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Abstract

This work studies the elastic and elastoplastic behavior of a Body-Centered Cubic (BCC)
lattice unit cell (UC) with the help of finite element analysis under the assumption of
geometric linearity. The periodic microfield approach is implemented, with appropriate
periodic boundary conditions applied to the UC. The method of macroscopic degrees of
freedom is used to prescribe different load cases to the UC. With this modeling approach,
the effective (homogenized) material properties of lattice structure with a BCC UC are
obtained. The UC is modeled once with linear shear flexible beam elements in space and
once with quadratic tetrahedral continuum elements, and the influence of the modeling
approach on results is assessed.

Since the BCC lattice UC shows cubic material symmetry, only three independent mate-
rial properties are required to determine its effective elasticity tensor. In this work, the
effective bulk modulus K̃ obtained from the hydrostatic tensile load case, the effective
shear modulus M̃ obtained from the simple shear XY load case, and the effective shear
modulus G̃ obtained from the 45° shear XY load case are chosen as the parameters that
are determined. For the solid element modeling variant, the effective Young’s moduli in
the principal material direction [100], the face diagonal [110], and the space diagonal [111]
are obtained.

The two-dimensional (2D) initial yield surface representations of the solid element UC are
determined under five different sets of load cases. The elastoplastic behavior of the BCC
lattice UC under various single and combined load cases is assessed. In addition to the
same three load cases required for the determination of the effective elasticity tensor, the
uniaxial tension in the [100] direction is also included in the single load cases group. For
the combined modeling approach, the combinations of simple shear XY and XZ, simple
shear XY and hydrostatic tension, simple shear XY and 45° shear XY, as well as 45° shear
XY and hydrostatic tension load cases are modeled. Here, a distinction is made if both of
them are applied in the same step or in succession. The differences in the results between
varying load cases and modeling approaches are discussed in detail.



Kurzfassung

Diese Arbeit untersucht das elastische und elastoplastische Verhalten einer Gitterstruktur
mit kubisch-raumzentrierten (BCC) Einheitszellen (UC) mithilfe der Finite-Elemente-
Analyse unter der Annahme geometrischer Linearität. Der periodische Mikrofeldansatz
wird implementiert, wobei geeignete periodische Randbedingungen auf die UC angewendet
werden. Die Methode der makroskopischen Freiheitsgrade wird verwendet, um verschiedene
Lastfälle auf die UC zu übertragen. Mit diesem Modellierungsansatz werden die effektiven
(homogenisierten) Materialeigenschaften der Gitterstruktur mit einer BCC-UC ermittelt.
Die UC wird einmal mit linearen, schubflexiblen Balkenelementen im Raum und einmal
mit quadratischen tetraedrischen Kontinuumselementen modelliert, und der Einfluss des
Modellierungsansatzes auf die Ergebnisse wird auswertet.

Da die BCC-UC kubische Materialsymmetrie aufweist, werden nur drei unabhängige Mate-
rialeigenschaften benötigt, um ihren effektiven Elastizitätstensor zu bestimmen. In dieser
Arbeit werden der effektive Kompressionsmodul K̃, der sich aus dem hydrostatischen
Zuglastfall ergibt, der effektive Schermodul M̃ , der sich aus dem einfachen Schub-Lastfall
(XY) ergibt, und der effektive Schubmodul G̃, der sich aus dem 45° Schub-Lastfall (XY)
ergibt, als die zu bestimmenden Parameter gewählt. Für die Modellierungsvariante mit
Kontinuumselementen werden die effektiven Elastizitätsmodule in der Hauptmaterialrich-
tung [100], der Flächendiagonalen [110] und der Raumdiagonalen [111] ermittelt.

Die zweidimensionalen (2D) Darstellungen der Anfangsfließflächen der Kontinuumselement-
UC werden unter fünf verschiedenen Lastfallgruppen bestimmt. Das elastoplastische
Verhalten der BCC-UC unter verschiedenen einzelnen und kombinierten Lastfällen wird
auswertet. Zusätzlich zu den drei Lastfällen, die für die Bestimmung des effektiven Elas-
tizitätstensors erforderlich sind, wird in der Gruppe der Einzellastfälle auch der einachsige
Zug in [100]-Richtung berücksichtigt. Für den kombinierten Modellierungsansatz wer-
den die Kombinationen aus einfachem Schub XY und XZ, einfacher Schub XY und
hydrostatischem Zug, einfacher Schub XY und 45°-Schub XY sowie 45°-Schub XY und
hydrostatischem Zug modelliert. Hier wird unterschieden, ob beide gleichzeitig oder
nacheinander angewendet werden. Die Unterschiede in den Ergebnissen zwischen ver-
schiedenen Lastfällen und Modellierungsansätzen werden ausführlich diskutiert.
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1. Introduction

1.1 Motivation and scope of work
Implementing lightweight design principles is crucial in various fields, from aerospace
and automotive engineering to energy technology, medicine, and many more. With
the continuous development of technology and industry, the requirements on the design
increase, and further innovation is necessary [7, 19]. In recent years, the field of additive
manufacturing has been consistently improved, and it has shown its potential and many
benefits, one of the most important being the ability to produce various complexly
shaped components and structures [5, 21, 13, 20]. This allowed the manufacturing of
complex open-celled lattice structures with high specific strength and stiffness, as well as
outstanding energy absorption capacity [11, 5]. For such periodic structures, depending on
the chosen base cell configuration, various macroscopic material properties are obtainable,
allowing them to be customized for unique purposes and requirements of many engineering
fields [11, 10, 4, 5].

To better understand their behavior, and be able to tailor and optimize their properties,
one has to determine the influence of the base cell configuration on their overall mechanical
response. A variety of analytical and numerical approaches can be implemented to deter-
mine this relation [11, 10]. One of the essential principles of continuum micromechanics,
homogenization, allows the estimation of global properties from the behavior at a smaller
length scale. The numerical homogenization approaches, especially the ones dealing with
unit cells (UCs), like the Periodic Microfield Approaches (PMAs), are suitable for assessing
the influence of varying base cell parameters on the homogenized material properties of
the periodic cell structure (i.e. infinite periodic arrangement). The PMAs are based on
the assumption that the heterogeneous material can be regarded as periodic (i.e. described
through the repeating UC). These approaches are implemented via the Finite Element
Method (FEM), and since only a single UC is modeled, instead of the complete lattice
structure, the computational effort is reduced.

This work studies the elastic and elastoplastic behavior of a Body-Centered-Cubic (BCC)
lattice unit cell (UC) with the help of finite element analysis under the assumption of
geometric linearity in Abaqus/Standard 2023 (Dassault Systèmes Simulia Corp., Johnston,
Rhode Island, United States). The periodic microfield approach is implemented, with
appropriate periodic boundary conditions applied to the UC. The method of macroscopic
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degrees of freedom is used to prescribe different load cases to the UC. With this modeling
approach, the effective (homogenized) material properties of lattice structure with a BCC
UC are obtained.

The UC is modeled once with linear shear flexible beam elements in space and once with
quadratic tetrahedral continuum elements, and the influence of the modeling approach
on results is assessed. The results from beam models are expected to be less accurate
than the ones from the solid element models, especially for the load cases where the
struts experience bending or shear deformation, but the required computational and
pre-processing effort is considerably lower, which is suitable for modeling complex lattice
structures. The main reason for these inaccuracies is the inability of beam elements to
correctly represent the sites where struts connect (neglecting the material aggregation
and overlapping volumes at the junctions of multiple struts in the model), which leads to
lower stiffness.

Since the BCC lattice UC shows cubic material symmetry, only three independent
material properties are required to determine its effective elasticity tensor. In this work,
the effective bulk modulus K̃ obtained from the hydrostatic tensile load case, the effective
shear modulus M̃ obtained from the simple shear XY load case, and the effective shear
modulus G̃ obtained from the 45° shear XY load case are chosen as the parameters that
are determined. For the solid element modeling variant, the effective Young’s moduli in
the principal material direction [100], the face diagonal [110], and the space diagonal [111]
are obtained.

The two-dimensional (2D) initial yield surface representations of the solid element UC
are determined under five different sets of load cases. Additionally, the initial yield stress
values for all six load cases implemented in the study of the elastic behavior of the BCC
lattice UC are obtained.

The elastoplastic behavior of the BCC lattice UC under various single and combined load
cases is assessed. In addition to the same three load cases required for the determination
of the effective elasticity tensor, the uniaxial tension in the [100] direction is also included
in the single load cases group. For the combined modeling approach, the combinations of
simple shear XY and XZ, simple shear XY and hydrostatic tension, simple shear XY and
45° shear XY, as well as 45° shear XY and hydrostatic tension load cases are modeled.
Here, a distinction is made if both of them are applied in the same step or in succession.
The differences in the results between varying load cases and modeling approaches are
discussed in detail.
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1.2 Literature review
A general introduction to cellular materials, their properties, manufacturing, and applica-
tions is found in [9, 2].

The basic principles of additive manufacturing are documented in [21, 8]. A more
detailed insight into the processes, like selective laser melting [11, 20, 13, 4] and digital
light processing [11, 20], that have been specifically used to produce open-celled lattice
structures used for experimental testing in the literature can be found in the corresponding
papers.

The theoretical knowledge about elastic and elastoplastic material behavior is based on
the Advanced Material Models for Structural Analysis lecture and corresponding lecture
material [15]. Additionally, some specific information regarding cubic material symmetry
is found in [12].

The theoretical knowledge behind the FEM is based on the lecture Introduction to the
Finite Element Method and corresponding lecture material [6], and some segments about
the specific functioning of Abaqus are referenced from the supporting documentation [1].

The modeling in this work is based on the principles of continuum micromechanics. The
information regarding this field is mainly from the university lecture Composites Engi-
neering and learning materials that supplement it [3]. The main ideas like homogenization
and localization, and the approximations used for them, are described in detail there.
Since the main focus of this work is on homogenization, and specifically on the PMAs, the
main interests lie in the models of unit cells. Additionally, a comprehensive overview of
the UC approach, including a detailed implementation of PBCs, has been shown in [16].

The implementation of this modeling approach for open-celled lattice structures has
already been studied in the literature. In [11], the mechanical behavior of polymer lattice
structures with a Simple Cubic (SC), Gibson Ashby (GA), Body-Centered-Cubic (BCC),
and Reinforced BCC (RBCC) base cell structures have been assessed with the help of
FEM models and experiments. They have been modeled as continuum element, beam
element, and modified beam element models, where the stiffness in the vicinity of vertices
has been artificially increased to account for the material aggregation in these regions.
The modeled structures have been treated as an infinite media (UC model approach),
as well as a finite media (finite-size model). The finite-size ones (restricted to beam
elements) have been modeled to be comparable to the experimental specimens in the
uniaxial compression test. The UCs have been employed to predict the complete elasticity
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tensor, and thus determine the linear elastic behavior of such materials. The authors have
determined the influence of relative density on Young’s moduli in the principal material
[001], face diagonal [011], and space diagonal [111] directions and relevant deformation
behavior of each of the base cells. By comparing the results from different FEM modeling
approaches, it has been concluded that the accuracy strongly depends on the chosen
geometry and main deformation mechanisms, but that the beam elements are overall
capable of correctly representing the mechanical behavior of such materials. From the
comparison of the finite size model and experimental results, it has been shown that
imperfections strongly influence the results of the structures with a pronounced directional
sensitivity (e.g. SC cell). For the remaining cases (BCC, RBCC, and GA cells), the
experimental and numerical results have been in good agreement.

In [14], the polymer lattice structures with various base cells (the same ones as in [11] with
the addition of Kelvin (KV) base cell) have been also modeled both as a finite and infinite
medium, but the focus has been on the linear viscoelastic behavior of such materials.
The perfect geometry of the base cell has been assumed, which gives rise to the cubic
material symmetry. For the computation of the elasticity tensor of such material, only
three independent material parameters are required, and thus only three different load
cases have been modeled. In this work, the authors chose the effective bulk modulus K̃

obtained from the hydrostatic tensile load case, the effective shear modulus M̃ obtained
from the simple shear load case, and the effective shear modulus G̃ obtained from the 45°
shear load case as the required material parameters.

The main aim of [4] has been to analytically, numerically, and experimentally assess the
quasi-static compression behavior of the lattice structure with a BCC base cell made of
stainless steel 316L. The specimens have been manufactured by selective laser melting
technology, and the mechanical properties of the stainless steel 316L have been determined
via the tensile test of a specially designed multi-strut specimen. Additionally, a bilinear
elastoplastic material model with isotropic hardening has been defined. During the
manufacturing process, due to the heat transfer phenomenon (i.e. difference in heat
transfer between different areas of the specimen), it comes to the formation of irregular
metallic particle clusters (aggregates), which leads to the deviation of size and shape of
the strut cross-section. The authors have assessed the actual diameters of the specimen
via the optical digitalization process. From these scans, two approximations of the
actual cross-section have been determined, one circular and one elliptical (both larger
than the nominal diameter). The experimental setup of the uniaxial compression test
for the lattice structures has been described in detail. The numerical FEM modeling
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approach has been based on a finite medium lattice model made from quadratic tetrahedral
continuum elements, quadratic Timoshenko beam elements, and a modified quadratic
Timoshenko beam element approach, where both stiffness and diameter in the vicinity
of the vertices have been increased. Both linear and nonlinear behavior of models under
uniaxial compression have been assessed. The implemented analytical approaches have
been based on modified Timoshenko and Euler-Bernoulli beam theories. For numerical
models with modified beam elements and analytical approaches, in addition to struts with
nominal cross-section, adjusted circular and elliptical shapes have been also studied and
compared to the experimental results. With this approach, the influence of geometrical
imperfections on the results has been considered. Lastly, the results from all approaches
have been obtained and compared for various slenderness ratio values of struts. From the
comparison of the experimental and analytical results, it has been concluded that the
Timoshenko theory with elliptical cross-section has delivered the most accurate results,
and the Euler-Bernoulli theory with adjusted circular cross-section has been the least
accurate. For the linear material behavior, the results from the FEM models have been
almost the same as the experimental ones for the smaller values of the slenderness ratio.
For the non-linear elastoplastic material behavior, the modified beam element model with
elliptical cross-section has been closest to the experimental results.
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2. Theory overview

2.1 Cellular materials
Cellular materials are present in different forms in various engineering fields and nature -
from bone interior and wood to packaging, insulation, and energy absorption applications
[10, 13]. They can be classified into stochastic cell structures (foam) or periodic cell
structures (lattice), depending on the base cell arrangement [13]. Additional categorization
into the open-celled and close-celled cellular structures can be made depending on whether
the voids are topologically connected or not [3]. The representatives of each subclass are
shown in Fig. 2.1. One of the prevailing artificial cellular materials, and of interest in
this work, are open-celled periodic lattice structures. The material properties of these
structures depend on the base cell configuration and can be customized to suit the specific
needs of various engineering fields. Additionally, they are characterized by high specific
strength and stiffness, and outstanding energy absorption capacity [11, 5, 13]. Some of
the possible base cell architectures are shown in Fig. 2.2. In this work, the focus will be
on the BCC unit cell and corresponding lattice structure.

