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1. Introduction

In the process of high harmonics generation (HHG) a high intensity low frequency field
interacting with (typically) an atomic gas target generates higher orders of its frequency
[1], [2]. HHG has opened the doors to attosecond physics. Nowadays it is possible to
create fields containing 50000 times the driving frequency [3]. The resulting spectrally
broad pulses allow for generation of trains of ultrashort pulses. These pulses can get
as short as a few attoseconds in time, the natural timescale of electrons, allowing the
observation of fundamental processes such as the formation of chemical bonds [4] or
the photoelectrical effect [5], [6] on their natural time scale. Furthermore, the process
enabled the development of tabletop sized short wavelength sources [3], [7]. Attosec-
ond physics is an active field of research and this year (2023) even the Nobel price was
awarded towards it. It was awarded to Anne L’Huillier for the generation of high har-
monics themselves and her work towards generating attosecond pulses, together with
Pierre Agostini and Ferenc Krausz for making measurements at this time scale possible
[81, [9], [10].

For this breakthroughs a close exchange between experimental and theoretical develop-
ments was important. From first calculations mostly driven by Kenneth Kulander [11],
[12] using the time-dependent single-active electron approximation, over Paul Corkum’s
intuitive description for HHG [13] to Maciej Lewenstein’s work [14], HHG was for a
long time widely described as a single-electron effect. Even though this approximation
is able to give a qualitatively correct understanding of HHG, multi-electron dynamics
are important for an accurate description of atoms and ions with more than one electron.
The strong-field regime of HHG is challenging for numerical work and only a limited
number of methods are able to describe it. For smaller systems correlated electron cal-
culations are either performed using the multi-configurational time-dependent Hartree-
Fock method (MCTDHEF) [15], [16] or the R-matrix method [17]. For larger systems the
time-dependent configuration interaction singles (TDCIS)[18] method is usually used.
To circumvent the challenges associated with a multi-electron wavefunction ansatz the
time-dependent two-particle reduced-density (TD2RDM) method [19] has been devel-
oped. It has been shown to be applicable to HHG in atoms like beryllium and neon [19].
In the present thesis, we will apply the TD2RDM method to larger atoms and benchmark
its accuracy towards exact results. For this purpose we will employ the separation of
spaces for electrons as done in the time-dependent complete active-space self-consistent
field (TDCASSCF) [20] method. Furthermore we apply measures of correlation from
quantum information theory [21] and observe their time-dependence during the process
of HHG. With this we want to quantitatively assess the importance of correlations during
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HHG.

This thesis is structured as followed: In the second chapter, we review the models used
to describe HHG. In the third chapter, we will give an overview of numerical methods,
widely used to simulate HHG in atoms. Thereby, special emphasis is given on MCT-
DHF, TDCASSCF and the TD2RDM method. In chapter four, measures of correlation
and entanglement with special emphasis on fermionic systems will be discussed. In
chapter five, we will discuss an interface procedure, which allows us to use the MCT-
DHF ground state as an input for the TD2RDM calculations. Finally in chapter six, we
will present calculations of HHG and analyse the time dependency of different correla-
tions measures during this process. There different parameter regimes, such as different
atoms, i.e. beryllium, neon, and argon, and different laser parameters are investigated.
In this work we use atomic units with 4 = m = e = 1 where m and —e are the electron
mass and charge, respectively.
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2. High harmonic generation

High harmonic generation (HHG) is the fundamental process, which gave rise to attosec-
ond physics. It was first discovered in the late 1980’s [1], [2] when laser technology was
advanced enough to produce the necessary strong driving fields. Typically the targets
are gases of noble gas atoms, which then emit odd multiples of the driving frequency. A
qualitative sketch of the spectrum can be seen in Figure 2.1.
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Figure 2.1.: Qualitative HHG spectrum.

The harmonics initially decay exponentially with the order as expected from perturbation
theory, followed by an extended plateau of almost constant intensity and then an abrupt
cut-off. A first simple semi-classical approach to describe the phenomenon was given
by Corkum [13], which captures the essential physics and is able to described the cut-off
quite accurately. This model will be explained in section 2.2. Then Lewenstein [14]
introduced a quantum description of the effect, employing the single-electron approxi-
mation, which, while being in good agreement with the semi-classical approach, gives
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2.1. Strong field physics 7

more insight into the process. The most important steps in Lewenstein’s approach will
be shortly summarised in section 2.3.

2.1. Strong field physics

In the present thesis, our calculations will be restricted to the spectrum emitted by a
single atom, while bearing in mind that a full description requires to take into account
propagation effects in the gas medium [22]. One fundamental process in HHG, i.e. the
ionisation step, can be analysed by means of the Keldysh parameter [23]

IP
=] — 2.1
=\ @.1)

which distinguishes between the regime of tunnel ionisation when Y < 1, and multi-
2

photon ionisation when y>> 1. I, is the ionisation potential of the atom and U), = ;% is

the pondermotive energy of the electron in the laser field, where Fy is the amplitude of
the electric field and  is the frequency of the laser field. The Keldysh parameter can be
viewed as the ratio between the tunnelling time and the time it takes for the laser field to
bend the potential back to its field free position [24].

2.2. Three step model

The semi-classical model [13], which is often also called the three-step model, explains
HHG in three steps. A schematic overview of the process is given in Figure 2.2.
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Figure 2.2.: Schematic picture of the three-step model.

First, the electron tunnels through the barrier created by the nuclear potential and the
strong laser field. After tunneling, the electron is approximated to have zero velocity and
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its motion in the laser field is described neglecting the nuclear potential. The probability
of this process can be described via the ionisation probability »;,,, which can be approxi-
mated by the ADK model for ionisation [25]. The free electron is then accelerated by the
laser field, gaining kinetic energy. The amount of energy upon recombination depends
on the ionisation time #;,, and its maximum is given by E,’fjgx = 3.17U,. The excursion
radius for this three-step model is called the quiver radius R, = % If the electron returns
to the ion at time .., it recombines with a probability of P, and emits its kinetic energy
plus the ionisation energy as radiation. This gives already an accurate estimate of the
maximal possible emitted energy, i.e. the cut-off energy, as

Epax 317U, +1,. (2.2)

As an example (see also section 6.3 below) an argon atom with the ionisation energy of
15.6 eV [26] driven in a 780 nm laser field with 7 = 3.5 x 10" Wem™2, gives rise to a
cut-off at 78 eV with the ponderomotive energy of 19.71 eV. As the time ¢;,, at which
the electron gets ionised is not fixed, all lower energies do appear in the spectrum too.
Furthermore, this simple model is already able to describe the appearance of only odd
harmonics. Because of the point symmetry of the problem, all even contributions cancel
out.

2.3. Lewenstein model

A more accurate quantum description for HHG was later introduced by Lewenstein et al.
[14]. The model is similar to the three-step model but accounts for quantum probabilities,
e.g. for the tunnel ionisation. The dipole moment of the atom for a given time ¢ can be
written as

t . . i
1) =i / dr’ / &p Focos(t')do(F— AW ) (F—A(1)e 5P tee,  (23)
0

where d, = (e|z|g) is the atomic dipole matrix element for transitions from the ground
state |g) to unbound states |e), and

¢ = A (N\]2
S(p.t,1') = /t dr” (—[p é(t ) +1,,>, 2.4)

is the action. Fycos(r')d.(p —A(t')) is the ionisation probability amplitude in the laser
field and d} (p —A(t)) is the recombination probability amplitude. J is the canonical
momentum and A is the vector potential. e~ iS(11) g the phase gained by propagation
in the field. The electrical field is assumed to be linearly polarised in z-direction. With
the dipole moment z(¢) or the dipole acceleration a,(t) = #(¢) we can evaluate the high
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2.3. Lewenstein model 9

harmonic spectrum using the classical Lamor formula [27]:

20t 1 i )P
O /t 2(r)e | 2.5)
1Jlh
2 1 i |2
Lo(©) = | —— et 2.6
)= 5|y | e 2.6)

By comparison to Equation 2.3, we can give an estimate of the intensity of the spectra,
i.e. the harmonic yield as

I(trec) ~ Nion (tion) Prec (trec); (2-7)

which is given by the ionisation rate Nion(tion) of the electron at the time t,,, times the
recombination probability Prec(trec) at ty.. The Lewenstein model predicts for the cut-off
energy the well-known formula of

Epax 317U, + 1.31,, (2.8)

where the factor of 1.3 holds for 1, < U),.
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3. Methods for solving the
multi-electron atom Hamiltonian

Direct solution of the multi-electron Schrodinger equation with all its electron-electron
interactions is not possible for more than two electrons [28], [29]. Finding accurate
approximative models and solving them is an active, numerically intensive, field of the-
oretical physics. In the following, we will discuss some state-of-the-art approximations
for multi-electron atoms and review the necessary formulas for the numerical results
presented later in this work. We will give an overview over wavefunction based meth-
ods here, which are later used as benchmarks for TD2RDM, which will be reviewed in
section 3.4.

