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AAbbssttrraacctt  
The adjustment of pH value is an important task in many industrial processes, such as 
in life science research or formulated products. Several relevant buffer systems consist 
of mixtures of multiple-buffering substances. While single-buffer systems can be 
described via the Henderson-Hasselbalch equation, there is no known mathematical 
method to directly resolve the calculation of pH for multi-buffered polyprotic systems. 
The objective of this work is to provide an approach that is different to the common 
practice of pH adjustment like manual adjustment or adjustment by PID controllers. 
Since the application of machine learning for chemical challenges is a topic of great 
current interest, we hypothesize that it might also be beneficial for predicting and 
adjusting the pH value of complex samples.  
This master thesis provides a purely data driven machine-learning approach in form of 
an iterative closed-loop optimization process for pH adjustment of multi-buffered 
polyprotic systems. The software was written in Python. A personal computer with 16 
GB RAM and a 3.4 GHz Processor was used for both, the programming and 
optimization work. Commonly used surrogate models, like artificial neural network, 
random forest, linear regression and Gaussian process were tested in order to compare 
the overall performance on solving the present task. The benchmarking was based on 
the efficiency of titration towards the pre-defined target pH value. Efficiency means a 
small number of iteration cycles in this case. All models were able to solve the problem, 
with the Gaussian process requiring the least number of loop runs. 
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ZZuussaammmmeennffaassssuunngg  
In vielen industriellen Prozessen ist es unerlässlich, pH-Werte zu adjustieren. Während 
großtechnische Lösungen, beispielsweise in der Abwasserneutralisierung, oft über 
PID-Regler realisiert werden, ist dieser Ansatz bei kleinen Batches im Milliliter-Bereich 
nicht zielführend. Häufig liegen multigepufferte, polyprotische Systeme vor, die 
mathematisch nicht über die Henderson-Hasselbalch-Gleichung beschrieben werden 
können. 

In den letzten Jahren hat die Zahl der Publikationen, die sich direkt oder indirekt mit 
dem Thema “maschinelles Lernen” oder “künstliche Intelligenz” beschäftigen, stark 
zugenommen. Daher lag es nahe, diesen Ansatz auch für die effiziente Einstellung des 
pH-Wertes zu verwenden. In der vorliegenden Diplomarbeit wird ein rein 
datenbasierter Lösungsansatz präsentiert, um pH-Werte von multigepufferten, 
polyprotischen Puffersystemen mit größtmöglicher Effizienz hinsichtlich Mess- und 
Regelungsaufwand zu bewerkstelligen. Die Software wurde in der Programmiersprache 
Python geschrieben. Sowohl die Programmierung als auch die Optimierung der 
Modelle erfolgte auf einem PC mit 16 GB RAM und einem 3.4 GHz Prozessor. Als 
Modelle wurden künstliche neuronale Netzwerke, random forest, lineare Regression 
und der Gaussprozess herangezogen und auf Ihre Leistungsfähigkeit überprüft, die 
vorliegende Problemstellung zu lösen. Zur Feststellung der Effizienz eines Modells 
wurden die benötigten Iterationen bis zum Erreichen des Zielwertes herangezogen. Die 
erfolgreiche Adjustierung des pH-Wertes gelang mit allen erwähnten Modellen, wobei 
sich der Gaussprozess als effizientestes Modell herausstellte. 

  



 
IV 

LLiisstt  ooff  AAbbbbrreevviiaattiioonnss  
 
ANN  artificial neural network 
AF  activation function 
ELU   exponential linear unit 
GP  gaussian process 
GPR  gaussian process regression 
HPO  hyperparameter optimization 
ML  machine learning 
RA  regression analysis 
RBF  radial basis function 
ReLU   rectified linear unit 
RF  random forest 
SVM  support vector machines 
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11  IInnttrroodduuccttiioonn  
A brief historical introduction followed by definitions of pH-value, -measurement, and 
-adjustment, as well as buffer-systems will lay the chemical groundwork for the 
automated adjustment procedure. Further introduction of automation of chemical 
experiments and the role of machine learning in particular will finish this chapter. 

 

1.1 The pH value 
In 1887 S. Arrhenius, a Swedish scientist, introduced that acids and bases are 
substances that dissociate in water to yield electrically charged atoms or molecules, 
called ions. Acids dissociate in water to yield hydrogen ions (H+) (Equation 1) and bases 
ionize in water to yield hydroxide ions (OH-) (Equation 2). 

