
SAT-based Local Improvement for
the Closest String Problem

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Logic and Computation

eingereicht von

Florentina Voboril, B.Sc.
Matrikelnummer 11730664

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.rer.nat. Stefan Szeider
Mitwirkung: Dipl.-Ing. Dr.techn. Andre Schidler

Dr.techn. Vaidyanathan P. R.

Wien, 30. Jänner 2024
Florentina Voboril Stefan Szeider

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

SAT-based Local Improvement for
the Closest String Problem

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Logic and Computation

by

Florentina Voboril, B.Sc.
Registration Number 11730664

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.rer.nat. Stefan Szeider
Assistance: Dipl.-Ing. Dr.techn. Andre Schidler

Dr.techn. Vaidyanathan P. R.

Vienna, January 30, 2024
Florentina Voboril Stefan Szeider

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Florentina Voboril, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. Jänner 2024
Florentina Voboril

v

Danksagung

An dieser Stelle will ich mich gerne bei all jenen bedanken, die mich während des gesamten
Prozesses meiner Diplomarbeit - von der Themenfindung bis zum letzten Feinschliff -
unterstützt und motiviert haben.

Besonderer Dank gilt meinem Betreuer Stefan Szeider und meinen beiden Co-Betreuern
Andre Schidler und Vaidyanathan Peruvemba Ramaswamy, die mir mit hilfreichen
Ratschlägen und wertvollem Feedback beiseite gestanden sind.

vii

Acknowledgements

I would like to take this opportunity to thank all those who supported and motivated me
throughout the entire process of my thesis - from finding the topic to the final touches.

Special thanks go to my supervisor Stefan Szeider and my two co-supervisors Andre
Schidler and Vaidyanathan Peruvemba Ramaswamy, who were able to assist me with
helpful advice and valuable feedback.

ix

Kurzfassung

Das Closest String Problem (CSP) hat also Eingabe n Strings der Länge m über einem
Alphabet A. Das Ziel ist es, einen String gleicher Länge zu finden, die den maximalen
Hamming-Abstand d zu allen Eingabe-Strings minimiert. In dieser Masterarbeit fokussie-
ren wir uns auf das CSP mit dem Alphabet A = {A, C, G, T}. Die vier Buchstaben stehen
für die vier Basen, die die genetische Information in DNA-Molekülen kodieren: Adenin
(A), Cytosin (C), Guanin (G) und Thymin (T). Eine praktische Anwendung besteht darin,
neue DNA-Sequenzen zu erstellen, die allen vorgegebenen Eingabesequenzen ähnlich sind.
Es wurde gezeigt, dass CSP NP-vollständig ist [KLLM+03]. Es stellt sich also die Frage,
wie dieses Problem effizient gelöst werden kann. Für NP-vollständige Probleme können
exakte Algorithmen nicht in polynomieller Zeit laufen. Heuristische Algorithmen haben
hingegen den Nachteil, dass sie nicht immer die optimale Lösung liefern.

Die SAT-based Local Improvement Method (SLIM) ist ein neuer Ansatz, der exakte und
heuristische Methoden kombiniert, um die Vorteile beider Methoden zu nutzen. In früheren
Forschungsarbeiten wurde SLIM erfolgreich auf verschiedene Probleme angewandt, wie
z.B. treewidth, branchwidth und Graphenfärbung. Es hat also das Potenzial, auch für
das CSP geeignet zu sein. Der SLIM-Ansatz besteht aus zwei Schritten: Im initiation
step wird eine bestehende Heuristik verwendet, um eine Anfangslösung effizient zu
berechnen. Danach wird im local improvement step ein lokaler Teil der bestehenden
Lösung ausgewählt und durch einen SAT-Solver verbessert wird. Dieser Schritt kann
beliebig oft wiederholt werden. Die Forschungsfrage dieser Arbeit lautet

Können wir SLIM nutzen, um die Lösungen aktueller Heuristiken für CSP zu verbessern?

Die Masterarbeit beschäftigt sich auch damit, was die Leistung von SLIM beeinflusst und
welche Parametereinstellungen die besten Ergebnisse liefern. Um die Forschungsfrage zu
beantworten, werden wir mehrere Experimente durchführen. Zunächst lassen wir eine
bestehende Heuristik so lange laufen, bis sie eine erste Lösung findet. Dann verwenden
wir diese Lösung als Ausgangslösung für SLIM und lassen beide Methoden parallel
laufen. Nach Ablauf der vorgegebenen Zeit werden die Ergebnisse der beiden Methoden
verglichen. Die Ergebnisse zeigen, dass es bereits eine gut funktionierende Heuristik gibt.
Dennoch konnte unser SLIM-Ansatz die Lösung für einige der Instanzen verbessern.

xi

Abstract

The Closest String Problem (CSP) has as input n strings of length m over an alphabet
A. The task is to find a string of the same length that minimizes the maximal Hamming
distance d to all the input strings. In this thesis, we focus on the CSP with the alphabet
A = {A, C, G, T}. The four characters represent the four bases that encode the genetic
information in DNA molecules: adenine (A), cytosine (C), guanine (G), and thymine
(T). One of its applications is to create new DNA sequences similar to all given input
sequences. It was shown that CSP is NP-complete [KLLM+03]. Thus, the question
arises of how this problem can be solved efficiently. For NP-complete problems, exact
algorithms cannot run in polynomial time. On the other hand, heuristic algorithms have
the downside that they do not consistently deliver the optimal solution.

The SAT-based Local Improvement Method (SLIM) is a new approach that combines
exact and heuristic methods to use the advantages of both methods. In previous research
SLIM was successfully applied SLIM to different problems, like treewidth, branchwidth,
and graph coloring. So it also has the potential to be suitable for CSP. The SLIM
approach consists of two steps: In the initiation step, we use an existing heuristic to
compute an initial solution efficiently. Afterward, we execute the local improvement step,
in which a local part of the existing solution is selected and improved by an SAT solver.
This step can be executed as often as desired. The research question of this thesis is

Can we use SLIM to improve the state of the art in solving the Closest String Problem?

The scope of this thesis also includes finding out what influences the performance of SLIM
and which parameters and adjustments deliver the best results. To answer the research
question, we will conduct multiple experiments. First, we run an existing state-of-the-art
heuristic until it finds one solution. Then, we use this solution as the initial solution
for SLIM and let both methods run in parallel. After a global timeout, the results of
both methods are compared. The results show that there already exists a well working
state-of-the-art heuristic. Nevertheless, our SLIM approach could improve the solution
for some of the benchmark instances.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 The Closest String Problem . 1
1.2 State of the art . 2
1.3 Research Question . 3
1.4 Outlook . 3

2 Preliminaries 5
2.1 The Closest String Problem . 5
2.2 SAT . 6

3 SLIM 9
3.1 What SLIM is? . 9
3.2 Used Heuristics . 10
3.3 Local Selection Strategie . 10
3.4 Initialization and Update Strategy for the Distance Array 11
3.5 Local Encoding . 11
3.6 Pseudocode . 12

4 Experimental Results 15
4.1 Benchmark instances . 15
4.2 Experimental Setup . 15
4.3 Tuning SLIM . 16
4.4 SLIM on a State-of-the-Art Algorithm by Tanaka 29

5 Conclusion 39
5.1 Summary . 39
5.2 Further work . 40

xv

List of Figures 43

List of Tables 45

List of Algorithms 47

Acronyms 49

Bibliography 51

CHAPTER 1
Introduction

1.1 The Closest String Problem

The Closest String Problem (CSP) was introduced in 2003 by Kevin Lanctot at al.
[KLLM+03]. It is also known as Center String Problem and for binary inputs as
Hamming Center Problem [GJL99] or Covering Radius problem [CLLM94]. Given n
input strings of length m over an alphabet A, the CSP tries to find a string of the same
length that minimizes the maximal Hamming distance d to all the input strings. The
Hamming distance and the formal definition are given in Section 2.1. However, it should
not be confused with the Constraint Satisfaction Problem, which is also abbreviated as
CSP.

The CSP has some applications: In Coding Theory, it can be used to encode a set of
messages, for write-once memories, testing, and data compression [CLLM94]. It can also
be applied in Computational Biology, an interdisciplinary field that applies techniques
from Mathematics and Computer Science, like computational simulations and data
analysis, to understand biological systems. One area in Computational Biology that
can make use of the CSP is drug target design. Here, it could help to find a genetic
sequence that combats bacteria but does not harm human beings. The problem can also
be used to create new DNA sequences similar to all given input sequences [KLLM+03].
It can even help to construct phylogenetic trees by analyzing protein regions of different
species. [LW67]

It was shown that the CSP is NP-hard [KLLM+03]. This is even the case for binary
strings [FL97]. Thus, the question arises of how this problem can be solved efficiently.
For NP-complete problems, exact algorithms cannot run in polynomial time. On the
other hand, heuristic algorithms have the downside that they do not consistently deliver
the optimal solution.

1

1. Introduction

1.2 State of the art
There are different approaches to solving NP-hard problems: Exact, fixed-parameter
tractable (FPT), approximation, and heuristic algorithm.

