟩
⟨ψ|ψ⟩ .

The key distinguishing goal of VQE is that it is restricted to finding the eigenstate
of a quantum observable, which is not necessarily the case of other VQAs (such as
Quantum Approximation Optimization Algorithms or the Variational Quantum Linear
Solver). Quantum advantage, achievable through VQE, depends on surpassing classical
accuracy and computational time. However, challenges arise from the pre-factor of
the VQE runtime, optimization complexity, and potential sensitivity to noise. VQE’s
resilience to noise contributes to its success on current quantum devices, but its scal-
ability to larger experiments is uncertain. Achieving quantum advantage with VQE
necessitates demonstrating higher accuracy and faster computation for specific systems
compared to conventional methods, while acknowledging limitations in exactness due to
parameterization [TCC+22].

Quantum Approximate Optimization Algorithm Quantum Approximate Opti-
mization Algorithm (QAOA) is an algorithm especially designed to find approximate
solutions for combinatorial optimization problems [FGG14]. The algorithm’s performance
is contingent upon an integer value p ≥ 1, with improved approximation quality corre-
sponding to higher p values. The quantum circuit responsible for executing the algorithm
is composed of unitary gates, each with a locality no greater than that of the objective
function whose optimum is sought.

The unitary operation U(β, γ) possesses a distinct structure, comprising a combination
of two distinct unitaries denoted as U(β) = e−iβHB and U(γ) = e−iγHP . Here, HB

represents the mixing Hamiltonian, while HP corresponds to the problem Hamiltonian.
The parameters β and γ determine the amplitude of evolution under each operator,
forming a key aspect of the algorithm’s optimization process. The algorithm aims to
return optimal parameters such that the quantum state reveal the solution to the problem.

The quantum state is generated by employing these unitaries in an alternating sequence,
with each block consisting of the two unitaries applied p times, where |ψ0⟩ indicates the
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inital state:
|ψ(β, γ)⟩ = U(β)U(γ)...U(β)U(γ). .. .

p times

|ψ0⟩

QAOA has found applications across a spectrum of fields, including graph partitioning,
Max-Cut problems, and portfolio optimization [KW22, CWY+23].

Harrow-Hassidim-Lloyd Algorithm

Linear equations are a mathematical problem which occur in practically all areas of science
and engineering and therefore a lot of real-life applications are build upon them. The
Harrow-Hassidim-Lloyd algorithm [HHL09a] has a improved complexity of logarithmically
in N, whereas the classical algorithms for such problems can only be solved in polynomial
time [CAB+21].
Consider a linear equation in the form of:

A |x⟩ = |b⟩

A is a Hermitian matrix of size N × N and |x⟩ represents the solution vector of the
corresponding length N . By mapping the two normalized vectors b⃗ and x⃗ the quantum
states |b⟩ and |x⟩ are build.
The HHL algorithm can be divided in four main steps or in other word also called
subroutines [HHL09b, aZW23]:

1. Prepare the initial quantum state |ψ0⟩

2. Run Quantum Phase Estimation (QPE) estimate the eigenvalues of the matrix A
[Kit95]

3. Rotate the ancilla bit for encoding relevant information in the amplitude

4. Run Inverse Quantum Fourier Transform (QFT) transfering the quantum state in
measurement probabilities [aZW23]

5. Measurement the quantum state

2.1.5 Noisy Intermediate-Scale Quantum Devices
In the near future, quantum hardware will be based on the Noisy Intermediate-Scale
Quantum (NISQ) technology which is characterized by a qubit count up to a few hundred
qubits. NISQ devices operate in the presence of noise, resulting in errors during quantum
operations. The noise can be caused by interaction with the environment or other qubits
[Pre18]. These constraints encompass a restricted qubit count and the noise that limit
circuit depth. As a result, the practical deployment of fault-tolerant quantum computers
is likely to remain an aspiration in the near future [LLSK22].
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2.1.6 Quantum Error Correction
Quantum Error Correction (QEC) is an important topic in the field of NISQ devices,
addressing a critical challenge that arises from the inherent susceptibility of qubits to noise
and decoherence [Kas21b]. As NISQ systems become more complex and computations
involve larger numbers of qubits, the sensitive nature of quantum states makes them
prone to disturbances from their environment. This susceptibility can lead to errors in
quantum computations, impacting the reliability and accuracy of quantum algorithms.

In classical computing, error correction techniques have been developed and refined
over decades, allowing for robust data manipulation and transmission. Using classical
computing solutions are not suitable in the quantum world, since the no-cloning theorem
prevents us, form taking this approach. In the quantum field errors raise a unique and
complex challenge. Due to the principles of superposition and entanglement, errors
can propagate and spread through quantum systems in ways that are fundamentally
different from classical systems. This phenomenon, known as quantum error propagation,
highlights the need for specialized error correction strategies that are tailored to the
principles of quantum mechanics.

One of the primary causes of errors in quantum computing is decoherence, which arises
from interactions between qubits and their surrounding environment. These interactions
lead to loss of coherence and entanglement, resulting in the degradation of quantum
states [ZuRJ+22]. Additionally, imperfections in hardware components, such as gates and
measurements, can introduce errors into quantum operations. These errors accumulate as
computations progress and potentially affect the final output to be meaningless [Hom22a].

Quantum Error Correction has emerged as a powerful tool to combat these challenges
and ensure the reliability of quantum computations. The main principle underlying QEC
is the encoding of quantum information redundantly across multiple qubits [Bac13]. By
distributing the information in an error-resistant manner, errors can be detected and
corrected, preserving the integrity of quantum states throughout the computation process.
Quantum codes, analogous to classical error-correcting codes, enable the identification
and correction of errors without the need for direct measurement of the quantum states,
which would otherwise risk collapsing their delicate superposition [Kas21b].

Incorporating Quantum Error Correction into quantum algorithms and systems is essential
for practical and scalable quantum computing. The field of QEC continues to evolve,
with researchers developing new codes, techniques, and error-detection mechanisms
that contribute to the stability and robustness of quantum computations. As quantum
computing technologies advance, QEC remains an important component as it enables us
to unlock the full potential of quantum computation while mitigating the impact of noise
and errors [MH21].
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CHAPTER 3
Related Work

The following chapter deals with similar topics that are relevant for this master thesis
and serve as a basis for it. Approaches and results from various other literature sources
are described and considered in more detail below. The section starts by discussing
Hybrid Classical-Quantum Systems and the Computing Continuum, continuous with an
in-depth exploration of Quantum Computing methodologies, and concludes with ongoing
researches in Variational Quantum Algorithms.

3.1 Hybrid Classic-Quantum Systems
The utilization of hybrid systems has garnered significant interest in medical fields
due to its potential to enhance existing approaches, as described in a recent paper
[MBMRMRAE23]. Experts in medical applications seek new alternatives to address
challenges beyond the capabilities of current Artificial Intelligence programs for Staging of
Invasive Ductal Carcinoma of Breast. The experiment was based on a classical subroutine
and a quantum subroutine to determined the current stage of cancer. The authors’
findings indicate that quantum computing does not replace classical computers but rather
extend them, as input and output data must still be processed traditionally. With
quantum computing’s parallelism, the results are promising, as problems that would take
a lifetime to solve on quantum hardware can be addressed in seconds, hours, or days.

Another paper [BWM+16] investigates the application of a hybrid quantum-classical
approach for materials simulations, particularly focusing on Density-Functional Theory
(DFT), the current method widely used for such simulations. The proposed hybrid
approach combines classical and quantum algorithms, integrating DFT with Dynamical
Mean-Field Theory (DMFT). DFT, being computationally less expensive, is executed
on classical machines, while the more computationally intensive DMFT is performed
on quantum hardware. The authors demonstrate that even small quantum computers
can be employed alongside their hybrid quantum-classical algorithm to simulate larger
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systems, especially strongly correlated crystalline materials or complex molecules. This
presents an opportunity for material simulations, which often rely on supercomputing
facilities, to benefit significantly from the availability of quantum computers.

Furthermore, the potential benefits of utilizing hybrid classical-quantum systems for
image classification, as highlighted in a paper [TSR+21]. The authors introduced a Hybrid
Neural Network (HNN) that combines quantum computing and classical computing to
perform image classification tasks. The proposed HNN is built on Ry quantum circuits
with 2-4 qubits, each having one trainable parameter. Their findings demonstrate that
the HNN can effectively handle both complex datasets (e.g., color images) and simpler
datasets (e.g., greyscale images with basic content like digits or simplified clothing icons).
However, it is important to note that at its current stage the HNN exhibits significantly
lower accuracy compared to its classical counterparts. The authors emphasize that a direct
comparison of metrics between hybrid classical quantum models and classical models
might be premature, considering the early stages of quantum computing development.

An interesting study [VROVR+23] focus on the bin packing problem in various dimensions,
with particular attention to the three-dimensional bin packing problem (3 dBPP) common
in industrial settings. The authors present a hybrid classical computing framework for the
3 dBPP, leading to three main conclusions. Firstly, longer time limits lead to lower energy
and improved solution quality. Secondly, the deviation around mean values remains
stable across different time limits and problem instances. Lastly, despite varying time
limits, the optimization process predominantly relies on the solver’s heuristic module,
evident from consistent Quantum Processing Unit (QPU) access times. The results
demonstrate the effectiveness of the hybrid approach, offering feasible solutions for the
studied instances.

Quantum Software Engineering (QSE) has emerged as a novel research area, as described
in an article by Ricardo Pérez-Castillo and Mario Piattini [PCP22]. Quantum software
programming techniques have been experimentally proposed in an ad-hoc manner as the
authors stated in their article. Their findings highlight the need for new techniques that
encompass both classical computers and their software, along with quantum software.
Merely focusing on quantum software development will not suffice, as some simple
problems can be efficiently computed using classical software at a lower cost. Ignoring
this capability would lead to inefficiency in utilizing available computing resources. They
propose a quantum Unified Modeling Language (UML) profile for the analysis and design
of hybrid classical/quantum systems. The applicability of the profile is demonstrated
through various structural and behavioral diagrams, including use case, class, sequence,
activity, and deployment diagrams. The authors’ work provides valuable insights into
managing relationships between classical and quantum software and how to represent
these relationships in abstract designs.

The Satellite Mission Planning Problem (SMPP) aims to efficiently schedule satellite
resources for earth surface imaging as explained in a paper [QKBW23]. Variational
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quantum algorithms like VQE and QAOA show potential for solving this combinatorial
optimization problem. The experiments compared performance on noise-free and noise-
aware simulations. In noise-free simulations, VQE was notably faster for smaller instances,
but as the number of locations increased, result quality degraded for all algorithms, with
VQE showing the most significant decrease. On the noise-aware simulator, computation
times increased exponentially with more locations, and W-QAOA (warm-start variant -
parameters pre-determined instead of randomly initialized) was the fastest for smaller
instances, while VQE was faster for larger ones. Result quality decreased with more
locations, and the drop was more significant in noise-aware simulations. The SPSA
optimizer performed poorly, indicating that the Cobyla optimizer may be more suitable
for SMPPs.