3.1. The Hamiltonian for multi-electron atoms

The full field-free Hamiltonian for an N-electron atom is given by

N Z
Z ——Vz——+ ZU ri,rj) |, (3.1
i=1 Fi J#l

where Z is the nuclear charge, and r; is the the radial component of the i-th electron with
respect to the origin at the nucleus. U describes the electron-electron interaction as

1 1
Urir)=—=—. (3.2)
r2  |ri—r|
By minimal coupling, we can substitute the canonical momentum as p = —iV — p =

—iV+ %A(r,t) to introduce coupling to an external field with the vector potential A. If
the wavelength of the field is large compared to the system, the dipole approximation,
A(r,t) = A(t), can be used. The square of the vector potential is then independent of
the position and can be transformed away from the Hamiltonian. With this the field-
dependent Hamiltonian can be written as

N
V4
=) —-v2——+ A( HVi4 = ZU ri,r;)| . (3.3)
i=1 2¢ j;«él
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3.2. Single-active electron approximation 11

The field term, which is also the only explicitly time-dependent term, is then often de-
noted as V,y (7). By gauge transformation from the so-called velocity gauge Equation 3.3
to the length gauge, the external potential can be written as V,,, = F(¢)r. This gauge is
also widely used in strong-field physics.

3.2. Single-active electron approximation

Historically, a full numerical solution of the time-dependent Schrédinger equation in
strong-field driving became possible in the 90s [27], however, with the restriction to the
dynamics of only one electron. Therefore, the overview of numerical methods will start
with the so-called single-active electron approximation.

The assumption that only one electron significantly contributes to the generation of HHG
is valid as long as the field does not induce non-negligible two-electron ionisation. One
can then approximate the multi-electron target atom with model potentials as is done
within the single-active electron (SAE) approximation. The Schrédinger equation for
that one electron can be written as

0 [W(1)) = [Hsar + Vex (1)] [W(1)), (3.4)

where Hgpg = —%Vz + Vps(r) includes the kinetic energy operator and a pseudo-potential
Vps(r), that imitates all the other electrons. The solution for y(7) can then be found by

exponentiation .
() = Te e Vsl ) (33)

where T is the time-ordering operator, which is usually performed by a split-step method.
The SAE approximation is not able to describe any time-dependence of the (N-1) remain-
ing electrons.

3.3. Methods based on the multi-electron wavefunction

In order to include more than one electron, a natural ansatz is to find a multi-electron
wavefunction that satisfies Equation 3.3.

3.3.1. Time-dependent Hartree-Fock

Within the time-dependent Hartree-Fock (TDHF) method, the total many-body wave-
function is restricted to one single Slater determinant

1(2)) = 014 ()01, (1) On 21 () /2, (1)) (3.6)
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12

with orbitals {d)l(t)}ii/lz , that are each occupied by one spin-up 1 and one spin-down

J electron. The equations of motions for the orbitals can be found by employing the
Dirac-Frenkel variational principle. This gives

N/2

0100 = (5 V7= 7 Veul0) 00+ X (2011001} 00— (01100 [07)). G

The first term in the interaction contribution is called the Hartree-term and treats the in-
teraction of one electron by the charge density of all the other electrons. The second
term is called the Fock-term, and describes the exchange interaction between the elec-
trons. This approximation is also known as the mean-field approximation. Since the
system is described by a single Slater determinant, each orbital is always occupied by
two electrons. Therefore, TDHF is not able to correctly distinguish between single and
double ionisation.

3.3.2. Time-dependent configuration interaction

Within time-dependent configuration interaction (TDCI) the wave function is constructed
from many Slater determinants, which are built from time-independent orbitals. The total
wave function is then given as a linear combination of these Slater determinants as

W)=Y .G@)ln, (3.8)
1

where the C;(t) are called configuration interaction (CI) coefficient. The dynamics is
solely described by the CI coefficients. Since the orbital basis is not adjustable, choosing
an inappropriate basis might lead to a large number of orbitals required for converged
results. For an equal number N/2 of spin-up and spin-down electrons the number of
possible configurations II for J orbitals is given by

J 2
()

and grows exponentially or even factorial depending on J and the number of electrons N.
Consequently, especially for strong field applications, this method is often numerically
unfeasible. To bybass the exponential growth, the Cl-coefficients are often restricted to
only allow for single- (TDCIS) or single- and double-excitations (TDCISD) by neglect-
ing the Slater determinants which would correspond to higher excitations [30]. These
methods are able to more accurately describe ionisation, however, approximations are
made for the treatment of the electron-electron correlations.
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3.3. Methods based on the multi-electron wavefunction 13

Multi-configurational time-dependent Hartree-Fock (MCTDHF), on the other hand, tries
to partially circumvent the problem of large (and growing) orbital basis sets by using
time-dependent orbitals

=Y G li()). (3.10)

Even in strong-field applications, this choice drastically reduces the number of orbitals
needed to about J ~ N [31]. Such full-CI methods include the complete electron-electron
correlation and are therefore considered the most accurate.

3.3.3. Time-dependent complete-active-space self-consistend-field

The time-dependent complete-active-space self-consistend-field (TDCASSCF) method
developed by Sato et al. [20] is especially well suited for larger atoms. Here the or-
bitals are further separated into frozen core orbitals, dynamical core orbitals, and active
orbitals. While frozen core orbitals have no time dependence, dynamical core orbitals
are time dependent, and for both types of core orbitals the occupation is fixed as fully
occupied. Active orbitals, on the other hand, are time-dependent and have time varying
occupation numbers, as in the MCTDHF method. Figure 3.1 shows a schematic picture
of this separation. Here, all active electrons are depicted in the lowest possible orbitals,
but they can also occupy all other active orbitals resulting in partial occupation numbers
for all active orbitals.

——— —active
——— —active
—+—  — active
—+—  — active
—++— — core
—++— — core

Figure 3.1.: Separation into active and core space.

This separation allows an efficient description of larger atoms, where the inner orbitals
usually do not contribute to most physical phenomena, which we would like to investi-
gate because of their strong binding. The resulting total wave function is given by

[Weas) =A || @) | ac(r) ZCI (t) [P (2) (3.11)

where |®; (1)) is a Slater determinant build from active orbitals {;() } ) and [@g (1))
are Slater determinants built from frozen core and dynamical core orbitals, respectively,
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and A is the antisymmetrization operator. In this thesis, MCTDHF is used for smaller
atoms, such as beryllium and neon, while TDCASSCEF is used for larger atoms, such as
argon and xenon. In the following, the equations of motion and some technical details of
this method are presented.

Equations of motion and gauge freedom

The Dirac-Frenkel variational principle leads to the equations of motion (EOMs) for the
orbitals ¢, which build-up the Slater determinants, and the CI coefficients (for more de-
tails see [15]). However, the Dirac-Frenkel variational method does not fully determine
the EOMs for the orbitals. A gauge freedom results, which can be determined by the
choice of (0;]id; |9;). According to [20], (:|id; |0;) = A = (¢:| 1 |0;), where h is the

one-particle Hamiltonian (h = —%Vz —Z/r+ Vey), is a numerically favourable choice.
The resulting EOMs are given by
i0; [0p) :h\¢p>+QG\¢p>+;|¢q>Rg, (3.12)
with the corresponding equations for the CI coefficients
ia,c,:;@,wycbﬁcj. (3.13)

In Equation 3.12, 0 =1-Y%, ‘¢p> <¢p‘ is the projection onto the virtual orbitals, i.e. all
the orbitals which are neither frozen, dynamic, nor active orbitals. These orbitals have
an occupation number of zero. R}, is the component of the time derivative of the orbitals
within the occupied space, which is determined by the gauge. For (¢;]id; }q) i)
Rf,’, = 0, more details can be found in [20]. G contains the electron-electron interaction
and is given by

Glop)=) (D DqSUr\q)q), (3.14)

oqsr

where (D_] )0 are elements of the inverse of the one-particle reduced density matrix, DL
are elements of the two-particle reduced density matrix, and U] is the matrix element of
the Coulomb interaction

/q), r2)0s(ra) ;3 (3.15)

ri =17

Implementation and time propagation

In a grid representation of the orbitals, exploiting the radial symmetry with respect to
the nucleus, the 1/r, term is numerically approximated using the multi-pole expansion
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3.4. Methods based on reduced objects 15

given by [20]

1 lamgx - L 4 7l N
—=) Y 21+1ﬁYlm(elv¢l)Ylm(627¢2)a (3.16)
- >

where Y}, are the spherical harmonics, and r— and r~ are the radii r; and r, depending
on which one is larger. The expansion becomes exact for Iy, = co. In practice, lp;;4x 18
truncated at an appropriate level.

Furthermore, the ¢ orbitals are able to mix / quantum numbers as in

llmm

M’p( Z (Pp ‘le (3.17)

where ‘le (t)) is given in spatial coordinates as

Xkim(1,2,0,0) = Ry (1,1)Y1,,(6,9), (3.18)

where Ry (r,t) are the radial wave functions. The index p in Equation 3.17 enumerates
the orbitals and separates into k and m. As the magnetic quantum number m is preserved
[20], it is well suited as an orbital index. The presented equations of motion are a set
of coupled nonlinear differential equations. Multiple suitable numerical propagators for
this problems have been found and tested [32]. For the calculations presented below, an
exponential Runge-Kuta propagator with Padé approximation for the time-evolution of
the involved @— functions is used.

