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Abstract

The Global Climate Observing System (GCOS), cosponsored by the
World Meteorological Organization (WMO) has categorized snow as one
of the essential climate variables. This underlines the importance of snow-
related research questions, especially at a time when the issue of climate
change is omnipresent, both in the scientific community and in everyday
life. Snowmelt research is essential as many people depend on snowmelt
runoff from high alpine catchments. Little research has been done on snow
melt events from remote sensing applications, mostly covering small areas
and compared to in situ measurements. This thesis compares snow melt
events from Sentinel-1 SAR backscatter data to river level fluctuations over
a four-year period.
Two different approaches have been investigated to determine the day of
snow melt over all catchments. The two approaches differ in their threshold
settings and mathematical calculations. The first method classifies wet
snow and identifies different states of the melting phase using a threshold,
while the second method uses time series derivatives. After defining the
catchments region for 35 water stations, 35 different catchment polygons
are obtained. It is found that using the derivative method for calculating
the runoff day did not work as good as by detecting the absolute minimum
of the backscatters time series.
In addition, an elevation related threshold was introduced to discriminate
the runoff date at different elevations. It was clearly noticeable that higher
catchments drain later than lower situated catchments.
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Zusammenfassung

Niederschlag zählt zu den wichtigsten Klimavariablen und ist von der GCMO
mit Unterstützung der WMO definiert worden. Dies betont die Bedeutung
von Forschungsfragen im Zusammenhang mit Schnee, insbesondere in Zeiten
des Klimawandels. Weltweit sind zahlreiche Menschen auf Schmelzwasser
aus höher gelegenen hydrologischen Einzugsgebieten angewiesen. Trotz-
dem gibt es bisher nur wenige Ansätze zur Analyse der Schneeschmelze
mit Fernerkundungsdaten. Die bestehenden Ansätze konzentrieren sich
hauptsächlich auf punktuelle in-situ Messungen als Groundtruth.

Ziel dieser Arbeit ist es daher, Sentinel-1 Rückstreudaten mit Oberflächen-
pegeldaten für vier aufeinanderfolgende hydrologische Jahre zu vergleichen.
Dazu wurden zwei verschiedene Ansätze gewählt, um den Tag der Schmelz-
wasserfreisetzung für das jeweilige hydrologische Einzugsgebiet in der Schnee-
decke zu ermitteln. Diese Ansätze unterscheiden sich hauptsächlich durch
die Schwellwertklassifikation von Nassschnee und in der Analyse der mathe-
matischen Ableitung der jeweiligen Zeitreihe. Es wurden 35 verschiedene
Einzugsgebiete analysiert und festgestellt, dass die Definition des absoluten
Minimums der Zeitserie besser geeignet ist, um den Tag der Schmelzwasser-
freisetzung zu bestimmen.

Zusätzlich wurde versucht, einen Höhenschwellwert einzuführen, um den
Unterschied des Tages der Schmelzwasserfreisetzung in verschiedenen Höhen
zu untersuchen. Dabei zeigt sich in den Fernerkundungsdaten deutlich,
dass höher gelegene Einzugsgebiete weitaus später Nassschnee erkennen als
niedriger gelegene Einzugsgebiete.
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Chapter 1
Introduction

As a major source of life on Earth, the global water cycle is of vital
importance to humanity. It consists of oceans, atmospheric water and water
in the landscape. The oceans contain more than 95 % of the total amount
of water on the planet. Glaciers, permanent snow cover, and ground water
all contain more than 3% of the total amount of water. (Oki et al. 2004)

One-third of the Earth’s land surface may be covered seasonally by snow,
which together with sea ice make it one of the most dynamic components of
the cryosphere and the most spread landcover type during the winter season.
As the high albedo of snow strongly influences the energy balance and
keeps the Earth’s radiation budget in balance, snow is an essential climate
variable (WMO 2023a; Dietz et al. 2012). The seasonal snowpack in the
European Alps is the primary source of surface runoff and water supply in
the adjacent lowlands. The ability to store water in the winter and release it
in the spring is ideal for agricultural irrigation and is critical for hydropower
production (Marin et al. 2020). Beside the hydrological importance, snow is
also a major driver of the European economy. This is especially important
for mountainous countries like Austria, where winter tourism and energy
production are deeply intertwined and have a long-standing tradition. Hy-
dropower plants generate over 65% of Austria’s electricity, making them a
crucial component of the country’s energy production. Consequently, the
melting of snow becomes a crucial factor in the ecosystem, emphasizing the
significance of the snow-covered area (Buchelt et al. 2022). More than 2880
hydropower plants are feeding into the electricity grid of Austria (B. Wagner
et al. 2015). The water discharge in Austria begins in early spring at lower
sites and lasts until May or June for higher alpine regions. Between July
and September the water discharge is still high due to melt of glacier ice
(Marin et al. 2020; Baggi et al. 2008).

In most cryospheric studies one critical variable is the estimation of
seasonal snow melt (Beltramone et al. 2023). Snow covered areas are often
in remote and inaccessible areas, making in-situ studies and measurements
to an expensive, time-consuming and dangerous expedition. In spring, wet
and unstable snowpacks pose a high risk of wet snow avalanches (Beltramone
et al. 2023; Baggi et al. 2008). Moreover, in-situ measurements only provide
limited area information.
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1. Introduction

Detecting snow events with remote sensing data is a common approach
to investigate remote areas without direct interaction with the snowpack
or time consuming fieldwork (Nagler, Rott, et al. 2016; Beltramone et al.
2023; Marin et al. 2020). The use of optical remote sensing data is common
for the detection of snow cover extend, snow mapping or improving those
parameter which were originally investigated by field measurements (Dietz
et al. 2012; Nagler and Rott 2000). Microwave remote sensing provides
the capability to detect information that is not visible in optical remote
sensing data. Microwaves possess an appealing quality for snow mapping
and the detection of wet snow events due to their sensitivity to roughness
and dielectric constant. In addition to their capability to gather data during
nighttime, microwaves can effectively penetrate through clouds, which is
particularly advantageous in mountainous areas that are frequently shrouded
by cloud cover. Specially for remote areas where field observations are rare
it appears to be a useful tool.
Active microwaves are often used to gather information about the wetness of
snow (Naderpour et al. 2018) and to receive snow cover and snow variations
as shown in Wang et al. (2018).
Schwank et al. (2018) retrieves snow density with radar L-band to verify the
observed in-situ data. Passive microwave sensors have the ability to acquire
data on the depth of snow by measuring the brightness temperature (Liu
et al. 2018). Additionally, the monitoring of snow events using C-band SAR
technology is extensively employed for research purposes, as it is sensitive
to the analysis of liquid water content (LWC), as demonstrated in previous
studies (Pivot 2012; Buchelt et al. 2022; Marin et al. 2020; Lievens et al.
2019).
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Chapter 2
Background

This chapter discusses snow parameters, microwave remote sensing tech-
niques and the combination of both: the interaction of microwaves with snow
covered areas. The introduction into snow, snow physics and runoff time
is given in Section 2.1. Followed with a short introduction into microwave
remote sensing in Section 2.2 with a focus on interaction of electromagnetic
waves as well as sensor specifications in Section 2.2.1. Section 2.4 goes into
detail of Sentinel-1 and SAR. The chapter is completed by sensitiviy of
SAR to snow in Section 2.5.

2.1 Snow

The hydrological cycle is the continuous water circulation of the hydrosphere.
It is the motion of the water system consisting of evaporation, transpiration,
condensation, precipitation and runoff. In the form of snow, it is particularly
important as a reservoir in mountainous regions and plays a critical role in
the Earth’s climate as an essential climate variable (WMO 2023b). Snow is
often considered as water towers of adjacent lowlands (Viviroli et al. 2007).
Water from snowmelt is important for water resource management like
freshwater supply, irrigation and hydropower generation (Koch et al. 2019).

The hydrological year in Austria commences on October 1st and con-
cludes on September 30th of the subsequent year. In regions with high
mountains, the majority of autumn precipitation occurs as snow, result-
ing in the highest discharge rates during spring and summer. The lowest
discharge rates are typically observed in September.

Physic of Snow

To effectively model snow using SAR data, it is crucial to delve deeper into
the physics of snow in order to understand the fundamental mechanisms at
play. A snowpack is usually divided into several snow layers with different
characteristics. The snow layers mainly differ in grain size, grain form and
density of the layers (Sommerfeld et al. 1970a). Due to wind or temperature
changes, the characteristics of the individual snow layers can change rapidly
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2. Background

leading to unstable snowpacks and further to avalanches. Therefore, it is
of great importance to understand the structure of the snow layers. The
density of recently fallen snow typically is around 100 kg/m³, depending on
the temperature and moisture content of the snow (Lastrada et al. 2021).
After some days, the snow settles and the density increases up to 300 kg/m³.
During this process, the grain size decreases as the structure of the snowflake
breaks into smaller pieces. The continuous transformation of the snowpack
during the settlement is mainly influenced by the transportation of water
vapor, which is predominantly determined by the temperature gradient
(Sommerfeld et al. 1970b). Two distinct types of snow metamorphism can be
distinguished: constructive metamorphism and destructive metamorphism.
Constructive metamorphism means the recrystallization of the grains which
only takes place if the temperature gradient within the snowpack is more
than 1°C/10cm. The water vapor transfer from the warmer snow layer
to the colder layers. One of those metamorphism is depth hoar, which
usually forms when the snowpack is shallow and for a long time exposed
to cold temperatures. This creates a strong temperature gradient within
the snow layer compared to the warm ground. This persistent weak layer
usually stays until the end of the snow season and forms grains with a
size up to 10 mm. Destructive metamorphism is equilibrium growth. The
grains change from crystals to round forms with decreasing grain size. This
occurs solely if the temperature gradient is less than 1°C/10cm (American
Avalanche Association 2023; Lastrada et al. 2021).
The key variable used to quantify the amount of snow is the snow water
equivalent (SWE). The volume of liquid water if one would melt the snow-
pack. One method to measure the SWE without melting the snowpack is,
by weighing the snow mass. This can be done by installing snow pillows
(Taheri et al. 2022). Another technique is to measure GNSS signals beneath
the snowpack compared to GNSS signals above the snowpack. With the
damping factor it is possible to calculate the SWE (Koch et al. 2019).
For getting a deeper understanding in the melting season, the liquid water
content (LWC) of the snow is introduced. This describes the percentage of
liquid water in the snowpack. The higher the LWC, the wetter the snow-
pack. It is of utmost importance to have knowledge about the onset of the
melting season. This is because the melt water provides essential freshwater
resources to the valleys. Additionally, this information can aid in the predic-
tion of wet-snow avalanches and is also beneficial for hydropower generation.
The melting can generally be separated into three phases (Dingman 2015):

• Surface moistening phase: the uppermost snow layer starts to melt
due to the increasing air temperature and solar radiation, as well as
heat exchanges or rain on the superficial layers.

• Ripening process: the snowpack becomes isothermal. As there is no
further temperature change, the wetting penetrates through the snow-
pack until the maximum retention capacity of the pores is exceeded.