 𝐻𝐶𝑙 + 𝐻ଶ𝑂    ௗ௜௦௦௢௖௜௔௧௜௢௡   ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ  𝐻ଷ𝑂ା + 𝐶𝑙ି  Equation 1 𝑁𝑎𝑂𝐻    ௗ௜௦௦௢௖௜௔௧௜௢௡   ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ  𝑁𝑎ା + 𝑂𝐻ି  Equation 2 

 
Arrhenius realized that the acidic and basic properties are depending on the hydrogen 
ion concentration and hydroxide ion concentration, respectively. [1] In 1923 the 
chemists J. Brønsted and T. Lowry added to Arrhenius’ theory that a compound that 
can transfer a proton to another compound is an acid, and the compound that accepts 
the proton is a base. [2] Finally, G. Lewis provided the most general definition for acids 
and bases in 1923. According to his theory an acid is regarded as a compound which, in 
a chemical reaction, can attach itself to an unshared pair of electrons in another 
molecule (Lewis-acid). The molecule with an available electron pair is called a base. [3] 
The Danish biochemist S. P. L. Sørensen proposed pH in 1909 first as the negative 
decadic logarithm of the oxonium ion concentration ([H3O+]) or hydrogen ion 
concentration ([H+]) (Equation 3) and later in terms of activity (Equation 4). The 
activity incorporates non-ideal interactions (solvent-solvent, solvent-solute, and solute-
solute), which are important parameters in more concentrated systems. 
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𝑝𝐻 = − logଵ଴ ቂ ௖ಹశ௠௢௟ ௅షభቃ ≡ − logଵ଴ ቀ௖ಹశ௖బ ቁ  Equation 3 

 

Where 𝑐ுశ is the concentration of hydrogen ions, and 𝑐଴ is the concentration in the 
standard-state. 

 𝑝𝐻 = − logଵ଴൫𝑎௠,ுశ൯ = − logଵ଴ ቀ௠ಹశఊ೘,ಹశ௠బ ቁ  Equation 4 

 

Where 𝑎௠,ுశ is the temperature-independent molality (dimensionless), 𝑚ுశ is the 
molality (mol kg-1) of the hydrogen ions, 𝑚଴ is the unit molality, and 𝛾௠,ுశ is the activity 
coefficient on the molality basis (dimensionless) [4], [5]. H+ indicates the bare proton 
but should be interpreted as the sum of all hydrated proton species. Some of them are 
large clusters like the “Zundel cation” H5O2+ and the “Eigen cation” (H3O+)(H2O)3. [6] 

Commonly used pH scale is shown in Figure 1. Values below pH 7 are increasingly 
acidic and values above 7 are increasingly basic. A pH value of 7 is considered neutral. 
[7]   

 

Figure 1: Commonly used pH scale with increasing acidity left from pH 7 and increasing basicity 
right from pH 7. 
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1.2 pH measurement 
Commonly used state-of-the-art pH meters consisting of a combination of a glass 
membrane and a reference electrode (Hg|Hg2Cl2 or Ag|AgCl electrode, see Figure 2 
[8]). Equation 5 leads to the pH of an aqueous solution of interest (pH(X)). 

 

 

Figure 2: Schematic of a calomel electrode on the left side and a Ag/AgCl electrode on the right 
side [8] 𝑝𝐻(𝑋) = ா೉ିாೄೄೃ೅ಷ  ୪୬ (ଵ଴) + 𝑝𝐻ௌௌ  Equation 5 

 

Where EX is the experimental cell potential measured for X (compound of interest), ESS 
is the experimental cell potential of a secondary standard (or EPS primary standard), R 
is the universal gas constant, T the temperature (in Kelvin), and F the Faraday 
constant.[6] 

Figure 3 shows different state-of-the-art pH-electrodes for laboratory and industrial 
use. [9] 
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Figure 3: Examples of pH-electrodes for laboratory and industrial use [9] 
 