3.4. Methods based on reduced objects

HHG is an example, where the knowledge of a reduced object, in this case the particle
density, is sufficient to gain full knowledge about the yield. In fact, the wave function
for a multi-electron system contains an enormous amount of information that is prac-
tically never used directly for most experimentally relevant observables. Therefore, an
obvious approach, to reduce the computational cost, is to propagate a simpler, reduced
object instead the full wave function of a system. In the following, we will briefly dis-
cuss propagating the electron density within the time-dependent density-functional the-
ory (TDDFT) and review the choice of the two-particle reduced-density matrix (2RDM)
as a reduced object to propagate. For this purpose, we will first present the equations
of motion for the 2RDM, followed by the discussion of the separation of the basis or-
bitals into active and core spaces within the TD2RDM method. Lastly, the stability of
the method will be discussed and the purification scheme will be introduced.
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3.4.1. Time-dependent density-functional theory

According to the Hohenberg-Kohn theorem, the density of the ground state of an interact-
ing system is uniquely determined by the external potential and vice versa. The Runge-
Gross theorem guarantees this bijective mapping also for time-dependent systems, and
together with the van Leeuwen theorem this lays the basis for time-dependent density-
functional theory (TDDFT). The van Leeuwen theorem states that for any two systems
with the same initial state but different interactions there exist unique external potentials
under which these systems have the same time evolution. Time-dependent Kohn-Sham
DFT uses a reference system with negligible interactions whose wavefunction is build
from a Slater determinant with orbitals ¢; and an external potential Vgg, which should
produce the same time-dependent density as the physical system with electron-electron
interactions. In practice, the equations of motion for the orbitals are chosen such that
they satisfy

—%V?cln + Vishi = —%V?d),- + (Valp] + Vet (1) [p] + Vi [p] + Vie[p]) 0 = €0, (3.19)

where the Kohn-Sham potential Vig is the sum of the Coulomb potential from the core
V,, the external potential V,y(¢), the Hartree potential V7, and an exchange-correlation
potential V,.. The first three terms are known functionals of the electronic density. As the
theorems only guarantee the existence of a solution but do not give hints on an actual con-
struction of a solution, an approximation needs to be made for the exchange-correlation
potential. Different exchange-correlation functionals are suited for different problems
and choosing it appropriately is important for DFT to achieve results comparable to more
advanced methods. In this work we use the non-local GGA_C_LYP approximation for
the exchange-correlation functional from the Libxc library [33]. Besides the problem
of constructing equations of motion for the density within TDDFT, another problem is
determining physical observables that are not simple functional of the density. For ion-
isation probabilities, e.g. we therefore resort to the Slater determinant ansatz within
Kohn-Sham theory, which however inherits the problems of TDHF when it comes to the
inherent interconnectedness of single- and double-ionisation. See [34] for more details.

3.4.2. Time-dependent two-particle reduced-density matrix method

The p-particle reduced-density-matrix (pRDM) is defined as the trace over all N-p parti-
cles of the density matrix

N!
Dl---P = )’ Tr(p+1)...N[|l|I> <\|I|]7 (3.20)

(N—p

where N > p > 1 is the number of particles and the trace Tr(, ). n describes the trace
over all but p particles. Different normalisations are used in literature, and we will discuss
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3.4. Methods based on reduced objects 17

some of them in chapter 4 of this thesis. The matrix representation of the pRDM in an
orbital basis {¢, () }_, is given as

ur...up _ N‘
amw—aﬁsﬁ%§W@W¢Mmew@M- (3:21)
V[H,l...VN

Furthermore, from a pRDM the qRDM, with p > ¢, can be calculated by performing the
partial trace
(N—p)!

Di.4= M

Tl‘q_H pD1 .p (3.22)

One-particle reduced density matrix

Let us now look at the special cases of IRDMs and their physical meaning. In the
eigenbasis, the IRDM can be written as

=Y A i) il (3.23)

(1)

where the eigenfunctions |);) are called natural orbitals and the eigenvalues A, * are the
occupation numbers of those orbitals. Many physical observables relevant in attosecond
and strong-field physics, such as the dipole moment or the dipole acceleration discussed
in chapter 2, are single-particle observables. The expectation value of a single-particle
observable O can be exactly calculated using only the IRDM

(0) = (y|O|y) = Zx Mi| O ;) = Tr1[D; 0. (3.24)

Two-particle reduced density matrix

In view of the above discussion it is tempting to use the IRDM as the fundamental ob-
ject to propagate. In fact corresponding theories have been developed (see e.g. [35]).
However, the Hamiltonian of multi-electron atoms, Equation 3.1, features a two-particle
operator, namely the Coulomb interaction between the electrons. Therefore, the energy
of the system is also a two-particle operator and the 2RDM is needed to exactly calculate
it. Furthermore, the two-particle ionisation probability discussed in chapter 6 is also a
two-particle observable, when neglecting three-particle ionisation. In general, the struc-
ture of the Hamiltonian being a sum over single- and two-particle operators suggests that
two-particle correlations are fundamentally important and should be included by resort-
ing to the 2RDM as the reduced object of central interest. With the 2RDM, the total
energy for a general multi-electron Hamiltonian that includes pairwise electron-electron
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interactions, can be evaluated as
1 _
E = ETrlz[DleIZL (3.25)

with the two-particle operator Hy, given as

_ hi+hy
Hypy = 3.26
12=—— +Uln, (3.26)
where Ujy = 1/|ry — 12| is the two-particle interaction and h; = —5V? — Z/r; + Voy (¥;)

is the single-particle Hamiltonian.
The 2RDM can be written in cumulant expansion as

Do =AD Dy +Ap = D{{QF + A2, (3.27)

where Aj; is the two-particle cummulant and A4 the antisymmetrisation operator acting
on the IRDMs as o o
_ Dl 2 1 k2
AD\D, =D; Dy —D; D} . (3.28)
This is an analogy to the separation of the electron-pair density into a Hartree-Fock part
and a correlation part [36]

p(ry,r2) = pfF (r1,12) +p°(r1,12). (3.29)

We can associate the correlation pair-density p¢ with the diagonal of the two-particle
cummulant Ay, in spatial coordinates. Hartree-Fock methods do not include the corre-
lation part, which in atomic systems is smaller than the Hartree-Fock contribution. Post
Hartree-Fock methods, like MCTDHF or TD2RDM, are necessary to include electron-
electron correlations.

Symmetries and eigenspectrum of the 2RDM

Analogous to Equation 3.23 we can diagonalise the 2RDM
2
Diz = YA ) (il (3.30)
i

where the eigenvalues 7»52) are called geminal occupation numbers and |y;) are the gem-

inals. As a basis for the 2RDM we choose spin orbitals. Therefore, the full 2RDM in
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3.4. Methods based on reduced objects 19

space representation is given as
<l‘11‘2|D12(l) ‘r’lr'2> =

116}, 2G;
) Z ) Djlcljljzézjz (l)(l);k] :0i (rl?t)q)?;,ﬁ,‘z (r27l)(l)j'1,5jl (r/17t)¢j2,cj2 (r/27l) (331)
11,02,]15J2
Gil 70[27(5]‘] 7Gj2

In general, using spin orbitals the full 2RDM can be written as

i1 tixt i1tixt i1 tixt i1 tixt
Jti2? Dlejzi Djlijo Dj1¢j2¢

i1Ti2d i1Ti2d i1Ti2) i1Ti2d
Jitizt Dlejzi Djlim Djlijzi
D"fl‘l'f;: , (3.32)
irlix? izt idix? idio?
Diiit Pitil Pilipt Pilpl

iz iz iz idizd
Ditint Pitiat Piliar Pl
where the indices {i, j} refer to spatial orbitals with 1 for spin up and | for spin down,
while {u,v} refer to spin orbitals. As the fermionic wave function is anti-symmetric,
Dy1? is anti-symmetric under permutation of either the upper or the lower indices. Due
to this symmetry many entries in Equation 3.32 are 0 and the 2RDM simplifies to
it f
Dijr 0 0 0
i1Ti2d i1Ti2d
0 Djtiy Dt 0
Dyl = . (3.33)

e Wit pidiat
i1lir i1lin
0 Dlejzi Djlijo 0

izl
0 0 0 Djin

In the following, we will restrict ourselves to total spin singlet systems, where S = Sf =
0. In this case, only the Dl]ﬁﬁi block needs to be calculated and all other contributions
can be reconstructed from it [37]. This block will be called the up-down-block in the
following. Its cummulant expansion is given by
itial it ni2d i1Tizd

Dlejzi o DleDjzi T Alejzi' (3.34)
Furthermore, from the eigenvalues of the up-down-block, we can reconstruct the eigen-
values of the full 2RDM using symmetries. As the D’J.IITT’]?; and D’jliljz.zi are anti-symmetric
under permutation of either the upper or lower indices, the eigenvalues corresponding to
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anti-symmetric eigenstates of the up-down-block appear three times in the full eigenvalue
spectrum while the ones corresponding to symmetric eigenstates appear only once. The
up-down-block has also symmetric eigenvalues, as the anti-symmetry can be restored
by the spin component, which is not possible for the other two blocks. Besides that,
all the eigenvalues of the up-down-block need to be multiplied by 2 to get the correct
value for the full 2RDM because all four blocks with up- and down-spin have the same
eigenvalues.

2RDM in second quantisation

The 2RDM has an interesting connection to two-particle Green’s functions, which can
be most easily seen using second quantisation. We will give only an example for the
2RDM in second quantisation but the same works for arbitrary pRDMs. When starting
from a vacuum state |0) the creation operator a! creates one electron in the u-th orbital
and the annihilation operator a, annihilates an electron in the v-th orbital. When the
annihilation operator acts on a state, where the orbital in which the electron is supposed
to be annihilated is empty, the result is zero. The same holds for the creation operator,
when the orbitals is already occupied. With this, the 2RDM is given as

D"1*2 — <\|I|ajt1az:2aV2av1 ). (3.35)

viva

The entries of the 2RDM can therefore be interpreted as the overlap between a state
where v| and v, have been annihilated and a state where u; and u, have been annihilated.

