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Kurzfassung

Programmanalysestools werden häufig eingesetzt, um sicherzustellen, dass Programme
fehlerfrei sind. Fälle, in denen diese Tools mögliche Fehler übersehen (Fehlschlüsse),
sind daher besonders kritisch. Frühere Methoden, Programmanalysetools zu testen,
verließen sich auf entweder auf differentielles Testen, oder testeten hauptsächlich die
Genauigkeit dieser Tools. Wir präsentieren einen Ansatz, der es ermöglicht fehlerhafte
Programme mit Hilfe von erfüllbaren SMT Formeln zu generieren. Diese Programme
eignen sich wiederum um automatisiert zu testen, ob Programanalysetools mögliche
Fehler erkennen, ohne dass dadurch differentielles testen erforderlich wird. Um zu prüfen,
ob unser Ansatz Fehlschlüsse findet, implementierten wir ihn in einem Tool namens
Minotaur und verwendeten dieses, um Fehler in 8 moderne Programanalysetools zu
suchen. Über die letzten 9 Monaten haben wir Fehlschlüsse in 5 dieser Tools gefunden.
Wir erklären und kategorisieren diese, um zu verstehen welche Art von Fehlern unsere
Technik finden kann.
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Abstract

Program analyzers are commonly used to ensure that programs do not contain errors.
Cases where they miss an error (soundness bugs), are therefore especially critical. Past
techniques for testing program analyzers have either relied on differential testing, or
focused mainly on precision issues. We present a technique that generates unsafe programs
using satisfiable SMT formulas. These can be used to test soundness of program analyzers
in an automated fashion, without the need for differential testing. In order to test the
technique, we implemented it in a tool called Minotaur, and used it to look for soundness
bugs in 8 state-of-the-art program analyzers. We found bugs in 5 of the tools, which we
explain and categorize in order to analyze the types of bugs our technique can find.
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CHAPTER 1
Introduction

Over the last decades, tools that perform program analysis have become more common-
place in software development, especially in safety-critical areas. They can prove a broad
range of program properties, such as the reachability of errors and the safety of memory
accesses. Therefore, they play an important role in ensuring that code remains bug-free
and secure.

Nevertheless, program analyzers are themselves programs and can also contain bugs.
These can cause them to crash, get stuck in an endless loop, or, more interestingly, return
an incorrect result. We distinguish two types of wrong results: We call the cases where
the program is safe (correct), but the analyzer reports an error precision issues, and refer
to the case where the program is unsafe (contains an error), but the analyzer claims
correctness soundness bugs.1

In our opinion, soundness bugs are especially dangerous, as they are hard to notice in
practice, and can lead to a false sense of security towards the analyzed programs. On
the flip side, this means that fixing even a few soundness bugs in program analyzers can
prevent errors in a large number of programs.

1.1 Previous work
Testing program analyzers can have an outsized impact, and a few approaches for doing
this in an automated fashion have already been developed. Any automated testing has to
find a solution to the oracle problem [2], which involves finding the expected results for
automatically generated test cases, and previous approaches have relied on well-known
techniques for resolving this:

1To further avoid confusion, we use test/program and error when discussing the analyzed code, and
reserve tool and crash/bug/issue for talking about the program analyzers themselves.
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1. Introduction

MCFuzz [72] uses a different approach, known as metamorphic testing [75]. It takes safe
seed programs and inserts errors in such a way that the safety of the resulting program
remains known. Alas, the majority of generated programs are safe, meaning that most of
the test-cases can only check analyzer precision.

1.2 Contributions
Our approach focuses on generating unsafe programs that can be used to test the
soundness of analyzers, as we deem soundness to be more important than precision. In
particular, we make the following contributions:

• We present a technique to generate unsafe C programs using satisfiable SMT
formulas as well as a minimization routine, which generates minimal explanations
for cases where an analyzer fails to find an error. As the programs are known to be
unsafe, the oracle problem becomes trivial when using them as test-cases.

• We implement the generation and minimization technique in a tool that automati-
cally generates programs and uses them to test program analyzers.

• We performed extensive testing on 8 state-of-the-art program analyzers and managed
to find a total of 10 soundness bugs in 5 tools. Most confirmed bugs were quickly
fixed. We also explain and categorize the bugs to analyze which types of bugs our
approach can find.

1.3 Outline
Chapter 2 gives some more details on program analyzers and presents the theory and
tools on which we build our generation approach. Chapter 3 then goes into detail on
how we generate programs and ensure that they are sufficiently varied. It also briefly
outlines a way to generate minimal versions of programs that trigger bugs, which helps
developers spot the cause quickly.

In Chapter 4 we discuss the tools we tested and how we performed the tests. Chapter 5
gives a brief overview over the test results, before concretely discussing what caused the
bugs we found.

Finally Chapter 6 presents some related work, while Chapter 7 gives a brief conclusion
and looks at different ways in which our approach could be improved.

2



CHAPTER 2
Preliminaries

In this chapter we recap some of the basic notions required for this thesis.

