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Abstract

Strongly correlated electron systems offer exciting and interesting physics but also great
theoretical and numerical challenges. Independent (quasi-)particles are insufficient to
describe them and in the language of Feynman diagrammatics vertex corrections have to
be taken into account. Hitherto such corrections have by and large only been studied up
to the two-particle level. The present thesis, however, looks beyond that and into the
realm of electronic correlations on the level of three-particle Feynman diagrams. For this,
it is necessary to generalize many concepts and terms that are well-known and understood
on the two-particle level. The diagrammatic representation and decomposition of the
three-particle Green’s function is studied and the fully connected three-particle vertex
is introduced. We also present the expansion of the three-particle Green’s function in
terms of the full two-particle vertex and compute its first few terms.

A possible option to make numerics easier is to restrict ourselves to bosonic three-particle
correlators. These only have two instead of five frequency or time arguments. More
importantly, however, they are required for nonlinear response theory and thus provide a
physical application for three-particle corrections. Numerical simulations for an Anderson
impurity model and Hubbard model are used to find areas where such response functions
in second order in the applied fields become sizeable. It turns out that in these parameter
regimes simple approximations with bare or bubble-like diagrams yield bad results and
three-particle vertex corrections must indeed be considered.

The next chapter of this thesis focuses on three-particle ladders. After generalizing the
Bethe–Salpeter equation to three particles, an approximation for the three-particle ladder
is introduced. It is built as a geometric series of diagrams based only on irreducible
two-particle vertices and Green’s function lines. The numerical results computed for
an Anderson impurity model (AIM) are not very rewarding, though. They are only
qualitatively good for small values of the local Coulomb interaction.

Finally, statistical error estimation of post-processed quantum Monte Carlo quantities is
studied. Specifically, the error propagation through diagrammatic equations on the one-
and two-particle level, is analyzed. This is not directly tied to three-particle correlations
and based on an earlier project. However, since most numerical results in this thesis are
based on dynamical mean-field theory calculations, error estimations for the self-energy
turned out to be generally very useful.
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Zusammenfassung

Stark korrelierte Elektronensysteme bergen spannende und interessante Physik aber auch
große theoretische und numerische Herausforderungen. Unabhängige (Quasi-)Teilchen
reichen nicht mehr aus um sie zu beschreiben und Vertexkorrekturen, wie sie in der
Sprache der Feynman-Diagrammatik heißen, müssen berücksichtigt werden. Bisher sind
solche Korrekturen weitestgehend nur auf dem Ein- und Zweiteilchenniveau untersucht
worden. Die vorliegende Dissertation blickt jedoch über diesen Tellerrand hinaus und in
das Reich der elektronischen Korrelationen der Dreiteilchendiagramme. Dafür werden
die Terminologie und die Konzepte, die bereits vom Zweiteilchenniveau bekannt sind,
auf drei Teilchen verallgemeinert. Die diagrammatische Darstellung und Zerlegung der
Dreiteilchen-Green’schen-Funktion werden untersucht und der volle, verbundene Dreiteil-
chenvertex wird eingeführt. Weiters wird die Entwicklung der Dreiteilchen-Green’schen-
Funktion bezüglich dem vollen Zweiteilchenvertex vorgestellt und die ersten Terme werden
berechnet.

Eine Möglichkeit um die Numerik zu vereinfachen ist es, dass wir uns auf bosonische
Dreiteilchenkorrelatoren beschränken. Diese haben nur zwei anstatt fünf Frequenz- oder
Zeitargumente. Viel wichtiger ist jedoch, dass sie für die Berechnung nichtlinearer Ant-
wortfunktionen verwendet werden können und somit eine physikalische Anwendung für
Dreiteilchenkorrekturen darstellen. Mithilfe von numerischen Simulationen werden für ein
Anderson-Impurity-Modell und ein Hubbard-Modell Parameterbereiche gesucht in denen
die Antwortfunktionen in zweiter Ordnung in den externen Feldern möglichst groß sind.
Wie sich herausstellt, sind einfache Approximation die nur aus Green’schen Funktionen
bestehen in diesen Bereichen nicht ausreichend. Echte Dreiteilchenkorrekturen müssen
berücksichtigt werden.

Im nächsten Kapitel liegt der Fokus auf Dreiteilchenleitern. Nach der Verallgemei-
nerung der Bethe-Salpeter-Gleichung auf drei Teilchen, wird eine Approximation für
die Dreiteilchenleiter vorgestellt. Diese basiert auf einer geometrischen Reihe von ir-
reduziblen Zweiteilchenvertices und Green’schen Funktionslinien. Leider bleiben die
numerischen Ergebnisse, die für ein Anderson-Impurity-Modell berechnet wurden, hinter
den Erwartungen. Sie sind nur qualitativ gut und das bei kleinen Werten der lokalen
Coulomb-Wechselwirkung.

Schließlich wird noch die statistische Fehlerschätzung bei der Weiterverarbeitung von
Quantum-Monte-Carlo-Größen untersucht. Genauer gesagt wird die Fehlerfortpflanzung
durch diagrammatische Gleichungen am Ein- und Zweiteilchenniveau analysiert. Dies
steht nicht in direkter Verbindung zu Dreiteilchenkorrelationen, sondern basiert auf einem
früheren PhD-Projekt des Autors. Da jedoch die meisten numerischen Ergebnisse dieser
Dissertation auf Berechnungen mit der dynamischen Molekularfeld-Theorie aufbauen,
stellt sich die Fehlerschätzung für die Selbstenergie im Allgemeinen als äußerst nützlich
heraus.
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1. Introduction

“The whole is greater than the sum of its parts.” Most people will probably connect this
saying with seminars about synergy, or have heard it at team building events. However,
in physics, more specifically many-body physics, this wisdom also holds true [1]. In
general, a system of 𝑛 particles cannot be described as 𝑛 single-particle systems. Why?
Because there are interactions and the particles influence one another. This makes life
very difficult for solid-state physicists. Due to the huge amount of particles typically
interacting in solids, exact solutions, even numerical ones, are basically impossible to
find.

However, when big numbers are involved, statistics can often help. If the interaction
between the electrons is weak enough, we can average it and describe it by a mean
charge field through which a single electron moves. These mean-field methods, most
famously density functional theory (DFT) employed with current, approximate exchange–
correlation functionals, have been successfully applied to many problems and materials
over the past decades. For some systems, however, they fail miserably: the mean-field
is no longer an accurate description as the strong interaction between the electrons
becomes important. In more mathematical terms, this means that in such a system the
expectation value of two observables does not factorize, i.e.,⟨ ̂𝐴𝐵̂⟩ ≠ ⟨ ̂𝐴⟩⟨𝐵̂⟩. (1.1)

The difference between the two sides of the inequality is called correlation, and systems
with a sizable difference are aptly named strongly correlated systems. They can show a
plethora of fascinating phenomena based on collective behavior such as Mott–Hubbard
metal–insulator transitions, heavy fermion behavior, and, probably most famously, un-
conventional superconductivity. However, strong correlations do not only lead to such
exciting and interesting effects, but also make their theoretical treatment notoriously
difficult. Independent (quasi-)particles are insufficient to describe the relevant physics
and corrections due to scattering of (quasi-)particles have to be taken into account.

In the language of Feynman diagrammatics these corrections are called vertex corrections,
and they are often categorized by the number of particles involved. By and large such
corrections are only considered up to the two-particle level. In the one-particle case they
help us describe, e.g, quasiparticle renormalizations, and metal–insulator transitions,
while two-particle vertex corrections modify linear response functions of the system.
Dynamical mean-field theory (DMFT) also relies on Feynman diagrams with one in- and
outgoing particle, while its diagrammatic extensions incorporate two-particle vertices as
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1. Introduction

well. Correlations beyond the two-particle level, however, are for the most part terra
incognita. After exploratory forays into this area [2–4] the goal of the present thesis
is to be the second proper expedition to these unexplored lands, generalizing existing
theoretical frameworks and formalisms, and finding out what physical insights await

The outline of the present thesis is as follows:

Chapter 2 recapitulates theoretical formalisms and concepts necessary for the later
chapters. This includes first and foremost methods of quantum field theory (QFT) for
many-electron systems. We discuss one- and two-particle Green’s functions and use the
Matsubara formalism to deal with finite temperatures. Feynman diagrams are introduced
since they play an important role throughout this thesis. We also shed light on some
topological properties of one- and two-particle diagrams. At the end, a short derivation
of nonlinear response theory necessary for chapter 5 is given.

Chapter 3 introduces, on the one hand, the models used in this thesis to study three-
particle correlations, and on the other hand, the methods employed to solve them. We
briefly recall the most important facts and equations, but do not focus on implementation
details and numerics.

Chapter 4 lays the foundation for this thesis by studying the theoretical aspects of the
three-particle Green’s function. Definitions, properties, and concepts from the one- and
two-particle level are generalized, and we see that channels, notations, symmetries, and
decompositions all get more complex. The three-particle level also allows a new form of
expansion of the full vertex, for which the first few orders are calculated.

Chapter 5 focuses on bosonic three-particle correlators. Since they have fewer time
and frequency arguments than the full three-particle Green’s function they are much
easier to handle numerically. The most important aspect is, however, that they provide a
physical application for three-particle corrections: nonlinear response theory. We scan
the parameter space of our models to find regimes with large second-order response
functions.

Chapter 6 goes back to the full three-particle vertex and tries to represent it as a
geometric series of diagrams. As it turns out a Bethe–Salpeter-like equation is much
more difficult to find on the three-particle level than on the two-particle one. Therefore,
an ad-hoc approximation based on intuition from two-particle ladders is derived and
studied.
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Chapter 7 is a bit of an outlier as it does not discuss three-particle correlations. Instead,
it focuses on an earlier project about statistical error estimation of post-processed
quantum Monte Carlo (QMC) quantities. Specifically, it studies the error propagation
through diagrammatic equations on the one- and two-particle level, namely the Dyson
and Bethe–Salpeter equations.

Chapter 8 finally gives a summary of the most important achievements of this thesis.
It also provides an outlook and lists some unanswered questions.

Acknowledgements and a list of publications are found at the end, after the appendix.
Throughout the thesis, vertical bars mark parts taken from already published work by
the author.

Units

At this point let us make a short comment about units. In his book Quantum field theory
in a nutshell, A. Zee writes: “For the same reason we no longer use a certain king’s feet
to measure distance we use natural units in which the speed of light 𝑐 and the Dirac
symbol ℏ are both set equal to 1.” [5] We fully agree with him and additionally set the
Boltzmann constant 𝑘𝐵 and the Bohr magneton 𝜇𝐵 to 1.
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2. Theoretical background

It is well known to those who know well.

Peter van Nieuwenhuizen

In this chapter we introduce and recapitulate the theoretical background that is necessary
to explain the methods in chapter 3, upon which the main part of this thesis builds.
This contains many-body quantum field theory (QFT) at finite temperature, Green’s
functions, the Matsubara formalism, and Feynman diagrams. We start with the one-
particle Green’s function or propagator 𝐺1 which we also use to explain how to get
from quantum mechanical expectation values to Feynman diagrams. This allows us to
discuss some topological properties, like reducibility. The two-particle level is, however,
where the diagrammatics really start to get interesting. After a general discussion about
the two-particle Green’s function 𝐺2 we perform decompositions based on topological
properties of the Feynman diagrams. This leads us right to the parquet equation, the
Bethe–Salpeter equations and the Schwinger–Dyson equations. In the last section we
study nonlinear response theory and its connection to 𝑛-particle correlation functions.

2.1. One-particle Green’s function

Green’s functions, also called propagators, are the theoretical work horse of this thesis.
For the most part we are concerned with finding ways to compute them for certain many-
body problems, study their symmetries and properties, and connect them to experimental
observables. Since we want to do our QFT calculations at finite temperature we use the
so-called Matsubara formalism [6], where we perform a Wick rotation [7] 𝑡 → −i𝜏 from
real times 𝑡 to imaginary times 𝜏. This allows us to interpret the Boltzmann factor e−𝛽𝐻̂
in thermal expectation values as just another imaginary time evolution. As we will see
later when introducing Feynman diagrams this turns out to be very convenient.

In second quantization, at finite temperature, and in imaginary times the one-particle
Green’s function 𝐺1 is defined as𝐺1,12(𝜏1, 𝜏2) ≔ (−1)1⟨T ̂𝑐1(𝜏1) ̂𝑐†2(𝜏2)⟩, (2.1)

where ⟨…⟩ = Tr e−𝛽𝐻̂ … denotes the thermal expectation value at inverse temperature𝛽 = 1/𝑇 with respect to the full Hamiltonian 𝐻̂, and T is the time-ordering operator.
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2. Theoretical background

Furthermore, ̂𝑐𝑖(𝜏) and ̂𝑐†𝑖 (𝜏) are the annihilation and creation operators at time 𝜏 with
all other degrees of freedom like lattice site, spin, or orbital condensed into a single
flavor index 𝑖. This definition means that the Green’s function measures the probability
amplitude for an electron with flavor 2 to appear at 𝜏2, and one of flavor 1 to vanish at𝜏1. The usual interpretation is that an electron propagates from 2 to 1, hence also the
name propagator.

If the Hamiltonian of the system is time translation invariant one can show that the
Green’s function only depends on a single imaginary time argument [8]𝐺1(𝜏1, 𝜏2) = 𝐺1(𝜏1 − 𝜏2, 0) ≕ 𝐺1(𝜏). (2.2)

Similarly, if the Hamiltonian is invariant under translation by a lattice vector 𝐑 it only
depends on a single lattice site parameter [8]𝐺𝐑1𝐑21 = 𝐺𝐑1−𝐑2 𝟎1 ≕ 𝐺𝐑1 . (2.3)

Both those symmetries hold for the Hamiltonians used in this thesis (see chapter 3). They
are also SU(2) symmetric which means that in the paramagnetic phase the one-particle
Green’s function is also independent of spin: 𝐺1,↑↑ = 𝐺1,↓↓ = 𝐺1.

With lattice systems it is often most convenient to work in the reciprocal space, where
the one-particle Green’s function is periodic in the first Brillouin zone and can therefore
be represented as a Fourier series:𝐺1(𝐤1, 𝐤2) = ∑𝐑1 ∑𝐑2 ei𝐑1𝐤1e−i𝐑2𝐤2𝐺𝐑1𝐑21 . (2.4)

Using eq. (2.3), i.e., translation invariance in real space, we can rewrite this as𝐺1(𝐤1, 𝐤2) = ∑𝐑1 ∑𝐑2 ei𝐑1𝐤1e−i𝐑2𝐤2𝐺𝐑1−𝐑21= ∑𝐑2 e−i𝐑2(𝐤2−𝐤1) ∑𝐑=𝐑1−𝐑2 ei𝐑𝐤1𝐺𝐑1≕ 𝑉BZ𝛿(𝐤1 − 𝐤2)𝐺1(𝐤𝟏) (2.5)

where 𝑉BZ is the volume of the first Brillouin zone, and we introduce the single-momentum
Green’s function 𝐺1(𝐤) in the last line. The formula for the Fourier coefficients is what
gets us back from reciprocal to real space. It is given by𝐺𝐑1 = 1𝑉BZ

∫
BZ

d𝐤 e−i𝐑𝐤𝐺1(𝐤). (2.6)

We can do a similar Fourier transformation in imaginary time. Since the one-particle
Green’s function is anti-periodic in 𝜏 with period 𝛽 [8], we can again express it as:𝐺1(𝜏1, 𝜏2) = 1𝛽2 ∑𝜈1 ∑𝜈2 e−i𝜈1𝜏1ei𝜈2𝜏2𝐺𝜈1𝜈21 . (2.7)
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2.1. One-particle Green’s function

This time the Fourier coefficients 𝐺𝜈1𝜈21 are defined on discrete frequencies 𝜈𝑖 = (2𝑛𝑖 +1)𝜋/𝛽 with 𝑛𝑖 ∈ ℤ. Note that bosonic functions are periodic in 𝜏 with the same period 𝛽
[8] and therefore their coefficients are defined on different frequencies 𝜔𝑖 = 2𝑛𝑖𝜋/𝛽 with𝑛𝑖 ∈ ℤ. These two sets of discrete frequencies are called fermionic and bosonic Matsubara
frequencies, respectively.1

The Fourier coefficients in Matsubara space are given by𝐺𝜈1𝜈21 = ∬𝛽0 d𝜏1 d𝜏2 ei𝜈1𝜏1e−i𝜈2𝜏2𝐺1(𝜏1, 𝜏2). (2.8)

Using eq. (2.2), i.e., time translation invariance, we can again get rid of one parameter𝐺𝜈1𝜈21 = ∬𝛽0 d𝜏1 d𝜏2 ei𝜈1𝜏1e−i𝜈2𝜏2𝐺1(𝜏 = 𝜏1 − 𝜏2)= ∫𝛽0 d𝜏2 e−i(𝜈2−𝜈1)𝜏2 ∫𝛽−𝜏2−𝜏2 d𝜏 ei𝜈1𝜏𝐺1(𝜏)= ∫𝛽0 d𝜏2 e−i(𝜈2−𝜈1)𝜏2 ∫𝛽0 d𝜏 ei𝜈1𝜏𝐺1(𝜏)≕ 𝛽𝛿𝜈1𝜈2𝐺𝜈11 ,
(2.9)

and define the single-frequency one-particle Green’s function 𝐺𝜈1. Note that from line
two to line three, we can shift both integration boundaries of the 𝜏 integral by the same
amount 𝜏2, because the integrand is 𝛽 periodic, and we integrate over a full period.

Looking at the two Fourier series for time and space we see that the prefactors for
the transformations differ. This choice is made deliberately based on considerations
about units. For a single-band, spin-symmetric system with space translation invariance
in the noninteracting limit, the Hamiltonian is diagonal in momentum space, and the
one-particle Green’s function can trivially be calculated to be𝐺𝜈1,0(𝐤) = 1

i𝜈 − 𝜖(𝐤) + 𝜇, (2.10)

where 𝜖(𝐤) is the dispersion relation and 𝜇 the chemical potential. The dimension of the
Green’s function in this case is inverse energy (frequency) or time. In imaginary time
and real space it is, however, 1. We can see this when realizing that the expectation
value ⟨T ̂𝑐†𝑖 (𝜏) ̂𝑐𝑖(𝜏)⟩ is the occupation 𝑛𝑖 at site 𝑖 which is just a number. Therefore, the
creation and annihilation operators in 𝜏 and real space as well as all expectation values
built thereof are dimensionless. Our choice of prefactors do not change the dimensions
when going between real and reciprocal space because in eq. (2.6) the dimension of d𝐤
cancels with that of 𝑉BZ. In eqs. (2.8) and (2.9), however, we see that that is not the case

1Unless stated otherwise we will denote fermionic Matsubara frequencies with 𝜈’s and bosonic ones with𝜔’s in this thesis.
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2. Theoretical background

for d𝜏 and therefore, we get one dimension of time for each frequency, which matches
with eq. (2.10). The following gives a dimensional summary:[⟨T ̂𝑐†𝑖 (𝜏) ̂𝑐𝑖(𝜏)⟩] = [𝑛𝑖] = 1, (2.11)[𝐺𝐑1𝐑21 (𝜏1, 𝜏2)] = [𝐺𝐑1 (𝜏)] = 1, (2.12)[𝐺𝐑1 ] = [𝐺1(𝐤)] = 1, (2.13)[𝐺𝜈1𝜈21 ] = [ d𝜏1 d𝜏2] = [𝜏]2, (2.14)[𝐺𝜈1] = [𝐺𝜈1,0] = [𝜏], (2.15)

where [⋅] denotes the dimension of the quantity.

After all those rather technical details let us mention that the one-particle Green’s
function is also connected to an experimental observable, the so-called spectral function𝐴(𝜔, 𝐤), observable in photoemission measurements. It is given by𝐴(𝜔, 𝐤) = − 1𝜋𝐺1(𝜔, 𝐤), (2.16)

where it is important to note that 𝜔 is a real frequency, which can be obtained from the
Matsubara frequency by analytic continuation, i.e., i𝜈 → 𝜔 + i0+.

As a final note, from now on we usually drop the index 1. If the particle-ness cannot be
inferred from the (number of) arguments, (e.g., if we only write 𝐺) we always mean the
one-particle Green’s function.

2.2. Feynman diagrams

Feynman diagrams are an important tool in the field of QFT and used extensively in
this thesis. Therefore, we give a short repetition of where they come from and what they
are.

It all starts with the problem of calculating expectation values for interacting systems.
Assume we can split the Hamiltonian describing such a system into a noninteracting part𝐻̂0 and an interacting one 𝐻̂int. In this thesis we only consider Hamiltonians that only
have a four-point interaction, i.e., their interacting part is of the following form:𝐻̂int = 12 ∑1234 𝑈1234 ̂𝑐†1 ̂𝑐†3 ̂𝑐2 ̂𝑐4, (2.17)

where 𝑈 is the Coulomb interaction, and all quantum numbers and other parameters
are condensed into indices 1 to 4. Our goal is now to find a perturbative solution for
the interacting problem around the noninteracting limit. For this we use the interaction
picture which is convenient because there the time-evolution of an operator only uses𝐻̂0: ̂𝐴I(𝜏) = e𝐻̂0𝜏 ̂𝐴e−𝐻̂0𝜏. (2.18)
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2.2. Feynman diagrams

Since the expectation value ⟨ ̂𝐴⟩ must be the same in all pictures, the time-evolution
operator, or 𝑆-matrix, ̂𝑆(𝜏) in the interaction picture is given bŷ𝑆(𝜏) = e𝐻̂0𝜏e−𝐻̂𝜏. (2.19)

The solution to its equation of motion𝜕 ̂𝑆(𝜏)𝜕𝜏 = e𝐻̂0𝜏(𝐻̂0 − 𝐻̂)e−𝐻̂𝜏 = −𝐻̂int
̂𝑆(𝜏), (2.20)

is the time-ordered exponential of the interaction Hamiltonian̂𝑆(𝜏) = T e− ∫𝜏0 𝐻̂int(𝜏1) d𝜏1 (2.21)

which can be written as the following serieŝ𝑆(𝜏) = ∞∑𝑛=0 (−1)𝑛𝑛! ∫𝜏0 d𝜏1 … ∫𝜏0 d𝜏𝑛 T 𝐻̂int(𝜏1) … 𝐻̂int(𝜏𝑛). (2.22)

The reason for going through all of this is that we can rewrite the thermal expectation
value of the full system as the one of the noninteracting one with an additional 𝑆-matrix:⟨T …⟩ = Tr e−𝛽𝐻̂ T …

Tr e−𝛽𝐻̂ = Tr e−𝛽𝐻̂0 T ̂𝑆(𝛽) …
Tr e−𝛽𝐻̂0 ̂𝑆(𝛽) = ⟨T … ̂𝑆(𝛽)⟩0⟨ ̂𝑆(𝛽)⟩0 . (2.23)

Here, ⟨⋅⟩0 denotes the expectation value with respect to the noninteracting Hamiltonian.
Combining eqs. (2.22) and (2.23) we see that we can expand any correlation function in
terms of the interaction Hamiltonian using only noninteracting expectation values. In
the case of the one-particle Green’s function this yields𝐺12(𝜏) = − 1⟨ ̂𝑆(𝛽)⟩0 ∞∑𝑛=0 (−1)𝑛𝑛! ∫𝜏0 d𝜏1 … ∫𝜏0 d𝜏𝑛⟨T ̂𝑐1(𝜏) ̂𝑐†2𝐻̂int(𝜏1) … 𝐻̂int(𝜏𝑛)⟩0. (2.24)

Feynman diagrams are a graphical representation of the terms in this series. They are
often easier to reason about than the normal representation since high-order terms quickly
become unwieldy. Especially topological properties are easier to see in the diagrammatic
form.

One such property is the connectedness. The linked-cluster theorem tells us that we
only need to compute diagrams where all parts are connected or linked to one of the
external points (1 and 2 in case of 𝐺12) since the disconnected diagrams exactly cancel the
denominator in eqs. (2.23) and (2.24) [9]. This is already a big simplification, but we still
need one more step: Wick’s theorem. It states that for noninteracting expectation values
arbitrary products of creation and annihilation operators reduce to sums of pairwise
contractions [10]. This means that we can write any term appearing in the expansion
of a correlation function as a product of noninteracting or bare one-particle Green’s

9



2. Theoretical background

Figure 2.1.: Diagrammatic representation of the bare one-particle Greens function in
imaginary times and Matsubara frequencies, and the bare interaction vertex.
The gray lines of 𝑈1234 are not Green’s functions, they just show how a
potential Green’s function would connect to the interaction line.

Figure 2.2.: Diagrammatic representation of eq. (2.25), the first-order terms in the ex-
pansion of the one-particle Green’s function. The different signs between the
diagrams and eq. (2.25) come from the minus sign in the definition of the
one-particle Green’s function [see eq. (2.1)].

functions 𝐺0,12 and bare interaction vertices 𝑈1234. As shown in fig. 2.1 we depict them
with dashed and wiggly lines respectively.

As an example, let us compute the series expansion up to first order for the one-particle
Green’s function. The zeroth-order term is trivial and just contains the bare Green’s
function. For 𝑛 = 1 we get a single interaction Hamiltonian in eq. (2.24), i.e., the sum
over an interaction 𝑈 as well as two creation and annihilation operators. Since one of
the creation operators must be connected to the external annihilation operator and vice
versa we end up with 2 ⋅ 2 = 4 terms. Two of them, however, are identical, which can be
shown by relabeling the dummy indices 3456 → 5634, so we end up with𝐺(1)1,12(𝜏) = ∑3456 ∫𝛽0 d𝜏1𝑈3456[ − ⟨T ̂𝑐1(𝜏) ̂𝑐†5(𝜏1)⟩0⟨T ̂𝑐6(𝜏1) ̂𝑐†3(𝜏1)⟩0⟨T ̂𝑐4(𝜏1) ̂𝑐†2⟩0+ ⟨T ̂𝑐1(𝜏) ̂𝑐†3(𝜏1)⟩0⟨T ̂𝑐6(𝜏1) ̂𝑐†5(𝜏1)⟩0⟨T ̂𝑐4(𝜏1) ̂𝑐†2⟩0]. (2.25)

The corresponding Feynman diagrams are shown in fig. 2.2. With their help it is easier
to see where the identical terms come from. If the interaction line in a diagram is
plugged out, rotated by 180°, and plugged in again, we end up with the same diagram,
just different internal labels that are summed over anyway. This means that for each
interaction line in a diagram we get two identical terms in our series expansion. If we
have more than one interaction line in a diagram we can also permute them without
changing the topology of the diagram because the interaction lines are indistinguishable.
Therefore, we get another 𝑛! identical terms for each diagram of order 𝑛 that we can draw.

10



2.3. Self-energy

Figure 2.3.: Diagrammatic representation of eq. (2.26), the Dyson equation.

Putting all this together shows that it is sufficient to just draw topologically inequivalent
diagrams and adjusting the prefactors accordingly. The factor 1/2 from eq. (2.17) is
cancelled by the rotation trick and the factor 1/𝑛! from the series expansion cancels with
the permutations of the interaction lines. This means that the prefactor for all Feynman
diagrams is ±1, depending on the permutations required to get to a specific order of
creation and annihilation operators and the (−1)𝑛 prefactor from the series expansion.

2.3. Self-energy

In his book From here to infinity [11], Ian Stewart introduces a dictionary that contains
all possible combinations of the 26 letters of the alphabet: the Hyperwebster. It is split
into 26 volumes each one containing all words starting with the same letter, so Volume
A, e.g., lists the words A, AA, AAA, …, AB, ABA, ABAA, …, AZZZZ…. The publisher
then drops the first letter of each word because it is already in the title of the volume. In
doing so they not only save infinite amounts of ink but, due to the unintuitive nature of
infinity, they also end up with a full copy of the whole Hyperwebster again.

We can do something similar with our infinite series of Feynman diagrams for the one-
particle Green’s function. For this we need the concept of one-particle reducibility.
A diagram is said to be one-particle reducible (1PR), if it can be separated into two
disconnected parts by cutting a single, Green’s function line. If that is not possible, we
call the diagram one-particle irreducible (1PI). Instead of dropping the first letter of each
word we can now cut off the left-most 1PI part of every 1PR diagram in our expansion
to generate the whole series again. This yields the Dyson equation [12]𝐺12 = 𝐺0,12 + ∑34 𝐺0,13Σ34𝐺42, (2.26)

where Σ34 is the 1PI one-particle vertex better known as the self-energy. It is shown
diagrammatically in fig. 2.3. Bringing the implicit Dyson equation into an explicit form
for the full Green’s function 𝐺−1 = 𝐺−10 − Σ, (2.27)

and using eq. (2.10), we get 𝐺𝜈(𝐤) = 1
i𝜈 − 𝜖(𝐤) + 𝜇 − Σ𝜈(𝐤) (2.28)

for a spin-symmetric, single-band system.
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2. Theoretical background

Shifting our problem from the one-particle Green’s function to the self-energy does not
seem like much of an improvement. In dynamical mean-field theory (DMFT), however,
which is discussed in more detail in section 3.3, the self-energy plays an important role.

2.4. Two-particle Green’s function

The two-particle Green’s function 𝐺2 is defined as𝐺2,1234(𝜏1, 𝜏2, 𝜏3, 𝜏4) ≔ (−1)2⟨T ̂𝑐1(𝜏1) ̂𝑐†2(𝜏2) ̂𝑐3(𝜏3) ̂𝑐†4(𝜏4)⟩, (2.29)

where we, again, use compound indices 1 to 4 for all remaining parameters and quantum
numbers. Time and space translation invariance as well as Fourier transformations all
work analogously to the one-particle case, so we only explicitly show the transformation
to Matsubara space:𝐺𝜈1𝜈2𝜈3𝜈42,1234 = ⨌𝛽0 d𝜏1 d𝜏2 d𝜏3 d𝜏4 𝐺2,1234(𝜏1, 𝜏2, 𝜏3, 𝜏4)ei(𝜈1𝜏1−𝜈2𝜏2+𝜈3𝜏3−𝜈4𝜏4)

= 𝛽𝛿𝜈1−𝜈2+𝜈3−𝜈4,0 ∭𝛽0 d𝜏 ′1 d𝜏 ′2 d𝜏 ′3 𝐺2,1234(𝜏 ′1, 𝜏 ′2, 𝜏 ′3)ei(𝜈1𝜏′1−𝜈2𝜏′2+𝜈3𝜏′3)≕ 𝛽𝛿𝜈1−𝜈2+𝜈3−𝜈4,0𝐺𝜈1𝜈2𝜈32,1234 . (2.30)

With this we can infer the dimension of the two-particle Green’s function in imaginary
time and Matsubara space:[𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4)] = [𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4)] = 1, (2.31)[𝐺𝜈1𝜈2𝜈3𝜈4 ] = [𝜏]4, (2.32)[𝐺𝜈1𝜈2𝜈3 ] = [𝜏]3. (2.33)

Since we have more than one frequency argument even after using time-translation
invariance, there are different frequency notations. Usually they are divided into three
so-called channels: the particle–hole (ph), transversal particle–hole (ph), and particle–
particle (pp) channel. One possible choice for a consistent set of frequency notations in
those three channels is defined in table 2.1 and shown diagrammatically in fig. 2.4. It
is, however, not the only choice since we can shift all frequencies by the same amount
without violating energy conservation (we differ, e.g., from the notation used in ref. [8]).

If momenta are involved nothing really changes. They can easily be incorporated by
replacing the frequency indices with four-indices combining frequency and momentum:𝜈 → 𝑘 = (𝜈, 𝐤) and 𝜔 → 𝑞 = (𝜔, 𝐪).
Of course the different notations are all equivalent in the sense that they don’t change
the physical content of 𝐺2, but for some equations it is more convenient to choose one
notation over the other. We will see an example of that in section 2.6.

12



2.4. Two-particle Green’s function

Table 2.1.: A consistent set of frequency notations for the ph, pp, and ph channel. See
fig. 2.4 for a diagrammatic representation.

Channel 𝜈1 𝜈2 𝜈3 𝜈4
ph 𝜈 𝜈 − 𝜔 𝜈′ − 𝜔 𝜈′
pp 𝜈 𝜔 − 𝜈′ 𝜔 − 𝜈 𝜈′
ph 𝜈 𝜈′ 𝜈′ − 𝜔 𝜈 − 𝜔

Figure 2.4.: Feynman diagrams of the two-particle Green’s function in the three frequency
notations form table 2.1

After the frequency and momentum indices we now take a closer look at the spin of the
two-particle Green’s function. All Hamiltonians considered in this thesis conserve spin.
Therefore, most of the 24 = 16 spin components of 𝐺2,𝜎1𝜎2𝜎3𝜎4 vanish; only the following
six do not:𝜎1 = 𝜎2 = 𝜎3 = 𝜎4, 𝜎1 = 𝜎2 ≠ 𝜎3 = 𝜎4, 𝜎1 = 𝜎4 ≠ 𝜎2 = 𝜎3. (2.34)

This allows us to introduce a compact spin notation:𝐺2,𝜎𝜎′ = 𝐺2,𝜎𝜎𝜎′𝜎′ ,𝐺2,𝜎𝜎′ = 𝐺2,𝜎𝜎′𝜎′𝜎. (2.35)

In the paramagnetic phase we can further simplify things by using SU(2) symmetry to
get down to only three independent spin components: 𝐺2,↑↑, 𝐺2,↑↓, and 𝐺2,↑↓.

