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Abstract

In the past three decades, mobile phones have become a pervasive presence in our lives.
The Baseband (BB) processor, the chip enabling cellular connectivity, has evolved as well.
If this processor’s firmware is insecure, an attacker could gain access to a zero-click remote
code execution that, combined with a local privilege escalation, could grant complete
control of any given smartphone. The existence of such a vulnerability is very likely
because most of the firmware has existed for many years, and much of it has been written
before many security measures were widely established.

This thesis analyzes the protocol used by the main Central Processing Unit (CPU) or
Application Processor (AP) to communicate with the BB processor called Apple Remote
Invocation (ARI). The BB and its firmware are then fuzzed via this protocol in four
different ways. Further, memory exploitation mitigations and the complexity growth
between five Intel BBs generations released over four years are described. These efforts
culminate in the discovery of several crashes in the BB and a kernel-level vulnerability
within iOS.
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Kurzfassung

In den letzten drei Jahrzehnten wurden Mobiltelefone ein immer größerer Teil unseres
Alltags. Der Baseband-Prozessor, der Chip, der Kommunikation über Mobilfunk ermög-
licht, hat sich ebenfalls stark weiterentwickelt. Wenn die Firmware dieses Chips unsicher
ist, ist es einem Angreifer möglich, in Kombination mit einer lokalen Rechteausweitung
und ohne Nutzerinteraktion, die volle Kontrolle über ein Smartphone zu erreichen. Dass
eine solche Schwachstelle existiert, ist sehr wahrscheinlich, weil der Großteil des Codes
der Baseband-Firmware schon vor vielen Jahren programmiert worden ist, bevor viele
Sicherheitsmaßnahmen weit verbreitet waren.

In dieser Arbeit wird das Protokoll zwischen Intel-Baseband-Prozessoren und dem
Hauptprozessor unter iOS namens Apple Remote Invocation (ARI) untersucht. Mittels
vier verschiedener Fuzzing-Ansätze dieses Protokolls wird die Firmware des Baseband-
Prozessors untersucht. Außerdem werden die Abschwächungen für Sicherheitslücken und
das Komplexitätswachstum in fünf Baseband-Generationen, die über einen Zeitraum von
vier Jahren veröffentlicht wurden, zusammengefasst. All diese Ansätze führen zu der
Entdeckung vieler Abstürze des Intel-Baseband-Prozessors und einer Sicherheitslücke
innerhalb des iOS-Kernels.
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CHAPTER 1
Introduction

This chapter will quickly motivate the topic of this thesis in Section 1.1. Then, a list of
specific contributions is provided by Section 1.2. Finally, the rest of this thesis is outlined
in Section 1.3.

1.1 Motivation

Over the last two decades, mobile phones have become ever more present in our daily
lives. With their growing popularity and usage, cellular networks had to evolve and
improve as well. Nowadays, phones support several standards such as Global System for
Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS),
Long-Term Evolution (LTE), and, more recently, 5G. To support these complex standards
efficiently, a Real-Time Operating System (RTOS) is required. Thus, modern smartphones
contain at least two processors. The Application Processor (AP) is the device’s main
processor and handles most of the interactions with the user, the main Operating System
(OS), and other interfaces. The Baseband (BB) processor, which runs the RTOS, is solely
responsible for cellular communication.

Due to the proprietary nature of most commercially available BBs’ firmware, it is not
possible to perform a code audit as an independent security researcher. Furthermore,
since the purpose of a mobile phone is cellular communication, users rarely turn this
functionality off. Since cellular standards are convoluted and ever-evolving, severe
vulnerabilities are likely to arise. Especially parsers for complex protocols such as GSM
or LTE have been affected by memory corruption flaws and similar security issues [100,
67, 52]. Due to the widespread usage of smartphones, such a vulnerability might have a
severe impact.
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1. Introduction

Intel is one of the most prominent BB manufacturers.1 Their XMM modem series has
been featured most notably in Apple’s iPhone smartphones [95]. Since the iPhone line of
mobile phones usually exhibits some of the most current technologies, Intel’s modems
are amongst the most exciting security analysis targets.

1.2 Contributions
In this thesis, an analysis of several firmware generations running on Intel modems will
be provided. More specifically, their implementations for four generations of iPhones
and one for the Apple Watch will be investigated. Contributions in this thesis can be
generally split into two categories. The first focuses on statically reverse-engineering
parts of the Intel BB. This step is necessary to understand how the BB relates to the
AP and handles certain tasks. Specific contributions of this thesis include:

• A more detailed overview of the Apple cellular stack running on the AP and its
relation to the BB.

• An overview of processor architectures employed in the Intel BB stack over five
generations. The RTOS used by the BB and a short look at the Digital Signal
Processor (DSP) architecture used by certain BB generations.

• An analysis of the complexity of the BB’s firmware. Two approaches are used:
using disassemblers to detect the number of functions and reconstructing a code
base skeleton.

• An outline of memory exploitation mitigations present in the five BB generations
and how they changed over time.

• An overview of diagnostic tools on iOS, their features and a look at the proprietary
log format produced by them.

• Finally, further insights were uncovered about the management protocol between
the AP and BB called Apple Remote Invocation (ARI).

Secondly, the insights gained through reverse engineering were used to implement several
approaches to fuzzing (parts of) the BB. Two approaches to fuzzing a part of the BB in
an emulator were implemented first. Then, two approaches of fuzzing the communication
between iOS and the BB were implemented on a physical device. More specifically, this
thesis contributes:

• A general emulation setup for the function responsible for parsing ARI messages in
the BB, as well as a custom fuzzer using the setup to analyze the parser. Further,
the emulated parser was also fuzzed using American Fuzzy Lop Plus Plus (AFL++).

1In 2019, Apple acquired a majority of Intel’s smartphone modem division [7].
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1.3. Outline

• The implementation of two in-process fuzzers for sending fuzzed ARI messages to
the BB.

• A kernel-level vulnerability within iOS that has since been reported to, acknowl-
edged and fixed by Apple in iOS 14.6.

Additionally, an evaluation of the implemented fuzzers is provided. This thesis also
contributes several smaller scripts that can help carry out similar analysis tasks in the
future. Thus, it provides a starting point for analyzing new BB generations.

1.3 Outline
The next two chapters of this thesis provide a foundation that help to understand the
following chapters. In Chapter 2, background information about several techniques
involved in this thesis is provided. Followed by Chapter 3, which presents previous work
on the topic of BB security research and fuzzing.

Chapter 4 focuses on static reverse-engineering tasks carried out throughout the thesis
and details the insights into the BB gained this way. Then, Chapter 5 uses these insights
to implement emulation-based and in-process fuzzing approaches to analyze the BB
dynamically. These fuzzing approaches are then evaluated in Chapter 6.

Finally, Chapter 7 provides a discussion of the results of the thesis. It also outlines
additional topics that can be used for future work on Intel BBs. Chapter 8 concludes
the thesis.
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CHAPTER 2
Background

In this chapter, a summary of several analysis techniques and general background
information about Basebands (BBs) is provided. First, in Section 2.1, an overview of
a general BB architecture is given. Then, Section 2.2 details how the communication
between the BB and the Application Processor (AP) is typically handled. Section 2.3
introduces several concepts within the realm of firmware emulation. Further, Section 2.4
and Section 2.5 detail static and dynamic analysis techniques used in this thesis. Finally,
Section 2.6 describes the attacker model considered in the following chapters.

2.1 Baseband Architecture
In general, a BB runs on a separate processor with a Real-Time Operating System
(RTOS) [100, 19, 46, 52]. Figure 2.1 shows the general architecture of a modern cellular
stack. Universal Mobile Telecommunications System (UMTS) or Long-Term Evolution
(LTE) stacks are run on top of the RTOS to handle such complex cellular standards.
Connecting to the cellular network is achieved by the BB via its physical interface (PHY).

Typically, there are two approaches to issue commands to a given BB. First, a BB might
be controlled via a serial interface, such as Peripheral Component Interconnect Express
(PCIe) [84]. The protocol depends on the BB itself and the Operating System (OS)
running on the AP. The second approach to interact with a BB is to use shared memory.
Note that these approaches are not mutually exclusive, meaning that they might be
used in conjunction. These two methods are solely the two most common methods, and
different vendors implement others.

Cellular capabilities that a BB supports are based on standards mainly published by
the 3rd Generation Partnership Project (3GPP). These standards are issued in so-called
Releases. As of writing, there are about 23 releases, with two additional ones currently
under development (releases 17 and 18) [1]. The latest finalized or “frozen” major version

5



2. Background

Application Processor

Libraries, Applications, . . .

AT Commands, ARI, . . .

PCIe, Shared Memory, USB, . . .

AT Commands, ARI, . . .

Real-Time Operating System

UMTS-, LTE-, . . . Stacks

PHY
Baseband

Figure 2.1: A generalized cellular stack.

is release 16. A release can contain multiple standards, and a given cellular protocol like
LTE is defined across multiple releases. It is also possible that a particular release might
be withdrawn at a later date. For example, the latest Intel LTE modem called XMM
7660 is based on release 14 [56]. The following timeline shows how the development of
the modem correlates with the publication of the release:

17.09.2014 Work on release 14 was started by 3GPP [1].

09.06.2017 Release 14 was “frozen” [1].

16.11.2017 Intel planned to release the XMM 7660 modem in 2019 [54].

Q3 of 2019 The Intel XMM 7660 modem was officially released. Variants of the iPhone
11 use the XMM 7660 modem. It was released on the 20th of September 2019 [6].

2.2 Application Processor to Baseband Communication
Several protocols exist to facilitate the serial interface between the BB and the AP. In
this section, a short introduction to two of these protocols will be given. The first one is
AT commands, which are standardized and, thus, publicly documented. The second one
is Apple Remote Invocation (ARI), is a proprietary protocol used by devices made by
Apple that utilize Intel BBs.
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2.3. Baseband Firmware Emulation

2.2.1 AT Commands
AT commands were first introduced by Dennis Hayes in the 1980s [90]. Since then, AT
commands have been part of several European Telecommunications Standards Institute
(ETSI) and, by extension, 3GPP standards. For example, standard commands for
the Short Message Service (SMS) [32], the Global System for Mobile Communications
(GSM) [27], and LTE [28] exist. However, manufacturers tend to extend the AT command
set with custom commands (e.g., creating a dump of the BB’s internal memory) [97].
According to the ETSI [27, 28] standards, a given command typically starts with “AT,”
followed by a list of basic commands separated by a semicolon. Each command can also
have a set of parameters. An AT command is terminated by a carriage return. Once a
command has been issued, the BB responds with information responses containing the
issued commands’ results. A response is terminated by either OK or ERROR if an error
has occurred with verbose responses enabled. Alternatively, if numeric responses are
enabled, 0 or 4 will be returned, respectively. The standard also explicitly mentions that
line feed and carriage return characters must be included in the responses.

2.2.2 Apple Remote Invocation
ARI is a proprietary management protocol that is used between Intel BB and mobile
devices made by Apple. There is no official public documentation of this protocol.
However, Kröll et al. [59] were able to reverse-engineer it. A summary of the parts
relevant to this thesis is given in Section 4.8.1.

2.3 Baseband Firmware Emulation
This section will give an overview of several emulation techniques relevant to this thesis.
While emulation of the BB’s firmware is a central part of this work, detailing all emulation
approaches introduced over the years would go beyond the scope of this thesis. Thus,
only a selection is presented. A more detailed survey on emulation techniques and tools
was created by Fasano et al. [35].
Due to the current BB chips’ proprietary and enclosed nature, emulating their firmware
allows more accessible and faster analysis than physically examining them. This process
is called “re-hosting” because the firmware is moved to an emulated host processor.
However, accurately emulating such a system can be rather challenging as well. For
one, the involved software stack is complex, and documentation is sparse. Further, it is
necessary to understand wireless and serial interfaces and shared memory between the
BB and AP to emulate all aspects that might influence the state of the BB.
An alternative is partial emulation, which makes it possible to take a specific part of a
given firmware and re-host this part [67, 68] in particular. Instead of figuring out how to
emulate all preconditions for the firmware to even boot up in the emulator, it is possible
to emulate only the section that will be analyzed. To make partial emulation work, it is
typically necessary to modify functions that rely on the hardware to succeed.

7



2. Background

One approach to emulate a given system either fully or partially is to use the Quick
Emulator (QEMU) [15]. It offers fast and efficient processor emulation. Furthermore, it
supports many processor architectures, even relatively obscure ones. However, emulating
binaries that are not formatted in a way that QEMU understands can be difficult. Several
projects have arisen over the years to support this use case. For example, LuaQEMU
extends QEMU with a just-in-time compiler for the Lua language. It exposes many
internal programming interfaces to this compiler, allowing it to swiftly adapt QEMU’s
behavior. Thus, it is possible to quickly emulate a given binary without having to modify
it.

Another such project is Unicorn [80], which allows adding hooks. Hooks are callback
functions that get executed if the emulation encounters a given condition. For example,
a “code hook” can detect if a given address is reached during the emulation and invoke
the callback. The function then has access to the emulator state. This method allows for
exact control of the emulation. For instance, a hook can be used to skip a code section
that Unicorn cannot easily emulate itself. Such situations may include accessing shared
memory or making use of the BB’s transceiver.

2.4 Software Analysis
The methods utilized in this thesis can broadly be categorized into static and dynamic
analysis methods. Static analysis approaches focus on the binaries that make up the
firmware themselves without executing them. On the other hand, dynamic approaches
analyze software while it is being executed, either in an emulator or on the BB itself.

2.4.1 Static Analysis
Since most commercially available BB processors and their firmware are proprietary, it
is impossible to analyze their firmware’s source code directly. However, it is typically
necessary to understand the basic structure of the BB and details such as memory
management to analyze security vulnerabilities. This section will discuss several tools to
aid with this task.

Disassembler and Decompilers

Disassemblers and decompilers [26] are standard tools used to reverse-engineer software.
A disassembler translates the raw binary data back into assembly instructions. It needs
to know the processor architecture on which the binary is supposed to run to work
accurately. It is typically also necessary to distinguish between parts of a file intended
to be executed and other data. Fortunately, many tools automate identifying these
parameters [4, 53, 3, 99].

A decompiler [26] tries to reconstruct the source code of a program. Of course, much
of the information typically lost in the compilation process cannot be restored, such as
variable names or function definitions. Symbol tables provide a way to preserve some of

8



2.4. Software Analysis

that information in a compiled binary. This thesis will use the terms “symbol tables,”
“debug symbols,” or only “symbols” interchangeably. However, firmware vendors typically
remove this information from a binary for production builds. Such a binary is also
referred to as a “stripped binary.”

Thus, disassembling and decompiling a stripped firmware typically misses a significant
amount of function signatures. For instance, previous work by Friebertshauser et al. [37]
and Pang et al. [83] has shown that state-of-the-art tools can still miss around 25 %
of function signatures depending on the exact settings. Worse, functions that are
identified are often false positives. Therefore, static analysis of a stripped firmware can
be unpredictable, and findings achieved this way might not be entirely factual.

Tools such as IDA Pro [53], Binary Ninja [99], or Ghidra [3] combine disassemblers and
decompilers. They also typically contain functionality to aid with detecting the processor
architecture a given binary is supposed to run on and much more. This thesis will utilize
IDA Pro, Binary Ninja, and Ghidra for static analysis. Furthermore, with IDA Pro, the
Thumbs Up plug-in [20] is used to improve function detection. Thumbs Up uses basic
machine learning techniques in addition to IDA Pro’s linear sweep analysis. Machine
learning can improve function detection because the function prologues and epilogues
differ between compilers. By learning the prologues and epilogues as patterns, more
function can be detected accurately. This approach can provide dramatic improvements
over IDA Pro’s default recursive analysis.

JTool 2

While the main focus of this thesis is on Intel’s BB implementation, it is helpful, and at
times necessary, to understand how iOS interacts with it. Some binaries and dynamic
libraries can be easily extracted from a given iOS device itself. However, in the case of
the iOS kernel extracting it from an iOS update can be useful. The kernel on iOS is
delivered as a kernel cache. This kernel cache contains the kernel itself in addition to all
of its extensions in a compressed format [96].

JTool 2 [61] can decompress this format to import it into IDA Pro or Ghidra. In general,
this tool parses and analyzes the Mach-O binary format. Mach-O is the native format for
executables on macOS [9] and is also used on iOS. Another valuable feature of JTool 2 is
adding symbols to a kernel panic report produced by iOS. Of course, this is conditioned
on the corresponding kernel containing the necessary symbols.

2.4.2 Dynamic Analysis

Dynamic analysis is at the heart of this thesis. Fuzzing and emulation are both techniques
that are commonly categorized as or used to facilitate dynamic analysis techniques. This
section will focus on some tools that are used in addition to fuzzing and emulation.
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Frida

F RIDA [81] is a framework that allows for the dynamic analysis of executables. It
injects a JavaScript engine into a running process and then offers a simple Application
Programming Interface (API). A script can use this API to call functions, read and
write memory regions and registers, add hooks, and much more. All this functionality
makes F RIDA a very versatile tool. In this thesis, F RIDA will collect samples of ARI
messages, fuzz the BB from the AP side, and try to reproduce crashes encountered
during fuzzing. These crashes might stem from the F RIDA-based in-process fuzzer or
the emulation-based fuzzer.

Diagnostic Tools

There are several diagnostic tools available on iOS that can be used to interact with the
BB. Since there is little public documentation available for these tools, reverse-engineering
them was also part of this thesis. They are described in more detail in Section 4.7.

2.5 Fuzzing
The original idea behind fuzzing or fuzz testing [72] is relatively simple. Random input
data is provided to the program to test whether a program conforms to expectations.
This input is also referred to as a fuzz case. The program is then observed to see whether
it crashes or exhibits other unexpected behavior. Unlike formal verification or testing
through manually defined test cases, fuzzing can be carried out much more efficiently.

Over the years, many approaches have been created to improve upon this basic approach.
Some rely on gaining information at runtime by instrumenting a binary. Others rely on
insights into the format of the input provided to a program. Furthermore, the way a
program is executed and provided with input has evolved too. In the following, a couple
of approaches will be outlined that are relevant to this thesis.

2.5.1 Coverage-guided Fuzzing

Coverage-guided fuzzing tries to improve fuzzing results by checking which parts of a
program are executed or covered if a given input is provided [24, 103, 36]. Through
maximizing the coverage during fuzz testing, a program is explored more deeply, and
more complex states are reached.

A program is typically instrumented with custom code to collect coverage data. This
code can then collect different information about how a program responds to a given
input. One of the earliest approaches to coverage-guided fuzzing used basic blocks as
coverage information [24]. Basic blocks are sequences of instructions that do not contain
any branching points or jumps. Another option is to use “edges.” Edges are tuples
consisting of two basic blocks that are separated by a branch or a jump. Fuzzers like
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American Fuzzy Lop (AFL) [103] and American Fuzzy Lop Plus Plus (AFL++) [36]
favor this approach.

Coverage-guided approaches are sometimes also called evolutionary fuzzers [24, 103, 36].
The name stems from the way coverage-guided fuzzers produce new inputs. The fuzzer
maintains a list of inputs. It will then modify or “mutate” an entry from the list and
provide it as input to the program. The “mutated” fuzz case will only be retained if
it, in turn, generates new coverage. This approach is very effective when it comes to
maximizing coverage.

2.5.2 Grammar-based and Protocol Fuzzing
Grammar-based [43, 12] and protocol fuzzers use knowledge of the format provided to
the program to generate new fuzz cases. Grammar-based fuzzers generate new inputs
based on a description of a formal grammar. Typically context-free grammars are used.
The goal is to explore a given binary more deeply. Coverage guidance can be added to
improve the effectiveness of a grammar-based fuzzer further.

Protocol fuzzing [21] is similar to grammar-based fuzzing in that a description of input
is needed to generate inputs. Fuzzing a protocol has unique challenges, mainly because
a bug may only be triggered if several packets are exchanged in a sequence. To use
an example, protocols such as Transport Layer Security (TLS) [87] use a handshake to
derive cryptographic keys to secure a connection. The first packet in this protocol is a
ClientHello message, which contains specific cryptographic parameters. Fuzzing only this
first packet would result in abysmal coverage of the TLS implementation as only the first
part of the handshake would be analyzed. Therefore, a more appropriate approach to
fuzz such protocols requires understanding the underlying protocol to create a series of
inputs.

2.5.3 Over-the-Air, Emulation, and In-Process Fuzzing
Due to its hardware requirements, the Intel BB’s firmware cannot be run natively on
standard x86 computers. Thus, a different approach is necessary. One approach could be
to set up a cellular base station and send malicious packets to the BB over the air [78].
There are several advantages to this approach. Crashes and errors found this way are
very likely to be reproducible because the testing setup is essentially indistinguishable
from a real-life setting. Very little work needs to be done to understand the internals of
the BB itself. The fuzzer could use publicly available standards to produce malicious
inputs.

However, over-the-air fuzzing also has significant drawbacks [78]. For one, it might miss
certain memory corruptions. If the BB does not crash or return unexpected results, issues
will remain undetected. Even more importantly, setting up a base station is challenging
itself. Many countries regulate who can operate a base station. Interference with actual
base stations must be prevented. If not, the results could range from a simple outage of
the cellular network in the surrounding area to damage caused to devices within the range
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of the fuzzing base station. Therefore, the use of a Faraday cage would be mandatory.
This thesis will not pursue this approach for these reasons.

Another option is to use emulation to re-host the firmware [67, 52, 34]. It can then be
provided with inputs through the emulator. Hardware requirements can be met either
by software re-implementations or by modifying the firmware and its execution. This
approach allows for a much deeper look into the inner workings of the firmware. Memory
can be read and written to at will. Thereby also enabling the addition of sanitization [89,
92] to the fuzzers, which means that memory corruptions will be spotted much quicker.
Further, execution speed does not depend on the actual hardware anymore and can be
parallelized, increasing fuzzing speeds, thus, making the fuzzer more efficient.