Fig. 2.1 Categorization of the cellular structures and some representatives for each of
the subclasses. [13]
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Fig. 2.2 Some of the possible base cell architectures. [17]

2.2 Continuum micromechanics
Open-celled lattice structures can be observed and analyzed on different length scales
(macroscale, mesoscale, and microscale) that are considerably separated from each other.
For example, the macroscale can be defined as the length scale of a component made
from open-celled lattice material, the mesoscale as the length scale of the small specimen
for an experiment, and the microscale as the length scale of the base cell (material
level) [3, 14]. The focus of this work is on the continuum micromechanics, specifically
on the homogenization principles. The aim is to evaluate the relationship between the
overall mechanical response of the inhomogeneous material and the phase geometries and
arrangements on the microscale. For that, a bridging of different length scales is required.
This can be achieved through homogenization, where the behavior at the larger scale
can be obtained from the response at the smaller one, i.e. the goal is to find equivalent
homogeneous material which has the same properties as the open-celled lattice structure.
Since the structure of the observed microgeometry can be very complex, approximations
for homogenization are needed, and they can be divided into two categories. The first
one is based on the highly idealized volume elements and statistical information, which
observe the collective interactions between phases or regions. The second category is based

9



on the specific microgeometries, which observe very detailed interactions between phases
or regions on the microscale. This work specifically focuses on the Periodic Microfield
Approaches (PMAs), which belong to the latter category. Typically, PMAs are handled
numerically, with the Finite Element Method (FEM) being the most popular and effective
approach.

The PMAs are based on the assumption that the heterogeneous material can be regarded
as periodic. Through the repeating unit cell (UC), the structure of such periodic material
can be described. The overall behavior of a material is then estimated by evaluating
the UC’s response. Such volume elements need a periodic phase structure and boundary
conditions that impose periodicity. In general, countless different UCs can be chosen
from the same system. It is essential that the compatibility between neighboring UCs is
fulfilled, which means that there are no overlaps or gaps in the system – they must fit
with each other perfectly in both deformed and undeformed states.

The boundary conditions can be divided into periodicity, symmetry, and antisymmetry. Al-
though their implementation in FEM can be challenging, the periodic boundary conditions
(PBCs) are the most general and appropriate, because they can deal with any possible
deformation of the UC, and that is why they are implemented in this work. For PBCs to
be implemented, the UC can only have paired faces, which are always parallel, and of the
same size, shape, and arrangement. Additionally, these paired faces are meshed in the
same way, i.e. they have the same number of nodes at the same positions (homologous
nodes). If these requirements are fulfilled, the periodicity can be imposed through the
series of multipoint constraints (linear equations) between the nodes’ DOFs.

Two methods can be used to subject the UCs to specific loads - the asymptotic ho-
mogenization and the method of macroscopic degrees of freedom. The latter is based
on the usage of the master nodes and slave regions defined on the UC boundary. The
displacements of slave nodes and regions are fully controlled by the displacements of
the master nodes and their corresponding regions. Concentrated forces or displacements
are applied on the master nodes, which are then transferred to the enslaved regions via
multi-point constraints. This method allows a more straightforward estimation of the
reaction forces in the system since all reaction forces of coupled degrees of freedom (DOFs)
will be summed on the corresponding master node.

10



A common notation system of the master and slave nodes and regions for a cubic three-
dimensional (3D) UC is shown in Fig. 2.3. The lettering of W, E, S, and N corresponds
to the four cardinal directions, i.e. N - North, S - South, W - West, and E - East. The
remaining two faces denote T - Top and B - Bottom. The nodes SEB, NWB, SWT,
and SWB are master nodes, with corresponding master regions S, W, B, SB, WB, and
SW. The remaining four nodes SET, NET, NWT, and NEB are slave nodes, which are
constrained to the displacements of the master nodes. The remaining regions N, E, T,
NT, NB, NW, NE, SE, EB, ET, ST, and WT are slave regions.

Fig. 2.3 The notation system for the master nodes and regions, as well as the slave
nodes and regions of a 3D cubic UC. The lettering of W, E, S, and N corresponds to the
four cardinal directions, i.e. N - North, S - South, W - West, and E - East. The remaining
two faces denote T - Top and B - Bottom. [3]

2.2.1 Periodic boundary conditions

In Fig. 2.4, an example of a two-dimensional (2D) rectangular UC with applied PBCs
is shown. The nodes NW and SE are master nodes, with corresponding master regions
S and W. Node SW is the anchor node (i.e. it is fixed), and NE is a slave node, with
corresponding slave regions E and N. The shift vectors in the undeformed (c1|2) and
deformed (ĉ1|2) states, that connect the paired homologous nodes, and the local coordinate
system on each of the paired faces, with coordinates of the paired homologous nodes s̃1|2,
are defined.
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Fig. 2.4 Sketch of the PBCs applied to a 2D rectangular UC. The notation system
corresponds to Fig. 2.3, with the SW master node as the anchor. The ck and ĉk represent
shift vectors between the pairs of homologous nodes in the undeformed and deformed
state respectively. The s̃k are coordinates of the paired homologous nodes in the local
coordinate system on each of the paired faces. [3]

For this special case, and considering uSW = 0 (anchor node), the PBCs can be formulated
via equations

uN(s̃1) = uS(s̃1) + uNW, (2.1)

uE(s̃2) = uW(s̃2) + uSE, (2.2)

uNE = uNW + uSE, (2.3)

where u are the displacement vectors of corresponding nodes. The same concept can
be analogously extended to a three-dimensional (3D) UC model. These equations are
implemented in FEM packages via multipoint constraints. Although the implementation
of PBCs is exceptionally advantageous regarding the loading possibilities of the UC, there
is an increased pre-processing and computational effort.

The rotational DOFs of beam elements must be coupled appropriately to maintain
periodicity and to avoid the appearance of ”hinges”.
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2.2.2 Effective Young’s modulus Ẽ

For the rectangular or hexahedral UCs aligned with the coordinate system axes, in the
small strain regime, the determination of averaged stresses is simplified and the required
equation reads as

σ̃ = FR

A
, (2.4)

with the reaction (or applied) forces FR in the master nodes and the area of the UC faces
A. The averaged strain ε̃ reads as

ε̃ = u

l
, (2.5)

with the displacement in the deformation direction of the master node u, and the corre-
sponding length of edge l of the UC. For the uniaxial stress load cases, where the stress
component in only one direction is different from zero, Hooke’s law is simplified, and from
it, the equation for effective Young’s modulus reads as

Ẽ = σ̃

ε̃
. (2.6)

2.2.3 Effective bulk modulus K̃

The effective bulk modulus K̃ is determined from the hydrostatic load case. Under
the hydrostatic load, the specimen experiences uniform stresses from all directions, e.g.
condition as if it were submerged under water (for hydrostatic compressive load case).
The corresponding stress tensor is a diagonal tensor, and its components have equal values
(i.e. only normal stresses are different from zero, and are equal to each other). For a
material with a cubic material symmetry, the same is true for the strain tensor. This type
of loading only causes a volume change, but no change in shape (distortion). The bulk
modulus K relates volumetric strain εvol to the mean stress σm [15]. The mean stress is
defined as

σ̃m = 1
3

3∑
i=1

σ̃ii = σ̃xx + σ̃yy + σ̃zz

3 , (2.7)

with σ̃ii obtained from Eq.(2.4).

13



The correct reaction forces at the corresponding master nodes have to be chosen. For σ̃xx,
a reaction force in the x-direction at the SEB master node, for σ̃yy, a reaction force in the
y-direction at the NWB master node, and for σ̃zz, a reaction force in the z-direction at
the SWT master node. The equation for volumetric strain reads

ε̃vol =
3∑

i=1
ε̃ii = ε̃xx + ε̃yy + ε̃zz, (2.8)

where, for a material with cubic symmetry, ε̃xx = ε̃yy = ε̃zz, which are obtained analogous
to Eq.(2.5). Finally, the bulk modulus value is obtained from

K̃ = σ̃m

ε̃vol
. (2.9)

2.2.4 Effective shear modulus M̃

The effective shear modulus M̃ is obtained from the simple shear load case, where all
normal stress components are zero, and only one shear stress component in principal
material coordinates is different from zero. The requirements for this load case are that
the opposing faces must remain parallel throughout the deformation and that there is
displacement only in the deformation direction. The equation for the corresponding
averaged shear stress reads

τ̃ = FR

A
, (2.10)

with the reaction (or applied) forces FR in the master nodes and the area of the UC
faces A. For this specific case (simple shear in the x-y plane), the reaction force in the
y-direction at the SEB master node is required. The shear angle is determined via the
displacement of the master node and the undeformed length of the UC’s corresponding
edge. For the deformation in the y-direction observed in the x-y plane, the equation reads

γ̃xy = uy

lx
, (2.11)

with uy as the displacement of the master node in the y-direction, and lx as the undeformed
length of the corresponding edge.
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Finally, the effective shear modulus can be determined via the effective shear stress and
shear angle, and its equation reads

M̃ = τ̃xy

γ̃xy

. (2.12)

2.2.5 Effective shear modulus G̃

The effective shear modulus G̃ is determined from the 45° shear load case, which corre-
sponds to simple or pure shear related to the coordinate system which has been rotated by
45° around the out-of-plane axis (e.g. around the z-axis for the shear in the x-y plane). It
consists of a change in shape without shear in principal material coordinates (i.e. normal
stresses that don’t involve volume change) [14]. Such load case has a stress tensor form

σ̃ =

(|||(
σ̃xx 0 0
0 σ̃yy 0
0 0 0

)|||) , (2.13)

and strain tensor form

ε̃ =

(|||(
ε̃xx 0 0
0 ε̃yy 0
0 0 0

)|||) , (2.14)

where ε̃yy = −ε̃xx = ε̃, and σ̃yy = −σ̃xx = σ̃. These values are determined in the same
manner as in the previous cases.

To obtain the desired pure or simple shear state, the stress and strain tensors must be
rotated by 45° around the z-axis in the positive direction. The transformation matrix
with form

Qz =

(|||(
cos(ϕ) sin(ϕ) 0

−sin(ϕ) cos(ϕ) 0
0 0 1

)|||) (2.15)

is implemented, with ϕ = 45°.
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The transformation equation for the stress tensor reads

σ̃
′ = Qz · σ̃ · Qz

T, (2.16)

and an analogous one is used for the strain tensor. After the transformation, the stress
tensor

σ̃
′ =

(|||(
0 σ̃ 0
σ̃ 0 0
0 0 0

)|||) , (2.17)

and strain tensor

ε̃
′ =

(|||(
0 ε̃ 0
ε̃ 0 0
0 0 0

)|||) (2.18)

forms are obtained. The required effective shear modulus G̃ is obtained via

G̃ = σ̃

2ε̃
= −σ̃xx

−2ε̃xx

= σ̃yy

2ε̃yy

. (2.19)

For the isotropic material behavior, the moduli G̃ and M̃ are equal.

Suppose a general stress tensor is decomposed into its pressure and deviatoric components,
and likewise the strain one into the volume change and strain deviator. In that case, the
modulus M̃ relates the non-diagonal (”shear”) components of deviatoric stress and strain
contributions, whereas the modulus G̃ relates the diagonal (”normal”) components of these
contributions [14]. As previously mentioned, the bulk modulus K̃ relates volume change
and pressure contributions. This decoupling allows the implementation of various loading
scenarios where either each of the individual moduli is targeted, or some combination of
them can be ”activated” [14].
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2.2.6 Effective elasticity tensor

The BCC lattice UC shows cubic material symmetry and to obtain the effective elasticity
tensor of such material, three independent material parameters are required [15, 14]. Many
different ones can be chosen, but in this work, the effective bulk modulus K̃, effective
shear modulus M̃ , and effective shear modulus G̃ are selected.

For a material with cubic symmetry and K, M , and G as chosen parameters, Hooke’s law
in the Voigt-Nye notation can be written as

(|||||||||||||(

σxx

σyy

σzz

τxz

τyz

τxy

)|||||||||||||)
=

(|||||||||||||(

K + 4G
3 K − 2G

3 K − 2G
3 0 0 0

K − 2G
3 K + 4G

3 K − 2G
3 0 0 0

K − 2G
3 K − 2G

3 K + 4G
3 0 0 0

0 0 0 M 0 0
0 0 0 0 M 0
0 0 0 0 0 M

)|||||||||||||)

(|||||||||||||(

εxx

εyy

εzz

γxz

γyz

γxy

)|||||||||||||)
. (2.20)

2.3 Finite element method
The Finite Element Method is a numerical method for solving partial differential equations
(PDEs), which can handle complex geometries and loading cases, and is applicable in
different fields of physics and engineering. Different software packages are available on
the market, and the one used in this work is Abaqus/Standard 2023 (Dassault Systèmes
Simulia Corp., Johnston, Rhode Island, United States). In [1], detailed information about
various elements, constraints, and the FEM itself is given. A variety of finite elements
can be used in modeling, and their different properties are generally influenced by the
type, degrees of freedom, number of nodes, integration, and formulation. This study will
employ continuum (solid) and beam elements.

Continuum elements are the most used finite elements because of their versatility. They
can be used to form complex geometries and support many different loads. These elements
have only translational DOFs on nodes and can have linear or quadratic interpolation.
Their shapes can range from quadrilateral and triangular for 2D and hexahedral to
tetrahedral for 3D. Hexahedral elements should be the most effective, mainly if they
are rectangular because they have a high accuracy at a lower computational cost. The
results from the linear tetrahedral elements are not as accurate, especially in the elasticity
problems, since they are overly stiff. However, these elements are especially suitable for
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complex geometries because the lower effort for meshing is required, in comparison to the
hex elements. Alternatively, implementing second-order tetragonal elements can improve
the accuracy of the results.

Beams are structural elements that possess translational and rotational DOFs on nodes.
Based on the assumption that the dimensions along the axial direction of the beam are
substantially larger than the proportions of the cross-section, the beam is reduced from a
3D structure to a ”one-dimensional” line element. The cross-section and orientation of
the beam need to be defined for the computations. The beam can be formulated with
Euler-Bernoulli or Timoshenko beam theory. In the former case, the beam cross-section is
always assumed to remain plane and perpendicular to the beam axis, thus ignoring the
influence of transverse shear deformations. In the Timoshenko shear-flexible formulation,
the cross-section is also assumed to be plane but does not have to be perpendicular to the
axis. In this type of element, only the stress component along the axis, transverse shear
stress, and shear stress caused by torsion in 3D are evaluated. The transverse shear stress
does not contribute to plasticity in the beam elements [1]. The most significant influence
of the shear deformation can be seen in thick beams. For the slender ones, this influence
is almost insignificant [1]. The results of a beam element in post-processing are always
shown in its local orientation. In general, this type of element is beneficial because of its
simplistic structure, but it is not suitable for every model.

Constraints are needed to model the kinematic relations. The one used in this work is the
”equation” multi-point constraint (MPC) that creates relations between specific DOFs
of the defined regions through linear equations. It introduces the constraint forces at
coupled DOFs, which are considered to be external but do not appear in the reaction
force output. More detailed information regarding its functioning and implementation
can be found in [1].