2.1 Program analyzers
Program analyzers are tools that can automatically analyze properties of programs. Most
often these properties have to do with some notion of safety, such as:

• Reach-safety: Check that a given (error-)function is not reached

• Assertion-safety: Check that an assertion does not fail

• Termination: Check that program execution terminates

• Undefined behaviour: Check that no undefined behaviour occurs. This is language
specific and, in the case of C, includes e.g. invalid memory accesses, overshifts,
(signed) oveflows and division by zero.

We call a program safe w.r.t. a property if the property holds for all executions, and
unsafe if there is an execution that violates the property.

Many of these properties can be reduced to one another: For example, division-by-zero
safety for the statement l/r; can be checked as assertion-safety of

assert(r!=0);

which in turn can be expressed as reachability:

if(r==0) error();

3



2. Preliminaries

An important notion for analyzers is nodeterminism. This is used to model values
that might differ for every execution of the program, such as user input or sensor data.
Typically analyzers provide a way to declare variables as non-deterministic. This means
that the analyzer can freely pick the value of the variable when trying to find an error
and, equivalently, has to consider all possible values when trying to prove safety.

2.1.1 Types of Analyzers
We first define the notions of soundness and precision mentioned in Chapter 1:

A program analyzer is sound if it never claims safety for unsafe programs.
A program analyzer is precise if it never claims errors for safe programs.

Note that analyzers are allowed to return unknown, if the technique cannot determine the
safety of a program. This is sometimes preferred, as it maintains precision and soundness.

There are various approaches to program analysis, with trade-offs in runtime, precision
and soundness: abstract interpretation (AI) [19] sacrifices precision in order to improve
scalability, while maintaining soundness. Model checking [15, 18], on the other hand,
tries to be precise at the cost of runtime and sometimes (e.g. in bounded model checking
(BMC) [9]) only guarantees partial soundness.

Often times a distinction is also made between static [40] and dynamic analysis, where
dynamic analysis performs analysis on a running program, while static analysis only
reasons about program code.

The tools we tested mainly perform various forms of static analysis. However many
of the tools we tested (see Section 4.1) implement and even combine several different
approaches, including dynamic analysis techniques. This makes an exact classification
difficult.

2.2 SMT reasoning
Satisfiability modulo theories (SMT) extends the satisfiability problem over propositional
formulas (SAT) with theory reasoning. The theories can take many shapes, as long as
they have a decision procedure and some operator with boolean result. We call theory
expressions that yield a boolean result theory atoms. SMT formulas are built from
theory and boolean atoms using standard propositional connectives. This allows for more
expressive formulas than SAT, while still allowing for relatively efficient reasoning [52,
62], depending on the theories being used.

Recall that in SAT solving a formula is sat if it has a model (an interpretation that
makes the formula true) and unsat otherwise. For SMT we distinguish propositional and
theory satisfiability: for example the formula

(y ≤ x → x < y) ∧ (x = 2 ∨ ¬(y = 3)) ∧ y = 3

4



2.2. SMT reasoning

is propositionally sat: clearly y = 3 must be true (as it is a unit clause) and by unit
propagation x = 2 must also be true. Lastly, to make the implication true, we can set
y ≤ x to false. Setting y �→ 3, x �→ 2 also yields a valid model in the theory of integer
arithmetic. Therefore this formula is sat both propositionally and for the theory of
integer arithmetic.

Meanwhile the formula

(y ≤ x → x < y) ∧ (x = 4 ∨ ¬(y = 3)) ∧ y = 3

has a similar propositional model, but is unsat in the theory of integer arithmetic: setting
y ≤ x to false gives 3 ̸≤ 4, which is a contradiction. Setting y ≤ x to true means x < y
must also hold, but 4 < 3 is also a contradiction.

In the following we will not distinguish between propositional and theory satisfiability,
but rather call an SMT formula sat if it is both propositionally and theory satisfiable,
and unsat otherwise.

Over the past years many SMT solvers have been developed, which combine propositional
and theory reasoning to automatically decide SMT formulas. Popular solvers include Z3
[48], mathSAT [14], Yices [23] and CVC4 [5], though there are many more [53, 13, 59].
In addition to solving the decision problem (whether a given formula is sat or unsat),
modern solvers provide a broad range of further features, such as unsat core extraction
(finding a minimal explanation for an unsat formula) or formula simplification.

2.2.1 SMT-LIB
SMT-LIB [4] is an effort to provide a standard notation for SMT formulas and problems.
The standard is implemented by most modern SMT solvers and enables competitions
such as SMT-COMP [63] and APIs like pySMT [28], both of which have been useful for
this thesis.

SMT-LIB defines a wide family of logics, named after the theories they include. In this
work we mainly use the theory of quantifier-free (non)linear integer arithmetic (QF_LIA /
QF_NIA), as well as the theory of quantifier-free fixed-size bitvectors (QF_BV). The latter
defines reasoning over bitvectors of finite length and is particularly useful for modeling
machine arithmetic. We also use the extension of those theories with the theories of
arrays (A) and uninterpreted functions (UF). For a full definition of these logics, please
refer to the SMT-LIB website [3].