The last symmetry we consider is the crossing symmetry which directly stems from
the Pauli principle. Looking at the definition of the two-particle Green’s function in
eq. (2.29), we see that exchanging the two creation or annihilation operators requires
three permutations, so we get𝐺2,1234(𝜏1, 𝜏2, 𝜏3, 𝜏4) = −𝐺2,1432(𝜏1, 𝜏4, 𝜏3, 𝜏2)= −𝐺2,3214(𝜏3, 𝜏2, 𝜏1, 𝜏4)= +𝐺2,3412(𝜏3, 𝜏4, 𝜏1, 𝜏2). (2.36)

In Feynman diagrams this means that swapping the two in- or outgoing legs of the
two-particle Green’s function only introduces a minus sign.
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2. Theoretical background

Figure 2.5.: Decomposition of the two-particle Green’s function into two disconnected
terms and a connected term, introducing the full two-particle vertex 𝐹

From now on we drop the index 2 whenever the two-particle-ness can be inferred from
the (number of) arguments. Also, if not stated otherwise we use ph notation.

2.5. Full two-particle vertex

When we perform a series expansion of the two-particle Green’s function, as introduced in
section 2.2, we realize that a lot of terms contain parts that are identical to the expansion
of the one-particle Green’s function. We can resum those terms which effectively means
that from now on we draw Feynman diagrams with solid lines for full, interacting, one-
particle Green’s functions 𝐺 instead of dashed lines for bare ones 𝐺0. To avoid double
counting, our diagrams must not contain one-particle insertions, i.e., parts that can be
separated from the rest of the diagram by cutting two Green’s function lines, because
they already appear in the expansion of 𝐺. We call such diagrams, only drawn with full
Green’s functions, skeleton diagrams.

Furthermore, most terms have interaction lines connecting the two in- and outgoing
particles. We can collect them into a single interaction vertex which we call the full
two-particle vertex 𝐹2.2 With this the whole series expansion of the two-particle Green’s
function can be drawn with just three diagrams. This decomposition of 𝐺2 is shown in
fig. 2.5. The corresponding equation reads𝐺𝜈𝜈′𝜔1234 = 𝛽𝛿𝜔0𝐺𝜈12𝐺𝜈′34 − 𝛽𝛿𝜈𝜈′𝐺𝜈14𝐺𝜈−𝜔32 − 𝐺𝜈15𝐺𝜈−𝜔62 𝐹 𝜈𝜈′𝜔5678 𝐺𝜈′37𝐺𝜈′−𝜔84 , (2.37)

We call the first two terms disconnected but not in the same sense as when talking about
the linked-cluster theorem.3 There a disconnected diagram was one where part of it is
not connected to any external line. From now on, however, we call diagrams connected
or disconnected depending on whether all external points are connected with each other
or not.

The sign of the vertex in eq. (2.37) is just convention. Our choice leads to the following
weak coupling terms of 𝐹 for the single-band Hubbard model (HM):

lim𝑈→0+ 𝐹↑↓ = lim𝑈→0+ +𝑈, lim𝑈→0+ 𝐹↑↓ = lim𝑈→0+ −𝑈. (2.38)

2Again, we usually drop the particle-ness index if it can be inferred from the (number of) arguments.
3In the language of the linked cluster theorem all these diagrams are connected (to at least one external

point).
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2.6. Irreducible two-particle vertices

From eq. (2.37) we can also deduce the dimension of the full vertex to be[𝐹 𝜈𝜈′𝜔] = [𝜏]−1. (2.39)

This matches our expectations since the bare interaction 𝑈 also has the dimension of
energy or inverse time.

2.6. Irreducible two-particle vertices

Similarly to section 2.3 we can classify two-particle diagrams in terms of their reducibility.
Since we only have a two-particle interaction term we can only go from two to two
particles, or from three to one and vice versa. It is not possible to go from two particles
to one so all two-particle diagrams are inherently 1PI.

On the two-particle level, of course, we also need to think about two-particle reducibility.
This means that we check if diagrams can be separated into two disconnected parts by
cutting two Green’s function lines or not. In principle this is a binary property as well,
but we can refine it and also care about which pairs of external points stay connected
or, alternatively, which pairs of Green’s functions have to be cut: a particle–hole pair
that runs horizontally, a particle–hole pair that runs vertically, or a particle–particle pair.
These are the three channels (ph, ph, pp) we already mentioned in section 2.4 when
introducing the different frequency notations. While the latter are just different notations
for the same object, there is of course a real difference if a diagram is reducible in one
channel or another. As it turns out every two-particle diagram is at most reducible in
one of the three channels [13–15]. This allows us to uniquely split up the full two-particle
vertex 𝐹 into four terms𝐹1234 = Λ1234 + Φph,1234 + Φph,1234 + Φpp,1234, (2.40)

where Λ is the fully irreducible two-particle vertex, and the reducible diagrams are
collected in Φph, Φph, and Φpp. Equation (2.40) is called parquet equation or parquet
decomposition. Its diagrammatic representation is shown in fig. 2.6, where scissors mark
the lines that can be cut to separate a diagram.

Let us now briefly talk about the crossing symmetry of the different terms in eqs. (2.37)
and (2.40). Since the full two-particle Green’s function is crossing symmetric and the
two disconnected terms in eq. (2.37) each maps to the other one under crossing, the full
two-particle vertex is crossing symmetric as well. Things are similar for the components
of the parquet decomposition in eq. (2.40). When swapping the two in- or outgoing legs,
the ph channel turns into the ph channel and vice versa. The fully irreducible vertexΛ can never map to any reducible diagram no matter what one does with the external
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2. Theoretical background

Figure 2.6.: Diagrammatic representation of the parquet equation [eq. (2.40)]. Scissors
mark the Green’s function lines that can be cut to separate a diagram. Note
that in the diagram for the pp channel, the legs of the two-particle vertices
are drawn in a different order: the in- and outgoing legs are on the same side
of the square instead of diagonally across.

legs, and Φpp cannot map to Λ for the same reason. Therefore, these two components
are crossing symmetric on their own. Putting everything together we have𝐹1234 = −𝐹3214 = −𝐹1432,Λ1234 = −Λ3214 = −Λ1432,Φph,1234 = −Φph,3214 = −Φph,1432,Φph,1234 = −Φph,3214 = −Φph,1432,Φpp,1234 = −Φpp,3214 = −Φpp,1432.

(2.41)

Equation (2.40) is not the only useful decomposition of the full two-particle vertex 𝐹 ,
regarding reducibility. Instead of working with the fully irreducible vertex Λ we can look
at one channel at a time and define vertices Γ that are only irreducible in a single one:Γ𝑟 = 𝐹 − Φ𝑟, 𝑟 ∈ {ph, ph, pp}. (2.42)

With this we are back to a binary property for each channel 𝑟 and in a situation similar to
section 2.3. From every reducible diagram in Φ𝑟 we can cut off the left-most irreducible
part and again be left with the whole series of diagrams for the full vertex 𝐹 . If we do
the math properly, we get the so-called Bethe–Salpeter equations [16]𝐹1234 = Γph,1234 + ∑5678 Γph,1256𝐺67𝐺85𝐹7834,𝐹1234 = Γph,1234 − ∑5678 Γph,1654𝐺67𝐺85𝐹7238,𝐹1234 = Γpp,1234 + 12 ∑5678 Γpp,1836𝐺67𝐺85𝐹7254, (2.43)
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2.7. Schwinger–Dyson equations

Figure 2.7.: Diagrammatic representation of eq. (2.43), the Bethe–Salpeter equations.
Contrary to fig. 2.6 we use the normal order of legs also for the pp vertices.
This makes it is easier to understand the indices in eq. (2.43).

where the different signs between the ph and ph channels respect the crossing relations
in eq. (2.41) and the factor 1/2 in the pp channel comes from the indistinguishability of
the particles [15].4 Figure 2.7 shows the corresponding Feynman diagrams.

Even though we suppressed the frequency and momentum indices it is worth noting that
the Bethe–Salpeter equations are diagonal in the bosonic transfer four-index 𝑞 = (𝜔, 𝐪) if
the frequency notation matches the reducibility channel. This is convenient for numerical
implementations as it allows us to treat the vertices at different 𝑞 as independent matrices
in the indices 𝑘 and 𝑘′. The explicit form of the equations like, e.g.,𝐹 𝑞

ph,1234 = Γ𝑞
ph,12341 − (Γ1256𝐺64𝐺35)𝑞 (2.44)

can therefore be solved via simple matrix inversion.

2.7. Schwinger–Dyson equations

The last important equations that we need to mention in the Green’s function formalism
are the Schwinger–Dyson equations. They are the equations of motion of the Green’s

4We find that this standard argument is rather unsatisfactory. For a detailed explanation of why the
factor of 1/2 is necessary see the discussion after eq. (6.15) in section 6.2.
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2. Theoretical background

Figure 2.8.: Diagrammatic representation of eq. (2.45), the lowest-order Schwinger–Dyson
equation rewritten in terms of the self-energy Σ.

functions [17] and form an infinite stack of coupled equations. More specifically, the
equation for the 𝑛-particle Green’s function depends on (𝑛 + 1)-particle quantities. Still
the lowest-order one is very useful and important for many diagrammatic approaches. It
is often referred to as just the Schwinger–Dyson equation and can be rewritten to connect
the full two-particle vertex 𝐹 to the self-energy Σ [18]. For Hubbard-like Hamiltonians it
reads [19] Σ12 = ∑34 𝑈3214𝑛34 − ∑34 𝑈1234𝑛34 − ∑345678 𝐹6245𝑈8317𝐺76𝐺58𝐺34, (2.45)

where the first two terms are the Hartree and Fock contribution to the self-energy,
respectively. A diagrammatic representation of the whole equation is shown in fig. 2.8.

2.8. Nonlinear response theory

Response theory is a well studied and important part of physics because the concept
of quantifying how a system reacts in response to some perturbation is very general
and widely applicable. Since the famous work published by Kubo in 1957 [20] we also
have a theoretical description for computing such responses in a quantum mechanical
system. Often times people only consider the lowest-order terms, i.e., linear response
functions. Their derivation is covered in standard text books like Altland and Simons
[21]. In chapter 5, however, we present nonlinear, specifically second-order, response
theory as an application for three-particle correlations. Therefore, in this section we
basically follow the derivation in Altland and Simons [21] but keep higher-order terms.

Let us assume that our unperturbed system, described by a Hamiltonian 𝐻̂, couples to
external fields 𝐹𝑗(𝜏) ∈ ℝ, with imaginary time 𝜏, and hermitian operators ̂𝐴𝑗 = ̂𝐴†𝑗 asℋ̂(𝜏) = 𝐻̂ − ∑𝑗 ̂𝐴𝑗𝐹𝑗(𝜏). (2.46)

The action for this system is then given by𝒮[𝑐+, 𝑐, 𝐅] = 𝑆[𝑐+, 𝑐] − ∑𝑗𝑎𝑎′ ∫𝛽0 d𝜏𝐹𝑗(𝜏)𝑐+𝑎 (𝜏)𝐴𝑎𝑎′𝑗 𝑐𝑎′(𝜏), (2.47)
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2.8. Nonlinear response theory

where 𝑐 and 𝑐+ are Grassmann-valued fields corresponding to the eigenvalues of ̂𝑐(𝜏)
and ̂𝑐†(𝜏) with respect to coherent states, and 𝐴𝑎𝑎′𝑗 are the matrix elements of ̂𝐴𝑗, i.e.,̂𝐴𝑗 = ∑𝑎𝑎′ ̂𝑐†𝑎𝐴𝑎𝑎′𝑗 ̂𝑐𝑎′ . Note that this derivation does not require ̂𝐴 to be a one-particle
operator, even though that is the case for all operators that we are interested in. It works
just as well with any hermitian 𝑛-particle operator.

Now we compute the expectation value ⟨ ̂𝐴𝑖(𝜏)⟩𝐅 in the path integral formalism, where⟨…⟩𝐅 = 𝒵−1 ∫ 𝒟𝑐+ 𝒟𝑐e−𝒮[𝑐+,𝑐,𝐅] … , (2.48)𝒵 = ∫ 𝒟𝑐+ 𝒟𝑐e−𝒮[𝑐+,𝑐,𝐅], (2.49)⟨ ̂𝐴𝑖(𝜏)⟩𝐅 = 𝛿𝛿𝐹𝑖(𝜏) ln 𝒵, (2.50)

and expand it in a functional Taylor series around 𝐅 = 0,⟨ ̂𝐴𝑖(𝜏)⟩𝐅 = ∑𝑛 1𝑛! ∫ ⋯ ∫𝛽0 d𝜏1 … d𝜏𝑛 ∑𝑗1,…,𝑗𝑛× 𝐹𝑗1(𝜏1) … 𝐹𝑗𝑛(𝜏𝑛)( 𝛿𝑛𝛿𝐹𝑗1(𝜏1) … 𝛿𝐹𝑗𝑛(𝜏𝑛)⟨ ̂𝐴𝑖(𝜏)⟩)𝐅=0. (2.51)

This allows us to identify the response functions 𝜒(𝑛) as the functional derivatives of the
expectation value of the operator ̂𝐴𝑖 with respect to the external fields 𝐹𝑗:𝜒(𝑛)𝑗1…𝑗𝑛𝑖(𝜏1, … , 𝜏𝑛, 𝜏) = ( 𝛿𝑛𝛿𝐹𝑗1(𝜏1) … 𝛿𝐹𝑗𝑛(𝜏𝑛)⟨ ̂𝐴𝑖(𝜏)⟩𝐅)𝐅=0. (2.52)

As usual the derivatives can be exchanged because the action is just a polynomial of the
operators and fields.

Doing the actual differentiation we get for the first-order term, i.e., the linear response
function, 𝜒(1)𝑖𝑗 (𝜏, 𝜏 ′) = ( 𝛿2𝛿𝐹𝑖(𝜏)𝛿𝐹𝑗(𝜏 ′) ln 𝒵)𝐅=0= − 𝒵−2( 𝛿𝛿𝐹𝑖(𝜏)𝒵)𝐅=0( 𝛿𝛿𝐹𝑗(𝜏 ′)𝒵)𝐅=0+ 𝒵−1( 𝛿2𝛿𝐹𝑖(𝜏)𝛿𝐹𝑗(𝜏 ′)𝒵)𝐅=0= − ⟨ ̂𝐴𝑖⟩⟨ ̂𝐴𝑗⟩ + ⟨T ̂𝐴𝑖(𝜏) ̂𝐴𝑗(𝜏 ′)⟩.

(2.53)
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2. Theoretical background

The second-order response function reads𝜒(2)𝑖𝑗𝑘(𝜏1, 𝜏2, 𝜏3) = ( 𝛿3𝛿𝐹𝑖(𝜏1)𝛿𝐹𝑗(𝜏2)𝛿𝐹𝑘(𝜏3) ln 𝒵)𝐅=0= 2𝒵−3( 𝛿𝛿𝐹𝑖(𝜏1)𝒵)𝐅=0( 𝛿𝛿𝐹𝑗(𝜏2)𝒵)𝐅=0( 𝛿𝛿𝐹𝑘(𝜏3)𝒵)𝐅=0− 𝒵−2( 𝛿𝛿𝐹𝑖(𝜏1)𝒵)𝐅=0( 𝛿2𝛿𝐹𝑗(𝜏2)𝛿𝐹𝑘(𝜏3)𝒵)𝐅=0− 𝒵−2( 𝛿𝛿𝐹𝑗(𝜏2)𝒵)𝐅=0( 𝛿2𝛿𝐹𝑖(𝜏1)𝛿𝐹𝑘(𝜏3)𝒵)𝐅=0− 𝒵−2( 𝛿𝛿𝐹𝑘(𝜏3)𝒵)𝐅=0( 𝛿2𝛿𝐹𝑖(𝜏1)𝛿𝐹𝑗(𝜏2)𝒵)𝐅=0+ 𝒵−1( 𝛿3𝛿𝐹𝑖(𝜏1)𝛿𝐹𝑗(𝜏2)𝛿𝐹𝑘(𝜏3)𝒵)𝐅=0= + 2⟨ ̂𝐴𝑖⟩⟨ ̂𝐴𝑗⟩⟨ ̂𝐴𝑘⟩− ⟨ ̂𝐴𝑖⟩⟨T ̂𝐴𝑗(𝜏2) ̂𝐴𝑘(𝜏3)⟩− ⟨ ̂𝐴𝑗⟩⟨T ̂𝐴𝑖(𝜏1) ̂𝐴𝑘(𝜏3)⟩− ⟨ ̂𝐴𝑘⟩⟨T ̂𝐴𝑖(𝜏1) ̂𝐴𝑗(𝜏2)⟩+ ⟨T ̂𝐴𝑖(𝜏1) ̂𝐴𝑗(𝜏2) ̂𝐴𝑘(𝜏3)⟩.

(2.54)

Plugging in eq. (2.53) and reordering some terms finally yields𝜒(2)𝑖𝑗𝑘(𝜏1, 𝜏2, 𝜏3) = ⟨T ̂𝐴𝑖(𝜏1) ̂𝐴𝑗(𝜏2) ̂𝐴𝑘(𝜏3)⟩− ⟨ ̂𝐴𝑖⟩𝜒𝑗𝑘(𝜏2, 𝜏3) − ⟨ ̂𝐴𝑗⟩𝜒𝑖𝑘(𝜏1, 𝜏3) − ⟨ ̂𝐴𝑘⟩𝜒𝑖𝑗(𝜏1, 𝜏2)− ⟨ ̂𝐴𝑖⟩⟨ ̂𝐴𝑗⟩⟨ ̂𝐴𝑘⟩. (2.55)

For the rest of this thesis we will drop the superscript indicating the order of the response
function when it can be inferred from the (number of) arguments.
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3. Models and methods

It seems that perfection is attained not when there is
nothing more to add, but when there is nothing more to
remove.

Antoine de Saint-Exupéry

After refreshing our theoretical background knowledge in the last chapter we can now
introduce the models and briefly explain the methods used in the main part of the thesis
to study three-particle correlations.

3.1. Anderson impurity model

The Anderson impurity model (AIM) was introduced in 1961 by P. W. Anderson to
describe magnetic impurities in metals [22]. Since then, it has become a popular model
in the field of correlated many-electron systems. Arguably, this is because even though
its Hamiltonian, which is described below, is rather simple it already shows effects of
strong correlation, more specifically the Kondo effect [23, 24]. Another important aspect
is that its solution is connected to local correlation functions of more complex lattice
Hamiltonians. We discuss this in more detail in section 3.3, when we talk about dynamical
mean-field theory (DMFT). For an in-depth review of the physics of the AIM and the
Kondo problem see refs. [25, 26].

The Hamiltonian of the AIM reads𝐻̂AIM = 𝜖𝑛̂ + 𝑈𝑛̂↑𝑛̂↓ + ∑𝑘,𝜎 𝜖𝑘 ̂𝑐†𝑘𝜎 ̂𝑐𝑘𝜎 + ∑𝑘,𝜎 (𝑉𝑘 ̂𝑓†𝜎 ̂𝑐𝑘𝜎 + 𝑉 ∗𝑘 ̂𝑐†𝑘𝜎 ̂𝑓𝜎). (3.1)

The first two terms describe the impurity with one-particle energy 𝜖. Electrons on the
impurity are created and annihilated with ̂𝑓†𝜎 and ̂𝑓𝜎, respectively. As usual the density
operators are given by 𝑛̂ = 𝑛̂↑ + 𝑛̂↓, with 𝑛̂𝜎 = ̂𝑓†𝜎 ̂𝑓𝜎. If the impurity is doubly occupied
the local Coulomb interaction 𝑈 comes into play. The third term models a bath of
noninteracting electrons with dispersion relation 𝜖𝑘, as well as creation and annihilation
operators ̂𝑐†𝑘𝜎 and ̂𝑐𝑘𝜎. The last terms describe the hybridization from the bath to the
impurity (𝑉𝑘) and vice versa (𝑉 ∗𝑘 ).
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3. Models and methods

In this thesis we employ the AIM only with a real, 𝑘-independent hybridization 𝑉𝑘 ≡ 𝑉 ∈ ℝ
and with two different kinds of baths. We either use a discrete set of bath sites and
energies, or a continuous bath with a constant density of states (DOS)𝜌(𝜖) = {𝜌0, −𝐷 ≤ 𝜖 ≤ 𝐷0, otherwise

(3.2)

where 𝐷 is the half bandwidth.

3.2. Hubbard model

Named after J. Hubbard the Hubbard model (HM) actually goes back to not only his
work from 1963 [27], but also to works from Kanamori [28] and Gutzwiller [29]. It is
one of the fundamental models for strongly correlated electron systems. In its simple
description electrons can move through a lattice only by hopping from one site to another.
If a site is doubly occupied a local Coulomb comes into play. However, despite its simple
nature, the HM can in general not be solved analytically. This is only possible in one
dimension [30] and with DMFT in the limit of infinite dimensions or lattice coordination
number (see section 3.3). Even after more than 50 years, the HM is not fully understood
in the most interesting cases of two and three dimensions since numerical solutions are
limited [31].

A general introduction to the HM and its physics can be found in textbooks like, e.g.,
ref. [26]. For a collection of important works see ref. [32]. The books of the Jülich
“Modeling and Simulation” series often follow a more pedagogical but still comprehensive
approach. The HM is studied, e.g., in the proceedings of the 2018 Jülich school [33].

In this thesis we only consider the simplest HM with a single band and nearest neighbor
hopping on a square lattice. Its Hamiltonian then reads:𝐻̂HM = −𝑡 ∑⟨𝑖𝑗⟩,𝜎 ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎 + 𝑈 ∑𝑖 𝑛̂𝑖↑𝑛̂𝑖↓. (3.3)

The first term models the kinetic energy, where 𝑡 is the hopping energy between neigh-
boring sites, ̂𝑐†𝑖𝜎/𝑐𝑞𝑖𝜎 creates/annihilates an electron with spin 𝜎 on lattice site 𝑖, and ⟨𝑖𝑗⟩
denotes the sum over nearest neighbors. The second term describes the on-site Coulomb
interaction 𝑈 with the local density operator for spin 𝜎 given by 𝑛̂𝑖𝜎 = ̂𝑐†𝑖𝜎 ̂𝑐𝑖𝜎.

3.3. Dynamical mean-field theory

Over the past three decades dynamical mean-field theory (DMFT) has become one of
the most popular and widely used methods for studying systems with strong electronic
correlation [34]. Its development started in 1989 when Metzner and Vollhardt showed
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that the self-energy in infinite dimensions is purely local [35]. Three years later in 1992,
Georges and Kotliar found the connection between the HM in infinite dimensions and
the AIM, writing down the equations for the DMFT self-consistency loop for the first
time [36]. In the following we briefly recapitulate the core approximation of DMFT and
the self-consistency equations. For more in-depth information see the review by Georges
et al. [37], the Jülich summer school book series, e.g., [38], or the review by Held [39].

In section 2.3, more specifically eq. (2.28), we already saw that the self-energy is basically
a frequency- and momentum-dependent correction for the full, interacting one-particle
Green’s function. The core approximation of DMFT is to drop the momentum depen-
dence, Σ𝜈

DMFT,12(𝐤) = Σ𝜈12, (3.4)

and assume that the self-energy is purely local, i.e., all its diagrams end at the same
lattice site 𝑖 that they started Σ𝜈

DMFT,𝑖𝑗,12 = 𝛿𝑖𝑗Σ𝜈12. (3.5)

Metzner and Vollhardt first showed that this approximation becomes exact in the limit of
infinite dimensions or lattice connectivity. What follows is only a brief sketch of the proof.
For more details and an in-depth discussion we, again, refer the reader to refs. [37–39].

On a lattice the formal limit of infinite dimensions means that 𝑍‖𝐑𝑖−𝐑𝑗‖ the number of
lattice sites at distance ‖𝐑𝑖 − 𝐑𝑗‖ approaches infinity. If we consider the Hamiltonian
of the HM defined in the previous section we see that the interaction term is local and
therefore does not scale with 𝑍. For the kinetic energy on the other hand we get𝐸kin = −2 ∑𝑖≠𝑗 𝑡𝑖𝑗⟨ ̂𝑐†𝑖 ̂𝑐𝑗⟩ = −2 ∑𝑅=‖𝐑𝑖−𝐑𝑗‖ 𝑍𝑅𝑡𝑅𝐺𝑅(𝜏 = 0−). (3.6)

To prevent it from diverging in the limit 𝑍 → ∞ the hopping amplitudes 𝑡𝑖𝑗 must be
rescaled. Since one-particle Green’s function is connected to the hopping [see eq. (2.28)]
it scales the same way [39]. Therefore, the only possible rescaling is𝑡∗𝑖𝑗 = 𝑡𝑖𝑗√𝑍‖𝐑𝑖−𝐑𝑗‖ . (3.7)

Let us now consider how in self-energy diagrams interaction vertices at different sites
are connected. Since the self-energy is one-particle irreducible (1PI) they cannot just be
connected by a single Green’s function line. If we draw the diagrams with full Green’s
functions, i.e., as skeleton diagrams, they must also not be connected by just two lines,
since that would then be a one-particle insertion. Therefore, each interaction vertex is
connected by at least three paths [40] and scales at best with 𝑂(𝑍− 32‖𝐑𝑖−𝐑𝑗‖). Since the sum
over different equivalent neighbors scales with 𝑂(𝑍‖𝐑𝑖−𝐑𝑗‖) all nonlocal contributions to
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the self-energy are suppressed by 𝑂(𝑍− 12‖𝐑𝑖−𝐑𝑗‖). The self-energy thus becomes local in
infinite dimensions and DMFT becomes exact.

The observant reader surely notices that we are far from living in infinite dimensions.
Fortunately it seems that already in three dimensions, DMFT is a good approximation.
See, e.g., ref. [41].

DMFT is not just the local self-energy approximation, though. Even if that already
simplifies things greatly, we still need to compute an infinite series of local diagrams, and
in general we cannot do that analytically. Georges and Kotliar showed, however, that the
problem can be mapped onto an impurity problem. Specifically, the diagrams of the local
self-energy of the HM are the same as those for the AIM with an equal local interaction.
This solves the problem because there are several numerical impurity solvers.

DMFT is usually implemented as the following self-consistent cycle, where we make
frequent use of the Dyson equation in different forms (see eqs. (2.26) to (2.28)).

1. Start with an initial guess for the local self-energy Σ𝜈12 – in the simplest case just
zero.

2. Use the self-energy to compute the local lattice Green’s function𝐺𝜈12 = 1𝑉BZ
∫

BZ
d𝐤(i𝜈 − 𝜖(𝐤) + 𝜇 − Σ𝜈)−112 = ∫ d𝜖𝜌(𝜖)(i𝜈 − 𝜖 + 𝜇 − Σ𝜈)−112 , (3.8)

where 𝑉BZ is the volume of the first Brillouin zone and 𝜌(𝜖) is the noninteracting
density of states.

3. Since the interacting impurity Green’s function 𝒢𝜈12 is the same as the local,
interacting lattice Green’s function 𝐺𝜈12, compute the noninteracting impurity
Green’s function as 𝒢𝜈0,12 = (𝐺𝜈 + Σ𝜈)−112 . (3.9)

This effectively defines the AIM.

4. Use an impurity solver to compute 𝒢𝜈, the interacting Green’s function of the AIM.

5. Compute a new self-energy by rewriting eq. (3.9):Σ𝜈
new,12 = ((𝒢𝜈0)−1 − 𝒢𝜈)−112 . (3.10)

6. Check if the self-energy is converged, i.e.,‖Σ𝜈
new,12 − Σ𝜈12‖ < 𝜀 (3.11)

with some norm ‖⋅‖, and convergence criterion 𝜀. If not go back to 2 with the new
self-energy.
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The computationally expensive part of this cycle is calculating 𝒢𝜈, the interacting Green’s
function of the AIM. Many solvers have been developed for this over the years using
methods like exact diagonalization (ED) [42, 43], numerical renormalization group [44],
or quantum Monte Carlo (QMC) [45]. In this thesis we will almost exclusively use
continuous-time quantum Monte Carlo in the hybridization expansion (CT-HYB) [46].

3.4. Beyond DMFT: dynamical vertex approximation

DMFT is a very successful and popular tool in the field of strong electronic correlations.
It captures, e.g., the Mott metal–insulator transition. However, due to the nature of
its approximation it fails to correctly describe systems where nonlocal correlations are
important and phenomena like the pseudogap, or 𝑑-wave superconductivity arise. See,
e.g., ref. [47]. Methods beyond DMFT are required to capture the physics in these cases.
For the most part they can be grouped into so-called cluster methods and diagrammatic
extensions of DMFT.

As the name suggests cluster methods solve a small cluster of interacting sites that are
embedded in a noninteracting bath. The clusters can either be constructed in real or
momentum space. Due to the rather small size of the clusters they are best at describing
short-range fluctuations, but have nonetheless successfully been applied to the HM for
various parameters [48, 49].

Similar as for cluster expansions, there are several flavors of diagrammatic extensions
of DMFT. For a comparison and an in-depth discussion see refs. [18, 50]. Many of
them extend the idea of DMFT by approximating a two-particle vertex instead of the
self-energy to be fully local. Which two-particle vertex is approximated depends on
the exact method: For example, the dual fermion approach [51], and the one-particle
irreducible approach [52] consider the full two-particle vertex 𝐹 local, while the dynamical
vertex approximation (DΓA) [53] builds upon the local, fully irreducible two-particle
vertex Λloc. In the ladder version of DΓA the two-particle vertex irreducible in channel 𝑟,Γ𝑟, is approximated to be local. Similar ladder approaches are employed for dual fermions.
The different methods also construct Feynman diagrams using different equations and
different one-particle Green’s functions. In this section we focus on full, i.e., not ladder
DΓA, briefly recapitulating the necessary approximations and equations. For a more
detailed, pedagogical introduction see ref. [38, ch. 10].

The central idea of DΓA is to resum Feynman diagrams in terms of their locality. DMFT
already does this on the one-particle level where the 1PI one-particle vertex, the self-
energy, is approximated to be local. DΓA extends this to the two-particle level and
approximates the fully irreducible two-particle vertex Λ as purely local. Of course one
does not need to stop there, but can go to even higher 𝑛-particle vertices. In the limit of𝑛 → ∞ all possible Feynman diagrams are correctly resummed, and we obtain the exact
solution [53].
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Not only the approximation, also the equations used in DΓA are somewhat similar to
those of DMFT. The latter mainly employs the Dyson equation [eq. (2.26)] to go between
the full one-particle Green’s function and the irreducible vertex. In DΓA this is replaced
with the Bethe–Salpeter equations [eq. (2.43)], that connect the full two-particle vertex𝐹 with those reducible in a single channel Γ𝑟, as well as the parquet equation [eq. (2.40)],
which contains the fully irreducible vertex Λ.

The starting point of a DΓA calculation is a converged DMFT solution. This means
that we have already mapped our HM to an AIM with the same local interaction 𝑈,
one-particle Green’s function 𝐺𝜈, and self-energy Σ𝜈. This AIM can now also be used
to obtain the local, fully irreducible vertex Λ𝜈𝜈′𝜔.1 Usually, one actually computes the
local two-particle Green’s function, subtracts the disconnected terms to get the full
local vertex 𝐹 𝜈𝜈′𝜔 [see eq. (2.37)], and then by inverting the local Bethe–Salpeter and
parquet equations obtains Λ𝜈𝜈′𝜔. The first real DΓA step is to use Λ𝜈𝜈′𝜔 and the nonlocal,
i.e., 𝐤-dependent DMFT Green’s function 𝐺𝑘

DMFT in the parquet and Bethe–Salpeter
equations to build a full, nonlocal vertex 𝐹 𝑘𝑘′𝑞. This can then be plugged into the
Schwinger–Dyson equation to obtain a nonlocal self-energy Σ𝑘, which in turn can be used
to compute a new nonlocal one-particle Green’s function 𝐺𝑘 in an inner self-consistency.
Again, similar to DMFT we can now construct a self-consistency cycle by using this new
Green’s function (at fixed Λ𝜈𝜈′𝜔) in the nonlocal Bethe–Salpeter and parquet equations
to compute a new 𝐹 𝑘𝑘′𝑞, etc. until convergence.

One could of course also expand the self-consistency cycle by using the new 𝐺𝑘 to compute
a new local Green’s function 𝐺𝜈 and then use that to update the AIM, etc. in a further,
outer self-consistency. However, many DΓA calculations do not even use the full parquet
self-consistency cycle. Instead, they use so-called ladder DΓA, either self-consistently, see,
e.g., ref. [54], or in a one-shot approach with a so-called 𝜆 correction, see, e.g., ref. [47].
Even in the original publication [53] the ladder version, where the vertices irreducible in
the two particle–hole channels are approximated to be local, was used to study long-range
antiferromagnetic fluctuations near a Mott metal–insulator transition.

1Here and in the following we distinguish between local and nonlocal quantities by using frequency
indices 𝜈, 𝜔 or four-momentum indices 𝑘, 𝑞, respectively.
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4. Three-particle Green’s function

Parts of this chapter marked with a vertical bar have
already been published in Kappl et al. [55]. Minor
modifications were made to better distinguish two-
particle and three-particle frequency notations and to
better match the notation in the rest of the thesis.
Sections 4.3 and 4.4 are also based on material from
Kappl et al. [55], but in this thesis it is presented in
more detail.