2.4 Yield surface
The yield surface is a graphical interpretation of the plastic flow criteria, which defines
the material’s elasticity limit, i.e. onset of yielding, under any possible stress state. For
an isotropic material, it is usually visualized in terms of principal stresses (σ1, σ2, and
σ3), or invariants of stress tensor (I1, I2, and I3). If the stress state is inside the surface,
the material behavior is elastic, and if it is exactly at the boundary, yielding occurs.
Otherwise, it cannot exist, since it is not allowed to be on the outside of the surface. By
incorporating hardening laws, the surface can expand or move with increasing loads after
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the initial yield point is reached, if the plastic deformation further evolves [15, 22, 18].

Some of the most common approaches are Tresca (maximum shear stress) and von Mises
(J2) yield criteria. The two-dimensional (2D) representations of their respective yield
surface for a plane stress state (σ3 = 0) and a general stress state in the deviatoric plane
for an isotropic material are shown in Fig. 2.5. The deviatoric plane is defined as a view
in the direction of the pure hydrostatic state (i.e., σ1 = σ2 = σ3), which doesn’t carry
any shear stresses, and thus doesn’t have any influence on the onset of yielding for the J2

and Tresca criteria. Everything outside of this plane are hydrostatic contributions, while
everything inside are deviatoric ones, which can activate the yield criteria. The Tresca
yield surface is a hexagon in the 2D representation and a regular hexagon in the deviatoric
plane, whereas the von Mises yield surface is an ellipse in the 2D representation and a circle
in the deviatoric plane. The biggest difference between the two is in the pure shear stress
state. Since this is an isotropic material, it doesn’t matter how the stress state is oriented
with respect to the material principal axis. This results in symmetric surfaces, where the
onset of tensile and compressive yielding is the same. For an anisotropic material, there is
a direction-dependent plastic behavior.

Fig. 2.5 The 2D representations of an isotropic material’s Tresca and von Mises yield
surface for a plane stress state (σ3 = 0) (left) and a general stress state in the deviatoric
plane (right). The yield stress σY, and principal stresses σ1, σ2, and σ3 are shown. [18]
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3. Unit cell model

In this section, detailed information about geometry, materials, and modeling approaches
of the BCC lattice UC model used in this work is given. The nomenclature of the master
nodes and regions, as well as the slave nodes and regions of the UC, is based on Fig. 2.3
discussed in chapter 2. Different load cases, both force and displacement-controlled, are
implemented throughout this work via the method of macroscopic degrees of freedom.
The finite element analysis is performed under the assumption of geometric linearity. The
exact configuration of applied macroscopic BCs for individual load cases is given in further
sections of this work.

The modeled UC has 4 x 4 x 4 mm dimensions with a strut diameter of 0.6 mm. It is
modeled once with the quadratic tetrahedral (C3D10) continuum elements (Fig. 3.1) and
once with the linear Timoshenko (shear flexible) beam elements in space (B31) (Fig. 3.2).
The solid element model has 45 664 elements in total, with 12 elements along the diameter
of the strut, whereas the beam model has 96 elements in total, with 12 elements along each
strut. For the solid element model, the second-order tetragonal elements are implemented,
since they are more accurate than the first-order ones, and also allow easier meshing of
complex geometries (in comparison to the hex elements). Regarding the number of beam
section points in the circular cross-section, the analyses with both default number (3
points radially, and 8 circumferentially - 17 in total) and increased number of section
points (25 points radially and 60 points circumferentially - 1441 in total) are done.

The beam model was initially modeled to be larger (10 x 10 x 10 mm), and it had to be
adjusted for the results to be comparable. To achieve this adjustment, the diameter of
the strut of this model has been increased to 1.5 mm (scaled 2.5 times in comparison
to the original). This can be done for this case since there are no damage or fracture
mechanisms that are examined.

The periodic boundary conditions (PBCs) are implemented via medtool45 (Dr. Pahr
Ingenieurs e.U., Pfaffstätten, Austria), which generates the required ”equation” MPCs for
the provided UC mesh. Additionally, for the beam element model, it has to be ensured
that the rotational DOFs at the vertices of the cubic UC are constrained so that the PBCs
are fulfilled. This can also be achieved via ”equation” MPCs, by coupling the rotational
DOFs of seven nodes at vertices of the cube to the rotational DOFs of the remaining
master node.
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The results from beam models are expected to be less accurate than the ones from the solid
element models, but the required computational and pre-processing effort is considerably
lower, which is suitable for modeling complex lattice structures. These inaccuracies are
primarily caused by their inability to correctly represent the sites where struts connect
(neglecting the material aggregation and overlapping volumes at the junctions of multiple
struts in the model), which leads to lower stiffness. This is especially visible in cases
where the struts experience bending or shear deformations. The latter, in addition, do
not contribute to plasticity in the beam elements.

In Abaqus, the orientation of a beam cross-section is described using a local, right-handed
(t, n1, n2) axis system. Here, t represents the tangent to the axis of the element. The
n1 (”beam section axis”) and n2 (”normal to the beam”) are the basis vectors that
establish the local 1- and 2-directions of the cross-section, respectively [1]. The axial
stress distribution of the beam element UC is studied in a further chapter of this work. In
Fig. 3.3, the locations of the section points where these results are output are described.
In this work, they are always positioned at the outermost fiber of the cross-section under
270° with respect to the positive 1-direction of the local coordinate system (e.g. blue point
for that specific local orientation).

Fig. 3.1 UC modeled with quadratic tetrahedral (C3D10) continuum elements.
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Fig. 3.2 UC modeled with linear beam (B31) elements (rendering of beam section
active).

Fig. 3.3 The orientation of beam elements for each strut is described through the local
coordinate system (t, n1, n2). The locations of section points where the results in this
work are output are always positioned at the outermost fiber of the cross-section under
270° with respect to the positive 1-direction of the local coordinate system (e.g. blue point
for that specific local orientation).
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The bulk material is isotropic and its properties are shown in the Tab. 3.1.

The plastic behavior of the bulk material in this work is characterized through J2 (von
Mises) yield criterion and linear isotropic hardening model (i.e. bilinear plasticity), and
its uniaxial engineering stress-strain curve is shown in Fig. 3.4. To model this in Abaqus,
a set of data points from the corresponding true stress - logarithmic plastic strain diagram
(Fig. 3.5) is provided.

Fig. 3.4 Uniaxial engineering stress-strain curve of the bulk material, representing its
bilinear plastic behavior. The slope of the curve in the linear elastic region (up to the
yield stress) is defined as Young’s modulus E. The slope in the linear hardening region is
defined as tangent modulus ET

Tab. 3.1 The material properties of the isotropic bulk material used for the UC model.
Young’s modulus Poisson’s ratio Hardening modulus Yield stress

[MPa] [-] [MPa] [MPa]
100 000 0.3 1000 100
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Fig. 3.5 The Cauchy (true) stress - logarithmic (true) plastic strain curve of the bulk
material. The data points of the curve are used as the input of plastic behavior in
Abaqus. Its slope corresponds to the hardening modulus H (or plastic modulus EP in
some literature [22]).

The implemented yield stress and hardening modulus values of the bulk material are
found in Tab. 3.1. The damage initiation criterion and evolution are not modeled in this
work. For small strains, the relation

H = E · ET

E − ET
, (3.1)

between hardening modulus H, Young’s modulus E, and tangent modulus ET can be
formulated [22].

If the final defined stress value in Fig. 3.5 (in this case 1100 MPa) is exceeded, the model
will behave ideally plastic (i.e. no hardening present from that point).
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4. Elastic behavior

4.1 Introduction
In this section, the elastic properties of the BCC lattice UC are determined. This UC
shows cubic material symmetry and to obtain the elasticity tensor of such material, three
independent material parameters are required [15, 14]. Many different ones can be chosen,
but in this work, the effective bulk modulus K̃, effective shear modulus M̃ , and effective
shear modulus G̃ are selected. The parameter K̃ is obtained from the hydrostatic tension
load case, M̃ from the simple shear XY load case, and G̃ from the 45° shear XY load case
[14]. Additionally, for the solid element modeling variant, the effective Young’s moduli in
the principal material direction [100], the face diagonal [110], and the space diagonal [111]
are obtained.

4.2 Elasticity tensor computation

For a material with cubic material symmetry and effective bulk K̃, shear M̃ , and shear G̃

moduli as chosen independent material parameters, the homogenized elasticity tensor can
be computed according to Eq.(2.20). K̃ is determined via Eq.(2.9), M̃ via Eq.(2.12), and
G̃ via Eq.(2.19).

The analysis is strain-controlled, and the required load cases are achieved by applying
displacements to the master nodes (method of macroscopic degrees of freedom). The
applied macroscopic BCs on the master nodes for each of the load cases are given in
Tab. 4.1. The BCs for the uniaxial tension load case in the principal material direction
[100] are also defined here, which will be required and referenced in subsequent sections.
The applied displacement u for these models is chosen in a way that an engineering
(nominal) strain of 1% is achieved.
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Tab. 4.1 Applied macroscopic BCs to the UC for hydrostatic tension, simple shear XY,
45° shear XY, and uniaxial tension [100] load cases. The master node notation is based
on Fig. 2.3. u is the desired displacement that is applied. The symbol ”-” denotes that
the ”force-free” BC is present.

Load case Master nodes ux uy uz

Hydrostatic tension

SWB 0 0 0
SEB u 0 0
NWB 0 u 0
SWT 0 0 u

Simple shear XY

SWB 0 0 0
SEB 0 u 0
NWB 0 0 0
SWT 0 0 0

45° shear XY

SWB 0 0 0
SEB u 0 0
NWB 0 −u 0
SWT 0 0 0

Uniaxial tension [100]

SWB 0 0 0
SEB u 0 0
NWB 0 - 0
SWT 0 0 -

4.2.1 Results

The values of the effective material parameters K̃, M̃ , and G̃, for both solid and beam
element UC are shown in Tab. 4.2. The plots of deformed UC models and a description of
the deformation behavior of these loading cases are discussed in detail in further sections
of this work.

As already discussed, the accuracy of the simulation with the beam elements is lower
than with the solid elements. Because of this, the values that are obtained from the beam
model are slightly lower (the solid element UC is stiffer than the beam element one).

The influence of different deformation mechanisms of the struts on the overall stiffness
of the BCC lattice UC can be assessed from the results. Depending on the load case, in
addition to compression and tension, the struts can experience bending as well.

Tab. 4.2 Effective material parameters K̃, M̃ , and G̃ obtained from the UC models.
Eff. bulk modulus K̃ Eff. shear modulus M̃ Eff. shear modulus G̃

[MPa] [MPa] [MPa]
Beam el. UC 1360.35 1374.73 43.16
Solid el. UC 1625.89 1462.33 69.37
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From the load cases that are examined in this report, the highest bending deformation
is present for the 45° shear XY load case. Here, the struts deform the easiest, and as a
result, the UC has the lowest stiffness. This is reflected by the fact that the corresponding
effective shear modulus G̃ has the lowest value.

For the hydrostatic tension load case, the struts experience only pure tension, and the
BCC lattice UC has a high stiffness.

For the simple shear XY load case, two pairs of struts are stretched, while the other two
are compressed. In addition to this, some bending deformation is present as well. Since
the deformation is more stretch-dominated, the UC has good stiffness under this load
case.

In conclusion, the effective elasticity tensor obtained from the results of the beam model
reads

ẼBeam =

(|||||||||||||(

1417.89 1331.58 1331.58 0 0 0
1331.58 1417.89 1331.58 0 0 0
1331.58 1331.58 1417.89 0 0 0

0 0 0 1374.73 0 0
0 0 0 0 1374.73 0
0 0 0 0 0 1374.73

)|||||||||||||)
[MPa], (4.1)

and the one from the results of the solid element UC model reads

ẼSolid =

(|||||||||||||(

1718.39 1579.64 1579.64 0 0 0
1579.64 1718.39 1579.64 0 0 0
1579.64 1579.64 1718.39 0 0 0

0 0 0 1462.33 0 0
0 0 0 0 1462.33 0
0 0 0 0 0 1462.33

)|||||||||||||)
[MPa]. (4.2)
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4.3 Effective Young’s moduli in the [100], [110], and
[111] directions

In this section, the effective Young’s moduli in the principal material direction [100], the
face diagonal [110], and the space diagonal [111] of the BCC lattice UC are determined.
The effective material parameters in the [110] and [111] directions are only computed
for the solid element UC since the results are more accurate for this model. The force-
controlled FEA is implemented. As an alternative to the method presented in this work,
the elasticity tensor could be rotated to the desired direction and then inverted to obtain
the compliance tensor. From this tensor, the effective Young’s modulus value in this
specific direction can be easily obtained.

4.3.1 The [100]-direction

For the principal material direction, a uniaxial stress state along the x-direction is applied

σ̃100 =

(|||(
σ̃ 0 0
0 0 0
0 0 0

)|||) , (4.3)

with resulting strain tensor

ε̃100 =

(|||(
ε̃xx 0 0
0 ε̃yy 0
0 0 ε̃zz

)|||) , (4.4)

where ε̃yy = ε̃zz.

The BCs that are applied to the master nodes of the UC are shown in Tab. 4.3.

Computed according to Eq.(2.6), the value of the effective Young’s modulus in the [100]
direction of the solid element UC is Ẽ100 = 204.83 MPa, and of the beam element one
EB100 = 128.11 MPa.

A relatively low values of the effective modulus are obtained for this load case, due to
the strong bending deformation of the struts. The bending deformation here is lower
compared to the 45° shear load case.
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Tab. 4.3 The macroscopic BCs that are applied to the UC to obtain the effective
Young’s modulus in the material direction [100]. The parameter F is the desired force
that is applied.

Load case Master nodes ux uy uz Fx Fy Fz

[100] direction

SWB 0 0 0 - - -
SEB - 0 0 F - -
NWB 0 - 0 - free -
SWT 0 0 - - - free

4.3.2 The [110]-direction

The stress tensor for the uniaxial tension load case in the [110] direction, where the
x-direction is aligned with the face diagonal, read as

σ̃110 =

(|||(
σ̃ 0 0
0 0 0
0 0 0

)|||) , (4.5)

with resulting strain tensor

ε̃110 =

(|||(
ε̃xx 0 0
0 ε̃yy 0
0 0 ε̃zz

)|||) . (4.6)

By rotating the stress and strain tensor by 45° around the z-axis in the negative direction,
analogous to Eq.(2.16), they are returned to the principal material directions, and the
stress tensor form reads as

σ̃110
′ =

(|||(
σ̃

′
σ̃

′ 0
σ̃

′
σ̃

′ 0
0 0 0

)|||) , (4.7)

with resulting strain tensor
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ε̃110
′ =

(|||(
ε̃

′
xx ε̃

′
xy 0

ε̃
′
xy ε̃

′
yy 0

0 0 ε̃
′
zz

)|||) , (4.8)

where ε̃
′
xx = ε̃

′
yy.