The downside of emulation-based fuzzing is the up-front cost of creating a proper
emulation of the program. Re-implementing hardware dependencies in software and
patching functions within the firmware can add much overhead before fuzzing can even
start.

Finally, in-process fuzzing [49] allows hooking into software running on the AP to fuzz
communication between the BB and the AP. It is possible to forgo the overhead incurred
with emulation by using this approach. Nor is it necessary to go through the lengthy
process of setting up a base station.

It does require some work to figure out how exactly communication between the AP and
BB is facilitated. Another disadvantage is the lack of introspection into the BB. Similar
to the over-the-air fuzzing approach, it is not possible to inspect memory in the BB. Nor
is it possible to instrument the firmware to collect coverage or add similar improvements
to the fuzzer.

Traditionally the term “in-process” fuzzing stems from the way a target is fuzzed. The
fuzzer runs in the same process as its target instead of a separate one. While the
fuzzers described in this thesis as “in-process” fuzzers do not hook functions within
the BB’s firmware but instead processes running on the AP, the term is still used here.
This decision is based on the term “in-process” fuzzing is much more widely used than
alternatives such as “on-device” fuzzers. Moreover, other than the fuzzing target, they
function much like a traditional “in-process” fuzzer.

2.6 Attacker Model
It is necessary to understand what capabilities a potential attacker has and what goals
they could pursue to understand the relevance of this work. This section will give a short
overview of the attacker considered in this thesis. Further, the effects of a successful
attack will be discussed.

This thesis assumes that the attacker already has control over the main OS running on
the AP. The attacker can execute code and has access to all interfaces and processes on
the phone itself. Thus, the attacker can interact with the BB directly or via hooking into
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a running process that uses cellular capabilities. Due to the architecture of most modern
phones, the attacker can already disable cellular communication on the phone and can
reset the BB at will.

Usually, the goal is to gain control over the AP. However, the attacker model outlined
here already assumes such control. While this model might appear unrealistic, results
gained by assuming it are still helpful. Analyzing the handler for the protocol used
between the AP and the BB is not meaningfully different from analyzing handlers for
glsgsm, UMTS, LTE, and more.

Since the attacker is already quite potent within the bounds of the main OS, their goal
is mainly focused on extending their control past access to the current device itself.
For instance, it does not make sense for the attacker to control the BB to surveil SMS
messages. After all, they have access to this information through other means, such as
monitoring process and databases within iOS.

Thus, two scenarios reveal themselves. First, an attacker might want to use the BB to
send malformed messages to the cellular network. While the attacker can easily send
messages within the bounds of the cellular specifications by issuing typical commands to
the BB, malformed transmissions would require an exploit on the BB. Therefore, the
attacker could benefit from better access to the BB to attack cellular base stations or
other components within the cellular network.

Secondly, especially in the case of iPhones, some functionality is not publicly documented,
such as the Off-Grid Radio Service or OGRS. This service is part of an unreleased
feature that would allow devices to communicate directly without the need for a cellular
network [63]. As part of this thesis, it was uncovered that some of the code for this
feature made it into the BB’s firmware final release. An attacker might use this to infect
other iPhones even if they are not connected to a cellular network.
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CHAPTER 3
Related Work

This chapter provides an overview of existing literature in several fields relevant to this
thesis. Section 3.1 discusses existing security research on the Intel XMM series of modems.
Then, Section 3.2 provides an outlook on work on other Baseband (BB) implementations
and cellular software stacks. Lastly, several works on fuzzing techniques are summarized
in Section 3.3. While the following sections detail related work on security research
of BB implementations by different vendors, including Intel, none of them analyzed
Apple Remote Invocation (ARI) to date. Thus, this thesis adds to existing literature by
approaching Intel BBs via this interface.

3.1 Intel XMM Modems

Since this thesis focuses on Intel’s XMM modem series, work surrounding this BB family
is of particular interest. Especially work involving the XMM 7360 and XMM 7480
modems is relevant here, as they are direct predecessors to the XMM 7660 modem at the
center of this work.

3.1.1 Reverse Engineering XMM Modems

In a talk at SyScan 360 in 2018 [47], Guy presented his efforts to reverse-engineering
the XMM 7360 modem’s firmware. This modem is present in some iPhone 7 devices.
Since this binary does not include debug symbols, which would dramatically improve
analysis, several approaches to generate such symbols are presented. In the end, the
most successful approach was to port symbols from a related Android firmware image.
Furthermore, approaches to fuzzing the AT interface of the BB are described.
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3.1.2 Vulnerabilities in XMM Modems
The Public Warning System (PWS) [29] is a cellular standard used to inform the broader
public about a given threat scenario, such as a missile strike or a natural disaster. Golde
and Weinmann [39] have taken a look at how this mechanism is implemented in the
XMM 7360 and XMM 7460 modems. They uncovered a series of vulnerabilities, such as
a logic flaw, an integer underflow, and a lack of bounds checking. These vulnerabilities
ultimately culminated in a buffer overflow in the parser responsible for PWS messages.
It allowed an attacker to write arbitrary values into the memory of the BB.
Following his talk from 2018, Guy presented his BB research progress at REcon 19 [46].
In this presentation, a heap buffer overflow is described. It was found by manually
reverse-engineering the BB. Further, efforts to emulate the BB firmware to fuzz the
parsers it contains are delineated. While full emulation of the firmware was unsuccessful,
partial emulation showed some promise.

3.2 Baseband Security Research
Research that revolves around BBs is of particular pertinence to this thesis. The following
section focuses on four different areas. First, work that has been carried out about the
communication between the BBs and the Application Processor (AP) is summarized.
Secondly, BB reverse engineering efforts are detailed. Thirdly, work analyzing cellular
stacks, in general, is discussed. Finally, literature on emulating BB firmware is outlined.

3.2.1 Application Processor to Baseband Protocols
(U)SimMonitor [102] uses the AT command interface of Android and iOS devices to
extract security-relevant data. This data includes the current network provider, the
International Mobile Subscriber Identity (IMSI), and cryptographic keys used to encrypt
cellular communication. A potential attacker could trick a user into downloading a
maliciously crafted application that includes (U)SimMonitor. It could then extract and
upload this information to an attacker-controlled server. In turn, the attacker could use
this information to identify and spy on a given user.
In their work from 2018, Tian et al. [97] analyzed AT commands in over 2000 Android
smartphones. Their approach first extracted AT commands from firmware images
available from the websites of the corresponding cell phone vendors. Next, the commands
would be replayed to selected Android devices, which exposed an AT interface over USB.
Using this interface, they could read and write the BB’s memory and, in some cases,
modify its firmware. Furthermore, since AT commands are usually unauthenticated,
phones with exposed AT interfaces are vulnerable to information leakage. With the LG
G4, it was possible to enter Android’s USB debugging mode without user interaction,
even if a passcode or pattern was enabled.
ATFuzzer [58] implements an evolutionary grammar-based fuzzer for the AT interface of
Android phones. Inputs are generated based on a set of grammars that are iteratively
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spliced to create new grammars. A fitness function is then used to select a new set of
grammars for the next round. The fitness function is loosely based on the timing an AT
command needs to execute. This approach was able to uncover several issues across ten
Android devices by six different vendors.

Makkaveev [68] details his approach to emulate and fuzz a Qualcomm BB. Qualcomm
uses its proprietary protocol called Qualcomm Mobile Station Modem Interface (QMI)
to facilitate communication between the BB and the application processor. The blog
post details how the BB’s firmware was decompressed and how the QMI handlers were
found by reverse-engineering. Through fuzzing these handlers, it was possible to find a
heap-based buffer overflow within the BB.

3.2.2 Reverse Engineering of Basebands

Weinmann [100] reverse-engineered Intel and Qualcomm BBs. While fuzzing is dis-
cussed in the paper, he argues that it leads to many crashes that are not exploitable
vulnerabilities. The preferred approach in this work is to identify functions related to
dynamic memory management such as memcpy() or memmove(). Once these functions
have been identified, he searches for calls that use a non-static length parameter. This
approach enabled the discovery of several memory corruption issues throughout both BB
stacks. However, not all vulnerabilities are described in the paper.

In 2013 at 30C3, Weinmann [101] gave a follow-up talk about Qualcomm’s Hexagon
architecture which is used in their BBs. He describes the general structure of the processor,
calling conventions, and how Return Oriented Programming (ROP) [16] can be achieved
on Hexagon. Additionally, security mitigations within the BB, such as Address Space
Layout Randomization (ASLR) [25], are summarized.

At REcon 2016 [40] Golde and Komaromy outlined their approach to reverse-engineering
the Shannon BB. Shannon BBs are developed and manufacture by Samsung and, thus,
feature most prominently in Samsung’s Galaxy series of smartphones. They describe
how they were able to disassemble and analyze the binary that contains the firmware.
Further, a stack-based buffer overflow was demonstrated.

A blog post from 2017 by Miru [76] demonstrated how an exploited BB could esca-
late privileges to the AP. A vulnerability in the Non-Volatile Random-Access Memory
(NVRAM) implementation of a MediaTek BB allowed an attacker to overwrite files and
executables of the Android file system. If such an executable was then invoked, an
attacker could not only run code on the AP but potentially gain root privileges.

Cama discussed another vulnerability in the Shannon BB at INSOMNI’HACK 2018 [19].
He details his approach to reverse-engineering the firmware and uncovering a bug within
the General Packet Radio Service (GPRS) implementation. It was also possible to trigger
this vulnerability over the air and write data to the Android file system. Lastly, attempts
to implement a debugger using this vulnerability are discussed.
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At Black Hat USA 2018, Grassi et al. [45] demonstrate how they reverse-engineered a
Huawei BB. A vulnerability present in a part of the Short Message Service (SMS) parser
allowed an attacker to overflow a buffer on the stack. They implemented an exploit based
on this vulnerability which changed the device’s International Mobile Equipment Identity
(IMEI) by running code within the BB.

An effort to implementing a debugger for a Qualcomm BB was presented at DEF CON
26 by Burke [17]. By using known exploits in the security architecture of Android phones,
it was possible to circumvent the signature checks used when booting the BB. Thus, it
was possible to modify the firmware. Then, replacing the handlers for some rarely used
AT commands, made it possible to arbitrarily read and write memory.

Muiruri et al. [77] presented their efforts in reverse-engineering a MediaTek BB at OPCDE
Kenya 2018. They could add hooks to AT command handlers within the BB because
there is no signature check for the BB’s firmware. Using this approach, they were able to
implement a debugger based on AT commands. With the help of this debugger, they
could identify a Denial of Service (DoS) attack.

3.2.3 Analysis of Cellular Stacks

In 2009 Mulliner and Miller [79] gave a talk at “Black Hat USA,” showing how they
injected SMS messages into an iPhone, an Android, and a Windows Mobile device.
Their approach inserts a layer into the communication path between the BB and the
application processor. It acts as a driver for the modem’s serial interface and then
injects the necessary commands to simulate the reception of an SMS message. Using this
technique, they were able to inject messages generated by a fuzzing framework. This led
to the discovery of several vulnerabilities throughout all three platforms.

Levin describes several details of how iOS interacts with the Qualcomm or Intel BB in
his 2018 book [62]. The description also includes a brief discussion of the BBs’ firmwares’
structure. Further, Peripheral Component Interconnect Express (PCIe) interfaces to the
BB are summarized. ARI is mentioned, but no details about its structure are given.

SMS Simulator [91] simulates SMS delivery for local testing on an iOS device. It uses an
undocumented interface within iOS to inject SMS messages without involving the BB at
all. Therefore, the tool can be used with Qualcomm- and Intel-based devices because it
acts on a higher layer of the cellular stack.

At RC3, Classen [22] detailed her approach towards creating a fuzzer for CommCenter,
the process within iOS handling cellular communication. She used F RIDA to hook certain
functions within CommCenter. These hooks could then either manipulate incoming or
inject new ARI messages. Further, several factors affecting the fuzzing performance of
F RIDA-based fuzzers are discussed.
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3.2.4 Emulation of Baseband Firmware
Grassi and Kira analyzed a BB implementation by MediaTek [44]. They reverse-engineered
the BB using older versions of the firmware for which the source code had been leaked
online. They discuss how they used Quick Emulator (QEMU) [15] to partially emulate
the BB and use this emulation for fuzzing. Finally, vulnerabilities are discussed briefly,
such as a heap buffer overflow.

BaseSAFE [67] is a cellular fuzzing framework that allows for efficient fuzzing of closed-
source firmware blobs such as BB stacks. It uses Unicorn to re-host parts of a BB’s
firmware and then uses the American Fuzzy Lop Plus Plus (AFL++) to fuzz it. Addi-
tionally, a sanitized heap was implemented to find memory corruptions faster. A memory
dump of a MediaTek BB is fuzzed to demonstrate the capabilities of this approach.
These efforts resulted in discovering vulnerabilities in the Long-Term Evolution (LTE)
implementation that could be reproduced over the air.

At BlackHat USA 2020, Hernandez and Muench [52] demonstrated their efforts to reverse-
engineer and emulate a Shannon BB. To emulate the BB, they used the Panda [82]
framework, which is based on QEMU. Additionally, the avatar2 framework was used
to model peripherals. After successfully emulating the firmware, they fuzzed parts of
the Global System for Mobile Communications (GSM) implementation, culminating in
discovering a buffer overflow vulnerability.

3.3 Dynamic Binary Analysis with Fuzzing
Fuzzing, in general, was first introduced by Miller et al. [72] in the context of UNIX
utilities. They developed fuzz to analyze the reliability of different programs. fuzz
produces a random series of characters and is the first publicly known fuzzer. At the
time many programs could not handle randomly generated inputs. However, the main
goal was not to find security vulnerabilities per se but to test whether a program would
hang or crash easily. Many programs failed this original test.

Since then, fuzzers have been adapted and improved to allow for more in-depth analysis in
several domains. Especially when it comes to finding memory corruption vulnerabilities,
fuzzing has enjoyed much popularity over the past two to three decades. The following
sections will give an overview of selected literature on the topic of fuzzing. In particular,
four fuzzing techniques will be discussed: stateful fuzzing, grammar-based fuzzing,
coverage-guided fuzzing and in-process fuzzing.

3.3.1 Stateful Fuzzing
RESTler [14] utilizes stateful fuzzing. The idea behind RESTler is that it tries to
find vulnerabilities that depend not only on one input but on a series of inputs. It
analyzes the API description of a cloud service and automatically creates REST-request
sequences. This method allows RESTler to automatically find vulnerabilities in such
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services. Atlidakis et al. tested their approach successfully with several public cloud
services.

Stateful fuzzing is also discussed by Chen et al. [21]. They propose an approach that
first captures state changes in a given protocol and then employs heuristics to generate
new inputs to a given program. Thus, they explore a program more deeply than would
be the case if they would only fuzz one packet of a protocol at a time.

A mechanism to help fuzzers overcome challenges when exploring complex states in a
program is presented by Aschermann et al. [13]. Using their tool called IJON, a human
analyst can add annotations to a program. The fuzzer can then use these annotations to
solve challenges it otherwise could not. This technique leads to a much more in-depth
exploration of possible program states.

3.3.2 Grammar-based Fuzzing

The concept of grammar-based fuzzing was summarized in Section 2.5.2. This section
will now summarize approaches to implement grammar-based fuzzers.

Grammar-based fuzzers tend to be less efficient than entirely random fuzzers. Gopinath
and Zeller [43] first implemented a grammar-based fuzzer in Python. Then, they iteratively
optimized and re-wrote their implementation until their fuzzer surpasses a random lexical
fuzzer.

Nautilus [12] is a grammar-based fuzzer that uses a formal grammar’s description to
generate inputs for a given program. It can also be extended with scripts to make it
possible to use non-context-free grammars, making the fuzzer more versatile. Further,
Nautilus also uses coverage data to improve fuzzing efficiency.

3.3.3 Coverage-guided Fuzzing

Coverage-guided or evolutionary fuzzers, as discussed in Section 2.5.1, first mutate a given
input and provide it to the fuzz testing target. After the target has finished processing the
input, the fuzzer decides whether the input should be considered for further fuzzing based
on coverage data. The following section discusses two of the most popular evolutionary
fuzzers that are also used in this thesis.

One very popular general-purpose fuzzer is American Fuzzy Lop (AFL) [103]. It uses
instrumentation to add custom code to a given program at each branch point. This code
tracks how often a branch is taken by increasing a counter referenced by the current and
previous basic block. Using this coverage data, AFL maintains an input queue. This
queue is filled from a corpus that needs to be provided by the user. AFL will then mutate
this corpus in several different ways. If a given input produces new coverage information,
it will then be added to the queue. Coverage information is also used to analyze crashes
and minimize the input needed to cause a crash.
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Since development on AFL has mostly been inactive since 2017, a community fork named
AFL++ [36] has gained increasing notoriety. It added several improvements such as more
sophisticated mutation strategies, more flexible instrumentation, and additional coverage
metrics. It also offers an Application Programming Interface (API) to implement custom
fuzzing strategies. In combination, these additions make AFL++ a much more versatile
fuzzer than AFL and a very efficient one as demonstrated in several benchmarks.

3.3.4 In-process Fuzzing
In-process fuzzers use function and data hooks in already existing processes to fuzz a
given target. A more in-depth discussion of the general topic is given in Section 2.5.3.
The following section introduces three in-process fuzzers that have centrally influenced
the in-process fuzzers presented in this thesis.

Frizzer [69] is a general purpose coverage guided black box fuzzer. It is based on F RIDA
and can collect coverage through F RIDA’s Stalker feature. It can fuzz a binary while
it is running on a given host system without the need for prior instrumentation. The
binary can even reside on a different system than the fuzzer itself, as long as it can be
instrumented via F RIDA.

ToothPicker [49], which is partially based on Frizzer, instruments the iOS Bluetooth
daemon using F RIDA. It then mutates packets within a Bluetooth connection using
Radamsa [50]. Further, it can also collect and use coverage data. ToothFlipper uses an
even more straightforward approach: It simply flips certain bits and bytes in a given
packet. The resulting fuzzer is very stateful and can reach very complicated states within
the Bluetooth daemon.

Improving on the concepts of ToothPicker, fpicker [48] supports several modes of operation.
The most noteworthy mode is AFL++ mode which runs an AFL++ instance on the
device that is being fuzzed. fpicker uses a custom mechanism based on semaphores and
shared memory to improve the overhead incurred by the F RIDA API to communicate
with the instrumented process. The tool supports fuzzing processes on macOS, iOS, and
Linux.

21





CHAPTER 4
Baseband Reverse Engineering

Before parts of the Baseband (BB) can be emulated, some parameters have to be
understood. This chapter aims to demonstrate the knowledge gained about Intel BB
implementations by reverse-engineering its firmware. First, a short overview of the
cellular stack on iOS is given in Section 4.1. Section 4.2 details how the firmware can be
acquired and Section 4.3 gives some information about the processor model and memory
layout. An in-depth look at the size and complexity of the different BB generations is
presented in Section 4.4. Then, Section 4.5 briefly discusses the Real-Time Operating
System (RTOS) used by the BB. Further, Section 4.7 provides a short introduction to
diagnostic tools on iOS. Finally, Section 4.8 describes Apple Remote Invocation (ARI)
and several handlers related to it within the BB and iOS.

4.1 Overview

Device ID Product Name Modem Baseband Architecture
iPhone 9,1 iPhone 7 (Global) XMM 7360 ICE16 ARMv7-A
iPhone 10,1 iPhone 8 (Global) XMM 7480 ICE17 ARMv7-A
iPhone 10,3 iPhone X (Global) XMM 7480 ICE17 ARMv7-A
iPhone 11,2 iPhone XS XMM 7560 ICE18 x86
iPhone 11,8 iPhone XR XMM 7560 ICE18 x86
iPhone 12,1 iPhone 11 XMM 7660 ICE19 ARMv7-A
iPhone 12,8 iPhone SE (2020) XMM 7660 ICE19 ARMv7-A
Watch 4,4 Apple Watch Series 4 XMM 7560 Variant IBIS18 ARMv7
Watch 5,4 Apple Watch Series 5 XMM 7560 Variant IBIS18 ARMv7
Watch 6,4 Apple Watch Series 6 XMM 7560 Variant IBIS18 ARMv7

Table 4.1: Selected Apple devices and their BB versions.
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AppleBasebandServices AppleBasebandManager CoreTelephony

ABMHelper

abm-helper
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libBasebandManagerICE.dylib
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ThreadX
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Figure 4.1: An overview of selected Frameworks, Libraries and Programs in the Apple
cellular stack in combination with Intel BBs.

This chapter will give an overview of four different versions of Intel BBs in connection
with Apple devices. The main focus will be on the newest version, ICE19, used by iPhones
and iPads with XMM 7660 modems. It is a successor to the ICE16, ICE17 and ICE18
BBs, utilized in previous iOS device generations. Lastly, IBIS18 BBs are present in
Apple Watch Series 4, 5, and 6 devices. Table 4.1 shows an overview of different selected
devices made by Apple. Each device has its identifier, the product name, the modem
version and the BB firmware generation listed. It also shows that the Apple Watch uses a
modified version of the XMM 7560 modem, reflected by the differing BB version. Finally,
also the processor architecture of the given chip is stated.

Further, given that this thesis focuses on Intel BBs used primarily in iOS devices,
it is necessary to understand certain parts of iOS that interact with the BB. Se-
lected parts of the cellular stack and the BB relevant to this work can be seen in
the schematic in Figure 4.1. In general, the cellular stack is built on top of at least four
frameworks: AppleBasebandServices, AppleBasebandManager, ABMHelper,
and CoreTelephony. The first three are private frameworks used by Apple to build
public frameworks, applications and more.