Finding an exact algorithm for CSP that runs in polynomial time is impossible unless
P=NP. One possible approach is to use a straightforward enumerative method that
tries all possible candidate strings. This has a running time of Oú(|A|m), which can be
quite time-consuming. Alternatively, Dalpasso [DL18] et al. introduce an integer linear
programming and a dynamic programming procedure that give exact solutions.

Fixed-parameter tractability is a different approach to deal with NP-hard problems. The
underlying idea is to isolate exponential terms to a specific parameter. When this
parameter has a small, bounded value, the algorithm can find the exact solution of the
instance fast [DF99]. There exists an FPT algorithm parameterized by the maximal
distance d. Bulteau et al. [BHKN14] describes the following search tree strategy: We
assume that there exists a string with Hamming distance of at most d to all other input
strings. We can start with any of the input strings as a candidate string. If, for the
current node, there is no input string s which has a distance of more than d to the
candidate string we are done. Otherwise, we have to branch into d + 1 cases, where in
each case a different position is chosen that is changed to the character of s. Since it
must be possible to reach the closest string by changing at most d characters from our
chosen first string, our search tree has a depth of at most d and the branching factor
is bounded by d + 1. That yields a running time of Oú((d + 1)d). This approach is
assumed to be basically optimal. For other parameters, there are not so good chances of
success. Since CSP is NP-complete even for binary strings, using the alphabet size |A| as
a parameter for tractability does not make sense. Using parameter m would only allow
short strings in the input, which is unsuitable for many input instances. FPT algorithms
parameterized on n exist, but this result is only of theoretical interest due to a huge
combinatorial explosion.

Lanctot et al. [KLLM+03] introduced an (4/3 + ‘)-approximation algorithm for any ‘ > 0.

Because of the characteristics of SLIM (see Chapter 3), heuristics approaches are of special
interest in this thesis. Liu et al. [LHS05] introduced a sequential genetic algorithm (GA)
structure and a sequential simulated annealing (SA) algorithm for CSP. Faro et al. [FP10]
proposed an ant colony optimization algorithm, which outperformed the results of GA
and SA. Another approach for heuristic algorithms includes a combination of an largest
distance decreasing algorithm and local search strategies by Liu et al. [LLHM11]. One
of the more recent approaches is a heuristic that uses wave function collapse techniques
introduced by Xu and Perkins [XP22]. Their algorithm outperforms the algorithms
mentioned above in solution quality, run time, or even both metrics. Their experiments
used benchmark instances with up to 30 strings of length up to 5,000 characters. Another
interesting approach is an algorithm based on Lagrangian relaxation by Tanaka [Tan12],
which calculates solutions for CSP instances with up to 50 strings of length up to 5,000
in only about 21 seconds. On average, the solutions of such large instances only differ

2

1.3. Research Question

by 0.04 % from the optimal solution. By providing lower bounds, this heuristic can
also prove the optimality of the solution. What makes our SLIM approach especially
interesting is that it utilizes the results of any existing heuristics and further tries to
improve its results.

1.3 Research Question
In this thesis, we will utilize the SAT-based Local Improvement Method (SLIM) to solve
the CSP. SLIM is a new approach that combines exact and heuristic methods to use
the advantages of both methods. It will be described in more detail in Section 3.1. It
has already been successfully applied SLIM to different problems, like treewidth [FLS17],
branchwidth [LOS19], and graph coloring [Sch22]. So it also has the potential to be
suitable for CSP.

This thesis investigates whether SLIM is a useful approach to solving CSP. The research
question is

Can we use SLIM to improve the state of the art in solving the Closest String Problem?

This improvement could include different objectives, like better results, shorter running
times, or the capability to deal with more input strings or longer input strings. The
corresponding working hypothesis is

SLIM can indeed improve solutions of state-of-the-art heuristics for solving the CSP.

The scope of this thesis will also include finding out what influences the performance of
SLIM and which parameters and adjustments deliver the best results.

1.4 Outlook
The outlook of this thesis will be as follows: Chapter 2 will provide relevant background
information about the CSP and the propositional satisfiability problem (SAT) problem.
The next chapter will describe SLIM in more detail. It will explain the used encoding
and give a pseudocode on how it can be used. It will also describe which choices can be
made in the encoding and will describe the heuristics we used for initial solutions. The
experimental results are presented in Chapter 4. The last chapter summarizes the thesis
and gives an outlook for future work.

3

CHAPTER 2
Preliminaries

2.1 The Closest String Problem
Let x and y be strings of the same length. Then, d(x, y) denotes the Hamming Distance,
which is the number of positions in which x and y differ. For example, the strings
“GATAC” and “AGTAA” have a Hamming Distance of 3, since they differ at the first,
second, and fifth position. Now, we can define the CSP as follows.

Definition 2.1.1 (Closest String Problem).

• Instance: Given a set S = {s1, s2, ..., sn} of n strings over an alphabet A of length
m each.

• Objective: Find a string x of length m over A minimizing d such that for every
string si in S, d(x, s) Æ d.

In this paper, we want to focus on the CSP with an alphabet size of 4, namely A =
{A, C, G, T}. The four characters represent the four bases that encode the genetic
information in DNA molecules: adenine (A), cytosine (C), guanine (G), and thymine
(T). Table 2.1 shows an example of the CSP with three input strings of length 5 and a
corresponding closest string x. x has Hamming distance of 2 to the input strings s1 and
s3 and d(x, s2) = 1. There is no string with Hamming distance Æ 1 to all input strings.
Thus, the minimal d = 2.

There is a trivial lower bound and upper bound for the CSP. The trivial upper bound is
given by m, the length of the strings. The trivial lower bound is given by the halve of the
Hamming diameter. The Hamming diameter is the maximal Hamming distance between
any two input strings. In our example, the hamming distance between any two strings
is 3. Thus, we cannot find a string with a Hamming distance of less than 2 to all strings.

5

2. Preliminaries

d(x, si)
string s1 G A T A C 2
string s2 A G T A A 1
string s3 T G C A C 2
string x A G T A C

Table 2.1: Example of the CSP with three input strings of length 5 and output string x

Besides the CSP there are also other Consensus String Problems, including the Close to
Most String Problem and Farthest String Problem.

2.2 SAT
The propositional satisfiability problem (SAT) is one of the most important problems
in Computer Science. It was the first problem shown to be NP-complete. Nevertheless,
there are efficient heuristic SAT algorithms, which significantly improve the running
time. Modern SAT solvers have the capability to successfully deal with formulas with
thousands of variables. By reducing an NP problem to SAT, one can utilize the efficiency
of these SAT solvers. This leads to a variety of practical applications. Amongst the
problems, that can be solved by a reduction to SAT, are for example the vertex cover
problem, the graph coloring problem, or the clique problem [BHMW09].

A propositional formula in conjunctive normal form (CNF) consists of a conjunction
of clauses. A clause is a disjunction of literals, where a literal is a possibly negated
propositional variable, which can be assigned to true or false. For example,

F = (x1 ‚ x2 ‚ x3) · (¬x1 ‚ ¬x2 ‚ ¬x3) · (¬x1 ‚ x2) · (x2 ‚ x3)

is a propositional formula with the propositional variables x1, x2, and x3. A variable xi

or its negated form ¬xi are literals. The clauses in F are (x1 ‚x2 ‚x3), (¬x1 ‚¬x2 ‚¬x3),
(¬x1 ‚ x2), and (x2 ‚ x3). [FBHS23]

The mapping of the variables to {true, false} is called assignment. An assignment is
satisfying when each clause contains a variable assigned to true or a negated variable
assigned to false. A formula F is called satisfiable if there exists a satisfying assign-
ment [BHMW09]. In the example above, F is satisfiable, since mapping x1 and x2 to
true and x3 to false is a satisfying assignment. The formula

H = (x1 ‚ x2) · (¬x1 ‚ ¬x2) · (¬x1) · (x1 ‚ ¬x2)

is not satisfiable, since there exists no satisfying assignment.

The SAT problem determines whether a given propositional formula is satisfiable.

6

2.2. SAT

There are different variants of the SAT problem, including k-SAT and SAT-f . k-SAT
considers k-CNF formulas. Those are CNF formulas with at most two literals per clause.
In SAT-f , every variable occurs at most f times. k-SAT-f can be seen as an intersection
between k-SAT and SAT-f , where each clause has a maximum length of k, and every
variable appears no more than f times.

Some variants of SAT, like 2-SAT are solvable in polynomial time. For others, strategies,
like branching, clause shortening, or resolution are used to improve the running time.

7

CHAPTER 3
SLIM

3.1 What SLIM is?
The idea behind the SAT-based Local Improvement Method (SLIM) is to make use of
SAT solvers to locally improve an existing heuristic. Even though SAT [FBHS23] is
NP-complete, there are SAT solvers that are highly efficient in solving SAT problems.
Nevertheless, we cannot solve the whole problem only with SAT solvers to obtain an
optimal solution because the encoding has to be sufficiently small. Otherwise, it is
infeasible.

The SLIM approach consists of two steps:

• Initiation Step. We use an existing heuristic to compute an initial solution efficiently.
For example, this can be done with a fast and simple greedy algorithm.