2.2.2 STORM
STORM [45] is a tool that automatically tests SMT solvers for critical bugs (cases where
the formula is sat but the solver returns unsat). It does this by generating SMT formulas
which are satisfiable by construction:

Given an SMT formula as seed, STORM uses an SMT solver to obtain a model M for it.
It then computes the truth-value of every subformula under M. These subformulas are

5



2. Preliminaries

combined to create new formulas (mutants), while incrementally computing their truth
values (still under M). It can then output a set of true mutants, which must clearly be
satisfiable (as M is a model and they are true under M).

STORM also provides the infrastructure to automatically test SMT solvers using the
generated mustants, as well as a minimizer. In this work we use STORM to generate a
pool of satisfiable formulas from a (potentially unsatisfiable) seed.

2.3 Fuzzle
Fuzzle [33] is a tool for benchmarking fuzzers. It generates programs from mazes (see
Section 3.1 for more details), through which tested fuzzers need to navigate in order
to find an error. This allows for nice visualisations both for the problem itself and the
coverage the fuzzers managed to achieve.

In order to improve realism the authors selected a few bugs from the national vulnerability
database [51] and translated the error traces first to SMT formulas (using Klee [12]) and
finally to if-guards. These ensure that the fuzzers have to find the values that match the
error trace of a "real" bug, in addition to finding their way through the maze.

Fuzzle also implements automatic benchmarking of state-of-the-art fuzzers, including
benchmark generation, testing, as well as computation and visualization of coverage
statistics. In our approach Fuzzle provides the basic framework on which we built our
program generation.

6



CHAPTER 3
Generating unsafe programs

We now present our approach for generating programs: First, an adapted version of
Fuzzle is used to generate scaffolding code, which contains an error. This scaffold is then
populated with logic obtained from an SMT formula, ensuring that the error is reachable
iff the formula is sat.

To increase diversity of the programs we propose different transformations of the scaffold,
which maintain reachability of the error. STORM is run on SMT seeds to generate
satisfiable formulas, both to boost variety and ensure that the errors are always reachable.

Lastly a simple minimization procedure can be performed on cases which caused a bug.
It generates a minimal program, which is guaranteed to still trigger the bug, while
eliminating non-relevant code.

3.1 Program generation
Program generation is based on Fuzzle, which we adapted to follow SV-COMP norms
[7] for error calls and declaration of nondeterministic variables. Fuzzle first generates
a scaffolding, consisting of branching function calls and injects logic via the branching
conditions. In our case the guards for these branches will be generated using SMT files
as seeds.

3.1.1 Scaffolding
The scaffolding of our programs can be seen as a 2D-maze on a square grid. These mazes
are generated randomly, with each maze having a start, an exit and exactly one path
connecting them, which we shall call the solution. The start represents the program
entry point (usually the main() function), while the exit marks the error function call
(__VERIFIER_error() in SV-COMP).

7



3. Generating unsafe programs

Mazes are first translated into directed graphs, with an edge existing between two nodes
iff they are neighbouring in the maze (i.e. are next to each other in the grid and don’t
have a wall between them). To generate a scaffolding these nodes are then rendered as
functions, such that a function f1 can call a different function f2 if there is an edge from
f1 to f2 in the graph. In case there are several outgoing edges, if-branches are added to
ensure that only one function is called:

1 function_1(){
2 if(___){
3 function_2();
4 } else if(___) {
5 function_3();
6 } else if(___) {
7 function_4();
8 } else {
9 //

10 }
11 return;
12 }

Listing 3.1: Example scaffolding for a function with 3 neighbours.

By design of these translations there must be a sequence of function calls, corresponding
to the solution of the maze, that starts at the main function and finally calls the error
function. This ensures that the error is indeed reachable.

3.1.2 Transformations
To further increase the variance of programs, we also propose some transformations on
the scaffolding. All transformations are designed to preserve reachability of the error call.

Remove backwards edges: (Partially) remove backward edges. Backwards is defined
via a breadth-first search from the maze start, where an edge from node n to node m is
backwards iff n is found first by the search.

In particular, removing all backwards edges results in a non-recursive program, as there is
no way to revisit a node that has been visited before. This is required for some analyzers
that do not support recursion.

This transformation preserves reachability as the solution only uses forward edges. Thus,
removing backwards edges cannot make the solution invalid.

Removing walls: Removing certain walls in the maze, makes nodes have more neigh-
bours and allows for more paths (and potentially easier) paths through the maze.

This preserves reachability as removing walls cannot make the original solution invalid.

Chaining mazes: Make the exit of one maze lead to the start of the next maze. This
allows chaining both an arbitrary number of mazes and mazes of arbitrary shapes.

8



3.1. Program generation

This preserves reachability by transitivity of reachability: Since the exit of any maze mn

is reachable from its start, and the start of maze mn+1 is reachable from maze mn then
the exit of maze mn+1 must be reachable from the start of maze mn. And clearly the
start of maze m1 is already reachable, as it is the program entry point.