• Runoff phase/output phase: is the snowpack saturated, further energy
input (in form of wet precipitation, solar radiation or high temperature)

14



2.1. SNOW

produces melt water that cannot be retained. The water starts to
drain.

Figure 2.1: Behaviour of LWC (yellow) and SWE (red) in the melting phase
of the snowpack (Marin et al. 2020).

The LWC and the SWE are most important to identify these three
melting phases. The first slight increase of the LWC indicates the beginning
of the moistening phase. The LWC decreases in the night due to refreezing
effects and increases at day. This is illustrated in Figure 2.1. When the
LWC starts to rise continuously, the ripening of the snowpack starts. This
state holds until the maximum of the LWC is reached. Dropping LWC and
SWE indicates the decrease of the snowpack by generating water runoff and
introduces the runoff phase as shown in Figure 2.1.
Sometimes surface moistening phase and ripening phase can alternate before
the final start of the runoff phase due to cold spell or fresh (dry) snowfall
(Dingman 2015).

Runoff Time

Modelling runoff in mountainous regions is one of the most difficult hydro-
logical processes to describe, as it is highly variable in time and space. It
depends on a combination of climate, soil(moisture), geology and vegetation
processes always being a mixture between surface- and subsurface runoff
varying in different areas (Becker 2005).

If rainfall or snowmelt exceeds the infiltration capacity of the surface,
runoff is generated. This runoff can be distinguished between

- surface runoff

15
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2. Background

- subsurface runoff

They differ highly in their response time. The response time is defined as
the time between the runoff-generating event and the corresponding increase
in the river below. Subsurface runoff can further be separated into interflow
and baseflow (Barnhart et al. 2020).

Small catchments typically experience a relatively quick response time
in terms of surface runoff, usually within a span of hours to days. However,
interflow, on the other hand, can persist for a longer duration, ranging from
several days to even weeks. Baseflow tends to last for months up to one
year. Surface flow is mainly influenced by slope angles and the structure
of the terrain. Less permeable areas like exposed rocks, saturated areas,
urban areas or clay soils mostly produce surface runoff. Permeable areas
such as vegetated landscape, with deep groundwater, never generate high
overland flow rates, but rather subsurface runoff (Becker 2005).
Shallow snowpacks generally melt earlier in the year but at a slower rate
due to the lower solar irradiance during early spring compared to late spring.
Moreover, melting rates of snow are controlled by humidity, cloud cover
change, energy balance and evapotranspiration rates. The pace of snowmelt-
driven runoff is therefore the water input into the system, meaning the
energy of radiance that drives the snow to melt. High snowmelt rates result
in greater subsurface drainage and higher soil moisture (Barnhart et al.
2020).
Rain-on-snow events also affect the runoff time. Intense rainfall on a thin
layer of snow results in significant runoff, whereas rain affecting deep and
prolonged snowpacks leads to reduced runoff. The bottom line is that the
snowpack plays a critical role in preventing extreme runoff events, even
with heavy precipitation (Juras et al. 2021). Rain-on-snow events with
short time differences between the rainfall and the snowpack runoff occur
mainly in late spring or early summer. While events with slower time dif-
ferences do usually not provide significant excess runoff (Würzer et al. 2016).

Rock glaciers provide a huge amount of water storage capacity due to
their buffer capability. The presence of a fine-grained basal layer in a relict
rock glacier enhances its water storage capacity, allowing for long-term
storage. This emphasizes the significance of rock glaciers, as they can
significantly impact the response time of alpine surface water. (T. Wagner
et al. 2020; Winkler et al. 2016).

Blankinship et al. (2014) showed the influence of snowmelt on shallow
soil water. Significant effects of snowmelt timing lasted 2 months in the
shallow soil layer (0-15 cm depth). A reason for this finding might be
the timing of snowmelt, evaporative demands and the soil water holding
capacity. If melt occurs after evaporative demand increases, then the shallow
soil can capture more of the slowly melting water, while water retention in
deep soil remains limited by a low water-holding capacity.
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2.2 Microwave Remote Sensing

Remote sensing as a technique to gather information of the Earth’s surface,
has the advantage of good coverage without costly and time-consuming
in-situ field work. Especially remote areas that are hardly reachable can
be easily analysed. The optical window, which encompasses the Near
Infrared (NIR) range, displays a remarkable sensitivity towards plants and
biological characteristics. Conversely, microwaves exhibit sensitivity towards
the roughness and dielectric properties of an object, making them well-
suited for extracting parameters as soil moisture, surface roughness and
inforrmation about the dielectric constant. With a wavelength between 1
mm - 1 m microwaves can penetrate clouds and acquire scenes independent
of illumination conditions.

2.2.1 Scanning Techniques and Interaction of EM-
Waves in Media

Scanning Techniques

Satellites operating in microwave range can be distinguished between active
and passive sensors.
Passive sensors are called radiometers. They are sensitive to a small amount
of radiation, emitted by the object being viewed or reflected by that object
with the radiation coming from a source other than the radiometer. Their
primary purpose lies in measuring natural microwave emissions.
Active sensors are called radars. Radars have their own power source on
board and emit radiation with a specific wavelength, enabling them to
measure the backscattered pulses from objects located at a distance. These
radars can be further grouped into classes: synthetic-aperture radar (SAR)
systems, side-looking airborne radar (SLAR), scatterometers, altimeters,
and meteorological radars. The received signal in SAR systems primarily
relies on the roughness and dielectric property of the object, as well as the
polarization (Ulaby et al. 2014).

Polarization

In most general form the electromagnetic wave is elliptically polarized.
However, under specific circumstances this degenerate into a circle or line,
leading to circular or linear polarized signal as seen in Figure 2.2. Circular
polarization offers the benefit of diminished cross-polarized effects and oc-
casionally exhibits improved penetration capabilities through vegetation.
Whereas linear polarization are simpler to generate (Ulaby et al. 2014).
Furthermore, differentiating between man-made objects and noise is more
convenient. As a result, predominantly linear polarization is employed, par-
ticularly for inquiries related to snow retrieval (Patil et al. 2020; Ulaby et al.
2014). The polarization of linear polarized waves is determined by their
direction of travel, which can be either vertical (V) or horizontal (H). Earlier
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Figure 2.2: linear, circular and elliptical polarization methods of a wave
(Nave 2023).

satellites received only single-polarized signals but modern satellite types
have antennas that receive both co-polarized (VV,HH) and cross-polarized
(VH,HV) signals. This leads to more image layers per scene and better
discrimination of objects, as more information is given. Distinguishing
between co- and cross-polarization may be important in retrieving surface
roughness or moisture. Therefore, a combination of all signals tends to lead
to better results (Irwin et al. 2018; Mouche et al. 2017; Lievens et al. 2019).

Dielectric Properties

How a certain material responds to an electric field is described by its
dielectric properties. The permittivity describes the ability of a material
to polarize its molecules in the presence of an electric field. Materials with
high permittivity have a stronger interaction with media. They appear
brighter in the radar returns. The permittivity (ε) is defined as:

ϵ = ϵ′ + iϵ′′ (2.1)

where ϵ′ contains for the real part, representing the lossless dielectric
constant while the iϵ′′ stands for the loss of energy (due to absorption).

Surface Roughness

If a surface is considered as smooth or rough, depends on the wavelength of
the incidence wavelength. A surface is rated as smooth when the root mean
square height (RMSH) is considerably smaller than the wavelength λ. The
RMSH can be calculated via equation 2.2 where Zi is the height at location
i and Z is the mean height over all n locations (Kirimi et al. 2016).

RMSH =

��n
i=1(Zi + Z)2

n− 1
(2.2)

18



2.3. BAND SEGMENTATION

Interaction of EM-Waves in Media

Many models describe that the interaction of electromagnetic waves with
media are based on the radiative transfer equation (RTE). Figure 2.3
demonstrates that radiation can be modified in 3 different ways. It can lose
energy due to absorption and scattering mechanisms or gain energy due to
emission.

• Emission: process in which the object radiates energy itself (thermal
emission). See Figure 2.3 a)

• Absorption: process in which energy from the incoming EM radiation
is absorbed by the object. See Figure 2.3 b)

• Reflection: process in which energy from the incoming EM radiation
is reflected by the object

– Specular Reflection: the energy is reflected in specular direction
back to the source. Specular reflection is the main scattering
effect on smooth surfaces. Figure 2.3 d)

– Diffuse Scattering: energy is reflected in multiple directions.
Diffuse scattering mostly occur on rough surfaces. Figure 2.3 c)

Figure 2.3: Interaction methods of electromagnetic waves with media. a)
Emission b) Absorption c) Diffuse Scattering d) Reflection.
The image is inspired by Schanda (1986).

The interactions between electromagnetic radiation and different surface
features such as vegetation, water bodies, urban areas, or mountainous
areas account for the satellite observations of the Earth’s surface. These
interaction elucidate the understanding of how satellite observations capture
the characteristics of the Earth’s surface. For a side-looking radar, diffuse
scattering leads to higher backscatter return compared to specular reflection.
For this reason, rough surfaces tend to appear brighter in the radar return
compared to smooth surfaces.(Schanda 1986)

2.3 Band segmentation

As microwaves cover a wide span of the EM spectrum, they are further split
into several band typs. Common for microwave remote sensing are
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• X-band: λ= 2.4-3.75 cm

• C-band: λ= 3.75-7.5 cm

• L-band: λ= 15-30 cm

Due to the different wavelengths X-band is mostly used for urban monitoring
and for ice and snow monitoring (Rott et al. 2008; Gunn et al. 2015). C-
band is primarily used in active radar remote sensing for areas with low to
moderate penetration depths. The L-band has higher penetration depths
due to its large wavelength and is therefore commonly used for vegetation
mapping, biomass estimation and InSAR. (NASA 2023; Hamdan et al. 2014;
Abe et al. 2020)

2.4 Sentinel-1 and SAR

Sentinel-1

Ever since the European Space Agency (ESA) launched the Copernicus
Sentinel-1A and Sentinel-1B mission in 2014 and 2016 respectively, it has
become feasible to achieve accurate temporal and spatial mapping of the
entire globe. The satellites follow a sun-synchronous orbit with an inclina-
tion of 98°. With a 12-day repeat orbit cycle for each Sentinel-1 satellite, a
temporal resolution of 6 days at the equator is reached when having two
operating satellites, as both satellites are 180° apart from each other. This
results in a revisit time of 3 days in Central Europe. The SAR instrument
on board of the twin satellites is able to record information in four different
acquisition modes, resulting in varying characteristics for different applica-
tions. Stripmap (SM), Interferometric Wide swath (IW), Extra Wide swath
(EW) and Wave (WV) differ in swath widths from 80 km side looking up
to 400 km side-looking. The active system on board provides vertical (V)
and horizontal (H) polarisation and receive both V and H leading to im-
ages in VV,VH, HV, HH polarisation modes. (ESA 2023; Tsokas et al. 2022)

The IW is the main mode over land as it is a good tradeoff for most re-
quirements. The terrain observation with progressive scans SAR (TOPSAR)
is a technique to collect data in 3 different sub-swaths while constantly
swinging the antenna. Compared to SM the azimuth resolution is lower
as the target is shorter illuminated but results into a better slant range
resolution (20x5 m for single look complex (SLC)) (Moreira et al. 2013).
The products detected within the ground range (GRD) undergo a process of
multi-looking and are subsequently projected into the ground range utilizing
the WGS-84 reference system. This leads to a square pixel spacing of 10x10
m for IW and a resolution of 20x20 m. Phase information is lost due to the
pre-processing steps. The spatial resolution is the measure of the ability
to distinguish between two close scatterers. Pixel spacing is the distance
between adjacent pixels in an image, measured in meters (ESA 2023).
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Each satellite was designed for an operation lifetime of 7 years with
reserves up to 12 years. Until recently both satellites were operating well,
with S1-A exceeding its operation time. However on December 23rd 2021,
the power supply of S1-B went down with no possibility of maintenance.
Therefore, S1-A is currently operating alone leading to a coarse temporal
sampling of 6 to 7 days in Central Europe. At the completion of this thesis
there was no exact starting day announced for the S1-C satellite.