Then, there are at least two significant executables build on top of these frameworks.
Firstly, CommCenter handles phone calls, Short Message Service (SMS) messages and
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other cellular functions. A small amount of its functionality is exposed to developers
through CoreTelephony, such as querying the cellular service provider [8]. Secondly,
there is abm-helper which is used to manage the BB. It monitors whether the BB has
crashed and needs to be reset and generally handles tracing and diagnostic capabilities.

Both of these executables import several dynamic libraries that can be accessed through
F RIDA at runtime. Note that the exact libraries loaded by the executables depend
on whether an Intel or a Qualcomm BB is used. Two of these are of particular im-
portance: libARIServer.dylib and libARI.dylib. They handle the communi-
cation with the BB via Peripheral Component Interconnect Express (PCIe). Lastly,
libBasebandManagerICE.dylib manages interactions with the BB in CommCenter.

4.2 Firmware Acquisition
Acquiring the firmware of the BB is the first step to analyzing it. In the case of iOS,
it can be extracted from iOS updates available through ipsw.me.1 iOS updates are
issued in .ipsw-files, these are simply ZIP archives and can be extracted easily with any
standard decompression tool (e.g., the unzip command).

From there, the firmware is usually found in the aptly named “Firmware” folder. The
BB firmware image is typically stored as a .bbfw-file, which again is a ZIP archive. The
build manifest included in the .ipsw-file gives some insight into which firmware is used
for the different parts of the iOS device. For the BB, it lists the relative path to the
.bbfw archive. Furthermore, for each binary contained within the BB firmware image, a
base64-encoded SHA2-384 digest is listed. An excerpt of a BuildManifest.plist
demonstrating this can be found in Section A.2. In this fashion, BB firmware images
from iOS 13.5, 14.1, 14.4, and 14.5 were acquired over the course of this thesis.

Depending on the exact firmware version, the .bbfw-file contains a different set of files.
A comprehensive comparison of which files are present in which BB version is presented in
Table 4.2. ICE19 likely uses psi_ram2.bin and psi_ram2.bin for different revisions
of the modem. Note that the absence of files, such as 2GFW.elf, does not indicate that
the modem does not support Global System for Mobile Communications (GSM) but that
GSM implementation is likely part of a different binary. The most crucial binary in this
archive is the “System Software” contained in SYS_SW.elf. It is present across all BB
generations and contains the central part of the firmware.

4.3 Processor and Memory
The processor architecture and memory layout need to be understood to a certain extent
to emulate the BB successfully. Some general information can be gained directly from the
Executable and Linkable Format (ELF) [98] file, such as the endianness and processor

1iOS update images are available through https://ipsw.me.
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File ICE16 ICE17 ICE18 ICE19 IBIS18 Meaning or Purpose
2GFW.elf 8.9 kB 117 kB 2G (GSM) firmware
3GFW.elf 737 kB 2 MB 445 kB 3G firmware
ant_cfg_data.elf 506 kB Configuration data for the antenna
AudioFW.elf 14 kB* 721 kB 13 kB Audio processing firmware
bbcfg.bin 133 kB 82 kB 805 kB 1.8 MB 42 kB Baseband configuration data
CDMA2KFW.elf 105 kB CDMA2000 firmware
custpack.elf 17 kB 384 kB -
Debug_info.elf 274 kB 1.1 kB 281 B Debugging related information
DPC.elf 818 kB* -
ebl.bin 77 kB 73 kB 243 kB 144 kB 69 kB Embedded boot loader [60]
GNSS_FW.elf 69 kB Global navigation satellite system firmware
irx_coefficient.elf 1.4 MB -
legacy_rat_fw.elf 595 kB Firmware for the legacy radio access technology
LTEFW.elf 4.2 MB* 5 MB* 5.5 MB* 4.7 MB* LTE firmware
psi_ram2.bin 397 kB Stage zero boot loader [60]
psi_ram.bin 128 kB 160 kB 396 kB 396 kB 128 kB Stage zero boot loader [60]
restorepsi2.bin 397 kB Possibly restores stage zero boot loader
restorepsi.bin 128 kB 160 kB 396 kB 396 kB 128 kB Possibly restores stage zero boot loader
RFFW.elf 414 kB* 14 MB* 17 MB* 8.4 MB* -
RPCU.elf 1.6 MB* -
SYS_SW.elf 27 MB 29 MB 49 MB 63 MB 13 MB System Software (main firmware)
TDSFW.elf 1.7 MB 1.8 MB 1.7 MB -
TPCU.elf 1.1 MB* -
upc.elf 19 MB -

Table 4.2: Files contained in the different BB firmwares. The asterisk indicates that the
binary uses the Xtensa architecture.

architecture. However, this information is not always trustworthy as it can be overwritten
easily.

4.3.1 Processor Architecture

Inspecting the ELF-headers of SYS_SW.elf, which contains the main firmware, for
ICE18 BBs will indicate that this is a 32-bit ARM binary with little-endian byte order.
However, only about nine functions will be automatically detected when loading this
file into a disassembler like IDA Pro [53]. In contrast, when automatically analyzing an
ICE19 BB, about 100.000 functions are found. It turns out that the XMM 7560 modem
shipped with some iOS devices (e.g., the iPhone XS) shipped with x86 based BBs [60].
IDA Pro’s “MetaPC” processor type can be used to disassemble all x86 instructions.
Re-running the analysis with this processor type yields a similar result to ARM BBs like
ICE17 or ICE19.

Even though ICE18 ’s main firmware is based on the x86 architecture, other firmware
parts are based on the Xtensa [94, 41] architecture. When running cpu_rec [4] on
the DPC.elf file to identify the Central Processing Unit (CPU) architecture, we can
find two code segments that use Xtensa instructions. Two other files, RPCU.elf and
AudioFW.elf, contain Xtensa segments as well. Strings within these files further
confirm the use of this architecture.
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Usage of Xtensa cores can also be found in ARM -based BB generations. For instance,
the Long-Term Evolution (LTE) stack’s firmware (LTEFW.elf) is typically implemented
as an Xtensa binary. In ICE19 BBs, inspecting the TPCU.elf file yields strings that
indicate an Xtensa instruction set, and so does cpu_rec.

The Xtensa-based binaries often implement digital signal processing tasks, such as
handling the audio for voice calls. It stands to reason that they were used to increase the
efficiency of the overall BB. Xtensa cores are often used specifically to implement Digital
Signal Processors (DSPs) [18]. Therefore, they can handle these assignments much more
efficiently, thanks to the modular nature of the Xtensa architecture.

4.3.2 Processor Model
Particular details about the processor cannot be understood by analyzing the ELF,
such as the exact processor model. Luckily running the strings command on the
SYS_SW.elf file, in the case of ARM -based BBs, returns some very informative strings,
such as the one in Listing 4.1.

1 [...]
2 ../../3p_threadx/cortex-a5r-smp/src/tx_thread_shell_entry.c
3 [...]

Listing 4.1: String contained in the ICE19 BB indicating an ARM Cortex-A5 processor.

This string indicates that the BB’s CPU is based on ARM’s Cortex-A5 processor, which
uses the ARMv7-A instruction set. Similar strings are also contained in ICE16 and
ICE17 BBs. According to ARM’s specification [64], it offers a modular core count, which
means the physical processor might have between one and four cores. The firmware checks
the number of cores across all BB generations. However, the number of cores differs
between generations. Listing 4.2 shows a check within the ICE17 BB that indicates that
the given processor has three cores.

1 char buf[20];
2
3 /* ... */
4 if ( possible_core_id >= 3 )
5 sub_85DCD5AC(buf, "Invalid Core Id!", 20);

Listing 4.2: Check for valid core id in ICE17 BBs.

There are further indications that the ICE17 BBs contain three cores. The same is the
case for ICE16. While ICE18 BBs contain similar checks, their change of processor
architecture makes a direct comparison difficult. However, ICE19 BBs use ARM Cortex-
A5 processors again. Here, the check has been modified to allow up to four cores, as can
be seen in Listing 4.3.

Thus, the actual core count differs between ARM -based BBs as well. ICE16 and ICE17
BBs appear to have shipped with a variant containing three cores. ICE19 BBs, on the
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1 /* ... */
2 if ( possible_core_id >= 4 )
3 return sprintf_like("%s Error: Invalid CoreID : %d",
4 off_8A420E78 + 29, possible_core_id);
5 /* ... */

Listing 4.3: Check for a valid core id in ICE19 BBs.

other hand, utilize all four possible cores. More code snippets indicating the core count
in all four BB generations can be found in Section A.3.

4.3.3 Memory Layout

For the memory layout needed for the emulator, the LOAD segments of the ELF files are
beneficial. They indicate the virtual addresses to which a given segment within the ELF
file must be mapped and its size and alignment. Additionally, every segment contains a
flag indicating whether it can be executed, is readable, or writeable. Using these offsets
comes with the upside that addresses in the emulator’s memory are identical to the ones
used by IDA Pro and Ghidra.

Since this thesis mainly focuses on partial emulation, the presented information is
sufficient to emulate certain firmware parts, as will be shown in Chapter 5. However,
this is not a complete memory layout by any means. For example, the BB has access
to non-volatile memory stored on the device’s main file system. In other words, the
Application Processor (AP) has access to this memory. It is mapped as a set of files in
iOS in the /private/var/wireless/baseband_data/bbfs directory. However, details about
this mechanism are yet to be determined.

4.4 Baseband Complexity
This section provides an overview of the general structure and size of the BB’s main
firmware. First, the number of functions detected across the three BB generations will be
discussed. This analysis will show how the firmware’s complexity has changed over time.
Secondly, the general structure of the firmware’s source code was partially reconstructed
from strings within the BB. This reconstruction will provide further insights into the
complexity of the BB.

4.4.1 Function Detection

Several tools were used to show how many functions are present within the BB’s main
system firmware (SYS_SW.elf). Previous work [37, 83] has shown that instruction and
function detection can vary between different static analysis tools. Thus, this section
can also serve as a comparison between the performance of the chosen tools. The tools

28



4.4. Baseband Complexity

IBIS18 ICE16 ICE17 ICE18 ICE19

50K

100K

150K

200K

250K

N
um

be
r

of
Fu

nc
tio

ns

IDA Pro 7.4
IDA + Thumbs Up

Ghidra
Binary Ninja

Figure 4.2: Function detection between different BB generations and disassemblers.

include IDA Pro version 7.4 [53], Ghidra version 9.2 [3], and Binary Ninja version 2.4 [99].
Further, to improve function detection in IDA Pro, the Thumbs Up [20] script was used.

The import settings of each disassembler were left to the default settings in most cases,
with two notable exceptions. First, in ICE18 BBs, every tool trusted the information in
the ELF and had to be manually set to use an x86 disassembler. Secondly, Binary Ninja
would not start analysis on the segments defined by the ELF headers automatically. ELF
segments with the same semantics as code regions had to be converted to sections. In
other words, each writable and executable segment within a given ELF file was marked
as a target for analysis via a script.

Figure 4.2 shows the reported number of functions after having imported the SYS_SW.elf.
Sadly we lack a baseline to compare the results too. As of writing, there is no symboli-
cated ICE or IBIS BB firmware publicly known. Thus, it is unknow what the actual
function count could be.

However, the differences between the imports, especially between Ghidra and IDA Pro,
line up with previous work [37] on disassembler performance. Thus, the results are
probably relatively close. One caveat remains, the likely substantial percentage of false
positives.

The plot shows a steady growth between the BB versions. From ICE16 to ICE17, the
function count increased by about 4 000 functions. Then from ICE17 to ICE19, about
12 000 to 13 000 thousand functions were added. This result shows that the number of
functions increases between 4 .5 % and 14 % with each generation. Note that comparing
the function count to ICE18 is difficult due to switching to an x86 based infrastructure.
However, the detected count is very close to ICE19 BBs, it misses only about 5 000
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functions.

It is also clear that IBIS18 is a lot smaller than its ICE siblings. All disassemblers
seem to have found only half as many functions compared to ICE19. This result is also
reflected by the smaller overall size of the firmware archive. The IBIS18 archive is slightly
bigger than a quarter of the size of the ICE19 firmware (12 .4 vs. 42 .6MB).

While Ghidra and IDA Pro mostly behave as expected, showing a steady increase and
relatively similar results, Binary Ninja did not. The most apparent oddity is the function
count for ICE16, which is more than twice the number of functions than any other BB
generation. Importing this binary was also showed strange behavior in that it took the
longest to finish (about 30 hours). It likely interpreted parts of the BB that were pure
data as a code region.

Interestingly, the Binary Ninja numbers for the other ARM -based BBs mostly align with
the other disassemblers. Further, while a raw import of the ICE19 BB shows it to be
smaller than ICE17, after manually adjusting a couple of function signatures (fewer than
20), the number of functions detected by Binary Ninja increased by 14 .78 % to 113 328.
This number brings it much closer to the number reported by IDA Pro in combination
with Thumbs Up (117 394 functions).

Finally, Ghidra detects surprisingly few functions in ICE18 BB. It reports only 49 587
functions which is less than half of the about 100 000 functions reported by other disas-
semblers. Similarly, Binary Ninja again reports surprisingly many functions (143 484).

It might be that the information in the ELF impacts the analysis even though it was
manually overwritten. Several different settings were tried, and the imports were re-run
to ensure that it was not a simple configuration error. However, neither in the case of
Ghidra nor Binary Ninja did results change significantly. When looking at the results
reported by Friebertshauser et al. [37] they show that changing settings within Ghidra
seems to have little effect, which is consistent with the results of this work.

4.4.2 Source Code Structure
Another way to understand the structure and complexity of the BB is to analyze specific
strings within the BB. By making inferences from these strings, the general structure and
size of the underlying codebase can be understood. A Python script was implemented to
extract such a structure to automatize this process.

This section will first discuss the two approaches utilized by this script. Secondly, the
results of this analysis will be presented. This approach was inspired by Hernandez’s [51]
approach to recreating the Shannon BB’s source code structure.

Source Code Files

Some analysis must first be carried out to implement a script that can extract source code
paths and reconstruct the codebase’s folder structure. Listing 4.4 shows several strings
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1 ../../../modem/msw_platform_services/runtime_services/utils/src/
util_mem_s.c

2 ../../msw_platform_services/runtime_services/icc/src/icc.c
3 modem/msw_platform_services/runtime_services/utils/src/util_string_s.

c
4 /var/xbs/bwa/3A54AE22-4095-447F-B510-5BCB148C5C9C/ICE19BaseBandFW

-20407/srcroot/libsec/bblibsec/ice_rf_self_test.c
5 ../../3p_ice/src/ibi_adapters/ibi_adapter_grp23_trc_info.cpp
6 ../../3p_ice/src/ibi_adapters/ibi_adapter_grp34_ice_ipc.cpp
7 ../../media_dsp/source/../../media_dsp/source/handler_layer/

ahb_error_task/ahb_error_task.c

Listing 4.4: Source code path examples in the ICE19 firmware.

that point towards source code files. From the file extensions, it is possible to deduct that
the firmware has a mixed C/C++ codebase. These file extensions can then be leveraged
to filter the strings within the BB to only contain valid source code paths. Additionally,
since references to simple file names cannot be placed in an overarching folder structure,
strings that do not include a Unix path separator (/) can also be excluded.

However, most strings that point to source code files are relative paths often containing
references to parent directories. Thus, information from absolute paths or relative paths
without references to parent directories was used. Most of the files are likely contained
in a directory with the name “modem.” If a path starts by going back up the directory
tree twice, this is replaced with the “modem” directory.

Further, the entirety of the source code seems to be contained in a folder named “srcroot.”
Thus, the “modem” folder is placed inside the “srcroot” directory. All other references to
parent directories are then resolved relative to “srcroot.” For every path, a new empty
file is created at the given location. All files are then collected in a .zip-file.

This approach results in a realistic-looking source code structure. There are, of course,
exceptions to the rule and the script does produce a small amount of strange-looking
sub-structures. For instance, with ICE19, a folder with the name “l” containing a single
file is created, the file’s name contains a colon. It seems unlikely that this folder is present
in the actual codebase.

Libraries

In addition to the paths related to source code files, the firmware for each BB generation
also contains references to library files (.lib). Sadly, these references do not include
absolute or relative paths but only file names. Therefore, it is impossible to add them to
the source code structure in the same way as the source code paths.

However, they do provide an insight into how the firmware has changed over time. Thus,
the script to produce a folder structure includes an option to collect this information as
well. In the re-created codebase, the libraries are then added to a folder named “libs”.
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Figure 4.3: Comparison between the number of source code file paths in the BB’s
firmware.

Structure Analysis Results

One advantage of this approach is that the entire firmware image is taken into account.
In Section 4.4.1, only SYS_SW.elf was analyzed. This circumstance was mainly due
to the complexity of importing these files into the respective tools. An analysis process
typically took several hours, and some failed several times due to a lack of memory before
completing successfully. This script-based approach is much simpler and, thus, faster.
Hence, all files in a given firmware will be taken into account.

Figure 4.3 shows how the BB’s firmware has grown between different generations. The
chart also confirms that IBIS18 is much smaller than the other BBs. At 858 source code
files and 101 libraries, it is about half the size of ICE19 at 1 957 source code files and
175 libraries.

Interestingly, ICE17 contains considerably fewer references to source files (1 227 vs. 1 443)
and slightly fewer libraries (124 vs. 129) than ICE16. Section 4.4.1 showed that ICE17
contains around 4 000 more functions than ICE16. One possible explanation is that
certain log strings might have been stripped from ICE17. Analyzing the structure of the
BB based on the files included in their given firmware image (see: Table 4.2) also shows
that significant changes have occurred.

In addition to quickly analyzing all files in a given firmware image, this approach also
makes it possible to compare ICE18 to the ARM -based BBs more directly. For instance,
taking a look at the contents of the “modem” shows that ICE18 only misses two out
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of 40 folders compared to ICE19. This result shows that the code base has remained
relatively similar in its structure between the two generations.

Thus, we can conclude that from ICE16 to ICE18, the firmware’s structure has gained
about 36 .24 % more source files (1 443 vs. 1 966) and 31 % more libraries (169 vs. 129).
Finally, ICE18 and ICE19 have remained relatively stable, with the source code file
count slightly decreasing from 1 966 to 1 957 and libraries moderately increasing from
169 to 175.

4.5 Real-Time Operating System
Intel BBs use a version of ThreadX [70]2 as their RTOS, as indicated by several strings
in the BB’s firmware. ThreadX was initially developed by Express Logic and has been
acquired by Microsoft in 2019 [38]. Beginning with version 6.0, ThreadX has been re-
branded as Azure RTOS ThreadX, and the source code has been made available through
GitHub.

1 Copyright (c) 1996-2013 Express Logic Inc. * ThreadX SMP/Cortex-A5/
RVDS Version G5.6.1.5.1 SN: 3582-266-1319 *

Listing 4.5: Copyright string from a ICE19 BB indicating that ThreadX is used.

The ICE16, ICE17 and ICE19 BBs run a version for ARM Cortex-A5 processors with
the version number “G5.6.1.5.1”. This conclusion can be inferred from the copyright
string in Listing 4.5, taken from an ICE19 BB. An essentially identical string can be
found in the latest versions of ICE16 and ICE17 BBs.

1 Copyright (c) 1996-2014 Express Logic Inc. * ThreadX Xtensa Version
G5.6.5.7 SN: 3906-198-3201 *

Listing 4.6: Copyright string from the ICE18 BB for an Xtensa version of ThreadX.

ThreadX is used in ICE18 and IBIS18 BBs as well. While the main firmware does not
include the copyright string present in ICE16, ICE17, and ICE19 BBs, some other files
contain a copyright string for an Xtensa version with the number “G5.6.5.7” as shown in
Listing 4.6. ICE19 uses this version for its Xtensa cores too.

4.6 Memory Exploitation Mitigations
Especially within ICE19 BBs, an effort to secure against memory corruption exploits is
noticeable. This effort can be seen in Table 4.3, which gives an overview of the mitigations
discussed in this section. For instance, the bootloaders within the firmware contain the
ability to set up an Address Space Layout Randomization (ASLR) [25] mechanism. The
stage zero bootloader in psi_ram.bin or psi_ram2.bin can either generate offsets

2ThreadX on GitHub: https://github.com/azure-rtos/threadx/
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Mitigation ICE16 ICE17 ICE18 ICE19 IBIS18
Stack Canaries ? ? ? ✓ ?
ASLR ✓
Safe string Library ✓ ✓ ✓ ✓

Table 4.3: Memory exploitation mitigations deployed in different BB generations.

or use injected ones, which means that the AP might have the ability to deactivate ASLR.
In ebl.bin, regions from the main firmware contained in SYS_SW.elf are re-located
to regions related to these offsets.

ICE19 BBs also use stack canaries or cookies [25] to protect the return address during
function execution. After the function prologue, a value is loaded from the address
0x8671F000 and is stored onto the stack. Then, the function body is executed. Before
the function returns, the value on the stack is checked. If the value remained unchanged,
the function returns normally. Otherwise, a failure handler is executed. The assembly
code of this mechanism is shown in Listing 4.7.

1 ; function prologue
2 LDR R6, =0x8671F000
3 ; ...
4 LDR R0, [R6]
5 STR R0, [SP,#0x20+var_20]
6 ; function body
7 LDR R0, [SP,#0x20+var_20]
8 LDR R1, [R6]
9 CMP R0, R1 ; canary check

10 BEQ loc_8A783CCA ; success: branch to return
11 POP.W {R2-R8,LR}
12 B.W stack_sec_fail ; failure: branch to handler

Listing 4.7: Setup and check of a stack canary taken from a function in ICE19.