3.1.1 Quantum Computing
Quantum Computing is an emerging paradigm with the potential to provide substan-
tial computational advantages for various problems. Many challenging tasks, currently
requiring extensive resources and lengthy execution times, can be significantly acceler-
ated on quantum hardware. Ongoing research in different fields has shown promising
improvements, pointing to the transformative impact of quantum computing [GKS+20].

A paper [dW17] published in 2017 explores the potential societal impact of quantum
computing. The authors highlight a significant threat to cryptography. This field,
crucial for our online communication and e-commerce, faces potential vulnerabilities due
to Quantum Computers. These advanced computers can efficiently break encryption
algorithms such as RSA, utilizing Shor’s algorithm to find prime factors of large numbers.
Additionally, quantum computing can revolutionize optimization problems and large
search challenges, enabling efficient resource allocation for governments, companies, and
organizations in their daily operations. Quantum computers offer accelerated simulations
of quantum systems, facilitating tasks like drug design through parallel exploration of
vast lists of possible molecules to identify suitable properties. However, the paper also
briefly touches upon the ethical implications of quantum computing, such as its potential
impact on online privacy and the potential for power imbalances between countries or
companies. These aspects highlight the transformative potential of quantum computing
in various spheres and the need for careful consideration of its implications.

In the work of Upama et al. [UFN+22], an examination of various quantum computer
tools and software currently available is carried out. These tools serve different use
cases and offer a wide range of functionalities, accessible even from personal laptops for
experimentation with quantum machines. The author listed several tools and software,
including Cirq1, TensorFlow Quantum2, ProjectQ3, CirqProjectQ4, Microsoft Quantum

1https://quantumai.google/cirq
2https://www.tensorflow.org/quantum
3https://github.com/ProjectQ-Framework/ProjectQ
4https://pypi.org/project/CirqProjectQ/
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Development Kit5, IBM Quantum Experience6, Rigetti Forest and Cloud Computing
Services (OCS)7, Quantum Computing Playground8, Strawberry Fields9, and Wolfram
Quantum Framework10. In addition, the work [UFN+22] highlights some challenges
related to the physical space required for quantum computers. Currently, quantum
computers occupy an entire room, yet their qubit configurations are not sufficient to
promise significant speedup for economically viable quantum computing. Therefore
increasing the number of qubits presents a challenge due to the consequent growth in the
size of quantum computers. Furthermore, the authors identified a lack of collaboration
and exchange between industry and academia as a significant obstacle in the advancement
of Quantum Computing. Addressing these challenges will be important for the future
progress of quantum computing technologies.

In their research [GS21], the authors investigated Quantum Computing’s impact on
Supply Chain Finance using IBM Qiskit and three algorithms: Minimum Eigenvalue,
VQE, and QAOA. They compared algorithmic results with manual selection, finding no
significant difference. However, the authors stated as quantum hardware advances, the
finance industry could benefit in the future.

According to Crispin H. V. Cooper’s paper [Coo22], transportation simulation and
planning benefits significantly from the application of quantum hardware. The au-
thor explores various existing quantum computing research related to transportation,
particularly focusing on developments in network analysis, shortest path computation,
multi-objective routing, optimization, and calibration. Among these areas, the latter
three show particular promise for future research. Given that these computing problems
often involve extensive input data, quantum hardware has the potential to outperform
classical computers in handling such complexity.

In a comprehensive survey paper [YZJ23], the authors identified several prevailing
challenges and limitations in both universal and annealer quantum computing. These
challenges are categorized into five groups:

• Hardware challenges, encompassing issues like unreliability due to decoherence and
noise, large hardware size, high design complexity, and incomplete theory.

• Connectivity challenges, including short distances between qubits, imperfect tele-
portation, lossy links, limited topology, and the reliance on trusted nodes.

• Security challenges, involving low key rates, vulnerability to Denial of Service
attacks, limited key efficiency, and classical alternatives.

5https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
6https://quantum-computing.ibm.com/
7https://pyquil-docs.rigetti.com/en/v2.7.2/
8http://www.quantumplayground.net/#/home
9https://strawberryfields.readthedocs.io/en/stable/

10https://resources.wolframcloud.com/PacletRepository/resources/Wolfram/
QuantumFramework/
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• Data analysis challenges, such as limited data types, low compatibility with classical
approaches, and the lack of collaboration strategies.

• Pragmatism challenges, including high cost, large size, diverse programming styles,
and limited resources.

Addressing these challenges, the authors proposed four research groups: 1) Quantum
computers, focusing on hardware improvements; 2) Quantum networks, aimed at enhanc-
ing connectivity; 3) Quantum cryptography, addressing security issues; and 4) Quantum
machine learning, targeting advancements in data analysis. These research groups serve
to tackle the limitations and pave the way for advancements in the field of quantum
computing.

Quantum benchmarking is a critical aspect of quantifying the capabilities of a given
quantum computer, as it provides a reliable measure of its performance and potential. In
the paper [WGS22], the authors offer valuable guidelines on how to establish benchmarks
specifically tailored for quantum computers. The benchmarks are thoughtfully categorized
into three groups: physical benchmarks, aggregated benchmarks, and application-based
benchmarks. The physical benchmarks focus on essential factors such as the number
of qubits, energy relaxation time T1, decoherence time T2, qubits’ connectivity, and
gate fidelity. Meanwhile, the aggregated benchmarks encompass metrics like quantum
volume, algorithmic qubits, and the circuit layer operations per second (CLOPS). Finally,
the application-based benchmarks are designed to assess the performance of a quantum
computer when tackling real-world quantum applications. The paper underscores the
significance of quantum benchmarks, given their widespread use in high-performance
computing.

3.1.2 Variational Quantum Algorithms
Variational Quantum Algorithms (VQAs) are a class of quantum algorithms that leverage
quantum computers to solve optimization problems [AMR+22]. Unlike some other
quantum algorithms that offer exponential speedup for specific tasks, VQAs are designed
to be implemented on near-term, noisy quantum devices [LWW+21]. They combine
quantum and classical computation, making them well-suited for current quantum
hardware capabilities.

A paper [CAB+21] provides an in-depth exploration of Variational Quantum Algorithms
(VQAs) and highlights their promising potential for various future applications. VQAs
take advantage of classical optimizers to train parameters, allowing the utilization of
relatively small quantum hardware. This approach is particularly beneficial in dealing
with the current limitations of available quantum resources. The authors emphasize that
VQAs are considered a leading candidate for achieving quantum advantage in near-term
quantum computing. Their applications encompass tasks like finding ground states of
molecules, simulating quantum system dynamics, and solving linear systems of equations.
However, addressing challenges related to trainability, accuracy, and efficiency when
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applying VQAs to large-scale problems is crucial for future advancements. As VQAs
transition from the proposal and development phase to implementation, it is anticipated
that researchers will increasingly utilize them for real-world problems rather than limited
toy problems.

In a recent study [AF23], the authors explored the application of Variational Quantum
Algorithms (VQAs), including Variational Quantum Eigensolver (VQE) and Quantum
Approximate Optimization Algorithm (QAOA), to solve the Vehicle Routing Problem
(VRP). The VRP is a combinatorial optimization problem that aims to find the optimal
routes for multiple vehicles to travel between various destinations and return to the
starting location. The experiment involved executing the algorithms on different datasets
and comparing their results with those obtained using classical approaches. The findings
indicated that currently, VQAs can handle only small instances of VRP. Furthermore,
QAOA demonstrated higher accuracy in delivering solutions compared to VQE.

The paper [SMM23] titled "Benchmarking of Different Optimizers in Variational Quantum
Algorithms for Quantum Chemistry Applications" conducted various experiments on
different optimizers to assess their accuracy in optimizing performance. The optimizers
were categorized into gradient-based methods, gradient-free methods, and quantum-
hardware-specific methods. Quantum simulations were performed on simple molecules,
including hydrogen, lithium hydride, beryllium hydride, water, and hydrogen fluoride,
both with noise-free and noisy quantum circuits. Under ideal conditions, L_BFGS_B,
CG, and SLSQP were identified as the best gradient-based optimizers for ground state
energy evaluation accuracy, while COBYLA and POWELL excelled among gradient-free
optimizers. Noise in quantum circuits impacted the performance of many optimizers,
but their ground state energy error remained similar. For dissociation energy, CG and
SLSQP performed well under ideal conditions, while SPSA, GD, POWELL, and COBYLA
outperformed others in the presence of noise. Regarding dipole moment, L_BFGS_B,
CG, and SLSQP remained the best gradient-based optimizers, while SPSA, POWELL,
CG, and COBYLA showed better performance under noise.

Another study [SWA21] investigates variational quantum algorithms, particularly the
variational quantum eigensolver (VQE) method, to estimate the ground state energy
of small molecules on noisy quantum devices. The study explores hardware-efficient
ansatz families to reduce circuit depth, mitigate noise-induced barren plateaus, and
enhance performance on quantum chemistry problems using noisy quantum hardware.
The results indicate that the optimal ansatz family choice depends on the noise level
and hardware type, highlighting the importance of evaluating circuit families on noisy
quantum simulators or real quantum devices for accurate decisions. Furthermore, the
study examines the expressibility measure for characterizing ansatz families and finds
that it does not correlate with the circuit’s performance in finding the ground state using
VQE. Therefore it may not be the best criterion for selecting suitable ansatz families for
chemistry applications. The paper suggests further investigations, including extensive
analyses involving various ansatze and noise models, as well as exploring machine learning
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techniques to predict appropriate ansatz families based on problem characteristics and
hardware noise.

A paper [LCS+23] investigates the time-scaling performance of Variational Quantum
Algorithms (VQAs) and their potential for achieving quantum advantages. The lack of
inter-layer quantum state recording in Quantum Neural Networks (QNNs) was identified
as a limitation for scalability. The estimated running time of VQAs grows polynomially.
However, achieving quantum advantages at a regular time scale becomes challenging.
In ideal cases, the running time may even reach the 1-year barrier. Nonetheless, the
authors recognize the potential of VQAs and Noisy Intermediate-Scale Quantum (NISQ)
algorithms and propose optimizations such as more efficient sampling strategies and
parameter-saving ansatzes. They also emphasize the importance of exploring a more
natural approach to Quantum Machine Learning tasks, moving away from a direct
replacement of classical Neural Network models with QNNs.

3.1.3 Quantum Algorithm Benchmarking
Quantum algorithm benchmarking is a crucial area of research aimed at evaluating and
quantifying the performance of quantum algorithms on different hardware platforms. This
section provides an overview of the state of the art in quantum algorithm benchmarking,
highlighting key research studies and advancements in the field.