• Local Improvement Step. We select a local part of the existing solution using a
local selection strategy (see Section 3.3). Then, we use our SAT encoding to obtain
an exact solution for this smaller instance. Afterwards, we replace the selected part
of the original solution with the new solution.

The local improvement step can be repeated until a global timeout is reached. A local
improvement is aborted if the local timeout lt has been reached without finding an
improvement. The local budget lb describes the maximum size of a local instance. For
the CSP, the size refers to the number of positions in the local instances.

Another nice thing about SLIM is that the heuristic for the initial solution, and the
local selection strategy work more or less independently. So we can exchange them. For
example, we can run SLIM on a greedy initial solution, as well as on an initial solution
from another algorithm, without changing the code for SLIM. Section 3.2 describes
possible heuristics in more detail.

9

3. SLIM

3.2 Used Heuristics

3.2.1 Our Simple Greedy Algorithm

In order to have an algorithm that delivers a quick result, we decided to implement
a simple greedy algorithm that just assigns each position of the output string the
character that appears most often at that position in the input strings. This program
greedy_simple.py can be found at https://www.ac.tuwien.ac.at/files/
resources/software/csp_slim_code.zip.

3.2.2 Heuristic Algorithm based on Lagrangian Relaxation

Another heuristic algorithm with promising results is introduced by Tanaka [Tan12].
The underlying concept is to formulate the CSP as a mixed integer programming (MIP)
problem. Using just a MIP solver would not be feasible for large instances. Thus, Tanaka
applied the Lagrangian relaxation technique. This makes it possible to simultaneously
obtain an approximate solution as well as a lower bound.

The used benchmark instances in the computational experiments had a size of n œ
{10, 20, ..., 50} strings of length m œ {1000, 2000, ..., 5000}. It was shown Tanaka’s
algorithm is able to find solutions, which are close to the optimal solution, very quickly.
It even outperforms the existing heuristic algorithms.

Fortunately, the author was kind enough to provide me with the code for his algorithm
so that I can use it for the experiments in my thesis.

3.3 Local Selection Strategie
The local selection strategy for the CSP describes, which positions of the current candidate
string are picked for the local improvement step. There are different ways to do it.

The probably easiest way is to just pick random positions. This has the advantages that
it is easy to understand and easy to implement. The downside is that it does not make
use of the properties of the current solution.

The strategy that was used for this thesis is the following: First, we determine the input
string that is the furthest away from the candidate string. The positions at which that
string differs from the candidate string are 100 times more likely to be chosen. We decided
to include randomness in the selection process because, for a deterministic strategy, it
might happen that the same subsequences are selected multiple times when the local
improvement step did not find an improvement.

There are many other local selection strategies one could use, including taking all strings
into account or using different probabilities that might depend on the number or length
of the input strings.

10

https://www.ac.tuwien.ac.at/files/resources/software/csp_slim_code.zip
https://www.ac.tuwien.ac.at/files/resources/software/csp_slim_code.zip

3.4. Initialization and Update Strategy for the Distance Array

3.4 Initialization and Update Strategy for the Distance
Array

In our SLIM approach for the CSP, we have a distance array, which is used to specify
the maximum local distances for each string in the local SAT encoding. This array is
initialized after selecting the subsequences for the local improvement step. Whenever
the local SAT encoding cannot find a solution with the current distance array, it will be
increased. There are different ways how the array could be initialized. In this thesis, we
look at the remaining distances, i.e. the distances from all strings to the candidate string
after removing the local subsequences. From these remaining distances, we store the
maximum dmax. The initialize the array for the local distances, we subtract the remaining
distances from dmax for each element of the array. By doing that, the distances of the
string with the highest remaining distance will always be initialized with 0. So it is more
likely that the distance to that string will improve the most. When the array is increased,
we just increase every distance by 1. Here, also different strategies would have been
possible. For example, one could just increase one distance by 1. That distance could
be chosen randomly or deterministically. For bigger inputs, it might also be possible to
increase the distances by more than 1.

3.5 Local Encoding

For the encoding of the local instances, we used PySAT [IMMS18], a toolkit for Python
that provides a simple interface to work with state-of-art SAT solvers. We used the
Glucose3 solver. The SAT encoding for the local instances is based on a paper by
Kelsey and Kotthoff [KK10], where the exact Closest String Problem is formulated as a
Constraint Satisfaction Problem.

We have LS = {ls1, ..., lsn} given, which is a set of n strings of length lb composed
of the alphabet A. We also have a distance array local_d of length n given, which
specifies which output string should not exceed which maximal local distance to the local
candidate string.

The general idea behind the encoding is easy: We represent the input strings and the
candidate string in a binary way. Then, we have an array hamming_distances, which
indicates for each string the position that differs from the candidate string. In the end,
we just have to check that for each string at most a specific number of positions, which
is given by the distance array, differ from the candidate string. In more detail:

First, we want to represent the input strings as binary arrays. So we need an array
binary_strings of size n · lb ·4. The first dimension is the string, the second dimension
is the character and the third dimension is the character which is mapped to a number.
Let f = {0 ‘æ A, 1 ‘æ C, 2 ‘æ G, 3 ‘æ T} be a mapping from numbers to the input
alphabet. Then for all nÕ in 0 Æ nÕ < n, nÕ in 0 Æ lbÕ < lb, and k in 0 Æ k < 4:

11

3. SLIM

binary_strings[nÕ, lbÕ, k] =
I

1 if string lsnÕ at position lbÕ is equal to f(k);
0 otherwise.

Furthermore, we have a matrix candidate_string of size lb · 4, which is the binary
representation of the candidate string. One constraint is that exactly one of the four
characters at one position is true.

We also have the array hamming_distance of size n · lb, which specifies for all local
strings the positions that differ from the candidate string. For every nÕ in 0 Æ nÕ < n
and every lbÕ in 0 Æ lbÕ < lb we have:

hamming_distance[nÕ, lbÕ] =
I

1 if binary_strings[nÕ, lbÕ] ”= candidate_string[lbÕ];
0 otherwise.

In the end, we just have to ensure that for each string at most a specific number of
positions, which is given by the distance matrix, differ from the candidate string. For all
nÕ in 0 Æ nÕ < n :

lbÿ
i=0

(hamming_distance[nÕ][i]) Æ local_d[nÕ]

To implement the cardinality constraint Æ, we proceed as follows: Assume we have
a set of literals given and want to bound them such that at most b of them are true.
Then, we search for all possible combinations to pick b + 1 literals out of the given set
of literals. For each of the combinations, we create a new clause, which contains all
literals in the clause in their negated form. As an example, assume we have the four
literals {a, b, c, d} and want to have at most 2 of them true. Our implementation finds
all possible combinations to pick 2 + 1 = 3 literals out of the four given literals. Here,
it would find the combinations {a, b, c}, {a, b, d}, {a, c, d}, and {b, c, d}. The resulting
formula would be (¬a ‚ ¬b ‚ ¬c) · (¬a ‚ ¬b ‚ ¬d) · (¬a ‚ ¬c ‚ ¬d) · (¬b ‚ ¬c ‚ ¬d). It is
easy to see, that not more than 2 of the used variables can be true to satisfy the formula.

3.6 Pseudocode
The pseudocode over the whole SLIM process is given in Algorithm 3.1. As input, the
input strings s1, ...sn and an initial candidate string from any heuristic are given. The
code runs until the stopping criterion is reached. This can, for example, be a global
timeout or a certain number of iterations.

The function choose_subsequence(current_cs, strings) returns the indices
chosen by the local selection strategy, which is described in Section 3.3. local_distances

12

3.6. Pseudocode

is an array of size n that specifies the local distances as described in Section 3.4. The
function slim(subsequence_indices, strings, local_distances) is the lo-
cal SAT encoding as described in Section 3.5. We store the results of the local SAT
encoding in the variable local_cs. If the SAT solver cannot find a solution, the
distance array local_distances is increased and the loop repeats. Otherwise, we
replace the indices used for the local instance in the string cs with local_cs. Then,
we check whether the new candidate solution new_cs is better than the previous can-
didate solution. If that is the case, we replace the old solution. The implemented
program can be found in the file slim.py at https://www.ac.tuwien.ac.at/
files/resources/software/csp_slim_code.zip.