3.1.3 Guard generation
Similar to Fuzzle, there are two main ways we generate expressions to populate if-guards:

Default generation: By default the guards partition the value range of a character
([−128, 127]) into sections of equal size, depending on the numbers of neighbouring func-
tions (eg. ”c < −43”, ”c < 42”, ”c ≥ 42” for three neighbours). This character is declared
as a non-deterministic char (by calling the function __VERIFIER_nondet_char()
from the SV-COMP interface). This means that program analyzers can freely choose the
value of c and, by extension, the next cell to visit. This allows tools to navigate their
way through the maze.

SMT based generation: Special attention is given to those branches that are part of
the solution. To reach the corresponding branch, the analyzer first needs to satisfy a
series of if-statements. Should all the if-statements be satisfied a flag is set that allows
for calling the next function.

The if-guards are populated from the given SMT file, by translating the clauses of the
formula into boolean C-expressions (see Section 3.1.4). As the SMT seed is satisfiable
every clause must be satisfiable as well. Free variables in the formula are declared as
non-deterministic variables of the given type, similarly to c in the default case.

The clauses of the seed formula are spread evenly across the different functions of the
solution. But, due to scope limitations, all clauses with shared variables must be contained
within the same function. This means some functions might still be significantly larger
than others.

A function call, populated with the SMT clauses {x < 3, x > 2 ∨ x − 2 = 0} using the
theory of integer arithmetic (QF_LIA), could look as follows:

1 function_1(){
2 // Pick variables
3 char x = __VERIFIER_nondet_char();
4 long c = __VERIFIER_nondet_long();
5
6 // Translated SMT logic
7 int flag = 0;
8 if (x < 3){
9 if ((x > 2) || ((x-2)==0)){

10 flag = 1;
11 }
12 }
13
14 if(c < -43){

9



3. Generating unsafe programs

15 function_2();
16 } else if(flag == 1 && c < 42) {
17 // Next step to the solution
18 function_3();
19 } else if(c >= 42) {
20 function_4();
21 } else {
22 //
23 }
24 return;
25 }

Listing 3.2: Populated function

3.1.4 Translating SMT-LIB to C
We propose an extension of the original Fuzzle SMT parser to cover most quantifier free
formulas over integers or bitvectors, extended with arrays and uninterpreted functions
(QF_AUF[LIA/NIA/BV]). Some expressions are handled in an incomplete manner, but
all translations are designed to maintain equisatisfiability with the original formula.

If a clause cannot be translated, a warning is raised and 1 (i.e. true) is returned. This at
least guarantees that the error remains reachable.

Integers

SMT-LIB integers are unbounded, while C integers are bounded within the range
(−(263), 263] (assuming long integers on 64 bit systems). It could be the case that a
seed is only satisfiable using values outside this range (e.g. the clause x > 263), which
would make the translated C-expression unsatisfiable.

To ensure that the error is always reachable, we generate constraints {f >= −(263), f <
263} for every subformula f of type integer in the seed, and check if the seed remains
satisfiable given those constraints.

As we are using signed integers, program traces that overflow might have undefined
behaviours. However, if the range checks succeed, there must be at least one error trace
without overflows. This means that the generated programs can also be used to test
analyzers (like some abstract interpreters) which ignore overflows by design.

Bitvectors

If we want to generate well-defined programs, we can use SMT-LIB bitvector formulas.
Bitvectors are modelled using C integer types. By default unsigned integers are used, as
they correspond more closely to SMT bitvectors. In particular, unsigned integer overflow
in C is well defined, whereas signed overflow is not. A bitvector of width m is always
assigned to the smallest C type of size ≥ m. While most of the translations are quite
straightforward, there are some details that should be mentioned:

10



3.1. Program generation

• Casting: When casting to sizes m that have a matching type in C (8,16,32,64) we
simply cast to that type. Otherwise, for unsigned casts we compute the bitwise-and
with 2m − 1. For casts to signed, we need to check if the m-th bit of the bitvector
is 1 (meaning the result should be negative) and, if so, explicitly subtract 2m from
the unsigned value before casting.

• Automatic upcasting: C performs automatic upcasting of types, where the result
of an arithmetic operation can be of a different type than the operands, if the result
does not fit in their type. SMT-LIB bitvectors usually stay the same size, and
simply overflow modulo 2m. Therefore we have to recast the result of arithmetic
operations and left-shifts, to ensure that the size of the resulting bitvectors also
remain the same in the C program.

• Shifting operations: According to the C standard, shifts of length greater than
the current type (e.g. shifts > 32 for ints) are undefined. Therefore we only allow
shifts by a constant amount, which we can check to be in range for the current
type.

• Division by zero: Division by zero is well-defined in SMT-LIB QF_BV so we
use helper functions for signed/unsigned division/remainder operations to handle
the case where the right operand is zero.1

• Allowing undefined behaviour: Optionally, we can also accept undefined
behaviours in our programs. In that case we can simply translate division and
remainder as /,% and perform variable-sized shifts. However to ensure that there
still is an error trace without undefined behaviour, we add the corresponding
constraints and check satisfiability beforehand, similar to the integer case described
earlier in this section.