The (local) three-particle Green’s function and its systematic investigation are at the heart
of the present thesis. This chapter lays the theoretical groundwork for that. It generalizes
and expands ideas from the one- and two-particle level. However, just based on simple
combinatorics it is expected that the three-particle level has a richer and more complex
structure – which usually means one has to be more careful and compute more and
longer equations. To prevent future physicists from repeating these sometimes tedious
calculations this chapter aims at providing a comprehensive reference of definitions,
notations, symmetries and other properties of the three-particle Green’s function.

4.1. Definition

The three-particle Green’s function is defined as𝐺3,1…6(𝜏1, … , 𝜏5) ≔ (−1)3⟨T ̂𝑐1(𝜏1) ̂𝑐†2(𝜏2) ̂𝑐3(𝜏3) ̂𝑐†4(𝜏4) ̂𝑐5(𝜏5) ̂𝑐†6(0)⟩, (4.1)

with imaginary times 𝜏𝑖 and all other parameters and quantum numbers condensed into
the compound indices 1 … 6. Note that we already used time translation invariance to get
rid of one time argument, as we did in sections 2.1 and 2.4 for the one- and two-particle
Green’s functions, respectively. A diagrammatic representation of the three-particle
Green’s function is shown in fig. 4.1.

The Fourier transformation to fermionic Matsubara frequencies 𝜈𝑖 = (2𝑛𝑖 +1)𝜋/𝛽, 𝑛𝑖 ∈ ℤ,
is given by𝐺𝜈1…𝜈53,1…6 = ∫ ⋯ ∫𝛽0 d𝜏1 … d𝜏5 𝐺3,1…6(𝜏1, … , 𝜏5)ei(𝜈1𝜏1−𝜈2𝜏2+𝜈3𝜏3−𝜈4𝜏4+𝜈5𝜏5), (4.2)
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4. Three-particle Green’s function

Figure 4.1.: Diagrammatic representation of the three-particle Green’s function in imagi-
nary times

and the inverse transformation reads𝐺3,1…6(𝜏1, … , 𝜏5) = 1𝛽5 ∑𝜈1…𝜈5 𝐺𝜈1…𝜈53,1…6 e−i(𝜈1𝜏1−𝜈2𝜏2+𝜈3𝜏3−𝜈4𝜏4+𝜈5𝜏5). (4.3)

The transformations between real and reciprocal space work similarly and are straight-
forward to generalize from eqs. (2.4) to (2.6). With that we can infer the dimension of
the three-particle Green’s function in imaginary time and Matsubara space:[𝐺3,1…6(𝜏1, … , 𝜏5)] = 1, (4.4)[𝐺𝜈1…𝜈53,1…6 ] = [𝜏]5. (4.5)

From now on we drop the index 3 if the three-particle-ness can be inferred from the
(number of) arguments.

4.2. Frequency notations

In section 2.4 we saw that there are three channels for the two-particle Green’s function,
each with its own frequency notation. They are chosen such that the in- and outgoing
particle–particle or particle–hole pairs have a total energy of 𝜔.

Making similar pairwise connections as in fig. 2.4, the number of different two-particle
frequency notations for an 𝑛-particle function is equal to the number of different ways
that the 2𝑛 points can be connected into pairs. This number of possibilities 𝑝 is given
by the double factorial 𝑝(𝑛) = (2𝑛 − 1)!! = 𝑛∏𝑘=1(2𝑘 − 1), (4.6)

because with 2𝑘 remaining points there are 2𝑘−1 possibilities to connect an arbitrarily
chosen point to one of the 2𝑘 − 1 other ones. The number of pure ph channels is 𝑛!
since in this case each of the 𝑛 creation operators must be paired with one of the 𝑛
annihilation operators and there are 𝑛! unique ways to do that.
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Table 4.1.: The 15 different two-particle frequency notations of three-particle diagrams

Channel 𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6
ph 𝜈𝑎 𝜈𝑎 − 𝜔𝑎 𝜈𝑏 𝜈𝑏 − 𝜔𝑏 𝜈𝑐 𝜈𝑐 − 𝜔𝑐
ph′ 𝜈𝑎 𝜈𝑏 − 𝜔′𝑏 𝜈𝑏 𝜈𝑐 − 𝜔′𝑐 𝜈𝑐 𝜈𝑎 − 𝜔′𝑎
ph 𝜈𝑎 𝜈𝑐 − 𝜔𝑐 𝜈𝑏 𝜈𝑎 − 𝜔𝑎 𝜈𝑐 𝜈𝑏 − 𝜔𝑏
ph𝑎 𝜈𝑎 𝜈𝑏 − 𝜔′𝑏 𝜈𝑏 𝜈𝑎 − 𝜔𝑎 𝜈𝑐 𝜈𝑐 − 𝜔𝑐
ph𝑏 𝜈𝑎 𝜈𝑎 − 𝜔𝑎 𝜈𝑏 𝜈𝑐 − 𝜔′𝑐 𝜈𝑐 𝜈𝑏 − 𝜔𝑏
ph𝑐 𝜈𝑎 𝜈𝑐 − 𝜔𝑐 𝜈𝑏 𝜈𝑏 − 𝜔𝑏 𝜈𝑐 𝜈𝑎 − 𝜔′𝑎
pp24−13 𝜈𝑎 𝜈𝑏 𝜔𝑎 − 𝜈𝑎 𝜔𝑏 − 𝜈𝑏 𝜈𝑐 𝜈𝑐 − 𝜔𝑐
pp26−13 𝜔𝑏 − 𝜈𝑏 𝜈𝑎 𝜈𝑏 𝜈𝑐 − 𝜔′𝑐 𝜈𝑐 𝜔𝑎 − 𝜈𝑎
pp26−15 𝜔𝑐 − 𝜈𝑐 𝜔𝑎 − 𝜈𝑎 𝜈𝑏 𝜈𝑏 − 𝜔𝑏 𝜈𝑐 𝜈𝑎
pp46−15 𝜈𝑎 𝜈𝑏 − 𝜔′𝑏 𝜈𝑏 𝜔𝑐 − 𝜈𝑐 𝜔𝑎 − 𝜈𝑎 𝜈𝑐
pp46−35 𝜈𝑎 𝜈𝑎 − 𝜔𝑎 𝜈𝑏 𝜈𝑐 𝜔𝑏 − 𝜈𝑏 𝜔𝑐 − 𝜈𝑐
pp24−35 𝜈𝑎 𝜔𝑏 − 𝜈𝑏 𝜔𝑐 − 𝜈𝑐 𝜈𝑏 𝜈𝑐 𝜈𝑎 − 𝜔′𝑎
pp26−35 𝜈𝑎 𝜈𝑏 𝜔𝑐 − 𝜈𝑐 𝜈𝑎 − 𝜔𝑎 𝜈𝑐 𝜔𝑏 − 𝜈𝑏
pp46−13 𝜔𝑏 − 𝜈𝑏 𝜈𝑐 − 𝜔𝑐 𝜈𝑏 𝜔𝑎 − 𝜈𝑎 𝜈𝑐 𝜈𝑎
pp24−15 𝜈𝑎 𝜔𝑐 − 𝜈𝑐 𝜈𝑏 𝜈𝑐 𝜔𝑎 − 𝜈𝑎 𝜈𝑏 − 𝜔𝑏

For the three-particle case this results in 15 different two-particle frequency notations
which are shown in table 4.1. They can be divided into six ph channels and nine pp
channels. A diagrammatic representation is given in figs. 4.2 and 4.3, depicting the ph
and pp channels respectively.

Of course, we can also generalize to three-particle frequency notations where we combine
either two particle lines and one hole line (pph) or three particle lines (ppp) such that
they have a total energy of ̄𝜈. In the pph case there are (32) ⋅ (31) = 9 such combinations
while in the ppp case there is only one for a total of ten three-particle frequency notations.
All of them are listed in table 4.2 while a diagrammatic representation is shown for four
of them in fig. 4.4.

4.3. Spin components and symmetries

An 𝑛-particle quantity has 22𝑛 spin degrees of freedom. However, due to spin conservation
the number of nonvanishing spin combinations is lower than that: If 𝑘 of the 𝑛 ingoing
spins are down, then also 𝑘 of the 𝑛 outgoing spins must be down. The order doesn’t
matter, so there are (𝑛𝑘)2 such configurations. Summing this over all possible numbers
of ingoing down spins 𝑘 yields the number of nonvanishing spin combinations. Using
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𝜈 𝑏−𝜔 𝑏 𝜈𝑐
𝜈𝑐 −𝜔𝑐

𝜈𝑎−𝜔𝑎𝜈𝑐−𝜔𝑐 𝜈𝑐
𝜈 𝑎

𝜈 𝑎−𝜔 𝑎 𝜈𝑏
𝜈𝑏 −𝜔𝑏

𝜈 𝑐
𝜈 𝑐−𝜔′𝑐𝜈𝑎

𝜈𝑎 −𝜔 ′𝑎
𝜈𝑏−𝜔′𝑏 𝜈𝑏 𝜈 𝑏
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ph′ phph
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𝜈𝑏−𝜔′𝑏 𝜈𝑏
𝜈𝑎 𝜈𝑎−𝜔𝑎 𝜈𝑏 −𝜔𝑏

𝜈𝑎 −𝜔 ′𝑎 𝜈𝑐

𝜈𝑐−𝜔𝑐
𝜈 𝑎

𝜈 𝑎−𝜔 𝑎
ph𝑎 ph𝑐ph𝑏 𝜈𝑎

𝜈 𝑐

Figure 4.2.: Diagrammatic representation of the six ph frequency notations for three-
particle diagrams

𝜈𝑐−𝜔𝑐 𝜈𝑐𝜈𝑎 𝜔𝑏−𝜈𝑏𝜈𝑏𝜔𝑎−𝜈𝑎
𝜈 𝑐

𝜈 𝑐−𝜔′𝑐
𝜈𝑎

𝜔𝑏−𝜈𝑏
𝜈𝑏

𝜔𝑎−𝜈𝑎 𝜈𝑐

𝜔𝑎−𝜈𝑎𝜈𝑎

𝜔𝑐−𝜈𝑐

𝜈𝑏
𝜈𝑏 −𝜔𝑏

𝜔𝑐−𝜈𝑐𝜈𝑎𝜔𝑎−𝜈𝑎 𝜈𝑐
𝜈𝑏−𝜔′𝑏 𝜈𝑏

𝜔𝑐−𝜈𝑐
𝜈𝑐

𝜔𝑏−𝜈𝑏
𝜈 𝑎

𝜈𝑐

𝜔𝑏−𝜈𝑏 𝜈𝑏

𝜔𝑐−𝜈𝑐𝜈𝑎
𝜈𝑎 −𝜔 ′𝑎

𝜈𝑏𝜈 𝑎−𝜔 𝑎

𝜈𝑎 𝜈𝑎−𝜔𝑎𝜔𝑏−𝜈𝑏 𝜈𝑐
𝜔𝑐−𝜈𝑐𝜈𝑏 𝜈𝑐−𝜔𝑐

𝜔𝑎−𝜈𝑎
𝜈𝑏

𝜈𝑎
𝜔𝑏−𝜈𝑏

𝜈𝑐

𝜔𝑐−𝜈𝑐
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Figure 4.3.: Diagrammatic representation of the nine pp frequency notations for three-
particle diagrams
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Table 4.2.: The ten different three-particle frequency notations of three-particle diagrams.
The channel names in the first column denote which particles and holes belong
together. They all sum to a fermionic transfer frequency of ̄𝜈. In the second
column shorthand notations for the channel names are given. They consist
of the middle numbers of the two triplets in the first column. For the pph
channels (the first nine rows) they specify the particle running in the opposite
direction. Diagrammatic representations for four of them are shown in fig. 4.4.

Channel 𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6(345)(612) 41 𝜈 + 𝜔 𝜈 𝜈′ 𝜈′ + 𝜔′ 𝜔′ − ̄𝜈 𝜔 − ̄𝜈(123)(456) 25 𝜈′ 𝜈′ + 𝜔′ 𝜔′ − ̄𝜈 𝜔 − ̄𝜈 𝜈 + 𝜔 𝜈(561)(234) 63 𝜔′ − ̄𝜈 𝜔 − ̄𝜈 𝜈 + 𝜔 𝜈 𝜈′ 𝜈′ + 𝜔′(341)(652) 45 𝜔′ − ̄𝜈 𝜈 𝜈′ 𝜈′ + 𝜔′ 𝜈 + 𝜔 𝜔 − ̄𝜈(361)(452) 65 𝜔′ − ̄𝜈 𝜈 𝜈′ 𝜔 − ̄𝜈 𝜈 + 𝜔 𝜈′ + 𝜔′(365)(412) 61 𝜈 + 𝜔 𝜈 𝜈′ 𝜔 − ̄𝜈 𝜔′ − ̄𝜈 𝜈′ + 𝜔′(325)(614) 21 𝜈 + 𝜔 𝜈′ + 𝜔′ 𝜈′ 𝜈 𝜔′ − ̄𝜈 𝜔 − ̄𝜈(125)(634) 23 𝜈′ 𝜈′ + 𝜔′ 𝜈 + 𝜔 𝜈 𝜔′ − ̄𝜈 𝜔 − ̄𝜈(145)(632) 43 𝜈′ 𝜈 𝜈 + 𝜔 𝜈′ + 𝜔′ 𝜔′ − ̄𝜈 𝜔 − ̄𝜈(315)(642) ppp 𝜔′ − 𝜈′ 𝜈 𝜈′ 𝜔 − 𝜈 −𝜔′ − ̄𝜈 −𝜔 − ̄𝜈

Figure 4.4.: Diagrammatic representation of four of the ten three-particle frequency
notations listed in table 4.2
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4. Three-particle Green’s function

Vandermonde’s identity, the sum can be simplified to

𝑛∑𝑘=0 (𝑛𝑘)2 = (2𝑛𝑛 ), (4.7)

where the right side is the central binomial coefficient of 𝑛. For the three-particle Green’s
function this means that only (63) = 20 of the 26 = 64 spin components are nonzero. They
are ↑↑↑, ↑↑↓, ↑↓↑, ↓↑↑,↑↑↓, ↑↑↓, ↑↓↑, ↑↓↑, ↓↑↑, ↓↑↑,↓↓↑, ↓↓↑, ↓↑↓, ↓↑↓, ↑↓↓, ↑↓↓,↓↓↓, ↓↓↑, ↓↑↓, ↑↓↓, (4.8)

where we generalize the compact spin notation from the two-particle level [see eq. (2.35)]:𝜎1𝜎2𝜎3 = 𝜎1𝜎1𝜎2𝜎2𝜎3𝜎3,𝜎1𝜎2𝜎3 = 𝜎1𝜎1𝜎2𝜎3𝜎3𝜎2,𝜎1𝜎2𝜎3 = 𝜎1𝜎3𝜎2𝜎2𝜎3𝜎1,𝜎1𝜎2𝜎3 = 𝜎1𝜎2𝜎2𝜎1𝜎3𝜎3. (4.9)

These spin components are, however, not independent. There are symmetry relations
between them. In particular, we have the SU(2), swapping (SW) and time reversal (TR)
symmetry:

𝐺𝜈1𝜔1𝜈2𝜔2𝜈3𝜎1…𝜎6 SU(2)= 𝐺𝜈1𝜔1𝜈2𝜔2𝜈3−𝜎1⋯−𝜎6 , (4.10)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3𝜎1…𝜎6 SW12= 𝐺𝜈2𝜔2𝜈1𝜔1𝜈3𝜎3𝜎4𝜎1𝜎2𝜎5𝜎6 , (4.11)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3𝜎1…𝜎6 SW13= 𝐺𝜈3𝜔3𝜈2𝜔2𝜈1𝜎5𝜎6𝜎3𝜎4𝜎1𝜎2 , (4.12)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3𝜎1…𝜎6 SW23= 𝐺𝜈1𝜔1𝜈3𝜔3𝜈2𝜎1𝜎2𝜎5𝜎6𝜎3𝜎4 , (4.13)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3𝜎1…𝜎6 TR= 𝐺(𝜈3−𝜔3)(−𝜔3)(𝜈2−𝜔2)(−𝜔2)(𝜈1−𝜔1)𝜎6…𝜎1 , (4.14)

where − ↑ = ↓, − ↓ = ↑, 𝜔3 = −𝜔1 − 𝜔2, and we use the ph notation introduced in
section 4.2.

With all these symmetry relations the original 20 spin components can be mapped to only
three, namely ↑↑↑, ↑↑↓, and ↑↑↓. For the other seven out of the first ten spin components,
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the necessary transformations read𝐺𝜈1𝜔1𝜈2𝜔2𝜈3↑↓↑ SW23= 𝐺𝜈1𝜔1𝜈3𝜔3𝜈2↑↑↓ , (4.15)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3↓↑↑ SW13= 𝐺𝜈3𝜔3𝜈2𝜔2𝜈1↑↑↓ , (4.16)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3↑↑↓ SW12= 𝐺𝜈2𝜔2𝜈1𝜔1𝜈3↑↑↓ , (4.17)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3↑↓↑ SW23= 𝐺𝜈1𝜔1𝜈3𝜔3𝜈2↑↑↓ , (4.18)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3↑↓↑ SW23= 𝐺𝜈1𝜔1𝜈3𝜔3𝜈2↑↑↓ SW12= 𝐺𝜈3𝜔3𝜈1𝜔1𝜈2↑↑↓ , (4.19)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3↓↑↑ SW13= 𝐺𝜈3𝜔3𝜈2𝜔2𝜈1↑↑↓ , (4.20)𝐺𝜈1𝜔1𝜈2𝜔2𝜈3↓↑↑ SW12= 𝐺𝜈2𝜔2𝜈1𝜔1𝜈3↑↓↑ SW23= 𝐺𝜈2𝜔2𝜈3𝜔3𝜈1↑↑↓ . (4.21)

Note that they are not unique. 𝐺↑↓↑, e.g., can also be calculated from 𝐺↑↑↓ by applying
time reversal symmetry. The second half of the 20 nonvanishing components can be
mapped to the these first ten by using SU(2) symmetry.

4.4. Decomposition

It is common to decompose the two-particle Green’s function into the three terms shown
in eq. (2.37) and fig. 2.5. To properly generalize this to the three- or even 𝑛-particle level
we need to determine the essence of what is done on the two-particle level. From the
discussion in section 2.5, it is sensible to propose that the two-particle Green’s function
is classified into terms of different connectedness. The first two diagrams are only made
of Green’s function lines 𝐺, which contain all diagrams that connect two points. The
third term introduces the full two-particle vertex 𝐹2, which consists of all diagrams that
fully connect four points. Continuing this to the 𝑛-particle level we expect 𝑛-particle
vertices 𝐹𝑛 containing all diagrams that connect 2𝑛 points, but also terms of mixed
connectedness with “smaller” vertices.

This means that to compute all such terms for an 𝑛-particle Green’s function, we need
to decompose its expectation value into all possible sets of connected tuples of creation
and annihilation operators. Denoting the connected tuples by underlined expectation
values, the one-particle case is trivially written as𝐺12 = −⟨T ̂𝑐1 ̂𝑐†2⟩ = −⟨T ̂𝑐1 ̂𝑐†2⟩. (4.22)

On the two-particle level we get𝐺1234 = ⟨T ̂𝑐1 ̂𝑐†2 ̂𝑐3 ̂𝑐†4⟩ = ⟨T ̂𝑐1 ̂𝑐†2 ̂𝑐3 ̂𝑐†4⟩ + ⟨T ̂𝑐1 ̂𝑐†2⟩⟨T ̂𝑐3 ̂𝑐†4⟩ + (−1)3⟨T ̂𝑐1 ̂𝑐†4⟩⟨T ̂𝑐3 ̂𝑐†2⟩, (4.23)

where the (−1)3 comes of course from reordering the fermionic operators. Comparison
with eq. (2.37) and fig. 2.5 shows that we do indeed end up with the correct signs for the
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4. Three-particle Green’s function

disconnected terms. Furthermore, we see that the four-point expectation value is given
by ⟨T ̂𝑐1 ̂𝑐†2 ̂𝑐3 ̂𝑐†4⟩ = −𝐺15𝐺62𝐹5678𝐺37𝐺84. (4.24)

After this proof of concept, we can finally move on to the decomposition of the three-
particle Green’s function:𝐺123456 = − ⟨T ̂𝑐†1 ̂𝑐2 ̂𝑐†3 ̂𝑐4 ̂𝑐†5 ̂𝑐6⟩= − ⟨T ̂𝑐1 ̂𝑐†2⟩⟨T ̂𝑐3 ̂𝑐†4⟩⟨T ̂𝑐5 ̂𝑐†6⟩ − ⟨T ̂𝑐1 ̂𝑐†6⟩⟨T ̂𝑐3 ̂𝑐†2⟩⟨T ̂𝑐5 ̂𝑐†4⟩− ⟨T ̂𝑐1 ̂𝑐†4⟩⟨T ̂𝑐3 ̂𝑐†6⟩⟨T ̂𝑐5 ̂𝑐†2⟩ + ⟨T ̂𝑐1 ̂𝑐†2⟩⟨T ̂𝑐3 ̂𝑐†6⟩⟨T ̂𝑐5 ̂𝑐†4⟩+ ⟨T ̂𝑐1 ̂𝑐†6⟩⟨T ̂𝑐3 ̂𝑐†4⟩⟨T ̂𝑐5 ̂𝑐†2⟩ + ⟨T ̂𝑐1 ̂𝑐†4⟩⟨T ̂𝑐3 ̂𝑐†2⟩⟨T ̂𝑐5 ̂𝑐†6⟩− ⟨T ̂𝑐1 ̂𝑐†2⟩⟨T ̂𝑐3 ̂𝑐†4 ̂𝑐5 ̂𝑐†6⟩ − ⟨T ̂𝑐3 ̂𝑐†4⟩⟨T ̂𝑐5 ̂𝑐†6 ̂𝑐1 ̂𝑐†2⟩ − ⟨T ̂𝑐5 ̂𝑐†6⟩⟨T ̂𝑐1 ̂𝑐†2 ̂𝑐3 ̂𝑐†4⟩+ ⟨T ̂𝑐1 ̂𝑐†4⟩⟨T ̂𝑐3 ̂𝑐†2 ̂𝑐5 ̂𝑐†6⟩ + ⟨T ̂𝑐3 ̂𝑐†6⟩⟨T ̂𝑐5 ̂𝑐†4 ̂𝑐1 ̂𝑐†2⟩ + ⟨T ̂𝑐5 ̂𝑐†2⟩⟨T ̂𝑐1 ̂𝑐†6 ̂𝑐3 ̂𝑐†4⟩+ ⟨T ̂𝑐1 ̂𝑐†6⟩⟨T ̂𝑐3 ̂𝑐†4 ̂𝑐5 ̂𝑐†2⟩ + ⟨T ̂𝑐3 ̂𝑐†2⟩⟨T ̂𝑐5 ̂𝑐†6 ̂𝑐1 ̂𝑐†4⟩ + ⟨T ̂𝑐5 ̂𝑐†4⟩⟨T ̂𝑐1 ̂𝑐†2 ̂𝑐3 ̂𝑐†6⟩− ⟨T ̂𝑐1 ̂𝑐†2 ̂𝑐3 ̂𝑐†4 ̂𝑐5 ̂𝑐†6⟩.

(4.25)

A diagrammatic representation of this is shown in fig. 4.5. As expected the decomposition
of the three-particle Green’s function is much more complex and contains many more
terms than that of the two-particle one. We get six fully disconnected terms with only
Green’s function lines, nine terms of mixed connectedness including two-particle vertices,
as well as one fully connected term, introducing the full three-particle vertex 𝐹3. Its sign
is chosen as −⟨T ̂𝑐1 ̂𝑐†2 ̂𝑐3 ̂𝑐†4 ̂𝑐5 ̂𝑐†6⟩ = 𝐺1′1𝐺22′𝐺3′3𝐹3,1′2′3′4′5′6′𝐺44′𝐺5′5𝐺66′ . (4.26)

Looking at fig. 4.5 it might seem like some diagrams are “obviously” missing. They are,
however, just topologically equivalent to some already present ones. Examples for such
equivalent diagrams are depicted in fig. 4.6.

Of course, when we consider spin, some terms of the decomposition vanish because they
break spin conservation. As shown in section 4.3, only three spin components of the
three-particle Green’s function, namely ↑↑↑, ↑↑↓, and ↑ ↑↓, are independent, so it is
sufficient to look at only those. For the first one, with all spins up, all terms are allowed,
for the other two components though, only half of the terms survive. They are depicted
in figs. 4.7 and 4.8 for the spin components ↑↑↓ and ↑↑↓ respectively.

4.5. Vertex expansion

In section 4.4 we showed the arguably most sensible generalization of the decomposition of
the two-particle Green’s function [eq. (2.37) and fig. 2.5] to the 𝑛-particle level. It yields
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4.5. Vertex expansion

Figure 4.5.: Diagrammatic representation of eq. (4.25), the decomposition of the three-
particle Green’s function

Figure 4.6.: Some topologically equivalent diagrams that appear in the decomposition
of the three-particle Green’s function shown in fig. 4.5. In the second line
we use the crossing symmetry of 𝐹 for the first identity. Otherwise, only
continuous deformations are applied.
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4. Three-particle Green’s function

Figure 4.7.: Diagrammatic representation of the decomposition of the ↑↑↓ component of
the three-particle Green’s function

Figure 4.8.: Diagrammatic representation of the decomposition of the ↑↑↓ component of
the three-particle Green’s function
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4.5. Vertex expansion

a finite although combinatorially growing number of terms, where the last one always
introduces the full 𝑛-particle vertex. There is, however, another useful generalization of
the decomposition, namely what we call the 𝑛-particle vertex expansion.

This is similar to the more commonly known skeleton expansion, where bare one-particle
Green’s functions are replaced with full ones, while diagrams with one-particle insertions
are banned. One-particle insertions are subdiagrams that connect two points and are
more complicated than a single Green’s function line. Those subdiagrams are not
allowed because the full Green’s function already contains all such corrections, so we
would overcount otherwise. The 𝑛-particle vertex expansion goes a step further and
also replaces bare interactions with full two- to 𝑛-particle vertices, while additionally
banning two- to 𝑛-particle insertions. Similar to the one-particle case an 𝑛-particle
insertion with 𝑛 ≥ 2 is a subdiagram that connects 2𝑛 points and is more complicated
than a single 𝑛-particle vertex. The reason for banning those insertions is the same as
before: avoiding overcounting since the full vertices already contain all those corrections.
With the decomposition in section 4.4 using full Green’s functions and vertices, and the
“largest” vertex being a three-particle one, we can also call it the three-particle vertex
expansion of the three-particle Green’s function.

There is no requirement that the vertex expansion must go up to the “largest” possible
vertex, though. We can just as well do a two-particle vertex expansion of the three-particle
Green’s function. Of course this expansion is no longer finite, so we have to truncate
at some point and only get an approximate solution. Since the three-particle Green’s
function with its five degrees of freedom per spacetime dimension is expected to be very
expensive to compute, such an approximation built simply from full Green’s functions𝐺 and two-particle vertices 𝐹 seems interesting and useful. The rest of this section is
therefore dedicated to computing the two-particle vertex expansion of the three-particle
Green’s function up to third order.

4.5.1. Order 0

The diagrams of zeroth order contain no vertex and consist only of three Green’s functions𝐺. This means that they are given by all pairwise contractions of ⟨T ̂𝑐1 ̂𝑐†2 ̂𝑐3 ̂𝑐†4 ̂𝑐5 ̂𝑐†6⟩. There
are 3! = 6 such diagrams because there are 3! ways to pair the creation and annihilation
operators: the first creation operator can be connected to one of three annihilation
operators, the next one to two, and the last one to the remaining one.

Figure 4.9 shows all six diagrams of zeroth order, which are the same as the first six
diagrams of the decomposition of the three-particle Green’s function in fig. 4.5. For spin
component ↑↑↓ only the first and last diagram are allowed; for ↑↑↓ only the second and
forth.
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4. Three-particle Green’s function

Figure 4.9.: Zeroth-order diagrams of the two-particle vertex expansion of the three-
particle Green’s function.

Figure 4.10.: First-order diagrams of the two-particle vertex expansion of the three-
particle Green’s function.

4.5.2. Order 1

The diagrams of first order contain a full two-particle vertex 𝐹 with four Green’s
functions and one separate Green’s function. Due to the crossing symmetry of the
vertex, exchanging its legs does not yield new, inequivalent diagrams. Therefore, only the
different ways to connect two of the external points with the separate Green’s function
are important for counting the number of diagrams of this order. There are 32 = 9 such
possibilities since one of the three creation operators must be connected to one of the
three annihilation operators by a one-particle Green’s function.

Figure 4.10 shows all nine diagrams of first order, which are the same as the diagrams
with one vertex from the decomposition of the three-particle Greens’s function in fig. 4.5.
As already mentioned in section 4.4, it might seem like some “obvious” diagrams are
missing, but they are just topologically equivalent to the ones already preset (see fig. 4.6).
For spin component ↑↑↓ the fourth, sixth, eighth, and ninth diagram are forbidden due
to spin conservation. For component ↑↑↓, diagrams two, three, seven, and nine are not
allowed for the same reason.

4.5.3. Order 2

The diagrams of second order contain two, full two-particle vertices 𝐹 connected to each
other with a single Green’s function 𝐺. If we connected two legs of the same vertex,
we would end up with a one-particle insertion, which is not allowed. Also, it doesn’t
matter how the two vertices are connected, or, put differently, all ways to connect them
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4.5. Vertex expansion

Figure 4.11.: Second-order diagrams of the two-particle vertex expansion of the three-
particle Green’s function.

are equivalent. The Green’s function always goes from an outgoing leg of the first vertex
to an ingoing leg of the second one. Choosing the other in- or outgoing leg only gives a
sign, because of the crossing symmetry, and since the vertices are indistinguishable it
does not matter which one is the first and which one the second.

Now that we have established that there is only a single “base diagram” (diagram I
in fig. 4.11) we can generate all diagrams of second order by finding all topologically
inequivalent ways to connect the six legs of this base diagram (termed internal legs) with
the six external legs (numbered 1 to 6 in fig. 4.11). With three ingoing and three outgoing
Green’s functions we should have (3!)2 = 36 such possibilities. There are, however, two
in- and two outgoing Green’s functions connected to one vertex each (1 and 3 as well as 4
and 6 in diagram I in fig. 4.11). This means, again, due to crossing symmetry swapping
the corresponding legs of the vertices does not yield new diagrams. Therefore, there are
only (3!)2/22 = 9 topologically inequivalent second-order diagrams. They are all shown
in fig. 4.11.

We can deform these diagrams and use the crossing symmetry to make things clearer.
Figure 4.12, e.g., shows many diagrams that are equivalent to diagram III. Similar
equations hold for diagrams II, IV, V, VII, and IX. Figure 4.13 shows five diagrams that
also look very different at first glance. Upon closer inspection tough, we realize that they
are in fact all topologically equivalent to diagram I. Similar equations hold for diagrams
VI and VIII. With all this, the nine second-order diagrams of the two-particle vertex
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4. Three-particle Green’s function

Figure 4.12.: Second-order diagrams that are topologically equivalent to diagram III in
fig. 4.11

Figure 4.13.: Second-order diagrams that are topologically equivalent to diagram I in
fig. 4.11
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4.5. Vertex expansion

Figure 4.14.: Second-order diagrams of the two-particle vertex expansion of the three-
particle Green’s function. They are equivalent to fig. 4.11 but with the help
of figs. 4.12 and 4.13 drawn in a more visually pleasing way.

Figure 4.15.: Second-order diagrams that are forbidden for the depicted spin component.
In both cases there is a two-particle vertex with two ingoing (outgoing) up
spins but an outgoing (ingoing) down spin which violates spin conservation.

expansion of the three-particle Green’s function can be represented in a visually more
pleasing way that is shown in fig. 4.14.

If spin is considered the number of diagrams (per spin component) does not increase since
both vertices are connected to three external legs, and thus the external spins uniquely
determine the spin of the internal line. For spin component ↑↑↑, as usual all diagrams
are allowed. For ↑↑↓ and ↑↑↓, however, there is one diagram each that is forbidden due
to spin conservation. The forbidden diagrams are shown in fig. 4.15.

4.5.4. Order 3

As with the diagrams of order two, we first find all inequivalent, third-order base diagrams
and then determine all possible inequivalent ways to connect the six remaining legs to
the six external ones. The base diagrams of third order contain three, full two-particle
vertices 𝐹 connected to each other with three Green’s functions 𝐺. Again, connecting
two legs of the same vertex, as well as connecting two different vertices with two Green’s
functions is forbidden because the former generates one-particle insertions, and the latter
two-particle insertions. Therefore, all three vertices must be connected to each other in a
chain.

Since the vertices are indistinguishable and because of the crossing symmetry, there are
only two inequivalent chains. Both of them are shown in fig. 4.16 together with some
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4. Three-particle Green’s function

Figure 4.16.: The two base diagrams for the third order of the two-particle vertex expan-
sion of the three-particle Green’s function, together with some topologically
equivalent variations. In the last identity of the last line we used both
crossing symmetries of each vertex 𝐹 to effectively rotate them by 180°.

topologically equivalent variations. In diagrams of type I every vertex has one remaining
ingoing and one outgoing leg. Type II diagrams have one vertex with two remaining
ingoing legs, one with two remaining outgoing legs, and one with one remaining ingoing
and one outgoing leg.

Again, the number of ways to connect the six legs of the base diagrams with the six
external legs is (3!)2 = 36. The actual number of diagrams can, however, be reduced by
symmetries. For diagram II we can employ the much-used crossing symmetry for the two
ingoing and the two outgoing legs, ending up with (3!)2/22 = 9 inequivalent diagrams.