Listing 4.8 shows the stack canary failure handler. It writes the value 0xDEADBEEF to
the address stored in the link register (LR) and then returns. In essence, this will cause a
crash. Presumably jumping to 0xDEADBEEF is recognized as an invalid write operation
and is, thus, aborted.

1 .stack_sec_fail
2 LDR R1, =0xDEADBEEF
3 STR.W R1, [LR]
4 BX LR

Listing 4.8: Stack canary failure handler in ICE19.

ICE17 introduced the usage of a safer version of the string library [46] to make buffer
overflows and similar vulnerabilities less likely. It contains string and memory routines
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that can lead to issues because they do not consider the size of the buffer they are writing
or reading. For instance, instead of using functions such as memset() or memcpy(),
memset_s() and memcpy_s() are used. The only BB generation considered in this
thesis that does not utilize this improved version is ICE16. These functions try to prevent
out-of-bounds write errors by specifying two length parameters, the first states the size
of the buffer that will be written to and the second the number of bytes to write. While
such checks can be useful to detect some issues, they still depend on the developers to
use them correctly. If the size of the destination buffer is not correctly provided, illegal
writes might still be possible.

4.7 Diagnostic Tools on iOS
On iOS, several command-line tools that can help with diagnosing issues with the BB
exist. While these tools are available on a jailbroken iPhone, their full functionality is
typically not accessible.

4.7.1 DumpBasebandCrash
The name of this tool would indicate that it can dump either memory or a kind of
crash report from a BB once it crashed. At first, running this command does not
seem to affect anything. There is no output at all nor an indication of whether
any files have been written or changed. It turns out that this tool will only work
if a crash has been detected recently. In this case, .istp files will be written
to a directory within the /var/wireless/Library/Logs/CrashReporter/Baseband direc-
tory. If the iOS BB debug profile is installed the files are additionally copied to
/var/mobile/Library/Logs/CrashReporter/Baseband3.

4.7.2 abmlite
Another tool that is available on current iPhones is abmlite. It is based on the
ABMHelper private framework, which contains strings hinting at a more powerful version
of abmlite called abmtool. However, since this is an internal tool, abmtool is
not available to the broader public. The publicly available abmlite is limited to
similar functionality as DumpBasebandCrash. Its main component is the logdump
sub-command which offers four dump types: bb, core, oslog, and tel.

The bb, core, and tel commands are very similar. They all create a set of .istp files,
again in the /var/wireless/Library/Logs/CrashReporter/Baseband directory. However,
core and tel also create a dump of the device log limited to activity related to
CommCenter. Lastly, the oslog option fails without providing a reason for why it
failed. It likely outputs a file containing parts of the regular system log.

3Debug profiles are available from https://developer.apple.com/bug-reporting/
profiles-and-logs/.
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4.7.3 .istp Files
It is necessary to understand a proprietary file format called ISTP to understand existing
diagnostics tools on iOS. This format is not publicly documented, and since the ability
to use abmlite or DumpBasebandCrash hinges on an understanding of this format,
several attempts were made to reverse-engineer ISTP.

First, it is necessary to understand how the .istp-log files are created. About every five
seconds two new files are written to the scratch folder (/var/wireless/Library/Logs/Ap-
pleBasebandManager/BBTrace.scratch). The first is the .istp file itself, and the second
is a .meta file. This second file is a text file containing a timestamp at which the corre-
sponding .istp file was created and the number of bytes it contains. Typically .istp
files are each about one megabyte in size. The name of both files is the hexadecimal
representation of a counter.

Once a logdump command is issued through abmlite, the .istp files in the scratch
folder get moved to a log folder. The .meta files are merged into an info.txt file.
Next to the file sizes and creation timestamp, this file includes the BB version and a
reason for the dump’s creation (i.e., whether it was triggered through a tool or a BB
crash). It appears that the reason for the crash has only been provided since the update
to iOS 14.

Several approaches to investigate the format of the .istp files are detailed in the
following sections. None have yielded a completed picture of the structure of these files,
but several details have been understood so far. It is also possible to rule out that ISTP
is identical to various well-known protocols.

Suspected Internal Tooling

Intel seems to make available several tools for their partners that make it possible to
understand the ISTP format. One such tool is the Intel® System Debugger [57]. Another
tool is the Intel System Trace Tool (STT) [55]. However, it was impossible to obtain them
as part of the thesis because Intel only shares these tools with partner companies after
signing a confidential non-disclosure agreement. The latter tool, STT, is also explicitly
mentioned in the Intel XMM 7160 modem [93] documentation.

Static Analysis and Reverse Engineering

binwalk [79] was used to rule out that ISTP files were encrypted or compressed with
a known algorithm. Entropy analysis showed that it is unlikely that ISTP files are
encrypted. Figure 4.4 shows the entropy distribution of a sample .istp file taken from
an ICE19 BB. If they were encrypted, the expectation would be that any given .istp
file would have constant high entropy because encrypted files should appear to be random.

Further, analysis with binwalk also indicated that .istp files are unlikely to be
compressed with a well-known algorithm. It cannot be ruled out that compression might
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Figure 4.4: Entropy graph of a sample .istp file.

be applied to at least parts of the files. However, ISTP versions used in BBs before
ICE19 were not compressed either.

By analyzing the structure of these files and frameworks, libraries, and tools interacting
with them both on the BB and iOS-side, some information can be gained. When opening
such a file in a hex editor, the following binary pattern is present repeatedly in all files:
ten 0xFF bytes followed by two 0x0F bytes and terminated by two bytes with the value
0xB018. The pattern likely serves as a header or a separator between different packets.
This binary pattern also appears in the firmware, and using IDA Pro’s cross-referencing

1 int write_istp_header_()
2 {
3 void * src = (void *) 0x895A2C18; // address of the
4 // 0xFFFF FFFF FFFF FFFF FFFF 0

F0F B018
5 // byte sequence
6
7 if ( * (void *) dword_8A01B5E4 == 32 )
8 src -= 48;
9

10 return memcpy_s((void *) 0x82FF9C40, 48, v0, 48);
11 }

Listing 4.9: Code copying the presumed ISTP header sequence in the BB.
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1 switch (work_mode) {
2 // [...]
3 case 11:
4 result = mbt_mode_ind?(0x87b03610, r1, r2_1);
5 case 12:
6 result = mipi_mode?(&data_87b03610, r1, r2_1);
7 case 14:
8 result = mon_dbg_mode?(0x870a2070, r1, r2_1);
9 case 15:

10 result = etm_mode?(&data_87b03610, r1, r2_1);
11 case 0x17:
12 result = "Nothing defined for OCT2!\r\nOK";
13 case 0x18:
14 result = current_settings?(0x870a2070, r1, r2_1)
15 case 0x19:
16 result = at_history?(0x870a2070, r1, r2_1);
17 }

Listing 4.10: A switch parsing the work mode of a AT+XSYSTRACE command.

feature reveals that it is used in at least one function that copies it to a fixed offset in
the BB’s memory. It can be seen in Listing 4.9. Analyzing the BB further with IDA
Pro suggested a protocol implemented over shared memory between the BB and iOS. In
terms of an attack from the BB to the AP, this protocol provides little surface. iOS only
copies the ISTP “packets” to files but does not parse them in any way.

Further following the reverse call graph for this function leads to a complex handler
covering several tracing and debugging related tasks. When comparing strings in that
handler with the AT command specifications discussed in Section 2.2.1, it seems likely
that this function is an AT command handler. For instance, the handler and functions it
often calls print strings ending in “\r\nOK”, which is how AT command responses are
required to end.

Comparing the handler to the AT commands described in the documentation for the
XMM 7160 modem [93], it becomes apparent that the handler is (part of) the AT+
XSYSTRACE command. It can enable and configure how the BB emits traces. There
are several other AT commands connected to tracing and debugging features, such as
AT+TRACE and AT+XSIO. The latter of these is explicitly described as being responsible
for configuring the ISTP format.

The document further specifies that other output formats exist, such as “MIPI-1” or
“MIPI-2”. The Mobile Industry Processor Interface Alliance (MIPI) 4 is an organization
that designs and specifies interfaces for mobile devices to encourage the integration of
components by different member companies. Most interestingly, they specify a whole
suite of tracing and debugging interfaces and protocols.

4More information about MIPI is available at www.mipi.org.
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1 ICE_AWD: IceAwdListener_LtePdschStat bler = %d mcs_index= %d rb_count
= %d

2 ICE_AWD: IceAwdListener_LtePdschStat sf_count = %d
3 ICE_AWD: IceAwdListener_LtePdschStat bler = %d mcs_index= %d rb_count

= %d
4 7480.S2.001.32.9.012.1.1228
5 ICE_AWD: awd_mem_free: ptr=%p err_stat=%d alloc_total_blocks=%d
6 ICE_AWD: TASK: message %x:%X received!
7 ICE_AWD: awd_mem_free: ptr=%p err_stat=%d alloc_total_blocks=%d
8 7480.S2.001.32.9.012.1.1228
9 7480.S2.001.32.9.012.1.1228

10 oct sleep cycles 2114

Listing 4.11: An excerpt of strings in a ICE17 ISTP dump.

Investigating the handler for AT+XSYSTRACE in terms of support for one of these
protocols leads to discovering a switch. An excerpt of which can be seen in Listing 4.10.
The break statements have been left out to shorten the excerpt. Depending on the
variable work_mode, different actions are carried out. “Work mode” 12 triggers “MIPI
Mode.” Thus, the assumption that ISTP can either be switched to a MIPI protocol or
can contain MIPI-compatible messages is palpable.

Next, it is possible to find the ARI magic bytes within these files. Interpreting the
surrounding bytes as ARI headers appears to yield valid headers at first. Thus, as part
of this thesis, a carving tool was written to extract these messages. When analyzing
them further in ARIstoteles [59], it becomes clear that these messages are not valid. The
occurrence of the ARI magic bytes is, therefore, likely coincidental.

ISTP Versions

While it is impossible to fully understand the ISTP format as of writing, the format has
likely changed between BB versions. For one, it is not possible to find the header or
separator in the ISTP dumps of previous BB generations.

Further, while only the separator sequence may have changed, it seems that also the
format of the packets or at least their content has changed significantly. Inspecting dumps
that stem from an ICE17 BB reveals many readable strings, such as the BB modem
number, format strings for logs and status messages. Listing 4.11 shows an excerpt from
an ICE17 ISTP dump. Interestingly, some strings seem to log memory allocations, which
are particularly important when creating a memory corruption based-exploit. ICE19
dumps do not include any of this information directly. Therefore, ICE19 produces a
much more opaque ISTP log.
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Other Tracing Formats in Connection with ISTP

The following section will shortly give an insight into other tracing protocols that seem
to be connected to ISTP. These are either related to Intel BBs by strings found in the
firmware or by reverse-engineering the tracing protocols related AT command handler.

MIPI System Trace Protocol The MIPI alliance publishes several standards on
tracing protocols. Most interestingly, they released a specification named MIPI System
Trace Protocol (STP) [74]. It provides several common features for protocols used
for traces that might include information such as processor instructions and data flow.
However, it is easy to rule out that ISTP is purely based on MIPI STP because the
documentation for MIPI STP explicitly mentions that the most extensive series of
consecutive one bits is 75 one bits. The separator between ISTP packets has 80 consecutive
one bits.

MIPI System Software - Trace Another protocol specified by MIPI is the System
Software - Trace (SyS-T) protocol. It can be used in combination with MIPI STP and is
geared towards exchanging information between a mobile device and a debugging and
testing system. SyS-T is a much more concrete and extensive protocol than MIPI STP.
Fortunately, MIPI provides sample code,5 including a printer that can transform a SyS-T
trace to Comma-Separated Values (CSV). However, running this example implementation
over several .istp files did not yield any results.

Other MIPI Protocols While it can be ruled out that ISTP is identical to any of
the previous two MIPI protocols, there are several more candidates. Of those candidates,
the MIPI Trace Wrapper Protocol (TWP) [75] is particularly compelling. It can combine
several trace sources into a single trace and then output it over a shared interface or store
it in a buffer. ISTP may be similar to TWP in that it may combine several different
traces into a single output format.

MIPI standards had at least some impact on the BB. While none of those above protocols
are directly referenced in the firmware, one is explicitly mentioned. MIPI Parallel Trace
Interface (PTI) [73] is a standard for a physical interface to connect a given device to a
debugging and tracing system. This standard is also mentioned in the documentation
for the Intel XMM 7160 modem [93]. Therefore, it is not unlikely that another MIPI
specification influenced the ISTP format.

TraceX TraceX [71] is part of the Azure RTOS ThreadX suite of products. It is a
Windows-based analysis tool and comes with its specification for a trace format. A
screenshot of the utility is shown in Figure 4.5 with a demo trace file. Since the BB
uses ThreadX as its RTOS, using TraceX would require little effort to integrate with the
existing system, in theory. However, trying to load .istp files into the program does

5The MIPI code is available at: https://github.com/MIPI-Alliance/public-mipi-sys-t
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Figure 4.5: A screenshot of the TraceX application with a loaded trace file.

not yield any results. Comparing the TraceX tracing protocol to ISTP also shows that
it is structurally very dissimilar from ISTP. While ISTP is likely not based on TraceX,
ISTP might be able to encapsulate TraceX events.

ARM CoreSight and Embedded Macro Cells Another technology that might
be related to ISTP is ARM ’s CoreSight [11] tracing and debugging architecture. More
specifically, the non-invasive tracing architecture is based on Embedded Trace Macrocells
or ETMs. These ETMs are embedded into processor cores and can provide real-time
instruction and data tracing capabilities. This assumption is supported by the availability
of an “ETM Mode” in the BB’s tracing-related AT command handler. Further, the
CoreSight architecture also includes a Program Trace Macrocell or PTM. It implements a
program flow trace functionality. While ICE19 .istp files contain only very few strings,
a prevalent one is “PTM”.

Qualcomm DIAG Finally, something worth mentioning here is that .istp files are
specific to Intel BBs. When using abmlite or DumpBasebandCrash on a Qualcomm-
based device, .diag.qmdl files are produced. These have a completely distinct structure
and are typically much smaller than an ISTP dump. In a talk at RC3, Esage [5] presented
her efforts at reverse-engineering this protocol.
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Figure 4.6: The ARI header.

4.8 Apple Remote Invocation
Since ARI has not been analyzed publicly regarding the BB side, it is an exciting target
for fuzzing. Additionally, it exemplifies several properties that tend to produce memory
corruption issues, such as several fields indicating a packet’s length (of parts). This
section will first take a brief look at the ARI format and then show how the corresponding
parser has been identified. In a later chapter, this handler will then be emulated and
fuzzed.

4.8.1 ARI Packet Format
In this thesis, only a quick summary of the ARI format will be given. It will only include
parts that are relevant to the topics discussed in Chapter 5. However, throughout this
thesis, several contributions to the understanding of ARI were made, such as the concept
of groups and the transaction identifier. In the following, a short overview based on work
by Kröll et al. [59] will be given. The next subsections will then detail the additional
contributions made by this thesis. Since the BB is a 32-bit little-endian system, ARI will
be treated as such in this section. Please note that this differs from how iOS treats ARI.

Every ARI packet has a header that is twelve bytes long. The format of this header
is displayed in Figure 4.6. The first four bytes consist of a fixed value (0xAB7EC0DE).
They are then followed by a length field (LEN) that is 15 bits long. Note that this length
refers to the packet’s body only and does not include the twelve header bytes.

Further, the ARI header contains a sequence number split over two fields, the first
containing eight bits (SEQ1) and the second three (SEQ2). It is unclear if the sequence
number is utilized by the BB as messages with an invalid sequence are sometimes still
accepted. The header also includes a six-bit group identifier (GRP), a 15-bit transaction
identifier (TRX), and a ten-bit long type field (TYP). Moreover, an acknowledgement flag
is included (A). TRX and A were reverse-engineered as part of this thesis. The remaining
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Figure 4.7: The header of a TLV field withing an ARI packet.

bits that are unlabelled in the figure are likely unused in the currently existing ARI
implementations.

The body of an ARI packet is made up of Type-Length-Value (TLV) fields, which are
explicitly referred to as “TLVs” in the logging strings of the BB. Each TLV starts with a
four-byte-header, which is shown in Figure 4.7. It consists of a fourteen-bit long length
field (LEN). This length field is followed by two bits that are currently unused. Next is a
three-bit long version field (VER), followed by ten bits of type information (TYP). The
last bit in the TLV header is again likely unused.

4.8.2 ARI Parsing in the Baseband
The fixed value in the header was used to find the ARI parser in the BB’s firmware.
Using IDA Pro’s ability to search for hexadecimal values in a binary file, only four results
showed up for the value 0xAB7EC0DE. Two of which were used within the body of a
function, found by the automatic analysis of IDA Pro. Analyzing these functions, it
became apparent that one was parsing ARI messages. It contained many calls to a
logging function and would also log different parts of the ARI and TLV headers. From
here on out, this function will be referred to as extract_ari_msg() (it can be found
at offset 0x8a84d818). Reconstruction of the ARI format was accomplished by using
these logging strings.

ARI Transactions

One field that was identifiable in the ARI header via analyzing the format strings was the
transaction identifier or TRX. Listing 4.12 shows the call to the ARI logging function with
the extract_ari_msg() function. The format string for the function call references
several fields within the ARI header.

In Listing 4.12 ari_buf is an array of 32 bit integers, containing the ARI message that
is currently being parsed. The length of the current message has been parsed previously
and is stored in the length variable. Further, the group, type, and trx are filled
with the values for the current group, type, and transaction identifier respectively.

ARI Groups

Further analyzing the surrounding functions and strings within the BB reveals that ARI
packets are handled by different functions, depending on their group. Each of these func-
tions first calls the logging function associated with ARI and then extract_ari_msg().
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ID Name Meaning or Purpose
01 bsp Baseband Signaling Protocol
02 call_cs Phone calls (Circuit Switched)
03 call_ps Phone calls (Packet Switched)
04 sms SMS
05 cbs Cell Broadcast Service
06 ss Supplementary Services
07 net_plmn Networking - Public Land Mobile Network
08 net_rat Networking - Radio Access Technology Settings
09 net_cell Networking - Cell Information/Configuration
10 net_dc_ims Networking - Data Channel, IP Multimedia Subsystem (ISM)
11 sim_access Access information on the Subscriber Identification Module (SIM).
12 sim_sec SIM security matters (e.g., entering PIN)
13 sim_tk SIM toolkit [30]
14 sim_pb SIM phone book
15 cps Common Profile Storage
16 call_cs_voims Phone calls (CS) voice over ISM
17 ims_me ISM Mobile Equipment Capabilities
18 sys_res System Resources
19 cls Combined Location System
20 sys_diag System Diagnostics
21 ss_lcs Supplementary Services - Location Services
22 xcc Clock related
23 trc_info Tracing Info
29 ogrs Off-Grid Radio Services
31 embms evolved Multimedia Broadcast/Multicast Service
33 pri -
34 ice_ipc ICE Inter Process Communication
50 ibi_vinyl related to the embedded SIM
51 ice_awds -
60 ice_audio ICE Audio
61 rf_power_sar_nbd related to Radio Frequency, Power Management etc.
62 bspnbd miscellaneous features (e.g., Debugging, Non-volatile Memory)
63 security Security

Table 4.4: Overview of ARI groups and their purpose. Cursive text indicates that the
information is mostly based on the abbreviated name and information from ARIstote-
les [59].
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1 uint16_t group = ((uint16_t) ari_buf[1] >> 3) & 0x3F;
2 uint16_t type = ((uint16_t) ari_buf[2] >> 6;
3 uint32_t trx = ari_buf[2] >> 17;
4
5 logger_(4, "(%s:%d) Decode %s(%d-0x%03x) len(%zu) buf(%p) trx(0x%08x

)",
6 "AriMsg", 269, *(const char **)(v27 + 32),
7 group,
8 type,
9 length + 12,

10 ari_buf,
11 trx);

Listing 4.12: A call to a logging function within the ARI handler.

Depending on the result of the parsing function and the group of the ARI message,
different actions are carried out. A complete list of ARI groups and their purpose can be
seen in Table 4.4.

Over the years, ARI remained relatively stable. Only a few groups have been added or
removed since its introduction with ICE16. Groups 01 to 23 are present across all BB
generations, including IBIS18. This fact also applies to Groups 33, 34, 50, 51, and 60 to
63. ICE16 and ICE17 do not have handlers for Group 31, which is related to the evolved
Multimedia Broadcast/Multicast Service [33].

ICE19 is the only BB that supports group 29, related to the Off-Grid Radio Service
or OGRS. OGRS was an attempt to provide iPhone users with the capability to text
and make phone calls without a cellular network or Wi-Fi [63]. Instead, phones would
connect directly. Given that ARI groups such as group 29 were added later on, it is likely
that other missing groups, such as groups 23 to 28, are reserved for later use.

ARI and AT Commands

While ARI replaced AT commands in the case of Intel BBs, AT commands still impacted
the design of ARI. There are message types within ARI that are successors of AT
commands. Such as CsiXsioSetReq, which is based on the AT+XSIO command.
AT+XSIO was used in previous Intel modems to configure tracing [93]. Similarly, using
ARIstoteles [59] shows that CsiXsioSetReq is part of ARI group 23 called “trc_info”
or “tracing info.”

Secondly, according to certain standards such as the specification for the “AT command
set for User Equipment (UE),” [31] some AT commands can be forwarded to the SIM
directly. Strings within the BB indicate that ARI supports sending AT commands
towards the SIM via ARI group 13 (sim_tk). These strings belong to the ARI type
IBISimTkProactiveCmdIndCb according to ARIstoteles [59], which includes TLV
types such as run_at_command_t18.
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ARI as an SDK

It turns out that ARI is implemented in the form of a Software Development Kit (SDK).
This fact means that the parser in the BB is based on the same source code as the AP
side. The SDK is split into two parts: ari_host is used by iOS in the libARI.dylib
and libARIServer.dylib libraries, and the BB utilizes ari_remote. Knowledge
of this matter is helpful because libARI.dylib and libARIServer.dylib contain
symbols that allow much easier reverse-engineering. Using this information sheds light
on the otherwise obscure nature of the BB’s firmware.