In conclusion, to obtain the effective modulus in the face diagonal direction [110], the
two-dimensional stress state

σ̃110|A =

(|||(
σ̃ σ̃R 0
σ̃ σ̃ 0
0 0 0

)|||) , (4.9)

should be applied to the UC, i.e. the equal loads in both x and y-directions introduced
to the SEB and NWB master nodes in the x-y plane (σ̃R = σ̃). To avoid rigid body
rotations, and achieve this desired load state, the displacement of the SEB node in the
y-direction is coupled to the displacement of the NWB in the x-direction. This coupling
(uy|SEB = ux|NWB) is possible because of the cubic material symmetry and the cubic UC,
and it is achieved via the equation MPC, which introduces the constraint forces at coupled
DOFs (σ̃R). These constraint forces are considered to be external but do not appear in
the reaction force output [1]. The applied macroscopic BCs for this load case are shown
in Tab. 4.4. Afterward, the stress and strain tensor are rotated by 45° around the z-axis
in the positive direction according to Eq.(2.16). The same transformation matrix Qz

(Eq.(2.15)), previously used to obtain the effective shear modulus G̃ is implemented here.

Finally, computed according to Eq.(2.6), the value of the effective Young’s modulus in the
[110] direction of the solid element UC is Ẽ110 = 761.25 MPa.

Tab. 4.4 The macroscopic BCs that are applied to the UC to obtain the effective
Young’s modulus in the face diagonal direction [110]. The parameter F is the desired force
that is applied.

Load case Master nodes ux uy uz Fx Fy Fz

[110] direction

SWB 0 0 0 - - -
SEB - = ux|NWB 0 F - -
NWB - - 0 F F -
SWT 0 0 - - - free
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4.3.3 The [111]-direction

The stress tensor for the uniaxial tension load case in the [111] direction of the UC with
the cubic material symmetry, where the z-direction is aligned with the space diagonal,
while the x and y-axes point towards the corners of the ”hexagon”, reads as

σ̃111 =

(|||(
0 0 0
0 0 0
0 0 σ̃

)|||) , (4.10)

with resulting strain tensor

ε̃111 =

(|||(
ε̃xx 0 0
0 ε̃yy 0
0 0 ε̃zz

)|||) , (4.11)

where ε̃xx = ε̃yy.

The stress and strain tensor have to be rotated three times to return to the principal
material directions. First rotation by 45° around the z-axis in the positive direction, then
rotation by ≈ 54.74° around the y-axis in the negative direction, and finally rotation
by 45° around the z-axis in the negative direction. The transformation matrix for the
rotation around the z-axis, Qz, is already defined in Eq.(2.15). The transformation matrix
for the rotation around the y-axis reads as

Qy =

(|||(
cos(ϕ) 0 −sin(ϕ)

0 1 0
sin(ϕ) 0 cos(ϕ)

)|||) . (4.12)

The obtained stress form after this transformation sequence reads as

σ̃111
′ =

(|||(
σ̃

′
σ̃

′
σ̃

′

σ̃
′

σ̃
′

σ̃
′

σ̃
′

σ̃
′

σ̃
′

)|||) , (4.13)
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with resulting strain tensor

ε̃111 =

(|||(
ε̃

′
xx ε̃

′
xy ε̃

′
xz

ε̃
′
xy ε̃

′
yy ε̃

′
yz

ε̃
′
xz ε̃

′
yz ε̃

′
zz

)|||) , (4.14)

where all normal strains ε̃ii are equal to each other, and all shear strains ε̃ij are equal to
each other.

In conclusion, to obtain the effective Young’s modulus in the space diagonal direction, the
stress state

σ̃111|A =

(|||(
σ̃ σ̃R σ̃R

σ̃ σ̃ σ̃R

σ̃ σ̃ σ̃

)|||) , (4.15)

should be applied to the UC, i.e. the equal loads in all three directions (x, y, and z)
introduced to the master nodes SEB, NWB, and SWT (σ̃R = σ̃). To avoid rigid body
rotations and obtain the desired load case, the displacement of the SEB master node in
the y-direction is coupled to the displacement of the NWB master node in the x-direction,
and its displacement in the z-direction is coupled to the displacement of the SWT master
node in the x-direction. The displacement of the NWB master node in the z-direction is
coupled to the displacement of the SWT master node in the y-direction. These couplings
(uy|SEB = ux|NWB, uz|SEB = ux|SWT, and uz|NWB = uy|SWT) are possible because of the cubic
material symmetry and the cubic UC, and they are implemented via the equation MPC,
which introduces the constraint forces at coupled DOFs (σ̃R). The applied macroscopic
BCs for this load case are shown in Tab. 4.5.

Tab. 4.5 The macroscopic BCs that are applied to the UC to obtain the effective
Young’s modulus in the space diagonal direction [111]. The parameter F is the desired
force that is applied.

Load case Master nodes ux uy uz Fx Fy Fz

[111] direction

SWB 0 0 0 - - -
SEB - = ux|NWB = ux|SWT F - -
NWB - - = uy|SWT F F -
SWT - - - F F F

32



Afterward, the stress and strain tensor are rotated in the following sequence - rotation
by 45° around the z-axis in the positive direction, then rotation by ≈ 54.74° around
the y-axis in the positive direction, and finally rotation by 45° around the z-axis in the
negative direction. The final transformation matrix is achieved by multiplying the matrices
corresponding to the rotation sequence

Q111 = Qz/−45 · Qy/54.74 · Qz/45 =

(|||(
0.7887 −0.2113 −0.5774

−0.2113 0.7887 −0.5774
0.5774 0.5774 0.5774

)|||) . (4.16)

The equation for the transformation of the stress and strain tensor is analogous to Eq.(2.16).

Finally, computed according to Eq.(2.6), the value of the effective Young’s modulus in the
space diagonal direction [111] of the solid element UC is Ẽ111 = 7975.26 MPa.

4.3.4 Results

The values of effective Young’s moduli in the [100], [110], and [111] directions of the solid
element UC, and the one in the [100] direction of the beam element one are shown in
Tab. 4.6.

For cubic materials, Young’s moduli along the [100] and [111] directions represent extreme
values (minimum and maximum) [12]. In this case, the [100] one represents the minimum,
the [111] one is the maximum, whereas the [110] effective Young’s modulus lies between
them.

The difference in the values between the beam element and solid element UC models is
due to already discussed inaccuracies of the beam element modeling approach.

Tab. 4.6 The values of the effective Young’s moduli in the [100], [110], and [111]
directions of the solid element UC, and of the beam element UC in the principal material
direction EB100.

Ẽ100 [MPa] Ẽ110 [MPa] Ẽ111 [MPa] EB100 [MPa]
204.83 761.25 7975.26 128.11
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5. Initial yield surface

5.1 Introduction
In this section, the two-dimensional (2D) initial yield surface representations of a solid
element Body-Centered Cubic lattice unit cell are determined under five different sets of
load cases in Abaqus/Standard. The applied stresses for all load cases are oriented with
the global coordinate system of the UC. The differences between the results are discussed
in detail, and a plot containing all representations is shown. Additionally, the initial yield
stress values for the hydrostatic tension, simple shear XY, and 45° shear XY load cases,
as well as for the uniaxial tension in the principal [100], face diagonal [110], and space
diagonal [111] directions are determined. The geometric linearity is assumed, and the
analysis is force-controlled.

5.2 Implementation
Since not all materials have a sharply pronounced yield point in a stress-strain diagram,
usually an offset yield stress at 0.2% or 1% plastic strain is taken (Rp0.2 or Rp1). These
values are typically obtained from the uniaxial load cases, where only one stress component
is different than zero. In this work, due to the variety of studied load cases and cubic
material symmetry of the UC, which can lead to the presence of complex stress states,
the onset of yielding is taken as the point where the ratio of plastically dissipated energy
(ALLPD) and internal energy (ALLIE) reaches the value of 1%. The internal energy is
a sum of plastically dissipated energy, recoverable elastic strain energy (ALLSE), and
artificial strain energy (ALLAE). The analysis is force-controlled, and the applied stresses
(according to Eq.(2.4)) at the increment when the condition for the onset of yielding is
fulfilled are taken as the yield onset for that specific load case. Five different sets of load
cases are considered, and the corresponding applied stresses are oriented with the global
coordinate system of the UC.
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The applied macroscopic boundary conditions for the hydrostatic tension, simple shear
XY, 45° shear XY, and uniaxial tension in the [100], [110], and [111] directions are shown
in Tab. 5.1. To obtain the initial yield stress values for the uniaxial tension in the [110]
and [111] directions, the same stress tensor rotations described in subsection 4.3.2 and
subsection 4.3.3, must be performed here as well. The ”equation” MPCs are implemented
for both these load cases, as discussed in their respective sections.

Tab. 5.1 The macroscopic BCs for the hydrostatic tension, simple shear XY, 45° shear
XY, and uniaxial tension in the [100], [110], and [111] directions. The master node notation
is based on Fig. 2.3. The ”equation” MPCs are applied for the uniaxial tension in the
[110], and [111] directions.

Load case Master nodes ux uy uz Fx Fy Fz

Hydrostatic tension

SWB 0 0 0 - - -
SEB - 0 0 F - -
NWB 0 - 0 - F -
SWT 0 0 - - - F

Simple shear XY

SWB 0 0 0 - - -
SEB 0 - 0 - F -
NWB 0 0 0 - - -
SWT 0 0 0 - - -

45° shear XY

SWB 0 0 0 - - -
SEB - 0 0 F - -
NWB 0 - 0 - −F -
SWT 0 0 0 - - -

Uniaxial tension [100]

SWB 0 0 0 - - -
SEB - 0 0 F - -
NWB 0 - 0 - free -
SWT 0 0 - - - free

Uniaxial tension [110]

SWB 0 0 0 - - -
SEB - = ux|NWB 0 F - -
NWB - - 0 F F -
SWT 0 0 - - - free

Uniaxial tension [111]

SWB 0 0 0 - - -
SEB - = ux|NWB = ux|SWT F - -
NWB - - = uy|SWT F F -
SWT - - - F F F
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For the first initial yield surface representation (model I), a plane stress state is assumed,
where the out-of-plane normal stress (σzz = 0) and in-plane shear stress (σxy = 0) are zero,
while the in-plane normal ones (σxx and σyy) are varied. The load cases are applied in a
way that the ratio of σyy and σxx is constant and equal to the parameter k (i.e., σyy

σxx
= k).

In total 21 points are determined between σxx = σyy and σxx = −σyy points. The rest
of the surface can be mirrored from here since it is symmetric due to the cubic material
symmetry, and restriction to the plane stress states. The parameter k takes values from 1
to -1, with increments of 0.1 to cover all required load cases. The exact macroscopic BCs
that are applied are shown in Tab. 5.2.

For the second set of load cases (model II), the out-of-plane normal stress is constant
and equal to one-fourth of the yield stress obtained from the uniaxial tension load case in
the principal material direction (σzz = 0.25 · σY100 = 0.11125 MPa), while the in-plane
ones (σxx and σyy) are varied under the assumption that their ratios are constant (i.e.,
σyy

σxx
= k and σxx

σyy
= m). The load cases have to be implemented in two steps, where the

first step ensures that the σzz is at the required level for the application of the in-plane
stresses, i.e. that it will remain at this value throughout the second step. Since the
plane-stress condition is not fulfilled anymore, the complete symmetry of the yield surface
is not ensured, and 41 points between σxx = σyy and −σxx = −σyy points are determined,
and afterward mirrored to obtain the complete surface. To cover all required load cases,
two different parameters k and m are defined and varied. For the points from 1 to 21,
only the parameter k is considered, and it takes values from 1 to -1, with increments of
0.1. For the load cases for points from 21 to 41, only the parameter m is considered, and
it takes the values from -1 to 1, with increments of 0.1. The exact macroscopic BCs that
are applied are shown in Tab. 5.2.

For the third set of load cases (model III), the out-of-plane normal stress is constant and
equal to one-half of the yield stress obtained from the uniaxial tension load case in the
principal material direction (σzz = 0.5 · σY100 = 0.2225 MPa), while the in-plane ones (σxx

and σyy) are varied under the assumption that their ratios are constant (i.e., σyy

σxx
= k and

σxx

σyy
= m). The rest is the same as for the model II. The exact macroscopic BCs that are

applied are shown in Tab. 5.2.
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The fourth set of load cases (model IV) considers the out-of-plane normal stress to be
zero (σzz = 0), and the in-plane shear stress to be constant and equal to one-half of
the yield stress from the uniaxial tension load case in the principal material direction
(σxy = 0.5 · σY100 = 0.2225 MPa). The in-plane normal stresses (σxx and σyy) are varied
under the assumption that their ratios are constant (i.e., σyy

σxx
= k and σxx

σyy
= m). The load

cases have to be implemented in two steps, where the first step ensures that the σxy is at
the required level for the application of the σxx and σyy, i.e. that it will remain at this
value throughout the second step. Due to the presence of the shear stress component, the
complete symmetry of the yield surface is not ensured, and 41 points between σxx = σyy

and −σxx = −σyy points are determined, and afterward mirrored to obtain the complete
surface. To cover all required load cases, two different parameters k and m are defined
and varied in the same way as for model II. The exact macroscopic BCs that are applied
are shown in Tab. 5.2.

The fifth set of load cases (model V) considers the out-of-plane normal stress to be zero
(σzz = 0), and the in-plane shear stress to be constant and equal to one-half of the
yield stress from the simple shear XY load case (σxy = 0.5 · σYxy = 2.4675 MPa). The
in-plane normal stresses (σxx and σyy) are varied under the assumption that their ratios
are constant (i.e., σyy

σxx
= k and σxx

σyy
= m). The rest is the same as for the model IV. The

exact macroscopic BCs that are applied are shown in Tab. 5.2.
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Tab. 5.2 The macroscopic BCs that are applied to determine the yield surface represen-
tations from models I to V. The master node notation is based on Fig. 2.3. For points 1 -
21, only the parameter k is considered, and it takes values from 1 to -1, with increments
of 0.1. For points 21 - 41, corresponding to the BCs in parentheses, only the parameter m
is considered and it takes the values from -1 to 1, with increments of 0.1.
Model Step Load case Master nodes ux uy uz Fx Fy Fz

I Step 1.