SAR

With the launch of Seasat in 1987 the first civil synthetic aperture radar
(SAR) satellite commenced SAR systems in space. Dissimilar to optical
data SAR Level-0 data do not give any useful information. Only after signal
processing it is possible to extract imaging data.

The Sentinel-1 SAR instrument operates in C-band with a center fre-
quency of 5.405 GHz (resulting in a wavelength of λ= 5.55 cm).

SAR systems image the world by utilizing the motion of the side-looking
antenna to synthesize a large effective antenna, creating a virtual “synthetic”
aperture, imaged in Figure 2.4. By doing so, SAR achieves a high azimuth
resolution (across-track resolution) that is independent of the physical size
of the antenna. This enables SAR to produce high-resolution 2D images and
capture fine details on the Earth’s surface monitoring dynamic processes
continuously and globally.

Figure 2.4: Simplification of SAR geometry (Lauknes 2004)

21

angle, e ; 
1 
t 

-~---- -
... -- ... .,. ....... 

Swath 
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Range Resolution

The range resolution (SR) of a radar system depends on the pulse-width
(τp) and the speed of light (c).

SR =
cτp
2

(2.3)

Meaning the smaller the pulse, the better the resolution. To overcome this
problem, most modern SARs have a “chirp” technique, transmitting pulses
linear over a certain frequency range and correlate it with the received pulse.
This allows longer pulses with more energy without reducing the resolution.
This pulse bandwidth (B) can be expressed as

B =
1

τp
(2.4)

leading to

SR =
c

2B
(2.5)

This shows, that the range resolution improves by having a wider bandwidth.

Azimuth Resolution

The azimuth resolution is not dependent on the frequency and range. How-
ever, it depends on the length of the radar antenna (La). For a real aperture
radar the azimuth resolution (Sa) is described as (Raney et al. 1994):

Sa =
ρλ

2La

(2.6)

where ρ is the slant range and λ is the wavelength. If the object on
the ground remains motionless and the satellite passes this object, it is
possible to gather a synthetic generated antenna with a length equal to the
along-track beamwidth ( = 2Ra). The new azimuth resolution R′

a is given
by

S ′
a =

ρλ

2Ra

=
ρλLa

2ρλ
=>

La

2
(2.7)

This means that the the resolution is independent of the antenna height
and even improves, when the antenna length is reduced (Raney et al. 1994).

2.5 Sensitivity of SAR-Backscatter Data to

Snow

MRS techniques detect changes in snow by taking advantage of the signif-
icant differences in dielectric properties between dry and wet snow. The
variations are significant due to changes in permittivity caused by the liquid
water content present in the snow.
Backscatter coefficient of snow-covered surfaces usually consists of contribu-
tions resulting from
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• surface scattering from snow-air interface

• volume scattering from individual snow layers

• scattering mechanism resulting from the snow-ground boundary

The primary factor determining the dominant scattering mechanism in
the C-band is the moisture content of the snow. The sensors frequency,
incidence angle, polarization and other snow parameter such as grain size,
grain shape and the roughness of the snow surface are important parameters
for the backscatter retrieval of snow covered areas as well. (Marin et al.
2020; Tsai et al. 2019).
For dry snow, the signal easily penetrates the snowpack as ϵ′′ of snow is low,
therefore the surface roughness of snow can be ignored and the signal is
almost insensitive to the remaining snow parameters. This results in signals
that are most dependent on the scattering mechanism resulting from the
snow-ground interface. Volume scattering becomes more important when
the snowpack contains large snow grains like depth hoar or when thicker
snowpacks are present. Scattering from the snow-ground boundary leads to
backscatter signals looking similar to dry snow-free conditions, as the snow
becomes almost transparent to the radar backscatter (Pivot 2012; Marin
et al. 2020; Nagler and Rott 2000).

Snow Wetness Dependency on Backscatter Signal

The LWC plays an important role in the backscatter signal due to dielectric
variations as mentioned above. As soon as the LWC increases, the upward
reflection becomes increasingly dependent on the scattering mechanisms
of the snow-air interface. As the snow becomes wetter, the LWC in the
snowpack increases. This leads to an increasing dielectric contrast between
the wet and dry snowpack. This highlights the possibility of mapping wet
snow with C-band SAR backscatter. The behavior of the relative permittiv-
ity can be found in Figure 2.5. For C-band at 5.405 GHz, one can clearly
see the variation of the real and complex part of the dielectric permittivity
with increasing LWC.Wet snow leads to a decrease in permittivity due to
a higher (complex) absorption coefficient (Buchelt et al. 2022; Nagler and
Rott 2000; Marin et al. 2020).

Roughness Dependency on the Backscatter Signal

Surface roughness plays an important role in wet snow conditions. As the
volume scattering effect can be neglected and the main contribution comes
from surface-scattering. This means that for smooth surfaces there is a
negative correlation between the backscatter signal and snow wetness. For
rough surfaces the backscatter signal increases with increasing snow wetness.
This behavior for the C-band is plotted in Figure 2.6 (Shi et al. 1995). An
experiment about the roughness of snow was carried out by Nagler and Rott
(2000). The idea was to artificially disturb the snow surface and compare it
to an undisturbed area. The experiment was performed on a flat glacier
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Figure 2.5: Relative dielectric permittivity of snow: left image represents
the real part of the relative permittivity, right image shows the complex
part of the relative permittivity. (Alonso et al. 2021)

located in the Austrian alps. It shows how the C-band backscatter signal is
highly influenced by the roughness. The undisturbed area showed a mean
backscatter σ0 = -19 dB while the disturbed area showed a mean σ0 = -0.5
dB.

2.5.1 Snow Retrieval with SAR-Backscatter Data

This section will shortly explain some methods for backscatter retrieval
of snow covered surfaces. It shows the different possibilities to map snow
parameter with remote sensing data.
Lievens et al. (2019) showed how snow depth can be retrieved from S1
backscatter data for a resolution of 1 km² based on temporal changes in the
backscatter polarisation ratio VH/VV. The ratio is scaled to the range of
snow depth measurements from the in situ sites. The cross-polarized σV H

seems to increase with increasing snow depth. This new approach may be
important for investigating total runoff or SWE analysis, and will also be
of great importance for mapping runoff time and flooding.
Buchelt et al. (2022) described the mapping of snow cover and timing of
snowmelt in arctic environments. The study identified the start of runoff,
end of snow cover and snow cover extend with S1 observations using thresh-
olds as well as derivatives of the time series in low vegetated areas. The
results showed that roughness dependence occurs because surface roughness
leads to depolarisation between cross- and co-polarised scenes, which is the
reason for the incorrect assumption of the start of the runoff day.
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2.5. SENSITIVITY OF SAR-BACKSCATTER DATA TO SNOW

Figure 2.6: Upper Image: relationship between snow wetness and backscat-
ter coefficient σ0. Lower Image: relationship between snow wetness and
contributor of surface scattering.
The plot shows two surface conditions where the solid line has a RMS of
4mm (rough) and the dottet line a RMS of 1mm (smooth). (Shi et al. 1995)
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Chapter 3
Study Site and Datasets

After having an introduction to the theoretical background, this chapter
presents the study area and the data used in this thesis. The first Section
describes the necessary tiling system (Section 3.1), as all data were collected
for the size of the ”E048N015T1” tile over Tyrol, Austria. This is followed
by the specifications of the study areas (Section 3.2) and a the climatology
of this high mountain region (Section 3.3). The next Section (Section 3.4)
focuses to the γ0-backscatter data provided by TU Wien. Followed by
Sections about the preprocesing steps of the DEM and the analysis of the
water level data ( Section 3.5 and Section 3.6). Forest Mask (Section 3.7)
and landcover classification by the ESA Worldmap (Section 3.8) conclude
this chapter. All data are available between 2017 and 2021. Leading to
data for four full hydrological years.

3.1 Tiling System

The study site covers the western part of the Austrian province of Tyrol
and refers to the tile ”E048N015T1” of the Equi7Grid system introduced
by Bauer-Marschallinger et al. (2014). This grid system allows an effective
handling of remote sensing data by optimizing storage and processing of
the spatial-grid. It is divided into 7 continental zones with individual pro-
jection. The ”E048N15” refers to the azimuth equidistant projection with
the coordinates x= 4 800 000 m, y=1 500 000 m for the lower left corner.
T1 refers to the tilling system. Tiling 1 means a 100 km grid extent for
sampling between 1-16 m. (Bauer-Marschallinger 2015).

3.2 Study Area

The area of interest is the given tile clipped to the borders of Tyrol, Austria.
This gives a total area of 6202 km², which covers about half of Tyrol. The
study site is located in the eastern alps with steep valleys. The main-valley
Inntal is oriented in west-east direction with the capital Innsbruck at a height
of 570 m.a.s.l. The entire region is characterized by mountains, reaching
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heights of up to 3700 m above sea level. Particularly in the southern part
of the study area, namely Kaunertal, Pitztal, Ötztal, and Stubaital, these
mountains soar to over 3000 m. The whole study area has high altitude
differences and steep valleys which can be more than 2000 m. The highest
peak is the Wildspitze in the Ötztal at 3768 m. Most of the side valleys
are oriented in a north-south direction. Snowmelt typically commences in
the late winter months within the valleys and persists until the onset of
summer in the mountainous regions. The predominant tree species in this
area are conifers and the timberline is around 2000 metres above sea leve.
The valleys themselves are predominantly characterized by agricultural and
rural landscapes.
The region north of the Inntal is primarily characterized by limestone, as
depicted in Figure 3.1. While gneiss is the major rock, prevailing mostly
south of Inntal. Limestone is susceptible to chemical weathering, potentially

Figure 3.1: Map of Austrian geology. Marked in light blue the Northern
Calcereous Alps, which are highly susceptible to karst forms (Schubert et al.
2018).

leading to karstification. This karstification tends to increase subsurface
runoff, leading to less importance of stream gauging as significant peaks
due to meltwater might be damped or lost.

More than 3000 rock glaciers cover over 160 km² of Tyrol. These
permafrost landforms occur mainly in bedrock composed of paragneiss,
orthogneiss and amphibolites exposed to the north (NO,N,NW) direction
and provide a huge amount of water storage capacity due to their buffering
capacity (Ribis 2013).