Sadly this fact was realized relatively late into the process of statically reverse-engineering
the BB. Thus, some of the results will be presented in the way they were originally
uncovered in the following. For instance, the extract_ari_msg() function’s canonical
name is AriMsg::AriMsg().

Function Parameters

In order to be able to emulate the extract_ari_msg() function, it is necessary
to understand the input parameters to the parsing function. According to IDA Pro,
parameters are stored in the R0 to R2 registers in conformance with standard ARM
calling conventions. Due to their usage throughout the handler, the second parameter is
revealed to be a pointer. It points to a buffer, which should contain the ARI message.
The third parameter is the length of this buffer, i.e., the length in the ARI header plus
twelve for the header bytes.

Using IDA Pro’s cross-referencing feature revealed that the first parameter is an array of
four-byte long values. Different array entries are used throughout the handler to store
error codes or meta-information about the ARI message, such as its length. Different
calls to the parser pass different lengths of arrays. It is likely used to pass metadata
back to the calling function by reference. The resulting function signature can be seen in
Listing 4.13.

1 int * extract_ari_msg(uint32_t *obj, uint32_t *buf, uint32_t len)

Listing 4.13: Signature of the function that parses an ARI messages.

Memory Management

The ARI parser needs to allocate and free memory dynamically on the heap. Since
the goal is to emulate solely this parser, setting up memory handling for the parser is
necessary. To do so, functions within the parser that handle heap memory management
have to be identified. Throughout this thesis, several approaches to overcome this obstacle
have been used.

During the development of the emulation-based fuzzer, parsing a valid ARI message
would lead to crashes of the emulator always at the same address. Inspecting the code
that caused the crashes in IDA Pro showed that the instruction in question was an MRC
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instruction. It moves a Register from a co-processor to the primary processor, in this
case from co-processor 15.

On ARMv7, co-processor 15 or CP15 is used for many tasks and often for memory
management tasks [10]. Further inspecting the execution path leading to this instruction
revealed an allocation function at address 0x8a8873a8. It calls a logging function with
a format string that showed which function parameter specifies the length for the buffer
to be allocated. Additionally, it would log the string “MemAlloc,” further confirming
that this function was used to allocate memory. Thus, to overcome emulation issues and
use BaseSAFE [67] to its fullest extend, this function is hooked via Unicorn as described
in Section 5.2.3.

The signature of this function can be seen in Listing 4.14. It takes two parameters. The
first is a reference to an AriOsa object. However, in the BB, the argument is mainly
replaced by the static value 2. More importantly, the second parameter is the length of
the buffer that needs to be allocated.

1 int * AriOsa::MemAlloc(AriOsa * this, int len)

Listing 4.14: Signature of the memory allocation function used by ARI.

Another dynamic memory-related function could be found by comparing the ARI handler
in the BB to the one available in libARI.dylib. It frees a list of TLV fields. For
example, if certain allocations operations failed or the length value in a given TLV exceeds
the length of the entire ARI message. Its signature can be seen in Listing 4.15.

1 void AriMsg::FreeTlvList(char* arg1)

Listing 4.15: Function signature of AriMsg::FreeTlvList().

4.8.3 libARI and libARIServer
On iOS, ARI is implemented by two dynamic libraries, libARI.dylib and
libARIServer.dylib. While libARI.dylib does most of the heavy lifting when it
comes to parsing, libARIServer.dylib is responsible for managing the actual com-
munication with the BB. One of the runtime dependencies of libARIServer.dylib
is libARI.dylib. Moreover, CommCenter uses both libraries, and when hooking the
CommCenter with F RIDA, function from both libraries can be called.

One discovery made by investigating libARI.dylib on iOS 14.3 is the acknowledgement
option. It contains several methods connected to the AriMsg object, which parse different
fields from a given ARI message. One such method is the AriMsg::GetBufAckOpt()
with the symbol _ZN6AriMsg12GetBufAckOptEPKhm, which parses the acknowledge-
ment option.

Thanks to prior work by Classen [22], several functions relevant to this thesis have been
previously identified. The SendRaw() function can send raw binary buffers from iOS to
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the BB. Its full signature can be seen in Listing 4.16. The first parameter is a pointer to
a buffer containing an ARI message. The second parameter is the length of the message,
and the third contains a kind of destination. It is not entirely clear what this parameter
represents. However, when analyzing libARIServer.dylib, the value passed through
this parameter is first used in a function call containing the string “AriMsgTO.” In
practice, this value was intercepted by hooking the SendRaw() function. It turns out
that while this parameter is not static, there are only a handful of values that are used
by libARIServer.dylib.

1 uint64_t AriHostRt::SendRaw(char *buf, uint32_t len, uint32_t ariTo)

Listing 4.16: Signature of the SendRaw() function.

Secondly, all ARI messages coming from the BB pass through the
AriHostRt::InboundMsgCB() [22]. While this function is of lesser impor-
tance to this thesis, it can collect ARI messages alongside SendRaw(), serving as an
initial corpus for fuzzing. The signature for this callback can be seen in Listing 4.17. It
takes two parameters: buf contains a pointer to the buffer containing the ARI message
and, len which is the length of the buffer.

1 AriHostRt::InboundMsgCB(char *buf, uint32_t len)

Listing 4.17: Signature of the InboundMsgCB() function.

Now that functions that send, receive, and parse ARI messages are known within iOS
and the BB, the idea is to analyze the BB in terms of security vulnerabilities via ARI.
After all, the general structure of the protocol is complex, and all necessary parameters
for fuzz-testing are known. Thus, it is likely that fuzzing might help find vulnerabilities
quickly. The next chapter implements several fuzzers to accomplish this goal.
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CHAPTER 5
Baseband Security Analysis with

Fuzzing

This chapter mainly discusses the two types of fuzzers implemented throughout this
thesis. First, a short overview of the chapter is presented in Section 5.1. The following
two sections first detail the emulation-based fuzzer in Section 5.2 and then the in-process
fuzzer in Section 5.3.

5.1 Overview
In this thesis, demonstrates two approaches to fuzzing the Baseband (BB). First, an
approach based on the Unicorn [80] bindings provided by BaseSAFE [67] is shown. After
having identified the Apple Remote Invocation (ARI) parsing function in the BB, it
implements an emulation of the handler. Two approaches to fuzzing this emulation are
used. First, American Fuzzy Lop Plus Plus (AFL++) [36] is used in Unicorn mode.
Secondly, a custom multi-threaded fuzzer is created to fuzz ARI specifically.

The second approach to fuzzing the BB this thesis demonstrates is using F RIDA to
hook functions in CommCenter. From there, two different approaches are taken. Either
ARI messages sent from iOS to the BB are modified before they are sent, or the fuzzer
generates ARI messages and send them to the BB.

As a target for the fuzzers, the ARI handler within the ICE19 BB was chosen for
several reasons. ARI is a relatively complex protocol with characteristics that could
lead to memory corruption bugs, such as several length fields. Secondly, ARI has not
been publicly analyzed before, making it more likely to still contain vulnerabilities.
Furthermore, ICE19 is the latest generation of Intel-made BBs and contains some of the
most advanced mitigation techniques (see Section 4.6). While an ICE19 BB might crash
quickly if it encounteres malformed input, an older BB might act on it. This would make
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it more susceptible to attacks. Thus, exploits that work on ICE19 are more likely to
work on older generations than the other way around.

5.2 Emulation-based Fuzzing
This section first provides an overview of the requirements for the different emulation-based
fuzzers in Section 5.2.1. Then, in Section 5.2.2, a summary of the fuzzers’ architecture
is given, and the fuzzers’ implementation will be described in Section 5.2.3. Finally, in
Section 5.2.4, a quick introduction is given to how the fuzzers can be used and how the
emulation can aid with understanding crashes in the ARI handler.

5.2.1 Requirements
This section lays out several requirements that the emulation-based fuzzers will aim
to fulfill. While most of these specifications apply to both fuzzers, the custom and
AFL++-based fuzzer, some only apply to the custom fuzzer.

Fast Fuzzing Speeds Fuzzing, in its essence, is a brute force search through the space
of all possible inputs to a given program. In this case, all possible ARI messages can be
sent to the BB. Since the variable part of ARI messages can be 215 + 8 bytes long, the
search space is at least 2(215+8)∗8 messages big. A search is successful if a given message
causes a crash. Luckily, it is not necessary to search the space exhaustively. Thus, fuzzing
speeds of several execution cycles per second are the goal for the fuzzer. This goal is in
line with speeds reached by BaseSAFE [67], which reached around 1.5 thousand fuzz
cases per second on an Intel i7-6700 @ 3.40 GHz processor on a single core.

Coverage-guided Fuzzing The fuzzers should collect coverage data during fuzzing
and use it to maintain the corpus that will be fuzzed. Coverage data can also help to
distinguish crashes. If two inputs that cause a crash have the same execution path and
the cause of the crash is identical, then the fuzzer found the same crash twice instead of
two distinct issues. Avoiding duplicate crashes decreases the time spent on analyzing the
crashes after the fuzzer found them.

Parallelization Fuzzing is inherently parallelizable, and modern hardware encourages
the use of parallelized tasks. By running several instances of the program that is being
fuzzed at once, performance can be improved dramatically. This thesis will heavily use
parallelization within the custom fuzzer and reach the goals stated above.

ARI-aware Input Generation (Custom Fuzzer Only) The custom fuzzer should
generate ARI messages that are likely to reach more complex states in the parser by
using the information gained during static analysis of the BB. Leveraging information
about the ARI format should help avoid failing trivial checks by the parser. For instance,
fuzzing the first four magic bytes of the ARI format does not yield any results. This fact
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is correct because the parser in the BB checks these four bytes before doing anything else.
If the check fails, it returns. Thus, fuzzing these four bytes has no effect. Leveraging
knowledge like this, the custom fuzzer should improve fuzzing effectiveness.

5.2.2 Architecture
In this section, the architecture of the two emulation-based fuzzers is stated. Both
utilize the same emulation setup to then use two different fuzzing strategies. While the
AFL++ fuzzer essentially follows the same structure as the one outlined in the BaseSAFE
paper [67], the custom fuzzer uses a more involved architecture.

Emulation Setup

At the core of both fuzzers is the emulator running the BB’s ARI parser. A common
library is used to parse the SYS_SW.elf file. It then creates a Unicorn [80] instance and
maps the Executable and Linkable Format (ELF) segments into the emulator’s memory.
Finally, it uses the sanitized heap implementation from BaseSAFE [67] to set up a heap
and further allocates some memory for the stack.

After initializing the emulator, several hooks are set to modify its behavior or collect
metadata about the emulation run. Finally, the fuzzed input will be provided to the
parsing function, and the function will be called. The emulation will then exit for one of
the following reasons:

• A crash occurs, indicating that either unmapped memory was read or written.

• The emulation will timeout. Each run will last at most 10 seconds. If the handler
needs more time to parse the message, this will be detected as a hang and the
execution will be aborted.

• Everything seems to have worked out, and the handler reaches its end.

Upon exiting, the reason will be provided to the fuzzer, which will take appropriate
action. This common emulation core will also be used in a separate tool to replay an
ARI trace. By doing so, additional information can be presented that would otherwise
slow down emulation.

AFL++-based fuzzer

Additions for the AFL++ fuzzer are relatively minor. It must accept a fuzzed input via
an input file to call the program with the afl-fuzz utility. Thus, a callback needs to
be provided, which maps the contents of said file to the emulator’s memory. Further,
AFL++ needs to know when a crash occurred or if the handler has exited legitimately.
Another callback for validating crashes and an array of exit addresses can be provided to
AFL++ to accomplish this.
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All of this information can be passed to AFL++ via one single function call. Additional
parameters to this function call specify whether the crash validation callback should be
called every time the emulator exists or only upon encountering crashes. Finally, it is
possible to specify how often the program should be called without spawning a new child
process.

Using these bindings, AFL++ will then provide its coverage collection instrumentation. It
will also be possible to run several instances of AFL++ in parallel. Thus, all requirements
outlined in Section 5.2.1 are handled mainly by AFL++ itself.

Custom Fuzzer

Rust [88] is chosen as the language to implement the custom fuzzer for several reasons.
First, Rust helps to accomplish the fuzzing speed requirement because it does not incur
any overhead due to the need for a runtime or garbage collection. Secondly, Rust enforces
thread safety, making it much easier to create a multi-threaded program. Finally, all the
necessary libraries already exist for Rust. For instance, BaseSAFE [67] provided bindings
not only for AFL++ but also for Unicorn [80] in general.

The custom fuzzer will use simple block coverage instead of AFL++’s more detailed edge
coverage. During the fuzzing run, the starting address of each block will be collected.
These addresses will be hashed with a fast 32-bit variant of a Cyclic Redundancy Check
(CRC) function to derive a single value representing one execution path. This function
was selected because of its efficiency. The fuzzer should spend as little time as possible
on calculating this hash.

Achieving parallelization in the custom fuzzers is done by using threads. Managing
the communication between different threads is accomplished using channels. The idea
is to spawn several worker threads, which will execute the emulator. Workers should
receive their input from a generator thread. After testing an input, the emulation result
alongside coverage data is sent to a triaging thread. It decides whether the input should
be considered for further fuzzing and whether a crash is indeed a new crash. The input
that caused a new crash will then be stored in an output directory. It will also be added
to the existing corpus used for input generation by the generator thread.

A rough outline of this architecture can be seen in Figure 5.1. Rectangles with a solid
outline represent the three different kinds of threads. Dashed outlines, on the other hand,
symbolize data structures.

As a mutation strategy, a simple bit-flipper is implemented first as a proof-of-concept for
our custom fuzzer. The intention was to create a more elaborate fuzzing strategy later.
While this strategy was implemented, for various reasons, it could not be integrated with
the custom fuzzer. A more detailed description of the envisioned mutation strategy can
be found in Section 5.2.3.
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Figure 5.1: A simplified view of the custom fuzzer’s architecture.

5.2.3 Implementation
Implementation details of the emulation-based fuzzers are given in this section. The
memory mappings needed for the emulator are described to start. It then continues to
summarize hooks needed to make the emulation work. Details about the custom fuzzer’s
implementation in regards to multithreading and coverage collection are given.

Memory Mappings

The first step towards emulating the ARI parser is to map code segments from the BB’s
firmware into the emulator’s memory. The SYS_SW.elf file is parsed via libgoblin [65].
A Unicorn instance is set up based on the architecture and endianness specified in the
ELF file.1

Next, the LOAD segments specified in the ELF headers are mapped into the memory of
the emulator. The ELF specifies whether a given segment should be readable, writable,
or executable. By respecting this information, the emulator should be able to detect
illegal writes and reads quicker. Moreover, vulnerabilities found in the emulator are more
likely to also be present in the real BB.

LOAD segments will be mapped to the addresses specified by the ELF file to make analysis
easier. Since tools like IDA Pro [53] or Ghidra [3] respect this information, addresses in
the emulator and these disassemblers will match up. Therefore, finding the corresponding
instructions in IDA Pro or Ghidra is easy if a crash occurs in the emulator at a given
address. There are two exceptions to this mapping rule: Firstly, addresses and sizes
of memory segments must be 4 kB aligned. Otherwise, Unicorn will return an error.
Secondly, if a memory segment overlaps with one already mapped into the emulator’s

1While we discussed in Section 4.3.1 that information from an ELF header is not always accurate,
the processor architecture is correct in the case of ICE19.
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1 let skip_hk = move |mut em: UnicornHandle<'_, _>, addr, _| {
2
3 // read the return address from the link register
4 let lr = em.reg_read(RegisterARM::LR as i32).expect("...");
5
6 // set the program counter to the value to the return address
7 // exiting the current function call immediately
8 em.reg_write(RegisterARM::PC as i32, lr).expect("...");
9 };

10
11 // set hook up so that it is executed as soon as the logger
12 // is called
13 emu.add_code_hook(0x8A835280, 0x8A835280, skip_hk).expect("...");

Listing 5.1: Unicorn hook to skip a function call.

memory, it will be ignored. A consequence of these exceptions might be the absence of
some segments that the firmware would typically expect.

The fuzzer should use the sanitized heap from BaseSAFE [67] to detect double frees,
use-after-free, and out-of-bound reads and writes on the heap faster. However, integrating
it with the emulation setup is not straightforward. The starting address of the heap
depends on where the LOAD segments are placed. It should be placed on top of all the
code sections. Since the segments are mapped at runtime, this address is also only known
at runtime. Mapping the segments, of course, already requires an instantiated emulator.
The problem is that BaseSAFE ’s bindings do not offer a way to add a sanitized heap to
an existing emulator instance and require specifying the address when the emulator is
instantiated.

Thus, a workaround is needed to integrate the heap properly. An empty heap is allocated
and then used to instantiate the emulator to overcome this issue. After all LOAD segments
have been allocated, a memory area for the heap is allocated. This area is one mebibyte in
size. Then another instance of a sanitized heap is created. It uses a copy of BaseSAFE’s
heap_unalloc hook to detect invalid access to the heap’s memory. Finally, the empty
heap in the emulator is replaced by the freshly instantiated heap.

Lastly, one mebibyte of space is allocated for the stack. In the BB, the stack grows from
the highest to the lowest address. Thus, the SP register, which stores the stack pointer,
is set to the highest address within the allocated memory region.

Function Patching Hooks

Certain functions within the BB rely either on hardware that the emulator cannot
simulate or on state information not present when invoking the ARI parser directly. The
behavior of these functions has to be modified to make the emulation work. A skip hook
was implemented to delete specific function calls from the handler. It can be seen in
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1 let malloc_hk = move |mut em: UnicornHandle<'_, _>, addr, _| {
2 // read the size of requested buffer from the R1 register
3 let size = em.reg_read(RegisterARM::R1 as i32).expect("...");
4
5 // allocate the buffer
6 let buf_ptr = uc_alloc(&mut em, size).expect("...");
7
8 // set the return value to the address of the buffer
9 em.reg_write(RegisterARM::R0 as i32, buf_ptr).expect("...");

10
11 // and return
12 let lr = em.reg_read(RegisterARM::LR as i32).expect("...");
13 em.reg_write(RegisterARM::PC as i32, lr).expect("...");
14 };

Listing 5.2: Memory allocation hook for the AriOsa::MemAlloc function.

Listing 5.1. Essentially, it will return instantly from the current function whenever it is
called.

The example in Listing 5.1 also shows how the hook is used to skip the logging function
used by the ARI handler. By hooking the address of the first instruction associated with
the logger, it is never executed. This hook is set for two reasons. First, the logger does
not need to be executed while fuzzing because it does not affect the parsing function.
Secondly, it requires proper dynamic memory management. Every memory allocation or
deallocation function within the logger must be identified and hooked to make this work.
While string formatting functions, such as the logger, can contain problematic allocations
and de-allocations skipping the logger is easier and more likely to accomplish the goal of
finding a crash within the ARI parser itself. Moreover, format string vulnerabilities are
likely easily identified via static reverse engineering. For instance, by checking whether
the provided format string is a constant or a variable value.

Besides the logger, another category of functions that need to be hooked is functions
within the ARI handler that allocate and deallocate memory. These functions need to
be overwritten with their equivalents from BaseSAFE [67] to utilize the sanitized heap.
BaseSAFE offers the uc_alloc function to allocate memory and the uc_free function
to deallocate it. By using these helper functions, additional hooks are placed on the
memory regions of the heap. If memory is accessed illegally, these hooks will trigger a
crash of the entire program.

As discussed in section Section 4.8.2, the ARI handler uses a memory allocation function
located at 0x8a8873a8. A hook was implemented to integrate this function with the
sanitized heap. It can be seen in Listing 5.2. The hook simply reads the buffer length
from the R1 register. Then it allocates a buffer of the corresponding size with uc_alloc.
It sets the return value to the address of the buffer. Finally, it returns from the allocation
function before any of its instructions are executed.
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1 // instantiate a linked list to collect coverage
2 let path = Rc::new(RefCell::new(LinkedList::new()));
3 let mut prev_addr = 0;
4 let mut_path = path.clone();
5
6 let tracing_hk = move |_em: UnicornHandle<'_, _>, addr, _| {
7 // borrow the list dynamically and push the address
8 // of the current block and its size onto it
9 mut_path.borrow_mut().push_back((addr, prev_addr.clone()));

10 prev_addr = addr;
11 };
12
13 // set the hook
14 let tracer = emu.add_block_hook(tracing_hk).expect("...");
15
16 // run the emulator
17 let result = emulate_ari(emu, input.clone());
18
19 // remove the hook from the emulator
20 emu.remove_hook(tracer).expect("...");
21
22 // borrow and clone the list
23 let trace = path.borrow().clone();
24
25 // return the values
26 (result, trace, input.clone())

Listing 5.3: The coverage data collection hook.

Coverage Collection in the Custom Fuzzer

Collecting coverage information in the custom fuzzer is done by using the block hook
provided by Unicorn. As is shown in Listing 5.3, a LinkedList is wrapped in an Rc and
a RefCell struct to enable dynamic borrow rules, ensuring memory safety at runtime.
The LinkedList is then used by the hook to store a tuple consisting of the starting
addresses of the current and previous blocks. Finally, the the LinkedList’s content is
cloned to avoid mutability issues between the hook and the rest of the program. It is
then returned alongside the emulation result.