σyy

σxx
= k

σzz = 0
σxy = 0

SWB 0 0 0 - - -
SEB - 0 0 F - -
NWB 0 - 0 - k·F -
SWT 0 0 - - - free

II

Step 1. σzz = 0.25 · σY100

SWB 0 0 0 - - -
SEB - 0 0 free - -
NWB 0 - 0 - free -
SWT 0 0 - - - FY/4

Step 2.
σzz = 0.25 · σY100
σxy = 0
σyy

σxx
= k | (σxx

σyy
= m)

SWB 0 0 0 - - -
SEB - 0 0 F | (m·F) - -
NWB 0 - 0 - k·F | (−F) -
SWT 0 0 - - - FY/4

III

Step 1. σzz = 0.5 · σY100

SWB 0 0 0 - - -
SEB - 0 0 free - -
NWB 0 - 0 - free -
SWT 0 0 - - - FY/2

Step 2.
σzz = 0.5 · σY100
σxy = 0
σyy

σxx
= k | (σxx

σyy
= m)

SWB 0 0 0 - - -
SEB - 0 0 F | (m·F) - -
NWB 0 - 0 - k·F | (−F) -
SWT 0 0 - - - FY/2

IV

Step 1. σxy = 0.5 · σY100

SWB 0 0 0 - - -
SEB - - 0 free FY/2 -
NWB 0 - 0 - free -
SWT 0 0 - - - free

Step 2.
σxy = 0.5 · σY100
σzz = 0
σyy

σxx
= k | (σxx

σyy
= m)

SWB 0 0 0 - - -
SEB - - 0 F | (m·F) FY/2 -
NWB 0 - 0 - k·F | (−F) -
SWT 0 0 - - - free

V

Step 1. σxy = 0.5 · σYxy

SWB 0 0 0 - - -
SEB - - 0 free FYxy/2 -
NWB 0 - 0 - free -
SWT 0 0 - - - free

Step 2.
σxy = 0.5 · σYxy

σzz = 0
σyy

σxx
= k | (σxx

σyy
= m)

SWB 0 0 0 - - -
SEB - - 0 F | (m·F) FYxy/2 -
NWB 0 - 0 - k·F | (−F) -
SWT 0 0 - - - free
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5.3 Results
The obtained initial yield surface representations of the BCC lattice UC for the defined
sets of load cases (models I, II, III, IV, and V) are shown and discussed in this section.
The initial yield stress values that are obtained for the hydrostatic tension, simple shear
XY, 45° shear XY, and uniaxial tension in the [100], [110], and [111] directions are shown
in Tab. 5.3. The load cases under which the struts are predominantly under tension or
compression (e.g., hydrostatic tension or simple shear XY) have higher initial yield stress
values. The ones where the bending of the struts is the dominant deformation mechanism
(e.g., uniaxial tension in the principal material direction or 45° shear XY) have lower
initial yield stress values, as the struts deform more easily. The bending deformation of
the struts is the highest under the 45° shear load case, and the corresponding σY45◦ value
is the lowest of the six load cases studied here. The plastic anisotropy can be observed, as
there are strong differences in the obtained initial yield stress values between the uniaxial
tension load cases in three different directions. Also, there are strong differences between
the values from simple shear and 45° shear load cases, which would be the same for an
isotropic material under the assumption of geometric linearity. Additionally, in that case,
hydrostatic tension load would not lead to plasticity, according to the J2 yield criterion,
as there would be no change in shape, only in volume.

The representation of the yield surface determined from the plane stress load cases (model
I), where the out-of-plane normal stress (σzz = 0) and in-plane shear stress (σxy = 0) are
zero, while the in-plane normal ones (σxx and σyy) are varied, is shown in Fig. 5.1.

From the results, it can be seen that the surface is oval-shaped. There is a slight difference
in the initial yield stress values between the biaxial tension (σY = 0.468 for σxx = σyy)
and uniaxial tension in the principal material direction load cases (σY = 0.445). Suppose
the orientation of the global coordinate system of the UC were to be changed, relative to
which the stresses are applied. In that case, the initial yield surface representation might
be different in size or shape, and these differences between the values might become more
pronounced. In all load cases for model I, the main deformation mechanism is the bending

Tab. 5.3 The initial yield stress values for the hydrostatic tension (σYhyd), simple shear
XY (σYxy), 45° shear XY (σY45◦), and uniaxial tension in the [100] (σY100), [110] (σY110),
and [111] (σY111) directions.

σYhyd [MPa] σYxy [MPa] σY45◦ [MPa] σY100 [MPa] σY110 [MPa] σY111 [MPa]
3.933 1.744 0.259 0.445 0.925 4.935
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of the struts. As previously mentioned, the highest amount of bending is present for the
45° shear XY load case (σxx = −σyy), resulting in the lowest values of initial yield stress.

Fig. 5.1 The representation of the yield surface determined from the plane stress load
cases (model I), where the out-of-plane normal stress and in-plane shear stress are zero,
while the in-plane normal ones are varied. The black circles represent the 21 points that
are determined.
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The representations of the yield surface determined from the second and third sets of
load cases (models II and III), which consider a constant out-of-plane normal stress
(σzz = 0.25 · σY100 and σzz = 0.5 · σY100), while the in-plane normal stresses are varied, are
shown in Fig. 5.2.

Fig. 5.2 The representations of the yield surface determined from the second and third
sets of load cases (models II and III). The black circles represent the 41 points that are
determined. The values for the out-of-plane normal stresses are σzz = 0.25·σY100 = 0.11125
MPa and σzz = 0.5 · σY100 = 0.2225 MPa respectively.

41



The results show that the yield surface representations are again oval-shaped, but are more
asymmetrical than the previous one (Fig. 5.1). This is understandable, as the out-of-plane
normal stress is positive for both models II and III, and thus the shape is shifted more
in the direction of the first quadrant. Since the value of σzz is larger for model III, it is
shifted further than the representation for model II. The load cases where σxx = σyy have
respectively the highest yield stresses, which are also higher compared to the same load
case from model I. This is explained by the fact that the positive out-of-plane normal
stress brings this load case closer to the hydrostatic tension one (i.e., σxx = σyy = σzz),
under which the struts experience only pure tension. In the regions where the compressive
stresses begin to dominate the load cases, the positive σzz leads to the overall lower yield
stress values compared to the yield surface representation from model I.

The representations of the yield surface determined from the fourth and fifth set of load
cases (models IV and V), which consider that the in-plane shear stress component is
constant (σxy = 0.5 · σY100 and σxy = 0.5 · σYxy), the out-of-plane normal stress to be zero,
while the in-plane normal stresses are varied, are shown in Fig. 5.3.

The results show that the surfaces are similarly shaped as the plane stress representation
from model I (Fig. 5.1), even though the applied load cases are different. Similarly, the
yield stress values obtained from the σxx = σyy and ”uniaxial tension” (σxx ̸= 0, σyy = 0)
load cases are different (i.e., σY = 0.463 MPa for σxx = σyy, and σY = 0.436 for the
”uniaxial tension” load case obtained from model IV). In comparison to the representations
from models II and III (Fig. 5.2), these representations again have a higher order of
symmetry. Overall, the presence of the constant shear stress component reduces the yield
stress values under all stress states, ”pulling” the surface inward, when compared to the
results from the model I (Fig. 5.1). The larger the value of σxy, the more pronounced the
contraction of the surface (i.e., the surface representation from model V is smaller than
the one from model IV).

The plot containing all representations (models I, II, III, IV, and V) together is shown
in Fig. 5.4. The previously discussed differences between the results of the yield surface
representations can be better observed in this plot.
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Fig. 5.3 The representations of the yield surface determined from the fourth and fifth
sets of load cases (models IV and V). The black circles represent the 41 points that are
determined. The values for the in-plane shear stresses are σxy = 0.5 · σY100 = 0.2225 MPa
and σxy = 0.5 · σYxy = 2.4675 MPa respectively.
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Fig. 5.4 The representations of the yield surface from all five load case sets (models I,
II, III, IV, and V). The stresses are oriented with the global coordinate system of the UC.
The values for the out-of-plane normal stresses are σzz = 0.25 · σY100 = 0.11125 MPa and
σzz = 0.5 · σY100 = 0.2225 MPa respectively. The values for the in-plane shear stresses are
σxy = 0.5 · σY100 = 0.2225 MPa and σxy = 0.5 · σYxy = 2.4675 MPa respectively.
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6. Elastoplastic behavior

6.1 Introduction
In this section, the elastoplastic behavior of the BCC lattice UC is studied. Here, the
results from both beam and continuum element UC models are compared side-by-side
and the differences in the resulting behavior are discussed. The UCs are loaded by single
load cases and combined load cases. The hydrostatic tension, simple shear XY, 45° shear
XY, and uniaxial tension in the [100] direction are modeled as the single load cases. The
combined approach consists of two load cases that are either applied simultaneously (single
step) or in succession (two different steps). The combinations that are implemented in
this work are combined simple shear XY and XZ, simple shear XY and hydrostatic, simple
shear XY and 45° shear XY, as well as 45° shear XY and hydrostatic load cases.

The plastic behavior of the bulk material in this work is defined in chapter 3.

The analysis is strain-controlled, and done under the assumption of geometric linearity.
An engineering strain of 3.75% is applied for the single load cases and combined load cases
in a single step. For each load case in the combined approach with two different steps, an
engineering strain of 2% is applied. The BCs that are implemented for the single load
cases are already defined in Tab. 4.1. The ones for the combined load cases are defined in
the further sections.

For the solid model, the number of 250 equal increments is chosen, because it captures
the behavior of the model more accurately compared to the 100 increments, while still
retaining a good computational effort (compared to the 500 increments). For the beam
model, 500 equal increments are used, because the accuracy of results is better, and the
computational effort is still low.
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6.2 Influence of the number of section points on the
beam model results

The beam model is modeled with two different numbers of section points - 17 and 1441.
In Figs. 6.1 to 6.4 a comparison between the obtained engineering stress-strain curves for
both beam element modeling approaches from all single load cases (hydrostatic tension,
45° shear XY, uniaxial tension [100], and simple shear XY) are shown. In all figures the
relevant effective normal and shear stress components are shown, the remaining ones are
zero.

For the single hydrostatic tension load case, shown in Fig. 6.1, the results from both beam
modeling approaches perfectly match each other. Here, the struts are under pure tension,
and the corresponding normal stress distribution over the cross-section of the beam is
uniform. Because of this, the yield stress is reached simultaneously in all regions of the
struts, and due to the bilinear plasticity of the bulk material, there is a sharp transition
into the linear elastoplastic region. The model with the default number of section points
also leads to accurate results due to this uniformity of the stress distribution throughout
the load case.

Fig. 6.1 Comparison of the engineering stress-strain curves for the single hydrostatic
tension load case for the beam models with default (17) and increased (1441) number of
section points.
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For the single 45° shear XY load case, shown in Fig. 6.2, the results from both beam
modeling approaches show notable differences. Here, the struts experience significant
bending deformation, and the model with the increased number of section points is
required to accurately capture the corresponding nonlinear stress distribution. Since the
highest stresses are present in the outermost fibers of the beam, they are the first to
yield. With increasing strain, the plastic zones grow towards the neutral axis, while the
central elastic zones are reduced, and the stress distribution becomes increasingly more
nonlinear. The isotropic hardening additionally enhances this nonlinear behavior. Due
to the very high bending deformation of the struts for this load case, the plastic zones
have presumably evolved closer to the neutral axis. The increased number of section
points can accurately capture these higher stresses, as well as the overall nonlinear stress
distribution, leading to the higher linear hardening region and smoother curve in the
nonlinear elastoplastic region compared to the default beam element model.

Fig. 6.2 Comparison of the engineering stress-strain curves for the single 45° shear XY
load case for the beam models with default (17) and increased (1441) number of section
points.
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For the single uniaxial tension load case in the principal material direction [100], shown in
Fig. 6.3, the differences between the results are present but considerably less pronounced
compared to the 45° shear XY one. This is due to the lower bending deformation of the
struts that is present here, which leads to less nonlinear stress distribution. This can be
relatively accurately captured by the default modeling approach. Still, the model with
the increased number of section points is the preferred choice.

Fig. 6.3 Comparison of the engineering stress-strain curves for the single uniaxial
tension [100] load case for the beam models with default (17) and increased (1441) number
of section points.

For the single simple shear XY load case, shown in Fig. 6.4, the dominant deformation
mechanisms of the struts are compression and tension. Because of this, the results from
both beam modeling approaches perfectly match each other. The explanation is the same
as for the single hydrostatic tension load case. Due to the very small bending deformation
that is present, there is a subtle nonlinear elastoplastic region, which is accurately captured
by both modeling approaches.
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Fig. 6.4 Comparison of the engineering stress-strain curves for the single simple shear
XY load case for the beam models with default (17) and increased (1441) number of
section points.

In conclusion, the increase in the number of section points leads to the ability to better
capture the nonlinear behavior due to bending in the elastoplastic engineering stress-strain
curve. For the load cases where the tension or compression of the struts are the main
deformation mechanisms, the results from both beam modeling approaches perfectly
match. In the following sections, all results for the beam element UC model that are
shown, are obtained from the models with the increased number of section points.
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6.3 Single load cases
In this section, the results from the models where only single load cases (hydrostatic
tension, simple shear XY, 45° shear XY, and uniaxial tension [100]) are applied, are
discussed. The BCs that are implemented here are the same ones used for the linear elastic
models in the section 4.2 (Tab. 4.1). The comparison of the deformed and undeformed
shapes for each of the modeling approaches under these load conditions is shown and
discussed.

For the beam models, in addition to the deformed figure, the axial stress (S11) distribution
at the outermost fiber (Fig. 3.3) is shown in the local orientation of the beams. The
global deformation behavior of the struts can be assessed from these results.

For the solid element models, in addition to the deformed figure, the accumulated
equivalent plastic strain (PEEQ) distribution is shown. The PEEQ is a scalar variable
that characterizes the plastic state (i.e. it is a measure of the plastic dissipated energy).
If its value is larger than zero, it means that the plastic yielding has occurred, and the
value grows as the plastic deformation ”accumulates”. The PEEQ value can either grow
or remain at the same level (if no further plastic deformation occurs), but it can never
decrease or be negative (it is related to von Mises stress which is always positive) [1, 15].
The lower limit of the PEEQ in contour plots in this work is set to the very small value of
1e-6 so that only the regions that have yielded are shown. For some load cases, the upper
limit is restricted as well, to exclude the local PEEQ concentrations, and better show the
plastic behavior of the struts.

The slopes of the engineering stress-strain curves from the UC models are determined at
certain points for each of the load cases. The ones obtained in the linear elastic regions
(i.e. K̃, M̃ , G̃, and Ẽ) are compared to the results obtained from the linear elastic FEA
at the beginning of the report. The effective tangent moduli ẼT are determined in the
linear hardening region of these engineering stress-strain curves. Finally, the effective
hardening moduli H̃ are computed according to Eq.(3.1).
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6.3.1 Hydrostatic load case

The results that are obtained for the hydrostatic tension load case are discussed in this
section. The deformed and undeformed shapes of the UC at the endpoint (engineering
strain of 3.75%) of the load case for the beam model (Fig. 6.5) and solid element model
(Fig. 6.6) are shown in corresponding figures.

Fig. 6.5 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the
local orientation of beam elements at the endpoint (engineering strain of 3.75%) of the
hydrostatic tension load case.

From the deformed figure of the beam element UC (Fig. 6.5), as well as the axial stress
(S11) distribution at the outermost fiber (Fig. 3.3) in the local orientation of beam
elements, it is concluded that the struts experience only pure tension for this load case.

The results from the solid element model show the regions of the UC that have yielded,
and it is concluded that the tips of the struts experience no yielding at the endpoint
(engineering strain of 3.75%) of this load case (Fig. 6.6). Except for the local plasticity
concentrations in the vicinity of the vertices, the central regions of the struts (light and
dark orange in Fig. 6.6) experience slightly higher plastic deformations compared to the
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rest of the UC. As the UC deforms under load, the highest constriction of the struts
occurs here, causing these regions to be the first to yield and have higher PEEQ values
at the endpoint of the load case. The yielding of the central regions for this case occurs
simultaneously since all struts experience the same deformation (pure tension).

Fig. 6.6 The deformed and undeformed (shaded) shape of the solid element model, as
well as the equivalent plastic strain (PEEQ) distribution at the endpoint (engineering
strain of 3.75%) of the hydrostatic tension load case.