The BBGKY hierarchy and time propagation

For the time propagation of the 2RDM, we use time-dependent orbitals as a basis follow-
ing the approach within MCTDHE. We chose the equations of motion for the orbitals to
be identical to the ones for TD-CASSCEF described in subsection 3.3.3. Furthermore, the
same gauge freedom for (¢;|io; ld) j> remains. For time-propagation, it is again advanta-
geous to choose (0;|io; ‘(I) j> = h’j, but in section 5.1, a different choice is discussed.

The EOM for the 2RDM is determined based on the EOM for the full density matrix
Dy, i.e. using the von-Neumann-Lioville equation

i0;D1. N = [Hi1. n,Di1.n], (3.36)

where H;__y is the full N-particle Hamiltonian. By partially tracing out all but two parti-
cles, we get the equation of motion for Dy,

i0;D12 = [Hi2,D12] + Tr3[U13 + U3, D123], (3.37)
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3.4. Methods based on reduced objects 21

where D1,3 is the 3RDM. With the Hamiltonian givep in Equation 3.3, the EOMs for the
orbitals and 2RDM, using the gauge (¢;|id; |¢ i) = h';, can be written as

i0;[9p) = h|0p) +Q Y, (D7), DEU[0p). (3.38)
oqsr
i0;D12 = [U12,D12] + Tr3[Ui3 + U3, D123]. (3.39)

Equivalently, the time evolution of the 3RDM requires the knowledge of the 4RDM and
so on. This finding is known as the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy. Obviously, the EOM for the 2RDM is not closed and cannot be used as such.
Any practical application requires a closure, where the 3RDM has to be expressed as a
functional of the 2RDM at least in an approximate way. In the following we will call this
process reconstruction.

Reconstruction

Exploiting the cummulant expansion for the 3RDM
Diy3 = AD\DyD3 + AD12D3 + A3, (3.40)

we obtain explicit dependencies on the IRDM and 2RDM. But there remains the un-
known contribution from the three-particle cummulant A>3, for which there are differ-
ent approximations. The Valdemoro reconstruction simply sets it to zero, while in the
Mazziotti reconstruction [38] the cummulant expansion of the 4RDM is employed and
by setting Tr4[A1234] to zero, Ajp3 can be reconstructed. For the calculations presented
in this thesis, the Nakatsuji-Yasuda (NY) reconstruction [39], [19] is used. Within this
reconstruction by using a diagrammatic expansion, two classes of diagrams, which con-
tribute to A>3 can be calculated. Furthermore, we enforce symmetries on the recon-
structed cummulant [37], [19], [31], which are not already satisfied by the reconstruction
functional. We enforce contraction consistency (CC), for the whole 3RDM as well as for
separate spin-blocks, which means that the trace of the 3RDM (or its parts) must give
the 2RDM with appropriate normalisations. This results in particle number and energy
conservation for general CC and conservation of spin for the CC of the spin-blocks.

TD2RDM and CASSCF

Similarly to the TD-CASSCF method presented in subsection 3.3.3 we want to use a
separation of the orbitals into active and core orbitals within the TD2RDM method. The
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2RDM then has entries with orbitals from the active space, as well as from the core space

UclUc2 UclUc2 UclUc2 UclUc2
DVcl Ve2 DVC] Va2 Dval Ve2 DVal Va2

Ducl Ua2 Ducl Uq2 Ducl Ug2 Ducl Ug2

VelVe2 VelVa2 ValVe2 ValVa2
uyuy __
Dy, = , (3.41)
UalUc2 Ua1Uc2 Ua1Uc2 UalUc2
DVcl Ve2 Dvcl Va2 Dvul Ve2 Dva 1Va2

Dyl Dyilves Dyalvs Dy
where the indices ci refer to core orbitals and ai to active orbitals. In second quantisation,
Equation 3.35, it becomes clear that all matrix elements, which have a different number
of active and core indices in either the upper or lower indices, e.g. Dy}, have to be
zero. In other words, there can not be an overlap between a wave function, which has
had one electron from the core orbitals annihilated and the same wave function which
has had no electron from its core orbitals annihilated. Ten of the sixteen contributions in
Equation 3.41 are, therefore, zero.
When considering Dy¢ly2, we know that the Hartree-Fock like fully occupied core or-
bitals cannot account for any correlation. Therefore, this block separates into IRDMs
with the two-particle cuammulant being zero. Furthermore, all core orbitals have their
occupation fixed to one, such that the IRDM of core orbitals is trivially given by the
Dirac-delta 8; as
Dicta — ADY D2 — 4311812, (3.42)

The contributions from the four blocks, which each have one active and one core orbital
index in the upper and lower indices, i.e. Dy1y%2, Dyclye? | Dyelie and Dy, can all be
reproduced by only one of them, when exploiting the anti-symmetry under permutation
of either the upper or lower indices

Dyt = Dysi) = —Diite = —Diet. (3.43)
Furthermore, for these blocks the two-particle cuammulant has to be zero as well, as two
of its indices refer to core orbitals with vanishing correlations. The 1RDM for the core
elements Dy! is again a Dirac-delta as all core orbitals are fully occupied such that the
cummulant decomposition of these matrices amounts to

DucluaZ — DllfgllDl\/)lzg = SCccllDuaZ (3.44)

VelVa2 Va2 *

When all indices refer to active orbitals, no simplifications can be made. The resulting
element includes correlations in the two-particle cummulant

DHallta2 — 'q'Dll;tZ]l D\’f;z; +Aualua2 (345)

ValVa2 ValVa2 *
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At the end, out of the sixteen blocks of the full 2RDM, only one block given in Equa-
tion 3.45 does not reduce to single particle contributions. Therefore, for the EOM of the
2RDM, only the part, which describes pairs in active orbitals needs to be propagated.
All the other terms can be reconstructed by contracting the 2RDM to the 1IRDM and
combining it with Dirac-deltas for the core orbitals. This separation thus allows us, to
significantly reduce the size of the 2RDM.

Stability and purification

As the reconstruction discussed above is not exact, the positive-semi-definiteness of the
2RDM can be violated during time propagation [37]. This is clearly unphysical. In gen-
eral, the question, which conditions a 2RDM has to fulfil to guarantee the existence of an
N-body wavefunction that contracts to it, is still open. However, a constructive method
exists to find necessary conditions [40].

Empirically, it has been found previously that the time propagation becomes unstable as
the lowest eigenvalues of the 2RDM become negative. This problem can be remedied by
iteratively "correcting" the 2RDM. This procedure is called purification [37]. It should
be noted that the purification is applied a-posteriori after the propagation step and is not
part of the EOMs. Despite the fact that purification works usually well, there are cases
where the purification fails, and no stable propagation is possible. Furthermore, if the
calculations need too many purification steps, the quality of the results deteriorates.

The purification in its present form violates energy conservation. An energy conserv-
ing purification scheme has been suggested in [41], but has not been implemented yet.
Therefore, all calculations presented in this thesis are done with non-energy conserving
purification. This is only a minor issue in the present case of weakly correlated multi-
electron atoms but becomes more important as correlations increase.
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4. Measures of correlation and
entanglement

The field of quantum information theory has developed a plethora of measures for cor-
relation and entanglement, however, most are assuming distinguishable particles/subsys-
tems [42]. These measures of correlation and entanglement cannot be easily transferred
to indistinguishable fermionic systems [21]. In quantum information theory, a state po
is called uncorrelated when the expectation value of any local observable in one subsys-
tem is independent of the expectation value in the other subsystems. For example for
two uncorrelated subsystems with density matrices p4/p and observables A and B the
expectation value for both observables can be written as

<AB>PO = <A>PA <B>pB' 4.1)

When this separation is not possible, the state is called correlated and the measure of cor-
relation gives the distance to the closest uncorrelated state. If the state is a mixture of un-
correlated states p =Y ; cip(()l) , with coefficients c;, it is called separable or non-entangled.
Otherwise the state is called entangled and the relative entropy of entanglement deter-
mines how close the state is to the closest non-entangled state.

In systems of indistinguishable fermions, however, the simplest antisymmetrised state of
two electrons |ab) = |a) |b) — |b) |a) is by the above definition correlated. Therefore, the
measure of interest for a fermionic state is how close it is to a Hartree-Fock state. In the

following, we will discuss a few such measures.

4.1. Pure vs. mixed states

From statistical physics we know that for a pure state the density matrix is given by

p=|w) (yl, (4.2)

where |y) is the full wave function. If the system consists of a mixture of different states,
the density matrix is given by

p= ZP:‘ i) (wil, 4.3)
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where p; is the probability for the system to be in the state |y;). As Tr[p] =1, Y. pi =1
must hold as well. If i = 1, Equation 4.3 for the mixed state goes over into Equation 4.2
for the pure state. Furthermore, p> = p for a pure state, but not for a mixed state. There-
fore, 1 — Tr[pz} works as a measure of how close a state is to a pure state.

To be able to apply this measure also for reduced density matrices, we have to take their

normalisation into account. We want to normalise our pPRDMS such that Tr [D% p] =1
for a Hartree-Fock sate. If the pPRDMs are normalised to one, as density matrices usu-
ally are, the purity for the Hartree-Fock pRDM would give the inverse of the number of

. —1 . .
non-zero eigenvalues <]1\7/ ) . In contrast, our pPRDMs, as presented in section 3.4, are

normalised as Tr[D;_,| = ﬁ, therefore the purity of a Hartree-Fock state is given by

%. To obtain Tr [D% p] = 1 for a Hartree-Fock state, we therefore must normalise

to (N ) This allows for comparison of purity between systems with different electron
numbers. In the following we will use the mixedness of a state, which we define as

m(Dy.p)=1-Tr[D} ], (4.4)

where the pRDM is normalised to (][\f ) As the trace is basis independent, we can simply
compute the mixdness in the eigenbasis, where it is sufficient to know the eigenspectrum
of the pPRDM.