The fuzzer will then iterate over the LinkedList and create a hash value based on
the starting address of the blocks. This value will then be considered as representing
the coverage of a single run. By comparing this hash to previous hashes, the custom
fuzzer decides if a new crash was already encountered before or not. If the crash was not
encountered before, the input will be added to the corpus considered for further mutation.
Moreover, if the same crash was encountered before, but the new input is shorter than
the old, it will also be added to the corpus.
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Even though basic block coverage is used to decide whether an input should be kept or
not, for comparison reasons, edges are also collected. The tuples in the LinkedList
each represent an edge. These are then shifted and XORed as described by the American
Fuzzy Lop (AFL) whitepaper [103] and collected in a HashSet to maintain a collection
of unique edges encountered throughout the run.

Multithreading in the Custom Fuzzer

While Rust offers several features that encourage multithreading, communication between
threads via channels is not among them. Within the custom fuzzer, crossbeam [23] is
used to provide this functionality. Upon starting the fuzzer, at least three threads are
started, the generator thread, one or more worker threads, and a triaging thread. They
have the following purposes:

Generator Thread By using a mutation strategy, it generates new inputs. In a first
step, it simply flips bits in a given ARI message at random. After generating a new
input, it adds the result to a bounded channel. This channel will store at most 500
fuzzed inputs. Limiting this channel is necessary because otherwise, the fuzzer will not
terminate promptly. The current naive strategy is faster than the worker threads so that
the channel will grow uncontrollably. Thus, when requesting the fuzzer to exit, it will
first try to emulate all fuzz cases left in the channel. In other words, the longer the fuzzer
runs, the longer it will take to exit. Worse, the channel could run out of memory and
crash the entire fuzzer unpredictably.

Worker Threads A worker thread sets up an emulator instance and then waits for
the input from two different channels. The first channel contains the mutated inputs
from the generator threads. These are mapped into the emulator’s memory, and then the
emulator is executed. After emulation has concluded, the coverage data alongside the
emulation result are sent to the triaging thread through another channel. The second
channel is a tick channel, which outputs an event every second. Upon receiving such
an event, the fuzzer frees its current emulator instance and instantiates a new one. If
this reset is not present in the custom fuzzer, the performance will decrease drastically
over time. It is unknown why that happens, but creating a new emulator instance every
second fixes this issue.

Triaging Thread Upon receiving the output from a worker thread, the triaging thread
evaluates the coverage data and emulation results. If a crash is encountered with a new
execution path, the corresponding input is stored in an output folder. Furthermore, the
triaging thread also listens to a tick channel that outputs an event every 2.5 seconds.
When it receives such an event, the thread will print a message that contains statistics
about the current fuzzing run. Finally, the statistics are also written to a Comma-
Separated Values (CSV) file to enable straightforward data collection for benchmarking
purposes.
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Signals are used to exit the fuzzer. Upon receiving a SIGINT signal for the first time,
the fuzzer stops generating new inputs for the worker threads. It also closes the input
channel to the worker threads. As soon as they have finished parsing all fuzzed inputs
left in the generator thread channel, they will exit. The triaging thread behaves the same
way, processing all outputs still provided by the workers and then exiting. Finally, if
another interrupt signal is received, the fuzzer will forcibly shut down.

ARI Generation

Currently, the custom fuzzer simply flips bits in a provided ARI message. However, as
part of this thesis, several versions of an ARI generator have been implemented. The first
Rust-based version was implemented for the custom fuzzer. It was supposed to be used as
a more advanced input generation strategy, but sadly it was not possible to integrate it
into the custom fuzzer yet. Using this generation strategy would have meant needing to
re-write the sanitized heap provided by BaseSAFE. However, it did inspire the generator
used with the in-process fuzzer and, thus, will be described in the following.

A Linear Congruential Generator (LCG) with a period length of 264 is used to generate
a lot of random bytes quickly. The output of this LCG is then split and interpreted as
two new seeds for an LCG with a 232 period. One LCG generates the header for an ARI
message, and another generates Type-Length-Values (TLVs) for the body of the ARI
message.

When generating a new ARI message, the generator will first generate a random ARI
header by calling the 32-bit LCG twice. It will then interpret the received data as an
ARI header and parse its length. It will call a TLV generator until the entire length of
the message is filled with TLVs to complete the message.

Generating a TLV works similarly to generating the ARI message. First, the 32-bit LCG
is called with the seed for generating TLVs. These four bytes are then interpreted as the
TLV header. The remaining length of the TLV is filled with bytes from the LCG.

There are two cases in which the length of the TLV will be modified. First, the randomly
generated length of a TLV might exceed the remaining length of the ARI message.
Secondly, after appending the currently generated TLV, the remaining length of the ARI
message might be four bytes or less. Thus, there would not be enough space to append
another TLV. In both cases, the TLV’s length will be extended to fill the remaining
length of the ARI packet.

5.2.4 Applications

The fuzzers and emulation setup implemented in the previous section have two purposes.
Most importantly, to fuzz the ARI handler in the BB and uncover security vulnerabilities.
A secondary purpose is to better understand how and why the ARI parser can and does
crash. Since we lack introspection into the BB, the emulation can give a deeper look
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Figure 5.2: The custom fuzzer running with four worker threads.

into how memory and register values change during execution. In the following, a short
introduction to the use-cases of the developed software will be given.

By adapting the emulation setup for AFL++, a sophisticated fuzzer can be run relatively
quickly. Ideally, several instances of AFL++ are run in parallel to fully utilize the
underlying hardware. AFL++ has a set of recommendations [2] to optimize fuzzing runs,
which should be respected for ideal results.

Figure 5.2 shows the custom fuzzer running with four worker threads. During a fuzzing
run, the fuzzer reports the total time the fuzzer has been running, the number of times the
ARI handler has been executed, and the current average fuzz cases per second. Further,
when a crash is encountered, it outputs a corresponding message.

Finally, the emulation setup was used to implement a separate program that would
simply replay a given ARI message to the emulator. It would then report whether the
emulator crashed and what the cause of the crash was. Optionally a trace of basic blocks
can be printed. A hook can be added that prints the top five entries of the stack, or
a hook from BaseSAFE [67] can be added to understand register values and current
instructions.

5.3 In-Process Fuzzing

In addition to the emulation-based fuzzers, two in-process fuzzers were developed, an in-
place and an injection fuzzer. The requirements for these fuzzers are stated in Section 5.3.1.
Then, an overview of their architecture is given in Section 5.3.2, followed by a description
of their implementation in Section 5.3.3. Lastly, their application for fuzzing the BB is
detailed in Section 5.3.4.
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5.3.1 Requirements

The requirements for the in-process fuzzers differ somewhat from the emulation-based
fuzzers. One crucial difference between the in-process fuzzers and the emulation-based
fuzzers is that no coverage data can be collected. In the following, the requirements are
described in more detail.

Fast Fuzzing Speeds Similar to the emulation-based fuzzer, it is essential to mutate
messages quickly. In a talk at RC3, Classen [22] showed that a bit flipping in-process
fuzzer for Short Message Service (SMS) could achieve about 22000 fuzz cases per second
on an iPhone 8. Since the fuzzer described in this section is more intricate than solely
flipping bits, the goal is to reach about 10000 fuzz cases per second on an iPhone SE
2020. This goal only applies to the injection fuzzer because the in-place fuzzer does not
actively insert messages.

ARI-aware Input Generation ARI-aware input mutation and generation are neces-
sary to explore the BB efficiently. Avoiding trivial checks within the BB is pertinent to
reach more complex bugs within the BB. Thus, knowledge achieved during static analysis
should be used to improve input mutations.

Deterministic Input Generation Since the in-process fuzzer lacks introspection into
the BB, coverage collection is not an option. While this means that the fuzzer is less
effective, it can also be used as an advantage. Ideally, the fuzzer would generate an
entirely deterministic series of inputs if provided with a corpus and a random seed value.
This requirement enables it to only store this seed value and the initial corpus before
fuzzing. Generated inputs themselves do not need to be stored as they can be re-created
given the initial corpus and the corresponding seed.

Minimal Serialization In-process fuzzers consist of two components: the in-process
harness and an outside manager running on a different device. This manager component
can handle input generation and then forward them to the harness, or the harness sends
inputs to the manager to store them. However, for this communication, the inputs need
to be serialized and de-serialized by F RIDA. This (de-)serialization is one of the most
significant slow-down factors for in-process fuzzers [22]. Thus, minimizing the need for
serialization is essential.

5.3.2 Architecture

This section gives an overview of the general architecture of the in-process fuzzers. Further,
the differences between the in-place and injection fuzzer are given. Lastly, adaptions for
the standalone mode of the injection fuzzer are given.
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Figure 5.3: A simplified view of the in-process fuzzers’ general architecture.

General Architecture

In general, the in-process fuzzers follow the same structure as ToothPicker [49], consisting
of a manager and a harness. One main difference is that none of the in-process fuzzers
in this thesis use an external fuzz case generator like radamsa [50]. Instead, input
generation and mutation are carried out in the harness itself. Figure 5.3 shows the
general architecture of the in-process fuzzers. They run directly within F RIDA on an
iPhone that is connected to a computer via USB. The tasks of the different components
are outlined below.

Manager The manager uses the F RIDA Python Application Programming Interface
(API) to inject the harness into CommCenter. It provides the harness with an initial
corpus and a randomly generated seed value. After having set up the harness, it awaits
incoming messages from it. These messages will either contain information that the BB
has been reset or crashed or contain fuzzing traces. If the BB has crashed, the manager
shuts down CommCenter and exits. Fuzzing traces will be saved in an output folder.

Harness By hooking messages in libARIServer.dylib, the harness will fuzz the
BB. It is responsible for mutating ARI messages and providing the fuzzed input to the
corresponding functions. It also hooks functions that reset the BB to see if iOS triggers
a reset. Further, a global variable specifies whether messages can be sent to the BB via
ARI. If this variable is 2, then ARI is ready to be used. The harness also exposes a
function to the manager to check the state of this variable.
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In-place Fuzzer

The in-place fuzzer hooks the SendRaw() function to see when it is called. It then
modifies the ARI message that is provided as an input to the function. After modifying
the message, it reports it back to the manager to store it as part of the fuzzing trace.
Thus, the fuzzer does not require a corpus, but the manager still needs to provide a
random seed for the mutator. The idea behind the fuzzer is to exploit the statefulness of
modifying ARI messages “mid-flight”. Since the fuzzer modifies messages in a regular
active connection, most trivial checks should be satisfied. This approach should enable
the fuzzer to reach more complex states.

Injection Fuzzer

After receiving the corpus and the random seed from the manager, the injection fuzzer
uses the SendRaw() directly. It chooses a random message from the corpus, modifies it,
and calls the SendRaw() function with the mutated message. Thus, the injection fuzzer
is independent of the actual active connection between the BB and iOS. Further, as long
as the mutation strategy is deterministic, a fuzzing trace can be reproduced from the
seed and the corpus alone.

Additionally, the injection fuzzer can also be used without the manager component in
“standalone” mode. By providing the corpus directly in the script, the fuzzer can hook
the necessary functions by itself. It stops itself if the BB is reset. The fuzzing trace can
be reproduced from the corpus and the seed value. Thus, the trace does not need to be
stored by a manager.

5.3.3 Implementation
Details about the implementation of the in-process fuzzers are given in this section. First,
the custom mutator at the heart of the fuzzers is described. Later on, more insights into
how the two fuzzers share symbols are given. Finally, some more information about the
specificities of the injection fuzzers is described.

Mutation and Generation of ARI messages

By moving the mutation logic into the fuzzing harness, the fuzzers can avoid unnecessary
(de-)serialization. It is necessary to write a mutator in JavaScript to accomplish this.
The input generation strategy consists of two parts. First, a simple mutator that takes
messages from the corpus and modifies it with some simple rules. Secondly, an adapted
version of the ARI generator from the emulation-based fuzzing attempts.

The simple mutator has four different mutations it can carry out. Two trivial ones use
an LCG to generate a random offset in the ARI message and flip a bit or an entire byte.
Another inserts a random byte at a random offset. Lastly, the most complex one inserts
a known value at a random offset. Known values include null values or four-byte integer
maximum and minimum values. Each mutation is carried out with a known probability
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and might occur in conjunction with any other mutation. All random values, such as the
offset or whether a given mutation should be carried out, stem from a full period 32-bit
LCG. The LCG is seeded with the value received from the manager. Alternatively, it
can be seeded with a fixed default value.

Generating ARI messages in the in-process fuzzers differs slightly from the ARI generator
described in Section 5.2.3. The most significant difference to the Rust version is that
JavaScript does not support 64-bit integers. Thus, instead of using one 64-bit LCG to
provide two seeds for the same 32-bit LCG for ARI and TLV generation, two different
32-bit LCGs are used. The first is used to generate ARI headers and to seed the second
LCG. This second LCG is then used to generate a TLV header. Thus, the entire generator
can again be seeded with one value.

There are two JavaScript versions of the ARI generator, to be exact. The first working
the same way as the Rust version save for the changes described in the previous paragraph.
However, this version would generate ARI messages much longer than packets observed
“in the wild.” Therefore, another version was created that chooses a length from a known
list of observed ARI lengths. It then splices this value back into the generated header
and proceeds the same way as the other version.

Since all the mutator’s decisions depend on the output of a known LCG, they can be
reproduced as long as the generator’s seed is known. In other words, the generator is
deterministic and given the seed for the generator, and the corpus, a set of fuzz cases can
be re-created. Further, the modular JavaScript implementation of the mutator makes it
trivial to create a Node.js script that can produce them independently of F RIDA or the
actual fuzzed device.

Symbol Sharing between Fuzzers

Both in-process fuzzers use the same symbols and hook the same functions. It makes
sense to create a custom JavaScript class to share these symbols between them. This
thesis leverages frida-compile [86] to do so. The symbols provided by Classen [22]
were taken and merged into a single class. This class also provides direct access to all
necessary functions. Some symbols changed between iOS versions. A fuzzer can import
this class and specify which symbols it wants to use to support as many iOS versions
as possible. This approach makes it very easy to maintain the fuzzers between different
iOS versions. Implementing new fuzzers also uses much less boilerplate code, as it can
simply import a class and instantiate it. The resulting object then provides all functions
and symbols a new fuzzer needs. An example of how this symbol class can be used is
available in Listing 5.4.

Injection Fuzzer Specifics

The injection fuzzer requires some additional setup to work. It can function in two modes:
with a manager or standalone. A corpus is provided to the manager in the managed
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1 // load and instantiate the symbol class
2 const ARISymbols = require('../js/ari-symbols').ARISymbols;
3 const syms = new ARISymbols();
4
5 // load the symbols for iOS 14.3
6 syms.setSymbols("arm64e_14.3");
7
8 // attach an interceptor to the `RequestReset` function
9 // it resets the baseband

10 Interceptor.attach(syms.RequestReset, {
11 onEnter(_args){
12 //...
13 }
14 });
15
16 // ...
17
18 // send an ari payload to the baseband
19 syms.SendRawFunc(payloadBuf, length, to);

Listing 5.4: Example of using the symbols class.

mode, which parses it and sends it to the harness alongside a randomly generated seed
value. The manager component will also tell the harness which symbols to use.

In standalone mode, all this information needs to be compiled into the harness itself.
After doing so, the script can be invoked with F RIDA directly. The point of this mode is
to reduce the need for serialization as much as possible. There is one exception, the fuzzer
still outputs fuzzing statistics. This exclusion is necessary to evaluate the effectiveness.
However, this happens relatively rarely. The performance overhead is therefore minimal.

Another issue that needs to be solved in the inject fuzzer is finding a suitable value for
the third parameter of the SendRaw() function. While the in-place fuzzer can re-use
the value provided to the function by the original callee, the inject fuzzer has to provide
this fuzzer itself. However, this value can be chosen from a handful of values observed
“in the wild” as described in Section 4.8.3.

5.3.4 Applications

The in-process fuzzer and the injection fuzzer can both be executed by running their
accompanying Python manager component. In the case of the injection fuzzer, a corpus
needs to be collected first. A corpus collection script based on the identical function
signatures as the fuzzers was implemented to accomplish this. It collected the ARI
messages, whether they were received from the BB or sent to it, and the value for the
ariTo parameter.
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Figure 5.4: The injection fuzzer running in standalone mode.

When it comes to collecting a corpus, typically, it is recommended to include as much
variety as possible. This method ensures that good initial coverage of the fuzzed software
is possible. When it comes to fuzzing the BB, some exceptions have to be made. Since
fuzzing SMS messages or phone calls would trigger actual interactions with the cellular
network, fuzzing would cost money. Thus, it is necessary to craft a corpus carefully. By
only triggering specific communication with the BB, this can be achieved.

The injection script is equipped with a helper function to provide all necessary input
parameters to run the standalone fuzzer. The corpus needs to be encoded into an array
of hexadecimal strings. Further, the iOS version and the seed value for the LCG can
be specified as well. After compiling the script with frida-compile, it should be
injected into the CommCenter process. Figure 5.4 shows the injection fuzzer running in
standalone mode. The last line shows the F RIDA prompt indicating that a crash was
encountered. It is recommended to kill the CommCenter process with frida-kill
before executing that fuzzer to achieve better crash reproducibility.

Finally, two helper scripts were implemented. The first script replays a given trace of ARI
messages to the BB. Replaying traces is necessary to confirm that a crash is reproducible.
Since ARI is a management protocol, the components involved in crashes have many
responsibilities. Each may possess a certain amount of state information that may be
relevant to the crash. Thus, ARI traces produced during fuzzing might not always cause
the same behavior when replayed. It is necessary to replay an ARI trace, sometimes even
multiple times, to establish that a crash is related to the trace.

The second script re-creates an ARI trace from a seed value and an initial corpus. This
script can be used to produce the ARI trace of the standalone injection fuzzer. Thereby,
it circumvents the need for communication with a management component and the need
for serialization caused by this communication altogether.
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CHAPTER 6
Evaluation

In this chapter, several performance characteristics of the fuzzers introduced previously
are presented in Section 6.1. These characteristics include benchmarks in terms of fuzzing
speed and coverage data. Further, this chapter briefly discusses some additional use cases
for the tools developed throughout this thesis in Section 6.2. Finally, an analysis of the
fuzzing results is given in Section 6.3.

6.1 Performance Evaluation
The following sections provide insights into the performance of the fuzzers. First, several
performance characteristics of the emulation-based fuzzers are given. Then, some insights
into the in-process fuzzers are provided.

6.1.1 Emulation-based Fuzzers
This section is divided into benchmarks for the American Fuzzy Lop Plus Plus (AFL++)-
based and the custom fuzzer. The same corpus was used for all benchmarks in this
category to make some comparisons possible. All of the benchmarks were run on an
Intel i7-6700K @ 4.00 GHz. Each section first introduces how the benchmarks were
implemented and then presents their results.

AFL++-based Fuzzer

A Dockerfile to compile and run the benchmarks was created to make them more easily
reproducible. It always uses the latest version of AFL++, which at the time of writing is
3.14c. Then, a script sets several environment variables that follow Google’s Fuzzbench [42]
setup. It then invokes a single instance of the AFL++-based fuzzer and runs it for
precisely one hour. The intention is to make the exact settings for the benchmarks more
easily accessible. However, the actual benchmarks were run without the Docker container
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Figure 6.1: Executions per second by the AFL++-based fuzzers over time.

to reduce overhead. See Section A.4 for a comparison between benchmarks with and
without Docker.

A benchmark was run with the errc example from BaseSAFE [67] to establish a baseline
for the AFL++-based fuzzer. Finally, a benchmark was run with version 2.68c because
that was the current version of AFL++ during the development of the custom fuzzer. It
is presented here to give some context.

The plot in Figure 6.1 shows the fuzzing speed of the three different benchmarks over
time. One observation that becomes immediately apparent is that the AFL++ 2.68c
benchmark has a much less stable execution speed than the other two. The execution
speed fluctuations were reported in the original BaseSAFE paper [67], but the repository
for BaseSAFE has since been updated to AFL++ version 3.14a. Once the fuzzing speed
has reached a plateau in the 3.14c benchmark, it is higher than the 2.68c fuzzer. This
result is also reflected in the average execution speeds between the two versions: 12 865 .92
executions per second for version 3.14c and 5 094 .16 for version 2.68c, an increase of
152 .56 %.

Another observation is that the BaseSAFE benchmark is much slower than either fuzzer,
with an average of 1 053 .82 executions per second. The original paper reported about
1 500 executions per second on an Intel i7-6700 @ 3.40 GHzz [67]. However, other than the
code in the repository, it is not mentioned how AFL++ was executed. This information
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Figure 6.2: Total paths found by the AFL++-based fuzzers over time.

matters because AFL++ performance can differ depending on the configuration of the
machine it is executed on, such as the Central Processing Unit (CPU) scheduler and
memory allocators [2]. Thus, these results are not as comparable as they might appear
at first glance. The difference in execution speed between the BaseSAFE benchmark
and the Apple Remote Invocation (ARI) fuzzers is likely explained by the fuzzed target’s
complexity.

This assumption is also supported by the plot shown in Figure 6.2. It shows that AFL++
could find several times the number of paths within the Long-Term Evolution (LTE)
Radio Resource Control target. An interesting result in this graph is that version 2.68c
uncovered more paths in the same time frame even though its average fuzzing speed was
much slower. AFL++ 3.14c also plateaued very early. Since this benchmark is based on
a single run, this result is possibly due to randomness used within the fuzzer.

Thus, the benchmark on version 3.14c was re-run three times to compare the results.
They can be seen in Figure 6.3, which shows a very similar pattern to path discovery
between runs. While this is not conclusive proof that AFL++ version 3.14c discovers
fewer paths than version 2.68c, it is still a surprising result. The paths discovered by the
fuzzers are likely error paths because the corpus only contains valid ARI messages.