Algorithm 3.1: SLIM process
Input : n input strings of length m; initial candidate string of length m

1 strings[n] Ω array of input strings;
2 current_cs Ω initial candidate string from heuristic;
3 while stopping criterion not reached do
4 subsequence_indices Ω choose_subsequence(current_cs,

strings);
5 initialize local_distances[n];
6 solved Ω False;
7 while not solved do
8 local_cs Ω slim(subsequence_indices, strings,

local_distances);
9 if local_cs is empty then

10 increase local_distances;
11 else
12 solved Ω True;
13 new_cs Ω replace current_cs at the indices given by

subsequence_indices with local_cs;
14 if new_cs is better that current_cs then
15 current_cs Ω new_cs;
16 end
17 end
18 end
19 end

13

https://www.ac.tuwien.ac.at/files/resources/software/csp_slim_code.zip
https://www.ac.tuwien.ac.at/files/resources/software/csp_slim_code.zip

CHAPTER 4
Experimental Results

4.1 Benchmark instances

To the best of the author’s knowledge, there are no commonly used and publicly available
benchmark instances to compare the results for different algorithms for the CSP with
alphabet size 4. Most other authors just create random instances of their own. There
are also real DNA sequences of various species available online from the National Center
for Biotechnology Information, NCBI (https://www.ncbi.nlm.nih.gov/gene/).
First, we thought about using real DNA sequences for the experiments, but since we are not
experts in Genetics, we did not know which datasets were useful to compare. Furthermore,
not all DNA strings have the same length, which is an input constraint for the CSP. Of
course, truncating strings would have been possible, but an offset by one would already
change the results drastically. So we decided to just use strings, which were randomly
generated as follows: Given the number of strings n, the length of the strings m, and the
input alphabet A = {A, C, G, T} we randomly selected a character from the set A for every
position in the resulting string. The program used for generating random strings called
create_random_strings.py and can be found at https://www.ac.tuwien.ac.
at/files/resources/software/csp_slim_code.zip. The randomly generated
benchmark instances for the following experiments can be found at https://www.ac.
tuwien.ac.at/files/resources/instances/csp_slim.zip.

4.2 Experimental Setup

The experiments have been conducted on a server with 16 GB RAM and an Intel Xeon
Processor (Cascadelake) with 4 cores and a CPU clock rate of 2494.120 MHz. The used
Python version was Python 3.6.9.

15

https://www.ncbi.nlm.nih.gov/gene/
https://www.ac.tuwien.ac.at/files/resources/software/csp_slim_code.zip
https://www.ac.tuwien.ac.at/files/resources/software/csp_slim_code.zip
https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip
https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip

4. Experimental Results

4.3 Tuning SLIM
There are different parameter settings that can be tuned in order to improve the perfor-
mance of SLIM. These parameters include the following:

• Budget: Number of positions in the local instances. The optimal value may depend
on the number of input strings.

• Local timeout: How long does it take the solver to run in one iteration? When the
SAT encoding does not find a satisfiable solution after a certain time it is likely
that this instance is not solvable and thus, SLIM can stop earlier.

• Selection strategy: How are the positions chosen that are improved in one iteration
step?

• Initialization and Update Strategy for the Distance Array: How is the distance
array initialized? How is it increased after we found an unsolvable solution?

In this Master’s thesis, we only focused on the local timeout and budget. The used
selection strategy and the initialization and update strategy for the distance array are
described in Sections 3.3 and 3.6.

4.3.1 Experiment 1 - Local Timeouts
The goal of this experiment was to find a suitable local timeout for different combinations
of the number of strings n and the budget lb. For n we used the values 5, 10, 20, 30, 50,
75, and 100. For lb we used values from 8 to 18. For each combination of n and lb, we
randomly generated local instances with n strings of length lb. Since we did not know in
advance for which maximum distances such a local instance is satisfiable or unsatisfiable,
all instances started with a uniform distance array. Whenever the local instance was
not solvable with the given distance array, one randomly picked distance in this array
was increased by 1. Otherwise, one randomly picked distance in the array was decreased
by 1. This was done iteratively until we found at least 10 distance matrices for which
the instance was satisfiable and at least 10 distance matrices for which the instance was
unsatisfiable. For each execution of the SAT encoding the time was measured. This was
done with 50 different instances. At the end, we had the running times for at least 500
satisfiable instances and 500 unsatisfiable instances for each combination of n and lb.

Table 4.1 shows the average running times for the satisfiable instances. The different
columns represent the different numbers of strings. The rows represent the different
budgets. For example, it took on average 0.7075 seconds to solve a satisfiable instance
with 10 strings of length 12. “-” means that not for all 50 instances 10 satisfiable and 10
unsatisfiable instances could be solved within a timeout of 10 minutes. For the empty
cells, the local times were not measured for those combinations. Table 4.2 shows the
average running times for the unsatisfiable instances. Comparing with Table 4.1, one can

16

4.3. Tuning SLIM

lb
n 5 10 20 30 50 75 100

8 0.0253 0.0460 0.0857 0.1277 0.2021 0.2941 0.4011
9 0.0334 0.0590 0.1120 0.1697 0.2971 0.4831 0.7617

10 0.0462 0.0853 0.2124 0.5152 1.5366 1.9079 1.8414
11 0.0739 0.1860 1.4206 2.4584 - - -
12 0.1339 0.7075 3.2805 - - - -
13 0.3038 2.2216 -
14 0.8704 - - -
15 2.3563 - -
16 - - -
17 - -
18 - -

Table 4.1: Average running times (in seconds) for solving satisfiable local instances. The
rows indicate the budgets and the columns indicate the number of strings.

lb
n 5 10 20 30 50 75 100

8 0.0274 0.0514 0.0982 0.1502 0.2397 0.3482 0.4903
9 0.0380 0.0737 0.1707 0.2759 0.6216 1.0563 1.6471

10 0.0578 0.1427 0.4761 1.5310 4.0490 4.4029 3.6103
11 0.1135 0.3970 3.9715 8.2663 - - -
12 0.2283 1.9135 12.419 - - - -
13 0.5794 7.5763 -
14 2.0559 - - -
15 7.0091 - -
16 - - -
17 - -
18 - -

Table 4.2: Average running times (in seconds) to find out that a local instance is
unsatisfiable. The rows indicate the budgets and the columns indicate the number of
strings.

see that for all combinations, the average running time of unsatisfiable instances is a bit
longer than the average time for unsatisfiable instances. However, the difference is for
most values in the same order of magnitude.

Since the local timeout should be chosen such that most of the instances can be solved,
we decided to not consider the average running time, but the running time in the 90th
percentile. This is the running time such that 90% of the satisfiable instances could
be solved within that timeout. The corresponding values can be found in Table 4.3.

17

4. Experimental Results

lb
n 5 10 20 30 50 75 100

8 0.0658 0.0689 0.1264 0.1368 0.2564 0.3503 0.4726
9 0.0699 0.0838 0.1393 0.2532 0.4453 0.7932 1.2910

10 0.0754 0.1337 0.3833 1.1326 3.3889 3.9233 3.8386
11 0.1288 0.3185 3.4788 6.2246 - - -
12 0.2020 1.4712 8.6212 - - - -
13 0.4643 6.0085 -
14 1.5818 - - -
15 5.0410 - -
16 - - -
17 - -
18 - -

Table 4.3: Running times (in seconds) for solving 90% of the satisfiable local instances.
The rows indicate the budgets and the columns indicate the number of strings.

Figure 4.1 shows the values from Table 4.3 in a more visual way. The growth of the
running time seems to be exponential in relation to the budget. One can see that the
fewer strings there are, the higher the budget can be until solving the local instances
becomes infeasible. Interestingly, the running times for instances with 50, 75, and 100
strings seem to be relatively similar. With a budget of 10, the instances with 100 strings
even have a lower local running time than the instances with 75 strings. This might be
due to outliers.

The program for measuring the running times, as well as all measured times, can be
found in the folder local_timeouts at https://www.ac.tuwien.ac.at/files/
resources/instances/csp_slim.zip.

4.3.2 Experiment 2 - Budgets
In this experiment, we wanted to test which budget lb is suitable for which number of
strings n. As a heuristic, we implemented a simple greedy algorithm as described in
Section 3.2.1. Because of the greedy manner, this algorithm had a running time of less
than one second for each of the benchmark instances we used in this experiment.

We conducted the experiment with benchmark instances of different numbers of strings
with n œ {5, 10, 20, 30, 50, 75, 100} and different lengths of strings. We also used different
budgets. We only used budgets for which we got feasible results in Section 4.3.1. For
this experiment, we used a uniform local timeout of 60 seconds. This generous timeout
was compared with other timeouts in Section 4.3.3. For each combination of a number
of strings n, length of strings m, and budget bl, we executed 20 benchmark instances
each. The benchmark instances were generated randomly. For each of the benchmark
instances, we used a global timeout of 10 minutes.

18

https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip
https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip

4.3. Tuning SLIM

Figure 4.1: Running times in seconds for solving 90% of the satisfiable local instances.
The x-axis indicates the different budgets.

First, let us have a look at the 20 benchmark instances with 5 strings of length 5,000. The
greedy algorithm gave the initial candidate strings with an average distance of 2,560.8
and a standard deviation of 21.8. We used SLIM with different budgets from 8 to 15
to improve the results. Figure 4.2 shows the improvements with SLIM on two different
benchmark instances with 5 strings of length 5,000. One can see, that the original
distances we got from the greedy heuristic are 2,538 and 2,590. The first improvements
were found after only a few seconds. A bit later, only some more small improvements
were found. The last improvement was found after 45.34 seconds resp. 52.4 seconds.
After that, no more improvements were found by SLIM, even though it was running for
10 minutes.

When we compare the results of the 20 benchmark instances with n = 5 and m = 5, 000,
we can see that SLIM improved the distances of the initial candidate string on average by
27.7. The boxplot in Figure 4.3 shows the achieved improvements for the eight different
budgets. Interestingly, we cannot see significant differences between the different budgets.

Also for the other combinations of n and m the different budgets do not show big

19

4. Experimental Results

Figure 4.2: The distance improvements of SLIM with different budgets on two different
benchmark instances with 5 strings of length 5,000. Even though SLIM was running for
10 minutes, no more improvements were found after 45.34 resp. 52.4 seconds.