3.3 Meteorological Data

The climate in this tile is mostly characterized by cold winters with tem-
peratures mostly beneath 0°C and short summers. Due to the topography,
precipitation rates are relatively high and the temperature level remains
moderate. To better understand the meteorological conditions, the SPAR-
TACUS data set provided by GeoSphere Austria was used (Hiebl et al. 2015;
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3.4. BACKSCATTER DATA

Figure 3.2: Map of Austrian meteorological data. Marked in red the mean
minimum and maximum temperature for each day between January 2017
and December 2021. Colored in blue the mean precipitation. Clearly visible
are seasonal variations with higher precipitation rates in summer.

Hiebl et al. 2017). This grid-based data set has a temporal resolution of 1
day and a spatial resolution of 1x1 km. Precipitation, minimum and maxi-
mum temperature are used to gather information about potential melting
times and ice days. Ice days occur, when the maximum temperature never
rises over 0°C. This becomes more important in Section 4.3. Figure 3.2
clearly displays the variations within a seasonal cycle. During the winter
months, precipitation rates are lower compared to the summer months,
and temperatures mostly remain below 0°C. The exception is the winter
2019/2020, which is relatively warm compared to the other tree winters. The
mean temperature hardly drops beneath 0°C. In the summer months, higher
precipitation rates and moderate warm summers prevail, with temperatures
hardly exceeding 30 °C. (Hiebl et al. 2015; Hiebl et al. 2017)

3.4 Backscatter Data

Level-1 IW GRD data from Sentinel-1A and Sentinel-1B is used for snowmelt
classification. The normalized radar cross section (NRCS) of a target
represents the ratio of the energy scattered back to the satellite per reference
area. The backscatter β is the ratio between the scattered power and the
incident power at ground level β = Ps/Pi . While the backscatter coefficient
β0 gives the ratio per given reference area. Aβ is the slant range plane
resulting in β0 illustrated in Figure 3.3. Since β0 is not bound to an Earth
model, it is not a very useful representation of a backscatter.

β0 =
β

Aβ

(3.1)

The ground area as reference area is marked with a dashed purple rectangle
in Figure 3.3. It is the tangent to an ellipsoid of the surface.

σ0 = β · Aβ

Aσ

= β0 · sinθ (3.2)
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Figure 3.3: Normalized areas for backscatter coefficients β0,γ0 and σ0. With
incidence angle as θ, Aβ as reference area for slant range geometry, Aγ as
reference area normal to the looking direction and Aσ as reference area
on ground. δa and δr are the ground range resolution and the slant range
resolution. And δa is the azimuth resolution. (Small 2011)

If the reference area is a plane perpendicular to the line of sight from
the sensor to an ellipsoid of the ground surface, denoted Aγ , then the result
is γ0.

γ0 = β0 · Aβ

Aγ

= β0 · tanθ (3.3)

The next step involves normalizing the real radar image to account
for the radiometric effects due to topographic variations. This introduces
radiometric terrain corrected estimates, denoted γ0

RTF , where r is the range
image coordinate and a is the azimuth image coordinate (Small 2011).

γ0
RTF (r, a) = Kγ · β

0(r, a)

Âγ(r, a)
(3.4)

Kγ is a calibration factor and

Âγ(r, a) =
Aγ(r, a)

Aβ

(3.5)

Projected Local Incidence Angle

The projected local incident angle (PLIA) was available for each relative
orbit direction. It represents the angle between the surface normal and the
incidence angle of the radiation, projected into the range plane. The PLIA
plays a crucial role in concealing regions that are impacted by layover and
shadowing, particularly in mountainous areas characterized by steep valleys.
Areas with PLIA greater than 75° and smaller than 15° are masked out.
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25% for each orbit is masked out due to the orientation of the valleys and
their slope.

3.5 Digital Elevation Model

The digital elevation model (DEM) was provided in the Equi7Grid by TU
Wien. It was sampled to a resolution of 10x10 m to match the grid of the
S1 backscatter data for the Tile E048N015T1. Section 4.1 provides a more
detailed description of the preprocessing steps that should be taken into
account to overcome any artefacts in the raw DEM, which may prevent its
complete runoff.

3.6 Water Level Data

River gauge data provided by PegelAlarm 1 is used to verify the melting
start of the γ0 backscatter data. Hydrografischer Dienst Tirol and Tiroler
Wasserkraft AG gathered most of the used data for the years 2017 until
2021. In Austria, hydrological data goes back to 1893. The data includes

Figure 3.4: Hydropower stations in Austria. Most of the Austrian rivers are
used for small hydropower generation. These over 100 hydropower plants
account for more than 60% of the electricity produced in Austria. Image
according to OEAV (2023).

parameters as air temperature, precipitation, drainage, rate of flow, ground
water as well as suspended solids, water temperature and electrical con-
ductivity. Currently, river levels are measured by placing an instrument
on the bottom of the riverbed and using a pressure sensor to derive the
current river level. It is important to note that changes in stream bed might

1data used from https://earlyfloodalert.com/
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Figure 3.5: Hydrological catchments in this study area. Each catchment
represented in a different color. Marked in green the represented Tile over
Tyrol (marked in red polygon)

affecting the water level data permanently. In addition, the water level data
represent only a small part of the river, which is very variable upstream and
downstream due to changing river banks and widths. During the winter
months, freezing of the gauges can lead to inaccuracies in the height of the
water level data (Hydro Online 2023).
For the purpose of this thesis the hourly available water gauge data were
averaged to a daily basis to filter out diurnal variations of the river gauge.
For a better understanding of the data, the daily data points were delineated
for each hydrological year. In Austria a hydrological year begins on 1st of
October and ends on 30th of September of the following year.
It is important to note, that most of the Austrian rivers are obstructed by
dams, or small run-of-river hydropower, leading to artificial water outlet.
The amount of hydropower stations in Austria is imaged in Figure 3.4. This
image shows that Alpine rivers are highly dominated by small hydropower
plants.
For the whole study area 35 river gauge stations are available, contributing
to 35 different catchments for snowmelt calculations. All hydrological catch-
ments are shown in Figure 3.5, covering mostly the southern and western
part of the study area. However, the northwest part, which includes the
main valley Lechtal, has outlets that lead to Germany where no data were
available for this work. The steps taken to obtain these catchments are
described in section 4.1. The outlet height varies between 200 m above sea
level and 1900 m. The catchments vary in size between 20.4 km² and 3372
km² contributing to a mean distance to the outlet between 100 m and 66
km.
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3.7 Forest Mask

Figure 3.6: HANSEN Global Forest Mask covering 36% of the Tile
E048N015T1.

Due to strong scattering of dense forest, the signal is mainly dominated
by the vegetation and consequently compromises the sensitivity to snow
parameter. As a result, the forest was excluded from the analysis. As input
data serve the Hansen Global Forest Change dataset. It is reprojected to
the Equi7Grid and subsampled to 10x10 m for a better comparison to the
S1 backscatter data. This dataset based on time series analysis by Landsat
images containing tree canopy cover for all vegetation taller than 5m. The
dataset encompasses the years 2000 until 2019. Within the E048N015T1
tile, which is clipped to the boundary of Tyrol, forest areas account for
approximately 36% of the total land coverage. The whole forest cover of
the study area is presented in Figure 3.6. It is worth noting that the forest
expansion adapts to the shape of the valleys, while regions above 2000
m are beyond the timberline and valleys close to the water are mainly
human controlled. The drawback of this dataset is, that it has difficulties
in recognizing sparse forest with tree coverage of less than 30% in one pixel
(Schepaschenko et al. 2015).

3.8 Landcover Classification

The Landcover map ”ESA-Worldcover” provides land cover classification
with 11 different classes. With a 10x10 m resolution it is the first global
land cover product for the years 2020 and 2021 based on Sentinel-1 and
Sentinel-2 data provided in near real time (Zanaga et al. 2021). By first
applying the HANSEN Global Forest Mask, the remaining landcover can
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Figure 3.7: ESA-Worldcover Landcover map reprojected for Tile
E048N015T1

be split into 9 remaining classes covering the study area. The forest that
remains unmasked by the HANSEN Forest Mask accounts for 10% of the
E048N015T1 tile, as depicted in Figure 3.7 in a green color. Grassland
covers about 28%, spare vegetation 10%, snow & ice 7% and moss & lichen
5%. The remaining groups of built-up, shrubs, cropland and permanent
waterbodies such as rivers and lakes cover the remaining 4%. The landcover
classification of the study area is presented in Figure 3.7. It is clear that the
west/east facing Inntal valley is densely populated and most of the southern
part of the study area is covered by glaciers.
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Chapter 4
Methodology

This chapter is dedicated to the understanding of the methodology used in
this thesis for depicting the melting cycle for each hydrological year. This
is done by generating a melting start date to be compared with river level
variations for each catchment separately. It starts with the section 4.1, which
characterises the preprocessing steps for the DEM and the generation of the
catchment areas for the water outlets. Followed by Section 4.2 describing the
processing steps for the backscatter normalization, continuing to the Nagler’s
method of wet-snow classification in Section 4.3 and further developed in
Section 4.4.
Section 4.5 describes the identification of snowmelt, using derivatives of
the γ0 time series. To compare these selected methods to in-situ data,
the hydrological data is introduced in Section 4.6. This chapter concludes
with a benchmarking of the methods used, presented in section 4.7. All
computational steps are performed using Python 3.11. The Python packages
used are mentioned in the respective sections.

4.1 Preprocessing the DEM

Preprocessing steps for the DEM are essential to create a hydraulically
connected elevation model. Most DEMs contain artefacts due to the com-
putation methods and downsampling to the desired resolution. The digital
terrain analysis usually involves two essential steps, first using an iterative
DEM preprocessing algorithm to remove pits and depressions and then
using a recursive flow-direction algorithm to retrieve the flow accumulation
and the catchments area (Qin et al. 2012). Those processing steps were
done using the python package pysheds. 0,

DEM Preprocessing Steps

First of all, a fill pits and a fill depressions method was carried out. A pit
is defined as a single DEM grid cell with surrounding cells all of higher
elevation. While a depression is a bowl-shaped area with multiple cells
having no outlet. Pits are usually in flat areas and in floodplain regions
creating discontinuities in drainage patterns and therefore highly influence
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the hydrological response of a basin. These depressions and pits are often
caused by errors in the DEM process and by real-world conditions. There-
fore, DEMs need to be processed to remove these artefacts (Grimaldi et al.
2007; Qin et al. 2012). Pits and depressions are encountered by raising the
cell height to the minimum height of the neighbouring cells. This results in
a DEM where every pixel has an outlet and no depressions.

Raising cells elevation tends to create large flat regions. That is, cells
where every neighbouring cell has the same height. This leads to misin-
terpreted flow paths with unrealistic parallel channels and other artificial
features (Grimaldi et al. 2007). Therefore, a resolve flats method was carried
out to overcome this problem. By introducing a small slope gradient to the
flat areas, so each pixel has an outlet into an other pixel.