4.2. Entropy

A widely used measure for correlation is the entropy. We will use the von Neumann
entropy

S(p) = Tr[plog(p)], (4.5)

which can be defined for the one- and two-particle RDM as
S1(D1) = Tr[Dylog(D1)], (4.6)
Sz(Dlz) = TI‘[DIQ log(Dlz)]. (47)

The measure is independent of the basis and it is sufficient to know the eigenvalues of the
1RDM and 2RDM, to calculate it. In order for the entropy of Hartree-Fock states to be 0,
the pRDM is again normalised to (Il\f) Compared to probability theory, where entropies
are evaluated for distributions normalised to one, this normalisation leads to a shift and
rescaling of the entropy. Since we are mostly interested in the dynamical behaviour of
the entropy and its usage as a measure of deviation from a the Hartree-Fock state, this is
of no concern.
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4.3. Direct measures from the TD2RDM method

A direct way of measuring the deviation from a Hartree-Fock state, and thereby the
electron-electron correlations, can be found by the cumulant expansion Equation 3.27 of
the 2RDM

Dy, =A4AD Dy + A = D%F + A2, (4.8)

where all correlations are captured by the two-particle cummulant. Therefore, the two-
particle cummulant is a natural measure for the correlation within the TD2RDM method.
The Frobenius norm, or Schatten 2-norm, of the two-particle cummulant

1A = 4/ Tr [AEAQ] : (4.9)

has already been used as a time-dependent correlation measure [43] [44]. It can be easily
computed as

(4.10)

1An]| = \/;;;;}mn){f} 2
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5. Preparation of the ground state

In order to calculate the time-evolution for HHG, a stable ground state is needed. As
the TD2RDM equations of motion differ from the MCTDHF ones, Equation 3.37, we
cannot simply calculate the ground state of the system by imaginary time-propagation
as it is done for MCTDHEF. A TD2RDM ground state could be calculated, e.g. by adia-
batic switching, where starting from a Hartree-Fock state, the electronic correlations are
adiabaticly switched on. As this is not yet implemented, we take the MCTDHF ground
states, which are ground states of the exact multi-particle Hamiltonian and the MCTDHF
EOMs but not of the EOMs for the D, with the approximated three-particle cumulant.
In order to make the ground state more stable under the TD2RDM equations of motion,
a procedure, which we call averaging, has been developed [19]. We review and evaluate
the procedure of averaging in detail here.

5.1. Equation of motion and propagator

Within the procedure of averaging the 2RDM from the MCTDHF ground state is aver-
aged over a field-free TD2RDM time propagation of duration 7. The averaged 2RDM is
then obtained as

gt
DITE = [ Dhisyan. (5.1)

For the averaging of the initial state we take the orbitals to be fixed and only propagate
the 2RDM. Based on this, we choose the gauge for the equations of motion to be

(0i]i9; [0) =0, (5.2)
such that the equation of motion for the 2RDM in this case reads as
i0;D12 = [hy + ha, D12] + [Wi2, D12] + Tr3[Wi3 + Waz, D13 (5.3)

Equation 5.3 differs from Equation 3.38, used for propagation in a field, by the gauge
choice Equation 5.2. The single-particle part of the Hamiltonian is transformed from
the orbitals equation of motion to the 2RDM equation of motion. The orbitals are not
propagated during averaging. The scaling of the computational effort for the averaging
is thus independent of the spatial grid and the orbitals of the averaged ground state do
not differ from the initial ones.
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5.2. Reasons for averaging

To understand why we need the averaging procedure of the initial state let us compare
TD2RDM calculations performed with averaged and not averaged MCTDHF ground
states to the results within the MCTDHF method. In Figure 5.1, we plot the dipole ac-
celeration during HHG for different driving laser fields for beryllium, neon, and argon.
For all calculations a sin> envelope is used for the laser pulse. The field parameters for
beryllium and neon are chosen to match those from [19] and for the argon calculations
[45] 1s used as a reference, where i.e. we use a 2 cycle, 800 nm, I =4 x 10"*Wem—2
laser pulse. Especially for beryllium, the not-averaged ground state within TD2RDM
gives an unphysical result with very high oscillations. In comparison, the dipole accel-
eration using the averaged initial state within TD2RDM is in good agreement with the
MCTDHEF calculations.

For neon a 2 cycle, 800 nm, and / =1 X 1015Wem—2 driving field is used. Here the os-
cillations from the not-averaged initial state are much smaller, even though they are still
noticeable, especially at the beginning and the end of the pulse, where the dipole accel-
eration is small for the TD2RDM with averaged initial state and MCTDHF calculation.
The latter two, again, are in good agreement.

For argon a 3 cycle, 780 nm, and / = 3.5 x 10'*W cm™2 driving field is used. Here, very
good agreement between all three calculations is observed, with the only discrepancy
appearing between the 3rd and 4th optical cycle when the laser is already off, where
the dipole acceleration for the TD2RDM calculation with the not-averaged ground state
slightly differs from the other two calculations.

In general, we observe that the averaging of the ground state becomes less important the
heavier the atoms are and the more electrons they have. This can be associated with the
relative correlation energy becoming smaller in comparison with the total energy of the
atom as the atomic number increases. As the treatment of the correlations is the only
source of error within the TD2RDM method, this is plausible.

For further analysis of these oscillations in the dipole acceleration, let us look at the
spectrum of the dipole acceleration, i.e. the HHG yield. In Figure 5.2, we can see the
harmonic yields for the beryllium, neon and argon calculations. Starting from argon we
see good agreement between all three calculations for the whole range of the spectrum.
For neon the agreement is good for the first 15 harmonic orders, then the yield calculated
within TD2RDM from the not-averaged ground state shows marked deviations. Never-
theless, the overall shape is similar and the cut-off is clearly visible. In contrast, the har-
monic spectrum for the TD2RDM calculation of beryllium with the not-averaged ground
state shows strong deviations from MCTDHEF, which grow with harmonic order. In con-
trast, using an averaged ground state, we observe excellent agreement with MCTDHE.
In addition the spurious oscillations when using the not-averaged ground state show up
especially at higher frequencies and thus bear the risk of overlaying the cut-off. This is
especially visible in the neon spectrum.
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Figure 5.1: Dipole ac-
celeration for HHG in
beryllium, neon and
argon. The plots show
TD2RDM results for av-
eraged and not averaged
MCTDHF ground states,
as well as MCTDHF
calculations. For beryllium
we have used a 2 cycle,
800 nm laser pulse with
I =4 x10“Wem™2, for
neon 2 cycles, 800 nm,
and I =1 x 10°Wem™—2,
and for argon 3 cy-
cles, 780 nm, and
1=3.5x10"%Wcem™2.
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Figure 5.2: HHG yield in
beryllium, neon and ar-
gon. The plots show
TD2RDM results for av-
eraged and not averaged
MCTDHF ground states,
as well as MCTDHF cal-
culations. For beryllium
we have used a 2 cycle,
800 nm laser pulse with
[ =4x10"Wem™2, for
neon 2 cycles, 800 nm,
and I =1 x 10PWem—2,
and for argon 3 cycles,
780 nm, and I = 3.5 x
10Wem—2.
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5.3. Changes on the 2RDM due to the averaging

As we have seen, the initial state preparation through averaging is essential within the
TD2RDM method to achieve physical results. Let us now investigate in more detail,
the effect of this procedure on the ground state from which we start the calculations.
As an example we look at the beryllium state, because it has the least orbitals and is
therefore the easiest to visualise. In Figure 5.3 we can see the up-down-block of the
linearised 2RDM, i.e. both upper indices run horizontally, while both lower indices run
vertically from one to the number of orbitals, e.g. the lower index 21, and upper index
32, corresponds to the entry D%% of the 2RDM. In this way we can display the four
dimensional 2RDM as a two dimensional matrix. We see that the largest contributions
are on the diagonal for the highest occupied orbitals, 1s and 2s. Here we plot the real
part of the 2RDM on a linear colour-scale as well as the absolute value on a logarithmic
colour-scale, to highlight smaller entries of the 2RDM. The 2RDM obtained from the
MCTDHEF ground-state calculations has only real valued entries.

1071
0 125 11
=P - 0.5 1074
w 21 " o 21 L I I |
(0] (O]
o 2s2sT o
2 107 o 23 1077
o ' 5 - R
2 15 - S 41 i
2 2 | | | i 10
20 - 51
- —0.5
| | | N 10_13
0 5 10 15 20 11 21 31 41 51
upper indices upper indices —

Figure 5.3.: Real part of the linearised up-down-block of the 2RDM of the beryllium ground
state on a linear colour-scale and absolute value of the up-down-block on a
logarithmic colour-scale, with 1s, 2s and 2p orbitals as a basis.