20

4.3. Tuning SLIM

Figure 4.3: Boxplots on the distance improvement for 20 benchmark instances with 5
strings of length 5,000 for different budgets

differences in the improvements. Figure 4.4 shows the distance improvements for two
different benchmark instances with n = 100 and m = 5, 000. What is notable is that for
benchmark instances with more strings, SLIM was running longer until it found the last
improvement. Overall, the 20 benchmark instances with n = 100 and m = 5, 000 have an
initial distance of 3,457.7, and SLIM could improve that by 41.7 on average.

Figure 4.5 shows the improvements on two of the benchmark instances with n = 5 and
m = 100, 000. The benchmark instance on the top has an initial distance of 50,630 and
improves the distances by 143 on average over the different budgets. It is interesting to
have a closer look at the shapes of the curves. In some parts of the graphs, we have an
almost linear line. This is because the improvement per step is bounded by the budget.
With a higher budget one can potentially make a higher improvement in every step.
Afterward, it is harder to find improvements. After 600 seconds the curve is already
rather flat, but with a higher timeout, the results might improve a little bit more.

The findings of this experiment are that SLIM can indeed improve the initial candidate
strings from a simple greedy heuristic. The number of strings and the length of strings

21

4. Experimental Results

Figure 4.4: Improvement of distance over time using SLIM with different budgets on two
different benchmark instances with 100 strings of length 5,000

22

4.3. Tuning SLIM

Figure 4.5: Improvement of distance over time using SLIM with different budgets on two
different benchmark instances with 5 strings of length 100,000

23

4. Experimental Results

have an impact on the running time until SLIM finds the last improvement. For our
used benchmark instances the different budgets do not yield a significant difference in
the performance of SLIM.

The benchmark instances, initial solutions, final solutions and log files for experiments
2 and 3 can be found in the folder budgets at https://www.ac.tuwien.ac.at/
files/resources/instances/csp_slim.zip.

4.3.3 Experiment 3 - Comparison of SLIM with Different Local
Timeout

In this experiment, we compared the results of SLIM using adaptive local timeouts. For
the experiment in Section 4.3.2 a generous timeout of 60 seconds was used. From the
experiment in Section 4.3.1 we already know that that is much higher than needed. So
we limited the local timeout to a value such that 90 percent of satisfiable instances with
the given budget and number of strings can be solved. See Table 4.3 for the adaptive
timeouts depending on the number of strings n and the budget lb. Figure 4.6 compares
the improvement of the distance for one specific benchmark instance of size with 5 strings
of length 5,000. The graph on the top shows SLIM with a local timeout of 60 seconds.
For the graph on the bottom, an adaptive local timeout based on the 90th percentile,
according to Table 4.3, was used. Figure 4.7 compares the improvement of the distance
for one benchmark instance with 100 strings of length 5,000 and Figure 4.8 does that for
a benchmark instance with 5 strings of length 100,000. For all of these three comparisons,
one can see that the improvements are almost the same, but the running times show
clear differences. When a smaller local timeout was used, SLIM found the improvements
quicker.

To support this observation, we summarized the result of all 20 benchmark instances
in Tables 4.4 and 4.5. Table 4.4 compares the results of benchmark instances with
m = 5, 000 over different n. Table 4.5 compares the results of benchmark instances with
n = 5 over different m. The tables show the average initial distances and the average
improvements with SLIM using a local timeout of 60 seconds and the local timeout based
on the 90th percentile according to Table 4.3. The average improvement for both local
timeouts was almost the same. However, one can see differences in the running time
until the last improvement was found. On average, SLIM with the fixed timeout needed
approximately 4.4 times as long to find the solution.

4.3.4 Discussion

In this section, we could see that it is indeed possible to improve an initial candidate
string from our simple greedy heuristic. We have seen that using an adaptive local
timeout, i.e. such that 90% of the satisfiable instances can be solved, led to almost the
same improvement but in a shorter running time. Thus, it makes sense to use a local
timeout, especially if the global timeout is bounded.

24

https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip
https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip

4.3. Tuning SLIM

(a) Local timeouts of 60 seconds

(b) Adaptive local timeouts according to Table 4.3

Figure 4.6: The distance improvements of SLIM with different budgets on a benchmark
instance with 5 strings of length 5,000. Observe the different scales for the x-axis

25

4. Experimental Results

(a) Local timeouts of 60 seconds

(b) Adaptive local timeouts according to Table 4.3

Figure 4.7: The distance improvements of SLIM with different budgets on a benchmark
instance with 100 strings of length 5,000. Observe the different scales for the x-axis

26

4.3. Tuning SLIM

(a) Local timeouts of 60 seconds

(b) Adaptive local timeouts according to Table 4.3

Figure 4.8: The distance improvements of SLIM with different budgets on a benchmark
instance with 5 strings of length 100,000. Observe the different scales for the x-axis

27

4. Experimental Results

number of strings 5 10 20 30 50 75 100
avg. initial dist. 2,560.80 2,954.10 3,218.20 3338.95 3,457.70 3524.65 3,567.80
avg. impr. 27.69 34.17 36.31 39.69 41.72 38.27 37.82
(fixed LTO)
avg. impr. 27.76 34.12 36.51 40.11 42.40 38.30 37.88
(adaptive LTO)
runtime 38.44 80.04 130.08 176.99 273.34 367.51 418.38
(fixed LTO) (s)
runtime 10.98 16.20 23.83 31.20 49.23 75.26 87.36
(adaptive LTO) (s)

Table 4.4: Comparison of SLIM improvements using either a fixed local timeout or
adaptive local timeout. The table shows the average initial distance, average SLIM
improvement, and average running time (in seconds) for benchmark instances with
different numbers of strings of length 5,000. The average SLIM improvement is given for
a fixed local timeout (fixed LTO) of 60 seconds and an adaptive local timeout (adaptive
LTO) according to Table 4.3. The average running time is the time until the last
improvement was found. It is also given for a fixed and an adaptive local timeout

length of strings 1,000 5,000 10,000 20,000 50,000 100,000
avg. initial dist. 523.85 2,560.80 5,100.70 10,174.25 25,325.50 50,566.50
avg. impr. 15.06 27.69 39.71 65.42 84.75 116.58
(fixed LTO)
avg. impr. 15.40 27.76 39.44 65.10 84.64 117.49
(adaptive LTO)
runtime 57.26 38.44 58.9 112.28 222.77 454.78
(fixed LTO) (s)
runtime 99.97 10.98 15.34 18.84 37.82 74.75
(adaptive LTO) (s)

Table 4.5: Comparison of SLIM improvements using either a fixed local timeout or
adaptive local timeout. The table shows the average initial distance, average SLIM
improvement, and average running time (in seconds) for benchmark instances with
5 strings of different lengths. The average SLIM improvement is given for a fixed
local timeout (fixed LTO) of 60 seconds and an adaptive local timeout (adaptive LTO)
according to Table 4.3. The average running time is the time until the last improvement
was found. It is also given for a fixed and an adaptive local timeout

28

4.4. SLIM on a State-of-the-Art Algorithm by Tanaka

In contrast to the author’s expectations, the results of the experiments suggest that the
used budget does not make a difference, as long as it is not so high that solving the local
instances becomes infeasible.

4.4 SLIM on a State-of-the-Art Algorithm by Tanaka
To answer the question of whether SLIM can improve a state-of-the-art heuristic, we used
a heuristic algorithm based on Lagrangian relaxation by Tanaka [Tan12]. This algorithm
is described in more detail in Section 3.2.2. One big advantage of this algorithm is that
it gives a lower bound for the distance of the closest string. By that, it can sometimes
know whether the solution is optimal.

4.4.1 Results for Initial Candidate Strings
We randomly created benchmark instances for different numbers of strings with n œ
{5, 10, 20, 30, 50, 75, 100} and different lengths of strings from 5,000 to 50,000,000. For
each examined combination, we created 20 benchmark instances. For each benchmark
instance, the algorithm got a timeout of 60 minutes. The results were divided into the
following categories:

• optimal: The algorithm found a optimal solution

• best: The algorithm terminated because it found a currently best solution and
could not improve it for a certain number of iterations

• timeout: The algorithm was terminated by the given timeout of 60 minutes.
Within that time at least one solution was found

• no solution: The algorithm was terminated by the given timeout of 60 minutes.
Within that time not a single solution was found

• error: The algorithm was aborted because of a segmentation fault

The results can be viewed in Table 4.6. Table 4.7 shows the average running times,
excluding the benchmark instances that ran into a timeout. It can be seen that for several
benchmark instances, especially those with small n, the optimal solution was found within
some seconds. For example, all benchmark instances with 10 strings of lengths from 5,000
to 100,000 could be solved optimally within less than 3.5 seconds on average. On the
other hand, no benchmark instance with 75 or 100 strings could be solved optimally. The
algorithm could find a solution for most of the tested benchmark instances. It only could
not find a solution for some of the benchmark instances instances with a string length of
more than 5 million characters. In many of the benchmark instances with 10 strings of
length 20,000,000 and 50,000,000, a segmentation fault occurred. Nevertheless, the results
were quite impressive. Especially because the optimality could be confirmed for many

29

4. Experimental Results

instances. All benchmark instances and resulting initial strings for this experiment can
be found at https://www.ac.tuwien.ac.at/files/resources/instances/
csp_slim.zip in the folder tanaka_initial_solutions.