Catchment Retrieval

The catchment area of a water outlet is first generated using a flow direction
algorithm. It determines how the flow drains from each given cell in the
DEM into the neighbouring cell by using the D8-algorithm. This algorithm
automatically extracts drainage networks using only the main drainage
paths. It takes a cell and calculates the direction to the minimum of one
of its 8 neighbouring cells ( in N, NE, E, SE, S, SW, W or NW direction).
If more than one neighbouring cell has the same minimum elevation, the
flow direction is assigned to the most likely direction. (Qin et al. 2012;
O’Callaghan et al. 1984)
The next step is to recursively calculate the flow accumulation from the
flow direction for each cell. The flow accumulation is defined as how many
cells flow through a given cell (Lindsay 2015). Meaning great values for
river lines and low values for ridges as shown in Figure 4.1. By introducing
the outlet point (marked in red), the entire catchment border (highlighted
in green) can be obtained through flow accumulation. The provided figure
illustrates catchment borders that align with the ridge of the mountains.
The southern boundary of the catchment area is relatively flat due to the
glacier, while the northern part near the outlet has steep slopes.

4.2 Snow Backscatter Identification

The management of large amounts of data, such as is the case in remote
sensing, is a challenging task. A common way to manage this issue involves
the utilization of data cubes. Data cubes are multi-dimensional arrays by
representing data along a dimension of interest ( for example along the
dimension time). The python package yeoda provides datacube classes
specially developed for using earth observation (Navacchi et al. 2022). The
scenes available over the catchment area were recorded from 2 different
orbit directions: ascending mode and descending mode. For both orbit
directions, three different relative orbits pass over the study area. Those
relative Orbits are O15, O44, O117, for the ascending pass and O95, O168,
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Figure 4.1: Computed catchment for a certain outlet (red dot) in a specific
catchment (green polygon).

O66 for the descending pass.

relative orbit number O15 O44 O66 O95 O117 O168

masked area 22.45% 30.2% 33.6% 20.7% 22.7% 23.8%
masked area (whole tile) 8.7% 1.3% 1.4% 6.3% 22.7% 23.8%

Table 4.1: Masked area due to layover and shadowing

First, the Hansen Global Forest Mask was applied, and layover and
shadow masks were used to filter out areas with local incidence angles below
15° and above 75°. The outmasked area due to layover and shadowing effects
can be seen in Table 4.1. It also gives an idea of how much of the whole
study area is affected by the layover and shadow for each relative orbit
separately, caused by the orientation of the valleys and the steep slopes.
For the ascending mode, the satellite travels to the north-northeast direction,
while for the descending pass the orbit travels to the south-southwest. The
acquisition times are about 5 pm UTC for the ascending mode and around
5am UTC for the descending mode. This is important to note, as the snow
conditions are highly affected to melting/refreezing diurnal cycles so the
time of acquisition needs to be considered (Marin et al. 2020). Due to
steep slopes in the south-north oriented valleys in the study area, the orbit
direction has a high influence on the time series because of shadowing effects.
While many west-facing and some north-west-facing slopes are masked for
ascending modes, descending orbits are blind to east-facing slopes. That
is one of the reasons why all scenes have been split into ascending and
descending orbit types.
For both orbit types the mean backscatter per scene was built over the
whole catchment, separated into cross- and co-polarization. This leads to
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4 different time series, distinguishable in polarization and relative orbit
direction. ´
In order to capture the influence of the angle of incidence, a rolling mean was
built over the amount of relative orbits for each orbit direction (ascending,
descending) separately for each catchment.

4.3 Wet Snow Classification

To perform a wet snow classification according to Nagler and Rott (2000)
and further developed by Nagler, Rott, et al. (2016), a ratio between the
snow image and a dry reference image was calculated. The reference image
should be either a snow-free scene or a scene with dry snow conditions. In
the study area, the presence of high alpine terrain is constant, resulting
in snow cover throughout the year. It is therefore extremely difficult to
find snow-free days. Therefore, only scenes with dry snow conditions are
included in the analysis.

Reference Dates for Wet-Snow analysis
Date Relative Orbit Date Relative Orbit

6.1.2017 117 23.1.2019 66
15.1.2017 66 24.1.2019 168
18.1.2017 117 25.1.2019 95
2.12.2017 117 10.1.2021 44
3.12.2017 44 15.1.2021 117
13.12.2018 168 16.1.2021 44
14.12.2018 95 27.1.2021 117
14.12.2018 15

Table 4.2: Reference days for dry snow analysis for the relative orbits
overflying the study area.

The selection of good reference images is essential for a good wet snow
analysis. Single images might cause some problems due to changing soil
moisture conditions affecting the backscatter. Calculating the average
from the same relative orbits improves classification accuracy and also
reduces speckle effects. For filtering these reference images, meteorological
SPARTACUS-grid data with an spatial resolution of 1x1 km and a daily
temporal resolution serve as input parameter. (Hiebl et al. 2015; Hiebl et al.
2017) If the maximum temperature of all pixels for the whole radar scene is
below 0°C ( indicating an ice day) and this condition holds for 3 days in
advance, dry snow is assumed. The acquisition dates of the 15 reference
scenes are in midwinter, between December and January. The exact dates
can be found in Table 4.2, pointing out the warm winter 2019/2020 as no
ice days can be observed.
If the ratio between the calculated reference scene and the given snow
scene for a specific pixel is below 2 dB, wet snow is assumed. This method
serves as basis for detecting snow melting phases described in the upcoming
section.

38



4.4. SNOW MELT DYNAMICS USING THE MARIN METHOD

4.4 Snow Melt Dynamics using the Marin

Method

As the wet snow classification does not go deeper into the evolution of
snow melting processes, an approach according to Marin et al. (2020) is
introduced. For a hydrological year one single backscatter pixel is first
influenced by soil moisture variations. Usually the first snow is wet or
falls on a relatively warm terrain. This results in a wet snowpack with low
backscatter values.
Either this snowpack melts and new (dry) snow falls later in the year, or
the temperature drops resulting in a dry snowpack. This state holds for a
few months in high alpine terrain. Before the melting phase begins, the
time series remains constant, as the backscatter contributes mainly from
the same snow-ground boundary. The LWC is low and the SWE rises
continuously due to fresh snowfall during the winter. The dissimilarity
in local incidence angles and the variation in illuminated areas caused by
layover and shadowing effects account for the consistent offset between the
ascending and descending orbits.

Figure 4.2: Theoretical behaviour of a backscatter coefficient for morning
(Descending, green) and evening (Ascending, blue) timeseries.Influenced by
LWC (yellow) and the SWE (red) evolution. (Marin et al. 2020)

At the beginning of the melting phase, the snowpack begins to incorporate
liquid water into the topmost snow layer, leading to an increase in LWC
and hence a decrease in the σ0 signal (Marin et al. 2020). This drop is
introduced by a threshold t=2 dB (according to the Nagler’s method (Nagler,
Rott, et al. 2016)) in the afternoon acquisition, as the upper snow layer is
subjected to cycles of melting and refreezing every day and night, without
affecting the morning signal. This indicates the start of the moistening
phase shown in Figure 4.2 where the threshold is marked as a red dot.
When the morning recording falls below the 2 dB threshold, the ripening
of the snowpack begins. At this point, wetting penetrates the snowpack
and reaches the lower snow layers, contributing to an isothermal snowpack.
The backscatter coefficient continues to decrease as the LWC continues
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to increase. When the maximum pore retention capacity is exceeded, the
runoff phase begins.
The minimum σ0 is at the beginning of the runoff phase where the snowpack
is saturated. This phase indicates the first drainage and consequently leads
to a decreasing LWC and a drop in the SWE. The start of the runoff phase
leads to an increasing backscattering coefficient. This may be explained
due to increasing roughness, the change of snow parameter (such as grain
size, grain shape and density) or the decreasing LWC. Moreover the snow
runoff generates an intermittent snow cover inside a cells resolution, further
leading to an increasing in the backscatter signal (Marin et al. 2020).
For this work, the method was adapted by calculating the mean of the
time series related to the ascending mode and calculating the mean of the
different time series of relative orbits relating to the descending mode, as six
different relative orbits are used. A forest mask and a layover and shadow
mask were applied. For each scene, the sum of all pixels for an entire
catchment area was calculated. For a better understanding of individual
catchments and individual backscatter behaviour of certain catchments, the
time series was masked with certain landcover classifications and a height
mask was applied. This has the advantage of showing snowmelt only at
certain elevations and giving an impression of the runoff delay within a
catchment for certain elevations.

4.5 Snow Melt Dynamics using the Beltra-

mone Method

Beltramone et al. (2023) presents a novel approach to identify phasechanges
in snow cover extent using Sentinel-1 data. The idea was to detect the sea-
sonal snow accumulation and melting processes using time series derivatives
and their positive and negative anomalies over Argentinean Patagonia. As
input serve Sentinel-1 VV polarized time series for one specific descend-
ing pass. The beginning of the snowfall is indicated by the first negative
anomaly (green vertical lines) presented in Figure 4.3. With this method it
was possible to determine that the changes between bare ground and dry
snow are significantly different.

The second negative anomaly shows the beginning of the wet snow phase
due to the reduction in the backscatter. The positive anomalies represent
the start of the runoff-phase. This detection is due to the shift from full
snow covered areas to mixed land cover leading to an absolute minimum of
the backscatter time series. All anomalies shown in Figure 4.3 c) represent
values greater/smaller than one standard deviation of the first derivative.

For the study presented in this work, the method was slightly adapted.
First a conversion of the time series from logarithmic to linear range was
carried out before the derivatives are calculated. The Hansen Global Forest
mask as well as shadowing and layover mask were applied. Moreover, the
mean was built over the whole catchment and not just for single spots as
presented in the study by Beltramone et al. (2023). For anomaly detection
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Figure 4.3: a) example Timeseries of the VV-polarized timeline. b) smoothed
timeline. c) First derivative of smoothed time series including positive
anomalies (red) and negative anomalies (green).(Beltramone et al. 2023)

the threshold was set to twice the standard deviation for a more robust
detection.

4.6 Preprocessing of hydrological data

The hydrological data are available in an hourly resolution. In order to
eliminate daily fluctuations, the average value was calculated for each day.
The highest discharge occurs during the melting season in spring and early
summer, primarily caused by the snow melting in elevated areas. Figure 4.4
illustrates the discharge pattern for one hydrological year. It can clearly be
seen that the mean temperature of the whole catchment increases upon 0°C,
followed shortly afterwards by a sharp rise in water levels. The hydrological
data are available at hourly resolution.

Due to the presence of dams in most catchments, it is common to ob-
serve incorrect short high peaks in mid-December, as depicted in Figure
4.4. This rise does not represent the real runoff, but a false peak due to a
refreezing gauge. The temperature range shown in Figure 4.4 is determined
by calculating the average minimum temperature across the catchment area
and the average maximum temperature for each day.
To compare the backscatter snowmelt events with a hydrograph, these
wrong peaks due to the refreezing gauge need to be filtered out. For this
purpose the precipitation data and the water level data are scaled via a
minimum/maximum normalization. A peak detection was performed for
both datasets to find high precipitation rates and filter high water level
dates. The water level peak was determined by utilizing the width of the
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Figure 4.4: Watergauge and meteorological parameter for a common high
alpine catchment

normalized signal, set at 80% of its height. Additionally, this peak must be
sustained for a duration exceeding 2 days, during the melting period from
February to July. The next step is to analyse the steepness of the water
level slope. If it is rising very fast, having a gradient of more than 0.2 for
the normalized time series, this day is introduced as start of water rise due
to melt water.