For diagram I we must consider a new type of symmetry namely cyclic permutations.
So far that was not necessary because, while “naked” vertices 𝐹 are indistinguishable,
the ones in the base diagrams differed due to their connections with the other vertices.
We already described that for diagram II, but also in the second-order base diagram the
vertices are easily distinguished: because of the Green’s function connecting them, one
“loses” an ingoing leg, the other one an outgoing leg. In diagram I, however, all three
vertices have one ingoing and one outgoing leg, so they cannot be uniquely identified and
since they are connected in a chain, cyclic permutations yield topologically equivalent
diagrams.

With three vertices there are three possible cyclic permutations so the number of inequiv-
alent diagrams of type I is (3!)2/3 = 12. This finally brings us to the total number of
inequivalent diagrams of third order which is 12 + 9 = 21.
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4.5. Vertex expansion

Drawing and studying all of them is beyond the scope of this thesis because we believe
that doing so only yields little insight, especially relative to the amount of tedious work it
would require. Based on experience with two-particle ladders, we also have the intuition
that the three-particle ladder introduced in chapter 6 yields a better approximation
for the three-particle vertex. Therefore, we study that in more detail and also provide
numerical results for it.
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5. Three-particle correlators and nonlinear
response

Parts of this chapter marked with a vertical bar have
already been published in Kappl et al. [55]. Some
figures were adapted to better fit the page layout.

Equipped with all the theoretical knowledge about the three-particle Green’s function
from the last chapter, this chapter presents a physical application for three-particle
correlations. As we already saw in section 2.8 computing response functions in imaginary
time or Matsubara frequencies is tied to calculating correlation functions. In particular
bosonic three-particle correlators are required for second-order response functions like
Raman, Hall, or nonlinear density and magnetic responses.

We first work through a bit more theory and provide a general formalism for the three-
particle correlators and second-order susceptibilities. Then we focus on charge and spin
operators and compute their local nonlinear responses, mainly for the Anderson impurity
model (AIM), numerically. We show that for certain ranges in the parameter space, these
second-order susceptibilities are sizable. Furthermore, we find that contributions from
the full three-particle vertex play a significant role in them. Approximations that just
take into account the bare bubble terms or corrections based on the two-particle vertex
are not sufficient and can lead to qualitatively wrong results for second-order response
functions.

5.1. Introduction
Our physical understanding is very much based on one-particle and two-particle Green’s
functions, upon which books on quantum field theory (QFT) generally focus [12]. On
the one-particle level, we understand quasiparticle renormalizations and life times,
metal–insulator transitions, as well as magnetic ordering in the symmetry-broken
phase. The one-particle Green’s function and self-energy are also at the heart of
dynamical mean-field theory (DMFT) [35–37, 56], which calculates the self-energy by
(self-consistently) summing up the local contribution of all Feynman diagrams [35].
Hence, it is maybe not surprising that the success of DMFT had a focus on describing
the aforementioned one-particle properties such as quasiparticle renormalizations and
the Mott–Hubbard metal–insulator transition.
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5. Three-particle correlators and nonlinear response

On the two-particle level, we have the two-particle Green’s function from which we
can calculate physical responses such as the magnetic or charge susceptibility. Here,
the two-particle vertex plays the role of the self-energy. It describes all physics beyond
a rather trivial bare bubble susceptibility which is akin to the noninteracting case,
only now with renormalized one-particle Green’s function lines. On this two-particle
level there has been some recent progress to describe electronic correlations – brought
about through diagrammatic extensions of DMFT [51–53, 57–60]; for a review, see
ref. [18]. These start from a local vertex that encodes all DMFT correlations and
subsequently generates nonlocal correlations through the Bethe–Salpeter equation or
parquet equations. Quite naturally these extensions allow for a better description
of two-particle quantities such as the (quantum) critical behavior in the vicinity
of a phase transition [61–64], spin-fluctuation-induced pseudogaps [47, 65, 66], and
superconducting instabilities [67, 68].

The next level, the three-particle Green’s function and vertices, are hitherto by-and-
large a blank spot in our understanding of strongly correlated electron systems. First
results for the diagrammatic extensions of DMFT [3] show that three-particle vertices
are, at least in some parameter regimes of the Hubbard model (HM), relevant. While
our physical understanding and intuition is presently much more based on the one- and
two-particle physics, there are also physical processes that are generically connected
to three-particle correlators:

Take for example Raman scattering, with an incoming and outgoing light frequency
and a transferred phonon frequency. These three bosonic frequencies are connected to
three electrons (particles), each with one creation and one annihilation operator. The
same applies to the Hall response, i.e., the off-diagonal conductivity in a magnetic
field. The conductivity by itself is a two-particle correlator in the Kubo formalism of
linear response [20]. Considering small magnetic fields, these can be treated in linear
response as well, making the Hall coefficient a three-particle correlator altogether. In
principle, calculating these observables requires the calculation of the full three-particle
correlator. But hitherto either only a bare bubble-like diagram is taken or corrections
based on the two-particle vertex are included; see, e.g., [69–71].

Another research area which is the domain of correlators with more than two particles
is nonlinear response [20, 72]. These responses are in general weaker than linear
responses and often the most relevant correction is thus the second-order response
that is connected to a three-particle correlator. Interestingly, refs. [73, 74] found that
correlation effects can enhance nonlinear responses in strongly correlated electron
systems, but, again, they only took into account one-particle renormalizations; full
vertex corrections were still neglected.

Three-particle correlators are also employed for calculating two-particle correlators
reliably using the so-called improved estimators based on the equation of motion [75–
79].
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Against this background, it is the aim of the present paper to do some first steps in
computing, analyzing, and understanding these three-particle correlators. Specifically,
we consider correlators of three bosonic operators and thus three time arguments
(or two time differences or frequencies). For the sake of simplicity, and for keeping
the numerical effort manageable, we concentrate on local correlators of an AIM
(including one at DMFT self-consistency for the two-dimensional HM). Since the
Raman and Hall response couple to light through nonlocal fermionic operators, we
focus here on the nonlinear response described by local operators only. There are
just three local nonvanishing three-particle correlators (and symmetrically related
ones): a second-order density susceptibility (𝑛𝑛𝑛) with three density operators, a
mixed density-magnetic susceptibility (𝑛𝑧𝑧) describing the second-order response of
the density to a magnetic field in 𝑧 direction, and a chiral susceptibility (𝑥𝑦𝑧). The
latter corresponds to a correlator with one spin in all three directions. These are
arranged like thumb, index, and middle finger of the right hand and hence chiral
according to the definition introduced by Kelvin in 1884 [80] (not invariant under any
mirror transformation). Such a chiral susceptibility arises in the continuity equation
of the 𝑡-𝐽 model or in presence of the direct exchange interaction [81].

The outline of the paper is as follows: In section 5.2 we give a very brief introduction
to response theory and define all necessary two- and three-particle quantities as well
as the relationships between them and the response functions. Section 5.3 describes
the models we use in our calculations and why we chose them. The numerical results
are then presented and analyzed in section 5.4. Finally, in sections 5.5 and 5.6 we give
a conclusion and outlook.

5.2. Theory
In general, response theory describes the relation between cause and effect. For our
purposes, this boils down to quantifying how the expectation value of an arbitrary,
bosonic operator ⟨ ̂𝐴𝑖⟩ depends on some external “force” 𝐹𝑗. As shown in detail in
section 2.8, this can be studied by expanding ⟨ ̂𝐴𝑖⟩ in a functional Taylor series:⟨ ̂𝐴𝑖(𝜏)⟩𝐅 = ⟨ ̂𝐴𝑖(𝜏)⟩𝐅=0+ ∑𝑗 ∫𝛽0 d𝜏 ′𝐹𝑗(𝜏 ′)𝜒(1)𝑗𝑖 (𝜏 ′, 𝜏)+ 12 ∑𝑗𝑘 ∫𝛽0 ∫𝛽0 d𝜏 ′ d𝜏″𝐹𝑗(𝜏 ′)𝐹𝑘(𝜏″)𝜒(2)𝑗𝑘𝑖(𝜏 ′, 𝜏″, 𝜏)+ …

(5.1)

Here, we express everything in imaginary time 𝜏 which runs from zero to 𝛽 = 1/𝑇, the
inverse temperature. We call the expansion coefficients 𝜒(1) and 𝜒(2) the first-order or
linear, and second-order or nonlinear response function, respectively. They are simply
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5. Three-particle correlators and nonlinear response

functional derivatives of ⟨ ̂𝐴𝑖⟩ with respect to 𝐹𝑗 and according to eqs. (2.53) and (2.54)
read 𝜒(1)𝑖𝑗 (𝜏, 𝜏 ′) = ( 𝛿𝛿𝐹𝑖(𝜏)⟨ ̂𝐴𝑗(𝜏 ′)⟩)𝐅=0= ⟨T ̂𝐴𝑖(𝜏) ̂𝐴𝑗(𝜏 ′)⟩ − ⟨ ̂𝐴𝑖⟩⟨ ̂𝐴𝑗⟩, (5.2)

for the first order, and𝜒(2)𝑖𝑗𝑘(𝜏, 𝜏 ′, 𝜏″) = ( 𝛿2𝛿𝐹𝑖(𝜏)𝛿𝐹𝑗(𝜏 ′)⟨ ̂𝐴𝑘(𝜏″)⟩)𝐅=0 (5.3)= ⟨T ̂𝐴𝑖(𝜏) ̂𝐴𝑗(𝜏 ′) ̂𝐴𝑘(𝜏″)⟩− ⟨ ̂𝐴𝑖⟩𝜒𝑗𝑘(𝜏 ′, 𝜏″) − ⟨ ̂𝐴𝑗⟩𝜒𝑖𝑘(𝜏, 𝜏″) − ⟨ ̂𝐴𝑘⟩𝜒𝑖𝑗(𝜏, 𝜏 ′)− ⟨ ̂𝐴𝑖⟩⟨ ̂𝐴𝑗⟩⟨ ̂𝐴𝑘⟩. (5.4)

for the second order. Here, T is the time-ordering operator and ̂𝐴𝑖 are the bosonic
operators that the external fields 𝐹𝑖 couple to, i.e., the Hamiltonian contains a
perturbation term of the form − ∑𝑖 ̂𝐴𝑖𝐹𝑖. If not indicated otherwise the expectation
values are computed with respect to the unperturbed Hamiltonian. From now on we
also drop the superscript denoting the order of the response function whenever the
(number of) arguments allow to infer it.

In Matsubara space the linear response function reads𝜒𝜔𝑖𝑗 = ∫𝛽0 𝜒𝑖𝑗(𝜏)ei𝜔𝜏 d𝜏= ⟨T ̂𝐴𝑖(𝜏) ̂𝐴𝑗⟩𝜔 − 𝛿𝜔0𝛽⟨ ̂𝐴𝑖⟩⟨ ̂𝐴𝑗⟩, (5.5)

while the nonlinear response function is given by𝜒𝜔1𝜔2𝑖𝑗𝑘 = ∫𝛽0 ∫𝛽0 𝜒𝑖𝑗𝑘(𝜏1, 𝜏2)ei(𝜔1𝜏1+𝜔2𝜏2) d𝜏1 d𝜏2= ⟨T ̂𝐴𝑖(𝜏1) ̂𝐴𝑗(𝜏2) ̂𝐴𝑘⟩𝜔1𝜔2− 𝛿𝜔10𝛽⟨ ̂𝐴𝑖⟩𝜒𝜔2𝑗𝑘 − 𝛿𝜔20𝛽⟨ ̂𝐴𝑗⟩𝜒𝜔3𝑖𝑘 − 𝛿𝜔30𝛽⟨ ̂𝐴𝑘⟩𝜒𝜔1𝑖𝑗− 𝛿𝜔10𝛿𝜔20𝛽2⟨ ̂𝐴𝑖⟩⟨ ̂𝐴𝑗⟩⟨ ̂𝐴𝑘⟩.
(5.6)

Here, we use time-translation invariance to effectively get rid of one imaginary time
argument, 𝜔3 = −𝜔1 − 𝜔2, and the frequency superscript for the expectation values
indicates the Fourier transform of the corresponding imaginary time expressions defined
in eqs. (5.2) and (5.4).
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We see that the response functions are nothing but two- and three-particle correlators
minus their disconnected terms.

So far everything is formulated with general, bosonic operators ̂𝐴𝑖. For the rest of
this paper we are, however, only interested in the cases where those are density and
spin operators: 𝑛̂ = 𝑛̂↑ + 𝑛̂↓ = ̂𝑐†↑ ̂𝑐↑ + ̂𝑐†↓ ̂𝑐↓ (5.7)𝜎̂𝑖 = ( ̂𝑐†↑ ̂𝑐†↓)𝜎𝑖( ̂𝑐↑̂𝑐↓) (5.8)

with fermionic creation and annihilation operators ̂𝑐† and ̂𝑐 as well as Pauli matrices𝜎𝑖. In the Hamiltonian they couple as 𝜖𝑛̂, and −𝐡𝝈̂ to (the change of) the one-particle
energy 𝜖 and magnetic field 𝐡.

Let us further introduce the following compact notation for the full, bosonic, two-
particle, density and spin correlators𝑋𝜎1…𝜎4(𝜏) = ⟨T ̂𝑐†𝜎1(𝜏+) ̂𝑐𝜎2(𝜏) ̂𝑐†𝜎3(0+) ̂𝑐𝜎4(0)⟩, (5.9)𝑋𝛼𝛽 = ∑𝜎1…𝜎4𝑠𝜎1𝜎2𝛼 𝑠𝜎3𝜎4𝛽 𝑋𝜎1…𝜎4 , (5.10)

𝑠𝛼 = {𝟙, 𝛼 = 𝑛,𝜎𝛼, 𝛼 ∈ {𝑥, 𝑦, 𝑧}, (5.11)

where 𝜏+ = lim𝜀→0 𝜏 + 𝜀 and 0+ = lim𝜀→0 0 + 𝜀. Analogously, on the three-particle
level we define𝑋𝜎1…𝜎6(𝜏1, 𝜏2) = ⟨T ̂𝑐†𝜎1(𝜏+1 ) ̂𝑐𝜎2(𝜏1) ̂𝑐†𝜎3(𝜏+2 ) ̂𝑐𝜎4(𝜏2) ̂𝑐†𝜎5(0+) ̂𝑐𝜎6(0)⟩, (5.12)𝑋𝛼𝛽𝛾 = ∑𝜎1…𝜎6 𝑠𝜎1𝜎2𝛼 𝑠𝜎3𝜎4𝛽 𝑠𝜎5𝜎6𝛾 𝑋𝜎1…𝜎6 . (5.13)

In this notation the response functions read𝜒𝛼𝛽 = conn 𝑋𝛼𝛽, (5.14)𝜒𝛼𝛽𝛾 = conn 𝑋𝛼𝛽𝛾, (5.15)

where conn denotes only fully connected terms.

On the two-particle level, only the response of the density to changes of the one-particle
energy, 𝜒𝑑, and the response of the magnetization to changes of the magnetic field in
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5. Three-particle correlators and nonlinear response

the same direction, 𝜒𝑚, do not vanish:a𝜒𝑑(𝜏) = − 𝛿⟨𝑛̂⟩𝛿𝜖(𝜏) = 𝜒𝑛𝑛(𝜏), (5.16)𝜒𝑚(𝜏) = 𝛿⟨𝜎̂𝑖⟩𝛿ℎ𝑖(𝜏) = 𝜒𝑖𝑖(𝜏), with 𝑖 = 𝑥, 𝑦, 𝑧. (5.17)

Using eqs. (5.2), (5.9) and (5.10) we can derive well-known relations for the linear
response functions: 𝜒𝑛𝑛(𝜏) = 𝑋𝑛𝑛(𝜏) −⟨𝑛̂⟩2 = 2(𝜒↑↑(𝜏) + 𝜒↑↓(𝜏)), (5.18)𝜒𝑧𝑧(𝜏) = 𝑋𝑧𝑧(𝜏) = 2(𝜒↑↑(𝜏) − 𝜒↑↓(𝜏)), (5.19)

where the spin susceptibilities are 𝜒𝜎𝜎′ = −𝛿⟨𝑛̂𝜎′⟩/𝛿𝜖𝜎 with 𝜖𝜎 denoting the (change
of) the one-particle energy for spin 𝜎 only, and we assume SU(2) symmetry.

On the three-particle level, only the following response functions do not vanish:b𝜒𝑛𝑛𝑛(𝜏1, 𝜏2) = 𝛿𝛿𝜖(𝜏1) 𝛿⟨𝑛̂⟩𝛿𝜖(𝜏2) = 𝛿𝜒𝑑(𝜏2)𝛿𝜖(𝜏1) , (5.20)𝜒𝑛𝑧𝑧(𝜏1, 𝜏2) = 𝜒𝑛𝑥𝑥(𝜏1, 𝜏2) = 𝜒𝑛𝑦𝑦(𝜏1, 𝜏2)= − 𝛿𝛿𝜖(𝜏1) 𝛿⟨𝜎̂𝑖⟩𝛿ℎ𝑖(𝜏2) = −𝛿𝜒𝑚(𝜏2)𝛿𝜖(𝜏1) , (5.21)

𝜒𝑥𝑦𝑧(𝜏1, 𝜏2) = 𝛿𝛿ℎ𝑥(𝜏1) 𝛿⟨𝜎̂𝑧⟩𝛿ℎ𝑦(𝜏2) . (5.22)

We call them the second-order density, density-magnetic, and chiral response functions,
respectively. In appendix A.1 we derive relations similar to eqs. (5.18) and (5.19) for
them. They show, e.g., that 𝑋𝑥𝑦𝑧 contains no disconnected terms that need to be
subtracted – just like 𝑋𝑧𝑧 on the two-particle level. Furthermore, in the special case
of half-filling, i.e., 𝑛𝜎 = 1/2 = 1 − 𝑛𝜎, we show that 𝜒𝑛𝑛𝑛 and 𝜒𝑛𝑧𝑧 vanish.

Remembering the usual definition of an 𝑛-particle Green’s function,𝐺𝑛𝜎1𝜎2…𝜎2𝑛(𝜏1, 𝜏2, … , 𝜏2𝑛) = (−1)𝑛⟨T ̂𝑐𝜎1(𝜏1) ̂𝑐†𝜎2(𝜏2) … ̂𝑐†𝜎2𝑛(𝜏2𝑛)⟩, (5.23)

and looking at eqs. (5.9) to (5.15) we see that the response functions are basically
given by the connected parts of equal time Green’s functions. We only have to take
care of the different order of creation and annihilation operators

aThe extra minus in eq. (5.16) is necessary because the density couples with +𝜖𝑛̂, and a derivative
with respect to 𝜖 brings down −𝑛̂ [see section 2.8], but according to eq. (5.14) we want 𝜒𝑑 =𝜒𝑛𝑛 = + conn⟨T 𝑛̂𝑛̂⟩.

bThe extra minus in eq. (5.21) is there for the same reason as in eq. (5.16)
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5.3. Models

Figure 5.1.: Diagrammatic representation of the full two- and three-particle correlators.
For brevity the time and frequency labels are given in the same diagrams.

𝑋𝜎1…𝜎4(𝜏) = 𝐺2𝜎2𝜎1𝜎4𝜎3(𝜏, 𝜏+, 0, 0+), (5.24)𝑋𝜎1…𝜎6(𝜏1, 𝜏2) = 𝐺3𝜎2𝜎1𝜎6𝜎5𝜎4𝜎3(𝜏1, 𝜏+1 , 0, 0+, 𝜏2, 𝜏+2 ). (5.25)

Let us finally also define the Fourier transform,𝑋𝜔1𝜔2𝜎1…𝜎6 = ∫𝛽0 ∫𝛽0 𝑋𝜎1…𝜎6(𝜏1, 𝜏2)ei𝜔1𝜏1+i𝜔2𝜏2 d𝜏1 d𝜏2, (5.26)

where 𝜔1 and 𝜔2 are bosonic Matsubara frequencies.

With this we can give a diagrammatic representation of the correlators and response
functions. Figure 5.1 shows the diagrams for the full two- and three-particle correlators
with time and frequency labels. A particle–hole notation is chosen for the latter. (See
section 4.2 for a detailed look at all 15 frequency notations of the three-particle Green’s
function.)

To get a diagrammatic representation of the response functions we do a decomposition
of the full correlators and therefore Green’s functions. For the three-particle case
details on this are found in section 4.4. The diagrammatic results are shown in
fig. 5.2. Here we see that the terms in eqs. (5.2) and (5.4) to (5.6), which we already
called disconnected, are in fact represented by disjoint diagrams. Figure 5.2 further
decomposes the connected diagrams of 𝜒(1) and 𝜒(2) and introduces the bare or bubble
terms 𝜒0, which only contain Green’s functions, the first-order terms 𝜒(2)1 , which are
three-particle diagrams with a single two-particle vertex 𝐹, and 𝜒vertex, which contains
corrections from the “largest” possible vertex. When studying the results in section 5.4
we are especially interested in 𝜒(2)

vertex since it contains diagrams where all three particles
interact with each other.

5.3. Models
For simplicity, we mainly employ the AIM, but some results for the HM as well as for
the atomic limit, which is the same for both, are also shown. The results for these
three cases are presented in the corresponding subsections of section 5.4.
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5. Three-particle correlators and nonlinear response

Figure 5.2.: Diagrammatic representation of the decomposition of the full, two- and three-
particle correlators 𝑋 into disconnected terms dc 𝑋 , bare or bubble terms𝜒0, first-order terms 𝜒1 and full vertex terms 𝜒vertex. Time and frequency
labels are omitted to avoid clutter. They can easily be inferred from fig. 5.1.
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5.4. Results

5.3.1. Atomic limit
As a simple toy model, we consider the atomic limit with Hamiltonian 𝐻̂AL = 𝜖(𝑛̂↑ +𝑛̂↓) − ℎ(𝑛̂↑ − 𝑛̂↓) + 𝑈𝑛̂↑𝑛̂↓ where 𝜖 = −𝑈/2 and ℎ is a magnetic field. This model can
be solved exactly using the Lehmann representation.

5.3.2. Anderson impurity model

Section 3.1 already briefly introduces the Anderson impurity model (AIM). Its Hamil-
tonian is given in eq. (3.1). In this chapter we use (i) a single bath site with energy𝜖𝑘=1 = 𝜖1 and (ii) a constant density of states (DOS).

The former is chosen because it can easily be solved with exact diagonalization (ED)
and therefore serves as a test for the implementation of the three-particle calculations.
The latter is used for most other results because, while still relatively simple and
therefore fast to solve on modern computers, it already shows effects of strong electronic
correlation. The low computational complexity of the model is important because of
two things: First, we expect that the search for regions where three-particle effects are
relevant involves sampling a potentially large amount of points in the phase diagram.
Second, we solve the AIM by means of a quantum Monte Carlo (QMC) solver. Once
the interesting points are found, getting accurate, low-noise results for 𝜒(2) can require
a lot of QMC samples since the disconnected parts that have to be subtracted first
(see section 5.2) potentially make up most of the correlation function.

5.3.3. Hubbard model

The Hubbard model (HM) is already briefly introduced in section 3.2 and its Hamiltonian
given in eq. (3.3).

Since, the HM cannot be solved on a square lattice, also not numerically, except for
very small clusters, we employ DMFT [35–37, 56] for an approximate solution. DMFT
actually maps the HM onto a self-consistent solution of the AIM. The susceptibilities
that we calculate here are local impurity susceptibilities only. This means that these
susceptibilities are actually also obtained from the AIM, but now at DMFT self-
consistency. They differ from the lattice susceptibilities, also the local ones, since the
applied fields can also affect the DMFT bath of the auxiliary AIM. This effect is not
taken into account here.

5.4. Results
The numerical results in this section are obtained with w2dynamics [82], a continuous-
time QMC solver using the hybridization expansion [45]. Only for the AIM with
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5. Three-particle correlators and nonlinear response

one bath site we also employ ED. Furthermore, let us mention that numerical renor-
malization group has been successfully employed recently for calculating multipoint
correlators of the AIM [83]. Post-processing of the QMC results is done with the
Python package w2diag [84] written to, among other things, implement the equations
in section 5.2 and compute the first- and second-order susceptibilities 𝜒(1) and 𝜒(2),
involving two- and three-particle correlators, respectively.

The results for the atomic limit are computed analytically through the Lehmann
representation.

A dataset containing all numerical data and plot scripts used to generate the figures
in this section is publicly available on the TU Wien Research Data repository [85].
The dataset also contains auxiliary data files, parameter files and submission scripts
for better reproducibility.

5.4.1. Atomic limit
In the atomic limit we only have four states: empty site, single occupation with spin 𝜎↑ or ↓, and double occupation with energies zero, 𝜖 ∓ ℎ, and 2𝜖 + 𝑈, respectively. We
calculate the three-particle correlators of the atomic limit, as defined in eqs. (5.12),
(5.13) and (5.26), employing the Lehmann representation in appendix A.2. As shown
in section 4.3, with SU(2) symmetry and swapping relations we only obtain three
independent flavor combinations, 𝛼𝛽𝛾 = 𝑛𝑛𝑛, 𝑛𝑧𝑧, 𝑥𝑦𝑧, for the second-order (three-
operator) susceptibility. Moreover, the first two flavor combinations correspond, in
the atomic limit, to conserved and mutually commuting operators. As a result,
these three-particle correlators are purely thermal: 𝑋𝜔1𝜔2𝑛𝑛𝑛 = 𝑋𝑛𝑛𝑛𝛿𝜔10𝛿𝜔20, 𝑋𝜔1𝜔2𝑛𝑧𝑧 =𝑋𝑛𝑧𝑧𝛿𝜔10𝛿𝜔20. Only 𝑋𝜔1𝜔2𝑥𝑦𝑧 has a frequency structure.

Let us first consider the noninteracting case (𝑈 = 0) at half-filling (𝜖 = 0), without a
magnetic field (ℎ = 0). We evaluate the three-particle correlator using Wick’s theorem:𝑋𝜔1𝜔2𝜎1⋯𝜎6 = 𝛽2⟨𝑛̂𝜎1⟩⟨𝑛̂𝜎2⟩⟨𝑛̂𝜎3⟩ 𝛿𝜎1𝜎′1𝛿𝜎2𝜎′2𝛿𝜎3𝜎′3𝛿𝜔10𝛿𝜔20− 𝛽⟨𝑛̂𝜎1⟩ 1𝛽 ∑𝜈 𝐺𝜈𝜎2𝐺𝜈+𝜔𝜎3 𝛿𝜎1𝜎′1𝛿𝜎2𝜎′3𝛿𝜎3𝜎′2𝛿𝜔10− 𝛽⟨𝑛̂𝜎2⟩ 1𝛽 ∑𝜈 𝐺𝜈𝜎1𝐺𝜈+𝜔𝜎3 𝛿𝜎1𝜎′3𝛿𝜎2𝜎′2𝛿𝜎3𝜎′1𝛿𝜔20− 𝛽⟨𝑛̂𝜎3⟩ 1𝛽 ∑𝜈 𝐺𝜈𝜎1𝐺𝜈+𝜔𝜎2 𝛿𝜎1𝜎′2𝛿𝜎2𝜎′1𝛿𝜎3𝜎′3𝛿𝜔1,−𝜔2+ 1𝛽 ∑𝜈 𝐺𝜈𝜎1𝐺𝜈+𝜔1𝜎2 𝐺𝜈+𝜔1+𝜔2𝜎3+ 1𝛽 ∑𝜈 𝐺𝜈𝜎2𝐺𝜈+𝜔2𝜎1 𝐺𝜈+𝜔1+𝜔2𝜎3 .

(5.27)
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The first term with three densities 𝑛 corresponds to the fully disconnected, first
diagram for 𝑋3 in fig. 5.2. The terms two to four have one density and a bare bubble
susceptibility [for 𝑈 = 0: 𝜒𝑑 = 𝜒𝑚 = − 1𝛽 ∑𝜈 𝐺𝜈𝐺𝜈+𝜔], as the next three diagrams
for 𝑋3 in fig. 5.2. All of these terms are disconnected and do not contribute to the
second-order, three-particle susceptibility.

The last two terms in eq. (5.27) are the bare bubble second-order susceptibility𝜒(2)0 , represented diagrammatically in the second line of diagrams for 𝑋3 in fig. 5.2
[cf. eqs. (5.20) to (5.22)]. This connected part contains the essential three-particle
information. While for 𝑈 = 0 it is given through the (two) bare bubble diagrams,
vertex corrections become important for 𝑈 ≠ 0. Namely, there are corrections with the
two-particle vertex 𝐹 connecting two Green’s function lines as well as more complicated
three-particle vertex corrections with 𝐹 3. The latter connects all three Green’s function
lines of the bubble through interactions.

As a technical note: In eq. (5.27) the connected part appears next to the disconnected
term of order 𝛽2. Therefore, a stochastic measurement of the three-particle susceptibil-
ity has a less favorable signal-to-noise ratio at low temperatures than the two-particle
one, whose disconnected term is only of order 𝛽.

The upper panel of fig. 5.3 shows the density ⟨𝑛̂⟩ of the noninteracting system as
a function of the energy 𝜖 (𝛽 = 5), together with its first and second derivatives
with respect to 𝜖. The latter is computed from eq. (5.6), but with partial instead of
functional derivatives and therefore static correlators, yielding𝜕2⟨𝑛̂⟩𝜕𝜖2 = 𝑋00𝑛𝑛𝑛 + 3𝛽⟨𝑛̂⟩𝜕⟨𝑛̂⟩𝜕𝜖 − 𝛽2⟨𝑛̂⟩⟨𝑛̂⟩⟨𝑛̂⟩, (5.28)

where 𝜕⟨𝑛̂⟩/𝜕𝜖 = −𝑋0𝑛𝑛 + 𝛽⟨𝑛̂⟩⟨𝑛̂⟩ [cf. eq. (5.16)] and ⟨𝑛̂⟩ are computed in the usual
way, see, e.g., ref. [43]. We verified that eq. (5.28) coincides with the analytical and
numerical second derivative of ⟨𝑛̂⟩. Also drawn is the three-particle bubble (dashed),
which coincides exactly with the second derivative, as expected (𝑈 = 0). For negative
(positive) 𝜖, double occupations (empty sites) are favorable. Hence, the density ⟨𝑛̂⟩
shows a crossover of width 1/𝛽, and the other quantities follow as derivatives.

Next, we turn on the interaction (𝑈 = 1), which lifts the degeneracy of the empty,
singly, and doubly occupied states at 𝜖 = 0. As a result, the derivatives of ⟨𝑛̂⟩ in
the lower panel of fig. 5.3 acquire additional minima and maxima. It is interesting
to compare 𝜕2⟨𝑛̂⟩/𝜕𝜖2 to the three-particle bubble, which lacks vertex corrections.
For large dopings the two curves coincide, which can be considered as a perturbative
regime where interaction effects are small. However, in the correlated regime, near
half-filling the three-particle bubble fails qualitatively. In particular, it is unable to
describe the curvature of ⟨𝑛̂⟩ for 𝜖 in between the Hubbard bands.
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Figure 5.3.: Density ⟨𝑛̂⟩ as a function of the energy 𝜖 (purple) in the atomic limit (𝛽 = 5,ℎ = 0). Orange and green curves show the first and second derivative,
respectively; a black dashed line the three-particle bubble. Top panel:
Noninteracting limit. Bottom panel: 𝑈 = 1.
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Figure 5.4.: Full three-particle correlator with flavors 𝑥, 𝑦, 𝑧 drawn as a function of
the two indices 𝑚𝑖=1,2 of the bosonic Matsubara frequencies 𝜔𝑖 = 𝑚𝑖2𝜋𝑇;𝑈 = 𝜖 = 0, 𝛽 = 5. In the atomic limit only this flavor combination retains a
frequency structure due to noncommutativity of the spin operators. Left: no
magnetic field. Right: magnetic field in 𝑧-direction, ℎ = 0.5.
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Finally, we consider the only three-particle correlation function that retains a nontrivial
frequency structure in the atomic limit: the chiral susceptibility 𝑋𝜔1𝜔2𝑥𝑦𝑧 = 𝜒𝜔1𝜔2𝑥𝑦𝑧 . The
left panel of fig. 5.4 shows this function for 𝑈 = 0, 𝜖 = 0, ℎ = 0, 𝛽 = 5. This picture
does not change qualitatively when 𝑈 is turned on (not shown), which underlines
that the frequency structure of 𝑋𝑥𝑦𝑧 is a result of the noncommutativity of the spin
operators among each other, rather than due to a specific interaction regime. Notice
also that the function is singular, that is, it vanishes exactly away from the cross and
diagonal structures, since each component of the spin operator is conserved. This
property does not persist for a finite magnetic field ℎ = 0.5 in the 𝑧 direction (right
panel), which softens the cross structure, since it does not commute with the 𝑥 and 𝑦
components of the spin operator.

5.4.2. AIM with one bath site
To test the correctness of the implementation of the second-order response functions
in w2diag the results are compared against solutions of an AIM with a single bath
site obtained via ED. More precisely the density 𝑛 and the linear, magnetic response
function 𝜒𝑚 are computed with ED and then numerically differentiated. This yields
the right-hand side of the following two formulas𝜒00𝑛𝑛𝑛 = 𝜕2𝜕𝜖2 ⟨𝑛̂⟩, (5.29)𝜒00𝑛𝑧𝑧 = − 𝜕𝜕𝜖𝜒𝑚, (5.30)

which are basically eqs. (5.20) and (5.21) but with partial instead of functional
derivatives for denoting static response functions 𝜒00𝑛𝑛𝑛 and 𝜒00𝑛𝑧𝑧. The left-hand side,
is computed with w2diag from QMC results obtained with w2dynamcis.