4.4.2 SLIM Improvement
As shown in Section 4.4.1, Takana’s algorithm already achieves great results. Out of the
1,160 benchmark instances, it could find the optimal solution for 540. For 218 of the
instances, the currently best solution was returned after an internal stopping criterion
was reached. For those instances, we do not know, whether it is possible to improve
them or whether they are already optimal. For 288 of the instances, at least one solution
was found, before the algorithms were terminated after a timeout. For 114 instances the
algorithm did not even return a single solution. Either because of the timeout or because
of an error.

For SLIM, it does not make sense to run on instances that are already optimal. It can
also not improve the benchmark instances for which no solution was found, because it
needs an initial solution. So we let SLIM run on the 218 + 288 = 506 remaining instances,
for which we have at least one solution, which is not already shown to be the optimal
one.

We used a budget of 10 and an adaptive local timeout according to Table 4.3 plus a buffer
of 0.1 seconds. As the initial solution, we used the first solution that Tanaka’s algorithm
returned. As global timeout, we took 60 minutes minus the time until the first solution
was found. Out of the solutions of the 506 benchmark instances, SLIM could improve 21.
One has to mention that some of the benchmark instances were already very close to the
optimal solution or were even optimal. So there was not much space for improvement.
The improvements of these 21 benchmark instances are shown in Table 4.8.

To ensure comparability, Tanaka’s algorithm did not had to stop after it found the
first solution but had until the timeout to improve its initial solution. For five out of
the 21 instances mentioned above, Tanaka’s algorithm was able to improve the results
in the remaining time. For the remaining 16 instances, SLIM could indeed bring an
improvement.

At https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.
zip one can find the folder tanaka_improvement, which contains the 506 benchmark
instances and corresponding initial solutions used for this experiment. Furthermore,
there are the solutions for the 21 benchmark instances improved by SLIM and log files.

4.4.3 Beyond the Limits
As one can see in Section 4.4.1, for Tanaka’s algorithm it was hardly possible to solve
benchmark instances with huge strings of length more than 10,000,000. For the 20
benchmark instances of 5 strings with a length of 50,000,000 and the 20 benchmark
instances of 10 strings with a length of 10,000,000, it was not able to find a single solution.

30

https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip
https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip
https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip
https://www.ac.tuwien.ac.at/files/resources/instances/csp_slim.zip

4.4. SLIM on a State-of-the-Art Algorithm by Tanaka

m
n 5 10 30

NS TO B OPT NS TO B OPT NS TO B OPT
5,000 0 0 0 20 0 0 0 20 0 0 8 12

10,000 0 0 1 19 0 0 0 20 0 0 10 10
20,000 0 0 1 19 0 0 0 20 0 0 6 14
50,000 0 4 0 16 0 0 0 20 0 5 0 15

100,000 0 3 0 17 0 0 0 20 0 8 0 12
200,000 0 6 0 14 0 1 0 19 0 5 0 15
300,000 0 6 0 14 0 1 0 19 0 5 0 15
500,000 0 3 0 17 0 9 0 11 0 3 0 17

1,000,000 0 8 0 12 0 11 0 9 0 6 0 14
2,000,000 0 2 0 18 0 9 0 11
5,000,000 0 7 0 13 8 7 0 5

10,000,000 7 3 0 10 20 0 0 0
20,000,000 19 0 0 1 5 0 0 0
50,000,000 20 0 0 0 0 0 0 0

m
n 50 75 100

NS TO B OPT NS TO B OPT NS TO B OPT
5,000 0 0 19 1 0 0 20 0 0 0 20 0

10,000 0 0 19 1 0 0 20 0 0 0 20 0
20,000 0 0 15 5 0 0 20 0 0 0 20 0
50,000 0 0 15 5 0 16 4 0 0 20 0 0

100,000 0 17 0 3 0 20 0 0 0 20 0 0
200,000 0 12 0 8 0 20 0 0 0 20 0 0
300,000 0 13 0 7
500,000 0 11 0 9

1,000,000 0 7 0 13

Table 4.6: Results from the heuristic by Tanaka. The rows specify the length of strings
in the benchmark instances. The columns specify the result categories for different
numbers of strings. The categories are optimal (OPT), best (B), timeout (TO), and no
solution (NS). For the empty cells, no experiments were conducted. For many of the
benchmark instances with 10 strings of length 20,000,000 and 50,000,000, a segmentation
fault occurred. So they are not listed in the table.

31

4. Experimental Results

m
n 5 10 30 50 75 100

5,000 0.58 0.02 10.7 21.8 34.2 49.3
10,000 5.57 0.06 42.9 76.4 78.3 120
20,000 22.9 0.59 114 262 263 258
50,000 92.8 1.48 123 385 1031 422

100,000 67.8 14.5 153 440 1651 401
200,000 145 43.3 120 256 1339 303
300,000 105 104 93.2 265
500,000 5.8 14.9 57.1 111

1,000,000 18 41 155 297
2,000,000 47.2 111
5,000,000 186 304

10,000,000 359 -
20,000,000 395 -
50,000,000 - -

Table 4.7: Average running times (in seconds) of the algorithm by Tanaka on different
benchmark instances. The rows specify the numbers of strings and the columns specify
the length of the strings of the corresponding benchmark instances. If a benchmark
instance reached the timeout of 60 minutes, its running time was not taken into account
for this table. “-” means that none of the 20 benchmark instances finished before the
timeout. For the empty cells, no experiments were conducted.

This is, where the power of SLIM can be shown. Since it can use the solutions of any CSP
algorithm as an initial solution, it is more flexible with the size of the input instances.
So we used our simple greedy algorithm as described in Section 3.2.1 to give an initial
solution.

For the instances with 5 strings, we used a budget of 12. For the instances with 10 strings,
we used a budget of 10. Even though the results from the experiment in Section 4.3.3
suggest that local timeouts as small as in Table 4.3 lead to better results, we decided on
a local timeout of 1 second. This is because finding the local instances already takes a
relatively long time when we have long strings. Compared to selecting the local instances,
solving the local instances takes less time and we want to be able to solve almost all local
instances.

To be able to deal with such big instances, we made little adjustments to our SLIM
programming. First of all, we decided to use a completely random selection strategy.
This has the advantage that it works quickly, regardless of the string length. The
strategy described in Section 3.3 took about 90 seconds to find one local instance for
benchmark instances with a string length of 10,000,000 and 260 seconds for the benchmark
instances with a string length of 50,000,000. In some cases, it even led to Memory Errors.
Furthermore, we changed the code in such a way that it did not print every intermediate

32

4.4. SLIM on a State-of-the-Art Algorithm by Tanaka

n m initial d d after SLIM further improvement by Tanaka
5 50,000 25,170 25,168 25,155
5 50,000 25,207 25,203 25,189
5 200,000 100,746 100,741 100,718
5 200,000 100,828 100,827 -
5 200,000 100,861 100,850 100,812
5 300,000 151,229 151,227 151,222
5 300,000 151,179 151,178 -
5 1,000,000 503,998 503,997 -
5 1,000,000 503,954 503,948 -
5 1,000,000 503,909 503,894 -
5 1,000,000 503,524 503,515 -
5 1,000,000 503,868 503,865 -
5 2,000,000 1,007,394 1,007,384 -
5 2,000,000 1,008,316 1,008,284 -
5 5,000,000 2,519,362 2,519,349 -
5 5,000,000 2,519,639 2,519,627 -
5 5,000,000 2,519,707 2,519,702 -
5 10,000,000 5,039,661 5,039,657 -
5 10,000,000 5,038,136 5,038,134 -

10 500,000 290,075 290,074 -
10 1,000,000 580,390 580,387 -

Table 4.8: The 21 benchmark instances that could be improved by SLIM. The table shows
the number of strings n, and the length of strings m of the benchmark instances. The
initial distance (initial d) is the distance of the first solution which was given by Tanaka’s
algorithm. The distance after SLIM (d after SLIM) is the distance of the solution after
the SLIM improvement. At the same time, Tanaka’s algorithm was still running and
might also improved its initial solution. The distance of the new solution is given in the
last column of the Table. “-” means that Tanaka’s algorithms were not able to further
improve its initial solution.

33

4. Experimental Results

result, since this also takes some minutes.

To be able to compare our SLIM approach to the results from Tanaka’s algorithm, we
also wanted to have an overall global timeout of 60 minutes. Since generating the initial
solutions with the greedy algorithm took approximately 12 minutes, the SLIM part was
restricted to a global timeout of 48 minutes.