Researchers have proposed various benchmarking methodologies to assess the performance
of quantum algorithms. These include approaches such as randomized benchmarking
[MGJ+12], cross-entropy benchmarking [BIS+18], and gate set tomography [BKGN+13].
These techniques provide quantitative measures of the accuracy, fidelity, and efficiency
of quantum algorithms, enabling comparative evaluations across different quantum
hardware platforms. Quantum algorithm benchmarking aims to evaluate the performance
of specific quantum algorithms in solving well-defined problems. For example, several
studies have focused on the algorithms performance such as the Quantum Approximate
Optimization Algorithm (QAOA) for combinatorial optimization problems [WWJ+20]
and the Variational Quantum Eigensolver (VQE) for molecular simulations [HLL+22].
Quantum algorithm benchmarking also includes assessing the impact of errors and noise on
the performance of quantum algorithms. Researchers have explored various techniques for
error characterization and mitigation, such as quantum error correction [Got97] and error
mitigation using classical post-processing techniques [TBG17]. These studies investigate
the effectiveness of error mitigation strategies in improving the reliability and accuracy
of quantum algorithm results. Researchers have also conducted studies comparing the
performance of algorithms on different quantum systems, such as superconducting qubits
[AASG19], trapped ions [MK13], and topological qubits [AS11]. These comparative
benchmarking studies provide insights into the strengths and limitations of different
hardware platforms, aiding the development and optimization of quantum algorithms for
specific systems.
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CHAPTER 4
Methodology

Given the potential for future speedup in scientific computing through the utilization
of quantum devices, our objective is to benchmark quantum simulators deployed at the
network edge. Quantum algorithms are influenced by various parameters that can impact
result accuracy. Therefore, it is crucial to run all algorithms employed in this thesis
under various hyperparameter configurations to identify the set that produces the optimal
results.

4.1 Benchmarks

The thesis focuses on Variational Quantum Algorithms (VQAs), specifically the Vari-
ational Quantum Eigensolver (VQE) and the Quantum Approximate Optimization
Algorithm (QAOA). Additionally, it includes benchmarking of the Harrow-Hassidim-
Lloyd (HHL) quantum algorithm for solving linear equations. These algorithms are
directly related to scientific computing problems and have potential applications in
various scientific fields, such as quantum chemistry.

Since the field of scientific research is rapidly evolving, the software development method
rapid prototyping is a good option. Firstly, it allows for the efficient development of
benchmarking methodologies, enabling quick experimentation and comparison of quantum
systems with local machines and edge devices in different scenarios. On the other hand,
it allows for flexibility in adapting methodologies based on new insights, continuous
advancements in hardware and software or feedback which is crucial in such a new scientific
field. Finally, rapid prototyping can save time and resources by identifying potential
issues or limitations early on, allowing for timely adjustments and improvements. Overall,
rapid prototyping yields a method which improves a fast and adaptive development
process, resulting in early valuable findings and results.
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4.2 Benchmarking Methodology
In the context of benchmarking, careful consideration is given to the selection and tuning
of hyperparameters, crucial elements that significantly influence alogrithms performance.
For VQE the hyperparameters cover a range of choices, including the configuration of
the ansatz, choice of optimizers, and selection of backends. Optimizers are employed
to iteratively adjust the ansatz parameters, converging towards an optimal solution.
Meanwhile, the selection of different backends, representing the underlying quantum
hardware or simulators, introduces variability into the experiments. Beside VQE, QAOA
is affected by hyperparameters such as the optimizer and the the chosen backend. HHL
underlying functionality is different to VQE and QAOA and therefore HHL is tested
with a variety of different backends. Moreover, for HHL it is also tested if transpiling the
circuit affects the final results in matter of computation time or accuracy.

All benchmark tests are conducted using publicly accessible IBM quantum computers1.
Executed quantum computing operations are performed through the open-source quantum
computing framework called Qiskit [qisa], developed by IBM. Since direct executions on
the actual machines are still associated with long waiting times, proper simulators are
used as alternative for performing appropriate tests. Later during the thesis and in the
final stage of performing suitable benchmark tests the execution run on local simulators
and a rasqberry simulator. The two end devices are a classic computer and a Raspberry
Pi (Raspberry Pi 4 Model B, 8GB RAM), which acts as an edge device. The Raspberry
Pi, is also called RasQberry [rasb] because it integrates Qiskit. For this purpose, the
corresponding computational tasks are offloaded to the remote device or executed locally.

In the beginning, the primary focus was to conduct all benchmark tests for the algorithms
on local simulators. Local simulators were chosen for their ease of accessibility, and
the direct output and debugging processes proved to be more efficient and quicker.
Qiskit was employed to load the relevant backend providers for the simulators used
for benchmarking and for programming the corresponding algorithms, along with their
hyperparameters. Each individual benchmark was initiated in isolation, ensuring that
each experiment represented a distinct standalone instance on the local simulator. This
approach guaranteed that the various benchmark tests remained independent and could
not interfere with or influence one another.

A similar principle was adopted to execute identical benchmark tests on remote simulators.
The key distinction lies in the fact that individual experiments were transmitted to the
remote simulator via Transmission Control Protocol (TCP) [CK74]. Each instance was
processed there, and the final results were returned through the same socket connection.
Once again, each test was transmitted individually to obtain interference-free results.

The open-source quantum computing framework Qiskit is a quantum computing library
written in Python [pyt]. Therefore, all additional software engineering tasks are per-
formed using Python 3.7 and later. The Python library MatplotLib [mat] is used for

1https://quantum-computing.ibm.com/
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visualization tasks due to its extensive capabilities for creating high-quality plots, charts,
and visualizations. Experiment data is collected and processed using Python libraries for
numerical computing and data manipulation, such as NumPy [Num] and Pandas [pan].

Qiskit provides a comprehensive set of tools, libraries, and functions for designing,
simulating, and executing quantum circuits on real quantum hardware or simulators.
Mainly, simulators are used for execution due to the long waiting queues and limited
resources of currently accessible IBM quantum computers. Otherwise it may result in
delays and unreliable performance, potentially leading to inaccurate or unrepresentative
benchmark results. Qiskit provides several simulators for quantum circuit simulations,
which offer a range of options for simulating quantum circuits with different levels of
accuracy and noise models, allowing for a thorough investigation of quantum algorithms
and their performance. All experiments utilize the Aer provider backend [Sim] from
Qiskit to execute the tasks.

4.2.1 Variational Quantum Eigensolver
VQE [PMS+14] operates as a quantum algorithm designed for computing minimal
eigenvalues of hermitian matrices in various dimensions. This method uses the principles
of variational optimization in quantum mechanics, employing a parameterized quantum
circuit known as the ansatz. Careful selection of the ansatz is essential to obtaining a
final solution that is close to the true state of interest [TCC+22].

4.2.2 Quantum Approximate Optimization Algorithm
QAOA [FGG14] instead, is a algorithm for combinatorial problems. It employs a
parameterized quantum circuit, known as the initial state, to encode the problem’s
objective function. In our case, the initial state is chosen randomly. QAOA iteratively
adjusts these parameters, aiming to find the optimal configuration that minimizes the
objective function. By leveraging quantum superposition and entanglement, QAOA
explores multiple potential solutions simultaneously. The algorithm’s performance is
influenced by the used optimizer and backend which are hyperparameters. For this
reason QAOA is executed on randomly generated connected graphs, with a specified
number of nodes, calculating the Max-Cut problem by using different optimizers and
backends. Moreover, a brute-force approach is employed to compare the QAOA solution
to get insights in accuracy and computational time. The Max-Cut problem [Com09]
is a classical combinatorial optimization problem. In this problem, the objective is to
partition a given undirected edge-weighted graph structure into two disjoint sets of nodes
to maximize the sum of edge weights between the two sets. Similar to VQE, QAOA
instance are executed with varying graph sizes and on different backends using various
optimizers as input parameter. Due to the significant size of QAOA circuits, additional
experiments are conducted to reduce the circuit depth.
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Here’s a brief explanation of the problem:

1. Input Graph: We have an undirected graph where the nodes represent specific
elements or objects, and the edges between nodes are weighted to represent the
relationships between the elements.

2. Subset Formation: The goal is to partition the nodes of the graph into two disjoint
subsets. The idea is that the elements in the two subsets are chosen in a way that
maximizes the sum of the weights of the edges connecting the two sets (referred to
as cut edges).

3. Maximum Weight Sum: The problem is to find the node partition that results
in the maximum possible sum of weights of the cut edges. This separation aims
to create the most pronounced division between the subsets by cutting the most
heavily weighted connections between them.

4.2.3 Harrow-Hassidim-Lloyd Algorithm
HHL [HHL09a] is an algorithm used for solving linear equations represented in the form
of Ax = b. During the thesis, different linear equations are generated in a random
manner. In the individual experiments, the problem instance’s dimensions are varied.
Furthermore, the impact of trying to simplify the circuit via transpile-functions is tested.

4.2.4 Data
In this thesis, artificial synthetic data is used for benchmarking purpose to ensure
consistency and control over the experimental conditions. Synthetic data allows for precise
manipulation of the input data parameters, such as size, complexity, and distribution, to
systematically evaluate the performance of each type of computer. In case of VQE random
hermitian matrices are generated. Each experiment is executed with a newly created
hermitian matrix. The dimensions for the output hermitian matrix can be specified via
the corresponding input parameter for the generation function. QAOA needs a input
graph to solve the Max-Cut problem. For this reason a random undirected graph with
a chosen number of nodes is generated. The probabilities to generate edges between
nodes can be specified too. As a result a undirected graph with n nodes and m edges
is returned. Generating linear equations for HHL like Ax = b can be achieved via the
same approach as for VQE. The hermitian matrix A is generated in a random manner
based on the given size for the dimensions. The same procedure is used for the vector b.
Vector b is randomly generated based on the dimension. Since the linear equation system
must have same matrix and vector dimension, the corresponding value is used for both
generation steps.

The main data sampling approach employed in this thesis is random sampling, which
involves randomly selecting data points from the available data set. This approach
helps to ensure that the benchmarking experiments are conducted on a diverse and
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representative sample of data. Additionally, systematic sampling, which involves selecting
data points at regular intervals from the data set, is utilized as an additional method to
complement the random sampling approach. These data sampling methods are used to
generate benchmarking data that accurately reflects real-world scenarios and provides
meaningful insights into the performance of local machines, edge devices, and quantum
simulators in solving various computational problems.