In Figure 5.4, we can see the real and imaginary part of the difference of the 2RDM
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Figure 5.4.: Real and imaginary part of the difference between the values in the up-down-
block of the 2RDM for beryllium before and after averaging. For the relative
difference we choose a logarithmic colour scale and plot the absolute value
of the matrix elements.

before and after the averaging (DZ-‘]"Jz-2 - Di.llijzé). Before averaging, the state is purely
real but through the averaging we also get an imaginary contribution. The 2RDM stays
Hermitian and the imaginary part is relatively small. Furthermore, the absolute value of

the relative difference

Dtz _ piti
J1J2 J1J2
et s (5.4)
D'
J1J2

for each element is plotted and a logarithmic colour scale is used in order to highlight
also smaller changes. Overall, we observe that some diagonal elements get smaller while
several off-diagonal elements increase. This indicates, that the 2RDM gets more mixed.
To quantify this effect we present in Table 5.1 the mixedness of the 2RDM as well as
the IRDM. Using the normalisation to (N ) as discussed in section 4.1 allows us to better
compare values for different atoms. Overall, we observe that all RDMs get more mixed
by the averaging except for the IRDM of neon. Furthermore, the IRDMs are generally
purer than the 2RDMs, which is most probably just the effect of a larger number of
entries being unequal to one in the 2RDM compared to the IRDM. We would expect the
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Be Ne Ar with core Ar
IRDM
mixedness before averaging | 0.09108467 | 0.00815775 | 0.01096783 | 0.00049386
mixedness after averaging | 0.09259254 | 0.00815759 | 0.01107941 | 0.00049417
2RDM
mixedness before averaging | 0.12144576 | 0.01440403 | 0.02056182 | 0.00092944
mixedness after averaging | 0.12344275 | 0.01440436 | 0.02076761 | 0.00093003

Table 5.1.: Purity of the 1- and 2RDM of the beryllium, neon, and argon ground states
before and after averaging. The averaging enhances the mixedness of the

state.

purity to increase with the atomic number as the correlation energy decreases. The fact,
that this is not the case for neon and argon here originates from using the separations into
active and core orbitals for argon, but not for neon. This effect vanishes when the argon

calculations are done without core orbitals, i.e. all orbitals are set to active.
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6. Correlation effects during high
harmonic generation

In this chapter, we investigate electronic correlation effects during high harmonic gen-
eration. Starting with results already presented in [19], which we reproduce here as a
numerical check, we apply the correlation measures discussed in chapter 4. We observe
different regimes of the dynamical build-up of correlations, which we investigate further
by varying the laser parameters. We start our discussion with beryllium, and succes-
sively investigate larger atoms, i.e. neon and argon. In Appendix B preliminary results
on xenon are presented. We provide all relevant input parameters for the numerical re-
sults presented here, in Appendix A.

6.1. Beryllium

Following [19] we start with a 2 cycle, 800 nm, 4 - 10"*Wcm~2 driving laser. In Fig-
ure 6.1, the resulting dipole acceleration as well as the electrical field strength of the
laser field are plotted. We compare TDHF, TDDFT, MCTDHF and TD2RDM calcu-
lations. The latter two are in excellent agreement with each other. The difference to
the TDHF and TDDFT calculations is not significant when only looking at the dipole
acceleration.

0.1 1

0.0 1

a(t) in a.u.
el. field in a.u.

—0.1 4

T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time in optical cycles

Figure 6.1.: Dipole acceleration for HHG in beryllium within TDHF, TDDFT, MCTDHF and
TD2RDM. The electrical field of the 2 cycle, 800 nm, and I =4 x 10'* Wem ™2
laser pulse is plotted in dark yellow.
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6.1. Beryllium 35

In contrast, the HHG yield calculated from the dipole acceleration according to Equa-
tion 2.6 (see Figure 6.2) shows strong deviations for the yield close to the cut-off within
TDHF and TDDFT. The MCTDHF and TD2RDM calculations are in excellent agree-

ment with each other.

energy in eV
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0 102 1 1 1 1 1
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>
(@)
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Figure 6.2.: HHG spectrum for beryllium within TDHF, TDDFT, MCTDHF and TD2RDM,
with the same laser parameters as in Figure 6.1.

We know apply the correlation measures from chapter 4 to these results, see Figure 6.3.
For better comparison, all measures are normalised to their initial value %. Addition-
ally, also the electrical field of the laser field is plotted. We observe that all the measures
which take either the IRDM or the 2RDM as input are equivalent under this normali-
sation (the difference being of the order of 1 x 107>), see Figure 6.3. Importantly, all
measures show the same temporal behaviour: At approximately 0.5 optical cycles, the
correlation first decreases, followed by a steep increase at the time of the maximal field
strength at 1 optical cycle. After that all measures show oscillations around an almost
constant value. These results show that qualitatively and partly also quantitatively these
measures contain the same information on dynamical correlation effects. Due to their
similarity, we will restrict our analysis to one of the measures, i.e. the Frobenius norm
of the two-particle cummulant as it has the most largest range, i.e. the largest amplitude
compared to its initial value, of all discussed measures and is also the most natural mea-
sure for the TD2RDM method. Consistent with the observation in chapter 5 the ground
state of beryllium is more mixed than for neon and argon, we observe that the ground
state of beryllium is also the most correlated one out of those three.

In order to gain a better understanding of the process, the upper panel in Figure 6.4 shows
the occupation numbers of the natural orbitals, i.e. the eigenvalues of the IRDM. For
beryllium, at first only the 1s and 2s orbitals are occupied, while the 2p orbitals are prac-
tically unoccupied. During the process of HHG, electrons from the 2s orbital get ionised
to the previously empty 2p my; = +1 orbitals. During this process the / quantum number
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Figure 6.3.: Correlation measures normalised to their initial value. We compare the en-
tropy and purity of the 1RDM and 2RDM with the Frobenius norm of the two-
particle cummulant from the MCTDHF calculations. The laser parameters are
the same as in Figure 6.1.

looses its meaning, as the orbitals mix to other / states. At about 0.5 optical cycles, all the
2p orbitals get depleted into 2s, which explains the reduction in correlation we observe
at this time, as this increases the purity of the RDM. In general, the original 2p m; = 0
orbital has a lower occupation at the end than in the beginning. It is also remarkable that
the time dependence of the third largest eigenvalue of the 1RDM represents quite well
the time dependence of the correlation measures. Furthermore, the agreement between
MCTDHF and TD2RDM is very good also for the prediction of occupation numbers.

In the middle panel of Figure 6.4 the one- and two-particle ionisation probabilities are
plotted. To obtain the ionisation probabilities, we integrate the electron density for the
one-particle ionisation, and the electron-pair density for the two-particle ionisation out-
side a given radius R;,,, which we set to R;,, = 20 a.u. for the calculations presented in
this thesis. The exact time dependency of the ionisation probabilities depend on this ra-
dius during the laser pulse (the steps in ionisation probability are shifted in time towards
larger values when we increase R;,,), but the final ionisation probability is converged.
For further technical details on the calculation of the ionisation probabilities we refer to
[15]. In the present case of beryllium with with I, ~ 9 eV [26] and the Keldysh parame-
ter being Y~ 0,485, the one- and two-particle ionisation probabilities are quite high.

To further assess the quality of the TD2RDM results we plot the Frobenius norms of
the two-particle cummulants within MCTDHF and TD2RDM in the third panel of Fig-
ure 6.4. The two methods show good agreement during the first optical cycle, but start
to deviate afterwards. As the two methods only differ by the three-particle cumulant
entering the TD2RDM, this discrepancy can be attributed to the inaccurate description
of three-particle correlations within the TD2RDM method. The discrepancies are more
prominent in the two-particle cummulant of the up-down block than in the up-up block.
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Figure 6.4.: The first panel shows the natural occupation numbers, i.e. eigenvalues of the
1RDM within MCTDHF and TD2RDM for beryllium. The second panel shows
the one- and two-particle ionisation probabilities respectively. The third panel
shows the Frobenius norm of the two-particle cummulant within MCTDHF
and TD2RDM. The last two panels show the norm of the up-down and up-up
block of the two-particle cummulant. The electrical field of the 2 cycle, 800
nm, and I = 4 x 10'* Wem ™2 laser pulse is plotted in dark yellow.
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In general, the contribution form the up-down block, which corresponds to electron-
pairs with opposite spin, is larger than the contribution from the up-up block, which
corresponds to electron-pairs of same spin. The maxima in the cummulant after 1 op-
tical cycle correspond to points in time when the occupation numbers from the 2s and
2p orbitals are the closest. At this points, the IRDM is also the most mixed, thus most
correlated.

We now turn to a parameter regime of weaker laser fields to suppress tow-particle
ionisation while at the same time increasing the wavelength of the laser field to reach
approximately the same cut-off as before. Specifically, we present calculations with a
2 cycle, 2000 nm, and 7 = 5 x 10'3 Wem™2 laser pulse, i.e. a Keldysh parameter of
Y~ 0.50. We observe very good agreement between the MCTDHF and TD2RDM calcu-
lations also in this regime, see Figure 6.5. The deviations within the TDHF and TDDFT
calculations from MCTDHF are already prominent in the dipole acceleration. The HHG
spectrum in Figure 6.6 confirms the excellent agreement between the MCTDHF and
TD2RDM results and the discrepancies to TDHF and TDDFT.

el. field in a.u.

- —0.02

T T T T T T T
0.00 025 050 075 100 1.25 150 1.75  2.00
time in optical cycles

Figure 6.5.: Dipole acceleration for HHG in beryllium within TDHF, TDDFT, MCTDHF and
TD2RDM. The electrical field of the 2 cycle, 2000 nm, and I = 5 x 10'3
W em™? laser pulse is plotted in dark yellow.