Functions

At the moment our approach only supports function calls with constant parameters,
by modelling a function call f(c1,c2,...,cn), with constants c1,c2,...,cn, as a
non-deterministic variable f_c1_c2_..._cn. The type of this variable corresponds to
the codomain of f .

Arrays

The semantics of arrays in C and SMT-LIB differ in a few points. This means that extra
care is needed when performing translations:

1While it would be possible to perform this inline via the ternary ?: operator, it would require
rendering the right operand twice (for the zero check and the operation) and could lead to an exponential
blowup of the expression. For the same reason we also employ helper functions for signed casts and
bitvector rotate expressions.
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3. Generating unsafe programs

• Array size: While SMT-LIB arrays have arbitrary size2, C arrays are fixed size
and, ideally, not larger than necessary. Therefore we compute a minimum required
array size for the seed: Constraints are added ensuring that all indices are less than
a given maximum imax (and > 0 for integer logic). Should the formula become
unsatisfiable because of this, we iteratively double imax until the formula becomes
satisfiable. If imax become too large, we give up and return an error.
If we want to generate a well-defined program, these constraints are also translated
to C, which ensures that no invalid memory accesses can occur.

• Array declaration: Reading an uninitialized value of an array in SMT-LIB
gives a non-deterministic value, but is undefined in C. Therefore, when declaring
an array, we introduce a loop that explicitly sets every index of the array to a
non-deterministic value.

• Array comparison: Array equality is defined as element-wise equality in SMT-
LIB. As our arrays are of equal and fixed size, this can easily be translated to a
fixed-size loop.

• Array stores: SMT-LIB array stores are local operations, in the sense that they
only affect reads and compares which are ancestors in the formula tree. Simply
translating (array-store a i v) as a[i]=v can cause problems, as the latter
can also affect reads in sibling branches, if they are rendered later in the program.
To solve this we transform the original formula as follows: a new array a′ is
introduced for every store (or sequence of stores) to an array a. Then a is replaced
by a′ in any ancestors of the store. Furthermore we add a constraint ensuring that
a = a′, thereby maintaining equisatisfiability of the formulas.
Once the formula has been translated, sibling stores are guaranteed to be to different
arrays. Therefore stores can now safely be encoded as a’[i]=v using a helper
function. The equality constraints can be translated as mentioned above, but have
to be rendered before other clauses, to ensure that the comparison happens before
the new array is modified.

• Multi-dimensional arrays: As C stores multi-dimensional arrays in a continuous
block of memory, we can view an m-dimensional array of size n as an array of
size nm. Using our knowledge of the original dimensionality, we can calculate the
corresponding indices for the flattened array.
Reading a multi-dimensional array in SMT-LIB array also yields an array (of lower
dimension), which can be simulated by simply moving our pointer by i ∗ nm − 1.
We also split stores into value stores (as described above) and array stores, where
an entire array is stored at once. Initialisation and comparison stay the same,
except they run from 0 to nm − 1.

2Actually SMT-LIB array indices are typed and can therefore be bound by the size of this type.
However, even if this type is finite, it would usually be too large for analyzers to handle.
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3.2. Generating SMT formulas

3.2 Generating SMT formulas
We use STORM (see Section 2.2.2) to increase the number of available SMT formulas and
to ensure that all formulas, from which we generate guards, are satisfiable. In order to
select the seeds on which we run STORM, we first check whether they are understood by
our parser. As STORM does not generate any new atoms, in most cases any generated
mutants are also supported.

3.3 Minimizer
Programs generated by our approach can be very large. Therefore we present a minimizer,
which generates minimal explanations for soundness bugs. The approach is quite simple
an relies on the assumption that most bugs are caused by just a hand full of clauses.
However our experience so far has shown that this assumption seems to hold in practice
(see Chapter 5.2).

Minimization happens on two layers. First, we try to eliminate the scaffolding, by
rendering the error and all translated SMT clauses in a single function call. If the
analyzer still does not find the error this is maintained for the second minimization step,
otherwise no minimization of the scaffolding is performed.

As a second step we minimize the number of clauses used for generating guards (see
Algorithm 3.1). We repeatedly drop either half of the clauses, until the error is found by
the analyzer in both resulting programs. At that point we check if any individual clause
can be dropped while maintaining the bug.

After checking all clauses this way, we arrive at a minimal program, in the sense that all
remaining clauses are relevant to the bug. While this does not always find the smallest
possible working example, in our experience the results have proven small enough to
quickly spot the causes of bugs.
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3. Generating unsafe programs

Algorithm 3.1: Minimization of clauses
1 C ← formula; // Initialize clauses from formula
2 bug ← ⊤; // Analyzer missed bug
3 firstHalf ← ⊤; // Which half to keep
4
5 // Try to remove half of the clauses at a time
6 while bug ∨ ¬firstHalf do
7 C ′ ← drop_half(firstHalf);
8 bug ← analyzer_misses_error(C ′);
9 if bug then

10 C ← C ′;
11 firstHalf ← ⊤;
12 else
13 firstHalf ← ¬firstHalf ;
14 end
15 end
16
17 //Switch to individual clauses
18 for c ∈ C do
19 if analyzer_misses_error(C \ {c}) then
20 C ← C \ {c};
21 end
22 end
23 return C;

14



CHAPTER 4
Experimental setup

We implemented our approach in a python tool called Minotaur 1 forked from Fuzzle. In
addition to generating and minimizing programs, Minotaur allows for configurable and
automated testing of program analyzers.