4.2.5 Evaluation
The execution time for benchmarking the local machine and edge device are measured
using the time() module of Python. This module provides a simple and accurate way to
measure the time taken for a specific code block to run. The corresponding benchmarks
for a wide variety of tasks are analyzed. At the end, the benchmark tests are used to try
to identify which tasks can be solved faster given quantum hardware. We measure the
accuracy, speed and scalability of each algorithm and analyze the results using methods
such as measuring computation speed and compare exact values from classical approaches
with the received quantum result. Moreover, computational time and deviation between
exact and quantum result are used to analyse the quantum algorithm under different
instances varying in the number of dimensions or size. Furthermore, the evaluation
involves comparing the accuracy and execution time for different input sizes on both
quantum hardware and classical architecture. An overview of the different main metrics
is listed below:

• Execution Time Measurement

– Metric: Time used on the local simulator and quantum edge simulator.
– Method: Uses the time() module in Python to measure the execution time

for solving the input problem.

• Scalability Vs. Time

– Metric: Time usage compared to problem dimensions is analyzed.
– Method: Uses the time() module in Python to measure the execution time

for problems with increasing complexity.

• Input Size Vs. Qubits

– Metric: How does the input size affect the qubit usage by different algorithms.
– Method: Different input sizes are randomly generated, with the problem

dimensions increasing each time. These instances are executed on the quantum
simulators. The behavior of qubit usage is monitored in comparison to the
input size. Used qubits can be retrieved via: quantumCircuit.num_qubits 2

2https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.QuantumCircuit#
num_qubits
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• Absolute Error

– Metric: The deviation between the exact value and the quantum result are
calculated. Moreover the deviation from the exact value is calculated for
several repetitions of the experiment.

– Method: Absolute Error = |xestimated − xexact|
Mean Absolute Error = 1

n

∑n
i=1 |Exact Valuei − Estimated Valuei|

• Repetition Accuracy

– Metric: The algorithm is repeated several times with the same input instance.
– Method: A initial input instance is generated randomly and the algo-

rithm is executed. The result is noted and the algorithm is executed
again with the initial input. This behaviour is repeated several times,
each single round the result is monitored. In the end the mean abso-
lute percentage error is calculated. Mean Absolute Percentage Error =
1
n

∑n
i=1 |Exact Valuei−Estimated Valuei

Exact Valuei
| × 100%

To provide decision-makers with a realistic understanding of the performance of both
types of computers, the benchmark tests aim to simulate real-world scenarios. The
analysis intends to identify the strengths and weaknesses of each type of computer and
offer decision-makers a set of guidelines for selecting the appropriate type of computer
for a given task.
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CHAPTER 5
Implementation

The following chapter outlines pivotal implementation procedures necessary for conducting
benchmark tests on the respective devices. In this context, we take a closer look at the
utilized architecture of the experiment and subsequently address crucial details of the
algorithms used for this study. Apart from the explained implementation procedures,
it is noteworthy to acknowledge that a substantial portion of the thesis is dedicated to
establishing a foundational understanding of quantum computers. A considerable amount
of new knowledge and insights into quantum mechanics are imperative to comprehend
the utilization of each algorithm and to understand the impact of diverse configurations
on the ultimate outcomes.

5.1 Architecture
In order to conduct experiments in a correspondingly realistic environment, a suitable
setup must be established that allows interacting with edge devices and running some
experiments on local devices. For this reason, a laboratory setup was created at Vienna
University of Technology, representing the edge device. This edge device is a Raspberry
Pi 4 Model B [Rasa], which can be accessed from the outside via a VPN. Facilitating this
objective involved configuring a static IP address for a VPN connection to the internal
network, followed by implementing suitable port forwarding. As a result, it becomes
possible to establish a TCP connection with the Raspberry Pi, allowing the transmission
of data packets from external origins. For the local device, a conventional laptop (Dell
Precision 7560 mobile workstation), no further configurations are necessary as the relevant
experiments can be directly conducted on the device. A schematic representation of the
experimental setup can be seen in Figure 5.1. Moreover, the specific device resources are
shown in Table 5.1.

Both of the devices are capable of executing IBM Qiskit [Qisb] code to function as
quantum simulators. Installing Qiskit on the local device is straightforward using pip
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Internet

RasQberry 
Quantum Simulator

Local Device &
Quantum Simulator

Dell Precision 7560 RasQberry Pi 4 Model B

@ Vienna University of Technology
Laboratory

Figure 5.1: Topology used for this thesis

Device Name CPU RAM
Raspberry Pi 4

Model B
Broadcom BCM2711 - Quad core
Cortex-A72 (ARM v8) 64-bit SoC

@ 1.8GHz

8GB LPDDR4-3200
SDRAM

Dell Precision
7560

11th Gen Intel® Core™ i7-11850H
@ 2.50GHz 8 Cores

64GB

Table 5.1: Device specifications used for experiments

install as described on the official website [Get]. Since Qiskit is a Python package, a
Python version greater than or equal to 3.7 is required.

The installation process on a Raspberry Pi differs somewhat from that on a conventional
Windows computer. The Qiskit image cannot be directly installed via pip install for this
purpose. Fortunately, Jan Lahmann has provided an accessible method for installing
Qiskit on an Raspberry Pi. A detailed guide can be found in the corresponding GitHub
repository [Git]. Now that the Raspberry Pi with Qiskit installation essentially resembles
a quantum computer, it is referred to as RasQberry within the community.

An important insight gained during the setup of the test environment is that installing
Qiskit on a Raspberry Pi operating as a virtual machine was not feasible for us. In
our attempts, the installation process consistently terminated. Despite our efforts to
resolve the encountered errors, the installation terminated again with a new error code.
It could be possible that the installation routine checks for the use of a virtual machine
and terminates the process accordingly.
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5.2 Algorithms
To conduct our experiments, we must implement various Variational Quantum Algorithms
(VQAs) using Qiskit and subject them to a range of diverse benchmark tests. In the
following section, we enumerate the three specific algorithms employed for this thesis,
along with their corresponding implementations and parameter configurations. To execute
experiments for the algorithms, we require the incorporation of three essential Python
packages:

• numpy [Num] - This package facilitates streamlined manipulation of vectors and
matrices, among other functions.

• time - Used for measuring the duration of executions.

• matplotlib [mat] - This package offers effective tools for visualizing the bench-
mark experiments.

5.2.1 Quantum Simulator
In Qiskit, the execution of an algorithm requires the utilization of a backend on which the
algorithm is to be executed. This may involve employing a physical quantum computer
or, as in the context of this study, using quantum simulators. Through the Aer provider
[Sim], Qiskit assembles a variety of high-performance simulators that can be utilized for
various simulation methodologies. A listing of the different Aer backends can be generated
using the command provided in Listing 5.1. In this work only the Aer-Simulator backend
from the Aer provider is used.

1 Aer.backends()
2 [AerSimulator('aer_simulator'),
3 AerSimulator('aer_simulator_statevector'),
4 AerSimulator('aer_simulator_density_matrix'),
5 AerSimulator('aer_simulator_stabilizer'),
6 AerSimulator('aer_simulator_matrix_product_state'),
7 AerSimulator('aer_simulator_extended_stabilizer'),
8 AerSimulator('aer_simulator_unitary'),
9 AerSimulator('aer_simulator_superop'),

10 QasmSimulator('qasm_simulator'),
11 StatevectorSimulator('statevector_simulator'),
12 UnitarySimulator('unitary_simulator'),
13 PulseSimulator('pulse_simulator')]

Listing 5.1: Qiskit aer provider backend

Having opted for a backend, the subsequent step follows the creation of a Quantum
Instance. This Quantum Instance uses the previously selected backend and further
incorporates a shots parameter. The shots parameter determines how frequently a
corresponding quantum circuit is to be reiterated. Given that a quantum computer
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operates probabilistically, it is necessary to calibrate these parameters suitably. Through
multiple circuit executions, the correct solution can be deduced with an enhanced
likelihood. An illustrative example of invoking a quantum circuit is demonstrated in
Listing 5.2.

1 from qiskit_aer.primitives import Sampler as AerSampler
2 from qiskit import QuantumCircuit
3
4 #Create Circuit
5 circuit = QuantumCircuit(4)
6 circuit.h(range(2))
7 circuit.cx(0,1)
8 circuit.measure_all() # measurement!
9

10 sampler = AerSampler(run_options= {"method": "statevector"})
11
12 result = sampler.run(circuit, shots=1024).result()
13 quasi_dists = result.quasi_dists
14
15 # Convert the output to bit strings
16 binary_quasi_dist = quasi_dists[0].binary_probabilities()
17 print("binary_quasi_dist: ", binary_quasi_dist)

Listing 5.2: Qiskit quantum circuit simulation [Cir]

5.2.2 Optimizers
As described in Chapter 2, the construction of Variational Quantum Eigensolver and
Quantum Approximate Optimization Algorithm relies on classical local optimizers to
iteratively refine the parameters of the quantum circuit. Consequently, for benchmark
tests, the utilization of appropriate optimizers is also imperative. The respective selection
of the optimizer significantly influences the efficiency and performance of algorithms.
Qiskit, an open-source quantum computing framework developed by IBM, provides two
distinct categories of optimizers: local optimizers, which seek an optimal value within
the boundaries of the neighboring region of a candidate solution, and global optimizers,
which strive to find an optimal value among all feasible solutions. For this study, the
following local optimizers provided by Qiskit were employed, since the cover a widely
range of different optimization approaches:

• ADAM [KB17, ADA]: It is a gradient-based optimization algorithm. ADAM
depends on adaptive estimates of lower-order moments. The algorithm is invariant
to diagonal rescaling of the gradients and utilizes little memory.

• SPSA [Spa98, SPS]: It is a gradient-descent method for multivariate optimization
problems. The algorithm uses only two measurements of the objective function,
regardless the dimensions of the input instance.
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• SLSQP [Kra88, SLS]: The algorithm is well suited for mathematical problems where
the objective function and the constraints are twice continuously differentiable.
SLSQP minimizes a function of one or multiple variables subject to general equality
and inequality constraints and any combination of bounds.

• L_BFGS_B [ZBLN97, LBF]: The algorithm aims to minimize a differentiable
scalar function f . It is used for solving large nonlinear optimization problems with
simple bounds of the variables.

• NELDER_MEAD [NM65, NEL]: It is a algorithm used for multidimensional
unconstrained optimization problems. The algorithm is used to find the minimum
or maximum of an objective function in a multidimensional space.

• COBYLA [Pow07, COB]: It is a numerical optimization method for constrained
problems where the derivative of the objective function is not known. COBYLA uses
iterative approximation to convert the original constrained optimization problem
into a series of linear programming problems.

5.2.3 Variational Quantum Eigensolver
Variational Quantum Eigensolver (VQE) falls within the category of Variational Quantum
Algorithms (VQAs). In this work, VQE was employed to determine and yield the minimum
eigenvalue of a matrix. Since in VQE the input matrix or in other words also called
Hamiltonian, needs to be transfered to Pauli strings, it is required that the input matrix
is of dimension 2n. Due to the fact that quantum circuits interact with logical gates, this
requirement is important. All products of any calculation with Pauli matrices result in
dimensions of 2n. Moreover it is important that any given input must be an hermitian
matrix [TCC+22]. The mathematical definition of a hermitian matrix [Str16] is

A = A†

Here, A† represents the conjugate transpose of matrix A.