The one-particle ionisation probability in the central panel of Figure 6.7 reaches 10%,
while the two-particle ionisation probability is negligible. An interesting behaviour is
observed in the time dependence of the natural occupation numbers in the upper panel of
Figure 6.7. Here we see a depletion of the already weakly occupied 2p orbitals during the
first two large amplitude modulations of the laser field, at around 0.55 and 1.05 optical
cycles. TD2RDM reproduces this behaviour very well.
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Figure 6.6.: HHG spectrum for beryllium within TDHF, TDDFT, MCTDHF and TD2RDM,
with the same laser field parameters as in Figure 6.5.
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Figure 6.7.: The upper panel shows the natural occupation numbers, i.e. eigenvalues of
the 1RDM within MCTDHF and TD2RDM for beryllium. The central panel
shows the one- and two-particle ionisation probabilities respectively. The
lower panel shows the Frobenius norm of the two-particle cummulant within
MCTDHF and TD2RDM. The electrical field of the 2 cycle, 2000 nm, and
I =5x 10" Wem™2 laser pulse is plotted in dark yellow.
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This translates into decreasing two-particle correlations during the process of HHG as is
shown in the lower panel of Figure 6.7. TD2RDM slightly overestimates the correlations
compared to MCTDHEF. Interestingly, the two-particle correlations remain reduced at the
end of the pulse. This originates from the fact that the final system is closer to a Hartree-
Fock state than the initial ground state such that the initially quite strongly occupied
orbitals obtain even more weight.

We now perform a windowed Fourier transform (Gabor transform) of both the dipole
acceleration in Figure 6.5 as well as the two-particle cummulant in Figure 6.7, using the
specgram function of matplotlib [46] with the Blackman window. While a(7) is a single-
particle observable, A, is a two-particle observable directly sensitive to correlated two-
particle dynamics, e.g. two-particle resonances. It is therefore interesting to compare
the spectral features in both observables. We observe that frequency components from
the second plateau at high harmonic orders, larger than 50, which originate from the
ionisation at small intensities at the first large laser field modulation and recombination
at large intensities at the second large amplitude modulation, are strongly suppressed
within ||A2||2. This indicates that two-particle correlations are not relevant here. The
situation changes for the second plateau starting at 1 laser cycle. Here, large contributions
at approximately the 19th harmonic order are visible in both the HHG yield as well as
in the two-particle cummulant, see Figure 6.6 (vertical lines) and Figure 6.8 (horizontal
lines).Interestingly, we observe a constant frequency structure in the Gabor transform of
||A12||? starting with the first optical cycle, which might indicate the presence of a two-
particle resonance. The structure is similar to single-particle resonances observed in the
time-frequency analysis of a(¢) in lithium [47]. A similar structure is present in the HHG
yield, however, at slightly smaller frequencies of about 9 harmonic orders, and could
indicate the presence of a single-particle resonance. Both spectral features are marked in
the HHG yield in Figure 6.6, as they are both prominently visible. We will investigate
these features in more detail in follow-up studies.

In the Gabor transform for the beryllium calculations with the 2 cycle, 800 nm, and
I =4 x 10" Wem™2 laser pulse no such features were visible. The structures we found
here are all within the energy range of the first five harmonics, see Figure 6.2, and are
thus not well resolved in this case.
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Figure 6.8.: Time-frequency analysis of the dipole acceleartion and two-particle cummu-
lant within TD2RDM and MCTDHF calculations for beryllium. The laser pa-
rameters are 2 cycles, 2000 nm, and I =5 x 1013 Wem ™2,

In order to further analyse the correlations for high harmonic orders, we repeat the beryl-
lium calculations with a longer laser pulse of 4 optical cycles. The results are only shown
for the MCTDHEF calculation, see Figure 6.9. As there are now long trajectories, which
start from an already partly ionised atom, the harmonics at high orders show more cor-
relation compared to Figure 6.8. The spectral feature at the 19th harmonic order is also

present for this case.
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Figure 6.9.: Time-frequency analysis of the dipole acceleration and two-particle cummu-
lant within MCTDHF calculations for beryllium. The laser parameters are 4

cycles, 2000 nm, and I = 5 x 10'3 Wem 2.
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6.2. Neon

We now investigate HHG in neon with a 2 cycle, 800 nm, and 10°Wcm™2 driving
laser field, following [19]. This seemingly high laser intensity results in low ionisation
probabilities comparable to the second calculation from section 6.1, as neon has a high
ionisation potential of 21.56 eV [26]. Furthermore, with a Keldysh parameter of Y~ 0.43
we are in a similarly strong field regime. Figure 6.10 shows the resulting dipole accel-
eration within the TDDFT, TDHF, MCTDHF and TD2RDM calculations as well as the
amplitude of the electrical field of the driving laser. Again, we see very good agree-
ment between the MCTDHF and TD2RDM methods. The dipole acceleration obtained
by the TDHF calculation is also comparable in shape and size, while TDDFT gives a
substantially different result.
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Figure 6.10.: Dipole acceleration in neon within TDHF, TDDFT, MCTDHF and TD2RDM.
The electrical field of the 2 cycle, 800 nm, and I = 1 x 10> Wcem™ laser
pulse is plotted in dark yellow.

These discrepancies are also visible in the HHG spectrum, Figure 6.11, where TDDFT
shows the largest deviations from the MCTDHF benchmark. Similarly to the beryllium
results, the spectra are in good agreement for lower frequencies, while the harmonic
yield is vastly different for higher frequencies. All four methods predict the same cut-off
frequency.

The one- and two-particle ionisation probabilities, see the central panel of Figure 6.12,
are comparable to the ones for beryllium in Figure 6.7 in their temporal behaviour as
well as their magnitude.

The shape of the laser field is imprinted on the occupation numbers as well as the two-
particle cummulant, see Figure 6.12, where local maxima are slightly time-delayed com-
pared to the large amplitude modulations of the laser field. We see clear traces of the
three-step model, where e.g. after one optical cycle we see effects of recombination by
an increase of the occupations of the highly occupied orbitals after previous depletion.
In general the occupation numbers obtained by both methods (MCTDHF and TD2RDM)
are in good agreement with each other.
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Figure 6.11.: HHG spectrum for neon within TDHF, TDDFT, MCTDHF and TD2RDM, with
the same laser field parameters as in Figure 6.10.
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Figure 6.12.: The upper panel shows the natural occupation numbers, i.e. eigenvalues
of the 1RDM within MCTDHF and TD2RDM for neon. The central panel
shows the one- and two-particle ionisation probabilities respectively. The
lower panel shows the Frobenius norm of the two-particle cummulant within
MCTDHF and TD2RDM. The electrical field of the 2 cycle, 800 nm, and
I=1x10" Wcem™2 laser pulse is plotted in dark yellow.
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The qualitative agreement between the time dependence of the occupation numbers and
the two-particle cummulant is also present in this case. Overall, the neon atom shows
less correlations than beryllium. We see a qualitatively different time behaviour of the
correlations. Firstly, we do not see any decrease in correlations below the ground-state
value. After the highest increase, which again occurs at the time of the highest field
intensity, there is a decrease in correlation again. The final value at the end of the laser
pulse is larger than at the beginning. This might be due to the finite residual ionisation
of the atom. The TD2RDM slightly overestimates the two-particle correlations and has
additional noise compared to the results from MCTDHF.

a(t) TD2RDM a(t) MCTDHF
10~2 103

10—3

10~4

harmonic order
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Figure 6.13.: Time-frequency analysis of the dipole acceleration and two-particle cummu-
lant within TD2RDM and MCTDHF calculations for neon. The same laser
parameters as in Figure 6.10 are used.
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This is also visible in the time-frequency analysis of the dipole acceleration as well as
the two-particle cummulant in Figure 6.13. There, the higher harmonic orders exhibit
less correlations, while the harmonics from the second lower energy plateau are more
correlated. We observe a prominent frequency component at approximately the 55th
harmonic order in the spectrum of the Frobnenius norm of the two-particle cummulant
which is most likely responsible for the enhancement at the end of the first lobe in the
Gabor transform of a(t), see Figure 6.13. A second feature around the 15th harmonic
order is visible in both the dipole acceleration as well as the Frobenius norm of the two-
particle cummulant. Both features are, however, not easily recognisable in the HHG
spectrum, see Figure 6.11. We will investigate these features in more detail in follow up
studies.

6.3. Argon

Finally, we want to present results for argon, where the separation into core and active
spaces for the electrons is employed. One of the interesting features that might influence
the HHG yield is the Cooper minimum. The Cooper minimum was first predicted by
John Cooper for argon and krypton [48]. For argon it appears as a minimum in the photo
ionisation probabilities at approximately 50 eV. It originates from the sign change in the
dipole matrix element between the bound outer p orbitals and the unbound d orbitals.
This spectral feature can be observed in HHG [45] as recombination is governed by the
same matrix element. We have analysed the process of HHG in argon with a three cycle
laser field at 780 nm and I = 3.5 x 10'* Wcem ™2, following [45]. With argon having an
ionisation probability of 15.75 eV [26], this gives a Keldysh parameter of Y~ 0.63. In
the following, we directly compare this parameter regime to one with a stronger field
of I = 8 x 10 Wem™2, which gives a Keldysh parameter of ¥~ 0.41. Having the
same system driven with two different laser intensities allows us to directly compare
two different parameter regimes and observe the influence of the laser intensity on the
dynamic behaviour of the correlation measures.

Figure 6.14 shows the dipole acceleration for both intensities obtained within the TDHF,
TDDFT, TDCASSCF and TD2RDM methods. For the lower intensity, we observe good
agreement between the TDHF, TDCASSCF and TD2RDM methods while the TDDFT
calculations show the largest discrepancy. For the higher intensities the TDCASSCF and
TD2RDM method show slight discrepancies, especially at the end of the laser pulse. The
source of this discrepancy could be the accumulation of error due to the reconstructed
three-particle cuammulant during the longer propagation times.
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Figure 6.14.: Dipole acceleration for HHG in argon driven with a 3 cycle, 780 nm and
I=35%x10" Wem 2 and I = 8 x 10" Wem ™2 laser pulse. The results
are obtained within TDHF, TDDFT, TDCASSCF and TD2RDM. Additionally
the electrical field is plotted in dark yellow.