A signal analysis was performed to calculate the response time for each
catchment. Therefore, a cross-correlation between the precipitation and
the water level data was calculated only for the summer months with
temperatures higher than 1°C. The time lag between the rain event and
the peak in the water level is introduced as response time for this certain
catchment. It is important to emphasise that the calculated response time is
strictly applicable to summer runoff and that the response characteristics can
vary considerably between events within the same catchment. In addition,
snow depth was found to have a strong influence on runoff time. The
measurement of runoff timing is crucial, particularly when considering snow
depth and its impact on the time lag to peak outflow and its interaction
with snowmelt.(Kobayashi et al. 1985; Merz et al. 2003; Würzer et al. 2016)

4.7 Method Benchmarking

Several methods have been introduced to identify snowmelt from backscatter
data: Firstly, a method using fixed threshold detection was used. (Nagler
and Rott 2000; Nagler, Rott, et al. 2016) . This method was further devel-
oped with a combined fixed threshold detection, involving the detection of
the absolute minimum to capture the runoff phase introduced by Marin
et al. (2020). The third method is a calculation of derivatives from the
backscatter time series (Beltramone et al. 2023). According to Beltramone
et al. (2023) the derivative method detects changes within the melting season
in 92% of their study sites while the fixed-threshold method introduced in
Marin et al. (2020) was only successful in 58% of the cases. It is important
to mention that the anomalies were calculated using the derivatives from
only one specific descending pass vertical polarized. The authors did not
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mention why other relative orbits or the cross-polarization method were not
considered.
Using non-fixed threshold methods offers the benefit of not relying on the
selection of the optimal reference image and identifying an appropriate
threshold. A fixed threshold is particularly problematic in forests, as the
variation of the SAR signal is relatively small (Karbou, Veyssière, et al.
2021). Hence, a threshold function instead of a fixed threshold, may better
account for signal variability with different land cover types and incidence
angles. The use of optical data should be considered to identify only snow-
covered areas (Karbou, James, et al. 2021).
Comparing the runoff days detected by these two methods with the start of
the melt water rise in the water level data indicates how well the methods
work.
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Chapter 5
Results

This chapter enhances the results of the analysis. Initially the rain response
time is outlined in Section 5.1. Next, some examples of different catchments
are introduced in Section 5.2 and Section 5.3 and further developed in
Section 5.4. The methods are developed by creating a land cover mask
and dividing the backscatter into pixel-related heights above and below a
certain threshold. All results for one specific hydrological year are listed
in Section 5.5. This Chapter concludes by comparing both methods and
adding additional investigations in Section 5.6.

5.1 Rain Response Time

The rain response time is estimated for all 35 water outlets. First, a
comparison between the precipitation data and the water level data is
accomplished. This was done by computing a cross-correlation function for
the summer months, with the requirement that the temperature exceeds
1°C. The results indicate that the runoff time for each catchment was only
one day, regardless of its size. The reason for this finding might be that the
response time is considerably fast, within hours the precipitation influences
the water level. Nevertheless, the water level data is adjusted to a daily
resolution, which means that the peak can only be observed on the following
day.
This response time is calculated for the summer response solely and assigned
to the spring runoff as well. However, there could be significant fluctuations
caused by the depth of snow and the saturation of the soil (Kobayashi et al.
1985; Juras et al. 2021).

5.2 Runoff Detection in a High Alpine Catch-

ment

To differ the snow melting phases according to Marin et al. (2020), the
method was applied to a high alpine catchment situated in the southwestern
region of the study area within the Kaunertal. According to the metadata,
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the catchment identified with id: 230300 is relatively small in size, encom-
passing only 54.3 km², having a mean distance to outlet of about 5080m
and an outlet height at 1900m.

More than 55% of the catchments landcover relate to snow and ice, 16%
to vegetation, 12% moss and lichen and 12% to grassland. The remaining
5% contribute to build ups and forest.
The examination of the water level data presented in Figure 5.1 (specifically

Figure 5.1: Backscatter contribution compared with meteorological parame-
ter and water gauge data (VV-polarization).

highlighted in a deep shade of blue), show some strong peaks over the whole
hydrological year 2018/2019. The first, at the end of October, appeared
to be due to high precipitation rates across the catchment. In the lower
elevations, precipitation occurs as rain, given the range of temperatures
across the catchment in Figure 5.1. In addition, temperatures prior to the
precipitation event were relatively high, resulting in a warm surface and
subsequent rapid melting of the snow. The mid-December peak is noticeably
higher than the first peak, yet there was no significant precipitation that
could explain so much runoff. Furthermore, the temperature was relatively
low during this period. This leads to the assumption that the gauge has
frozen (as explained in Section 3.6), resulting in a false peak. During the
remaining winter, the water gauge data are considerably low as precipitation
falls as snow, resulting to a smooth and stable timeseries. In Spring, the
first peak can be observed at end of April shortly after the temperature
rises higher than 0°C. Followed by several minor peaks that correspond to
fluctuations in temperature, the primary snowmelt occurred in early June.
During this period, the average temperature was above 0°C, and there is a
significant surge in the water level data. After the completion of snowmelt,
the water level is primary influenced by precipitation events.
The VV polarized backscatter behaviour for the catchment is plotted as
two black lines in Figure 5.1. The dashed line corresponds to the ascending
pass, while the solid line represents the descending passes. The γ0 shows
no significant drop in signal during the initial precipitation event. This
observation could possibly be attributed to the fact that the primary rain
event occurred on October 28th and the next overflight was 5 days later on
November 2nd. The absence of any changes in the backscatter data during
the mid-December water rise event further supports the hypothesis that the
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5.2. RUNOFF DETECTION IN A HIGH ALPINE CATCHMENT

gauge was frozen.

By applying the methods described in Chapter 4, the melting phases
shown in Figure 5.2 were derived. The backscatter data were split into
ascending and descending mode and a rolling mean was computed for both
orbit directions based on the number of relative orbits. Owing to the sepa-
ration into VV and VH polarization, four time series for a single catchment
per hydrological year were obtained. The ascending mode has slightly lower
returns than the descending mode due to different illumination areas. Figure
5.2 denotes the four different backscatter time series. Ascending orbits were
indicated by the color green, while descending orbits were denoted by the
color purple. Those passes are further split into VV and VH polarization
where the darker line indicates VH (dark green for the ascending orbit and
dark purple for the descending orbit respectively) and VV is shown in light
green/ light purple.

Figure 5.2: Snowmelt dynamics via VH and VV polarized γ0 representation
and their derivatives. Split into ascending and descending pass. As soon
the backscatter drops beneath the wet-snow threshold, the time series is
plotted in red.

As soon as the backscatter drops beneath the wet-snow-threshold of
2dB compared to the reference scene, the backscatter is colored in red
(Nagler, Rott, et al. 2016). The blue vertical line indicates the start of the
melting phase noticeable in the water level data. The lower plot shows the
derivatives of all four backscatter time series.

When applying the Marin method one can observe that the γ0 data
remain constant until the melting phase begins mid of April. This moistening
phase is introduced by a wetting in the descending pass and shortly after
the wetting of the ascending pass indicates the start of the ripening phase.
Those phases contribute to higher temperature rates (Figure 5.1) and a
slight increase in the water level data.

This phase holds for over one month. End of May the absolute min-
imum of all four time series indicate the start of the runoff phase. The
maximum retention capacity of the pores is exceeded, leading to the release
of meltwater, which shortly afterwards contributes to a sharp rise in the
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water level data. The time difference between the start of the runoff and
the melting noticeable in the water level data (marked as a blue vertical
line in Figure 5.2) is plotted on the upper left corner and indicates a delay
of two days. Once the snow is completely melted, the backscatter data is
primarily affected by precipitation events.

Figure 5.3: Elevation variation in the catchment. More than 50% of the
catchment are at elevations higher than 2900m.

The Beltramone method reveals significant fluctuations in derivatives
throughout the year, as shown in the lower plot in Figure 5.2. The descending
VV backscatter signal exhibits two distinct declines in the derivatives. The
initial negative anomaly should mark the start of the snow season, while
the second negative anomaly should denote the start of the melting phase.
It seems that the first negative anomaly is close to the start of the melting,
detected with the Marin method. The second anomaly also lies within the
melting season. When taking a closer look at the temperature data, there
is a initial slight warming in April and a warming over the whole catchment
in June. So the first decrease in the derivatives might indicate the snowmelt
in the lower elevations, and the second drop might indicate the melting
start in the higher elevated regions.

The Beltramone runoff-day was detected 30 days later compared to the
Marin method. This leads to a later detection of 28 days compared to the
water level perceptibly, depicted as a red dashed line over both plots. The
derivatives across all time series indicate that during the winter snow cover,
the values remain constant and stable, in contrast to the fluctuating values
observed in the summer months.

Upon examining the water level data throughout the melting phase, it
becomes evident that a slight increase in the water gauge can be observed
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during the ripening phase, in the middle of April. This might be due to
initial melting at lower elevations, noticeable in the whole catchment, by
introducing the start of the melting phases seen in both methods. It shows
that most of the catchment is at elevations higher than 2900m and only a
small amount at elevations lower than 2300m.

5.3 Runoff Detection in an mid-altitude Catch-

ment

The second example is a catchment located in the Ötztal, with the water
station located in the Ötztaler Ache. This particular catchment, identified
by the id: 201384, spans approximately 450 km² and has an average distance
to the outlet of around 17 km. The drainage of this catchment is located in
the village of Sölden, at an elevation of 1340 m. The maximum height in
the catchment is the Wildspitze peak with 3768 m. The hydrological data
are available between mid-May 2018 and end of 2021 with a gap between
December 2019 and May 2020. This leads only to two full hydrological
years - 2018/2019 and 2020/2021. Figure 5.4 shows the two time series for
each hydrological year. 35% of the catchment contributes to snow & ice,
about 20% each to grassland, spare vegetation and moss & lichen.
Looking at the upper plot in Figure 5.4 there is a slight peak in the

Figure 5.4: Snowmelt dynamics of catchment id: 201384 for the hydrological
years 2018/2019 (upper image) and 2020/2021 (lower image).

water gauge at end of October, which could be due to the same rain event
described in section 5.2. Both years show some short high peaks in the
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5. Results

water level data during December and January. Compared to the observed
meteorological data, those months show very cold temperatures with a mean
of -10°C (Figure A.1 and Figure A.2) for the days of the strong water peaks.
This leads to the assumption that the gauge froze, indicating a wrong rise of
water. Shortly prior to the outlet station, a small brook called Rettenbach
drains into the Ötztaler Ache. The Rettenbach has a hydroelectric power
plant, with controlled runoff behaviour. In both years, the initial spring
water melt occur at the very beginning of June, resulting in a continuous
rise of runoff for a duration exceeding one month.