To achieve this goal, a random matrix fulfilling these specific conditions was generated
for all tests. For this purpose, a function was used to create and provide a corre-
sponding hermitian matrix of size n. This matrix can then be utilized further and
passed to VQE for calculating the minimum eigenvalue. Qiskit offers a function named
random_quadratic_hamiltonian in the qiskit_nature_testing.random
package that generates such a matrix. A sample invocation of this method to ob-
tain the actual values of the hermitian matrix is demonstrated as shown in Listing
5.3.

1 matrix = random_quadratic_hamiltonian(2).hermitian_part.real

Listing 5.3: Create a random hermitian matrix of size n using a function from Qiskit
Nature[qisc]
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VQE requires an initial point and an ansatz. The initial point refers to the initial set of
parameters that define the quantum circuit’s structure before optimization begins. This
initial set of parameters determines the initial state of the quantum circuit, which is then
iteratively adjusted to minimize the expectation value of the problem hamiltonian. For
the benchmark tests, a randomized initial point is employed. Within the circuit, the
ansatz specifies the manipulation and entanglement of qubits, with its selection depending
on the problem’s characteristics and the hardware resources available [PMS+14]. The
ansatz parameter is chosen based on the test from one of the following ansatz methods:

• TwoLocal

q0 : RY (θ[0]) RZ (θ[2]) • RY (θ[4]) RZ (θ[6])
q1 : RY (θ[1]) RZ (θ[3]) • RY (θ[5]) RZ (θ[7])

1 TwoLocal(num_qubits=2, rotation_blocks=["ry", "rz"],
entanglement_blocks="cz", reps=1).decompose().draw('mpl')c→

Listing 5.4: Qiskit Code for drawing ansatz TwoLocal for 2 qubit circuit

• EfficientSU2

q0 : RY (θ[0]) RZ (θ[2]) • RY (θ[4]) RZ (θ[6])
q1 : RY (θ[1]) RZ (θ[3]) RY (θ[5]) RZ (θ[7])

1 EfficientSU2(num_qubits=2, reps=1,
entanglement='linear').decompose().draw('mpl')c→

Listing 5.5: Qiskit Code for drawing ansatz EfficientSU2 for 2 qubit circuit

• RealAmplitudes

q0 : RY (θ[0]) • RY (θ[2])
q1 : RY (θ[1]) RY (θ[3])
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1 RealAmplitudes(num_qubits=2, entanglement='linear',
reps=1).decompose().draw('mpl')c→

Listing 5.6: Qiskit Code for drawing ansatz RealAmplitudes for 2 qubit circuit

Noise Model and Error Mitigation

In this thesis, most experiments are conducted on ideal simulators without the use of a
noise model. To best emulate environmental noise for real quantum machines, this section
explores the addition of a noise model to a simulator and attempts to reduce it through
an error mitigation strategy. In our case, we have chosen the FakeVigo() fake backend
[fak] in Qiskit, which, as part of the fake provider module, replicates IBM Quantum
systems using system snapshots containing essential information such as coupling maps,
basis gates, and qubit properties. This choice is instrumental for testing noisy circuits
and conducting simulations with noise [Noi].

In addition to the corresponding fake backend used for our simulator, we also require
error mitigation for our quantum instance to reduce noise in the final results. For the
simulator backend, the resilience level can be set to perform error mitigation. In our
case, we have set it to a value of 1, as it represents the minimum mitigation cost [Con].

Finally, all these configurations were used to execute VQE without a noise model, with a
noise model, and with a noise model and error mitigation. Since the implementation only
required different parameter settings, this was quickly achieved by adding a fake backend
and, consequently, a noise model to the existing solution. Subsequently, the resilience
level was changed from 0 to 1 to activate error mitigation.

5.2.4 Quantum Approximate Optimization Algorithm
Another algorithm from the group of Variational Quantum Algorithms, Quantum Ap-
proximate Optimization Algorithm (QAOA) deals with solving combinatorial problems.
In this study, we focus on the Max-Cut Problem, which was discussed in more detail in
Chapter 4.

To effectively represent the Max-Cut Problem, a corresponding connected graph with
a node set of size n is randomly generated for each benchmark test. Furthermore, it is
possible to specify a probability for the creation of an edge between two nodes. In our
tests graphs are not weighted. An illustrative example of a connected graph with 6 nodes
and an edge creation probability of 40%, generated randomly through the method call
for QAOA, is depicted in Figure 5.2. Graphs are generated through the python package
NetworkX [Net].

To compare the performance of QAOA, a brute-force approach was implemented too.
This approach calculates all possible solutions to the Max-Cut Problem and ultimately
selects the best one.
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Figure 5.2: A example graph for the max-cut problem with six nodes and edge creation
probability of 40%

For the generated graph to be transformed into a quantum instance, a weight matrix must
be created from the graph. The resulting matrix can subsequently be converted into a
quadratic program. This quadratic program can then be transformed into a Hamiltonian,
facilitating the complete computation by a quantum computer. The corresponding code
for this process is shown in Listing 5.7.

1 graph = random_graph(6, 0.4)
2
3 # weight Matrix
4 w = weighted_Matrix(graph)
5
6 # preapre
7 max_cut = Maxcut(w)
8 qp = max_cut.to_quadratic_program()
9

10 # quadratic program to ising hamiltonian
11 qubitOp, offset = qp.to_ising()

Listing 5.7: Qiskit code for transforming a generated graph to a hamiltonian

Similar to VQE, QAOA also requires an optimizer and a quantum instance as parameters.
For QAOA, the initial point is randomly generated. Moreover, there is an additional
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Figure 5.3: A example mixer circuit for a graph with two nodes

mixer parameter [BFL22] which should be set. The mixer parameter is used to address
cases where the trial state is an eigenstate of the cost Hamiltonian. The mixer allows
transitioning out of this state in order to get not stuck at a local minimum. A sample
mixer circuit for a graph with n = 2 is shown in Figure 5.3. Furthermore, QAOA requires
a reps parameter, which correlates with the parameter p specified in Chapter 2. The
reps parameter controls the number of layers in the quantum circuit and, consequently,
the likelihood of achieving a more accurate result. In the benchmark tests conducted in
this study, the value of the reps parameter (or reps) was set to the value of reps = 2.
The value for reps = 2 was chosen because of its better lower bound approximation ratio
compared to reps = 1 as mentioned by Wurtz et al. [WL21].

5.2.5 Harrow-Hassidim-Lloyd Algorithm
The Harrow-Hassidim-Lloyd (HHL) algorithm is used for the resolution of linear equation
systems. Unlike the VQE and QAOA approaches, the HHL algorithm uses only a quantum
instance as a parameter input, along with the linear equation formulated in the matrix
and vector representation.

To achieve a spectrum of diverse and realistic outcomes, both the vector and matrix com-
ponents for the HHL algorithm are generated randomly. Similar to previous benchmarks,
we construct a hermitian matrix using the functionality provided by Qiskit Nature.

To prove the accuracy and correctness of the acquired outcomes, we used the
NumPyLinearSolver from Qiskit’s linear_solver package. The NumPyLinearSolver
employs a classical algorithm not using any quantum mechanical principles. This method-
ology empowers the computation of an exact solution, thereby facilitating a direct
comparison with the outcomes received by the HHL algorithm.

As the circuit depth in the HHL algorithm growth rapidly with the size of the inputs,
the benchmark tests cover next to some small instance experiments tests of circuit
optimization. Specifically, Qiskit offers tools to simplify an input circuit via their
transpiler mechanism [Tra]. This procedure tailors the circuit to suit a particular
quantum device, thereby optimizing it for execution. Alternatively, as used in this study,
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it offers a toolset to optimize a circuit for execution on quantum systems. In the context
of the HHL algorithm, we undertake an investigation into the behavior of a transpiled
HHL instance and evaluate how the optimization of such instances influences their circuit
properties.

5.3 TCP-IP Connection
In order to replicate the principle of offloading to edge quantum devices it is necessary
for these devices to be accessible via the internet. To ensure that client requests can be
processed effectively by the edge devices, both the client and the edge device need to be
properly prepared for this purpose.

We are therefore assuming the following scenario: A local device wants to solve a task
based on user input, which can potentially be better solved using principles of quantum
mechanics. Let’s assume the requirement is to solve a system of linear equations. The
local device, also referred to as the client, sends a request to the edge quantum simulator,
also known as the server, asking it to solve the provided system of linear equations.

This principle works by establishing a TCP/IP socket connection from the client [Soc] to
the server with the request to solve a system of linear equations. It transmits the problem
instance to the server. Based on the transmitted byte stream, the server recognizes the
type of problem, reads the problem instance, and starts computing the solution. Once
the server completes the calculation, it transmits the solution back through the TCP/IP
connection. The client can then retrieve the received result and subsequently proceed
with the next steps in the program routine. A visual representation of the mentioned
scenario is shown in Figure 5.4.

Figure 5.4: A sequence diagram of the offloading between client and server (edge quantum
simulator)
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CHAPTER 6
Evaluation

The central objective of this research was the thorough evaluation of quantum simulators
within the edge computing paradigm. The primary focus was on assessing the viability of
offloading computational tasks to quantum simulators at the network edge. To accomplish
this, an in-depth analysis was conducted by benchmarking three quantum algorithms:
Variational Quantum Eigensolver (VQE), Quantum Approximate Optimization Algorithm
(QAOA), and Harrow-Hassidim-Lloyd (HHL) quantum algorithm. These algorithms and
their implementation for this thesis were introduced and discussed comprehensively in
Chapter 5.

A essential aspect of this evaluation apply to the comparative analysis of executing
these algorithms locally and remotely. The fundamental metrics for this analysis are
computing latency and accuracy. These metrics play a fundamental role in determining
the suitability of offloading specific problem instances to the network edge. This selection
is crucial to obtain results within a reasonable timeframe while upholding the desired
level of precision. The comprehensive results and insights obtained from the extensive
evaluation have been precisely documented in the dedicated Chapter 6. Finding provide
a substantial understanding of the feasibility and implications of leveraging quantum
algorithms on quantum simulators at the network edge.