The results for 𝑈 = 1, 𝛽 = 20, 𝑉 = 0.2 and 𝜖1 = 0.25 are shown as a function of 𝜖 in
fig. 5.5; those for 𝑉 = 0.05 and 𝜖1 = 0 with the same 𝑈 and 𝛽 are plotted in fig. 5.6.
We see that the agreement between stochastic and exact results is very good except
for 𝜒𝑛𝑛𝑛 in fig. 5.5 where the large noise prevents precise statements.

This trend of higher noise in the data for 𝜒𝑛𝑛𝑛 is something we observe in almost every
computation, and can be explained as follows: First, we measure the full three-particle
correlators with similar relative noise, but since at least the static component 𝑋00 is
usually larger in the 𝑛𝑛𝑛 channel than in the 𝑛𝑧𝑧 channel, the absolute error is also
larger there. Second, and more importantly, when looking at eq. (5.6) we see that
for 𝜒𝑛𝑛𝑛 we have to subtract all four disconnected terms from 𝑋𝑛𝑛𝑛, while for 𝜒𝑛𝑧𝑧
three of the four terms vanish because ⟨𝜎̂𝑧⟩ = 0. Therefore, the magnitude of 𝜒00𝑛𝑛𝑛
is often smaller than that of 𝜒00𝑛𝑧𝑧. Together this explains why the results for 𝜒00𝑛𝑛𝑛
can have significantly higher relative noise than those for 𝜒00𝑛𝑧𝑧. Figure 5.7 in the next
subsection shows this most dramatically.
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Figure 5.7.: Scan of 𝜕2⟨𝑛̂⟩/𝜕𝜖2, −𝜕𝜒𝑚/𝜕𝜖, 𝜒𝑛𝑛𝑛 and 𝜒𝑛𝑧𝑧 vs. 𝜖 for an AIM with constant
DOS at 𝐷 = 10, 𝑈 = 6, 𝑉 = 2 and 𝛽 = 18. The noise of 𝜒𝑛𝑛𝑛 is even larger
than depicted. Its data points are actually outside the plotted region and
between −1.5 and 1.5. However, with that range on the 𝑦-axis the extrema
of 𝜕2⟨𝑛̂⟩/𝜕𝜖2 would hardly be noticeable.

5.4.3. AIM with constant DOS

To find an area with potentially large, second-order effects we do calculations at two
to five times the Kondo temperature and make an 𝜖-scan starting from −𝑈/2 going to
smaller values. The idea behind this is to find larger nonlinear dynamics; and, going
away from particle-hole symmetry 𝜖 = −𝑈/2 reduces the Kondo temperature so that
the derivative with respect to 𝜖 should be sizable.

The chosen parameters are 𝐷 = 10, 𝑈 = 6, 𝑉 = 2 and 𝛽 = 18. They satisfy𝐷 > 𝑈 ≳ 𝑉 so according to [25, p. 165ff] we can estimate the Kondo temperature to
be 1/𝑇𝐾 = 𝛽𝐾 ≈ 64 which means that 𝛽/𝛽𝐾 ≈ 3.6.

Figure 5.7 shows the second derivative of the density 𝜕2⟨𝑛̂⟩/𝜕𝜖2, the first derivative
of the linear, magnetic response function 𝜕𝜒𝑚/𝜕𝜖 as well as the static, second-order,
density and density-magnetic response functions 𝜒00𝑛𝑛𝑛 and 𝜒00𝑛𝑧𝑧 plotted over 𝜖. This
time 𝜒00𝑛𝑛𝑛 is so noisy that no useful information can be extracted (see the discussion
at the end of section 5.4.2 for an explanation). Nevertheless, we clearly observe the
largest, second-order effects around 𝜖 = −5 and also 𝜖 = −6.6, so we choose those
points for closer, frequency-resolved investigation.
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Figure 5.8.: Full correlation functions 𝑋 (left column) and second-order response functions𝜒(2) (right column) vs. the two indices 𝑚𝑖=1,2 of the bosonic Matsubara
frequencies 𝜔𝑖 = 𝑚𝑖2𝜋𝑇 in the density (𝑛𝑛𝑛; top row), density-magnetic
(𝑛𝑧𝑧; center row), and chiral (𝑥𝑦𝑧; bottom row) channel for an AIM with
constant DOS at 𝐷 = 10, 𝑈 = 6, 𝑉 = 2, 𝛽 = 18 and half-filling, i.e., 𝜖 = −3
and 𝑛 = 1. The color bars for 𝑋𝑛𝑛𝑛 and 𝑋𝑛𝑧𝑧 exclude the largest value at
the center because it would dominate the plots. These values are 𝑋00𝑛𝑛𝑛 ≈ 327
and 𝑋00𝑛𝑧𝑧 ≈ 171.
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Figure 5.9.: Second-order response functions 𝜒(2) and their decomposition into the bubble
terms 𝜒(2)0 , first-order terms 𝜒(2)1 and vertex terms 𝜒(2)

vertex in the density
(𝑛𝑛𝑛), density-magnetic (𝑛𝑧𝑧), and chiral (𝑥𝑦𝑧) channel for an AIM with
constant DOS at 𝐷 = 10, 𝑈 = 6, 𝑉 = 2, 𝛽 = 18 and 𝜖 = −5 corresponding
to 𝑛 ≈ 1.22.

First, however, we take a look at half-filling, i.e., 𝜖 = −𝑈/2 = −3 and 𝑛 = 1. Figure 5.8
shows the full correlation functions 𝑋𝜔1𝜔2 (left column) and the second-order response
functions 𝜒𝜔1𝜔2 (right column) in the density, density-magnetic, and chiral channel.
The color bars for 𝑋𝑛𝑛𝑛 and 𝑋𝑛𝑧𝑧 exclude the largest value at the center because it
would dominate the plots with values of 𝑋00𝑛𝑛𝑛 ≈ 327 and 𝑋00𝑛𝑧𝑧 ≈ 171. As expected
from the discussion at the end of section 5.2 we see that, in this case, 𝜒𝑛𝑛𝑛 and 𝜒𝑛𝑧𝑧
vanish (the higher absolute noise at the center of 𝜒𝑛𝑛𝑛 comes from the large value of𝑋00𝑛𝑛𝑛). There is also no difference between the full correlator and the connected parts in
the chiral channel. 𝑋𝑛𝑛𝑛 and 𝑋𝑛𝑧𝑧 clearly show the structure of the disconnected parts
with their 𝛿𝜔𝑖0 terms [see eqs. (A.8) to (A.11)]. The latter are also responsible for the
large values at 𝜔1 = 𝜔2 = 0 that are clipped from the color bar. Although there are no
disconnected terms for 𝑋𝑥𝑦𝑧, it shows similar “cross”-like but antisymmetric structures.
Additionally, note that in fig. 5.8 we see the following order when comparing the
magnitudes of the nonstatic parts: 𝑋𝑥𝑦𝑧 > 𝑋𝑛𝑧𝑧 > 𝑋𝑛𝑛𝑛. For the static components
this order is exactly reversed.
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5. Three-particle correlators and nonlinear response

As discussed above, the results for the largest, second-order effects in the density
and density-magnetic channel are found approximately at 𝜖 = −5 in Figure 5.7,
corresponding to 𝑛 ≈ 1.22. They are shown in fig. 5.9 where we plot the full, second-
order response function 𝜒(2), as well as its decomposition into the bubble terms 𝜒(2)0 ,
first-order terms 𝜒(2)1 , and vertex terms 𝜒(2)

vertex in all three channels. For the density-like
response functions, i.e., 𝜒𝑛𝑛𝑛 and 𝜒𝑛𝑧𝑧, even after subtracting the disconnected terms
we still see the maximum at the center point and “cross”-like structures along the𝜔𝑖 = 0 lines. Those features are, however, much less pronounced and more washed out
when compared to those of 𝑋 in fig. 5.8. Since there are generally no disconnected
terms in the chiral channel (𝜒𝑥𝑦𝑧 = 𝑋𝑥𝑦𝑧), the plot of 𝜒𝑥𝑦𝑧 looks almost exactly the
same as before. Compared to fig. 5.8, only the magnitude is reduced because of the
different doping. When looking at the decomposition, the density-like channels all
look rather similar and soft while the features in the chiral channel are much more
pronounced and long-ranged. Regardless of that, the bubble terms 𝜒(2)0 are of similar
magnitude for all channels but never a good approximation for the whole second-order
response functions. They are too small and in the density channel the bubble even
has the wrong sign. The first-order terms 𝜒(2)1 are larger (sometimes too large) and
always have the right sign, but that is still not enough. Across all three channels
the corrections from the three-particle vertex 𝜒(2)

vertex have sizable contributions that
cannot be neglected. Especially 𝜒𝑥𝑦𝑧 is dominated by these terms. When comparing
maximum magnitudes of the second-order response functions, we see the same ordering
as for the nonstatic parts of 𝑋 in the half-filled case: 𝜒𝑥𝑦𝑧 > 𝜒𝑛𝑧𝑧 > 𝜒𝑛𝑛𝑛.

Figure 5.10 shows the same plots as fig. 5.9 but for 𝜖 = −6.6, corresponding to 𝑛 ≈ 1.68,
where the second-largest, second-order effects in the density channel are found. We
see in all plots that the features are much less pronounced. Especially the plots of
the chiral channel are more washed out and, since the magnitude of 𝜒𝑥𝑦𝑧 is much
lower than when closer to half-filling, noise becomes a problem, particularly for the
three-particle vertex corrections. The sign change of 𝜒𝑛𝑛𝑛 is expected when looking at
fig. 5.7, and means that the bubble now has the correct sign across all channels. In
general, we see that at this higher doping the bubble becomes a better approximation
while 𝜒(2)1 and 𝜒(2)

vertex become smaller.

Finally, we take a look at the asymptotic behavior of the second-order response
functions in the limit of large Matsubara frequencies 𝜔. More precisely we look at 1d
cuts along 𝜔1 = 0 and 𝜔2 = 𝜔. From the detailed derivation in appendix A.3 we get𝜒0𝜔𝑛𝑛𝑛 ≈ − 1𝜔2 𝜕⟨𝐻𝑉⟩𝜕𝜖 , (5.31)𝜒0𝜔𝑛𝑧𝑧 ≈ − 1𝜔2 𝜕⟨𝐻𝑉⟩𝜕𝜖 , (5.32)𝜒0𝜔𝑥𝑦𝑧 ≈ − 2𝜔𝜒0𝑚, (5.33)
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Figure 5.10.: Same as fig. 5.9 except now 𝜖 = −6.6 corresponding to 𝑛 ≈ 1.68.
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Figure 5.11.: Analysis of the asymptotic behavior of the second-order response functions
at 𝜔1 = 0, 𝜔2 = 𝜔. The top plot shows the density and density-magnetic
channel multiplied by 𝜔2, while in the bottom one the chiral channel is
multiplied by 𝜔. The dots and pluses represent the numerical data computed
for an AIM with constant DOS at 𝐷 = 10, 𝑈 = 6, 𝑉 = 2, 𝛽 = 18 and𝜖 = −5. These are the same parameters as in fig. 5.9. The solid lines are the
analytically calculated asymptotic behavior taken from eqs. (5.31) to (5.33).

where 𝜒0𝑚 is the static, linear magnetic response function and 𝐻𝑉 is the hybridization
term in the Hamiltonian of the AIM [last term in eq. (3.1)]. Its derivative reads− 𝜕𝜕𝜖⟨𝐻𝑉⟩ = 4𝛽 ∑𝜈 Δ𝜈↑(𝑃3𝜈0↑↑ + 𝑃3𝜈0↑↓ + 𝛽(2 − ⟨𝑛̂⟩)𝐺𝜈↑), (5.34)

where Δ is the hybridization function, 𝑃3 is the partially contracted two-particle
Green’s function 𝑃 3𝜈′𝜔 = 1𝛽 ∑𝜈 𝐺𝜈𝜈′𝜔, 𝐺𝜈 is the one-particle Green’s function, and we
use SU(2) symmetry. Note that the 1/𝜔 terms for the density and density-magnetic
channel vanish because they are proportional to [𝑛̂, 𝑛̂] and [𝜎̂𝑧, 𝜎̂𝑧], respectively.

Figure 5.11 compares the analytical results of eqs. (5.31) to (5.33) with the numerical
data for 𝜒0𝜔 at 𝜖 = −5. The equations are multiplied with 𝜔2 and 𝜔, respectively,
because the tails drop so fast that a good comparison at medium to high frequencies
would hardly be possible otherwise. This, however, also amplifies the noise of the
numerical results. Nevertheless, we see a good agreement starting at frequencies as
low as 𝜔 ≈ 4.
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Figure 5.12.: Second-order response functions 𝜒(2) and their decomposition into the
bubble terms 𝜒(2)0 , first-order terms 𝜒(2)1 and vertex terms 𝜒(2)

vertex in the
density (𝑛𝑛𝑛), density-magnetic (𝑛𝑧𝑧), and chiral (𝑥𝑦𝑧) channel for a single-
band, square-lattice HM at 𝑛 = 1.1, 𝑈 = 12 and 𝛽 = 20.

5.4.4. Hubbard model

Figure 5.12 shows the same plots as figs. 5.9 and 5.10 namely the full, second-order
response function 𝜒(2), the bubble terms 𝜒(2)0 , the first-order terms 𝜒(2)1 and the vertex
terms 𝜒(2)

vertex in the density, density-magnetic, and chiral channel. This time, however,
computed for the two-dimensional HM on a square lattice with 𝑛 = 1.1, 𝑡 = 1 (i.e.𝐷 = 4), 𝑈 = 12 and 𝛽 = 20.a We see that for the most part the results look similar
to those for the AIM with constant DOS at 𝜖 = −5 (fig. 5.9). 𝜒𝑛𝑛𝑛 seems even more
washed out, but the biggest differences show the bubble terms of the density and
density-magnetic channel which are qualitatively different and no longer completely
negative. They have a rather steep positive hill centered around 𝜔1 = 𝜔2 = 0 and a
slowly decaying negative background at higher frequencies. The main takeaway that𝜒(2)0 and 𝜒(2)1 are bad approximations is, however, still valid.

aNote that in this case 𝜒(2) is only the local, second-order response as discussed above. The total
one would have to include the change in the hybridization function as well.
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5.5. Conclusion
We have derived the equations for the frequency-resolved, nonlinear response from
three-particle correlators. These are made up from three bosonic operators with three
time arguments (or two time differences or frequencies). We here focused on the local
correlator, the three-particle Green’s function and susceptibility (𝜒(2)) on an impurity
site. However, the equations derived can be straight-forwardly extended to nonlocal
correlators adding a site index for each time index. We further showed how the
three-particle quantities are decomposed: This involves disconnected diagrams that do
not contribute to 𝜒(2) as well as two bubble diagrams 𝜒(2)0 without vertex corrections,
very similar as for the two-particle correlators. Then there are diagrams 𝜒(2)1 consisting
of a single particle propagator and two propagators connected by a two-particle vertex
as well as genuine three-particle vertex diagrams 𝜒(2)

vertex that connect all incoming and
outgoing lines (cf. fig. 5.2). The asymptotic behavior of the correlators is given by a1/𝜔2 or 1/𝜔 term, depending on whether the bosonic operators commute or not.

We have computed the correlators numerically using continuous-time QMC for the
atomic limit as well as for the AIM with a single-site, a flat DOS and at DMFT
self-consistency for the two-dimensional HM. We find a sizable nonlinear density and
density-magnetic response functions at high doping. At half-filling, these two nonlinear
responses vanish by symmetry. The pure density (𝑛𝑛𝑛) response function suffers from
the fact that there are large contributions from disconnected terms that need to be
subtracted. This leads to a rather high level of numerical noise for the actual response
function. The chiral (𝑥𝑦𝑧) response function is also sizable. It contributes at half-filling
and decreases with doping. It has the largest three-particle vertex contributions. For
all three nonvanishing local response functions (𝑛𝑛𝑛, 𝑛𝑧𝑧, and 𝑥𝑦𝑧), the three-particle
vertex cannot be neglected for relevant ranges of the local one-particle potential 𝜖.

5.6. Outlook
Physically the 𝑛𝑛𝑛 and 𝑛𝑧𝑧 response functions can, in the case of a static third
bosonic 𝑛 operator, be related to the change of the charge susceptibility and magnetic
susceptibility with respect to a change of the local one-particle potential. If the third
bosonic operator becomes time- or frequency-dependent, we have the corresponding
changes against a dynamic one-particle potential. The 𝑛𝑛𝑛 susceptibility also describes
the nonlinear charge response, and 𝑛𝑧𝑧 the nonlinear charge response to an applied
magnetic field.

The chiral 𝑥𝑦𝑧 susceptibility is arguably the most exotic response as there is no
correspondence on the two-particle level; the 𝑥𝑦, 𝑥𝑧, and 𝑦𝑧 susceptibilities all vanish
in the paramagnetic phase with SU(2) symmetry. The chiral 𝑥𝑦𝑧 susceptibility describes
a nonlinear response of the spin in 𝑥-direction if (time-dependent) magnetic fields
in both 𝑦- and 𝑧-direction are applied. If one of the magnetic fields, say the one in

66



5.6. Outlook𝑧-direction, is large and static, it is akin to a nuclear magnetic resonance experiment.
However, here we are in second-order response, i.e., we only have a weak field in𝑧-direction. Nonetheless, there are ideas and efforts to actually measure this response
function [86].

We have seen that the contribution of the three-particle vertex 𝐹 3 to the second-order
susceptibility 𝜒(2) is in general not small, but comparable to (or even larger than)
the bare bubble contribution 𝜒(2)0 and contributions 𝜒(2)1 from two-particle vertices
plus a disconnected propagator. This means that previous approaches to calculate
nonlinear responses, such as the Hall and Raman response which only included 𝜒(2)0 or
at most 𝜒(2)1 , need to be reassessed for strongly correlated electron systems. Numerical
approaches, as we have employed here for the local susceptibilities, become prohibitively
expensive for the full lattice. This calls for developing approaches such as a three-
particle Bethe–Salpeter equation for calculating the three-particle vertex 𝐹 3 also in
the nonlocal case.
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6. Three-particle ladder

It’s complicated

John Rambo

The full three-particle vertex 𝐹3, introduced in section 4.4, is the sum of all Feynman
diagrams that fully connects three in- and three outgoing particles. Using all available
symmetries we can reduce it to five degrees of freedom per spacetime dimension and,
as shown in section 4.3, three independent spin components. What remains is still a
complex object, which is expected to be expensive to compute and even storing it becomes
difficult if we do not restrict ourselves to its local part. Fortunately we can build it
completely from simpler two-particle vertices since the only interaction term we consider
is a two-particle interaction. In section 4.5 we already saw one possible way to do this
by constructing the three-particle vertex 𝐹3 from full two-particle vertices 𝐹2. However,
this method involves manually figuring out the diagrams at each order which quickly
becomes tedious.

In this chapter we propose a different approach where we approximate the full three-
particle vertex as a geometric series of irreducible two-particle vertices. Our motivation for
this are the ladder diagrams generated by the Bethe–Salpeter equations on the two-particle
level. Therefore, we start by deriving a three-particle equivalent of the Bethe–Salpeter
equations. We then introduce an approximation that allows us to formulate the desired
geometric series. To test the approximation we compute the contribution of the three-
particle vertex to second-order response functions, once from exact diagonalization (ED)
results and once from the approximate ladder. First numerical calculations show that a
single ladder is not enough and, for symmetry reasons, ladders in all nine three-particle
channels must be considered. Even then the approximation only yields qualitatively good
results for small interactions.

6.1. Three-particle Bethe–Salpeter-like equations

Considerations for the three-particle equivalent of the Bethe–Salpeter equations were
already made in Ribic [2]. However, the derivation below was derived independently,
and is a good starting point and motivation for the main topic of this chapter: the
approximate three-particle ladder.
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6. Three-particle ladder

Figure 6.1.: The only diagram 1PR in the channel that separates (612) from (345).
Looking at table 4.2 this is the same as the three-particle channel 41.

Let us start by writing down the two-particle Bethe–Salpeter equations that we introduced
in eq. (2.43) in a very simplified form,𝐹 = Γ𝑟 + Γ𝑟 ⋅ 𝐹 , (6.1)

where 𝐹 is the full vertex, Γ𝑟 are the vertices irreducible in a single channel 𝑟, and ⋅
denotes the proper connection of two vertex diagrams with Green’s function lines in
the correct channel. Generalizing this from the two-particle to the three-particle level
seems straightforward. A diagram is three-particle reducible (3PR) if it can be separated
into two disconnected parts by cutting three Green’s function lines, and three-particle
irreducible (3PI) otherwise. In section 4.2 we already identified the ten three-particle
channels, so we just need to define Γ3,𝑟 as the vertex that is 3PI in one of them, use three
instead of two Green’s functions to connect everything, and we are done.

As it turns out, it is not that easy. The two-particle level has the very nice advantage
that all diagrams are inherently one-particle irreducible (1PI) (see section 2.6). This is
not true for the three-particle level. With a four-point interaction we can easily draw a
diagram that goes from three lines down to a single one and then back to three again.
Such a diagram is shown in fig. 6.1. Cutting the single Green’s function line in the
middle separates the diagram into two connected parts: (612) and (345). This is the
same separation that happens when cutting the three Green’s function lines of a diagram
3PR in the 41 = (345)(612) channel (see table 4.2). We can do this for all other channels
too. This shows that the channels where we encounter one-particle reducibility are the
very same as the nine pph channels for three-particle reducibility.1

If we were to connect two diagrams that are 1PR in the same channel we would have built
a one-particle insertion. Since we are drawing our diagrams with full Green’s functions
this would lead to double counting and is therefore not allowed. To avoid this we do
not build a three-particle Bethe–Salpeter-like equation with 𝐹3 and Γ3,𝑟, but subtract
diagrams 1PR in 𝑟 first. We denote the three-particle vertex that is 1PI in channel 𝑟
with Γ1,𝑟, and the one the is 1PI and 3PI in 𝑟 with Γ1,3,𝑟.

However, even with those quantities there is still one remaining problem: some 3PR
diagrams cannot be uniquely cut into 3PI parts. A simple example of this is shown
in fig. 6.2, where there are two possible ways to cut the diagram and each one results
in different 3PI parts. The underlying issue is that 3PI diagrams can be two-particle

1The ppp channel has no one-particle equivalent since this would require a two-particle vertex with at
least three ingoing lines which violates particle conservation.
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6.1. Three-particle Bethe–Salpeter-like equations

Figure 6.2.: A simple example diagram that illustrates the ambiguity that arises when
cutting 3PR diagrams into 3PI parts. In the notation from chapter 4, it
is reducible in the (345)(612) or 41 channel. Note that cutting after the
leftmost or before the rightmost vertex is not allowed since then we would
end up with disconnected parts that are not three-particle vertices anymore.
Also, the upper vertices are upside down because of how we defined them in
fig. 2.4.

Figure 6.3.: Definition of 𝑅𝑖 and 𝐿𝑖. Again, the upper vertices are upside down because
of how we defined them in fig. 2.4.

reducible (2PR) in related channels. This means that two-particle vertices can be added
or cut off from those diagrams without changing their three-particle reducibility. If we
use the notation defined in fig. 6.3, where 𝑅𝑖 has 𝑖 two-particle vertices on the right and𝐿𝑖 has 𝑖 vertices on the left, we see that𝑅𝑖 ⋅ 𝐿𝑗 = 𝑅𝑛 ⋅ 𝐿𝑚, ∀ 𝑖 + 𝑗 = 𝑛 + 𝑚. (6.2)

Since both 𝑅𝑖 and 𝐿𝑖 are elements of Γ1,3,𝑟 and Γ1,𝑟 we would again invoke double
counting.

One way to prevent this and make cutting off 3PI parts unique is to require that we
always cut off the “leftmost” part. This is equivalent to requiring that the vertices 1PI
and 3PI in a channel 𝑟 must also be two-particle irreducible (2PI) in the three related
two-particle channels “on the right”. Denoting this quantity with Γ1,2⃗,3,𝑟, we can finally
write down the three-particle equivalent of the Bethe–Salpeter equation:Γ1,𝑟 = Γ1,2⃗,3,𝑟 + Γ1,2⃗,3,𝑟 ⋅ Γ1,𝑟. (6.3)
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6. Three-particle ladder

Figure 6.4.: Example diagram for an approximate three-particle ladder built only from
two-particle vertices. Only Green’s function lines touching the corners of a
vertex are really connected to it. The middle line on the right side, e.g., is
not connected to the right-most vertex but runs through “behind” it.

To recover the full vertex 𝐹3 we need to add the diagrams 1PR in channel 𝑟. As it turns
out there is only a single one for each channel. They are all of the same form: two full
two-particle vertices 𝐹2 connected with a single Green’s function line 𝐺. One of them is
depicted in fig. 6.1. With this we have𝐹3 = Γ1,𝑟 + (𝐹2𝐺𝐹2)𝑟. (6.4)

6.2. Approximate three-particle ladder

In the last section we saw that the exact three-particle ladders generated by the Bethe–
Salpeter-like equations are built from three-particle vertices that are 1PI and 3PI in a
certain channel and 2PI in the three related channels “on the right”. The problem is
that, we have no easy way to compute them. We can construct them order by order from
two-particle vertices, but that is equally tedious and unfeasible as the vertex expansion
from section 4.5, so there would be no improvement in that regard. Instead, we propose
approximating the exact three-particle ladder with a ladder of two-particle vertices.

The general idea is to find all possible ways to connect a two-particle vertex to three lines
on the left and three lines on the right, and then build a ladder from that. Figure 6.4
shows an example diagram for such a ladder. Formally, we can write this as𝐿̃ = ∞∑𝑛=1 𝑃(𝑀𝑃)𝑛, (6.5)

where 𝐿̃ is the approximate ladder, 𝑃 consists of all permutations of the three lines of
the ladder and 𝑀 contains a two-particle vertex. Since the ladder can have multiple
vertices right next to each other, using the full two-particle vertex in 𝑀 would lead to
double counting. To avoid this issue we use Γ𝑟, the two-particle vertex irreducible only
in channel 𝑟. Which channel we need depends on which kind of three-particle ladder
we build: either one with three particles (ppp) or one with two particles and a hole
(pph).2 In the ppp case we only need Γpp, in the pph case we need to add Γph as well.

2The two cases with three holes or two holes and one particle can easily be obtained from the other two
via a particle–hole transformation.
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6.2. Approximate three-particle ladder

Figure 6.5.: Diagrammatic representation of 𝑀 and 𝑃 for ppp ladders (top) and pph
ladders (bottom). The pp vertex is mirrored because of how we defined it in
fig. 2.4.

The permutation matrix 𝑃 is also different in the two cases because we are not allowed
to swap particles with holes and vice versa. Thus, for a pph ladder the permutation
matrix only consists of two instead of 3! = 6 terms. Figure 6.5 shows a diagrammatic
representation of 𝑀 and 𝑃 for both cases.

From now on we only focus on the pph ladder since it directly matches with our definition
of the three-particle Green’s function shown in fig. 4.1. Because of that it is also easier
to compute the vertex corrections to the second-order response functions 𝜒(2)

vertex from it,
which is convenient for our comparison tests. It is, however, straightforward to apply
the ideas, concepts, issues, and solutions presented in the rest of this section to the ppp
case.

Let us continue by introducing some notation. We label the lines of the ladder with
the numbers 1 to 3 starting from the top. Since in the first term of 𝑀 shown in fig. 6.5
(bottom left) the ph vertex sits between lines 2 and 3 we call it 𝑀23. The second term
with the pp vertex is then called 𝑀13, and we can write𝑀 = 𝑀23 + 𝑀13. (6.6)

In combination with the permutation matrix 𝑃 the crossing symmetry of 𝑀13, inherited
from Γpp, causes the following double counting issue:𝑃 𝑀13 = 𝑀13𝑃 = 2𝑀13. (6.7)

This can easily be corrected with an additional factor of 1/2.

Equation (6.7) also shows that 𝑀13 commutes with 𝑃. If this were true for the whole 𝑀
we could simplify eq. (6.5), by pulling all permutation matrices to one side, disentangling
the ladder. 𝑀23 prevents this because swapping the two particle lines folds the ph vertex
up, creating a new diagram, let us call it 𝑀12, that is not in 𝑀. However, swapping the
particle lines of 𝑀12 brings us back to 𝑀23, so the two diagrams turn into each other
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6. Three-particle ladder

Figure 6.6.: Diagrammatic representation of eq. (6.8), the relation between 𝑀12 and 𝑀23

Figure 6.7.: Diagrammatic representation of eq. (6.9)

under the considered permutation. This means that in order to make 𝑀 commute with𝑃 all we need to do is to symmetrize its ph part and write it as the sum of the two
diagrams. Denoting the permutation matrix that exchanges the two particle lines with𝑃13, we can write 𝑀23 in terms of 𝑀12:𝑀23 = 𝑃13𝑀12𝑃13. (6.8)

Figure 6.6 shows a diagrammatic representation of this. Applying 𝑃13 to the whole
permutation matrix 𝑃 only gives a sign:𝑃13𝑃 = 𝑃 𝑃13 = 𝑃13 − 𝑃13𝑃13 = 𝑃13 − 𝟙 = −𝑃, (6.9)

where 𝟙 is the identity permutation. The diagrams for this equation can be found in
fig. 6.7. Putting everything together we can compute the desired symmetrization,𝑃 𝑀23𝑃 = 12𝑃 (𝑀23 + 𝑃13𝑀12𝑃13)𝑃 = 12𝑃(𝑀23 + 𝑀12)𝑃 . (6.10)

For later convenience we pull out the factors of 1/2 from eq. (6.10) and the double
counting issue in eq. (6.7) when redefining 𝑀:𝑀 = 𝑀12 + 𝑀23 + 𝑀13. (6.11)

This new 𝑀 commutes with 𝑃 :𝑃𝑀 = 𝑀−𝑃13𝑀12−𝑃13𝑀23−𝑃13𝑀13 = 𝑀−𝑀23𝑃13−𝑀12𝑃13−𝑀13𝑃13 = 𝑀𝑃. (6.12)

With the previously pulled out factor of 1/2, we get𝐿̃ = ∞∑𝑛=1 𝑃 (12𝑀𝑃)𝑛 = ∞∑𝑛=1 𝑀𝑛𝑃 (12𝑃)𝑛
(6.13)

for the approximate ladder. One can easily check that 𝑃/2 is idempotent, and we can
thus further simplify the ladder equation:𝐿̃ = ∞∑𝑛=1 𝑀𝑛𝑃 (12𝑃)𝑛 = ∞∑𝑛=1 𝑀𝑛𝑃 12𝑃 = ∞∑𝑛=1 𝑀𝑛𝑃 . (6.14)
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6.2. Approximate three-particle ladder

Figure 6.8.: Visual proof that a diagram with a two-particle interaction cannot be symmet-
ric along a diagonal. The first diagram is not allowed since in our convention
an annihilation operator sits at both coordinates [see eq. (2.29)]. The second
and third diagram illustrate that it is impossible to add an interaction term
and keep the diagram symmetric along the diagonal. Therefore, a single
diagram cannot be crossing symmetric on its own.

The ladder is now disentangled, with only a single permutation matrix at one end. This
ensures that the ladder is crossing symmetric with respect to the two particle lines: it has
two crossing symmetries. The full three-particle vertex, however, is crossing symmetric
with respect to all particle and hole lines: it has six crossing symmetries. This difference
in symmetries is an important issue that we will come back to later.

The simpler form of eq. (6.14) also reveals that we generate a lot of disconnected terms.
They are the ones where we do not mix the different components of 𝑀 and therefore build
a two-particle ladder with a disconnected Green’s function running next to it. There is
one such disconnected term for each ladder. Subtracting them leaves us with𝐿 = ∞∑𝑛=1(𝑀𝑛 − 𝑀𝑛12 − 𝑀𝑛23 − 𝑀𝑛13)𝑃 . (6.15)

Now let us focus on the last double counting issue. Again, it comes from the irreducible
pp vertex in 𝑀13, but this time it has nothing to do with the permutation matrix. Γpp
is the sole perpetrator and this issue already appears on the two-particle level. There
it mandates the factor of 1/2 in the Bethe–Salpeter equation of the pp channel [see
eq. (2.43)]. To see how this generalizes to the three-particle ladder we need to take a
closer look at how crossing symmetry works and what happens if we connect two crossing
symmetric vertices with two particle lines.

Let us hence start by looking at the crossing symmetry for a two-particle vertex diagram.
With a two-particle interaction term it is not possible that any given diagram contributing
to the vertex is crossing symmetric on its own. The reason is that with our established
conventions such a diagram would have to be symmetric along one of the two diagonals
(1–3 or 2–4) and that is impossible as illustrated in fig. 6.8. Without any interaction
terms we would have to draw a Green’s function line from 1 to 3, which is not allowed
because in our convention an annihilation operator sits at both coordinates [see eq. (2.29)].
If we add an interaction term, that effectively splits the Green’s function line into an
interaction line and another Green’s function line. No matter at what angle or on what
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side we draw that this will never be symmetric along the 1–3 diagonal because they are
two different types of lines.