4.1 Tested tools
We selected 8 tools/frameworks to test using Minotaur:

• Ultimate: a framework offering various program analysis toolchains. We tested
Kojak [24](a software model checker (SMC)) based on CEGAR [16]), Taipan [30](AI
[19] over program paths), Automizer [34] (an SMC based on trace abstraction and
automatas) and GemCutter [25](an SMC that can also verify concurrent programs).

• CPA-Checker [8]: a configurable software verifier that provides various types of
analysis. We tested its value- and predicate-analysis [1, 29], k-induction [21],
symbolic execution [37], BMC [9] and the symbolic memory graph analysis [22].

• SeaHorn [39, 32]: a framework which provides combinations of BMC, model checking
via constrained Horn clauses (CHCs) and AI. We mainly tested the BMC engine,
as the AI approach does not support bit-precise reasoning well.

• ESBMC [27]: a bounded-model checker based on SMT solving. Apart from the
default BMC engine it also supports incremental BMC, k-induction and interval-
analysis for invariant generation.

1At the time of writing the source code is in a private repository. It will be made available in the
future at https://github.com/Fleischmaki/Minotaur.
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4. Experimental setup

• MOPSA [35, 47]: an abstract interpreter focused on scalability over precision. It
provides a wide range of domains and a custom contract language for specification.

• Symbiotic [58]: Symbiotic models program properties via finite-state machines, but
uses slicing and symbolic execution to eliminate potential imprecision.

• CBMC [17]: a bounded-model checker. It unrolls programs and translates them
into SMT formulas over bitvectors.

• 2ls [55]: 2ls extends BMC with k-induction and invariant generation to (dis-)prove
various safety properties, including termination. We test both the individual
components, as well as the combined k-induction k-invariant analysis.

All of the analyzers implement the SV-COMP interface and participated in the latest
edition of SV-COMP [6] (with the exception of SeaHorn, which last participated in 2016).
All tools were rebuilt regularly to ensure that any bugs found would be on the latest
version of the tool.

4.2 Parameter and seed selection
Machine-architecture was set to 64 bits for all tools. As the only loops contained in our
programs are over arrays, unroll bounds, if present, were set large enough to handle the
array size of the generated programs (see Section 3.1.4). Function inlining was enabled if
it proved necessary to handle our helper functions.

Seed files where taken from the SMT-COMP benchmark sets [26] for the supported
logics and prechecked, as discussed in Section 3.2. We further discarded seeds with very
few atoms, as this usually means that those atoms are very large, which affects the
usefulness of both STORM and the minimizer. Lastly we required that satisfiability is
found within 30 seconds, as our approach can require several satisfiability checks, e.g.
when computing the minimum array size. This resulted in a total of roughly 20.000 seeds
for our experiments.

We settled on 15 transformations (i.e. different SMT mutants and scaffold-transformations;
see Sections 3.2 and 3.1.2) per seed file, as this proved to be enough to have most bugs
occur several times per seed. STORM’s parameters were fixed to generate small mutants,
as otherwise tools would take too long to run. When the seed files used bitvector logic,
we only tested configurations which support bit-precise reasoning.

In accordance with the approach of swarm testing [31], we tried to randomize any
remaining parameters (both for the tools tested and for Minotaur) as much as possible.

4.3 Hardware
The tests were run on the ikarus server running Debian 6.1.55-1 with an AMD EPYC
7702 64-Core processor and 512GB of RAM. All tools were containerized to allow for

16



4.3. Hardware

parallel execution. The time limit per test-case was set to 60 seconds and each container
received 4GB of memory.
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CHAPTER 5
Experimental results

5.1 Testing
We started testing with early versions of the tool in mid-March 2023 and ran tests until
the end of December 2023, giving a total time span of roughly 9 months. Most of the
time was spent testing with bitvector logic, as support for integer logics was only added
later in development.

5.2 Found bugs
We were able to find a total of 13 issues in 5 different tools (see Table 5.1). Out of
these 10 were soundness bugs, 2 were precision issues and one caused crashes. With the
exception of bugs found in Symbiotic (which no longer seems to be actively supported),
all bugs were confirmed and all soundness bugs (except the most recent one) fixed.