6.1 General
6.1.1 Shots Parameter
Testing the influence of the shots parameter on the precision of final outcomes is important
for quantum computing, particularly within the Qiskit framework. The shots parameter
signifies the number of times a quantum circuit is executed to accumulate statistics for
measurement outcomes. Recognizing and understanding how the parameter affects the
accuracy of results is essential to benefit from the full potential of quantum algorithms.
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Quantum systems inherently introduce probabilistic aspects due to the probabilistic
nature of quantum measurements. As such, assessing the effect of the shots parameter
on result accuracy is instrumental in understanding the statistical nature of quantum
outcomes. By systematically altering the shots parameter while maintaining consistent
experimental conditions, benchmark testing provides a clear picture of how the distribution
of measurement outcomes evolves. This elucidates the convergence of results towards
the actual probability distribution and shows potential inaccuracies caused by limited
shots. Moreover, testing the impact of the shots parameter facilitates a efficient allocation
of computational resources. A higher number of shots generally yields more accurate
results by mitigating the effects of statistical fluctuations. However, this enhancement
comes at the expense of increased computational time. This phenomenon is illustrated
in Figure 6.1 tested on a two qubit circuit with each qubit manipulated by a hadamard
gate to place both qubits in a superposition state. When running an instance with
a small value provided for the shot parameter, the results obtained are not accurate.
Increasing the number of shots leads to improved performance of the probability functions.
Consequently, setting the shot parameter to around 1024 could serve as a suitable initial
value. A value of 1024 is also the default setting in Qiskit when no other explicit value is
specified. Based on our testing, the trade-off between performance and runtime appears
favorable for achieving reasonably accurate results. Opting for higher shot numbers would
significantly extend the runtime. Therefore, the specific hardware employed influences
the execution times since more powerful hardware resources could finish execution in a
shorter period of time. While the edge device indicates notably slower performance for
larger shot values, the local machine completes the computations within a considerably
shorter time frame.

Figure 6.1: Impact of shots parameter on a 2 qubit circuit compared to accuracy and
runtime
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6.1.2 Network Latency

Network latencies represent a crucial criterion for real-time applications, aiming to return
results in a short amount of time. In the context of employing quantum edge simulators,
data is transmitted over the network and processed at the network edge. The speed and
quality of returning requested results for given problems are affected upon the network’s
quality. As mentioned in section 5.3, requests such as TCP are transmitted to the edge
device. To gain insight into the existing network latencies within our testing environment,
we conducted latency measurements using the Python package tcp-latency [tcp].
The measurements involved dispatching 500 TCP packets at one-second intervals and
measuring the resulting latency, as illustrated in Figure 6.2. Among the 500 transmitted
packets, 61 were lost, which in an actual system scenario lead to packet retransmission.

The findings reveal two distinct spikes around packet numbers 209 to 230 and 440 to 448.
These correspond to the transfer of a 28MB image and a 9.5MB PDF-file. Smaller spikes
are caused from regular browser activity and package updates. Evaluating the mean of
all measured values yields a latency of 40.85ms, and considering the median value gives
a latency of 31ms. The minimum latency was measured at 15ms, while the maximum
latency reached 556ms. These measurements offer insights into the network’s dynamic
behavior and are important for estimating its suitability for real-time applications,
particularly those require rapid data transfer and processing.

Figure 6.2: Latency measurements between local machine and quantum edge simulator
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6.2 Variational Quantum Eigensolver
Variational Quantum Eigensolver (VQE) was employed in this thesis to compute the
corresponding minimal eigenvalue for matrices utilized as input to the algorithm. The
number of qubits necessary for computing the eigenvalues of matrices follows a direct
relationship with the matrix dimensions. Specifically, an input matrix with a dimension
of 2 × 2 requires one qubit, while a matrix with dimensions of 4 × 4 requires two qubits,
and this pattern continues for larger dimensions. This relationship is visually represented
in Figure 6.3.

Figure 6.3: Comparison of VQE qubit usage for different matrix dimensions

In order to gain an overview of various computational parameters, the simulator backends
shown in Figure 6.4 were tested with different optimizers using three distinct ansatz
methods. For this particular case, the input matrix for the algorithm had a size of
2 × 2. From the tests, it is evident which simulator backend yields particularly favorable
results and which backend is less suitable for such problem instances. The results clearly
indicate that the SPSA optimizer consistently provides the most accurate calculation
of the eigenvalue of 1 for the given input size. Furthermore, it is apparent that the
aer_simulator_statevector backend does not yield the correct results for any ansatz
method across various optimizers. In multiple runs, there was no correct match for the
aer_simulator_statevector backend, making it less suitable for eigenvalue computations
of matrices. Additionally, the results demonstrate that the RealAmplitude ansatz method
delivers the highest number of accurate matches across different backends.
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6.2. Variational Quantum Eigensolver

(a) Ansatz methode EfficentSU2

(b) Ansatz methode RealAmplitude

(c) Ansatz methode TwoLocal

Figure 6.4: VQE results by simulator and optimizer for different ansatz methodes

Another crucial question in addition to the appropriate backend and the associated ansatz
method with a suitable optimizer is now the accuracy of VQE. In this regard, a random
2 × 2 matrix was created, and the VQE algorithm was applied 100 times consecutively to
the same input instance. It became evident that the results for three distinct matrices
exhibit substantial variation in accuracy, as illustrated in Figure 6.5. However, it is
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also obvious that the values do not deviate significantly from the exact value but rather
remain closely aligned. All three tests reveal outliers that are distinctly noticeable from
the graphs. In graph 6.5a, an 11.11% deviation from the exact value is observed, while
in graph 6.5b, nine out of the total 100 measurements notably deviate from the precise
value. For graph 6.5c, the results vary a lot between the measurements, and the exact
values were less frequently recorded compared to the other graphs. The deviation for
graph 6.5c from the exact value is relatively small, only changing in the second decimal
place.

These observations underscore the nuanced interplay between the VQE algorithm and the
generated matrices. Moreover, the findings indicate both the potential for high accuracy
and the occasional presence of deviations that need careful consideration.

In order to provide a more detailed examination of VQE’s accuracy, we focused on
evaluating the deviation of VQE-computed results from the exact value across various
matrix dimensions. This analysis included results obtained from randomly generated
matrices of dimensions 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32. Through multiple
iterations of experimentation, a clear pattern emerged, highlighting a direct relationship
between matrix dimension and the difference between computed and exact values.

Graphical representations in Figure 6.6 illustrate this trend. For matrices of sizes 2 × 2
and 4 × 4, the outcomes closely aligned with the exact values. However, as the dimension
increased to 8 × 8, notable deviations became evident. Particularly unexpected was
the observation for matrices of size 32 × 32, where a considerable discrepancy emerged
between computed and exact values, often resulting in significant numerical differences.

To further assess the accuracy of VQE, the mean absolute error was computed across
three distinct matrices of dimensions 2×2, 4×4, and 8×8. This evaluation was performed
over 50 repeated executions. Here again, a clear trend emerges: the mean absolute error
increases as the input size grows. While the error remains at 0.0006 for the 2 × 2 matrix,
it notably raises for the other two input sizes, as depicted in Figure 6.7.

Subsequently, we investigate the execution times for the computation of N × N matrices
using VQE with the SPSA optimizer and the RealAmplitudes ansatz. To initiate this
assessment, it is important to determine where the experiments are executed. Therefore,
we employed two distinct devices: a local laptop and an edge device functioning as a
quantum simulator. The comprehensive specifications of these diverse devices are listed in
Table 5.1. Time measurements on the local machine solely encapsulate the elapsed time
for the VQE computation. For computations on the edge device, the network latency is
additionally factored in alongside the elapsed time for the VQE computation. Figure 6.8
shows the execution time comparison between the local and remote devices. Evidently,
the resource demands of VQE computations are significant, as the edge device already
exhibits substantially longer computation times, even for minimal matrix dimensions,
reflecting a difference of approximately 6.1 seconds. Upon investigating the temporal
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(a)

(b)

(c)

Figure 6.5: VQE accuracy for 100 executions on the same input instance
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difference for a matrix size of 128 × 128, a considerable time discrepancy of 16.5 seconds
emerges. Further analysis of the results reveals that the temporal computational overhead
escalates significantly on the edge device. Furthermore, from Figure 6.9, it is evident that
the RealAmplitude ansatz method exhibits the shortest computational time, consequently
leading to the fastest calculation of a conclusive result. It is noticeable that the execution
times for the other two ansatz methods are closely aligned. Given that the execution
times are in the order of seconds, the impact of network latency, which operates in the
millisecond range, remains inconsequential and can thus be effectively ignored.

6.2.1 VQE with noise model and error mitigation

So far, we have been working with backend simulators that are noise-free and, therefore,
deliver ideal results. However, real-world quantum devices are exposed to environmental
noise, which can lead to failure in calculations. For this reason, we computed minimal
eigenvalues for hermitian matrices using an ideal simulator without noise. Subsequently,
a noise model was added to the simulator to simulate environmental noise. The exact
procedure for this approach is detailed explained in Section 5. Additionally, VQE was
executed with a noise model and a error mitigation strategy, to minimize the impact of
environmental noise on the final result. Table 6.1 provides the eigenvalue results for the
various input matrices. It can be observed that the noise-free simulator backend yields
the best results relative to the exact outcome. Nevertheless, it is worth noting that error
mitigation can reduce the error in the results and demonstrates significant improvements
compared to using only the noise model. Moreover, beside error mitigation another
approach could be error correction strategies to further prevent systems for possible
faulty results at a different stage during quantum processing.

input matrix real
eigenvalue

no noise with noise with noise and
error mitigation[

0.02542625 0.45665469
0.45665469 −0.36131127

]
-0.66385 -0.36131 0.22597 -0.25849[

2.19979252 0.39313646
0.39313646 −0.14372983

]
-0.20792 -0.14373 0.21490 -0.00960[

1.12137458 −0.60837019
−0.60837019 −0.42483515

]
-0.63550 -0.63549 -0.63298 -0.63512[

0.90421152 0.04931608
0.04931608 0.15863771

]
0.15539 0.15864 0.23450 0.17915[

0.29751243 0.87265917
0.87265917 −1.11624112

]
-1.53240 -1.11624 -0.57915 -0.83989

Table 6.1: Comparative analysis of eigenvalue calculations for random hermitian matrices:
classical and quantum approaches without and with noise modeling and error mitigation
using CompleteMeasFitter.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Comparison VQE result vs exact result for different matrix dimensions
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Figure 6.7: Mean absolute error after 50 VQE executions on same input instance for
different matrix dimensions

Figure 6.8: Computational time comparison of VQE calculation on local machine and
edge quantum simulator

50



6.2. Variational Quantum Eigensolver

Figure 6.9: VQE execution on local machine and edge quantum simulator for different
input size with different ansatz methods
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6.3 Quantum Approximate Optimization Algorithm

With the aim of confirming the precision and accuracy of outcomes derived from a
Quantum Approximate Optimization Algorithm (QAOA) instance, a brute force approach
was utilized as a validation strategy. As part of various tests, random graphs with n nodes
were generated, and subsequent computations were performed using both a brute force
approach and the QAOA approach. An illustrative example of such a graph, featuring
6 nodes, along with the corresponding Max-Cut solution, is shown in Figure 6.10. In
this context, the two distinct node colors showcased in the figure denote distinct subsets.
This division aims to maximize the cumulative weight of edges traversing between the
two subsets. The edge weights across all edges in the graph are set to 1 in the presented
scenario. In Figure 6.10c, the boundary of the two subsets is visually emphasized for
enhanced clarity.