The obtained engineering stress-strain curves from both modeling approaches are presented
and compared in Fig. 6.7. The relevant effective normal stress components are shown,
the remaining effective stress components are zero. Since the struts experience only pure
tension, after the value of the yield limit is reached, there is a sharp transition into the
linear elastoplastic regime.
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Fig. 6.7 The obtained engineering stress-strain curves for the hydrostatic tension load
case for the beam model (index B) and solid element model (index S).

The slope values are shown in Tab. 6.1. The effective bulk moduli K̃ values coincide
with the ones obtained from the linear elastic FEA. The effective tangent K̃T moduli,
estimated at around 2% engineering strain, and corresponding hardening K̃H moduli
values from both modeling approaches are different. It is concluded that the slopes of
the engineering stress-strain curves of these modeling approaches are different in both
elastic and elastoplastic regions. This is caused by the already discussed inaccuracies of
the beam element modeling approach. Regarding the tangent modulus, the steeper the
slope (the larger the value of the tangent modulus) in the linear elastoplastic region, the
more pronounced is the hardening effect.

Tab. 6.1 The effective bulk K̃, tangent K̃T, and hardening K̃H moduli obtained from
the engineering stress-strain curves for the hydrostatic tension load case.

Beam UC Solid UC
K̃ [MPa] lin. el. FEA 1360.35 1625.89

K̃ [MPa] from the slope 1360.34 1625.47
K̃T [MPa] at 2% engineering strain 40.41 53.93

K̃H [MPa] at 2% engineering 41.64 55.79
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6.3.2 Simple shear XY

The results that are obtained for the simple shear XY load case are discussed in this
section. The deformed and undeformed shape of the UC for the beam model at the
endpoint (engineering strain of 3.75%) of the load case (Fig. 6.8), solid element model at
2% engineering strain (Fig. 6.9) and at the endpoint (engineering strain of 3.75%) of the
load case (Fig. 6.10) are shown in corresponding figures.

Fig. 6.8 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local
orientation of beam elements at the endpoint (engineering strain of 3.75%) of the simple
shear XY load case. A significantly higher deformation scale factor is applied to the
deformed figure so that the very small bending deformation of struts is visible.

From the deformed figure of the beam element UC (Fig. 6.8), as well as the axial stress
(S11) distribution at the outermost fiber (Fig. 3.3) in the local orientation of beam
elements, the global deformation behavior of struts for this load case is assessed. A
significantly higher deformation scale factor is applied to the deformed figure so that
the very small bending deformation of struts is visible. Even though a small amount of
bending is present, the compression and tension of the struts still dominate the overall
deformation behavior (four struts are stretched, while the remaining four are compressed).

54



Fig. 6.9 The deformed and undeformed (shaded) shape of the solid element model, as
well as the equivalent plastic strain (PEEQ) distribution for the simple shear XY load
case at 2% engineering strain.

The results from the solid element model show the regions of the UC that have yielded.
At 2% engineering strain (Fig. 6.9), it can be seen that the plastic zones are localized
at the vertices of the UC. With further increase of the load to the UC, the plastic zones
nonuniformly evolve towards the central regions of the struts. At the endpoint of the load
case (3.75% engineering strain), shown in Fig. 6.10, all regions of the UC have yielded,
with the highest plasticity still localized at the vertices.

The obtained engineering stress-strain curves from both modeling approaches are presented
and compared in Fig. 6.11. The relevant effective shear stress component is shown, the
remaining effective stress components are zero.
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Fig. 6.10 The deformed and undeformed (shaded) shape of the solid element model,
as well as the equivalent plastic strain (PEEQ) distribution at the endpoint (engineering
strain of 3.75%) of the simple shear XY load case.

As already discussed, the struts are predominantly stretched or compressed, with some
bending being present. Due to this bending deformation, plastic zones in the affected
regions evolve, which causes a nonlinear relation between stress and strain in the elasto-
plastic range. The curvature of this nonlinear region in the engineering stress-strain
curve of the beam model is subtle since the corresponding bending deformation is very
small. In comparison, the nonlinear region for the solid element model is considerably
larger and extends up to around 2.5% engineering strain. This strong deviation in the
deformation behavior between the models, which is also the cause for the contrast in
the engineering stress-strain curves, is caused by the already discussed differences in the
modeling approaches.
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Fig. 6.11 The obtained engineering stress-strain curves for the simple shear XY load
case for the beam model (index B) and solid element model (index S).

The slope values are shown in Tab. 6.2. The effective shear modulus M̃ values coincide
with the ones from the linear elastic FEA. The effective tangent M̃T, and hardening M̃H

moduli from both modeling approaches are in a similar range. The M̃T for the solid UC
model is estimated in the region at around 3% engineering strain, whereas the one for the
beam model is evaluated in the region around 2% engineering strain. From the results, it
is concluded that the slopes of the engineering stress-strain curves are different for these
modeling approaches, in both elastic and elastoplastic regions. Again, the differences in
the results between the two models are caused by already discussed inaccuracies of the
beam element modeling approach.

Tab. 6.2 The effective shear M̃ , tangent M̃T, and hardening M̃H moduli obtained from
the engineering stress-strain curves for the simple shear XY load case.

Beam UC Solid UC
M̃ [MPa] lin. el. FEA 1374.73 1462.33

M̃ [MPa] from the slope 1374.16 1462.32
M̃T [MPa] at 2% (3%) eng. strain for beam (solid) model 13.62 15.19
M̃H [MPa] at 2% (3%) eng. strain for beam (solid) model 13.76 15.35
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6.3.3 45◦ shear XY

The results that are obtained for the 45° shear XY load case are discussed in this section.
The deformed and undeformed shapes of the UC at the endpoint (engineering strain of
3.75%) of the load case for the beam model (Fig. 6.12) and solid element model (Fig. 6.13)
are shown in corresponding figures.

Fig. 6.12 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local
orientation of beam elements at the endpoint (engineering strain of 3.75%) of the 45°
shear XY load case.

From the deformed figure of the beam element UC (Fig. 6.12), as well as the axial
stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local orientation of beam
elements, it is concluded that the bending of the struts is the predominant deformation
behavior.
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Fig. 6.13 The deformed and undeformed (shaded) shape of the solid element model,
as well as the equivalent plastic strain (PEEQ) distribution at the endpoint (engineering
strain of 3.75%) of the 45° shear XY load case.

The results from the solid element UC show that the plastic zones are localized at the
vertices, and uniformly evolve towards the central regions of the struts with increasing
strains. At the endpoint (engineering strain of 3.75%) of the load case, shown in Fig. 6.13,
even though the plasticity has evolved, it remains mostly localized to the vicinity of the
vertices.

The obtained engineering stress-strain curves from both modeling approaches are presented
and compared in Fig. 6.14. The relevant effective normal stress components are shown,
the remaining effective stress components are zero.

As previously discussed, the struts experience the highest bending deformation here, and
thus deform the easiest out of all assessed single load cases. This is also reflected by the
engineering stress-strain curves and their corresponding nonlinear elastoplastic regions.
The explanations for the differences in the deformation behavior between the two models,
as well as the differences in the overall engineering stress-strain curves, are the same as
the ones provided for the bending deformation of the simple shear XY load case.
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Fig. 6.14 The obtained engineering stress-strain curves for the 45° shear XY load case
for the beam model (index B) and solid element model (index S).

The slope values are shown in Tab. 6.3. The effective shear moduli G̃ values coincide
with the ones obtained from the linear elastic FEA. The effective tangent G̃T moduli,
estimated at around 2.5% engineering strain, and corresponding hardening G̃H moduli
values from models are in a similar range. From the results, it is concluded that the slopes
of the engineering stress-strain curves are different for these modeling approaches, in both
elastic and elastoplastic regions. Again, the differences between the results are caused by
the inaccuracies of the beam element UC model.

Tab. 6.3 The effective shear G̃, tangent G̃T, and hardening G̃H moduli obtained from
the 45° shear XY load case.

Beam UC Solid UC
G̃ [MPa] lin. el. FEA 43.16 69.37

G̃ [MPa] from the slope 43.15 69.37
G̃T [MPa] at 2.5% engineering strain 2.14 3.07
G̃H [MPa] at 2.5% engineering strain 2.25 3.22
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6.3.4 Uniaxial tension load case in the [100] direction

The results that are obtained for the uniaxial tension load case in the principal material
direction [100] are discussed in this section. The deformed and undeformed shapes of the
UC at the endpoint (engineering strain of 3.75%) of the load case for the beam model
(Fig. 6.15) and solid element model (Fig. 6.16) are shown in corresponding figures.

Fig. 6.15 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local
orientation of beam elements at the endpoint (engineering strain of 3.75%) of the uniaxial
tension [100] load case.

From the deformed figure of the beam element UC (Fig. 6.15), as well as the axial
stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local orientation of beam
elements, it is concluded that the bending of the struts is the predominant deformation
behavior.

The results from the solid element UC show that the plastic zones are localized at the
vertices, and uniformly evolve towards the central regions of the struts with increasing
strains. At the engineering strain of 3.75%, as shown in Fig. 6.16, even though plasticity
has evolved, it remains mostly localized to the vicinity of the vertices.
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Fig. 6.16 The deformed and undeformed (shaded) shape of the solid element model,
as well as the equivalent plastic strain (PEEQ) distribution at the endpoint (engineering
strain of 3.75%) of the uniaxial tension [100] load case.

The obtained engineering stress-strain curves from both modeling approaches are presented
and compared in Fig. 6.17. The relevant effective normal stress component is shown, the
remaining effective stress components are zero.

The results from this load case show a lot of similarities to the 45° shear XY one since the
bending of the struts is the predominant deformation mechanism in both. The differences
between the two are caused by the amount of bending deformation, which is higher for the
45° shear XY load case. The explanations for the differences in the deformation behavior
between the two modeling approaches and in the overall engineering stress-strain curves
are the same as the ones provided for the bending deformation of the previous load cases.
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Fig. 6.17 The obtained engineering stress-strain curves for the uniaxial tension [100]
load case for the beam model (index B) and solid element model (index S).

The slope values are shown in Tab. 6.4. The effective Young’s moduli Ẽ values coincide
with the ones obtained from the linear elastic FEA. The effective tangent ẼT moduli,
estimated at around 2.5% engineering strain, and the corresponding hardening H̃ moduli
values from both modeling approaches are also in a similar range. From the results, it is
concluded that the slopes of the engineering stress-strain curves are different for these
modeling approaches, in both elastic and elastoplastic regions. Again, the differences
between the results are caused by the inaccuracies that come with the beam element UC
model.

Tab. 6.4 The effective Young’s Ẽ, tangent ẼT, and hardening H̃ moduli obtained from
the engineering stress-strain curves for the uniaxial tension [100] load case.

Beam UC Solid UC
Ẽ [MPa] lin. el. FEA 128.11 204.83

Ẽ [MPa] from the slope 128.11 205.03
ẼT[MPa] at 2.5% engineering strain 3.33 4.99
H̃ [MPa] at 2.5% engineering strain 3.42 5.12
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6.4 Two load cases applied in the single step
In this section, the results from the models where two different load cases are applied in a
single step are discussed. This is achieved by superimposing the displacements that would
be applied for the single load cases separately into a single step. The load cases that are
assessed are combined simple shear XY and XZ, simple shear XY and hydrostatic tension,
simple shear XY and 45° shear XY, as well as 45° shear XY and hydrostatic tension load
cases. The corresponding BCs required to model them are shown in Tab. 6.5.

The comparison of the deformed and undeformed shapes for each of the modeling ap-
proaches under these load conditions is shown in the corresponding figures. The results
are presented in the same way as for the single load cases. For the beam models, the
axial stress (S11) distribution at the outermost fiber (Fig. 3.3) displayed in the local
orientation of beams is shown. For the solid element models, the accumulated equivalent
plastic strain (PEEQ) distribution is shown, according to which the plastic deformation
behavior can be evaluated.

Tab. 6.5 Applied BCs to the UC for combined simple shear XY and XZ, simple shear
XY and hydrostatic tension, simple shear XY and 45° shear XY, as well as 45° shear XY
and hydrostatic tension load cases in a single step. The master node notation is based on
Fig. 2.3. u is the desired displacement that is applied.

Load case Master nodes ux uy uz

Simple shear XY and XZ

SWB 0 0 0
SEB 0 u u
NWB 0 0 0
SWT 0 0 0

Simple shear XY and hydrostatic tension

SWB 0 0 0
SEB u u 0
NWB 0 u 0
SWT 0 0 u

Simple shear XY and 45° shear XY

SWB 0 0 0
SEB u u 0
NWB 0 -u 0
SWT 0 0 0

45° shear XY and hydrostatic tension

SWB 0 0 0
SEB 2 · u 0 0
NWB 0 0 0
SWT 0 0 u
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6.4.1 Simple shear XY and XZ load cases

The results that are obtained for the combined simple shear XY and XZ load cases in
the single step are discussed in this section. The deformed and undeformed shapes of the
UC at the endpoint (engineering strain of 3.75%) of the load case for the beam model
(Fig. 6.18) and solid element model (Fig. 6.19) are shown in corresponding figures.

Fig. 6.18 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the
local orientation of beam elements at the endpoint (engineering strain of 3.75%) of the
combined simple shear XY and XZ load cases in the single step.

From the deformed figure of the beam element UC (Fig. 6.18), as well as the axial
stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local orientation of beam
elements, it is concluded that four of the struts (green colored ones in Fig. 6.18) are
almost unloaded, while the remaining four are either compressed or stretched, with some
amount of bending being present.
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For the sake of clarity in the description of the deformation mechanism of struts, an
assumption is made that the combined load case is restricted to the linear elastic regime
and that it occurs in two different steps. For the single simple shear load case, the struts
forming two of the space diagonals are stretched, while the remaining struts are compressed.
As the load case transitions from the simple shear XY to XZ, one of the stretched legs
(in the [111] direction) is additionally stretched, while the remaining stretched leg is
relieved. The initially present tensile stress in the relieved leg is balanced out by an
approximately equal compressive stress, as the transition unfolds. Simultaneously, an
analogous mechanism occurs in the remaining (compressed) legs, where one of the legs is
additionally compressed while the other one is relieved.

For the combined single-step load case, the difference is that the UC’s face perpendicular
to the x-axis moves directly in the direction of the face diagonal. In this way, even with the
elastoplastic material modeling, the ”relieved” struts experience almost no deformation
and remain mostly unloaded from the beginning up to the endpoint of the load case.

Fig. 6.19 The deformed and undeformed (shaded) shape of the solid element model,
as well as the equivalent plastic strain (PEEQ) distribution at the endpoint (engineering
strain of 3.75%) for the combined simple shear XY and XZ load cases in the single step.
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The results from the solid element UC at the engineering strain of 3.75% (Fig. 6.19) show
that the plastic zones are present in the compressed and stretched struts of the UC model,
and their evolution from vertices towards the central regions of the struts follows a similar
behavior as in the single simple shear XY load case (Fig. 6.9). The relieved struts have
some plasticity present in the vicinity of the vertices but are overall unaffected by the
plastic deformation since they remain predominantly unloaded throughout the load case.