The minimizer has been a good tool for generating small explanations, with one developer
commenting

"Thanks for reporting this! [...] the minimal program here makes it easier to
investigate."[64]

and answering to another issue:

"Thanks for this greatly written bug report with a perfect MWE [minimal
working example]! Using this I was quickly able to identify the relevant bug".
[65]
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5. Experimental results

Tool Component Issue Nr. Bugtype Cause Staus
CPA k-induction 1114 Soundness Overflow Fixed

Ultimate Framework 642 Soundness Overflow Fixed
CPA k-induction 1130 Soundness Operators Fixed

Symbiotic - 246 Soundness Arrays* Open
Symbiotic - 247 Soundness Arrays* Open
Ultimate Automizer/GemCutter 646 Soundness Operator Translation Fixed
Ultimate Kojak 647 Crash - Fixed
ESBMC Interval-Analysis 1363 Soundness Overflow/Casts Fixed
ESBMC Interval-Analysis 1392 Soundness Casts Fixed
MOPSA - 150 Precision Casts Confirmed

CPA k-induction 1194 Soundness Operator Translation Fixed
MOPSA - 157 Precision Domain/by Design Confirmed
ESBMC Interval-Analysis 1565 Soundness Typecasting* (partially) fixed

Table 5.1: List of bugs found by Minotaur. Causes with * are best guesses. Precise
causes, if known, are explained in Section 5.3f.

Indeed none of the bugs were caused by the mazes structure and most were caused by
one or two clauses. This meant that the minimizer could drop the majority of clauses
and produce very small explanations.

5.3 Bug causes

The programs quoted here were further cleaned up manually before reporting, but the
logic causing the bug is the same as in the original (minimized) version. We try to
categorize the bugs into a few distinct categories, depending on their cause:

5.3.1 Incorrect operator semantics

Some of the bugs where caused because the analyses did not soundly model the semantics
of C operators. In Ultimate#646 the problem was caused due to an incorrect translation
of the bitwise-or operator.

For CPA#1130 (Listing 5.1) CPA-checker tried to prove the equality x == ∼y by
checking if the value-interval of x overlaps with the complemented value-interval of y.
However this does not correctly capture the semantics of bitwise-negation.
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5.3. Bug causes

1 extern void __VERIFIER_error(void);
2 extern unsigned int __VERIFIER_nondet_int(void);
3
4 int main(){
5 int x = __VERIFIER_nondet_int();
6 int y = __VERIFIER_nondet_int();
7 if(x == ~y){
8 __VERIFIER_error();
9 }

10 return 0;
11 }

Listing 5.1: Test case triggering bug 1130 in CPA

1 extern void __VERIFIER_error(void);
2 extern unsigned int __VERIFIER_nondet_uint(void);
3
4 int main(){
5 unsigned int n = __VERIFIER_nondet_uint();
6 if((0 % n) <= 100){
7 __VERIFIER_error();
8 }
9 return 0;

10 }

Listing 5.2: Test case triggering bug 1194 in CPA

Meanwhile in CPA#1194 (Listing 5.2) the modelling of % did not cover the case where
the left operand is zero, which caused it to miss the error.

5.3.2 Mishandling type-casts and overflows

Using the fact that unsigned casts are well-defined in C, Minotaur can generate test-cases
where the only well-defined error trace must include an overflow. This can cause analyzers
to miss the error, if overflows are not considered (see e.g. CPA#1132). More interestingly,
we also found some cases where an analyzer would miss an error even though overflows
are supported.

In Ultimate#642 (Listing 5.3) Ultimate would fail to compute an overflow for (unsigned
int) (uc + (4294967295*1)), because the second operand of the shift following
afterwards is constant.

In CPA#1114 the invariant generator would translate the potentially overflowing equality
if (3153284770U == x * 65599U) into x == 3153284770U / 65599U. How-
ever these two equalities are not equivalent as the division might truncate and the
multiplication might overflow.
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5. Experimental results

1 extern void __VERIFIER_error(void);
2 extern unsigned char __VERIFIER_nondet_uchar(void);
3 int main(){
4 unsigned char uc = __VERIFIER_nondet_uchar();
5 if((unsigned int)(((unsigned int)((unsigned int) uc) + (unsigned

int)(4294967295*1)) >> ((unsigned int) 2)) < (unsigned int) 8){
6 __VERIFIER_error();
7 }
8 return 0;
9 }

Listing 5.3: Test case triggering bug 642 in Ultimate

1 extern void __VERIFIER_error(void);
2 extern unsigned short __VERIFIER_nondet_ushort(void);
3 int main(){
4 unsigned short T2_460 = __VERIFIER_nondet_ushort();
5 if((unsigned int) ((unsigned int) (((unsigned short)(T2_460)) + ((

unsigned int) 0))) <= (unsigned int) ((unsigned int) 65536)){
6 if(!((unsigned int) (((unsigned int) 112) - ((unsigned int) (((

unsigned short)(T2_460)) + ((unsigned int) 72)))) < (unsigned int)
((unsigned int) 63))){

7 __VERIFIER_error();
8 }
9 }

10 return 0;
11 }

Listing 5.4: Test case bug 1363 in ESBMC

1 extern signed char _VERIFIER_nondet_uchar(void);
2 extern void _MOPSA_assert(int);
3 int main(){
4 signed char a = _MOPSA_rand_s8();
5 if (242 + (unsigned char) a < 256) {
6 _MOPSA_assert(242 + (unsigned char) a < 256);
7 }
8 return 0;
9 }

Listing 5.5: Test case triggering issue 150 in MOPSA

In ESBMC#1363 (Listing 5.4), when translating the expression (unsigned int)T_2460
+ 0 <= (unsigned int)65536, the number 65536 would be cast to the type of
T_2460, rather than the actual type of the expression it appears in. As the type of
T_2460 is unsigned short, this causes the number 65536 to overflow to 0. There-
fore the inequality is mistranslated as T_2460 ≤ 0, which makes the second if guard
unsatisfiable.
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5.4. Threats to validity

Type casts are also responsible for a curious precision issue in MOPSA (Listing 5.5,
MOPSA#150), where due to over approximation of overflowing variables the assertion
242 + (unsigned char) a < 256 fails, despite being located in an if statement
with the same condition.