The HHG spectra obtained from the TDCASSCF and TD2RDM calculations are in good
agreement with each other, see Figure 6.15. For the lower intensity laser field all three
spectra obtained from TDHF, TDCASSCF and TD2RDM are in good agreement with
each other, while at high intensities, the spectra obtained from the TDDFT calculations
most strongly differ from the one obtained from TDCASSCEF calculations. For both cases
the Cooper minimum is clearly visible at around 55 eV (there seems to be a slight shift
towards higher energies for I = 3.5 x 104 Wcem ™2 and lower energies for I = 8 x 1014
Wcem—2). For the lower intensity, our findings are in good agreement with the measure-
ments presented in [45] even though the minimum obtained from our calculations is not
as deep as the one obtained in the experiment.
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Figure 6.15.: Harmonic yield for HHG in argon driven with a 3 cycle, 780 nm and
I=35%x10" Wem 2 and I = 8 x 10'* Wem ™2 laser pulse. The results
were obtained within TDHF, TDDFT, TDCASSCF and TD2RDM. The cooper
minima is marked at 55 eV.

For the higher intensity of the laser field the ionisation probability is about ten times
higher than for the lower intensity laser pulse, see Figure 6.16. Two-particle ionisation is
for both cases suppressed, with a slight increase after the largest amplitude modulation
of the electric field at 1.5 optical cycles.

For the stronger laser pulse of 7 = 8 x 10'* Wem™2 we observe that several natural
occupation numbers approach each other, see Figure 6.16, while for the weaker I =
3.5 x 10" Wem™2 pulse they remain practically constant. Overall we end up with a
much more mixed systems than we started with for the stronger intensity. The results
within TDCASSCF and TD2RDM are similar at the beginning, but at around 3 optical
cycles there is an exchange in weight between the outer shell 3p and 3s orbitals within
the TD2RDM method that is not reproduced within the TDCASSCEF calculations.
When driven with the lower intensity laser field, see upper panel of Figure 6.17, we
see only small changes over time in the natural occupation numbers. However, the dis-
crepancies between the occupations from the TDCASSCF and TD2RDM method are
relatively large, although being very small on an absolute scale. The discrepancies are
very small also for the Frobenius norm of the two-particle cummulant shown in the upper
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Figure 6.16.: One- and two-particle ionisation probability for argon within the MCTDHF
method with a 3 cycles, 780 nm, and 7 = 3.5 x 10'* Wem ™2 and 7 = 8 x

10'* Wem™2 laser pulse.

panel of Figure 6.18. There, similar to the lower intensity case for beryllium discussed
in section 6.1, we get an overall reduction in correlations and the TD2ZRDM method un-
derestimates the correlations. On the contrary, during the I = 8 X 10'* Wem™2 laser
pulse, the change in correlations is large and comparable to the one in Figure 6.4. The
discrepancies between the TD2RDM and TDCASSCF methods at the end of the laser
field can be explained by the above mentioned spurious coupling between the outer shell

3p and 3s orbitals within the TD2RDM method.
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Figure 6.17.: Natural occupation numbers, i.e. eigenvalues of the 1RDM, from the TD-
CASSCF and TD2RDM calculations in argon with a 3 cycle, 780 nm,
I=35x10"Wem2and I = 8 x 10'* Wem™2 laser pulse.
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Figure 6.18.: Frobenius norm of the two-particle cummulant for MCTDHF and TD2RDM
calculations in argon with a 3 cycles, 780 nm, and I = 3.5 x 10'* Wem ™2
and I =8 x 10'* Wem™2 laser pulse.
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7. Conclusion and outlook

To sum up, we have applied the TD2RDM method to HHG in large atomic systems such
as argon and have demonstrated that the TD2RDM is highly accurate also in this set-
ting. As benchmark methods we have used MCTDHF and TDCASSCEF, which make an
explicit ansatz for the multi-electron wavefunction and thus scale exponentially with par-
ticle number. TD2RDM in contrast scales only linearly. Furthermore, we have demon-
strated that the TD2RDM formalism allows for the same reduction of dimensionality as
TDCASSCEF by applying the concept of active and core orbitals. Base on our multi-
electron calculations, we have quantified the role of electron correlations using correla-
tion measures from quantum information theory.

For this investigation of correlations, we have analysed the time behaviour of different
correlation measures for systems of indistinguishable fermions. Thereby, the Frobenius
norm of the two-particle cummulant has shown the largest dynamical range, while also
being the most natural measure for our method. However, we have observed that all
measures show essentially the same time dependence. Moreover, correlation measures
such as the entropy of reduced density matrices of the 1IRDM and 2RDM become indis-
tinguishable when rescaled by their initial value. They carry thus the same information
on the dynamical process.

Based on these correlation measures we found two different regimes during HHG. A
regime where correlations increase due to the strong laser field to values larger than the
initial correlations in the system ,and a regime, where the change of correlations is com-
parable or smaller than the initial correlations in the system. In the second regime, the
overall ionisation probability is small and of the order of 10%. In this regime using a
time-frequency analysis where have found several structures in the HHG yield as well
as in our two-particle correlation measures that indicate the presence of correlated two-
particle dynamics such as two-particle resonances. these results are so far preliminary
and we leave it for future studies to quantify the observed effects in more detail.

Moreover, we want to extend our studies to even larger atoms, such as xenon, for
which we already presented some preliminary results. There, especially the giant dipole
resonance is interesting as an example of a prominent electron correlation effect.
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A. Input parameters for numerical
results

In the following, we quantify the values of input parameter as required by the current
code. This is meant to serve as reference for follow up calculations using the code and
to guarantee reproduce-ability of our numerical results.

For all calculations the thresholds for the propagator are set to

hlrat_maxcyc = 40,

hlrat_thresh =1.0E — 13,

hlitr_maxcyc = 40, and

hlitr_thresh = 1.0E — 12, and

etd_cisplit = —1.

The expansions in / quantum numbers are terminated at

Imax1 =47 Equation 3.17 and

Imax2 = 47 Equation 3.16, furthermore

jfec_implicit = true and

xfc_implicit = true are set.

In order to perform TD2RDM calculations instead of MCTDHF within the code
disable _cic = true is set. The reconstruction is for all TD2RDM calculations set to
reconstruction_type = NY + CC and the purification

purification_type = reduce,

purification_step = 40, and

purification_error = 0.

For the TDDFT calculations the exchange-correlation functional is chosen by d ft_type =
131.

The averaging calculations for chapter 5 all use the same propagator prop_type = split2
where the gauge choice is set to (0;]id; \q) ;) = 0 with the parameters oorot_type = 0 and
split_type = 0. Furthermore, the orbitals are kept fixed with fixorb = true. For beryl-
lium the averaging time of 30 a.u. is set via average_2rdm = 30, neon and argon use an
averaging time of 50 a.u.. The grids are set the same, as for the ground-state calculations,
ie.
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nfe =20
grid :
0.0 40 20 20

for beryllium and neon and

nfe=16
grid :

0.0 2.0 20 2
2.0 30 20 14

for argon.

The time-propagations shown in chapter 5 all use the same parameters as the corre-
sponding calculations in chapter 6. All time propagations use the same propagator
prop_type = etdrb and the gauge choice (¢;| id; \q) i) = hj- is set via

oorot_type = 0 and

split_type = 1.

For the laser field we use the velocity gauge

gauge = velocity?2 and

num_field =1,
delay = 0.0,
cep =90.0, and

env_type = sin2 are set.

For the beryllium calculations in section 6.1 with I =4 X 10'* Wem—2, fint = 4.0e14,
and A = 800 nm, wlen = 800, and two cycles, numcyc = 2, are set. We propagate for
cyctot = 3 with nstep = 20000 per cycle, on a grid of

nfe =50
grid :
0.0 200 20 50

The same parameters are also used for the neon calculation, except fint = 1.0e15. For the
beryllium calculations with the lower field intensity of fint = 5.0e13, and wlen = 2000
a larger grid of

nfe="175
grid :
0.0 300 20 75
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56 A. Input parameters for numerical results

is used. For the argon calculations wlen = 780, numcyc = 3, cyctot = 4, and nstep =
40000 are set. For the fint = 3.5¢14 calculations a grid of

nfe=~61
grid :

0.0 2.0 20 2
2.0 120 20 59

is used. While for fint = 8.0el4,
nfe =101

grid :

0.0 2.0 20 2

2.0 200 20 99

is used.
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B. Preliminary xenon results

Here we present preliminar results of xenon calculations. Figure B.1 shows the HHG
spectrum of xenon for a two cycle, 300 nm, and / = 5 X 105 Wem—2 obtained with
TDHF and TD2RDM. The region, where the giant-dipole resonance is expected, is
marked. It is quite striking that both methods give very similar results. The reason
could be the fact, that the laser parameters lead to very weak ionisation probabilities.
However, presently we cannot exclude a numerical issue. Nonetheless, correlated xenon
calculations for HHG are in the scope of the TD2RDM method.

10° - —— TD2RDM
—— TDHF

107

10°

103

HHG yield in arb. units

10!

10_1 T T T T
0 50 100 150 200 250
energy in eV

Figure B.1.: HHG spectrum for xenon from TDHF and TD2RDM calculations with a 2 cycle
laser pulse with 300 nm and I = 5 x 10'>. The highlighted area shows the
spectral regime of the giant dipole resonance.
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