(a) Max-Cut problem instance
as graph

(b) Max-Cut solution with
categorized nodes

(c) Max-Cut solution as two
subsets

Figure 6.10: Max-Cut problem instance and final solution of node division in two subsets

Before having a deeper look into the performance aspects of QAOA, it is essential to
comprehend the qubit requirements for a graph of size n. In a classical implementation,
such as the one employed in our case, each node within the graph corresponds precisely
to a single qubit. This correspondence arises from the binary nature of qubits, which
can exist in states denoted as |0⟩ or |1⟩. Each of these states effectively references one of
the two subsets in which a node can located within the context of the Max Cut problem.
The principle of superposition allows for the simultaneous exploration of multiple states.
When combined with quantum operations, it becomes a powerful tool for determining
the correct outcome. In particular, it results in identifying the solution associated with
the highest edge weight. Through the mechanism of measurement, carried out on the
state of each individual qubit upon the completion of the QAOA procedure, it becomes
feasible to determine the allocation of nodes to respective subsets. To summarize, it is
evident that the quantity of qubits is directly linked to the number of nodes present
within the graph. This assertion finds direct application in our initial illustration, where
a graph containing 6 nodes corresponds to the utilization of 6 qubits, as also depicted in
Figure 6.11.
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Figure 6.11: Comparison of QAOA qubit usage for different graph size

QAOA can also be executed on different backend simulators. Furthermore, various
optimizers can be chosen for the respective hyperparameter tuning to obtain an optimal
or near-optimal solution for the combinatorial problem. For this reason, the QAOA
algorithm was executed on a problem instance with 6 nodes across different backends
using various optimizers. The results are shown in Figure 6.12.

It is evident that the COBYLA optimizer consistently produces the correct result across
all five utilized backends. Additionally, it can be observed that the ADAM optimizer
fails to yield a correct result across all five backends. Similarly, the SPSA and SLSQP
optimizers are not recommended as they predominantly generate incorrect results.

To make an well-founded decision about which backend simulator synergizes best with the
COBYLA optimizer, the next step involves analyzing the execution times of individual
QAOA instances across different backend and optimizer configurations. Figure 6.13
illustrates the computational times in comparison to the backend and optimizer choices.

The fusion of promising accuracy and rapid execution already establishes significant cri-
teria. It is obvious that the computation using the aer_simulator_matrix_product_state
backend requires relatively more time, making it a less favorable candidate for Max-Cut
instances. On the other hand, the aer_simulator_statevector backend reveal the shortest
average computation times and therefore it could be a good choice for solving these kind
of problem instances.
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Figure 6.12: Results of QAOA execution on different backends using various optimizers.
Two correct solutions are marked, reflecting the bitwise inversion between outcomes
100101 and 011010.

The accuracy of QAOA is a crucial determining factor in deciding whether and when the
algorithm can be employed for Max-Cut instances. Therefore, it is essential to identify
how frequently QAOA produces the correct result on a graph with 6 nodes. To achieve
this, a graph is randomly generated, and subsequently, QAOA is applied to the same
Max-Cut instance ten and one hundred consecutive times. Ideally, the correct results
should be returned in a significant number of cases. Given that previous results have
already identified COBYLA as the best optimizer and the aer_simulator_statevector as
the optimal simulator backend, this configuration was applied for the following experiment
with the problem instance.

It’s remarkable to observe, as shown in Figure 6.14, that in all three cases, the correct
result is returned in over 50% of all executions. In the instance given in Figure 6.14c,
the correct result is even delivered with an 80% probability. To further validate the
significance of the results, the same scenario was repeated 100 times. In Figure 6.14d,
it’s evident that 81 out of 100 instances yield the correct result, resulting in the correct
outcome being produced over 80% of the time.
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Figure 6.13: Computational times of QAOA instances on different backends with various
optimizers

The Quantum Approximate Optimization Algorithm, as previously mentioned, can also
be computed using a brute-force approach. This enables the calculation of the optimal
solution. However, beyond a certain number of nodes in the graph, this computation
can become highly time-consuming. Exploiting the principle of superposition, QAOA
allows for multiple calculations to be performed simultaneously. As a result, Figure 6.15
illustrates the temporal behavior of QAOA for a problem instance of up to 10 nodes and
another instance with up to 22 nodes. It can be observed that the brute force approach
initially delivers results more quickly for small problem cases, but the differences remain
less than a second up to a graph size of n = 7.

With an increasing number of nodes, the computation of QAOA becomes progressively
slower for the given problem instance, while the brute-force variant maintains nearly
consistent speed in the beginning, as depicted in Figure 6.15b. From a size of n = 19
onward, the computation time for the brute-force approach becomes noticeably raised.
At this point, the brute-force and QAOA curves intersect for the first time, marking
a turnover point beyond which QAOA’s calculation becomes faster. The computation
duration for the brute-force method escalates significantly, slowing considerably with the
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(a) QAOA execution 10 times (b) QAOA execution 10 times

(c) QAOA execution 10 times (d) QAOA execution 100 times

Figure 6.14: QAOA accuracy on multiple execution with same input instance

addition of each node. For n = 20, the computation time is 106.2 seconds, more than
doubling to 225 seconds for n = 21. In the case of n = 22, there is again more than a
doubling of time to 469.87 seconds, equivalent to 7.83 minutes.

Finally, we investigate the computation times of QAOA on the local device and the quan-
tum edge simulator. These calculations provide insights into whether QAOA computation
for larger instances could be possible at the network edge. To assess this, we conducted
tests up to a maximum problem instance of n = 15. The results, presented in Figure
6.16, reveal that the computation time for the remote endpoint increases remarkably,
particularly from a graph size of n = 9 onwards. Outcomes suggest a strong correlation
between hardware resources and computation duration, given that the local machine has
significantly more resources than the remote device.

In conclusion, an investigation was conducted to explore the feasibility of simplifying
the QAOA circuit for the given problem instance using the Qiskit function transpile. To
achieve this, a circuit was generated for a randomly constructed problem instance with
a dimension of n = 6. Several experiments were made to simplify the circuit using the
transpile function at various optimization levels. While optimization level 0 indicates the
original circuit without any optimization, the level 3 is the highest possible optimization
setting. The results of the experimentation clearly indicate that parameters such as

56



6.3. Quantum Approximate Optimization Algorithm

(a) Problem instance up to 10 nodes (b) Problem instance up to 22 nodes

Figure 6.15: BruteForce calculation runtime compared to QAOA approach

Figure 6.16: QAOA computational times compared for local machine and quantum edge
simulator

the number of qubits, the total count of instructions within the circuit, and the circuit
depth (longest path in the circuit) remain unchanged regardless of the optimization value
applied to the transpile function. Detailed outcomes are presented in Table 6.2, while
Figure 6.17 illustrates the original circuit with the one transpiled using optimization level
3.

level number of qubits number of circuit instructions depth
0 6 34 15
1 6 34 15
2 6 34 15
3 6 34 15

Table 6.2: QAOA circuit parameters for different transpile levels
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(a) Transpile level 0

(b) Transpile level 3

Figure 6.17: Initial QAOA circuit compared to transpiled circuit
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6.4 Harrow-Hassidim-Lloyd Algorithm
The solution to linear equation systems of the form Ax = b can be obtained using the
Harrow-Hassidim-Lloyd (HHL) algorithm on quantum hardware, aiming to potentially
gain advantages in computational time for problem instances. In our case, we applied
the HHL algorithm to various equation systems with dimensions 2 × 2, 4 × 4, and 8 × 8
and compared the results. Initially, we investigated the accuracy of different backend
simulators with the mentioned problem instances. As illustrated in Figure 6.18, it can be
clearly observed that, for all backend simulators, the HHL algorithm constantly produces
the same results. This is a positive indication as it demonstrates consistency across
various backend simulators. It is also evident that regardless of the chosen input size, the
results remain consistent across the five backends. Deviations from the exact result are
within an acceptable range, with noticeable discrepancies occurring only in the second
decimal place for the 4 × 4 instance in our tests. For the other two problem instances,
the absolute error is even smaller, amounting to just 0.39% for the 8 × 8 instance and
0.00009% for the 2 × 2 instance.

To select the appropriate backend for the given problem instances, it is crucial to consider
the computational time required by each backend for solving a problem instance. Since
we have already demonstrated that the accuracy of different backend simulators does
not differ, an additional criterion is needed to determine the right backend. For this
purpose, we performed the same calculations and used the same problem instances, but
this time, we measured the computation duration of the HHL algorithm. The results
are illustrated in Figure 6.19. It is evident that the aer_simulator backend results in
relatively poor execution times, especially for dimensions 2 × 2 and 4 × 4 when compared
to the other backend simulators. While for 2×2 instances, the aer_simulator_statevector
backend delivers the fastest results. Regarding a 4 × 4 instance, the qasm_simulator
backend is the fastest in terms of computation time. It is important to note that these
differences are minimal, differing only by fractions of a second. For problem instances of
size 8 × 8, the execution times of the individual simulator backends converge again, with
the aer_simulator_statevector backend having the fastest computation time by a narrow
margin. The choice of the corresponding simulator backend is therefore not critical for
individual executions. However, for frequent executions, the choice of backend can make
a difference, as computation times accumulate in such cases.

The detailed distribution of time for computing the solution for various input matrices of
different dimensions using the aer_simulator_statevector backend is highlighted in Figure
6.20. For linear equation systems of dimensions 16 × 16 or larger, the computation time
significantly increases, requiring more than one and a half minutes to find a corresponding
solution.

HHL is an algorithm that relies on complex quantum circuits in the background to compute
a result. This implies the utilization of a relatively large number of quantum gates, result-
ing in a corresponding circuit depth. Each backend simulator operates in slightly different
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(a) Linear equation dimension 2 × 2

(b) Linear equation dimension 4 × 4

(c) Linear equation dimension 8 × 8

Figure 6.18: Accuracy of different simulator backends for various input dimension

ways, leading to variations in the circuits generated in the background. A comparison of
the individual simulator backends based on their circuit parameters is shown in Figure
6.21a. From the diagram, it can be observed that the aer_simulator_density_matrix
and aer_simulator_matrix_product_state backends employ 58.3̇% more gates than the
other backends. This increase contributes to a higher circuit depth.