For the benchmark instances with 5 strings of length 50,000,000, the distance of the initial
candidate string was on average 25,200,122. SLIM could improve that on average by
1,324.8. One instance was even improved by 3,083. The graphic on the top of Figure 4.9
shows that benchmark instance. One can see how the distances from the currently best
string to the five input distances changed over time. At the beginning, the furthest string
had a distance of 25,202,219 and the string with the smallest distance had a distance of
25,189,602. Over time, the candidate string got closer to the furthest input string but
the distance to the other strings got higher. The maximum distance after the one-hour
timeout was 25,199,136, which is an improvement of 3,083. As the figure shows, there
is still a difference in the distances. With a higher global timeout, SLIM is likely to
find better results. On the graphic on the bottom of the figure, one can see another
benchmark instance, where in the end a string was found which has the same distance
for three of the input strings.

For the benchmark instances with 10 strings of length 10,000,000, the distance of the
initial candidate string was on average 5,805,182. SLIM could improve that on average
by 228.1. Here, the average improvement is lower, because some of the instances ran
into a memory error after a while. At this point, there might be some more space for
improvements in the SLIM code that prevent memory problems. The best improvement
for one instance was 1,962, which is shown in Figure 4.10 on the top. It is interesting to
see, how the distances of the currently closed string were the same for most of the input
strings at the end of the timeout. The benchmark instance on the bottom was aborted
earlier because a memory error occurred.

The reworked SLIM version, all the used benchmark instances, the corresponding ini-
tial solutions from the greedy heuristic, and the log files for this experiment can be found at
https://www.ac.tuwien.ac.at/files/resources/results/csp_slim.zip
in the folder beyond_tanaka.

4.4.4 Discussion

The experiments in this section showed that Tanaka’s algorithm is already quite powerful
in solving the CSP. Due to the described benchmark instances from the literature, we
initially did not think that there exists an algorithm that could solve the CSP with
input strings of length more than one million. For example, Gomes et al. [GMPV08]
used benchmark instances with up to 30 strings and up to 5,000 characters. Meneses
et al. [MLOP04] used 10 to 30 strings of length of 300 to 800 characters. Not even
Tanaka [Tan12] tested his own algorithm on strings with more than 5,000 characters.

34

https://www.ac.tuwien.ac.at/files/resources/results/csp_slim.zip

4.4. SLIM on a State-of-the-Art Algorithm by Tanaka

Figure 4.9: The distances of to candidate string to all input strings of two benchmark
instances with 5 strings of length 50,000,000. The improvements only started after about
1,300 seconds, because it took some time for the greedy algorithm until the initial solution
was created and until SLIM read in the input strings

35

4. Experimental Results

Figure 4.10: The distances of to candidate string to all input strings of two benchmark
instances with 10 strings of length 10,000,000. The improvements only started after
about 1,000 seconds, because it took some time for the greedy algorithm until the initial
solution was created and until SLIM read in the input strings. The benchmark instance
on the bottom was aborted earlier because a memory error occurred

36

4.4. SLIM on a State-of-the-Art Algorithm by Tanaka

One further advantage of this algorithm is that it gives a lower bound for the distance of
the closest string. For about half of the used benchmark instances it already gave the
optimal solution. Most of them within only a few seconds. That is really impressive for
an NP-complete problem and did not leave much room for improvement. Nevertheless,
out of the 506 instances, for which Tanaks’s algorithm found at least one solution but
could not show optimality, our SLIM approach could improve 16 instances - even if only
a little.

On the other hand, one big advantage of SLIM is that it works with the initial candidate
strings from various heuristics. For benchmark instances that were too big for Tanaka’s
algorithm to solve, we could just use another heuristic that works better on big input
instances and then improve those results with SLIM. In the experiments in Section 4.4.3
SLIM could improve the distances of the initial solutions from our simple greedy algorithm
by up to 3,083.

37

CHAPTER 5
Conclusion

5.1 Summary
In this thesis, we had a look at the SAT-based Local Improvement Method (SLIM) and
how to use it for solving the Closest String Problem (CSP). Chapter 3 describes what
SLIM is and which design choices we made in the programming. In Chapter 4 we did some
experiments to find the best parameter settings and to compare it to another existing
heuristic. What was interesting to see is that the choice of the budget does not make
a big difference, as long as it is not so high that the SAT encoding becomes infeasible.
However, what made a difference was a different local timeout. We did some experiments
that measured the times needed to solve the local instances. In another experiment,
we took the running times, within which 90% of the solvable instances could be found,
as local timeouts. When we compared the results with SLIM results from the same
benchmark instances with a higher local timeout of 60 seconds, we could see that the
quality of the results was the same, but with the longer timeout, it took approximately
4.4 times as long to find the solution.

Furthermore, we did some experiments that investigated how well SLIM works with a
state-of-the-art algorithm by Tanaka [Tan12]. The results showed that Tanaka’s algorithm
already worked quite well. Since it even offers a lower bound for the benchmark instances,
it could show optimality for almost half of the used benchmark instances. So it did not
leave much room for improvement. Nevertheless, out of the 506 instances, for which
Tanaks’s algorithm found at least one solution, but could now show optimality, our SLIM
approach could at least improve 16 instances - even if only a little.

One big advantage of SLIM is that it works with the initial candidate strings from various
heuristics. For benchmark instances that were too big for Tanaka’s algorithm to solve,
we could just use another heuristic, like our simple greedy algorithm, that works better
on big input instances. Afterward, we could just improve those results with SLIM.

39

5. Conclusion

The short answer to our initial research question “Can we use SLIM to improve the state
of the art in solving the Closest String Problem?” is that there are already algorithms
that work well with the CSP and thus, SLIM could only improve them on a few instances
or work better only with some special cases, like very big benchmark instances with input
strings with a length of more than 10,000,000 characters.

5.2 Further work
There are many further things which could be investigated in relation to this topic.

First of all, it would be interesting to test SLIM on different benchmark instances. In
this thesis, we only used randomly created instances. It also would be interesting to
use benchmark instances with real DNA or instances that have a certain structure. For
example, Tanaka [Tan12] also used randomly generated instances in which the possibility
that C and G are chosen is 36% each, and the probability for A and T is 14% each. This
simulates the genome of Streptomyces coelicolor, which is a bacterium whose content
of C and G is 72%. Another interesting idea, used by Xu et al. [XP22] for example is
to generate benchmark instances for which a maximal distance d is guaranteed. This
can be done by first generating an answer string s of length m over the alphabet A. For
generating the input strings, a copy of s is used in which d randomly chosen positions
were overwritten by another character. Knowing the maximal distance d could help to
evaluate different approaches regarding the quality of the results.

Furthermore, for tuning our SLIM process, some more experiments could be made. In
our experiments, we only compared a local timeout of 60 seconds to the adaptive local
timeout based on the 90th percentile. One could also try out other local timeouts, for
example by adding a buffer to the adaptive local timeout. It might also be the case
that the optimal local timeout depends on the performance of the used computer. For
the budget, it would be interesting to find out whether there is a minimum budget.
One could also implement different selection strategies and strategies to initialize and
update the distance array and compare the choices against each other. Especially for the
selection strategy, there are many possibilities and it might be possible to find underlying
structures in the input strings that have a particularly high chance to be good candidates
for local improvement. Another question to ask is whether there are good deterministic
strategies or if it is always better to include randomness. For the bigger benchmark
instances, it might be possible to improve SLIM such that it can deal better with big
strings and not get memory problems. What might also be interesting is to compare
different SAT solvers, like CaDiCaL 153, for example.

Further research could not only look at SLIM for an input alphabet of size 4 but also
look at binary strings or strings with an alphabet size of 20. The CSP on binary strings
has applications in Coding Theory. The CSP on strings with an alphabet size of 20 can
be used in biology to investigate amino acid sequences.

One big advantage of SLIM is that the local encoding is quite flexible and other variants

40

5.2. Further work

of the CSP can be easily built in. For example, one could look at the CSP with wildcards.
Here, there are some positions in the input strings that are not known. Another variant
of SLIM is to not only minimize the maximal distance to the strings but also to maximize
the number of occurrences of a certain character. For other algorithms implementing
such variants might need major changes, but with SLIM this could be implemented with
only a few constraints in the SAT encoding.