Custom Fuzzer

Similar to the AFL++ fuzzer, a Docker setup was created to compile and run the
benchmark for the custom fuzzer. However, the actual benchmarks were again executed
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without Docker. This set of benchmarks focuses on three key points. The first is to find
the ideal number of worker threads for the machine that carries out the benchmarks.
Secondly, fuzzing speed will be compared between the custom fuzzer with the ideal
number of worker threads and AFL++ 2.68c and 3.14c. Finally, edge coverage was
collected to compare it to the data collected from AFL++ 3.14c. Sadly, version 2.68c
does not output how many edges have been found and thus cannot be included in this
comparison.

Four benchmarks were run, each with a different number of workers to uncover the ideal
setup. Figure 6.4 shows that one worker can achieve an average of 638 .61 executions per
second. This speed is not increased linearly when new workers are added. For instance,
eight workers can achieve a speed of 3 017 .38 executions per second, increasing the
execution speed only by about 3 .7 times compared to the expected eightfold improvement.

Figure 6.4 further shows that a peak is reached with ten worker threads. This benchmark
reached an average execution speed of 3 111 .25, a slight improvement of 3 .2 % over the
eight worker benchmark. Performance dramatically decreases with 12 workers down to
2 730 .43 executions per second or a decrease of about 12 .24 %. This decrease is likely
caused by some threads waiting to read from and write to their corresponding channels.
Thus, it can be concluded that the ideal number of workers for an eight-core machine is
ten.

When compared to AFL++ as shown in Figure 6.5, it becomes clear that AFL++ version
3.14c is definitively the fastest fuzzer. While the custom fuzzer also lags behind version
2.68c due to its fluctuating nature, the custom fuzzer can surpass it at times. It is
necessary to mention that fuzzing performance with AFL++ can be further increased by

70



6.1. Performance Evaluation

00 15 30 45 60

1000

2000

3000

4000

Minutes

Ex
ec

ut
io

ns
pe

r
Se

co
nd

1 Worker
8 Workers
10 Workers
12 Workers

Figure 6.4: Ideal number of worker threads on an eight-core machine.

creating several parallel instances. AFL++ with both versions, 2.68c and 3.14c, would
likely be much faster in that case than the custom fuzzer. This fuzzing speed increase is
likely due to AFL++’s many optimizations. One of which applies explicitly to Unicorn,
the underlying emulator. AFL++ caches already translated blocks [67], while the custom
fuzzer does not.

Finally, Figure 6.6 shows edge coverage between the custom fuzzer and the three runs of
AFL++. Both fuzzers plateau before reaching the thirty-minute mark. However, the
custom fuzzer finds about 12 .6 % or, in absolute numbers, 13 more edges than AFL++.
Several factors may explain this result. While the custom fuzzer only randomly flips bits,
AFL++ also tries to minimize the inputs. However, ARI can only be minimized so far.
The custom fuzzer excludes the first four magic bytes from fuzzing, while AFL++ lacks
this awareness. Minimizing the inputs and not excluding the first four bytes also means
that it is more likely that fuzzing operations will occur in those bytes. This circumstance
is due to them making up a more significant percentage of any given input.

6.1.2 In-process Fuzzers

The following sections presents some performance characteristics of the in-process fuzzers.
Since they cannot instrument code running within the Baseband (BB), providing coverage
information is impossible. Thus, this section focuses on the speed at which input can be
provided to the BB. All benchmarks were run on an iPhone SE 2020.
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Figure 6.5: Speed comparison between the custom fuzzer and AFL++.
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Figure 6.7: In-place fuzzer performance over time.

In-place Fuzzer

Benchmarking the in-place fuzzer is rather challenging because it requires active inter-
action between the BB and iOS. Further, since ARI is a management protocol, it does
not transfer audio from calls or data from Short Message Service (SMS) messages. This
reality rules out the possibility of simply starting an hour-long phone call and fuzzing it.
Instead, it was run for five minutes while manually opening several different websites
to give an insight into how the fuzzer performs. This benchmark is not comparable to
other fuzzers because it is so much slower. It is also inherently hard to reproduce since it
depends on the websites being visited and many other factors that are hard to control.
Thus, the point of this benchmark is to show that fuzzing speed is not the only important
variable, and improvements such as more stateful fuzzing are also tremendously significant
to overall performance.

The fuzzer caused the phone to become very unstable. Cellular functionality broke
down completely after about two minutes. Thus, it was not possible to create new fuzz
cases after that. Hence the decline in fuzzed ARI messages around that mark, shown in
Figure 6.7. Overall, the fuzzer only fuzzed about 124 messages or about one message per
second in the two-minute time frame it was able to run. This result shows that typically
only a few ARI messages are needed to trigger a severe crash. A severe crash, in this
case, describes a crash of the BB that is unrecoverable until a reboot of the entire phone
occurs.
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Figure 6.8: Fuzzing run of the managed injection fuzzer.

Injection Fuzzer

The initial approach to benchmark the injection fuzzer was very similar to benchmarking
the emulation-based fuzzers. However, running the injection fuzzers for an hour is not
possible because a crash of the BB or a problem with the current ARI state would
occur quite quickly. Restarting the fuzzers and re-running them would eventually lead
to a crash that was unrecoverable for the device even after terminating all processes
grouped with CommCenter. At that point, a reboot of the device is required, making
an hour-long benchmark impossible.

An attempt at benchmarking the injection fuzzer with a manager component for an hour
while continuously restarting it after a crash can be seen in Figure 6.8. After about
ten to fifteen minutes, a crash is encountered that cannot be recovered from for a few
minutes. The benchmark run breaks down entirely around the thirty-minute mark, as
cellular functionality on the device is not restored until it is rebooted.

Thus, the benchmark was limited to five minutes, as seen in Figure 6.9. The standalone
fuzzer was also benchmarked for five minutes. However, comparing the average over that
timeframe is difficult. Due to its improved performance, the standalone fuzzer would
encounter a crash quite quickly and take longer to recover from a crash, which means
that the standalone fuzzer was not running for the same amount of time. Moreover, when
it comes to maximum fuzzing performance, the standalone fuzzer reached up to 10 752 .69
fuzzed inputs at its peak, whereas the managed fuzzer never managed to exceed 4 672 .9
fuzzed inputs. Thus, the input data serializing and sending it back to the manager is
responsible for a 56 .54 % decrease in fuzzing speed.
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Figure 6.9: Fuzzing performance in standalone mode and with a manager.

6.1.3 ARI Generators

The three versions of the ARI generator were benchmarked to establish how much of
a bottleneck generating ARI messages would be within the fuzzers. Each benchmark
would generate 50 000 ARI messages and then write them each as a file to the disk. The
three versions benchmarked were the Rust and two JavaScript versions. Further, the
JavaScript versions are split between the length-limited and non-limited versions. All
benchmarks were run on an Intel i7-6700K @ 4.00 GHz processor. JavaScript versions of
the generator were run in Node.js version v14.16.0 and the Rust-based generator was
compiled with rustc version 1.52.1.

Figure 6.10 shows the differences between the three versions on a logarithmic scale.
First, it shows how much time the benchmark took overall, with the Rust and limited
JavaScript versions of the fuzzer being the fastest at 1 .57 and 0 .84 seconds, respectively.
The slowest being the non-limited JavaScript version at 11 .99 seconds. In that time,
the Rust version generated about 31 880 .88 ARI messages per second compared to the
non-limited version’s 4 170 .49 or the limited version’s 59 880 .24 messages per second.
This throughput is equivalent to an output of 521 .42 megabytes per second for the Rust
version, 75 .42 for the non-limited Javascript version and 36 .01 megabytes per second for
the limited version.

One explanation for these differences is the additional overhead needed to run the
JavaScript code within Node.js as compared to the native performance of Rust. Moreover,
the limited version produces much less data. While it manages to produce more ARI
messages per second than the limited fuzzer, its actual throughput in megabytes per
second is much lower.
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Figure 6.10: Comparison of the performance of the different ARI generators.

6.2 Reverse Engineering Use Cases
During this thesis, several tools were created to analyze the BB. These tools can be used
outside of this work as well. The following section will highlight a few additional use
cases for these tools. Each paragraph will first describe a given tool and then summarize
how it was used in this thesis.

First, a set of shell and Python scripts was developed to quickly parse and output results
from radare2’s [85] ra-find2 utility. This set of scripts enables quickly searching
for hexadecimal values in a set of files and then outputting the result in the JavaScript
Object Notation (JSON) format. It is then possible to use a simple Python script to
parse the results and give more context. During this thesis, these scripts were used to
analyze .istp files. It was possible to find the four magic bytes related to ARI and the
separator sequence this way. It was also trivial to add scripts to analyze these structures
further.

Secondly, a script to find matching sequences within a set of files was created. The script
loads two sets of files into memory and then tries to find matching sequences within them.
It outputs the ten longest matches to the console and outputs all matches as JSON to a
file. During this thesis, this script was used to find commonalities between two ISTP
dumps. The idea is that similar actions, such as turning off and on airplane mode or
sending SMS messages, should produce similar dumps. Since the files are about one
megabyte in size, dumps can become big quite quickly. Consequently, finding matches
becomes infeasible because the processing time increases dramatically.

Thirdly, the script used to reconstruct the BB source code structure in Section 4.4.2
is compatible across all BB generations. Thus, it can likely be used for future BB
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generations, allowing for quick comparisons between generations. This script may help
find new, possibly undocumented, features. Further, the general concept could easily
be extended to other domains. The script’s structure is modular enough to easily add
support for firmware built from different code bases.

Finally, to debug and analyze the emulation setup, an additional hook was implemented
that can print the current state of the stack. This hook can be used in addition to
BaseSAFE ’s register hook [67]. The register hook prints the current contents of the
ARM registers R0 to R11, SP, and LR. The stack hook can print the top five entries on
the current stack pointed to by SP. During this thesis, these hooks were used to gain a
better insight into the emulation setup and debug it. It can also be used with a utility
program created during this thesis, which shows the trace of basic blocks that a given
emulation run traverses.

6.3 Analysis of Fuzzing Results
This section summarizes the results of the different fuzzing campaigns carried out during
this thesis. The vulnerability’s cause and whether the given vendor has addressed it are
outlined in the case of vulnerabilities.

6.3.1 Emulation-based Fuzzing Results
During the fuzzing campaigns with AFL++ and the custom fuzzers, several crashes were
encountered. For instance, over an hour, the emulation-based fuzzer was able to find 372
crashes. All of these crashes are related to read-operations referencing an unmapped
memory region. A replay script based on the symbols used for the in-process fuzzers was
implemented to verify whether these crashes are reproducible on the actual device. Before
replaying the trace, the CommCenter process was terminated with the frida-kill
command. This termination was done to clear potential state information that could
impact the crashes.

Due to the implementation of the emulation setup, only crashes caused by single ARI
packets were considered. Most of the time, no results were encountered when replaying
these messages. Neither the event log of the iPhone nor DumpBasebandCrash would
show any signs that a BB crash was encountered.

However, sometimes a dump of .istp files was produced. Analyzing the dump showed
that the reason for it was an ARI_TIMEOUT. Most likely, this timeout was caused by the
injection of new messages itself. However, it is possible that the BB crashes “silently”,
meaning that iOS does not notice the crash. The exact cause is not understood to date
due to a lack of information about the ISTP format.

Overall, emulation-based fuzzing in this thesis did not yield any exploitable bugs. While
both AFL++ and the custom fuzzer can find crashes within the realm of emulation,
reproducing them on an actual device failed. Even if crash logs were created, their cause
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could not be understood. The most likely cause for the crashes is an incomplete emulation
setup that misses the necessary global state for ARI to be parsed correctly. However,
reconstructing such a state without a runtime view of the BB was too challenging and
time-consuming to achieve. While these issues could not be resolved during this thesis, it
was possible to emulate and fuzz a handler within a highly complex target reasonably
well. Further, once issues such as understanding the ISTP format are resolved, it might
be possible to show that the encountered crashes indicate severe issues within the BB.

6.3.2 In-process Fuzzing Results
The failure to find relevant crashes through emulation-based fuzzing was one of the
motivating factors while implementing the in-process fuzzers. By using an actual device,
the global state and other necessary parameters were already instantiated. Thus, crashes
encountered during fuzzing were more reproducible.

Encountering crashes during fuzzing usually does not take much time. As shown in
Section 6.1.2, typically, a crash is encountered after less than a minute or two. Crashes
differ in severity. While some cause a BB, reset others disable cellular functionality
altogether. So far, it was possible to recover more severe crashes by rebooting the device.

As with the crashes produced by the emulation-based fuzzers, traces from the in-process
fuzzers that caused a crash were replayed using a F RIDA script. This way, it was possible
to quickly verify whether an ARI trace causes crashes within the BB. Crashes can either
be identified by consulting the info.txt for the dump reason or by checking the devices
log.

Listing 6.1 shows the device log of an iPhone SE 2020 during encountering a crash
and resetting the BB. First, abm-helper detects a reset of the BB. Then, some event
listeners for the BB’s boot-state and reset status are registered, and the BB’s bootloader
is told to reload the firmware. The firmware is then transferred step by step to the BB,
and a reboot is carried out. Finally, some flags are reset to indicate that the reset is
complete.

However, while it was possible to find reproducible crashes, the lack of insight into the
BB’s inner workings hinders analysis. It is not possible to tell what the root cause is for
any given crash. Consequently, it is also not possible to distinguish crashes from each
other. A better understanding of the ISTP format would be helpful here as well.

The in-process fuzzers’ goal was to fuzz the BB and uncover vulnerabilities within it
and not within iOS. However, while fuzzing it, the BB responds in erratic ways to the
received ARI messages and generally exhibits unexpected behavior. Thus, in effect, the
in-process fuzzers fuzz not only the BB, but also components within iOS. The rest of
this section details a vulnerability found while fuzzing with an in-process fuzzer.

While running the injection fuzzer with the first JavaScript version of the ARI generator,
the iPhone would reboot after about 40 injected packets. Since the fuzzer was relatively
fast, this would only take a couple of milliseconds between starting the fuzzer and the
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abm-helper(ABMHelper)[434] <Notice>: #I baseband reset detected
[...]
CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: #I ipc.mod.

client registered for: (
EventBasebandBootStateChange,
EventBasebandResetDetected,
kEventTraceDumpStateBegin,
kEventTraceDumpStateOsLog

)
[...]
CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: #I Allowing

ARI reset requests
[...]
CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>:

16:1628534176.561[4.0]BBUICEInitializer::: Preparing at first
with reset requested 1

[...]
CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>:

16:1628534176.712[4.0]BBUICEInitializer::: Preparing at second
with reset requested 0

[...]
CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: 3:

Sending PSI enhanced command 'Load and execute EBL'
CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: 3:

BEGIN: Sending Images
CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: 3:

Product Type : 97 and Hardware Config: 0x2 in
Reserved0

CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: 3:
EBL started, continue to image download.

CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: 3:
Loaded file 'TPCU.elf'

CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: 3:
Reading file 'TPCU.elf' (offset=0, length=52)...

CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: 3: 0x34
of 0x34 (100 percent)

[...]
CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: #I Added

detection with key 'Baseband Recovered Gate', reset=0
CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: #I Sending

EventBasebandBootStateChange to radio.mod.client at
1628534178226

CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: #I The
baseband reset-flag is reset.

CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: #I Sending
EventBasebandBootStateChange to CommCenter at
1628534178227

CommCenter(libBasebandManagerICE.dylib)[28527] <Notice>: #I Added
detection with key 'Baseband Crash Recovery', reset=1

Listing 6.1: Excerpt from an iPhone’s system log showing a BB crash.
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1 struct IOACIPCTagList
2 {
3 unsigned __int16 chainLength;
4 unsigned __int16 nextFreeTag;
5 unsigned __int16 lastIndex;
6 unsigned __int16 initiallyZero1;
7 unsigned __int16 initiallyZero2;
8 unsigned __int16 unknown1;
9 unsigned __int32 unknown2;

10 IOACIPCTagEntry * entries;
11 };

Listing 6.2: The IOACIPCTagList data structure.

phone rebooting. This reboot prevented iOS from generating a crash log indicating
the cause of the reset. Slowing down the fuzzer to only inject two messages per second
prevented this behavior and also generate a crash report. The crash report indicates that
a kernel panic had occurred due to an assertion failure. While it was possible to reproduce
the issue across three iOS versions(13.5, 14.1, and 14.3), it was only reproducible on
devices with ICE19 BBs. On ICE17 the issue could not be reproduced and ICE16,
ICE18, and IBIS18 could not be tested. This observation shows that while this is an
issue within the iOS kernel, it originates from communication between the BB and the
application processor.

The kernel cache of the device on which the issue was reproduced was loaded into IDA
Pro. However, this kernel cache did not contain any debugging symbols, making analysis
rather challenging. Thus, a trick1 known in the iOS reverse-engineering community was
used: Apple included a research kernel cache that still contained debugging symbols in
specific builds of iOS 14.

Identifying the failing assert-statement was relatively easy using IDA’s cross-referencing
feature and the string provided to the assertion. It was possible to identify
IOACIPCTagList as a data structure involved in the crash by using the research
kernel cache. The panic occurred in its freeTagChain() method. After manual analy-
sis, it was possible to reconstruct the fields of this data structure. IOACIPCTagList's
fields are shown in Listing 6.2.

The IOACIPCTagList contains several variables that are used to implement other
methods associated with the list. Additionally, it contains a pointer to a second data
structure called IOACIPCTagEntry, which can be seen in Listing 6.3. However, for
both data structures, it was not possible to understand the meaning of all fields.

The actual cause of the panic can be seen in Line 12 of Listing 6.4. Understanding how
the IOACIPCTagList works is necessary to understand the if-statement in the line
before the panic. When a new list is initialized, a length parameter is passed to the

1See: https://twitter.com/tihmstar/status/1295814618242318337
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6.3. Analysis of Fuzzing Results

1 struct IOACIPCTagEntry
2 {
3 unsigned __int16 claimed;
4 unsigned __int16 index;
5 char unknown[20];
6 };

Listing 6.3: The IOACIPCTagEntry data structure.

initializer. This parameter indicates the number of tag entries stored in a given list. Thus,
the first step in the initialization method is to allocate an array of IOACIPCTagEntry
elements. Next, the chainLength field is set to the value of the length parameter,
nextFreeTag is set to zero, and lastIndex is set to the length parameter minus one.
Finally, for each entry of the list, the index and claimed fields will be set. The index
variable will be set to the index of the next element in the list, except for the last element,
where it will be set to the actual index of the last element. As for the claimed field,
it will be assigned the value one. When a new free tag entry is requested through the
getFreeTag() method, roughly the following steps will be taken:

1. If the tag at the index referenced by nextFreeTag has been claimed, an assertion
will fail.

2. If the same tag’s index field is set to its actual index, a null value indicating an
error is returned.

3. Otherwise, assign the index field the value of the entry index and return the entry
by reference.

Therefore, whether or not a tag is free or in use seems to depend on its index value. It
follows that the check in Listing 6.4 assures that no tag entry is freed twice. Apple has
confirmed the issue and addressed it with an iOS update to version 14.62. Due to the
lack of an iOS 14.6 jailbreak at writing, independently verifying whether the problem
was removed was impossible. Further code snippets documenting this mechanism can be
found in Section A.5.

Even though it was not possible to exploit this vulnerability in this thesis, iOS behaves
very strangely. The entire device crashes when sending too much data and instantly
reboots. While Apple did not assign a CVE, it is suspected that this vulnerability might
be exploitable regardless. Such an exploit might lead to a remote code execution attack,
which would be much more severe than a simple Denial of Service (DoS).

2The update notes acknowledging this issue can be found at https://support.apple.com/
en-us/HT212528.
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6. Evaluation

1 bool __fastcall IOACIPCTagList::freeTagChain(IOACIPCTagList * this,
__int16 a2,

2 unsigned int tagChainToFree)
3 {
4 IOACIPCTagEntry * v3;
5 /*...*/
6
7 v3 = this->entries;
8 if ( v3[tagChainToFree].index != tagChainToFree )
9 panic(

10 "\"assertion failed %s:%u\"",
11 "/Library/Caches/com.apple.xbs/Sources/IOACIPCFamily/

IOACIPCFamily-38.0.1/IOACIPCFamily/IOACIPCCore/
IOACIPCTagList.cpp",

12 101LL);
13
14 /*...*/

Listing 6.4: The freeTagChain method causing the kernel panic.
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CHAPTER 7
Discussion and Future Work

This chapter first discusses the results of the work presented in the previous chapter in
Section 7.1. Section 7.2 then summarizes topics that are still questions for future work in
regards to analyzing Intel Basebands (BBs).

7.1 Discussion
While Chapter 6 has discussed the performance of the different fuzzers used in this thesis,
this section now looks at the upsides and downsides of the different approaches. First and
foremost, it is necessary to acknowledge that the emulation-based fuzzing approaches, as
described in Section 5.2, were ultimately unsuccessful. They did not yield any relevant
security vulnerabilities. However, while creating the fuzzing setup, some insights into
the BB were uncovered, such as functions used to allocate buffers within the BB. This
information might be helpful for further investigations.

Another upside of the emulation-based fuzzers is the ability to instrument the emulator.
By setting hooks, it was possible to leverage coverage guidance in the custom fuzzer and
American Fuzzy Lop Plus Plus (AFL++). Inspecting the crashes that were encountered
was also much more accessible and thorough. It was possible to inspect register values,
Central Processing Unit (CPU) state, and the heap and stack of the running process.

One reason why emulation-based fuzzing might have failed is that the parser that was
being emulated and fuzzed was too small. Apple Remote Invocation (ARI) itself has a
wide-ranging impact on the BB, and its contents are evaluated throughout the firmware.
However, the parser analyzed in this thesis focuses primarily on parsing the Type-Length-
Values (TLVs) from given ARI messages. Creating a more sophisticated emulation setup
could lead to discovering a hidden vulnerability much deeper in the BB.