Objects like the two-particle Green’s function, full vertex, or irreducible pp vertex are
crossing symmetric because they consist of a sum of terms and this sum contains pairs of
diagrams that turn into each other under crossing exchange. The reason for the diagrams
to come in pairs and not in larger groups is that crossing is an involution, i.e., applying
it twice yields the identity. Probably the simplest example for such a pair of diagrams
are the disconnected parts of the two-particle Green’s function 𝐺2 shown in fig. 2.5.
Swapping 1 ↔ 3 or 2 ↔ 4 turns the first diagram into the second and vice versa. For a
general discussion let 𝛾1, 𝛾2 ∈ Γpp be a crossing-related pair of diagrams, i.e.,𝛾1 = 𝐶𝛾2 = 𝛾2𝐶𝛾2 = 𝐶𝛾1 = 𝛾1𝐶 (6.16)

where 𝐶 denotes the crossing operation. If two irreducible pp vertices are connected with
two particle lines both terms 𝛾1𝛾2 and 𝛾2𝛾1 appear. However, since crossing is its own
inverse we can write 𝛾1𝛾2 = 𝛾1𝐶𝐶𝛾2 = 𝛾2𝛾1. (6.17)

Therefore, we count all diagrams twice and need the factor of 1/2 in the Bethe–Salpeter
equation for the pp channel.

For the three-particle ladder the case is similar. The main difference is that we can
have diagrams from ph vertices in between the pp ones, so we need to consider that in
our argument. Let 𝑚 be a general combination of ph diagrams that can appear in the
ladder, i.e., 𝑚 ∈ (𝑀12 + 𝑀23)𝑛. Its crossing-related counterpart 𝑚̄ = 𝑃13𝑚𝑃13 is the
same diagram but with the 𝑀12 and 𝑀23 parts swapped [remember eq. (6.8)], so it is
also generated by the ladder. If we pick an arbitrary pair of crossing-related diagrams𝛾1, 𝛾2 ∈ 𝑀13, the ladder generates both 𝛾1𝑚𝛾2 and 𝛾2𝑚̄𝛾1. Using the same trick as
before we can write 𝛾1𝑚𝛾2 = 𝛾1𝑃13𝑃13𝑚𝑃13𝑃13𝛾2 = 𝛾2𝑚̄𝛾1, (6.18)

and show that we count all such diagrams twice. Therefore, we must add a factor of 1/2
in front of Γpp, as well.

With the last topological issue resolved we can finally work out the full equations for
the three-particle ladder and its components with all prefactors, indices, and arguments.
So far we always drew horizontal ladders in the 41 channel, so we choose the matching
frequency notation. Both the channel and its frequency notation are defined in table 4.2.
A diagrammatic representation with all spin and frequency indices is shown in fig. 6.9.
Ladders in different pph channels can easily be obtained by rotation or swapping of
external legs. An example of this is illustrated in fig. 6.10. Due to implementation
details the frequency notations for the irreducible two-particle vertices are not the ones
introduced in table 2.1 and fig. 2.4. Instead, all frequencies are shifted by 𝜔 as shown in
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6.2. Approximate three-particle ladder

Figure 6.9.: Frequency and spin notation for the three-particle ladder

Figure 6.10.: The pph ladder in the 25 channel, obtained by rotating the one in the 41
channel

Figure 6.11.: Frequency and spin notations for the two-particle vertices used in the three-
particle ladder
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Figure 6.12.: Diagrammatic representation of eqs. (6.19) to (6.21), the definitions of the
three components of 𝑀

fig. 6.11. We also denote frequency and spin indices on the right side of the diagrams as
subscripts to save horizontal space.

To connect the two-particle vertices in the ladder we need Green’s functions. We choose
to add two on the right of each vertex in the 𝑀’s and then three on the very left of
the entire ladder. This means that the ladder is not an approximation for a “naked”
three-particle vertex but has Green’s functions attached to every external point. This
is convenient since we need them anyway for computing the vertex contribution to
second-order response functions 𝜒(2)

vertex. Putting everything together yields𝑀12,𝝈𝝈′ 𝜈𝜔 ̄𝜈𝜈′𝜔′ ≔ 1𝛽𝛿𝜎3𝜎′3 𝛿𝜈𝜈′Γph,𝜎2𝜎1𝜎′2𝜎′1 (𝜔− ̄𝜈)(𝜈+ ̄𝜈)(𝜔′− ̄𝜈) 𝐺𝜔′− ̄𝜈𝐺𝜔′+𝜈′ , (6.19)𝑀23,𝝈𝝈′ 𝜈𝜔 ̄𝜈𝜈′𝜔′ ≔ 1𝛽𝛿𝜎1𝜎′1 𝛿𝜔𝜔′Γph,𝜎2𝜎3𝜎′2𝜎′3 𝜈𝜔𝜈′ 𝐺𝜈′𝐺𝜔′+𝜈′ , (6.20)𝑀13,𝝈𝝈′ 𝜈𝜔 ̄𝜈𝜈′𝜔′ ≔ 12𝛽𝛿𝜎2𝜎′2 𝛿𝜈+𝜔𝜈′+𝜔′Γpp,𝜎′1𝜎′3𝜎1𝜎3 𝜈(𝜔+𝜈− ̄𝜈)𝜈′ 𝐺𝜔′− ̄𝜈𝐺𝜈′ , (6.21)

for the components of 𝑀, where 𝝈 = (𝜎1, 𝜎2, 𝜎3) and similarly for 𝝈′. The factors 1/𝛽
ensure that 𝑀 is dimensionless, which is necessary because we sum over different powers
of them in the ladder. A diagrammatic representation of the 𝑀’s is shown in fig. 6.12.
The permutation matrix is simply given by a combination of Kronecker deltas𝑃 𝝈𝝈′ 𝜈𝜔 ̄𝜈𝜈′𝜔′ = 𝛿𝜎1𝜎′1 𝛿𝜎2𝜎′2 𝛿𝜎3𝜎′3 𝛿𝜔𝜔′𝛿𝜈𝜈′ − 𝛿𝜎1𝜎′3 𝛿𝜎2𝜎′2 𝛿𝜎3𝜎′1 𝛿𝜔− ̄𝜈𝜈′ 𝛿𝜈+𝜔𝜈′+𝜔′ . (6.22)
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Finally the full equation for the approximate three-particle ladder reads𝐿𝝈𝝈′ 𝜈𝜔 ̄𝜈𝜈′𝜔′ = −𝛽2𝐺𝜔− ̄𝜈𝐺𝜈+𝜔𝐺𝜈 ∑𝜎1,𝜈1,𝜔1( ∞∑𝑛=0(𝑀𝑛 − 𝑀𝑛12 − 𝑀𝑛23 − 𝑀𝑛13) + 2)𝝈𝝈1 𝜈𝜔 ̄𝜈𝜈1𝜔1𝑃 𝝈1𝝈′ 𝜈1𝜔1 ̄𝜈𝜈′𝜔′ ,
(6.23)

where the prefactor of 𝛽2 ensures a dimension of [𝜏 ]5, as it should be for a quantity
depending on five Matsubara frequencies. The addition of 2 is necessary because the sum
now starts at 𝑛 = 0 to turn it into a proper geometric series. The notation also shows
that the equation is diagonal in ̄𝜈 and the terms can be viewed as simple matrices when
condensing (𝝈, 𝜈, 𝜔) into a single compound index. This makes it easy to employ the
closed-form formula for the geometric series.

Substituting the 1PI vertex, Γ1, in eq. (6.4), with the approximate three-particle ladder,𝐿, turns out to yield even qualitatively bad results. The reason for that lies in the
crossing symmetries. As mentioned before, the approximate ladder only satisfies two
of the six crossing symmetries of the full three-particle vertex 𝐹3. The 1PR diagram(𝐹2𝐺𝐹2)𝑟 in eq. (6.4) is in the same channel 𝑟 as Γ1,𝑟 or in this case the ladder, and
therefore has the same problem. To solve this we compute the average of the approximate
ladder and the 1PR diagram (𝐹2𝐺𝐹2)𝑟 over all nine pph channels defined in table 4.2.
The full three-particle vertex (with legs) in this approximation is thus given by𝐺𝐺𝐺𝐹3𝐺𝐺𝐺 ≈ 19 ∑𝑟 𝐿𝑟 + 𝐺𝐺𝐺(𝐹2𝐺𝐹2)𝑟𝐺𝐺𝐺, (6.24)

where 𝑟 runs over the nine pph channels.

It is really important to average because summing would invoke overcounting. We can see
this when looking at the nine second-order diagrams of the two-particle vertex expansion
of 𝐺3 in fig. 4.14. It turns out that in every pph channel the ladder generates eight of
those nine diagrams and the 1PR diagram added separately is the ninth. This means
that a single channel already contains all diagrams up to second order in 𝐹2 and not
averaging would lead to overcounting them by a factor of nine.

Note that we do not need to come up with nine versions of eq. (6.23) to compute the
ladders in all pph channels. Instead, it is much easier to convert the ladder in the 41
channel to the other ones by rotation or swapping of legs as exemplified in fig. 6.10.

The last step in our computations is using the approximate three-particle vertex and
calculating its contribution to the second-order response function 𝜒(2)

vertex. Since our
approximation already comes attached with six Green’s functions, this is, at least in
theory, easily done by summing over the fermionic frequencies:𝜒𝜔𝜔′

vertex = ∑𝜈𝜈′ ̄𝜈(𝐺𝐺𝐺𝐹3𝐺𝐺𝐺)𝜈𝜔 ̄𝜈𝜈′𝜔′ . (6.25)

In numerical calculations these infinite sums are of course limited by the grid size. As
it turns out it is important how exactly the sums are implemented because some terms
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need to cancel. The reason for that is that the imaginary part of 𝜒vertex, ↑↑↑ and 𝜒vertex, ↑↑↓
must vanish. This can easily be shown when remembering that complex conjugation
inverts the order of spins and fermionic frequencies while also negating the latter [8]:3(𝐹 𝜈1…𝜈6123456)∗ = 𝐹 −𝜈6⋯−𝜈1654321 . (6.26)

If we now use, e.g., the first ph notation from table 4.1,𝜔𝑎 = 𝜈1 − 𝜈2,𝜔𝑏 = 𝜈3 − 𝜈4,𝜔𝑐 = 𝜈5 − 𝜈6, (6.27)

we see that the bosonic frequencies also change their order but keep their signs after
complex conjugation: 𝜔𝑎 → −𝜈6 + 𝜈5 = 𝜔𝑐,𝜔𝑏 → −𝜈4 + 𝜈3 = 𝜔𝑏,𝜔𝑐 → −𝜈2 + 𝜈1 = 𝜔𝑎. (6.28)

For the second-order response functions we therefore have(𝜒𝜔𝑎𝜔𝑏𝜔𝑐
vertex, 123456)∗ = 𝜒𝜔𝑐𝜔𝑏𝜔𝑎

vertex, 654321. (6.29)

Using the swapping symmetries introduced in eqs. (4.11) to (4.13) we see that the ↑↑↑
and ↑↑↓ components of 𝜒(2)

vertex are indeed purely real:(𝜒𝜔𝑎𝜔𝑏𝜔𝑐
vertex, ↑↑↑)∗ = 𝜒𝜔𝑐𝜔𝑏𝜔𝑎

vertex, ↑↑↑ = 𝜒𝜔𝑎𝜔𝑏𝜔𝑐
vertex, ↑↑↑, (6.30)(𝜒𝜔𝑎𝜔𝑏𝜔𝑐

vertex, ↑↑↓)∗ = 𝜒𝜔𝑐𝜔𝑏𝜔𝑎
vertex, ↓↑↑ = 𝜒𝜔𝑎𝜔𝑏𝜔𝑐

vertex, ↑↑↓. (6.31)

The problem for the approximate ladder is that it does not have those swapping sym-
metries.4 Fortunately, they are not required, if we do the complex conjugation of the
ladder properly and choose the right ph notation. To show what we mean with the first
part, let us do an explicit complex conjugation for a term that appears in the ladder. A
simple example is(Γ𝜈1𝜈2𝜈3𝜈 𝐺𝜈 Γ𝜈𝜈6𝜈5𝜈4)∗ = Γ𝜈−𝜈3−𝜈2−𝜈1 𝐺−𝜈 Γ−𝜈4−𝜈5−𝜈6−𝜈. (6.32)

The corresponding Feynman diagrams are found in fig. 6.13 and show that the positions
of the vertices and frequencies get mirrored along the vertical axis with the frequencies
also being negated. This holds in general for all ladder terms as can be seen when

3The cited reference only shows that 𝐺3 behaves like that under complex conjugation. With a
straightforward although tedious calculation one can show, however, that the six, fully disconnected
parts of 𝐺3 and the nine partially connected parts follow the same equations. Therefore, the full
vertex 𝐹3 must follow them as well.

4The swapping symmetries are just a combination of two crossing symmetries, and we already pointed
out that the ladder is missing most of the latter.
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6.2. Approximate three-particle ladder

Figure 6.13.: Diagrammatic representation of eq. (6.32). The complex conjugation mirrors
the positions of the vertices and frequencies along the vertical axis. The
frequencies are also negated.

computing a few more simple diagrams and then using induction. Since the ladder
generates all possible arrangements of two-particle vertices it also contains all mirrored
terms. Therefore, the correct way to complex conjugate a ladder is(𝐿𝜈1…𝜈6123456)∗ = 𝐿−𝜈4−𝜈3−𝜈2−𝜈1−𝜈6−𝜈5432165 . (6.33)

This does not contradict eq. (6.26) since the full three-particle vertex has all crossing
and swapping symmetries, and we can write(𝐹 𝜈1…𝜈6123456)∗ = 𝐹 −𝜈6⋯−𝜈1654321 = 𝐹 −𝜈4−𝜈3−𝜈2−𝜈1−𝜈6−𝜈5432165 . (6.34)

To ensure that the ↑↑↑ and ↑↑↓ components of 𝜒(2)
vertex are real, we have to find a ph

notation where the imaginary parts of the ladder cancel when summing over the fermionic
frequencies. This means that the complex conjugate of a frequency component of 𝐿 must
map to the same bosonic frequencies. The ph𝑎 notation from table 4.1 achieves exactly
that: 𝜔𝑎 = 𝜈1 − 𝜈4 → −𝜈4 + 𝜈1 = 𝜔𝑎,𝜔′𝑏 = 𝜈3 − 𝜈2 → −𝜈2 + 𝜈3 = 𝜔′𝑏,𝜔𝑐 = 𝜈5 − 𝜈6 → −𝜈6 + 𝜈5 = 𝜔𝑐, (6.35)

and therefore (𝐿𝜈𝑎𝜔𝑎𝜈𝑏𝜔′𝑏𝜈𝑐123456 )∗ = 𝐿−𝜈𝑎𝜔𝑎−𝜈𝑏𝜔′𝑏−𝜈𝑐432165 . (6.36)

In the numerical implementation we only have to make sure that we sum over a symmetric
interval of fermionic frequencies to ensure the cancellation.

So far we only considered the approximate three-particle ladder in the 41 channel.
However, in eq. (6.24) we average over ladders in all nine pph channels. Fortunately,
this does not cause additional issues with the cancellation of imaginary parts: When
converting the ladder in the 41 channel to some other channel we have to swap one or
two pairs of legs. Channels 23 and 65 are the ones requiring two pairs. Their Feynman
diagrams turn out to be symmetric along the vertical axis, so the same considerations as
for the 41 channel hold, and the imaginary parts cancel. The remaining six channels are
not symmetric on their own, but they form mirror pairs: 25 and 63, 45 and 61, as well
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6. Three-particle ladder

as 21 and 43. When summing over those pairs they cancel each other’s imaginary parts
for the ↑↑↑ and ↑↑↓ component as well.

Putting everything together we end up with the following approximation for the vertex
contribution to the second-order response function:𝜒𝜔𝑎𝜔′𝑏

vertex ≈ ∑𝜈𝑎𝜈𝑏𝜈𝑐
19 ∑𝑟 𝐿𝜈𝑎𝜔𝑎𝜈𝑏𝜔′𝑏𝜈𝑐𝑟 + (𝐺𝐺𝐺(𝐹2𝐺𝐹2)𝑟𝐺𝐺𝐺)𝜈𝑎𝜔𝑎𝜈𝑏𝜔′𝑏𝜈𝑐 , (6.37)

where the ladder 𝐿 and the 1PR diagram 𝐹2𝐺𝐹2 are in ph𝑎 notation, and 𝑟 runs over
the nine pph channels.

6.3. Numerical results

All numerical results presented in this section are computed for a single-band, square
lattice Hubbard model (HM) with nearest neighbor hopping 𝑡 = 1, total density 𝑛 = 1.1,
inverse temperature 𝛽 = 10, and local Coulomb interaction 𝑈 ∈ {0.5, 1, 2, 3, 4}. The
dynamical mean-field theory (DMFT) solution is obtained with w2dynamcis [82], a
continuous-time quantum Monte Carlo (QMC) solver, which also allows calculating
the local two-particle Green’s function and then, by employing the parquet and Bethe–
Salpeter equations, all local two-particle vertices. The hybridization expansion used by
w2dynamcis is, however, not well suited in the limit of small 𝑈 since the hybridization
becomes relatively large compared to the interaction. This means that while the one-
particle Green’s function can still be obtained with high enough accuracy and precision,
the irreducible vertices are too noisy to be used in the three-particle ladder. Therefore, we
employ different methods for computing Γ. For the smallest interactions, 𝑈 ∈ {0.5, 1, 2},
we use a parquet solver [87, 88] to compute the irreducible vertices in the parquet
approximation Λ ≈ 𝑈, which yields noise free results.5 For 𝑈 ∈ {3, 4} we use the same
parquet solver, but take the fully irreducible vertex Λ from the QMC calculation as
a starting point because it turns out that the resulting Γ has less noise than the Γ
computed directly from the QMC results.

6.3.1. Eigenvalues of 𝑀’s

Before we compute any three-particle ladders we need to make sure that the geometric
series in eq. (6.23) actually converges. To this end we compute the eigenvalues of the𝑀’s (i.e, 𝑀, 𝑀12, 𝑀23, and 𝑀13) and check if their absolute values are less than one.
More precisely, when looking at eqs. (6.19) to (6.21) (the definitions of the 𝑀’s) we
condense (𝜈, 𝜔, 𝜎) and (𝜈′, 𝜔′, 𝜎′) into two compound indices. For every ̄𝜈 we then have

5If the exact fully irreducible vertex Λ is known, the irreducible vertices Γ obtained with the parquet
solver are also exact.
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Figure 6.14.: Largest absolute eigenvalues of 𝑀’s plotted over 𝑈.

a square matrix for which the eigenvalues are calculated. Since the 𝑀 matrices are large
(≈ 30 000 × 30 000) and sparse we use an iterative sparse solver.

The absolute largest eigenvalues 𝜆 over all values of ̄𝜈 are shown in fig. 6.14 for different
interaction strengths 𝑈. We see that the eigenvalues of 𝑀 are larger than those of its
components, and the difference grows with 𝑈. At 𝑈 = 3 the magnitude of the largest
eigenvalue of 𝑀 is just below one, so the ladder converges only up to about this point.
Despite that we do not expect the ladder to blow up numerically because we compute
the ladder using the closed-form solution for the geometric series, 1/(1 − 𝑞), and the
eigenvalues are close to −1 and not +1. We also see that 𝑀12 and 𝑀23 yield identical
results which is not surprising since they both contain Γph and are mirror versions of each
other. Furthermore, 𝑀13 and therefore Γpp seem to give the dominant contribution to the
largest eigenvalue of 𝑀 and therefore the three-particle ladder as a whole. The last thing
to mention is that only 𝑀 seems to have eigenvalues with an imaginary part. However,
when looking at more than just the largest eigenvalue we find that the components of 𝑀,
especially 𝑀13, have eigenvalues with similar imaginary parts as well (not shown), so
this is actually not an exceptional result.
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6. Three-particle ladder

Table 6.1.: Static values (𝜔1 = 𝜔2 = 0) of 𝜒(2)
vertex cut off from the color bars of fig. 6.15𝜒(2) 00

vertex, ↑↑↑ 𝜒(2) 00
vertex, ↑↑↓

U ED ladder ED ladder0.5 5.6 × 10−5 1.5 × 10−5 −6.3 × 10−4 −3.4 × 10−41.0 4.0 × 10−4 4.8 × 10−5 −2.3 × 10−3 −1.1 × 10−32.0 2.4 × 10−3 −9.1 × 10−4 −7.1 × 10−3 −2.2 × 10−33.0 5.5 × 10−3 −8.9 × 10−3 −1.2 × 10−2 9.5 × 10−44.0 7.5 × 10−3 −1.5 × 10−2 −1.6 × 10−2 5.7 × 10−3
6.3.2. 𝜒(2)

vertex: exact diagonalization vs approximate ladder

All ED calculations in this section are performed with six bath sites, obtained from
the DMFT solution via pole fitting [89]. The three-particle vertex contributions to the
second-order response functions are computed similarly as in chapter 5: First one-, two-,
and three-particle correlators are computed with an ED code [90]. Then the disconnected
parts are subtracted to obtain the full second-order response functions 𝜒(2). Next the
bubble terms 𝜒(2)0 and first-order terms 𝜒(2)1 are computed from one- and two-particle
quantities (see fig. 4.5). Finally, 𝜒(2)0 and 𝜒(2)1 are subtracted from the full second-order
response function yielding the vertex term 𝜒(2)

vertex. The difference to chapter 5 is that
instead of the “physical” response functions 𝜒𝑛𝑛𝑛, 𝜒𝑛𝑧𝑧, and 𝜒𝑥𝑦𝑧 we compute and
compare the three spin components 𝜒↑↑↑, 𝜒↑↑↓, and 𝜒↑↑↓. The reason for that is that these
spin components are what we can actually compute directly from the approximate ladder.
As shown in appendix A.1 the physical response functions are a linear combination of
the spin components, and we do not want that linear combination to hide or disguise
potential differences between the ED results and the ladder.

As explained at the end of section 6.2, the contribution to 𝜒(2)
vertex from the approximate

ladder is computed in ph𝑎 notation. However, for better consistency and comparability
all results shown in this section use the same frequency notation as in chapter 5 (see
fig. 5.1).

Figure 6.15 compares the ED and ladder results of spin components ↑↑↑ and ↑↑↓ of𝜒(2) 𝜔1𝜔2
vertex for different values of the on-site Coulomb interaction 𝑈. We only plot the real

parts since, as expected from the discussion at the end of section 6.2, the imaginary
parts are at least seven orders of magnitude smaller than the real parts and therefore
practically zero. The static values of the second-order response functions, i.e. those at𝜔1 = 𝜔2 = 0, are much larger (by magnitude) than the other frequency components and
would dominate the plot. Therefore, they are cut off from the color bars and instead
shown in table 6.1.
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Figure 6.15.: Comparison of spin component ↑↑↑ and ↑↑↓ of 𝜒(2) 𝜔1𝜔2
vertex between ED and the

approximate ladder for different values of the interaction 𝑈. The labels 𝑚𝑖
are the indices of the bosonic frequencies 𝜔𝑖 = 2𝜋𝑚𝑖/𝛽. The static values
(𝜔1 = 𝜔2 = 0) are much larger than the other frequency components, so
they are cut off from the color bars and instead shown in table 6.1.
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Table 6.2.: Static values (𝜔1 = 𝜔2 = 0) of 𝜒(2)𝐿, 𝑟, ↑↑↑ cut off from the color bars of fig. 6.17𝜒00𝐿,𝑟,↑↑↑𝑈 𝑟 = 41 𝑟 = 23 𝑟 = 65 𝑟 = 25 𝑟 = 45 𝑟 = 211.0 −3.3 × 10−4 −3.3 × 10−4 −3.3 × 10−4 2.6 × 10−4 2.6 × 10−4 2.6 × 10−42.0 −4.4 × 10−3 −4.4 × 10−3 −4.4 × 10−3 1.2 × 10−3 1.2 × 10−3 1.2 × 10−3
The first thing we see when looking at fig. 6.15 is that the approximate ladder yields
qualitatively good results only for small values of the interaction. For the ↑↑↑ component
this is until 𝑈 = 1; for the ↑↑↓ component it is until 𝑈 = 3. Even then, however, the
results are off by a factor of two to ten, so quantitatively the approximate ladder is rather
bad.

Figure 6.16 compares the real and imaginary parts of the ED and ladder results of spin
component ↑ ↑↓ of 𝜒(2) 𝜔1𝜔2

vertex for different values of the interaction 𝑈. Similar to spin
component ↑↑↑ the approximate ladder only yields qualitatively good results until 𝑈 = 1
– at least for the real parts. The imaginary parts look fine for all values of 𝑈. However,
looking at the color bars reveals that quantitatively the ladder results for spin component↑ ↑↓ are just as bad as those for the others.

The fact that for all spin components, the qualitatively good-looking results are consis-
tently too small is no surprise. After all, we average over all nine pph channels instead
of summing. Of course, as we have shown at the end of section 6.2, summing would
overcount diagrams with few vertices, but we conjecture that ladder terms of high enough
order, i.e., number of vertices, are exclusive to a channel. Averaging therefore cuts down
higher order contributions by a factor of nine.

6.3.3. The approximate ladder in different channels

In this section we take a closer look at the contributions of the different pph channels 𝑟
to the second-order response function computed only from the approximate ladder 𝐿,
i.e., 𝜒𝜔1𝜔2𝐿,𝑟 = ∑𝜈1𝜈2𝜈3 𝐿𝜈1𝜔1𝜈2𝜔2𝜈3𝑟 . (6.38)

We already pointed out at the end of section 6.2 that six of the nine channels form mirror
pairs. These pairs have the same real part but opposing imaginary parts, which all cancel
eventually. Therefore, only six channels are of interest. Figure 6.17 compares the spin
component ↑↑↑ of the real parts of 𝜒𝜔1𝜔2𝐿,𝑟 in six such channels at interaction strengths𝑈 = 1 and 𝑈 = 2. As in fig. 6.15 the static frequency components (𝜔1 = 𝜔2 = 0) would
dominate the plot and are therefore cut off and presented separately in table 6.2.
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Figure 6.16.: Comparison of the real and imaginary parts of spin component ↑ ↑↓ of𝜒(2) 𝜔1𝜔2
vertex between ED and the approximate ladder for different values of the

on-site Coulomb interaction 𝑈. The axis labels 𝑚𝑖 are the indices of the
bosonic frequencies 𝜔𝑖 = 2𝜋𝑚𝑖/𝛽.
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Figure 6.17.: Comparison of the contributions of the approximate ladder 𝐿 in six pph
channels 𝑟 ∈ {41, 23, 65, 25, 45, 21} to the ↑↑↑ component of the second-
order response function 𝜒(2) 𝜔1𝜔2𝐿,𝑟 for Coulomb interactions 𝑈 = {1, 2}. The
labels 𝑚𝑖 are the indices of the bosonic frequencies 𝜔𝑖 = 2𝜋𝑚𝑖/𝛽. As in
fig. 6.15, the static components (𝜔1 = 𝜔2 = 0) are cut off and shown in
table 6.2 instead.
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When looking at fig. 6.17 we see that all results share two features: First, the main
contributions are around the center; second, one of the three lines 𝜔𝑖 = 0, 𝑖 ∈ {1, 2, 3},
is more pronounced than the others. The latter is not surprising, since the Feynman
diagrams for a single ladder have a distinguished direction. This also highlights once
more why averaging over the approximate ladders in all channels is important if we want
the get the right structure of the three-particle vertex.

We also see that the contributions from the upper and lower three channels in fig. 6.17
have opposite signs. For 𝑈 = 1 they even have a very similar magnitude. However, since
for each of the lower three channels there is a second one with the same real part, those
contributions outweigh the upper three channels. The final result for 𝜒(2)

vertex, ↑↑↑ at 𝑈 = 1
shown in fig. 6.15 has therefore positive values around the center.

When comparing the results between 𝑈 = 1 and 𝑈 = 2 in fig. 6.17 we notice that while
the plots still look qualitatively similar, the balance in magnitude shifts. The static
frequency components in table 6.2 show this best. While the values for the first three
channels rise by a factor of more than ten, those of the last three channels only rise by a
factor of less than five. In absolute terms, the channels 41, 23, and 65 now outweigh the
other channels by a factor of more than three. Therefore, the sign of the total result for𝜒(2)

vertex, ↑↑↑ shown in fig. 6.15 changes at 𝑈 = 2.

6.4. Conclusion and outlook

We have generalized the Bethe–Salpeter equations from two to three particles. However,
due to the increased complexity of three-particle diagrams when it comes to the property
of reducibility, the resulting equations are much more involved than on the two-particle
level. Also, the building blocks of the exact three-particle ladder are more complicated,
and we do not yet have a feasible way of computing them. For this reason we have derived
an approximate ladder, built simply from irreducible two-particle vertices Γ and full
Green’s functions. Admittedly, even this approximation turned out to be more complex
than initially expected, but it finally yields a viable way for (approximately) computing
the full three-particle vertex 𝐹3.

The numerical computations show that the approximate ladder only yields qualitatively
good results for very small values of the local Coulomb interaction 𝑈 – at least at the
investigated parameters. There might be parameter regimes where the approximation is
generally better, or where we do not have to average over ladders in all nine channels
because the physics happens predominantly in one “direction”. One could in general look
more closely at the averaging over the pph channels. Maybe there is a better way to avoid
the overcounting issues that arise from the summation. As mentioned in section 6.3.2
overcounting might only be a problem up to a certain order, i.e., number of two-particle
vertices in the ladder term.
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In the end, computing three-particle vertices is still in its very early stages of development.
So while the current results fall short of expectations, they are still useful and a good
first step that can be built upon.
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7. Statistical error estimation with jackknife

Parts of this chapter marked with a vertical bar have
already been published in Kappl et al. [91]. Minor
modifications of the notation were made to better
match the rest of the thesis.

We employ the jackknife algorithm to analyze the propagation of the statistical
quantum Monte Carlo (QMC) error through the Bethe–Salpeter equation. This allows
us to estimate the error of dynamical mean-field theory (DMFT) calculations of
the susceptibility and of dynamical vertex approximation (DΓA) calculations of the
self-energy. We find that the different frequency components of the susceptibility
are uncorrelated, whereas those of the self-energy are correlated. For improving the
quality of the correlation matrix taking sufficiently many jackknife bins is key, while for
reducing the standard error of the mean sufficiently many Monte Carlo measurements
are necessary. We furthermore show that even in the case of the self-energy, the finite
covariance does not have a sizable influence on the analytic continuation.

7.1. Introduction
Developing reliable theories for strong electronic correlation has proved a Herculean
task. Three decades after its invention[35, 56, 92], DMFT has become state-of-the-art to
calculate strongly correlated models[37] and materials[34, 39, 93–95]. Notwithstanding,
one of the core scientific tasks, namely providing a proper error estimate for such
calculations, is still in its infancy. Error estimates which directly follow from the QMC
simulation of the (self-consistently determined) DMFT impurity problem, e.g. for the
magnetization or compressibility, have been provided already from the beginning of
DMFT, see, e.g., refs. [56, 96, 97]. But as the focus of such calculations is nowadays
more on the one-particle spectral function or two-particle susceptibility, error estimates
are by and large missing.

This is because such an error estimate is nontrivial. First, calculating the spectrum or
susceptibility requires complex, nonlinear post-processing routines such as a maximum
entropy analytic continuation or the Bethe–Salpeter equation, respectively. Besides
proper error propagation through these post-processing procedures, there is, secondly,
the iteration error, i.e., the difference between the numerical solution and the exact
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(true) DMFT fixed point. Third, DMFT is an approximation to the correlation
problem itself, introducing a systematic error for finite dimensional systems.

The latter, i.e., the error of DMFT as an approximation, can be systematically improved
upon by either cluster[98] or diagrammatic extensions[18]. Cluster extensions replace
the single impurity site with a small cluster, thus interpolating between DMFT and
the full lattice problem. Given proper finite size scaling, enlarging the cluster then
yields an error estimate. The huge numerical effort essentially restricts such cluster
extensions however to small clusters on one- and two-dimensional lattices.

Diagrammatic extensions, on the other hand, augment DMFT with a specific set of
nonlocal Feynman diagrams. The DΓA [47, 53], a prominent diagrammatic exten-
sion, generalizes the concept of a local one-particle vertex (self-energy) in DMFT
systematically to the two-, three-, 𝑛-particle vertex. For 𝑛 → ∞ one recovers the full
problem. The corrections on the two-particle vertex level provide an error estimate for
the DMFT approximation, and similarly those of the three-particle level as an error
estimate for the DΓA results on the two-particle vertex level. One can proceed in a
similar fashion of approximating the error[3] in the dual Fermion approach[51]. Since
both the size of the vertices and the effort of the associated diagrammatic equations
grow strongly in 𝑛, one is restricted to small 𝑛.

In this paper, we focus on the error propagation through the post-processing procedure,
specifically, the Bethe–Salpeter equation. This does not only involve the DMFT
calculation of the susceptibility but also the DΓA calculation of the self-energy which
employs the same Bethe–Salpeter equation, and on top of that the Schwinger–Dyson
equation. Input for both equations is the local two-particle Green’s function and the
properly converged DMFT one-particle Green’s function. For multi-orbital systems or
at low temperatures the two-particle Green’s function is only accessible using QMC
techniques, but requires quite some effort to calculate and hence has a substantial
statistical QMC error. We employ the jackknife method [99, 100] to analyze the
propagation of the QMC error through the Bethe–Salpeter equation and to estimate
the error of the final DMFT susceptibility and DΓA self-energy. Finally, we perform
maximum entropy analytic continuations of the DΓA self-energy, using the jackknife
estimates for error and covariance.