41

List of Figures

4.1 Running times in seconds for solving 90% of the satisfiable local instances.
The x-axis indicates the different budgets. 19

4.2 The distance improvements of SLIM with different budgets on two different
benchmark instances with 5 strings of length 5,000. Even though SLIM was
running for 10 minutes, no more improvements were found after 45.34 resp.
52.4 seconds. 20

4.3 Boxplots on the distance improvement for 20 benchmark instances with 5
strings of length 5,000 for different budgets 21

4.4 Improvement of distance over time using SLIM with different budgets on two
different benchmark instances with 100 strings of length 5,000 22

4.5 Improvement of distance over time using SLIM with different budgets on two
different benchmark instances with 5 strings of length 100,000 23

4.6 The distance improvements of SLIM with different budgets on a benchmark
instance with 5 strings of length 5,000. Observe the different scales for the
x-axis . 25

4.7 The distance improvements of SLIM with different budgets on a benchmark
instance with 100 strings of length 5,000. Observe the different scales for the
x-axis . 26

4.8 The distance improvements of SLIM with different budgets on a benchmark
instance with 5 strings of length 100,000. Observe the different scales for the
x-axis . 27

4.9 The distances of to candidate string to all input strings of two benchmark
instances with 5 strings of length 50,000,000. The improvements only started
after about 1,300 seconds, because it took some time for the greedy algorithm
until the initial solution was created and until SLIM read in the input strings 35

4.10 The distances of to candidate string to all input strings of two benchmark
instances with 10 strings of length 10,000,000. The improvements only started
after about 1,000 seconds, because it took some time for the greedy algorithm
until the initial solution was created and until SLIM read in the input strings.
The benchmark instance on the bottom was aborted earlier because a memory
error occurred . 36

43

List of Tables

2.1 Example of the CSP with three input strings of length 5 and output string x 6

4.1 Average running times (in seconds) for solving satisfiable local instances. The
rows indicate the budgets and the columns indicate the number of strings. 17

4.2 Average running times (in seconds) to find out that a local instance is unsatis-
fiable. The rows indicate the budgets and the columns indicate the number of
strings. 17

4.3 Running times (in seconds) for solving 90% of the satisfiable local instances.
The rows indicate the budgets and the columns indicate the number of strings. 18

4.4 Comparison of SLIM improvements using either a fixed local timeout or
adaptive local timeout. The table shows the average initial distance, average
SLIM improvement, and average running time (in seconds) for benchmark
instances with different numbers of strings of length 5,000. The average SLIM
improvement is given for a fixed local timeout (fixed LTO) of 60 seconds
and an adaptive local timeout (adaptive LTO) according to Table 4.3. The
average running time is the time until the last improvement was found. It is
also given for a fixed and an adaptive local timeout 28

4.5 Comparison of SLIM improvements using either a fixed local timeout or
adaptive local timeout. The table shows the average initial distance, average
SLIM improvement, and average running time (in seconds) for benchmark
instances with 5 strings of different lengths. The average SLIM improvement
is given for a fixed local timeout (fixed LTO) of 60 seconds and an adaptive
local timeout (adaptive LTO) according to Table 4.3. The average running
time is the time until the last improvement was found. It is also given for a
fixed and an adaptive local timeout . 28

4.6 Results from the heuristic by Tanaka. The rows specify the length of strings
in the benchmark instances. The columns specify the result categories for
different numbers of strings. The categories are optimal (OPT), best (B),
timeout (TO), and no solution (NS). For the empty cells, no experiments were
conducted. For many of the benchmark instances with 10 strings of length
20,000,000 and 50,000,000, a segmentation fault occurred. So they are not
listed in the table. 31

45

4.7 Average running times (in seconds) of the algorithm by Tanaka on different
benchmark instances. The rows specify the numbers of strings and the columns
specify the length of the strings of the corresponding benchmark instances. If
a benchmark instance reached the timeout of 60 minutes, its running time
was not taken into account for this table. “-” means that none of the 20
benchmark instances finished before the timeout. For the empty cells, no
experiments were conducted. 32

4.8 The 21 benchmark instances that could be improved by SLIM. The table
shows the number of strings n, and the length of strings m of the benchmark
instances. The initial distance (initial d) is the distance of the first solution
which was given by Tanaka’s algorithm. The distance after SLIM (d after
SLIM) is the distance of the solution after the SLIM improvement. At the
same time, Tanaka’s algorithm was still running and might also improved its
initial solution. The distance of the new solution is given in the last column
of the Table. “-” means that Tanaka’s algorithms were not able to further
improve its initial solution. 33

46

List of Algorithms

3.1 SLIM process . 13

47

Acronyms

CNF conjunctive normal form. 6, 7

CSP Closest String Problem. 1–3, 5, 6, 9–11, 15, 32, 34, 39–41, 45

FPT fixed-parameter tractable. 2

GA genetic algorithm. 2

MIP mixed integer programming. 10

SA simulated annealing. 2

SAT propositional satisfiability problem. 3, 6, 7, 9, 11, 13, 16, 39–41

SLIM SAT-based Local Improvement Method. 3, 9, 11, 12, 16, 19–30, 32–34, 36, 37,
39–41, 43, 45, 46

49

Bibliography

[BHKN14] L. Bulteau, Falk Hüffner, Christian Komusiewicz, and R. Niedermeier.
Multivariate Algorithmics for NP-Hard String Problems. Bull. EATCS,
October 2014.

[BHMW09] Armin Biere, Marijn Heule, H. Maaren, and Toby Walsh. Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications.
January 2009.

[CLLM94] G. Cohen, S. Litsyn, Antoine Lobstein, and H. Mattson. Covering Radius
1985-1994. Electrical Engineering and Computer Science - Technical Reports,
November 1994.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer, New York, NY, 1999.

[DL18] Marcello Dalpasso and Giuseppe Lancia. New Modeling Ideas for the Exact
Solution of the Closest String Problem. In Mourad Elloumi, Michael Gran-
itzer, Abdelkader Hameurlain, Christin Seifert, Benno Stein, A Min Tjoa,
and Roland Wagner, editors, Database and Expert Systems Applications,
Communications in Computer and Information Science, pages 105–114,
Cham, 2018. Springer International Publishing.

[FBHS23] Johannes K. Fichte, Daniel Le Berre, Markus Hecher, and Stefan Szeider.
The Silent (R)evolution of SAT. Communications of the ACM, 66(6):64–72,
May 2023.

[FL97] M. Frances and A. Litman. On covering problems of codes. Theory of
Computing Systems, 30(2):113–119, April 1997.

[FLS17] Johannes K. Fichte, Neha Lodha, and Stefan Szeider. Sat-based local
improvement for finding tree decompositions of small width. In Serge
Gaspers and Toby Walsh, editors, Theory and Applications of Satisfiability
Testing – SAT 2017, pages 401–411, Cham, 2017. Springer International
Publishing.

51

[FP10] Simone Faro and Elisa Pappalardo. Ant-CSP: An Ant Colony Optimization
Algorithm for the Closest String Problem. January 2010. Pages: 381.

[GJL99] Leszek Gasieniec, Jesper Jansson, and Andrzej Lingas. Efficient Approxima-
tion Algorithms for the Hamming Center Problem. January 1999. Journal
Abbreviation: Proceedings of the Annual ACM-SIAM Symposium on Dis-
crete Algorithms Pages: 906 Publication Title: Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms.

[GMPV08] Fernando C. Gomes, Cláudio N. Meneses, Panos M. Pardalos, and Gerardo
Valdisio R. Viana. A parallel multistart algorithm for the closest string
problem. Computers & Operations Research, 35(11):3636–3643, November
2008.

[IMMS18] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A
Python Toolkit for Prototyping with SAT Oracles. pages 428–437. June
2018.

[KK10] Tom Kelsey and Lars Kotthoff. The Exact Closest String Problem as a
Constraint Satisfaction Problem, May 2010. arXiv:1005.0089 [cs].

[KLLM+03] J. Kevin Lanctot, Ming Li, Bin Ma, Shaojiu Wang, and Louxin Zhang.
Distinguishing string selection problems. Information and Computation,
185(1):41–55, August 2003.

[LHS05] Xuan Liu, Hongmei He, and Ondrej S˝kora. Parallel Genetic Algorithm
and Parallel Simulated Annealing Algorithm for the Closest String Problem.
In Xue Li, Shuliang Wang, and Zhao Yang Dong, editors, Advanced Data
Mining and Applications, Lecture Notes in Computer Science, pages 591–597,
Berlin, Heidelberg, 2005. Springer.

[LLHM11] Xiaolan Liu, Shenghan Liu, Zhifeng Hao, and Holger Mauch. Exact algorithm
and heuristic for the closest string problem. Computers & operations research,
38(11):1513–1520, 2011.

[LOS19] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. A sat approach to
branchwidth. ACM Transactions on Computational Logic (TOCL), 20(3):1–
24, 2019.

[LW67] G. N. Lance and W. T. Williams. A General Theory of Classificatory Sorting
Strategies: 1. Hierarchical Systems. The Computer Journal, 9(4):373–380,
February 1967.

[MLOP04] Claudio Meneses, Zhaosong Lu, Carlos Oliveira, and Panos Pardalos. Op-
timal Solutions for the Closest String Problemvia Integer Programming.
Informs Journal on Computing - INFORMS, 16:419–429, November 2004.

52

[Sch22] André Schidler. Sat-based local search for plane subgraph partitions (cg
challenge). In 38th International Symposium on Computational Geometry
(SoCG 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[Tan12] Shunji Tanaka. A heuristic algorithm based on lagrangian relaxation for
the closest string problem. Computers & operations research, 39(3):709–717,
2012.

[XP22] Shirley Xu and David Perkins. A Heuristic Solution to the Closest String
Problem Using Wave Function Collapse Techniques. IEEE Access, 10:115869–
115883, 2022. Conference Name: IEEE Access.

53

	Kurzfassung
	Abstract
	Contents
	Introduction
	The Closest String Problem
	State of the art
	Research Question
	Outlook

	Preliminaries
	The Closest String Problem
	SAT

	SLIM
	What SLIM is?
	Used Heuristics
	Local Selection Strategie
	Initialization and Update Strategy for the Distance Array
	Local Encoding
	Pseudocode

	Experimental Results
	Benchmark instances
	Experimental Setup
	Tuning SLIM
	SLIM on a State-of-the-Art Algorithm by Tanaka

	Conclusion
	Summary
	Further work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