The γ0 data show a slight decrease in November for both years. This
is usually the first snow in the season, which is wet or covers on relatively
warm terrain - this results in a wet snowpack, generating this decrease of
backscatter as shown in Figure 5.4.

The Beltramone method also encompasses the occurrence of initial wet
snow event, particularly the distinct prominent negative peak observed dur-
ing the hydrological year 2018/2019. During winter, the snow backscatter
seems very smooth apart from a slight depolarization in February 2019 in
the ascending mode. This depolarization is also distinctly evident in the
derivatives method. The melting phases are first detected by the Marin
method and one week later with the Beltramone method, showing a negative
anomaly in mid-April. During the ripening phase, a slight increase in the
water level can be observed in the ascending pass. This increase could
be due to differences in the times and areas of illumination between the
descending and ascending orbits. The start of the runoff phase for the Marin
method is shortly before the melting can be detected in the water level
data (2 days before). The Beltramone method, on the other hand, shows
the start of the runoff phase when the water level is at its highest. The
first snow of the coming winter season can also be seen, especially with the
Beltramone method, which shows a clear negative anomaly in September
2019.

The second graph, shows the hydrological year 2020/2021. The Beltra-
mone method shows a positive anomaly in November, which could indicate
the first dry snow of the season or the increase in backscatter following the
melting of the first wet snowfall of the season. This hydrological year shows
a short depolarization in February as well where the ascending VV signal
shows a short peak. In April, there is a slight decrease in the backscatter
signal due a short warming (Figure A.2). This indicates the start of the
runoff phase for the Beltramone method, nearly two months before the
actual water rise is observed. The slight warming also comes with a slight
increase in the water level data. The moistening phase for the Marin method
is observed with the ascending orbit mid of April, shortly afterwards the
drop of the descending orbit marks the beginning of the ripening phase.
After the runoff start found with the Marin method, an increase of the
derivatives can be observed as well but not clear enough for the automatic
detection for the year 2020/2021.
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AND HEIGHT APPORTIONMENT TECHNIQUES

Comparing Figure 5.2 with Figure 5.4 for the year 2018/2019, both
graphs show a strong increase in water level data at the end of the melting
phase, followed by a secondary peak about two weeks later. The water
level data appear remarkably similar, and even the runoff phase seems to
start around the same date for the Marin method. The initial negative
peak identified by the Beltramone method should show the beginning of
the snowfall in autumn. For the catchment id: 230300, the drop in the
derivatives is not clear enough for an automatic detection. The second
negative peak should show the beginning of the melting phase, visible in
both catchments.
The method employed for the catchments depicted in Figure 5.2 and Figure
5.4 yields comparable outcomes to the Marin method. In both cases, there is
a drop in derivatives during the autumn season. The second drop indicates
the melting phase, similar to the melting phase found by the Marin method.
The analysis shows that the Beltramone method performed less accurately
than the Marin method during the runoff phase for both years.
It appears that the Beltramone method lacks robustness and is prone to
even brief warming phases during the year. Other derivative timeseries,
such as the VH polarization, were also analyzed but did not show significant
improvements.

5.4 Enhanced Runoff Detection Using Land

Cover Masks and Height Apportionment

Techniques

Catchment id: 201574 is situated in the southeastern part of the study area,
characterized by an outlet elevation of 1000 m. Spanning approximately 323
km², this catchment represents 5% of the entire study area and encompasses
around 2.5% of the state of Tyrol. The catchment has a mean distance to
the outlet of about 14 km. According the the ESA Worldcover classification,
60% of the catchment area is covered by grassland. After the Hansen Global
Forest mask was applied, 15% of the area still containes remaining forests.
Approximately 10% contains other forms of vegetation, and about 6% is
covered by moss and lichen. The remaining part consists of snow and ice
(6%) and built-up (3%).

Although, the catchment covers high alpine terrain, the γ0 time series
looks rather smooth with no clear drop of the backscatter signal (Figure 5.5).
The time series data reveal that wet snow occurred for a limited number of
days, and it was not feasible to identify the periods of snowmelt using the
Marin method. This is due to the fact, that the ascending signals hardly
drops beneath the threshold of 2dB from Nagler. Whereas the Beltramone
method works very good for this catchment as the time delay between the
runoff detection and the water level rise is 6 days. A very short high peak
at the end of February was observed due to the freezing of the gauge as the
temperature drops beneath -16°C (Figure A.3).
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Figure 5.5: Snowmelt dynamics compared with water gauge data for catch-
ment id: 201574 for the hydrological year 2017/2018 shows no significant
changes in the γ0 time series.

A further investigation was carried out to relate snowmelt phases with
respect to the landcover classification based on the ESA Worldcover. De-
spite the application of the HANSEN Forest Mask, which was intended to
exclude forested areas, it was found that more than 15% of the pixels still
contained forest. Consequently, these pixels were masked out. However,
this adjustment only resulted in a marginal enhancement of the data (see
Appendix A.4). Another attempted method was to filter out various land-
covers, but this did not yield any significant improvement in the findings.
Therefore, the data were further analyzed by looking at the elevation steps
within the catchment (Figure 5.7).

Figure 5.6: Split γ0 into heights above elevations higher than 1600m (upper
image) and beneath elevations of 1600m (lower image).
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5.4. ENHANCED RUNOFF DETECTION USING LAND COVER MASKS
AND HEIGHT APPORTIONMENT TECHNIQUES

Figure 5.7: Elevation steps for the Catchment id: 201574.

The concept was to divide the backscatter based on specific elevation
thresholds, aiming to gain a deeper insight into snowmelt patterns across
varying heights. Particularly, it acknowledges that lower elevated areas may
not always be covered by snow.

Figure 5.6 shows the time series of backscatter contributing to heights
above 1600 m (upper image) and beneath 1600 m (lower image). The eleva-
tion threshold is visible in Figure 5.7 with areas below this threshold marked
in red and orange. The Figure presents the possibility to automatically
detect snowmelt using the Marin method when split in certain elevations.
This method is only working for this catchment, when the remaining forest
pixels are masked out as well.

The Beltramone method remains effective for regions below 1600 m.
The start of the runoff phase occurs slightly earlier than the increase in
the water level, whereas the detection of the melting phases according to
the Marin method occur several days before the Beltramone method. The
time series, which contributes to the pixel with elevations above 1600 m,
illustrates the initiation of the runoff prior to its actual detection in the
water gauge. The Beltramone method failed to promptly detect the runoff
phase, lagging behind the observed water level fluctuations.
The findings illustrate that the snow thaw occurs at an earlier stage in
the season for pixels situated at lower elevations compared to those at
higher elevations. Additionally, due to time differences, the behavior of
various pixels cannot be observed when computing the mean over the entire
catchment. However, there is a clear melting phase, especially for higher
elevated pixels. One possible reason for the lack of significant changes in
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water levels in the lower regions could be the shallow snowpack, which may
have resulted in less clearly defined backscatter behaviour. However, it is
uncertain whether this shallow snowpack had a significant impact on the
water data.

5.5 Results for Hydrological Year 2018/2019

A total of 28 distinct catchments (Figure 5.8) were considered by aggre-
gating all available hydrological data for the year 2018/2019, indicating
the successful application of at least one of the methods in each catchment.
The vertical lines indicate the time lag between the water level rise and the
start of the runoff phase. Where the Marin method is colored blue and the
Beltramone method colored red. A negative value indicates that the runoff
day was detected after the rise of the water level in the in-situ data.

Figure 5.8: Runoff time for each catchment for the hydrological year
2018/2019 showing the time difference between the Beltramone method
(red) and the Marin method (blue) compared to the water level rise observed
in the insitu data

In the majority of the given examples, the Marin Method outperformed
the Beltramone Method. This highlights the importance of using all available
information, as demonstrated by the Marin Method, rather than relying
solely on a single time series, as done in the Beltramone Method. In some
examples only one of both methods worked. For the hydrological year
2018/2019, both methods were found to be effective in 22 catchments.
However, in five instances, only the Marin Method proved successful, while
in one case, the Beltramone method was the only method that yielded
positive results.

There appears to be a potential correlation between the size of the
catchment and the time delay (see Appendix Figure A.5), although there
was no time difference detected for runoff time in the summer months. The
Beltramone method proved ineffective in capturing data from catchments
with ids: 201384, 201533, 2hd786, and 202226 due to the delayed surge in
backscatter intensity during the later stages of the melting season. This
delay indicated the end of the runoff phase in the Marin method. For
catchment id: 201533 there was a false identification of the melting for
both methods (Figure A.6). The Beltramone method exhibited a delayed
identification of the runoff phase towards the end of the season, while the
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Marin method detected it excessively early. Despite attempting various
landcover masks and dividing the data into distinct elevation intervals, the
results did not exhibit any enhancement.

5.6 Results Benchmarking

Figure 5.9 shows the comparison between the Marin method and the Bel-
tramone method over all available hydrological years.

Figure 5.9: Schematic representation of the Marin Results (blue) and the
Beltramone results (red) for each hydrological year separately compared to
the melting detection of the water level data.

The boxplot depicts the spreading of both methods compared to the
rise of the water level data. A closer look at the median distributions
shows that the results of the Marin method are within ∆days = 5 whereas
the Beltramone method shows highly varying distributions with a median
reaching over ∆days = 40. Overall, the Marin method is the more favorable
choice compared to the Beltramone method due to its higher likelihood of
producing reliable results and its consistent effectiveness. In contrast, the
Beltramone method often fails to identify any notable changes. However,
there are instances where the Beltramone method succeeds while the Marin
method falls short, but these occurrences are limited and are shown in
Section 5.4. The data shown in Figure 5.9 clearly demonstrates that for the
hydrological year 2019/2020, both methods produced a significantly high
median, while the runoff detection method performed exceptionally well in
the other years. A comparison of the average snow height in Figure 5.10 at
three specific stations reveals that the winter of 2019/2020 had less snow
than the other three years, specially for lower elevations.

As stated in Section 5.4, a technique for enhancement involved utilizing
the ESA Worldcover Classification to conceal the remaining forest pixel.
Figure 5.11 shows the boxplot with the outmasked remaining forest pixels
in green. It is evident that the extent of spread in the unmasked outcomes
is slightly reduced in comparison to the original Marin method. In the year
2019/2020, there is a decline in precision, whereas for the remaining years,
there is a marginal improvement.
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Figure 5.10: Snow heights were measured at three in-situ stations located
at varying elevations. The winter of 2019/2020 exhibited lower snow ac-
cumulation compared to the other three winters. Data available at Geo-
SphereAustria (2023).

Figure 5.11: Schematic representation of the Marin Results (blue) and
the same method including an additional forest mask (green) for each
hydrological year separately compared to the melting detection in the water
level data.

Figure A.7 - Figure A.13 show the scatter plots for all years separately.
First, the comparison for the Marin and Beltramone method (Figure A.7-
Figure A.9) is shown and followed by the results for the Marin method
compared with the Marin method, including outmasking the remaining
forest pixels (Figure A.10 - Figure A.13).