The remainder of the paper is organized as follows: section 7.2 describes the methods
employed: DMFT, continuous-time quantum Monte Carlo, AbinitioDΓA, and jackknife
resampling. The input to our calculations, the two-particle Green’s function, is analyzed
in section 7.3. The main results for the DΓA self-energy and the DMFT susceptibilities
are presented in sections 7.4 and 7.5 respectively, while an analytical continuation of
the DΓA self-energy is done in section 7.6. A discussion and conclusion can be found
in section 7.7.

7.2. Methods
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In the following, we briefly recapitulate the essential steps for calculating the DMFT
susceptibility and DΓA self-energy, starting from the QMC calculation of the one- and
two-particle Green’s function. We restrict ourselves to the essential equations without
discussing technical details such as reformulations of the equations or numerical
efficiency. For these details we refer the reader to ref. [82] as regards the QMC
calculation with the w2dynamics package [82] and to ref. [101] for a general review,
to refs. [19, 102] as regards the calculation of the DMFT susceptibility and DΓA
self-energy with the ab initio dynamical vertex approximation (ADGA) package, and
to ref. [18] for a review. Further, we discuss the essential idea of the jackknife algorithm,
again referring the reader to the review ref. [100] for a more detailed presentation.

7.2.1. Dynamical mean-field theory
In DMFT, we map the lattice model𝐻lattice = 𝑈 ∑𝑖 ̂𝑐†𝑖↑ ̂𝑐†𝑖↓ ̂𝑐𝑖↓ ̂𝑐𝑖↑ + ∑𝜎,𝑖,𝑗 𝑡𝑖𝑗 ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎, (7.1)

where ̂𝑐𝑖𝜎 annihilates a fermion of spin 𝜎 on site 𝑖, 𝑈 is the on-site interaction, and 𝑡𝑖𝑗
is the hopping matrix, onto an Anderson impurity model (AIM)[56, 92]:𝐻AIM = 𝑈 ̂𝑐†↑ ̂𝑐†↓ ̂𝑐↓ ̂𝑐↑ + ∑𝜎 ̃𝜖𝜎 ̂𝑐†𝜎 ̂𝑐𝜎 + ∑𝜎,𝑝 (𝑉𝑝 ̂𝑐†𝜎 ̂𝑓𝜎𝑝 + 𝑉 ∗𝑝 ̂𝑓†𝜎𝑝 ̂𝑐𝜎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝐻hyb

+ ∑𝑝 𝜖𝑝 ̂𝑓†𝜎𝑝 ̂𝑓𝜎𝑝. (7.2)

Here 𝑈 is the impurity interaction which is the same as that of the original lattice
problem; 𝑉𝑝 denotes the hybridization between the impurity (denoted by ̂𝑐†𝜎 and ̂𝑐𝜎
creation and annihilation operators for spin 𝜎 ∈ {↑, ↓}) and bath site 𝑝 (denoted by
corresponding ̂𝑓†𝜎𝑝 and ̂𝑓𝜎𝑝 operators) at energy 𝜖𝑝. In essence, DMFT determines
an AIM that gives the same local one-particle physics as the lattice model where
the corresponding parameters 𝑉𝑝 and 𝜖𝑝 (or the hybridization function Δ) have to
be determined self-consistently[56, 92]. In what follows we assume that this DMFT
self-consistency has been achieved to high accuracy. For the sake of simplicity, we
have restricted the equations to the one-orbital problem, but the generalization to
multi-orbital models is straightforward.

7.2.2. Continuous-time quantum Monte Carlo
In order to obtain the one- and two-particle Green’s function for the AIM (7.2), we use
continuous-time quantum Monte Carlo in the hybridization expansion (CT-HYB)[46,
101] with worm sampling[103] as implemented in the w2dynamics package[82, 104].
CT-HYB with worm sampling proceeds in a three-step fashion: First, one splits the
Hamiltonian 𝐻 into an interacting part, taken to be 𝐻𝐼 = 𝐻hyb, and the rest, 𝐻0.
Second, one expands both the partition function and the expectation value of some
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observable (“worm” 𝒲) into a Dyson series with respect to 𝐻𝐼 and uses Wick’s theorem
to group diagrams into determinants. For the partition functions, this yields:𝒵 = ∞∑𝑛=0 (−1)𝑛𝑛! ∑𝜎1,𝜎′1 ⋯ ∑𝜎𝑛,𝜎′𝑛 ∫𝛽0 d𝑛𝜏 d𝑛𝜏 ′ Tr[T e−𝛽𝐻loc

𝑛∏𝑖=1 ̂𝑐†𝜎𝑖(𝜏𝑖) ̂𝑐𝜎′𝑖(𝜏 ′𝑖 )] det Δ, (7.3)

where T denotes time ordering. The elements of the hybridization matrix Δ are given
by Δ𝑖𝑗 = Δ𝜎𝑖𝜎′𝑗(𝜏𝑖 − 𝜏 ′𝑗) with the hybridization function Δ𝜎𝜎′(𝜏) = 𝛿𝜎𝜎′ ∑𝑝 𝑉𝑝(𝜕𝜏 −𝜖𝑝)−1𝑉 ∗𝑝 .

Similarly, we write down the hybridization expansion for the worm operator 𝒲({ ̃𝜏}). It
can consist of several creation and annihilation operators with various number of time
arguments. Most important examples are the one- and two-particle Green’s function,
where 𝒲({ ̃𝜏}) stands for T ̂𝑐𝜎(𝜏) ̂𝑐†𝜎(𝜏 ′) and T ̂𝑐𝜎(𝜏1) ̂𝑐†𝜎(𝜏2) ̂𝑐𝜎(𝜏3) ̂𝑐†𝜎(𝜏4), respectively.
Other worm operators have been introduced in refs. [77, 79, 105]. For the sampling
space of 𝒲({ ̃𝜏}), we thus get:𝒵𝒲 = ∞∑𝑛=0 (−1)𝑛𝑛! ∑𝜎1,𝜎′1 ⋯ ∑𝜎𝑛,𝜎′𝑛 ∫𝛽0 d𝑛𝜏 d𝑛𝜏 ′ d{ ̃𝜏}

× Tr[T e−𝛽𝐻loc𝒲({ ̃𝜏}) 𝑛∏𝑖=1 ̂𝑐†𝜎𝑖(𝜏𝑖) ̂𝑐𝜎′𝑖(𝜏 ′𝑖 )] det 𝚫. (7.4)

Third, we combine both sampling spaces by taking the abstract sum 𝒵 + 𝜂𝒵𝒲, where𝜂 is a balancing parameter. The resulting space is sampled using Markov chain Monte
Carlo.

An estimator for the worm operator 𝒲({ ̃𝜏}) is then simply given by:⟨𝒲({ ̃𝜏})⟩ = 𝒵𝒲𝒵 ⟨𝜎({ ̃𝜏})⟩ , (7.5)

where 𝜎({𝜏𝑖}) is the indicator function of a configuration in 𝒵𝒲 with the matching
times, 𝒵𝒲/𝒵 is the ratio of volumes between the two spaces. Let us note that in the case
of the one- or two-particle Green’s function one worm measurement is computationally
cheaper than one measurement of the removal estimator in 𝑍-sampling, but it also
yields less information.

7.2.3. DMFT susceptibility

94



7.2. Methods

In the following, we will make the transition from imaginary time to Matsubara
frequencies, where the one-particle Green’s function is𝐺𝜈𝜎 = ∫𝛽0 d𝜏 ei𝜈(𝜏)⟨T ̂𝑐𝜎(𝜏) ̂𝑐†𝜎(0)⟩ (7.6)

and the two-particle Green’s function is𝐺𝜈𝜈′𝜔2,𝜎𝜎′ = 1𝛽 ∫𝛽0 d𝜏1 d𝜏2 d𝜏3 ei[𝜈𝜏1−(𝜈+𝜔)𝜏2+(𝜈′+𝜔)𝜏3]⟨T ̂𝑐𝜎(𝜏1) ̂𝑐†𝜎(𝜏2) ̂𝑐𝜎′(𝜏3) ̂𝑐†𝜎′(0)⟩. (7.7)

Note that here and in the following we use the notation of the w2dynamics code [82]
which has the extra 1/𝛽 factor in the definition of the two-particle Green’s function (7.7)
compared to ref. [18]. From these Green’s functions, we can calculate the generalized
local susceptibility 𝜒𝜈𝜈′𝜔𝜎𝜎′ = 𝛽𝐺𝜈𝜈′𝜔2,𝜎𝜎′ − 𝛽𝐺𝜈𝐺𝜈′𝛿𝜔0. (7.8)

Diagrammatically, the above equation means that we remove one disconnected contri-
bution from 𝐺2. In the presence of SU(2) symmetry, i.e., in the paramagnetic phase,
one can further restrict oneself to the following two spin combinations, also referred to
as density (𝑑) and magnetic (𝑚) channel.𝜒𝜈𝜈′𝜔𝑑/𝑚, = 𝜒𝜈𝜈′𝜔↑↑ ± 𝜒𝜈𝜈′𝜔↑↓ . (7.9)

From the local susceptibility 𝜒𝜈𝜈′𝜔𝑟 with 𝑟 ∈ {𝑑, 𝑚} and the local bare bubble suscepti-
bility 𝜒𝜈𝜈′𝜔0 = −𝛽𝐺𝜈𝐺(𝜈+𝜔)𝛿𝜈𝜈′ , we can determine the local irreducible vertex through
an inversion of the local Bethe–Salpeter equationΓ𝑟 = 𝜒−1𝑟 − 𝜒−10 . (7.10)

This equation is diagonal with respect to each bosonic frequency 𝜔 while the inversion
itself is performed in the implicit matrix notation 𝜈 and 𝜈′. From Γ and the local
particle-hole bubble 𝜒𝜈𝜈′𝜔0,𝐤𝐤′𝐪 = −𝛽𝐺𝐤𝜈𝐺(𝐤+𝐪)(𝜈+𝜔)𝛿𝜈𝜈′𝛿𝐤𝐤′ the lattice Bethe–Salpeter
equation now allows us to calculate the generalized DMFT lattice susceptibility𝜒𝜈𝜈′𝜔𝑟,𝐤𝐤′𝐪 = 𝜒𝜈𝜈′𝜔0,𝐤𝐤′𝐪 − ∑𝜈1𝜈2𝐤𝟏𝐤𝟐

𝜒𝜈𝜈1𝜔0,𝐤𝐤𝟏𝐪Γ𝜈1𝜈2𝜔𝑟 𝜒𝜈2𝜈′𝜔𝑟,𝐤𝟐𝐤′𝐪. (7.11)

Here and in the following, we distinguish lattice and local quantities through the
additional momentum indices 𝐤, 𝐤′, 𝐪; and implicitly assume a factor 1/𝛽 for each
Matsubara frequency sum, as in ref. [18]. That is, ∑𝜈1 actually means 1𝛽 ∑𝜈1 . From these,

physical susceptibilities at frequency 𝜔 and momentum 𝐪 can be calculated through
summing over 𝜈, 𝜈′, 𝐤, 𝐤′.
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7.2.4. AbinitioD𝚪A self-energy
Similar to eq. (7.11), we can also calculate the full vertex 𝐹 through the Bethe–Salpeter
equation 𝐹 𝜈𝜈′𝜔𝑟,𝐤𝐤′𝐪 = Γ𝜈𝜈′𝜔𝑟 + ∑𝜈1𝜈2𝐤𝟏𝐤𝟐

Γ𝜈𝜈1𝜔𝑟 𝜒𝜈1𝜈2𝜔0,𝐤𝟏𝐤𝟐𝐪𝐹 𝜈2𝜈′𝜔𝑟,𝐤𝟐𝐤′𝐪. (7.12)

However, in the ladder approximation the resulting 𝐹 from Equation (7.12) simplifies
further and does not have an explicit dependence on 𝐤 and 𝐤′:𝐹 𝜈𝜈′𝜔𝑟,𝐪 = Γ𝜈𝜈′𝜔𝑟 + ∑𝜈1𝜈2 Γ𝜈𝜈1𝜔𝑟 𝜒𝜈1𝜈2𝜔0,𝐪 𝐹 𝜈2𝜈′𝜔𝑟,𝐪 . (7.13)

Here we defined 𝜒𝜈𝜈′𝜔0,𝐪 = ∑𝐤,𝐤′ 𝜒𝜈𝜈′𝜔0,𝐤𝐤′𝐪. Please note that the generated nonlocal full
vertices 𝐹 in Equation (7.13) are no longer crossing symmetric. By taking into account
the corresponding diagrams in the transversal particle–hole channel we get for the
density component𝐹 𝜈𝜈′𝜔𝑑,𝐤𝐤′𝐪 = 𝐹 𝜈𝜈′𝜔𝑑,𝐪 + 12𝐹 nl (𝜈′−𝜈)(𝜈′−𝜔)𝜈′𝑑,𝐤′−𝐤 + 32𝐹 nl (𝜈′−𝜈)(𝜈′−𝜔)𝜈′𝑚,𝐤′−𝐤 (7.14)

where we defined 𝐹 nl 𝜈𝜈′𝜔𝑟,𝐪 = 𝐹 𝜈𝜈′𝜔𝑟,𝐪 − 𝐹 𝜈𝜈′𝜔𝑟 . From this vertex we can calculate the
DΓA self-energyΣ𝐤𝜈 = 𝑈𝑛2 − 𝑈 ∑𝜈′𝜔𝐤′𝐪 𝐹 𝜈𝜈′𝜔𝑑,𝐤𝐤′𝐪𝐺𝐤′𝜈′𝐺(𝐤′+𝐪)(𝜈′+𝜔)𝐺(𝐤+𝐪)(𝜈+𝜔), (7.15)

where 𝑛 is the electron density entering in the Hartree term. The actual calculations
for both the DMFT susceptibility and the DΓA self-energy are done using the ADGA
program package which together with further computational details is discussed in
refs. [19, 102].

7.2.5. Jackknife
The jackknife is a resampling method, used for bias reduction and error estimation. It
is a versatile method for a range of problems, hence the name [99, 100].

Before we describe the jackknife in detail, let us recapitulate some statistical terms
that we will need later on. Let 𝜃 be the true, yet unknown, value of some quantity.
To access 𝜃 we construct an estimator, ̂𝜃, which is a function of 𝑛 random variables,𝑋1, … , 𝑋𝑛. In our case 𝑋𝑖 are just Monte Carlo measurements. The bias of the
estimator ̂𝜃 is then given by the difference between its expectation value E[ ̂𝜃] and the
true value 𝜃,

bias[ ̂𝜃] ≔ E[ ̂𝜃] − 𝜃. (7.16)
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For ̂𝜃 to be useful, its bias must be systematically improvable by increasing the sample
size 𝑛. More specifically, a sequence of estimators { ̂𝜃𝑛(𝑋1, … , 𝑋𝑛)} is called consistent
with 𝜃 if and only if the probability of deviating from 𝜃 goes to zero with 𝑛, i.e.,

lim𝑛→∞ Pr(| ̂𝜃𝑛(𝑋1, … , 𝑋𝑛) − 𝜃| > 𝜖) = 0, ∀𝜖 > 0. (7.17)

Now let us explain jackknife resampling based on the following general problem.
Assume we want to calculate some quantity 𝑦 = 𝑓(𝑥), where 𝑓 is some arbitrary,
known function. If we knew the true value of 𝑥 the task would be trivial. In our case,
however, 𝑥 is a random variable, and we only have access to a sample {𝑥𝑖} of size𝑛. Therefore, we need to find a good estimator ̂𝑦 and be able to quantify its error.
In sections 7.4 and 7.5 the input samples 𝑥𝑖 are the two-particle Green’s functions
from QMC calculations, 𝑦 is either the DΓA self-energy or the DMFT susceptibility,𝑓 is given by the Bethe–Salpeter equation and in case of the self-energy also by the
Schwinger–Dyson equation.

For simplicity, we only propagate the error in the two-particle Green’s function. This
is justified, because the one-particle Green’s function is calculated by symmetric
improved estimators and thus its error is smaller by several orders of magnitude[79].

The general strategy of resampling techniques is to generate subsamples from the
initial one which are preferably independent and identically distributed. With this,
one can then estimate certain statistics of the sample like its mean or variance. In
case of the jackknife a bias estimation and reduction is also possible. To show this,
let ̂𝑦𝑛 be a consistent estimator function for 𝑦. A common choice that we used for all
calculations in this paper is ̂𝑦𝑛(𝑥1, … , 𝑥𝑛) = 𝑓( ̄𝑥), (7.18)

where 𝑓 is the function from the original problem and ̄𝑥 is the input sample mean.
The latter is an unbiased, consistent estimator for 𝑥. If 𝑓 is a continuous function, it is
easy to see that 𝑓( ̄𝑥) is a consistent estimator for 𝑦. We note that if 𝑓 is linear, then𝑓( ̄𝑥) is already unbiased.

After choosing ̂𝑦𝑛 we generate 𝑛 leave-one-out samples𝑦−𝑖 = ̂𝑦𝑛−1(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛). (7.19)

Note that this simple choice of resampling implies that the leave-one-out samples are
also consistent estimators for 𝑦 and carry a different but similar bias. The reason why
this is important for obtaining a bias-corrected estimator will become clearer in the
following. Consistency requires the bias to vanish in the limit of 𝑛 → ∞. Thus, if 𝑓 is

97



7. Statistical error estimation with jackknife

not only continuous but also analytic around the true value 𝑥, we can expand the bias
of ̂𝑦𝑛 in powers of 1/𝑛 and write

bias[ ̂𝑦𝑛] = 𝑎𝑛 + 𝑏𝑛2 + 𝑂(𝑛−3), (7.20)

bias[𝑦−𝑖] = bias[ ̂𝑦𝑛−1] = 𝑎𝑛 − 1 + 𝑏(𝑛 − 1)2 + 𝑂(𝑛−3), (7.21)

with some 𝑎 and 𝑏. The expectation value as well as the bias are linear operators [see
eq. (7.16)]. It is therefore easy to construct new samples 𝑦′𝑖 in such a way that we get
rid of the leading 𝑂(1/𝑛) term in the bias𝑦′𝑖 = 𝑛 ̂𝑦𝑛 − (𝑛 − 1)𝑦−𝑖, (7.22)

bias[𝑦′𝑖 ] = 𝑛 bias[ ̂𝑦𝑛] − (𝑛 − 1) bias[𝑦−𝑖]=(𝑎 + 𝑏𝑛) − (𝑎 + 𝑏𝑛 − 1) + 𝑂(𝑛−3)= − 𝑏𝑛(𝑛 − 1) + 𝑂(𝑛−3) = 𝑂(𝑛−2). (7.23)

By calculating the sample mean of the 𝑦′𝑖 we finally arrive at the bias-corrected
jackknife estimator ̂𝑦JK = ̄𝑦′ = 1𝑛 𝑛∑𝑖=1 𝑦′𝑖 . (7.24)

Its expectation value is given by

E[ ̂𝑦JK] = 1𝑛 𝑛∑𝑖=1 ( E[𝑦′𝑖 ]) = 1𝑛 𝑛∑𝑖=1 (𝑛 E[ ̂𝑦𝑛] − (𝑛 − 1) E[𝑦−𝑖])= 1𝑛 𝑛∑𝑖=1 (𝑛(𝑦 + bias[ ̂𝑦𝑛]) − (𝑛 − 1)(𝑦 + bias[𝑦−𝑖]))= 1𝑛 𝑛∑𝑖=1 (𝑦 + bias[𝑦′𝑖 ]) = 𝑦 + 𝑂(𝑛−2), (7.25)

where eq. (7.23) was used in the last step. This shows that ̂𝑦JK is a consistent estimator
for 𝑦 with a reduced bias of 𝑂(1/𝑛2).
Without proof, consistent estimators for the variance, standard deviation, covariance,
etc. of 𝑦 can also be obtained by calculating the corresponding sample estimates of{𝑦′𝑖}[106]. In sections 7.3 to 7.5 we are specifically interested in the standard error of
the mean (SEM) and the linear correlation, corr[⋅, ⋅]. The latter is estimated by the
sample Pearson correlation coefficients 𝑟. For scalar random variables 𝑝 and 𝑞 with
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samples {𝑝𝑖} and {𝑞𝑖} of size 𝑛 the following holds

SEM𝑝 ≔ 𝑠𝑝√𝑛 = √ 1𝑛(𝑛 − 1) 𝑛∑𝑖=1 |𝑝𝑖 − ̄𝑝|2 (7.26)

ĉorr[𝑝, 𝑞] = 𝑟𝑝𝑞 = ∑𝑛𝑖=1(𝑝𝑖 − ̄𝑝)(𝑞𝑖 − ̄𝑞)∗√∑𝑛𝑖=1 |𝑝𝑖 − ̄𝑝|2√∑𝑛𝑖=1 |𝑞𝑖 − ̄𝑞|2 . (7.27)

Here 𝑠 denotes the corrected sample standard deviation, ̄𝑝 the sample mean of the𝑝𝑖, and ĉorr the estimated correlation. The generalization to random vectors and
objects of higher rank is straightforward by componentwise application of the above
formulas. In the following, 𝑝𝑖 is a scalar component of the 𝑖th sample 𝑥𝑖 or 𝑦𝑖, e.g.,𝑝𝑖 = (ΣDΓA,𝐤=(0,0),𝜈=𝜋/𝛽)𝑖 might be the 𝑖th measurement of the self-energy at a fixed
momentum 𝐤 and frequency 𝜈.

Let us note an important caveat in using eq. (7.27) as estimator for a 𝑘 × 𝑘 correlation
matrix 𝑟𝑝𝑞 with a large number of features 𝑘: While each component of the covariance
converges as 1/√𝑛 regardless of 𝑘, the eigenvalues of the covariance matrix, which are
used to construct independent errors, converge only as a function of 𝑛/𝑘. In particular,
the estimator yields a singular correlation matrix for any 𝑛 < 𝑘.

For practical use, the whole derivation and discussion of the jackknife above can be
condensed into three simple steps:

1. Resample 𝑥𝑖 → 𝑥′𝑖 = 1𝑛 − 1 ∑𝑗≠𝑖 𝑥𝑗 = 𝑛 ̄𝑥 − 𝑥𝑖𝑛 − 1 (7.28)

2. Transform 𝑦′𝑖 = 𝑛𝑓( ̄𝑥) − (𝑛 − 1)𝑓(𝑥′𝑖) (7.29)

3. Calculate sample statistics of {𝑦′𝑖}, e.g., eqs. (7.24), (7.26) and (7.27)

Another statistical method, similar to the jackknife, is the bootstrap. It is more
powerful but usually requires a greater number of resamples to take advantage of
that[107]. Depending on the specific problem, at least hundreds or thousands of new
samples are drawn for the bootstrap method[106, 108] as opposed to the 16 to 256
jackknife samples that are used in sections 7.4 and 7.5. Since each resample requires
a full DΓA calculation, the jackknife is computationally cheaper and therefore the
method of choice.

7.2.6. Parallel implementation
The main focus of this paper is on the jackknife estimates of the self-energy and
susceptibilities calculated within ADGA. In this case the parallelization is simple,
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because the ADGA calculation is by far the most computationally intensive task
and already implemented in a parallel way. Therefore, the actual jackknife part is
programmed in serial and only the calls to the ADGA code are done in parallel.

7.3. Statistical analysis of the input: two-particle Green’s
function

Before we analyze the DΓA self-energy and DMFT susceptibilities, let us take a closer
look at the input of the DMFT and DΓA calculations, namely the two-particle Green’s
function 𝐺𝜈𝜈′𝜔2 . In particular, we want to check if the correlations of the self-energy
and susceptibilities are completely intrinsic or if they originate at least in part from
the input. For this reason we estimate corr[𝐺𝜈1𝜈′1𝜔12,↑↑ , 𝐺𝜈2𝜈′2𝜔22,↑↑ ] for various frequency
combinations, and plot two-dimensional cuts of this high-dimensional quantity.

All QMC simulations were done for the 2D square-lattice Hubbard model (HM) at
half-filling using the following parameters: 𝑈 = 4𝑡, 𝛽 = {2/𝑡, 4/𝑡}, where the hopping
amplitude 𝑡 = 1 serves as our energy unit. The hopping matrix in eq. (7.1) is taken to
permit only nearest-neighbor hopping. The number of fermionic frequencies is 40 for𝛽 = 2 and 80 for 𝛽 = 4. Due to the imposed particle-hole symmetry, the two-particle
Green’s function and therefore also its correlation matrix is purely real. Before the
latter was estimated, the total number of 𝑛𝑡 QMC measurements were divided equally
into 𝑛𝑏 bins. The 𝑛𝑚 = 𝑛𝑡/𝑛𝑏 measurements in each bin were then averaged and
used as the samples for the estimations. All results in this section were obtained with𝑛𝑚 = 2.4 × 106.

In fig. 7.1 the estimated correlation of𝐺2,cut1(𝜈1) ≔ 𝐺𝜈=𝜈1,𝜈′=𝜈1,𝜔=02,↑↑ (7.30)

with itself is shown for two temperatures 𝛽 = 2 (top) and 𝛽 = 4 (bottom) and two
numbers of bins 𝑛𝑏 = 16 (left) and 𝑛𝑏 = 256 (right). Although there is quite some noise
in the plots with fewer bins, the diagonal matrix structure is evident in all four graphs
(note the sign of the 𝑦-axis resembling the typical arrangement in a matrix). This
suggests that the two-particle Green’s function is uncorrelated at different frequencies,
at least along the cut.

To further test this, we next consider the estimated correlation between𝐺2,cut2(𝜔1) ≔ 𝐺𝜈=0,𝜈′=0,𝜔=𝜔12,↑↑ (7.31)

and 𝐺2,cut1 which is shown for 𝛽 = 2 in fig. 7.2 and for 𝛽 = 4 in fig. 7.3. The same
numbers of bins are used as before. Apart from the noise, the correlation vanishes
again.
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Figure 7.1.: Estimated correlation matrix ĉorr[𝐺2,cut1(𝜈1), 𝐺2,cut1(𝜈2)] for the two-particle
Green’s function at the cut 𝜈 = 𝜈′ = 𝜈𝑖, 𝜔 = 0 comparing different tem-
peratures and numbers of bins. The 40 × 40 matrices in the top row and
the 80 × 80 matrices in the bottom row correspond to 40 and 80 fermionic
frequencies, respectively.
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Figure 7.2.: Same as fig. 7.1 (top) but now for the estimated correlation matrix
ĉorr[𝐺2,cut2(𝜔1), 𝐺2,cut1(𝜈1)], i.e., the correlation between cut2 with 𝜔1,𝜈′ = 𝜈 = 0 and cut1 with 𝜔 = 0, 𝜈′ = 𝜈 = 𝜈1. The 41 × 40 correla-
tion matrices correspond to 41 bosonic and 40 fermionic frequencies. As in
fig. 7.1, for sufficiently many bins (right) the off-diagonal components of the
correlation matrix vanish. (Note that in this figure there are no diagonal
components, since there are different frequencies on the axes.)
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Figure 7.3.: Same as fig. 7.2 but now at 𝛽 = 4. The 17 × 70 matrices correspond to 70
fermionic and 17 bosonic frequencies (which we reduced to save computational
time as there was no measurable change in the self-energy).

Altogether, this suggests that it is reasonable to assume that the two-particle Green’s
function at different frequencies as calculated with QMC is uncorrelated. Since this
is the input to the subsequent DMFT or DΓA calculations, any correlations of the
output data must emerge through the post-processing.

7.4. Self-energy
From the local two-particle Green’s function as well as the local one-particle Green’s
function as an input, the self-energy ΣDΓA,𝜈𝐤 of the 2D square-lattice HM at half-filling
is calculated in DΓA. All results in this section are generated using the same parameters
as in section 7.3: 𝑈 = 4𝑡, 𝛽 = {2/𝑡, 4/𝑡}, 𝑡 = 1, 𝑡′ = 0, i.e., only nearest neighbor
hopping is considered. The DΓA calculations use nine bosonic as well as 40 and 80
fermionic frequencies for 𝛽 = 2 and 𝛽 = 4, respectively. The inner momentum-(𝐤-)grid
is 48×48 and the transfer momentum-(𝐪-)grid is 12×12 for 𝛽 = 2 and 24×24 for 𝛽 = 4.
Before jackknife resampling is applied, the total number 𝑛𝑡 of QMC measurements
of the two-particle Green’s function is divided equally into 𝑛𝑏 bins with 𝑛𝑚 = 𝑛𝑡/𝑛𝑏
measurements per bin which are averaged for each bin. These 𝑛𝑏 averages are then
used as the input samples for the jackknife. For a more compact notation and easier
comparison of the multi panel figures in this section it is convenient to give the number
of measurements as a multiple of 𝑛0 = 2.4 × 106.

7.4.1. Standard error of the mean
Figure 7.4 shows the imaginary part of the DΓA self-energy at 𝛽 = 2 and 𝛽 = 4 using256 bins with 𝑛0 QMC measurements each. Note that the error bars are enlarged by
a factor of 500 for the left and 50 for the right plot. Taking this rescaling of the error
into account, the SEM for 𝛽 = 4 (right) is about 10 times higher than for 𝛽 = 2 (left)
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Figure 7.4.: Imaginary part and jackknife SEM of the DΓA self-energy at different
temperatures. For better visibility, the errors bars are enlarged by a factor
of 500 on the left and by 50 on the right.

but still very small. We do not plot the real part of the self-energy because on the
Fermi surface at half-filling it is just a constant.

Since ADGA actually calculates two-particle corrections to the DMFT self-energy it is
more reasonable to plot the error bars of the difference between the DMFT and DΓA
self-energy, ΣDΓA,𝐤𝜈 − ΣDMFT,𝜈. In fig. 7.5 the imaginary part of this DΓA self-energy
correction is plotted for 𝛽 = 4 and various combinations of the total number of QMC
measurements 𝑛𝑡 and number of bins 𝑛𝑏. In the top (bottom) row 𝑛𝑡 = 16 × 𝑛0
(256 × 𝑛0); in the left (right) column 𝑛𝑏 = 16 (256) bins. It is obvious that the SEM
scales with 𝑛𝑡. That is, the error for the larger number of measurements 𝑛𝑡 (bottom
row in fig. 7.5) is smaller than for a smaller 𝑛𝑡 (top row in fig. 7.5), just as expected.
However, there is practically no dependence of the error on the number of bins 𝑛𝑏 (left
vs right column of fig. 7.5). One can also see that even only 16 × 𝑛0 ≈ 4 × 107 total
measurements (top row in fig. 7.5) lead to still acceptable sizes of the error bars (note
they are resized by a factor of ten).

7.4.2. Correlation matrix
Let us now turn to the correlation of the different frequency components of the DΓA
self-energy. Figure 7.6 shows the real part of the estimate for the correlation of ΣDΓA,𝐤𝜈
with ΣDΓA,𝐤𝜈′ for 𝛽 = 4 and 𝐤 = (𝜋, 0). (For the statistical analysis of the input
data, we refer the reader to section 7.3.) It uses the same layout as fig. 7.5, i.e.,𝑛𝑡 = 16 × 𝑛0 in the top row and 𝑛𝑡 = 256 × 𝑛0 in the bottom one, with 𝑛𝑏 = 16 on
the left and 𝑛𝑏 = 256 on the right. Contrary to the SEM, the estimated correlation
matrix strongly depends on 𝑛𝑏 as the comparison between the left and right column in
fig. 7.6 shows. While increasing 𝑛𝑡 does improve the noise slightly, a large number of
jackknife samples is crucial for an acceptable noise level. It is evident in all four plots
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that the largest correlations appear in the low-frequency region. Disregarding noise,
the only correlations outside of this area are those between low and high frequencies.

Figure 7.7 shows the dependence of the real part of the estimated correlation matrix
on 𝛽 (from the top to the bottom of fig. 7.7) and 𝐤 (from left to right). One can see
that the correlation increases slightly with increasing 𝛽 (or decreasing temperature)
and is also more pronounced for 𝐤 = (𝜋, 0) (right) than for 𝐤 = (0, 0) (left). However,
the general structure of the matrix – high correlation at low frequencies, very low
correlation otherwise – is similar in all cases.

We do not plot the imaginary part of the estimated correlation matrix because with
the chosen parameters (half-filling and 𝐤-points on Fermi surface) it vanishes and
shows only noise.

The cross-correlation between frequencies of the DΓA self-energy can be understood
from Equation (7.15). It can be rewritten, such that we have the DMFT self-energy plus
nonlocal corrections arising from the two-particle Green’s function[19]. Both DMFT
and DΓA self-energy have the same asymptotic behavior, thus nonlocal corrections
have to be restricted to the lower Matsubara frequencies. Since here we consider
the correlation arising from the two-particle Green’s function, we can conclude that
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they mainly influence the low-frequency region. Furthermore, in the model under
consideration vertex corrections increase with lower temperatures, and the largest
influence is to be expected at 𝐤 = (𝜋, 0), where the formation of a pseudo-gap can be
observed.

The symmetries in figs. 7.6 and 7.7 can be explained by the definition of the estimated
correlation coefficients and properties of the self-energy. Using eq. (7.27) and Σ(𝜈)∗ =Σ(−𝜈) yields

ĉorr[Σ(𝜈1), Σ(𝜈2)] = ĉorr[Σ(𝜈2), Σ(𝜈1)]∗= ĉorr[Σ(𝜈2)∗, Σ(𝜈1)∗]= ĉorr[Σ(−𝜈2), Σ(−𝜈1)]. (7.32)

Therefore the real part of the correlation matrices is symmetric around the main- and
antidiagonal.