In-process fuzzing, as discussed in Section 5.3, has several advantages. For instance, it is
much easier to set up. Creating a F RIDA script that can effectively fuzz a given process
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in iOS or use functions within that process to fuzz other parts of the device (such as the
BB) is much faster.

It was ultimately not possible to uncover a security vulnerability in the BB itself. However,
the device’s stability during fuzzing is so low that it is clear that these interfaces have
likely not been internally analyzed before by Intel or Apple. For example, results from the
in-place fuzzer (see: Section 6.1.2) show that even a tiny amount of fuzzed ARI messages
leads to unrecoverable crashes. It requires the device to reboot and, thus, creating a
Denial-of-Service attack. Similar situations were encountered with all fuzzers in minutes,
attesting to the high instability of the examined implementations.

Furthermore, the discovery of a kernel-level vulnerability, as described in Section 6.3.2,
further confirms the instability of the Apple cellular stack. Even though the goal of
this thesis was to uncover issues within the BB itself, fuzzing it led to a crash within
iOS itself. In reality, this is a much more concerning result than finding issues in the
BB. While this particular vulnerability did not lead to code execution within the kernel,
similar issues could enable a remote attacker to do exactly that. A zero-click remote
code execution that can escalate into the iOS kernel would have a much more severe
impact than an attack from the Application Processor (AP) to the BB. After all, the
latter would typically require the former to be feasible in the first place.

The topic of the ISTP format has to be discussed. This proprietary logging and tracing
protocol was the main factor why a security vulnerability within the BB could not be
detected. Without understanding it, it is not possible to know the internal state of the
BB. It was not possible to understand the protocol sufficiently for this kind of analysis.
However, it was feasible to uncover specific hints about the nature of this format. These
hints were detailed in Section 4.7.3 and might help future research on the topic.

Finally, when it comes to statically reverse-engineering the BB, this thesis uncovered
several details. It was possible to compare the growth in complexity between five BB
generations and document the processor architecture and model of the CPU and Digital
Signal Processors (DSPs) of several BBs. Further, the memory exploitation mitigations
in Intel BBs and several details of the ARI protocol were uncovered.

7.2 Future Work
From further reverse-engineering tasks to improvements to the fuzzers, various tasks
remain for future work. This section lists several of these topics. First, focusing on open
reverse-engineering questions and then detailing improvements to fuzzing strategies.

7.2.1 Reverse Engineering Tasks
This work presented an overview of several topics related to the Intel BB. However, the
BB runs a very complex firmware. Thus, the following section details areas of interest
for future work.
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ISTP Format Since the ISTP format holds the key to understanding the internal
workings of the BB, reverse-engineering it remains an important open topic. It would
make it possible to distinguish crashes within the BB and enable analyzing them in more
detail. This work might eventually lead to the discovery of severe vulnerabilities within
the BB.

ARI Reverse-engineering While the general structure of ARI is well understood,
the actual interaction between the BB and the AP is still missing detail. In other words,
while it is clear which groups, types, TLV types and more, are included within ARI, their
specific meaning is not always clear. Further analysis might help to better understand
ARI and create tools that could interact with the BB directly.

Reverse-engineering Cellular Protocol Implementations This thesis has focused
chiefly on the communication between the BB and the AP. However, another major part
of the BB are the cellular stacks for Global System for Mobile Communications (GSM),
Universal Mobile Telecommunications System (UMTS), Long-Term Evolution (LTE), and
more. These have contained many vulnerabilities in the past [39, 46]. However, in the case
of Intel BBs, only very little public work on the topic exists. Thus, reverse-engineering
these software stacks could enable more interesting security research.

General Baseband Reverse-engineering As has been shown in this thesis, the BB
stack is a highly complex target containing likely more than 100000 functions. Another
topic for future work could be gaining a better understanding of the general structure
of the BB and how different parts interact with each other. This information could aid
greatly with future security research.

7.2.2 Better Emulation and Fuzzing
While it was possible to uncover vulnerabilities in the iOS kernel, the fuzzing campaigns
did not uncover any security vulnerabilities in the BB. Several improvements could help
achieve this task. Thus, this section focuses on these advancements.

More thorough Emulation At the moment, the emulation setup only focuses on
the parser for ARI messages and nothing else. Especially the further handling of the
information contained in the messages could be crucial to finding vulnerabilities. Thus,
improving the emulation setup to include more parts of the BB could be an essential
advancement. It could even go as far as emulating the entire BB. Similar work has been
done for Samsung’s Shannon BBs by Hernandez and Muench [52].

More Flexible Sanitized Heap The custom fuzzer currently uses the sanitized heap
implementation provided by BaseSAFE [67]. This heap is intended to be used with
AFL++. When illegal memory access occurs, the entire process crashes intentionally
because a panic occurs. This behavior is a problem for the custom fuzzer since it cannot
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recover from such a crash. Thus, a more flexible heap that allows setting custom hooks
via callbacks would be beneficial.

Better Mutations Currently, the custom fuzzer flips bits at random to generate new
inputs. The in-process fuzzers use more sophisticated techniques such as splicing known
problematic values into the input or generating random ARI messages. This method
or an even more sophisticated approach could be implemented in the custom fuzzer to
improve the effectiveness of the fuzzer.

AFL++ Custom Mutator An alternative approach to improve fuzzing effectiveness
is to use the custom mutator mechanism supported by AFL++ [36]. It allows for the
modification of AFL++’s behavior either via a Python script or a C/C++ program.
Thus, it would be possible to integrate knowledge gained through reverse-engineering
ARI into AFL++, harnessing all the advantages AFL++ offers and gaining effectiveness
through knowledge about the fuzzing target.

LibAFL More recently, LibAFL [66] was published. It is a library written in Rust
that heavily influenced AFL++. Compared to AFL++, it takes a much more modular
approach allowing users to only use the parts of the fuzzer they need. It also features
a F RIDA mode that allows the in-process fuzzer discussed in this thesis to implement
more sophisticated mutations. Integrating LibAFL into this fuzzer might yield a much
more effective fuzzer overall.

In-process fuzzing without exclusions Currently, the in-process fuzzers exclude
certain parts of ARI, such as Short Message Service (SMS) messages and phone calls.
When fuzzing these BB parts, actual phone calls are triggered, which means costs are
incurred. Due to such costs and the fact that this might impact real cellular networks,
the corresponding parts of ARI were excluded. Future work could set up a test bench
with a fake base station to work around this issue.

Grammar-based Fuzzing All fuzzers implemented in this thesis could benefit from a
grammar-based input generation technique to generate new inputs. Since ARI messages
are categorized into groups and then sub-categorized into types, each with a specific set
of associated TLV types, randomly generated messages often fail trivial checks. Thus,
using a grammar describing these relationships could be more effective when creating
inputs. It would also allow for a more sophisticated way of only fuzzing certain parts of
ARI, such as SMS message handling.

Conversation-based Fuzzing This thesis has mostly fuzzed one ARI message at a
time and has not considered any global state when generating and mutating messages.
However, ARI has a global state that every message influences and behavior changes
depending on this state. Furthermore, many ARI messages exhibit a request/response
pattern. Considering the global state and patterns such as this one during fuzzing might
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yield a fuzzer that can explore the BB much deeper. Therefore, it might be able to
uncover vulnerabilities buried within.

Coverage-guided In-Process Fuzzing Once the ISTP format is understood well
enough, it might be possible to implement a coverage-guided fuzzer. Since .istp files are
written continuously, it might be possible to hook into functions responsible for handling
them within iOS. It might be possible to parse incoming ISTP data to decide whether a
given input has discovered a new state within the BB by leveraging these hooks.

x86 Fuzzing While ICE18 is not the newest generation of Intel BBs, it still has much
overlap with the code base of ICE19. One significant advantage to fuzzing ICE18 is that
it is an x86 -based BB, which means that the emulation overhead needed to run parts
of it could be much smaller than with ARM generations. Leveraging this fact could
increase fuzzing speeds.
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CHAPTER 8
Conclusions

In this thesis, five generations of Intel Basebands (BBs) were discussed and analyzed. An
overview of their processor architecture, Real-Time Operating System (RTOS), and how
they interact with the Apple cellular stack was provided. The growth in complexity, as
well as memory exploitation mitigations, were discussed. Furthermore, several approaches
to emulating and fuzzing the BB’s firmware were detailed. Through fuzzing efforts, it
was possible to uncover a kernel-level vulnerability in iOS. This chapter gives a more
detailed summary of this thesis and then concludes it.

To begin, background information and analysis techniques used throughout this work
were described in Chapter 2. Then, in Chapter 3, the current state-of-the-art of BB
security research and reverse-engineering efforts was outlined. Further, several key works
in the realm of fuzzing were summarized.

In Chapter 4, the results of statically reverse-engineering the BB were presented. An
overview of the Apple cellular stack with Intel BBs was given. Next, how the firmware
was acquired and what files are included in each BB generation was summarized. Then,
the general processor architecture and model of each BB generation’s Central Processing
Unit (CPU) were discussed, as well as a brief summary of the use of Xtensa cores as
Digital Signal Processors (DSPs) was given.

By leveraging the function detection of four different disassemblers, libraries, and source
code paths referenced by strings in the BB, the firmware’s complexity was compared
between five BB generations. This comparison was followed by a brief discussion of the
BB’s RTOS. Then, an overview of several memory exploitation mitigations across the
five BB generations was presented. The chapter concluded by summarizing the Apple
Remote Invocation (ARI) protocol used for communication between the BB and the
Application Processor (AP).

In Chapter 5, the insights from reverse-engineering the BB were leveraged to fuzz its
firmware with the intention of finding a security vulnerability. In total, four fuzzers were
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implemented. The first two focused on emulating parts of the BB’s firmware. The first
fuzzer uses a custom implementation to utilize knowledge about ARI, the second utilizes
American Fuzzy Lop Plus Plus (AFL++). The following two fuzzers would hook functions
within iOS ’ CommCenter. CommCenter is a process that is responsible for handling all
kinds of cellular-based functionality, such as phone calls or Short Message Service (SMS)
messages. These two fuzzers took two different approaches to send manipulated messages
to the BB. The in-place fuzzer mutates or even replace specific messages mid-flight
between the AP and the BB. The injection fuzzer, on the other hand, mutates messages
from a corpus or generate new random messages and then send as many of them as it
could to the BB.

The performance of the different fuzzers was evaluated in Chapter 6. This chapter also
discussed reverse-engineering use cases of scripts created throughout this work. Then,
a discussion of the fuzzing campaigns’ results was given. The discussion included an
analysis of a kernel-level vulnerability within iOS that Apple has since acknowledged and
fixed. Finally, Chapter 7 briefly discussed the results of this thesis and outlined a variety
of topics for future work.

Overall, the Intel BB implementation is a very complex system that is entirely closed off.
Some parts of its implementation can be understood from convoluted public specifications,
but documentation is minimal. In light of these circumstances, this thesis attempted
to document how the Intel BB works as much as possible. It also tried to uncover
security vulnerabilities within it. While the latter goal ultimately failed, a kernel-level
vulnerability within iOS was discovered. It was also possible to demonstrate that the
BB is extremely unstable when pressured under fuzz testing.

In conclusion, this thesis serves as a foundation for future research. Several results
discussed in this thesis can be used for future security or reverse-engineering research,
such as information about memory exploit mitigations or the CPU architecture. Future
research is encouraged as it is highly likely that severe vulnerabilities are yet to be
discovered in Intel’s BB implementation.
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APPENDIX A
Appendix

This appendix contains further information about various topics discussed in the main
thesis. Starting off with an overview of symbols and offsets for each of the given listings
or functions discussed during this thesis in Section A.1. Then, Section A.2 provides an
excerpt from a BuildManifest.plist. Section A.3 gives an overview of the amount
of cores present in the ICE Basebands (BBs). Finally, Section A.4 and Section A.5
provide some additional information about fuzzing performance with and without the use
of Docker as well as further information about the vulnerability discussed in Section 6.3.2.

A.1 Symbols and Offsets
Table A.1 shows the offsets and symbols used for the different code snippets and references
to functions within the BB throughout this thesis. It includes the offset or symbol name
of the given function or listing, as well as the BB and iOS version that the offset relates
to. Additionally, it also lists where in this thesis the symbol was referenced. All offsets
refer to the main firmware (SYS_SW.elf) of the given BB version after they have been
mapped according to the information in the Executable and Linkable Format (ELF)-file.
This corresponds to how tools such as IDA Pro [53] or Binary Ninja [99] load these files
automatically.

For the functions contained within the iOS kernel cache and dynamic libraries Table A.2
lists their names and symbols. It also lists the respective iOS version. Further, a reference
to where in this thesis the symbol was discussed is listed.

A.2 Build Manifest
Listing A.1 contains an excerpt from a BuildManifest.plist that shows how the BB
firmware is referenced in the build manifest. It contains a relative path to the firmware
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Offset Baseband Version iOS Version In this Thesis
0x85E9CEDA ICE17-4.03.05 14.5.1 Listing 4.2
0x86EDDE40 ICE17-4.03.05 14.5.1 Listing A.3
0x858E4C3C ICE17-4.03.05 14.5.1 Listing A.4
0x8A420E46 ICE19-2.04.07 14.5.1 Listing 4.3
0x8642830C ICE16-5.02.04 14.5.1 Listing A.2
0x8642831C ICE16-5.02.04 14.5.1 Listing A.2
0x8642832C ICE16-5.02.04 14.5.1 Listing A.2
0x019AF01C ICE18-3.03.05 14.5.1 Listing A.5
0x019A5C12 ICE18-3.03.05 14.5.1 Listing A.6
0x8A0B2AF6 ICE19-2.04.07 14.5.1 Listing A.7
0x8a783c7e ICE19-2.04.07 14.5.1 Listing 4.7
0x8a4ad204 ICE19-2.04.07 14.5.1 Listing 4.8
0x8a01b37a ICE19-2.04.07 14.5.1 Listing 4.9
0x8a015d7e ICE19-2.04.07 14.5.1 Listing 4.10
0x8a84c908 ICE19-2.04.07 14.5.1 Listing 4.12
0x8a84d96c ICE19-2.04.07 14.5.1 Listing 4.12
0x8a84d818 ICE19-2.04.07 14.5.1 Listing 4.13
0x8a8873a8 ICE19-2.04.07 14.5.1 Listing 4.14
0x8a84c8bc ICE19-2.04.07 14.5.1 Listing 4.15

Table A.1: Symbols and offsets used in this thesis in the BB.

Symbol File iOS Version In this Thesis
_ZN9AriHostRt7SendRawEPhjj libARIServer.dylib 14.3 Listing 4.16
_ZN9AriHostRt12InboundMsgCBEPhm libARIServer.dylib 14.3 Listing 4.17
IOACIPCTagList::freeTagChain() kernelcache.research.iphone12b 14.0.1 Listing 6.4
IOACIPCTagList::initialize() kernelcache.research.iphone12b 14.0.1 Listing A.8
IOACIPCTagList::getFreeTag() kernelcache.research.iphone12b 14.0.1 Listing A.9

Table A.2: Symbols and offsets within libraries in iOS.

archive as well as a base64-encoded SHA2-384 digest for each binary contained in the
archive. This sample has been taken from a .ipsw-file that contained the iOS 14.3
update for an iPhone SE 2020 (iPhone12,8).

A.3 Processor Core Counts

This section provides more examples of listings that have been obtained by reverse-
engineering the ICE16 to ICE19 BBs. Specifically, these snippets give further indication
of the processor architecture of the different modem generations.
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1 <!-- ... -->
2 <dict>
3 <key>BuildIdentities</key>
4 <array>
5 <dict>
6 <!-- ... -->
7 <key>Manifest</key>
8 <dict>
9 <!-- ... -->

10 <key>BasebandFirmware</key>
11 <dict>
12 <key>Info</key>
13 <dict>
14 <key>Path</key>
15 <string>Firmware/ICE19-2.03.04.Release.bbfw</string>
16 </dict>
17 <key>SystemSW-DownloadDigest</key>
18 <data>
19 DT/hAOsjLl5VRfC4N2CWMUw0vELl6U3Z2TDB
20 YO8JIpZ8SYUgOh5PLN+ecmb4FIJx
21 </data>
22 <!-- ... -->

Listing A.1: Excerpt from a BuildManifest.plist contained in an iOS 14.3 update.

Several format strings within the ICE16 BB support the claim that it is based on a
three-core variant of the ARM Cortex-A5 processor. Three of these format strings can
be found in Listing A.2.

1 " Core 0: %d\r\n"
2 " Core 1: %d\r\n"
3 " Core 2: %d\r\n"

Listing A.2: Strings hinting at a three-core processor in the ICE16 firmware.

Similar to ICE16 BBs, ICE17 BBs contain three cores. This statement is supported
by the format string shown in Listing A.3. As discussed in Section 4.3, the processor
for this generation was an ARM Cortex-A5 variant and this core count aligns with that
proposition.

1 "Idle counters (reset at every wakeup)\r\n\
2 Core 0: %d\r\n\
3 Core 1: %d\r\n\
4 Core 2: %d"

Listing A.3: A format string from the ICE17 BB indicating the amount of cores.
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Further indications for a processor with three cores can be found in Listing A.4. Here, a
string containing an error message is returned, if the core id is bigger than two. Thus,
three values for a core id are plausible: zero, one, and two.

1 if (v32[0] > 2 )
2 return "ERROR: cs_etb: coreID range error";

Listing A.4: Check if a given core id is valid within the ICE17 BB.

Listing A.5 gives some indication about the processor architecture of the ICE18 BBs.
Unlike ICE17 or ICE19 BBs, they are based on an unknown x86 processor that likely
has two cores.

1 if ( possible_core_id >= 2 )
2 return sprintf_like("%s Error: Invalid CoreID : %d",
3 "sah_save_current_thread_info:", possible_core_id);

Listing A.5: Check if a given core-id is valid within the ICE18 BB.

Further clues of two cores can be found in Listing A.6. While iterating over every possible
core-id, it checks whether the given core is stalled. The variable called v64 seems to
indicate the core-id of the core on which the thread that is performing the check is
running.

1 for ( int possible_core_id = 0; possible_core_id < 2; ++
possible_core_id )

2 {
3 if ( possible_core_id != v70 &&
4 dword_7775778[possible_core_id] < dword_7775778[v71] )
5 printf_like("Core %u seems to be stall", possible_core_id);
6 }

Listing A.6: Check whether a core could be stalled in the ICE18 BB.

ICE19 BBs seem to have been based on ARM’s Cortex-A5 series of processors again.
However, this time a variant with four cores as indicated by Listing A.7 is used. The code
iterates over all possible core-ids and checks whether the corresponding core is stalled. If
so, an error string is returned. The loop runs from core-id zero until core-id three, which
suggests a processor with four cores.

1 for ( int possible_core_id = 0; possible_core_id < 4; ++
possible_core_id ) {

2 if ( possible_core_id != a1 ) {
3 if ( v8[possible_core_id] < v8[a1] )
4 result = sprintf_like("Core %u seems to be stalled",

possible_core_id);
5 }
6 }

Listing A.7: Check which cores are stalled within the ICE19 BB.
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Figure A.1: Fuzzing speed of AFL++ 3.14c with and without Docker

A.4 Docker and Fuzzing Performance
The plot in Figure A.1 shows the performance difference of running American Fuzzy
Lop Plus Plus (AFL++) version 3.14c with Docker and natively. Fuzzing performance
decreased from 12865.92 executions per second to 9208.98. A reduction of 28.4%.

A.5 Further Code Snippets involving IOACIPCTagList
In this section, code snippets that have been reverse-engineered from an iOS 14.0 kernel
cache will be provided. They document the mechanisms described in Section 6.3.2 and
have been decompiled using IDA Pro and were cleaned up manually. Some parts have
been removed for clarity, such as the initialization of fields whose meaning is not clear or
simple sanity checks (e.g. is the length parameter for the initializer bigger than two).

Listing A.8 shows how an IOACIPCTagList is initialized. In Line 5 an array of
IOACIPCTagEntry is allocated and if the allocation succeeded, the rest of the structure
is initialized.

The IOACIPCTagList::getFreeTag() shown in Listing A.9 will update the index
field to the actual index of the IOACIPCTagEntry if it is the next free tag in the list.
Finally, the index and the address of the tag entry will be returned by reference.
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1 __int64 IOACIPCTagList::initialize(unsigned int length)
2 {
3 /* ... */
4
5 __int64 result = operator new[](24LL * length);
6 this->entries = (IOACIPCTagEntry *)result;
7
8 if ( result ) {
9

10 this->chainLength = length;
11 this->nextFreeTag = 0;
12 this->lastIndex = length - 1;
13
14 /* ... */
15
16 for (int i = 0; i < lastEntry; i++) {
17 this->entries[i].index = i+1;
18 this->entries[i].claimed = 1;
19 }
20
21 this->entries[lastEntry].claimed = 1;
22 this->entries[lastEntry].index = length - 1;
23
24 result = 1;
25 }
26
27 return result;
28 }

Listing A.8: Initialization of an IOACIPCTagList object.
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1 __int64 IOACIPCTagList::getFreeTag(unsigned __int16 *a2,
IOACIPCTagEntry *a3)

2 {
3 if ( v3[this->nextFreeTag].claimed != 1 )
4 IOACIPCTagList::getFreeTag(); // this causes a panic
5
6 if ( v3[this->nextFreeTag].index == this->nextFreeTag )
7 return 0;
8
9 *a2 = this->nextFreeTag;

10
11 /*...*/
12
13 *a3 = &this->entries[this->nextFreeTag];
14
15 /*...*/
16
17 unsigned __int16 support = this->nextFreeTag;
18 this->nextFreeTag = this->entries[support].index;
19 this->entries[support].index = support;
20 return 1;
21 }

Listing A.9: Returning a free tag from an IOACIPCTagList object.
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