Qiskit enables the optimization of quantum circuits and their encoding for a specific
quantum target device. In our case, we aim to optimize the quantum circuit for the
aer_simulator backend. For this purpose, the transpile function offers various optimization
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(a) Linear equation dimension 2 × 2

(b) Linear equation dimension 4 × 4

(c) Linear equation dimension 8 × 8

Figure 6.19: Comparison of runtime per simulator backend for different input dimension

levels from 0 to 3. As seen in Figure 6.21b, applying an optimization level of 1 reduces
the circuit depth and gate size from 102 and 81 to 82 and 71. For the other optimization
levels, there is no further impact, and the values remain unchanged. In this case, an
optimal result can already be achieved with optimization level 1. It is essential to consider
the effects on computation time for different optimization levels. Optimization level 3
significantly increases the time required to produce a result compared to the other levels.
Figure 6.22 illustrates the temporal distribution of the various transpile levels in different
sizes for linear equation systems. It is evident that the input dimensions of the linear
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Figure 6.20: Computational time for different input dimension for HHL algorithm

equation system significantly influence the transpile time of the circuit. While 2 × 2
linear equation systems can be computed relatively quickly, this process becomes notably
slower for 16 × 16 equation systems, with level 3 taking several minutes.
Finally, we investigated whether there are changes in circuit parameters (num_qubits,
depth (longest path in the circuit), size (number of gates)) beyond a certain circuit size.
As previously seen in Figure 6.21b, only optimization level 1 produced a change from the
original result for a 2 × 2 input. We extended the experiment up to 8 problem instances
and compare how the transpile function affects different circuit parameters. The results
from that experiment are shown in Figure 6.23. Once again, a difference is observed only
when transitioning from level 0 to level 1 since changes are only noticeable in the number
of used gates and circuit depth. For levels 2 and 3, the values for the number of qubits,
circuit depth, and size remain unchanged, identical to level 1.
The execution times of HHL on the edge quantum simulator and the local computer reveal
significant differences. As the input size increases, a noticeable increase in computation
time can be observed for both local and remote devices. The contrast becomes especially
noticeable when considering the HHL algorithm’s performance on the remote quantum
simulator. The change in computation time from a dimension of 8 × 8 to 16 × 16 is
significant. These effects are illustrated in Figure 6.24.
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(a) Circuit Parameters for differnt simulator backends

(b) Circuit parameters for aer_simulator backend with different optimization
levels

Figure 6.21: Transpile HHL circuit observations

(a) Transpile times for up to 8 × 8 input size (b) Transpile times for up to 16 × 16 input size

Figure 6.22: Transpile times for different input sizes in comparison
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Figure 6.23: Transpile circuit parameters for different input dimensions of problem
instance

Figure 6.24: Computational times compared for local machine and quantum edge simula-
tor
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6.5 Discussion
The experimental scenarios conducted and analyzed in this chapter have shown the
limitations of current quantum edge simulators. Furthermore, these experiments have
provided valuable insights into the reliability of the algorithms under various conditions.
Within the scope of the evaluation, significant differences in computation times between
local and remote devices were observed. This phenomenon is distinctly evident in the
cases of VQE, QAOA, and HHL, where the problem instance plays a crucial role in
determining the computational duration on different devices. It can be concluded that
the hardware of the devices is a critical factor influencing the computation time. In
the case of QAOA, the results reveal that for problem instances with 19 or more nodes
in the inputgraph, brute-force computation takes longer than obtaining results from
a quantum edge simulator. Additionally, the HHL algorithm consistently exhibits the
longest computation times, even for smaller problem instances, when compared to the
computation times of VQE and QAOA. The execution times for different problem instance
sizes for the three algorithms are shown in Figure 6.25. Furthermore, it is important to
mention that alongside the temporal aspect, the inaccuracy or deviation from the exact
result increases as the input size grows. This phenomena is particularly noticeable in
the case of the VQE algorithm, where deviations for larger problem instances can reach
integer values.

In general, the results identical that current quantum edge simulators are capable of
performing timely calculations. However, careful consideration is necessary when consid-
ering the deployment of simulators at the network edge. For critical applications where
ensuring 100% accuracy is mandatory, such deployments are not advisable. Conversely,
when the objective is to compute approximations or work with approximate values, the
use of quantum edge simulators can be a viable option. Additionally, aside from accuracy,
significant attention must be paid to the resource scaling of the utilized simulators to
obtain results within the expected timeframe.

In the context of specific quantum algorithms, the choice of optimizer and ansatz method
in VQE was found to influence result accuracy, with a decreasing accuracy trend observed
with larger matrix dimensions. The RealAmplitude ansatz most of the time performed
best for both speed and accuracy. QAOA consistently provided accurate solutions for
Max-Cut problems, with the COBYLA optimizer showing promising performance across
different backend simulators. HHL showed consistent accuracy across backend simulators,
with execution times increasing notably for larger input dimensions. These findings
emphasize the importance of selecting the appropriate quantum algorithm based on
specific problem requirements and the available computational resources. The observed
trade-off between accuracy and computation time underscores the need for a nuanced
approach in algorithm selection, particularly in scenarios where both speed and precision
are critical factors.
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Figure 6.25: Computational times compared for VQE, HHL and QAOA for different
problem instances sizes. Problem instances on the x-axis are visualized in ascending
order.
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CHAPTER 7
Conclusion

7.1 Summary
Quantum computing refers to a new way of solving computational problems. The
hardware based on this concept fundamentally differs from conventional computers in our
daily lives. As it is anticipated that more computational power will be required in the
future, it may be worthwhile to offload complex tasks that can be effectively solved using
quantum mechanical principles to these devices. Even today, edge computing is gaining
significant interest in offloading certain computation tasks to usually more powerful
node. It is precisely in this context that we have identified a new potential benefit and
opportunity for efficient computation on quantum edge simulators at the network’s edge.

The objective of this thesis was to implement the algorithms VQE, QAOA, and HHL
using Qiskit and analyze their behavior in greater detail. Numerous benchmark tests were
conducted to make assessments regarding execution time and accuracy based on the usage
of different hyperparameter configurations. Additionally, these experiments provided
recommendations for the most optimal hyperparameter settings for the algorithms.

The individual results have shown that quantum edge simulators could play a crucial role
for solving problem instances in the future. However, some performance improvements
are still needed to provide near-real-time results. Our thesis results have demonstrated
that for large input sizes, the computation time increases significantly for all three tested
algorithms. Comparatively, there are substantial differences in computation time when
compared to a more powerful local device. This suggests that resource-rich edge devices
are required to realize current quantum edge simulators.

Furthermore, it has become evident that the accuracy of the returned results is not
always achieved. Instead, in some cases, the results are an approximation of the exact
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solution, with a certain degree of deviation, particularly noticeable in VQE. On the other
hand, the HHL algorithm is the most resource-intensive, thus requiring the longest time
to produce results. QAOA, however, falls in between the other two algorithms concerning
accuracy and execution time.

The experiments conducted provide essential insights into which hyperparameter configu-
rations should be used for the individual algorithms to achieve the best possible results
for the problem instances used in this work. The choice of the corresponding simulator
backend, optimizer or ansatz is often a crucial factor in the algorithm’s performance.

7.2 Future Work
The research conducted in this thesis provides valuable insights into the feasibility
and performance of deploying quantum simulators at the network edge for offloading
computational tasks. However, there are several areas for future work that can expand
upon and enhance the findings presented here.

Scaling to Larger Problems While this thesis primarily focused on small-sized
quantum problems, future research could investigate the scalability of quantum simulators
at the network edge. Exploring their ability to address larger and more complex quantum
problems would be instrumental in understanding the practical limits of edge devices.
This involves not only evaluating the computational power of edge devices but also
optimizing algorithms and methodologies to handle more extensive problem instances
efficiently.

Integration with Real Quantum Hardware As quantum computing technology
advances, the integration of real quantum hardware into the benchmarking and offloading
process becomes increasingly important. Future work could involve incorporating access
to real quantum computers for benchmarking and evaluating their performance in
comparison to quantum simulators and edge devices. This integration would require
addressing the challenges of orchestrating tasks between quantum simulators and real
quantum hardware, taking into account the varying capabilities and limitations of these
platforms.

Exploring Additional Quantum Algorithms In addition to the VQE, QAOA,
and HHL algorithms, future research could expand the scope to include other quantum
algorithms. Assessing the suitability of various quantum algorithms for offloading to
edge devices would provide a more comprehensive understanding of edge computing’s
potential in the quantum domain. This exploration may uncover novel algorithms or
hybrid approaches that are well-suited for edge quantum simulators.

Exploring Diverse Problem Instances Throughout this thesis, our focus has
primarily been on running individual quantum algorithms with specific problem instances.
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However, there is significant potential for expanding our research to encompass a broader
range of problem instances, particularly within the context of QAOA. While our current
results are based exclusively on instances of the Max-Cut problem, further exploration
can involve applying QAOA to solve different problem instances. By diversifying the
problem domains we address, we can gain a more comprehensive understanding of the
algorithm’s performance and applicability in various scenarios.

Optimizing Edge Device Performance Efforts to optimize the performance of
quantum edge simulators yield valuable results. This optimization may involve hardware
enhancements, software optimizations, or exploring different edge computing architectures
to achieve improved computational capabilities. Future work should look into the
characteristics of edge device optimization, considering factors such as power efficiency,
memory management, and parallel processing capabilities.

Real-World Applications Extending the research to evaluate the practical applicabil-
ity of offloading quantum computations to edge devices in real-world scenarios is crucial.
Investigating use cases in industries such as finance, logistics, and materials science
could provide valuable insights into the benefits of edge quantum computing. Future
studies could involve collaboration with domain experts to identify specific challenges
and opportunities for quantum-powered edge solutions.

Noise Models and Quantum Error Mitigation All experiments were primarily
conducted on ideal quantum simulators that do not employ noise models. Consequently,
the quantum edge simulators were run without environmental noise, which can influence
real-world calculations. It is, therefore, reasonable to apply and analyze noise models and
error mitigation strategies to all individual algorithms, similar to the briefly mentioned
implementation for VQE with noise models and error mitigation in Chapter 5.2.3. Various
fake backends can be utilized for this purpose to test their diverse effects on environmental
noise and the final outcome. Subsequently, errors arising from noise can be reduced
using different error mitigation strategies. This work presents just one approach to noise
reduction, but there are many different approaches available to improve the final result.
Furthermore, exploring techniques such as error-correcting codes and adaptive error
mitigation algorithms tailored to the constraints of edge computing environments could
be valuable.

Machine Learning Integration The integration of machine learning techniques
for optimizing the offloading process and decision-making regarding task allocation
between edge devices and quantum resources presents an intriguing area for future
research. Exploring the synergy between quantum computing and machine learning can
yield innovative solutions. Future work should consider the development of adaptive
algorithms that use machine learning to dynamically allocate computational tasks based
on the capabilities and workloads of edge and quantum devices.
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By addressing these areas in future research, we can continue to build upon the findings
of this thesis and contribute to a deeper understanding of the potential of edge quantum
simulators in the evolving landscape of quantum computing.
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