7.5. Susceptibilities
For periodic systems, the density and magnetic DΓA susceptibilities 𝜒𝑑(i𝜔, 𝐪) and𝜒𝑚(i𝜔, 𝐪) are the Fourier transform of the following imaginary time expectation values:𝜒𝑑(𝜏, 𝑙 − 𝑙′) = ⟨T(𝑛𝑙↑ + 𝑛𝑙↓)(𝜏)(𝑛𝑙′↑ + 𝑛𝑙′↓)(0)⟩, (7.33)𝜒𝑚(𝜏, 𝑙 − 𝑙′) = ⟨T(𝑛𝑙↑ − 𝑛𝑙↓)(𝜏)(𝑛𝑙′↑ − 𝑛𝑙′↓)(0)⟩. (7.34)

Here 𝑙 and 𝑙′ are lattice site indices, T is the time-ordering operator and 𝑛𝑙𝜎 is the
electron density at site 𝑙 with spin 𝜎 ∈ {↑, ↓}. In DMFT, they are calculated in
momentum space for the square-lattice HM at half-filling, using the Bethe–Salpeter
equations discussed in section 7.2.1. All results in this section are generated using the
same parameters as in section 7.3: 𝑈 = 4𝑡, 𝛽 = {2/𝑡, 4/𝑡}, where 𝑡 = 1 sets the energy
unit, and only nearest-neighbor hopping is considered. Again, we use nine bosonic as
well as 40 and 80 fermionic frequencies for 𝛽 = 2 and 𝛽 = 4, respectively. The inner
momentum- or 𝐤-grid (for the one-particle quantities and 𝜒0) is 48 × 48, whereas the
transfer momentum- or 𝐪-grid is 12 × 12 for 𝛽 = 2 and 24 × 24 for 𝛽 = 4. As before,
the total number of QMC measurements 𝑛𝑡 for the two-particle Green’s function
is given in multiples of 𝑛0 = 2.4 × 106 and divided into 𝑛𝑏 bins, with 𝑛𝑚 = 𝑛𝑡/𝑛𝑏
measurements averaged per bin. These averages are then used as the input samples
for the jackknife. Note that at half-filling, the susceptibilities and therefore also their
correlation matrices are purely real.

7.5.1. Standard error of the mean
Figure 7.8 shows the density and magnetic susceptibilities at 𝛽 = 2 and 𝛽 = 4, where𝑛𝑡 = 256 × 𝑛0 measurements are divided into 𝑛𝑏 = 256 bins. Since there is a transition
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Figure 7.8.: Density and magnetic DMFT susceptibility, 𝜒𝑑 and 𝜒𝑚, at different temper-
atures and momenta. For better visibility the error bars are enlarged by a
factor of 10.
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Figure 7.9.: DMFT density susceptibility 𝜒𝑑 at 𝛽 = 4 for two different momenta 𝐪,
comparing different numbers of bins and total measurements.

to an antiferromagnetic phase at 𝛽 = 4.3[109], 𝜒𝑚(𝐪 = (𝜋, 𝜋)) as well as its error are
dominated by the contributions at 𝜔 = 0. This makes it harder to compare the plots
of the two susceptibilities, but one can still see that the SEM increases with 𝛽 (left
vs right panels) for both quantities, just like in the case of the DΓA self-energy.

The dependence on the total number of measurements 𝑛𝑡 and the number of bins𝑛𝑏 is shown in fig. 7.9 for 𝜒𝑑 and in fig. 7.10 for 𝜒𝑚; both at 𝛽 = 4. They use the
same layout as fig. 7.5, i.e., 𝑛𝑡 = 16 × 𝑛0 in the top rows and 256 × 𝑛0 in the bottom
ones, with 𝑛𝑏 = 16 on the left and 256 on the right. Only the error bars of 𝜒𝑚 are
enlarged by a factor of 10. Similar to section 7.4 the SEM scales with the total number
of measurements (top vs. bottom panels), but it does not depend on the number of
jackknife samples 𝑛𝑏 (left vs. right panels). Contrary to the results of the self-energy,
even using a total of 256×𝑛0 ≈ 6×108 measurements only yields borderline acceptable
error bars. This means the main features of the 𝜒𝑑 curve are still recognizable, but
larger error bars would render the signal statistically insignificant. Therefore, one
should aim for at least 𝑂(109) total measurements in this case.

7.5.2. Correlation matrix
The estimate for the correlation of the susceptibilities with themselves is shown in
fig. 7.11. Both 𝜒𝑑 and 𝜒𝑚 are uncorrelated for both temperatures (𝛽 = 2 and 𝛽 = 4)
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Figure 7.10.: Same as fig. 7.9 but for the magnetic susceptibility 𝜒𝑚. For better visibility
the error bars are enlarged by a factor of 10.
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Figure 7.11.: Estimated correlation matrix of the DMFT susceptibilities
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Figure 7.12.: Same as fig. 7.11 but now at 𝐪 = (𝜋, 0) and comparing different numbers of
jackknife bins 𝑛𝑏 for a total number of 16 × 𝑛0 measurements.

and for both momenta [𝐪 = (0, 0) and 𝐪 = (𝜋, 𝜋)]. The same is true for 𝐪 = (𝜋, 0),
shown in fig. 7.12, which studies the effects of using more jackknife bins. Clearly, a
good estimate of the correlation matrix of the susceptibility requires more than 𝑂(10)
bins.

The symmetries of the correlation matrices in figs. 7.11 and 7.12 are the same as
those in section 7.4.2. They are symmetric around the main- and antidiagonal because𝜒𝑚,𝑑(𝜔) = 𝜒𝑚,𝑑(−𝜔), which is the same property as that of the self-energy considering
that the susceptibilities are also real.

7.6. Maximum entropy analytic continuation
Extracting real-frequency information, 𝐴(𝜔), out of Matsubara-frequency data, 𝑦(𝜈),
amounts to solving the following fitting problem:

min𝐴 ∥𝑦(𝜈) − ∫ d𝜔𝐾(𝜈, 𝜔)𝐴(𝜔)∥ = min𝐀 ||𝐲 − 𝐾𝐀||, (7.35)

where 𝐾 is an integral kernel which is different for bosonic or fermionic functions. 𝐲 and𝐀 are the Fourier coefficients of 𝑦(𝜈) and 𝐴(𝜔) in an appropriate basis. Equation (7.35)
is minimal if and only if the log-likelihood:𝐿[𝐀] = −12(𝐲 − 𝐾𝐀)†𝐶−1(𝐲 − 𝐾𝐀), (7.36)

is maximal, where 𝐶 is the covariance matrix (a positive definite symmetric matrix).
Equations (7.35) and (7.36) are ill-posed on numerical data as the singular values of𝐾 drop super-exponentially.
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Figure 7.13.: Imaginary part of the self-energy on the real-frequency axis at different
momenta 𝐤, comparing the analytic continuation without covariance matrix,
with the proper covariance matrix, and with a constant error.

The maximum entropy method [110] is a widely employed method to regularize this
problem. Briefly, instead of eq. (7.35), we maximize an augmented functional:𝑄𝛼[𝐀] = 𝐿[𝐀] + 𝛼𝑆[𝐀|𝐀0], (7.37)

where 𝑆[𝐀|𝐀0] is the relative (information) entropy with respect to an a priori
default model 𝐀0. This term regularizes the optimization and has to be scaled by
a hyperparameter 𝛼. Equation (7.37) can be used on numerical data: 𝐲 is now the
sample mean and 𝐶 is the sample covariance matrix in eq. (7.36).

Equation (7.36) can be evaluated much more efficiently, if the covariance matrix is
diagonal. However, if that is not the case, we may still perform the transformation 𝐶 =𝒰†𝑉 𝒰, where 𝒰 is unitary and 𝑉 is a positive definite diagonal matrix. Equation (7.36)
then acquires the simpler form𝐿[𝐀] = −12 ∑𝑗 ∣𝐲̃𝑗 − (𝐾̃𝐀)𝑗∣2𝑉𝑗 (7.38)

with 𝐲̃ = 𝒰𝐲 and 𝐾̃ = 𝒰𝐾.

If this rotation of the data and the kernel is done as a pre-processing step, then the
remaining problem is identical to the case where the covariance matrix is diagonal. In
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particular, it is still possible to treat real and imaginary part as separate variables by
stacking 𝐲̃ → [Re 𝐲̃, Im 𝐲̃] and 𝐾̃ → [Re 𝐾̃, Im 𝐾̃]. We use the ana_cont library[111,
112] to perform analytic continuations of the DΓA self-energy at 𝛽 = 4. To this end,
we have to subtract the Hartree energy 𝑈/2, such that asymptotically also the real
part approaches zero. Then the standard kernel for fermionic Green’s functions can
be used[113], and we obtain a function 𝐴Σ(𝜔) which is related to the imaginary part
of the self-energy by 𝐴Σ(𝜔) = − 1𝜋 Im Σ(𝜔 + i0+). (7.39)

In fig. 7.13 we see that in this case the correlations are not strong enough to make
the analytic continuation instable. However, using a constant error rather the one
calculated by the jackknife method leads to a slightly different result.

7.7. Conclusion and discussion
We have implemented and studied a jackknife error estimate for typical DMFT and
DΓA post-processing calculations after a QMC solution of the Anderson impurity
problem. While mere QMC error bars have been analyzed before (also employing
the jackknife[38, 114]), the error of the post-processed quantities such as the DMFT
susceptibilities and the DΓA self-energies has not been systematically studied. Here,
the QMC statistical error is propagated through nonlinear equations, namely the
Bethe–Salpeter equation. In such a situation the jackknife method is the method
of choice, and we make our routines that have been tested with QMC input from
w2dynamics[82] available at ref. [115].

From a statistical point of view, our study reveals that the different components of the
two-particle Green’s function, which is the CT-HYB QMC output and main jackknife
input, are uncorrelated. But a binning into 𝑂(100) bins is necessary to remove the
spurious off-diagonal components of the correlation matrix. The same holds for the
DMFT susceptibility which is calculated through the Bethe–Salpeter equation. Because
of the vanishing off-diagonal elements of the correlation (or covariance) matrix, an
analytical continuation without covariance is possible.

The DΓA self-energy on the other hand has a nondiagonal correlation matrix. Its
calculation consists of the Bethe–Salpeter equation, as in DMFT, and additionally
the Schwinger–Dyson equation. We conclude that the latter leads to the correlations
between the DΓA self-energy at different frequencies. This is also quite intuitive since
the same (bosonic) frequency component of the susceptibility contributes to the DΓA
self-energy at different fermionic frequencies. However, we have shown that the results
of analytic continuation of the self-energy are hardly influenced by this. We thus
conclude that the correlations introduced by two-particle corrections are still small
enough to allow for a reliable interpretation of the results. Still one should keep in

112



7.7. Conclusion and discussion

mind that using the actual jackknife error, as opposed to a constant, does have a small
influence on the analytic continuation.

We have further studied the SEM and observe that it hardly depends on the number
of bins 𝑛𝑏 into which the total number of measurements 𝑛𝑡 is divided. However, as
a matter of course the SEM depends strongly on 𝑛𝑡. Depending on the physical
quantity studied and the required accuracy, a total number of measurements 𝑛𝑡 of𝑂(107) to 𝑂(109) is needed. Here, the error bars of the DMFT susceptibilities are
somewhat larger than for the DΓA self-energy. The error also increases with decreasing
temperature or larger interval [0, 𝛽], as this interval is sampled less accurately if 𝑛𝑡 is
kept fixed.

Our paper has shown that the jackknife method is a valuable tool for calculating DMFT
and DΓA error bars. Beyond the present paper, the statistical error of the one-particle
Green’s function can be included. However, with the use of symmetric improved
estimators the errors of the one-particle Green’s function are practically nonexistent.
A further extension would be to consider the error of the DMFT self-consistency loop
itself by drawing bins from statistically independent DMFT solutions. The latter can
be achieved either by completely independent DMFT calculations or by determining
the auto-correlation time of the DMFT loop and adjusting the binning to it. Our
approach can be combined with various other methods to reduce the Monte Carlo
noise[77, 79, 116] or the cutoff error of the frequency box[105, 117–120] as well as with
compactifications of the vertex[121–123]. We hope that our paper will spread the seed
for a proper error estimate in future DMFT calculations and diagrammatic extensions
thereof.
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8. Summary and outlook

In this thesis we ventured into the still hardly explored lands of three-particle correlations.
After a short recapitulation of definitions and well-known facts from the one- and two-
particle level we started with generalizing those theoretical basics to three particles. As
expected this was in general accompanied by an increase in complexity. Even though the
number of independent spin components of the three-particle Green’s function can be
reduced to just three, the number of possible frequency notations increased significantly,
just to mention one complexity factor. Unlike the three notations for two-particle
quantities, we showed that there are 15 two-particle and ten three-particle notations for
three-particle quantities. The decomposition of the three-particle Green’s function is
also more complicated than that of the two-particle one with 16 instead of three terms,
respectively. Furthermore, we introduced the vertex expansion as a general concept and
then applied it to the three-particle Green’s function. This yielded our first approximation
for it using only one- and two-particle quantities.

In chapter 5 we presented an application for three-particle correlations: nonlinear, more
precisely second-order, response theory. After deriving the necessary formulas we scanned
the parameter regime for an Anderson impurity model (AIM) and found sizable second-
order density, density-magnetic, and chiral response functions at different dopings. We
also presented some results for a square lattice Hubbard model (HM). Most importantly
though, we showed that in cases of significant second-order response functions the
contribution from the full three-particle vertex is not negligible and sometimes even
dominant.

After these reassuring results we went back to more theoretical base work in chapter 6.
First we derived Bethe–Salpeter-like equations for three particles. Of course, they turned
out to be much more involved than those on the two-particle level. Next we came to the
main focus of that chapter: approximating the three-particle ladder with a geometric
series using only irreducible two-particle vertices and Green’s function lines. While this
idea initially seemed rather simple, we found that the approximation needed to be more
intricate than expected for it to reproduce all symmetries of the full three-particle vertex.
Even then, the numerical results computed for an AIM were only qualitatively good for
small values of the on-site Coulomb interaction.

In the last chapter we presented what was chronologically the author’s first PhD project:
statistical error estimation with jackknife. Apart from the code for resampling dynamical
mean-field theory (DMFT) susceptibilities and dynamical vertex approximation (DΓA)
self-energies, we also implemented error estimation directly in w2dynamics for quantities
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like the DMFT self-energy. This allows us to reliably determine if the DMFT self-
consistency loop is converged and if the desired precision is reached. Since most of our
numerical results are based on DMFT solutions this proved to be a very useful feature for
the present thesis even though it is not directly related to three-particle correlations.

After this brief summary, let us look ahead at what is still unanswered and might be of
interest for future research. In section 2.7 we already mentioned that the Schwinger–Dyson
equations form an infinite stack but only presented the lowest order one connecting one-
and two-particle quantities. A derivation of the next order would give us more insight into
how the three-particle vertex influences two-particle quantities. Since quantum Monte
Carlo (QMC) measurements allow us to directly compute local two-particle Green’s
functions, one could use this as an additional test for approximations of the three-particle
vertex: Compute a two-particle quantity with the corresponding Schwinger–Dyson
equation using an approximated three-particle vertex and compare it to the exact QMC
solution. It might even be interesting to check what happens when the three-particle
vertex is completely neglected.

On the topic of approximations, since the approximate three-particle ladder fell short of
expectations, one could compute numerical results for the two-particle vertex expansion
of the three-particle Green’s function and see if it performs better. Finishing the
computation of the third-order terms and maybe expanding it to fourth order might
even help with the approximate ladder. After all we believe that overcounting between
ladders in different channels is only a problem up to some, hopefully low, number of
two-particle vertices. Of course, it would also be very interesting to compute a ladder
with the irreducible three-particle vertex. The corresponding equations are exact, but we
do not have a feasible way of computing that vertex yet. An approximation will most
likely be necessary, but it might be easier to find a good approximation for the local
irreducible vertex than for the full one.

Finally, let us come back to the topic of nonlinear response functions. Even though we
found sizable contributions to them, we only scanned a small parameter regime of a rather
simple model. The question is, whether there are real materials and effects which show
similar results. We mentioned Raman response as a real world example for second-order
effects, but Raman scattering involves photons and typically also phonons. So, to compute
real amplitudes one would need to consider the matrix elements for electron–photon
coupling, or even include electron–phonon interactions as well. In a one-band model this
requires nonlocal, i.e., momentum-dependent three-particle vertices. The approximate
ladder could, in theory, use nonlocal Green’s functions to get an approximation for such
nonlocal three-particle correlations. However, it seems that better approximations or
other methods for computing the three-particle vertex are necessary before such real-world
applications are feasible.
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A. Supplemental material: three-particle
correlators and nonlinear response

Parts of this appendix marked with a vertical bar have
already been published in Kappl et al. [55].

A.1. From spin correlators to second-order response functions
In this section we present all the details and explicit equations, purposefully omitted
for brevity in section 5.2, to get from two- and three-particle correlators to the second-
order density, density-magnetic, and chiral response functions. This is interesting if
one actually wants to implement the computations since, in our case, w2dynamics can
only directly measure the spin correlators.

We start by giving explicit formulas for eq. (5.13)𝜒𝑛𝑛𝑛 = 2(𝜒↑↑↑ + 𝜒↑↑↓ + 𝜒↑↓↑ + 𝜒↓↑↑), (A.1)𝜒𝑛𝑧𝑧 = 2(𝜒↑↑↑ − 𝜒↑↑↓ − 𝜒↑↓↑ + 𝜒↓↑↑)= 2(𝜒↑↑↓ + 𝜒↓↑↓), (A.2)𝜒𝑥𝑦𝑧 = 2i(𝜒↑↓↑ − 𝜒↑↓↓), (A.3)

where we use SU(2) symmetry, introduce the second-order spin susceptibilities𝜒𝜎1…𝜎6 = conn 𝑋𝜎1…𝜎6 , (A.4)

and use the compact spin notation from eq. (4.9). Since subtracting the disconnected
parts of the full correlators is a linear operation eqs. (A.1) to (A.3) also hold when
replacing 𝜒 with 𝑋 .

Section 4.3 shows that the 20 nonvanishing spin components of the three-particle
quantities can be reduced to just three independent ones, namely ↑↑↑, ↑↑↓ and ↑↑↓.
All other components can be calculated from these by applying SU(2), swapping or
time-reversal symmetry. This makes numerical computations much cheaper. Exploiting
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this, we rewrite eqs. (A.1) to (A.3) in Matsubara space as𝜒𝜔1𝜔2𝑛𝑛𝑛 = 2(𝜒𝜔1𝜔2↑↑↑ + 𝜒𝜔1𝜔2↑↑↓ + 𝜒𝜔1𝜔3↑↑↓ + 𝜒𝜔3𝜔2↑↑↓ ), (A.5)𝜒𝜔1𝜔2𝑛𝑧𝑧 = 2(𝜒𝜔1𝜔2↑↑↑ − 𝜒𝜔1𝜔2↑↑↓ − 𝜒𝜔1𝜔3↑↑↓ + 𝜒𝜔3𝜔2↑↑↓ )= 2(𝜒𝜔1𝜔2↑↑↓ + 𝜒𝜔1𝜔3↑↑↓ ), (A.6)𝜒𝜔1𝜔2𝑥𝑦𝑧 = 2i(𝜒𝜔3𝜔1↑↑↓ − 𝜒𝜔3𝜔2↑↑↓ ), (A.7)

where 𝜔3 = −𝜔1 − 𝜔2.

For the second-order spin susceptibilities the explicit form of eq. (5.6) reads𝜒𝜔1𝜔2𝜎1𝜎2𝜎3 = 𝑋𝜔1𝜔2𝜎1𝜎2𝜎3 − 𝛿𝜔10𝛿𝜔20𝛽2⟨𝑛̂𝜎1⟩⟨𝑛̂𝜎2⟩⟨𝑛̂𝜎3⟩− 𝛿𝜔20𝛽⟨𝑛̂𝜎2⟩𝜒𝜔3𝜎3𝜎1− 𝛿𝜔30𝛽⟨𝑛̂𝜎3⟩𝜒𝜔1𝜎1𝜎2− 𝛿𝜔10𝛽⟨𝑛̂𝜎1⟩𝜒𝜔2𝜎2𝜎3 , (A.8)

𝜒𝜔1𝜔2𝜎1𝜎2𝜎3 = 𝑋𝜔1𝜔2𝜎1𝜎2𝜎3 − 𝛿𝜔10𝛽⟨𝑛̂𝜎1⟩𝜒𝜔2𝜎3𝜎2 , (A.9)𝜒𝜔1𝜔2𝜎1𝜎2𝜎3 = 𝑋𝜔1𝜔2𝜎1𝜎2𝜎3 − 𝛿𝜔20𝛽⟨𝑛̂𝜎2⟩𝜒𝜔3𝜎1𝜎3 , (A.10)𝜒𝜔1𝜔2𝜎1𝜎2𝜎3 = 𝑋𝜔1𝜔2𝜎1𝜎2𝜎3 − 𝛿𝜔30𝛽⟨𝑛̂𝜎3⟩𝜒𝜔1𝜎2𝜎1 . (A.11)

Similarly, using eq. (5.5) yields𝜒𝜔𝜎1𝜎2 = ⟨T 𝑛̂𝜎1 𝑛̂𝜎2⟩𝜔 − 𝛿𝜔0𝛽⟨𝑛̂𝜎1⟩⟨𝑛̂𝜎2⟩ (A.12)𝜒𝜔𝜎1𝜎2 = ⟨T ̂𝑐†𝜎1 ̂𝑐𝜎2 ̂𝑐†𝜎2 ̂𝑐𝜎1⟩𝜔 (A.13)

for the linear spin susceptibilities. Together these equations complete the set of explicit
formulas necessary to compute the second-order density, density-magnetic, and chiral
response functions from two- and three-particle spin correlators.

Combining eq. (A.3) and eq. (A.11) shows that the disconnected terms for 𝜒𝑥𝑦𝑧 cancel,
which means that it is directly given by 𝑋𝑥𝑦𝑧. This is similar to the two-particle case
where the magnetic response function 𝜒𝑧𝑧 equals the full correlator 𝑋𝑧𝑧 = ⟨T 𝜎̂𝑧𝜎̂𝑧⟩
[see eq. (5.19)] because there are no disconnected terms either.
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In the special case of half-filling, i.e., ⟨𝑛̂𝜎⟩ = 1/2 = 1 − ⟨𝑛̂𝜎⟩ we can further compute𝑋𝜎1𝜎2𝜎3 = ⟨T(1 − 𝑛̂𝜎1)(1 − 𝑛̂𝜎2)(1 − 𝑛̂𝜎3)⟩ (A.14)= ⟨1 − 𝑛̂𝜎1 − 𝑛̂𝜎2 − 𝑛̂𝜎3⟩+ ⟨T(𝑛̂𝜎1 𝑛̂𝜎2 + 𝑛̂𝜎1 𝑛̂𝜎3 + 𝑛̂𝜎2 𝑛̂𝜎3)⟩− ⟨T 𝑛̂𝜎1 𝑛̂𝜎2 𝑛̂𝜎3⟩, (A.15)

2𝑋𝜎1𝜎2𝜎3 = ∑𝑖<𝑗 ⟨T 𝑛̂𝜎𝑖 𝑛̂𝜎𝑗⟩ − 12 . (A.16)

This shows that the full, density-like, three-particle spin correlators only consist
of disconnected terms for half-filling, or equivalently 𝜒𝜎1𝜎2𝜎3 vanishes. Looking at
eqs. (A.1) and (A.2) this also implies that the second-order density and density-
magnetic response functions vanish at half-filling.

A.2. Lehmann formula for the three-particle correlator
In the atomic limit, 𝐻̂AL = 𝜖(𝑛̂↑ + 𝑛̂↓) − ℎ(𝑛̂↑ − 𝑛̂↓) + 𝑈𝑛̂↑𝑛̂↓, where 𝜖 = −𝑈/2, we use
the following Lehmann formula for the three-particle correlation function:𝑋(𝜏1, 𝜏2) = ⟨T ̂𝜌1(𝜏1) ̂𝜌2(𝜏2) ̂𝜌3(0)⟩= 𝜃(𝜏1 − 𝜏2) ∑𝑖,𝑗,𝑘 𝑤𝑖e𝜏1𝐸𝑖𝑗+𝜏2𝐸𝑗𝑘𝜌𝑖𝑗1 𝜌𝑗𝑘2 𝜌𝑘𝑖3+ 𝜃(𝜏2 − 𝜏1) ∑𝑖,𝑗,𝑘 𝑤𝑖e𝜏2𝐸𝑖𝑗+𝜏1𝐸𝑗𝑘𝜌𝑖𝑗2 𝜌𝑗𝑘1 𝜌𝑘𝑖3 . (A.17)

Here, ̂𝜌1,2,3 are bosonic operators, 𝜃 is the Heaviside step function, 𝐸𝑖𝑗 = 𝐸𝑖 − 𝐸𝑗,𝑤𝑖 = e−𝛽𝐸𝑖/𝒵, 𝒵 = ∑𝑖 e−𝛽𝐸𝑖 , and 𝜌𝑖𝑗 = ⟨𝑖| ̂𝜌|𝑗⟩. The eigenstates of 𝐻̂AL are |0⟩, |↓⟩,|↑⟩, and |↕⟩ with eigenenergies 𝐸0 = 0, 𝐸↓ = 𝜖 + ℎ, 𝐸↑ = 𝜖 − ℎ, and 𝐸↕ = 𝑈 + 2𝜖.
We transform 𝑋(𝜏1, 𝜏2) via eq. (5.26) to frequencies, taking care of degeneracies:𝑋𝜔1𝜔2 = 𝒳(𝜔1, 𝜔2, ̂𝜌1, ̂𝜌2) + 𝒳(𝜔2, 𝜔1, ̂𝜌2, ̂𝜌1), (A.18)
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A. Supplemental material: three-particle correlators and nonlinear response𝒳(𝜔𝑥, 𝜔𝑦, ̂𝜌𝑥, ̂𝜌𝑦) = ∑𝑖,𝑗,𝑘 𝑤𝑖𝜌𝑖𝑗𝑥 𝜌𝑗𝑘𝑦 𝜌𝑘𝑖3 {1 − 𝛿(i𝜔𝑦 + 𝐸𝑗𝑘)
i𝜔𝑦 + 𝐸𝑗𝑘 [− e𝛽𝐸𝑖𝑗 − 1

i𝜔𝑥 + 𝐸𝑖𝑗 (1 − 𝛿(i𝜔𝑥 + 𝐸𝑖𝑗)) − 𝛽𝛿(i𝜔𝑥 + 𝐸𝑖𝑗)+ e𝛽𝐸𝑖𝑘 − 1
i𝜔𝑥 + i𝜔𝑦 + 𝐸𝑖𝑘 (1 − 𝛿(i𝜔𝑥 + i𝜔𝑦 + 𝐸𝑖𝑘))+ 𝛽𝛿(i𝜔𝑥 + i𝜔𝑦 + 𝐸𝑖𝑘)]+ [ 𝛽e𝛽𝐸𝑖𝑗

i𝜔𝑥 + 𝐸𝑖𝑗 − e𝛽𝐸𝑖𝑗 − 1(i𝜔𝑥 + 𝐸𝑖𝑗)2 ]𝛿(i𝜔𝑦 + 𝐸𝑗𝑘)(1 − 𝛿(i𝜔𝑥 + 𝐸𝑖𝑗))+ 𝛽22 𝛿(i𝜔𝑦 + 𝐸𝑗𝑘)𝛿(𝑖𝜔𝑥 + 𝐸𝑖𝑗)}.
(A.19)

Note that eqs. (A.17) to (A.19) are not restricted to the atomic limit.

A.3. Asymptotic behavior of 𝜒(2)
Using the Lehmann representation one can show that bosonic, two-particle correlation
functions can be expanded in the following series:⟨ ̂𝐴𝑖 ̂𝐴𝑗⟩𝑧 = −1𝑧⟨[ ̂𝐴𝑖, ̂𝐴𝑗]⟩ + 1𝑧2 ⟨[[ ̂𝐴𝑖, 𝐻̂], ̂𝐴𝑗]⟩ + … , (A.20)

where 𝑧 is a complex frequency, 𝐻̂ is the Hamiltonian and [⋅, ⋅] denotes the commutator
(see also [81, Appendix C]). Since𝜒0𝜔𝑛𝑛𝑛 = − 𝜕𝜕𝜖𝜒𝜔𝑛𝑛 = ( 𝜕𝜕𝜖𝑋𝜔𝑛𝑛 − 𝛿𝜔0𝛽⟨𝑛̂⟩2) = 𝜕𝜕𝜖𝑋𝜔𝑛𝑛, (A.21)𝜒0𝜔𝑛𝑧𝑧 = 𝜕𝜕𝜖𝜒𝜔𝑧𝑧 = 𝜕𝜕𝜖𝑋𝜔𝑧𝑧, (A.22)𝜒0𝜔𝑥𝑦𝑧 = 𝜕𝜕ℎ𝑥 𝜒𝜔𝑦𝑧 = 𝜕𝜕ℎ𝑥 𝑋𝜔𝑦𝑧, (A.23)

with Matsubara frequencies 𝜔, evaluating the expansion at 𝑧 = i𝜔 can be used to
obtain the asymptotic behavior of slices of the second-order response functions:𝜒0𝜔𝑛𝑛𝑛 ≈ − 1(i𝜔)2 𝜕𝜕𝜖⟨[[𝑛̂, 𝐻̂], 𝑛̂]⟩, (A.24)𝜒0𝜔𝑛𝑧𝑧 ≈ − 1(i𝜔)2 𝜕𝜕𝜖⟨[[𝜎̂𝑧, 𝐻̂], 𝜎̂𝑧]⟩, (A.25)
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𝜒0𝜔𝑥𝑦𝑧 ≈ − 1

i𝜔 𝜕𝜕ℎ𝑥 ⟨[𝜎̂𝑦, 𝜎̂𝑧]⟩. (A.26)

The density and density-magnetic channels do not have a 1/(i𝜔) term since [𝑛̂, 𝑛̂]
and [𝜎̂𝑧, 𝜎̂𝑧] vanish. According to [81], for an Anderson impurity model (AIM) the
commutators in eqs. (A.24) and (A.25) are given by⟨[[𝑛̂, 𝐻̂AIM], 𝑛̂]⟩ = ⟨[[𝜎̂𝑧, 𝐻̂AIM], 𝜎̂𝑧]⟩ = −⟨𝐻̂𝑉⟩ = − 2𝛽 ∑𝜎𝜈 Δ𝜈𝜎𝐺𝜈𝜎 (A.27)

where 𝐻̂𝑉 is the hybridization term in the Hamiltonian of the AIM [last term in
eq. (3.1)], Δ𝜈𝜎 is the hybridization function and 𝐺𝜈𝜎 is the one-particle Green’s function
of the impurity. Differentiating the latter with respect to 𝜖 yields𝜕𝜕𝜖𝐺𝜈𝜎 = − 𝜕𝜕𝜖⟨T ̂𝑐𝜎(𝜏) ̂𝑐†𝜎⟩𝜈 (A.28)= 𝛽⟨𝑛̂⟩𝐺𝜈𝜎 + ∑𝜎′ ⟨T 𝑛̂𝜎′(𝜏 ′) ̂𝑐𝜎(𝜏) ̂𝑐†𝜎⟩𝜈0 (A.29)= 𝛽⟨𝑛̂⟩𝐺𝜈𝜎 + ∑𝜎′ ⟨T(1 − ̂𝑐𝜎′(𝜏 ′) ̂𝑐†𝜎′(𝜏 ′)) ̂𝑐𝜎(𝜏) ̂𝑐†𝜎⟩𝜈0 (A.30)= 𝛽(⟨𝑛̂⟩ − 2)𝐺𝜈𝜎 − ∑𝜎′ 𝑃3𝜈0𝜎′𝜎 (A.31)

where 𝑃3 is the partially contracted two-particle Green’s function𝑃 3𝜈′𝜔 = ∫𝛽0 ∫𝛽0 𝐺(𝜏, 𝜏, 𝜏 ′)ei(𝜔𝜏+(𝜈′−𝜔)𝜏′) d𝜏 d𝜏 ′ (A.32)= 1𝛽 ∑𝜈 𝐺𝜈𝜈′𝜔. (A.33)

With 𝜕𝜕ℎ𝑥 ⟨[𝜎̂𝑦, 𝜎̂𝑧]⟩ = 2i 𝜕𝜕ℎ𝑥 ⟨𝜎̂𝑥⟩ = 2i𝜒0𝑚 (A.34)

we can finally write 𝜒0𝜔𝑛𝑛𝑛 ≈ − 1𝜔2 𝜕𝜕𝜖⟨𝐻𝑉⟩ (A.35)𝜒0𝜔𝑛𝑧𝑧 ≈ − 1𝜔2 𝜕𝜕𝜖⟨𝐻𝑉⟩ (A.36)𝜒0𝜔𝑥𝑦𝑧 ≈ − 2𝜔𝜒0𝑚, (A.37)
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where − 𝜕𝜕𝜖⟨𝐻𝑉⟩ = 4𝛽 ∑𝜈 Δ𝜈↑(𝑃3𝜈0↑↑ + 𝑃3𝜈0↑↓ + 𝛽(2 −⟨𝑛̂⟩)𝐺𝜈↑), (A.38)

and we use SU(2) symmetry.
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