The obtained engineering strain-time and engineering stress-time curves from both mod-
eling approaches are shown and compared in Fig. 6.20. The values from the stress and
strain tensors, which are rotated by 45° around the x-axis, are shown as well. With this
transformation, the y-axis coincides with the face diagonal direction, and only one shear
stress and strain component is present. Additionally, the engineering stress-strain plot
of the transformed shear stress and strain components is shown in figure Fig. 6.21. The
relevant transformed and untransformed effective shear stress and shear angle components
are shown, the remaining ones are zero. The slope values for the effective shear M̃

′ ,
tangent M̃

′
T, and hardening M̃

′
H moduli, obtained from this plot, are shown in Tab. 6.6.

From the results, it can be seen that the engineering stress-time curves from the beam and
solid model are more in agreement, compared to the strong differences seen in the nonlinear
elastoplastic from the single simple shear XY load case (Fig. 6.11). The significantly
less pronounced nonlinear region of the solid model’s engineering stress-time curve is
presumably caused by two legs experiencing almost no deformation, and less bending in
the remaining two.

The results obtained from the slopes of the transformed engineering stress-strain curves are
also compared to the ones obtained from the single simple shear XY load case (Tab. 6.2).
The values of the effective shear moduli M̃

′ and M̃ , for the transformed engineering
stress-strain curve and the single simple shear XY load case respectively, coincide for both
UC models. The effective tangent moduli, evaluated at around 3% engineering strain, and
the corresponding effective hardening moduli values are in the same range compared to
the results from the single simple shear XY load case.
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Fig. 6.20 The obtained engineering strain-time (top) and engineering stress-time
(bottom) curves for the combined simple shear XY and XZ load cases in a single step
for the beam model (index B) and solid element model (index S). The index B − S in
the engineering strain-time plot denotes that the applied strain components are equal for
both solid and beam element models. The effective values with an apostrophe are the
ones from the stress and strain tensors rotated by 45° around the x-axis.
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Fig. 6.21 The obtained engineering stress-strain curve for the combined simple shear
XY and XZ load cases in a single step for the beam model (index B) and solid element
model (index S), where the stress and strain tensors are rotated by 45° around the x-axis.

Tab. 6.6 The effective shear M̃
′ , tangent Ẽ

′
T, and hardening H̃

′ moduli obtained from
the slopes of the engineering stress-strain curve of the transformed stress and strain tensors
for the combined simple shear XY and XZ load cases. These results are compared to the
corresponding values obtained from the single simple shear XY load case (Tab. 6.2).

Beam UC Solid UC
M̃ [MPa] single simple shear XY 1374.16 1462.32

M̃
′ [MPa] 1374.73 1462.29

M̃T [MPa] single simple shear XY 13.62 15.19
M̃

′
T [MPa] at 3% engineering strain 14.06 15.30

M̃H [MPa] single simple shear XY 13.76 15.35
M̃

′
H [MPa] at 3% engineering strain 14.21 15.48
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6.4.2 Simple shear XY and hydrostatic load cases

The results that are obtained for the combined simple shear XY and hydrostatic tension
load cases in the single step are discussed in this section. The deformed and undeformed
shapes of the UC at the endpoint (engineering strain of 3.75%) of the load case for the
beam model (Fig. 6.22) and solid element model (Fig. 6.23) are shown in corresponding
figures.

Fig. 6.22 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the
local orientation of beam elements at the endpoint (engineering strain of 3.75%) of the
combined simple shear XY and hydrostatic tension load cases in the single step.

From the deformed figure of the beam element UC (Fig. 6.22), as well as the axial
stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local orientation of beam
elements, it is concluded that all of the struts are under pure tension at the endpoint
(engineering strain of 3.75%) of the load case. The red-colored struts experience higher
stress compared to the blue-colored ones.
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Both involved load cases are predominantly governed by stretching and compression (for
the simple shear XY). Some amount of bending deformation of the struts, stemming from
the simple shear XY, is minimized by the pure tension resulting from the hydrostatic load.
In the beginning, superimposing the load cases leads to the deformation state, where the
stretched legs from the simple shear XY are additionally stretched, and the compressed
ones are also stretched. With the increase in load, the ”initially” compressed struts are
further stretched, but so are the ”initially” stretched ones, which leads to the difference in
the amount of stress experienced by struts at the end of the load case.

Fig. 6.23 The deformed and undeformed (shaded) shape of the solid element model,
as well as the equivalent plastic strain (PEEQ) distribution at the endpoint (engineering
strain of 3.75%) of the combined simple shear XY and hydrostatic tension load cases in
the single step.
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The results from the solid element model at the engineering strain of 3.75% (Fig. 6.23),
show that the plastic zones are present in all regions of the UC, except on the tips of the
struts. The four struts that overall experience higher stresses (light green in Fig. 6.23), are
the first to yield and also have a higher amount of plasticity, compared to the remaining
ones (turquoise in Fig. 6.23).

The obtained engineering strain-time and engineering stress-time curves from both model-
ing approaches are presented and compared in Fig. 6.24. The relevant effective shear and
normal stress, shear angle, and normal strain components are shown, the remaining ones
are zero.

When looking at the results from both models, the engineering stress-time curves show
similar behavior. This is understandable since the combined load case is dominated by
the stretching of the struts, while the bending deformation is minimized. As already
discussed, from the beginning, two of the legs experience higher tensile stresses compared
to the remaining two. As the shear stress component starts to drop from its peak point,
the lower-stressed legs start catching up to the higher-stressed ones. This culminates at
the point where the shear stress component drops almost to zero, and all legs experience
roughly the same amount of tensile stress, i.e. only the hydrostatic load case is ”active”
at this point. Afterward, the differences between the legs, and the shear stress component
gradually rise again.
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Fig. 6.24 The obtained engineering strain-time (top) and engineering stress-time
(bottom) curves for the combined simple shear XY and hydrostatic tension load cases in a
single step for the beam model (index B) and solid element model (index S). The index
B − S in the engineering strain-time plot denotes that the applied strain components are
equal for both solid and beam element models.

73



6.4.3 Simple shear XY and 45◦ shear XY load cases

The results that are obtained for the combined simple shear XY and 45◦ shear XY load
cases in the single step are discussed in this section. The deformed and undeformed shapes
of the UC at the endpoint (engineering strain of 3.75%) of the load case for the beam
model (Fig. 6.25), solid element model at 2% engineering strain (Fig. 6.26), and at 3.75%
engineering strain (Fig. 6.27) are shown in corresponding figures.

Fig. 6.25 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the
local orientation of beam elements at the endpoint (engineering strain of 3.75%) of the
combined simple shear XY and 45◦ shear XY load cases in the single step.

The struts experience predominantly compression and stretching, with some amount of
bending under the simple shear XY load, whereas for the 45◦ shear XY load case, they
experience a significant amount of bending deformation. Superimposing these two load
cases, results in a deformation state with compression and tension of struts, and an overall
increase in present bending deformation. This behavior is confirmed by the results from
the beam element UC at the engineering strain of 3.75% (Fig. 6.25).
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Fig. 6.26 The deformed and undeformed (shaded) shape of the solid element model, as
well as the equivalent plastic strain (PEEQ) distribution at the 2% engineering strain of
the combined simple shear XY and 45◦ shear XY load cases in the single step.

The nonuniform progress of plasticity evolution with increasing load starting from the
vicinity of the vertices towards the central regions of the struts can be observed for
the solid element UC at the 2% engineering strain (Fig. 6.26). This is comparable to
the plastic deformation that occurs under the single simple shear XY load case at 2%
engineering strain (Fig. 6.9), which is understandable, as this load case dominates the
overall deformation behavior. When the endpoint (engineering strain of 3.75%) of the
load case is reached, shown in Fig. 6.27, the plasticity is present in almost all regions of
the solid element UC, except for some small surface zones of the struts. Presumably, this
is caused by the increase in the bending deformation, compared to the single simple shear
XY load case.
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Fig. 6.27 The deformed and undeformed (shaded) shape of the solid element model,
as well as the equivalent plastic strain (PEEQ) distribution at the endpoint (engineering
strain of 3.75%) of the combined simple shear XY and 45◦ shear XY load cases in the
single step.

76



The obtained engineering strain-time and engineering stress-time curves from both model-
ing approaches are presented and compared in Fig. 6.28. The relevant effective normal
and shear stress, shear angle, and normal strain components are shown, the remaining
ones are zero. The effective stress and strain components from the 45◦ shear XY load case
are presented in their form before the transformation, i.e. as normal stresses and strains.

As already discussed, the struts experience increased bending deformation. This is observed
from the engineering stress-time plot as well since the nonlinear elastoplastic zones of
the shear stress components are broader compared to the results from the single simple
shear XY load case (Fig. 6.11). For the beam element model, the stress components
corresponding to the 45◦ shear XY drop to almost zero, after their peak at the time value
of around 0.1, and remain in this range up until the end. This leads to the conclusion, that
in this range only the simple shear XY load case is ”active”, i.e. it dominates the overall
deformation behavior. For the solid element model, these stress components gradually
decrease but do not drop to zero. In the same manner, it can be concluded that the simple
shear XY also dominates the overall behavior, but that the contribution of the 45° shear
XY is larger compared to the beam element model. The differences in the results between
the modeling approaches are again caused by the previously discussed inaccuracies of the
beam element model.
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Fig. 6.28 The obtained engineering strain-time (top) and engineering stress-time
(bottom) curves for the combined simple shear XY and 45◦ shear XY load cases in a single
step for the beam model (index B) and solid element model (index S). The index B − S
in the engineering strain-time plot denotes that the applied strain components are equal
for both solid and beam element models.
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6.4.4 45◦ shear XY and hydrostatic load cases

The results that are obtained for the combined 45◦ shear XY and hydrostatic tension
load cases in the single step are discussed in this section. The deformed and undeformed
shapes of the UC at the endpoint (engineering strain of 3.75%) of the load case for the
beam model (Fig. 6.29) and solid element model (Fig. 6.30) are shown in corresponding
figures.

Fig. 6.29 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the
local orientation of beam elements at the endpoint (engineering strain of 3.75%) of the
combined 45◦ shear XY and hydrostatic tension load cases in the single step.

The struts experience pure tension under the hydrostatic load and significant bending
deformation under the 45° shear XY one. Superimposing these two load cases leads to
the deformation state where the struts are predominantly stretched, with some amount of
bending being present. Overall, the bending deformation is minimized by the stretching
of the struts. This behavior is confirmed by the results from the beam element UC at the
engineering strain of 3.75% (Fig. 6.29).

79



Fig. 6.30 The deformed and undeformed (shaded) shape of the solid element model,
as well as the equivalent plastic strain (PEEQ) distribution at the endpoint (engineering
strain of 3.75%) of the combined 45◦ shear XY and hydrostatic tension load cases in the
single step.

At the engineering strain of 3.75%, the plasticity is present in almost all regions of the
solid element UC, except on the tips of the struts (Fig. 6.30). The highest plasticity,
excluding the local PEEQ concentrations at the vertices, is localized to the regions that
experience the highest bending deformation (red colored in Fig. 6.30).

The obtained engineering strain-time and engineering stress-time curves from both model-
ing approaches are presented and compared in Fig. 6.31. The relevant effective normal
stress and strain components are shown, the remaining ones are zero.

Due to the bending deformation, there is a small nonlinear transition in the elastoplastic
region of the curve. The small differences in the engineering stress-time curves between
the normal stress components are presumably caused by the modeling effects.
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Fig. 6.31 The obtained engineering strain-time (top) and engineering stress-time
(bottom) curves for the combined 45◦ shear and hydrostatic tension load cases in a single
step for the beam model (index B) and solid element model (index S). The index B − S
in the engineering strain-time plot denotes that the applied strain components are equal
for both solid and beam element models. For better clarity of the small differences in the
slopes of the curves, a magnified view of the results for the time range between 0.2 and
0.3 is shown.
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6.5 Two load cases applied in two steps
In this section, the results from the models where the two different load cases are applied
in two different steps are discussed. This is achieved by applying displacements of the
first load case in the first step, and then superimposing these with the displacements for
the second load case in the second step. The combinations that are studied are combined
simple shear XY and XZ, simple shear XY and hydrostatic tension, simple shear XY and
45° shear XY, as well as 45° shear XY and hydrostatic tension load cases. The BCs that
are applied in the first step are the same ones used for the single load cases (Tab. 4.1),
but the applied engineering strain is adjusted to 2% instead of 3.75%. For the second step,
the BCs with superimposed displacements (Tab. 6.5) are implemented, but the applied
strain is again adjusted to 2% instead of 3.75%.

The results are presented in the same way as in the previous sections. The comparison of
the deformed and undeformed shapes for each of the modeling approaches under these
load conditions is shown in the corresponding figures. For the beam models, the axial
stress (S11) distribution at the outermost fiber (Fig. 3.3) displayed in the local orientation
of beams is shown. For the solid element models, the accumulated equivalent plastic
strain (PEEQ) distribution is shown, according to which the plastic deformation behavior
can be evaluated. The results are shown for the endpoint of the second step of the load
case since the endpoint of the first step corresponds to the results from the single load
cases at the slightly lower applied engineering strains (i.e. 2% instead of 3.75%).
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6.5.1 Simple shear XY and XZ load cases

The results that are obtained for the combined simple shear XY and XZ load cases in
two different steps are discussed in this section. The deformed and undeformed shapes of
the UC at the endpoint of the second step (engineering strain of 2%) for the beam model
(Fig. 6.32) and solid element model (Fig. 6.33) are shown in corresponding figures.

Fig. 6.32 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local
orientation of beam elements at the endpoint of the second step (engineering strain of
2%) of the combined simple shear XY and XZ load cases in two different steps.

For the beam element model, the results at the end of the first step (engineering strain
of 2%) are analogous to the results from the single simple shear XY load case (Fig. 6.8).
From the deformed figure of the beam element UC, as well as the axial stress (S11)
distribution at the outermost fiber (Fig. 3.3) in the local orientation of beam elements
at the endpoint of the second step (Fig. 6.32), it is concluded that four of the struts are
stretched and the remaining four are compressed. Additionally, there is some amount of
bending deformation present as well.
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Fig. 6.33 The deformed and undeformed (shaded) shape of the solid element model, as
well as the equivalent plastic strain (PEEQ) distribution at the endpoint of the second
step (engineering strain of 2%) of the combined simple shear XY and XZ load cases in
two different steps.

The explanation of the deformation behavior, as the transition between two simple shear
loads occurs, is the same as for the combined single-step modeling variant. The main
difference is that there are no relieved struts at the end of the second step, simply due
to the global deformation behavior that occurs (i.e. the UC’s face perpendicular to the
x-axis does not directly move in the face diagonal direction as in the combined single-step
case). For the two-step modeling variant, the struts that are supposed to be relieved, are
deformed and experience some amount of isotropic hardening in both steps of the load
case.
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The results for the solid element UC model at the endpoint of the first step (engineering
strain of 2%) are analogous to the single simple shear XY load case (Fig. 6.10). At the
end of the second step (engineering strain of 2%), as shown in Fig. 6.33, plasticity is
present in all regions of the UC, with the highest amount localized at the vertices (the
same as with the single simple shear XY load case). Additionally, the struts that undergo
unloading, have a lower plastic deformation compared to the remaining ones.

The obtained engineering strain-time and engineering stress-time curves from both mod-
eling approaches are presented and compared in Fig. 6.34. The relevant effective shear
stress and shear angle components are shown, the remaining ones are zero.