Some catchments do not have significant water level fluctuations. Con-
sequently, these catchments are excluded from the analysis due to the
inaccurate estimation of the duration of the water rise. A map (Figure 5.12)
shows the position of those catchments. The distribution of the catchments
that do not have significant fluctuations in the water level is conspicuously
related to the appearance of limestone (marked in blue). Limestone is sus-
ceptible to build karst forms. Only one catchment (id: 202226) embedded
fully in limestone contributes to outlets with high fluctuations and therefore
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marked in green. The fluctuations of this catchment have repeating short
high oscillations, indicating no clear start of the melt water release (see
Appendix A.14).

Figure 5.12: Map of all catchments. Those marked in red have no significant
water level fluctuations. Marked in orange are catchments with 2 of the 4
years with no significant variation. The blue area indicates the distribution
of limestone over the study area.

Karst formations often lead to very complex subsurface runoff, making
it impractical to analyze the outlets solely based on surface water level
fluctuations. Filtering out these catchments has led to an improvement in
the Marin method, as shown in Figure 5.13.

Figure 5.13: Schematic representation of the Marin method (blue) and the
same method without the catchments showing no fluctuation (yellow) for
each hydrological year separately compared to the melting detection of the
water level data.

Excluding these catchments for the Beltramone method does not have
any impact on the median value, as it remains unchanged. However,
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the dispersion improves compared to the results when all catchments are
included as shown in Figure A.15.
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Chapter 6
Discussion

6.1 Response Time

As mentioned in Chapter 4.7, the average response time during the summer
season is approximately one day for all catchments, regardless of their
respective sizes. In the winter months, the runoff process can slow down,
particularly in areas with high snow depths and saturated surface layers
within the catchment.

6.2 Runoff Detection in a High Alpine Catch-

ment

Normally, the initial signs of wetting are expected to be observed by the
ascending pass (afternoon pass), but this is not the case for Figure 5.2. This
is due to short melting processes that occur during some years. In these cases
the repetition frequency of S1 is not sufficient to sample this situation. This
leads to a moistening phase captured by the morning acquisition (descending
pass) before the afternoon acquisition (Marin et al. 2020). The backscatter
during the summer season exhibits a notable decrease in comparison to the
winter season. This phenomenon can be attributed to the influence of soil
moisture on the backscatter during the summer months, as the soil moisture
has a high influence on the dielectric properties. Further, more than 55% of
the catchment is covered by glacier, so at days with high radiation and high
temperature the backscatter may contribute to melt water of the glacier ice.

6.3 Water level investigation

The Beltramone method and the Marin method are being evaluated using
the water level data, assuming that the water level data are accurate and do
not contain significant errors. It must be considered that solely water level
data and no flow rates are available as ground truth data. A normalization
was carried out followed by the application of a threshold for the gradient, to
figure out the water increase due to melt. However this gradient threshold
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might lead to different results for narrow stream beds compared to wide ones.
The normalisation of water level data leads to apparently large fluctuations
in very smooth time series, as even small events have a significant impact.
This is particularly important for wide river channels, where even small
increases in water level contribute significantly to the total volume of water.
On the other hand, it might also falsify the result for narrow stream beds
with low fluctuations, by indicating a false rise. The significant impact of
these minimal variations on the identification of the discharge of melt water
can often result in potentially inaccurate detection.

Furthermore, it is crucial to highlight that there are two significant
water supply dams within the study area: the Gepatschspeicher and the
Speichersee Finstertal. They serve as hydropower generation for Kauner-
tal and Kühtai, influencing the water level fluctuation highly. Moreover,
the pumped-storage hydropower plant Kühtai has artificial supply pipes
originating from the head of the Ötztal, Stubaital, and Oberbergtal valleys.
This means that all 3 catchments have less drainage due to the artificial
constructions. The same counts for the Kaunertal power plant, having
artificial supply pipes from the Pitztal and the head of the Inntall valley.
On the east and west side of the Kaunertal.

6.4 Snow retrieval with Sentinel-1 backscat-

ter data

The ability to map snow with radar backscatter data from Sentinel 1 pos-
sesses certain limitations. One of the key factors to consider is the incidence
angle, which significantly influences the backscatter.

The disparity between ascending and descending returns may arise due
to varying acquisition geometries, illumination areas, and illumination times
during data collection. The ascending mode refers to images acquired at
5 pm UTC, the descending mode refers to times at 5 am UTC. Moreover,
the layover and shadowing mask affect different areas for ascending and
descending pass. The ascending pass is partly blind to west facing slopes.
Compared with the acquisition time of 5 pm UTC, it predominantly captures
snow pixels associated with east-facing slopes in the evening after sunset.
The snow covering the slopes that face east may have already formed a hard
crust on its upper layer after the sun has set. This could potentially explain
why the moistening phase is initially observed by the descending pass. At
times, the backscatter signal exhibits distinct behavior during ascending
and descending passes for a specific duration. This can be attributed to
variations in acquisition time and alterations in the snow structure that
occur within a single day. In the morning, the snow might be frozen and in
the evening already wet. Even slight changes within the snow structure can
have an enormous effect on the backscatter signal.
It should be considered that the VV and VH polarizations acquired by S1
usually provide coherent information, indicating a high level of correlation
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between them. In some cases although, an inverse correlation of the signal
appear during the ripening phase. The continuous diurnal melting and
refreezing cycles might generate ice layers, affecting the VV and VH polar-
ization in different ways (Dozier et al. 1999).
Moreover, the repetition frequency of the S1 overflights is about 6 days for
each relative orbit, resulting in gaps of several days between newly recorded
scenes. Consequently, this hinders the ability to accurately capture the
exact runoff day compared to the water level data.
The median for the winter of 2019/2020 showed significantly higher results
than the other three years, most likely due to the low snow depth. It
is important to note that snow depth is only measured at three specific
in-situ stations, and therefore, these pointwise measurements should be
distinguished from area-wide coverage. However, the low snow depth did
result in pixels that were not fully covered by snow, making it challenging
to detect snowmelt for the surrounding pixels. It is worth noting that these
snow-free pixels were not masked out and still contributed to the observed
result.
A technique was tested that took into account the cross-correlation between
the water data and the backscatter data. Consequently, the water level
data was carefully examined to identify and exclude any instances of rain
events, ensuring their influence was eliminated. However this did not give
any reasonable results, as the gradient of both datasets are rather dissimilar
and therefore not mentioned in the results chapter.

6.5 Enhancing Beltramone Method

As the Beltramone method did not deliver satisfying results, some enhance-
ments of the method were tested. An idea was to capture the anomaly-date
not only for the descending VV timeline but for each of the four timelines
separately. Constructing the mean over multiple days aimed to establish a
more robust approach with increased input data. However, this approach
proved to be unsuccessful as the outcomes appeared to be arbitrary. Even
when considering individual time series, there was no enhancement observed
in the results.
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Chapter 7
Conclusion & Outlook

In this work, the relationship between snowmelt dynamics from backscatter
data and the water level rise from water gauge is investigated. For this
purpose the the catchment boundaries of the water outlets are introduced.
The backscattering snowmelt is based on the methods by Beltramone et al.
(2023) and Marin et al. (2020). The implementation of the Marin method
involved dividing the backscatter time series into distinct phases of snowmelt
dynamics, namely moistening, ripening, and runoff. Subsequently, the time
delay of the runoff phase was compared to the increase in water level. The
Beltramone method utilizes derivatives of the backscatter time series to
examine anomalies and estimate the runoff date. The results showed clearly
that the Marin method is more robust and accurate than the Beltramone
approach.

Splitting the catchments into aspect related slopes might improve the
findings as snow conditions differ strongly with respect to the incoming
radiation. Furthermore, a elevation threshold implemented for all catch-
ments could help to clarify the behaviour of the timeline. This elevation
threshold could be introduced in 50-100 m steps, so the snowmelt dynamics
within the season and elevation dependent can be analysed. It would also be
interesting to see how slope steepness contributes to runoff time. Moreover,
the geology plays an important role with respect to the runoff pattern.
Going deeper into geology investigation might help to further improve the
findings.

63



7. Conclusion & Outlook

64



Bibliography

Abe, Takahiro, Go Iwahana, Petr Efremov, Alexey Desyatkin, Takumi
Kawamura, Alexander Fedorov, Yuri Zhegusov, Kazuki Yanagiya, and
Takeo Tadono (Sept. 2020). “Surface displacement revealed by L-band
InSAR analysis in the Mayya area, Central Yakutia, underlain by con-
tinuous permafrost”. In: Earth, Planets and Space 72, p. 138. doi:
10.1186/s40623-020-01266-3.
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Appendix

Figure A.1: Meteorological comparison of the VH backscatter data for
catchment 201384 shows a very cold period between the beginning of
December until the start of February for the hydrological year 2018/20219.

Figure A.2: Meteorological comparison of the VV backscatter data for
catchment 201384 shows very cold days in December and at the beginning
on January for the hydrological year 2020/2021.
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APPENDIX

Figure A.3: Meteorological comparison of the VV backscatter data for
catchment 201574 shows very cold days in February for the hydrological
year 2017/2018.

Figure A.4: Backscatter distribution for time series without 15 % forest
cover shows only a slight drop of the signal in the wetting phase, therefore
further investigation is needed.
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Figure A.5: The image provided shows the different catchments sorted
by (1) outlet height, (2) catchment size and (3) mean distance to outlet.
The values are sorted from minimal to maximal value, if the information
is provided in the metadata. Information is not provided for the last 4
catchments.
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Figure A.6: Snowmelt dynamics for the catchment 201533 shows a very
early beginning of the melting phases, whereas the increase in the water
signal is detected a month later.

Figure A.7: Runoff time for each catchment for the hydrological year
2017/2018 showing the time difference between the Marin Method (blue)
and the Beltramone Method (red).

Figure A.8: Runoff time for each catchment for the hydrological year
2018/2019 showing the time difference between the Marin Method (blue)
and the Beltramone Method (red).
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Figure A.9: Runoff time for each catchment for the hydrological year
2020/2021 showing the time difference between the Marin Method (blue)
and the Beltramone Method (red).

Figure A.10: Runoff time for each catchment for the hydrological year
2017/2018 showing the time difference between the Marin Method (blue)
and the Method without Forest pixels (green).

Figure A.11: Runoff time for each catchment for the hydrological year
2018/2019 showing the time difference between the Marin Method (blue)
and the Method without Forest pixels (green).
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Figure A.12: Runoff time for each catchment for the hydrological year
2019/2020 showing the time difference between the Marin Method (blue)
and the Method without Forest pixels (green).

Figure A.13: Runoff time for each catchment for the hydrological year
2020/2021 showing the time difference between the Marin Method (blue)
and the Method without Forest pixels (green).

Figure A.14: This catchment at the very north west of the study area shows
high fluctuating water level. The Backscatter shows a clear drop of signal.
The melting start in the water level data is not clearly detectable.
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Figure A.15: Schematic representation of the Beltramone Results (red) and
the same Method without the catchments with no fluctuation (yellow) for
each hydrological year separately.
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