5.4 Threats to validity
External: All mentioned bugs were reported and, with the exception of Symbiotic, were
confirmed by the developers. We did not list cases where an error was missed due to
an incorrect configuration (such as an incorrect unroll bound) of the tool1 or undefined
behaviour.

Internal: The current implementation of the translations could be partially incorrect.
During early testing we found many unsound translations, which caused Minotaur to
accidentally generate safe programs. However, these are easy to detect when testing
multiple solvers, and haven’t occurred on the newest version at the time of writing. Cases
where the translation raises an error are covered by ensuring that at least a trivially
unsafe program is generated.

Testing started with early versions of Minotaur, so tests generated with the current
version might differ slightly from the reported ones. However we have managed to recreate
all bugs (except ESBMC#1392) on the newest version of Minotaur.

1While some of the reported bugs depend on specific configuration options, the respective options are
not supposed to have any impact on the soundness of the tool.
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CHAPTER 6
Related work

Testing program analyzers: There have been several approaches that perform both
differential [38] and metamorphic testing [72, 73] of program analyses. MCFuzz [72]
and αDiff [38] have already been discussed in the introduction. Statifier [73] tests
common static analyzers for Java programs and uses generated reports (rather than just
TRUE/FALSE results) to guide transformations.

Techniques have also been developed for testing some of the components used by program
analyzers. Not only are these worth testing in their own right, but they must also be
correct for program analysis to remain correct. These include SMT solvers [45, 10, 67,
70, 71, 66], symbolic execution engines [36], abstract domains [11] and data flow analyses
[61].

Compiler testing: Generating (well-defined) C programs has been an important part
of compiler testing for many years. A common approach is to perform differential testing
on randomly generated programs [43, 49, 50, 69]. Here it is especially important that
programs are well-defined, as otherwise differences might just be down to unspecified
behaviour.

Metamorphic testing [41, 42, 60, 20], often also referred to as equivalence modulo
input (EMI) in the area, has also enjoyed great success, especially for finding silent
miscompilations.

Zhang et. al. [74] present a third approach, which enumerates all swaps exchanges
of variables in a given program and has also had some success at finding crashes and
miscompilations.

Metamorphic testing: Metamorphic testing has further been applied to other domains,
such as Datalog engines [44, 46], database systems [54, 56] and supervised classifiers [68].
Segura et.al. have collected a survey [57] on the topic.
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CHAPTER 7
Conclusion

We have presented an approach to generate unsafe programs, which are populated with
complex program expressions using SMT formulas. We use our knowledge about the
satisfiability of these SMT formulas to guarantee that an error is reachable in the resulting
programs. Our approach was able to find 10 soundness bugs in 5 state-of-the art program
analyzers. Using a minimization technique we were able to report the bugs with small
working examples, which led to them being fixed quickly by the developers.

Using the current parameters Minotaur seems to have reached a saturation point (as
discussed by Livinksi et. al. [43]), with only two bugs having been found in the last few
months. It is unclear whether this is due to the limitations of the approach itself, or
whether changes to the experimental setup would be able to reveal further bugs.

7.1 Future work
There are many ways in which Minotaur can still be improved:

One option is to expand the number of generated language features, e.g. by implementing
the SMT-LIB theory of floating points (which is unfortunately not currently supported
by pySMT) and combinations of floating points, integers and bitvectors.

Testing itself could be also be improved. Timeouts could be adjusted dynamically to avoid
long idle times on easy problems and high numbers of timeouts on hard ones.1 A different
choice of SMT seeds might help, as few SMT-COMP benchmarks are handcrafted and
therefore most contain very similar files (thus leading to similarities in generated programs).
Improving the parameter fuzzing for analyzers could trigger bugs in components which
are not being tested at the moment.

1The difficulty of the seems to depend mainly on the SMT seed being used, making it hard to tune
difficulty via other parameters.
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7. Conclusion

Minotaur can already be used to generate safe programs (useful for precision tests), if an
unsatisfiable SMT file is used as a seed. However both the seed mutation provided by
STORM and the minimization procedure would need to be adapted accordingly, before
performing extensive precision tests.

Minotaur is built on top of a benchmarking tool, so it should be possible to use it to
generate benchmarks to measure analyzer performance. However further experiments
would be necessary to see if there are any advantages over existing benchmarks.

Lastly it would be interesting to try and find ways to safely inject generated guards into
broader classes of programs, which might find errors connected to program logic that is
more complex than the one present in the programs currently generated by Minotaur.
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