The first part of the engineering stress-time curve (time values between 0 and 1), corre-
sponding to the first step, behaves in the same way as the single simple shear XY load
case (Fig. 6.11). At the beginning of the second step, as the transition between the
simple shear loads unfolds, there is the gradual relieving of the four struts, while the
remaining four are additionally stretched or compressed. The deformation mechanisms of
the latter struts remain the same up to the endpoint of the second step, only the amount
of deformation increases with the load. The former struts are fully relieved at around
t = 1.15, where the corresponding effective shear stress curves cross each other. From this
point, the same mechanism that led to the unloading of these struts continues and now
leads to their further deformation. The ”relieved” struts that were initially stretched, now
undergo compression, and vice versa. As this process continues, the effective shear stress
component from the first load case slowly drops to zero. When looking at the second step,
the effect of the isotropic hardening can be seen, since the nonlinear elastoplastic regions
start at higher points compared to the first load case.
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Fig. 6.34 The obtained engineering strain-time (top) and engineering stress-time
(bottom) curves for the combined simple shear XY and XZ shear load cases in two
different steps for the beam model (index B) and solid element model (index S). The
index B −S in the engineering strain-time plot denotes that the applied strain components
are equal for both solid and beam element models.

86



6.5.2 Simple shear XY and hydrostatic load cases

The results that are obtained for the combined simple shear XY and hydrostatic tension
load cases in two different steps are discussed in this section. The deformed and undeformed
shapes of the UC at the endpoint of the second step (engineering strain of 2%) for the
beam model (Fig. 6.35) and solid element model (Fig. 6.36) are shown in corresponding
figures.

Fig. 6.35 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local
orientation of beam elements at the endpoint of the second step (engineering strain of 2%)
of the combined simple shear XY and hydrostatic tension load cases in two different steps.

For the beam element model, the behavior and results at the end of the first step
(engineering strain of 2%) are analogous to the results from the single simple shear XY
load case (Fig. 6.8). From the deformed figure of the beam element UC, as well as the
axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local orientation of
beam elements at the endpoint of the second step (engineering strain of 2%), shown in
Fig. 6.35, it is concluded that all of the struts are under pure tension.
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Fig. 6.36 The deformed and undeformed (shaded) shape of the solid element model, as
well as the equivalent plastic strain (PEEQ) distribution at the endpoint of the second
step (engineering strain of 2%) of the combined simple shear XY and hydrostatic tension
load cases in two different steps.

The explanation of the deformation behavior, as the transition between two load cases
occurs, is the same as for the combined single-step modeling variant. The main difference
between the single-step and two-step approach lies in the tensile stresses and the amount
of plasticity that initially stretched and compressed struts experience at the endpoint
of the load case. In the two-step model, all struts undergo roughly the same amount
of stress and plastic deformation, whereas the differences in these aspects between the
initially stretched and compressed struts are more pronounced in the single-step approach.
This behavior in the former approach occurs because hydrostatic tension predominantly
influences the deformation in the second step. This allows the initially compressed struts
to closely match the remaining (initially stretched) ones.
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The results for the solid element UC model at the endpoint of the first step (engineering
strain of 2%) are analogous to the single simple shear XY load case (Fig. 6.10). At the
end of the second step (engineering strain of 2%), shown in Fig. 6.36, plasticity is present
in all regions of the UC, with higher amounts of it concentrated in the central regions of
the struts. Additionally, the initially compressed struts experience slightly lower plastic
deformation compared to the rest.

The obtained engineering strain-time and engineering stress-time curves from both model-
ing approaches are presented and compared in Fig. 6.37. The relevant effective normal
and shear stress, shear angle, and normal strain components are shown. The effective
normal stresses in the x, y, and z-directions are equal, and the same is true for the effective
normal strains. The remaining stress and strain components, that are not shown, are zero.

The first part of the engineering stress-time curve (time values between 0 and 1), corre-
sponding to the first step, behaves in the same way as the single simple shear XY load
case (Fig. 6.11). At the beginning of the second step, as the transition between the load
cases unfolds, there is a gradual stretching of all struts. The initially compressed struts
from the simple shear XY load case are relieved at the point where the corresponding
effective normal and shear stress curves cross each other (at around t = 1.05). From this
point, the same deformation mechanism continues, and these struts are further stretched,
but never completely ”catch up” to the remaining ones, that were under tension from
the beginning. As this process continues, the effective shear stress component from the
first load case slowly drops to zero. Additionally, it can be seen that the bending of the
struts from the simple shear XY load case is completely minimized, since there is only a
sharp transition to the elastoplastic region in the second step. The effect of the isotropic
hardening can also be seen from the curves in this step since the elastoplastic regions
start at higher points compared to the first load case.
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Fig. 6.37 The obtained engineering strain-time (top) and engineering stress-time
(bottom) curves for the combined simple shear XY and hydrostatic tension load cases in
two different steps for the beam model (index B) and solid element model (index S). The
index B −S in the engineering strain-time plot denotes that the applied strain components
are equal for both solid and beam element models. The effective normal stresses in the x,
y, and z-directions are equal, and the same is true for the effective normal strains.
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6.5.3 Simple shear XY and 45◦ shear XY load cases

The results that are obtained for the combined simple shear XY and 45° shear XY load
cases in two different steps are discussed in this section. The deformed and undeformed
shapes of the UC at the endpoint of the second step (engineering strain of 2%) for the
beam model (Fig. 6.38) and solid element model (Fig. 6.39) are shown in corresponding
figures.

Fig. 6.38 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local
orientation of beam elements at the endpoint of the second step (engineering strain of
2%) of the combined simple shear XY and 45° shear XY load cases in two different steps.

For the beam element mode, the results at the end of the first step (engineering strain of
2%) are analogous to the ones from the single simple shear XY load case (Fig. 6.8). From
the deformed figure of the beam element UC, as well as the axial stress (S11) distribution
at the outermost fiber (Fig. 3.3) in the local orientation of beam elements at the endpoint
of the second step (engineering strain of 2%), shown in Fig. 6.38, it is concluded that all
of the struts experience significant bending deformation.
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Fig. 6.39 The deformed and undeformed (shaded) shape of the solid element model, as
well as the equivalent plastic strain (PEEQ) distribution at the endpoint of the second
step (engineering strain of 2%) of the combined simple shear XY and 45° shear XY load
cases in two different steps.

The explanation of the deformation behavior, as the transition between two loads occurs,
is the same as for the combined single-step load case. Compared to this modeling variant,
the results at the endpoint of the second step from the combined two-step approach show
that overall bending deformation is higher and that the plasticity expands more uniformly
from the vertices towards the central regions of the struts. As the influence of the 45°
shear XY load case on the overall deformation behavior increases in the second step, so is
this behavior more pronounced.

The results for the solid element UC model at the endpoint of the first step (engineering
strain of 2%) are analogous to the single simple shear XY load case (Fig. 6.9). At the
end of the second step (engineering strain of 2%), shown in Fig. 6.39, plasticity is present
in the vicinity of the vertices and has evolved further towards the central regions of the
struts in a more uniform manner.
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The obtained engineering strain-time and engineering stress-time curves from both model-
ing approaches are presented and compared in Fig. 6.40. The relevant effective normal
and shear stress, shear angle, and normal strain components are shown. The remaining
stress and strain components, that are not shown, are zero. The effective stress and strain
components from the 45◦ shear XY load case are shown in their form before transformation,
i.e. as normal stresses and strains.

The first part of the engineering stress-time curve (time values between 0 and 1), corre-
sponding to the first step, behaves in the same way as the single simple shear XY load
case (Fig. 6.11). At the beginning of the second step, as the transition between the load
cases unfolds, there is a gradual increase in the bending deformation of the struts, which
leads to a decrease in the value of the corresponding effective shear stress component.
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Fig. 6.40 The obtained engineering strain-time (top) and engineering stress-time
(bottom) curves for the combined simple shear XY and 45° shear XY load cases in two
different steps for the beam model (index B) and solid element model (index S). The
index B −S in the engineering strain-time plot denotes that the applied strain components
are equal for both solid and beam element models.
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6.5.4 45◦ shear XY and hydrostatic load cases

The results that are obtained for the combined 45° shear XY and hydrostatic tension load
cases in two different steps are discussed in this section. The deformed and undeformed
shapes of the UC at the endpoint of the second step (engineering strain of 2%) for the
beam model (Fig. 6.41) and solid element model (Fig. 6.42) are shown in corresponding
figures.

Fig. 6.41 The deformed and undeformed (wireframe) shape of the beam element model,
as well as the axial stress (S11) distribution at the outermost fiber (Fig. 3.3) in the local
orientation of beam elements at the endpoint of the second step (engineering strain of 2%)
of the combined 45° shear XY and hydrostatic tension load cases in two different steps.

For the beam element mode, the behavior and results at the end of the first step are
analogous to the results from the single 45° shear XY load case (Fig. 6.12). From the
deformed figure of the beam element UC, as well as the axial stress (S11) distribution at
the outermost fiber (Fig. 3.3) in the local orientation of beam elements at the endpoint
of the second step, shown in Fig. 6.41, it is concluded that the struts are predominantly
stretched with some amount of bending deformation being present.
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Fig. 6.42 The deformed and undeformed (shaded) shape of the solid element model, as
well as the equivalent plastic strain (PEEQ) distribution at the endpoint of the second
step (engineering strain of 2%) of the combined 45° shear XY and hydrostatic tension
load cases in two different steps.

The explanation of the deformation behavior, as the transition between two loads occurs,
is the same as for the combined single-step load case. The difference is, that the second
step is dominated by the tension from the hydrostatic load case, which minimizes the
bending deformation. This results in lower plasticity peaks in the regions that experience
the highest bending, and overall more uniform plasticity distribution on the struts.

The results for the solid element UC model at the endpoint of the first step (engineering
strain of 2%) are analogous to the single 45° shear XY load case (Fig. 6.13). At the end
of the second step (engineering strain of 2%), plasticity is present in all regions of the UC.
The highest plasticity, excluding the local PEEQ concentrations at the vertices, is localized
to the regions that experience the highest bending (dark orange color in Fig. 6.42).
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The obtained engineering strain-time and engineering stress-time curves from both model-
ing approaches are presented and compared in Fig. 6.43. The relevant effective normal
stress and strain components are shown, the remaining ones are zero. The effective stress
and strain components from the 45◦ shear XY load case are shown in their form before
the transformation, i.e. as normal stresses and strains.

The first part of the engineering stress-time curve (time value between 0 and 1), corre-
sponding to the first step, behaves in the same way as the single 45° shear XY load case
(Fig. 6.14). At the beginning of the second step, as the transition between the load cases
unfolds, there is a gradual decrease in the bending deformation of the struts. Because of
this bending deformation, there is a small nonlinear transition in the elastoplastic region
of the curve. The small differences in the engineering stress-time curves between the
normal stress components are presumably caused by the modeling effects.
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Fig. 6.43 The obtained engineering strain-time (top) and engineering stress-time
(bottom) curves for the combined 45° shear XY and hydrostatic tension load cases in two
different steps for the beam model (index B) and solid element model (index S). The index
B − S in the engineering strain-time plot denotes that the applied strain components are
equal for both solid and beam element models. For better clarity of the small differences
in the slopes of the curves, a magnified view of the results for the time range 1.06 - 1.2 is
shown.
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7. Conclusion

The elastic and elastoplastic behavior of the solid and beam element BCC lattice UC
is determined. From the literature and definition of the elements, it is known that the
approach with continuum elements is more accurate, but also computationally more
expensive. The beam models neglect the material aggregation and overlapping volumes
at the junctions of multiple struts in the model, which leads to lower stiffness, and
thus is the main reason for inaccuracies. Although the approach with beam elements
is coupled with some inaccuracies, it is computationally much more efficient and still
provides satisfactory results, which is confirmed by the results. An increased number of
beam section points is required to correctly capture nonlinear stress distribution for the
load cases involving elastoplastic bending deformation of the struts. For the cases, where
the bending deformation is small (simple shear) or non-existent (hydrostatic tension), the
default number of section points can deliver correct results as well.

The effective bulk modulus K̃, shear modulus M̃ , shear modulus G̃, and Young’s modulus
Ẽ in the principal material direction [100] are computed for both modeling approaches.
Due to the inaccuracies of the beam modeling approach, the obtained values for these
moduli from the beam UC are slightly lower, i.e. the solid element UC is stiffer than the
beam element one. Depending on the load case, in addition to compression and tension,
the struts can experience bending as well. The highest bending deformation is present for
the 45° shear load case, followed by the uniaxial tension in the [100] direction. The higher
the bending of the struts, the lower the stiffness of the UC. This is reflected in the values
of the corresponding effective moduli. Under the simple shear load case, two pairs of the
struts are stretched while the other two are compressed. Additionally, some amount of
bending deformation is present. Under the hydrostatic tension, the struts experience only
pure tension, and the UC has a high stiffness. Due to the cubic material symmetry of the
UC, the effective elasticity tensor for both modeling approaches is computed from K̃, M̃ ,
and G̃. Lastly, the effective Young’s moduli in the face diagonal direction [110], and space
diagonal direction [111] are determined for the solid element model, due to the higher
accuracy. According to the property of the cubic material symmetry, the modulus values
obtained in the [100] and [111] directions represent extremes. In this case, the effective
Young’s moduli in these directions are minimum and maximum respectively, whereas the
one from the [110] direction lies between them.
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The initial yield stress values for the six load cases implemented for the elastic behavior
of the UC are obtained for the solid element model. The values are in agreement with
the overall conclusions regarding the predominant deformation mechanisms of the struts
and the stiffness of the UC. All of the initial yield surface representations are oval-shaped.
Model I (plane stress state without any shear stress component), as well as models IV and
V (plane stress state with a constant shear stress component), are similar in shape. The
surface representations of models II and III (in-plane principal stresses are varied, while
the positive out-of-plane principal stress is constant) are more asymmetrical and shifted
in the direction of the first quadrant, due to the presence of the positive out-of-plane
principal stress. This also leads to the overall lower yield stress values in the regions where
the compressive stresses begin to dominate the load cases, in comparison to the remaining
representations. Due to the presence of the constant in-plane shear stress component for
models IV and V, the overall yield stress values are reduced, ”pulling” the surface inward,
in comparison to the results from model I. These results only show a glimpse into the
initial yield surface of the BCC lattice UC, and many more different stress states and
surface representations are required to obtain the whole picture.

The elastoplastic behavior is assessed for various load cases, applied either individually or
as a combination (single-step or two-step). The main results for the elastoplastic material
behavior are shown in the form of engineering stress-strain curves and corresponding
deformation behaviors, as well as the distribution of the accumulated equivalent plastic
strain (PEEQ) for the solid element model. The effective bulk modulus K̃, Young’s mod-
ulus Ẽ, and shear moduli G̃ and M̃ are obtained from the linear regions of corresponding
engineering stress-strain curves and compared to the values obtained from the linear
elastic UC models. The effective tangent moduli are also determined from the slopes of
the engineering stress-strain curves in the linear elastoplastic regions, from which the
corresponding effective hardening moduli are computed. The deformation behavior of the
UC under all studied load cases is discussed in detail.
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