1.3 pH buffer 
Systems emerged during evolution that can resist pH changes in biological systems – so 
called “pH buffer” or simply “buffer”. Sørensen was the first who mentioned the word 
buffer in 1909. [10] In buffered systems, the addition of strong acids or bases leads to 
smaller pH changes compared to unbuffered systems [11] (Figures 4, 5). As a result, 
the pH of the unbuffered solution can change considerably in contrast to the buffered 
solution, whose pH stays relatively stable (Figure 5). 
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Figure 4: Reaction of buffered vs. unbuffered solution upon acid/base adding. The buffered 
solutions have a far less change of pH after adding acid or base as opposed to the unbuffered 
solution. [12] 

 

 

Figure 5: Graphic representation of the pH of a buffered vs. an unbuffered system after adding 
HCl. The pH value of the unbuffered solution constantly decreases while the buffered solution 
is relatively stable before the buffer capacity is exceeded. [13] 
 

In general, a buffer solution is an aqueous solution that consists of a weak acid and its 
conjugate base or a weak base and its conjugate acid. [14] After adding a small amount 
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of a strong acid, the free hydrogen ions (H+) are reacting with the conjugate base from 
the buffer. That leads to some resistance of pH change. [15] 

Buffers have an important meaning in biological systems as well as in chemistry in 
general and in formulated products in particular. A common example for an in vivo 
buffer system is human blood which contains a bicarbonate buffer system. [14] 

A commonly used buffer in chemistry is the acetic acid-acetate buffer. The equations 
below explain its function. Equation 6 describes the absorbance effect of OH- ions and 
Equation 7 shows the absorbance effect of H+ ions. [15] 

 𝐶𝐻ଷ𝐶𝑂𝑂𝐻 + 𝑂𝐻ି ⇄ 𝐶𝐻ଷ𝐶𝑂𝑂ି + 𝐻ଶ𝑂  Equation 6 𝐶𝐻ଷ𝐶𝑂𝑂ି + 𝐻ା ⇄ 𝐶𝐻ଷ𝐶𝑂𝑂𝐻 Equation 7 
 

Even if a strong acid or base is added, the pH value only changes slightly. This 
observation is called buffering effect. A 1:1 equimolar ratio of CH3COO-/CH3COOH 
results in a pH value corresponding to the pKa of the acetic acid, which is 4.75 at 25 
℃. In the range of  0.1 ≤ ௖ಲష௖ಹಲ ≤ 10 the buffering effect can be observed. Applying the 

decadic logarithm to these ratios leads to a pH area of ±1 away from pKa.  

The buffer capacity (β) is defined as the amount of acid or base (in mol) that must 
be added to change the pH by ±1. [5] The formal expression is shown in Equation 8.  

 𝛽 = ௡௱௣ு Equation 8 

 

The calculation of buffer solutions can be derived from the law of mass action of the 
acid protolysis reaction (Equation 9, 10): [15] 
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𝐻𝐴 + 𝐻ଶ𝑂 ⇄ 𝐻ଷ𝑂ା + 𝐴ି  Equation 9 𝐾௔ = [ுశ][஺ష][ு஺]   Equation 10 

 

Applying the logarithm to both sides leads to equation 11: 

 log  (𝐾௔) = log  ([𝐻ା]) + log ቀ[஺ష][ு஺]ቁ  Equation 11 

 

Finally, inserting the mathematical definition of pH leads to Equation 12: 

 𝑝𝐻 = 𝑝𝐾௔ + log ቀ[஺ష][ு஺]ቁ  Equation 12 

 
Equation 11 is commonly known as “Henderson-Hasselbalch Equation”, which can be 
used to estimate the pH of a buffer solution. [11] But the Henderson-Hasselbalch 
equation has its limitations. It cannot be used to describe multiple buffered systems. 

M. Nguyen, L. Kao and I. Kurtz provided a predictive mathematical formula to calculate 
the pH in a multiple-buffered aqueous solution. The method is based on the 
partitioning of the protons among various buffer pairs. The equilibrium [H+] is solely 
calculated by the partitioning of the protons. [16] The work takes multiple-buffered 
systems into account but is limited to monoprotic chemicals. 
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1.4  pH adjustment 
PID controllers are commonly used and accepted in industry. PID stands for 
proportional – integral – derivative, which are representing the three terms in the 
system. The PID control loop constantly calculates the discrepancy between the 
measured and the target value and controls the actuators accordingly. [17] 

They are for example used for neutralizing wastewater in industrial continuous 
processes (Figure 6) [18], or for temperature control in industrial plants, only to name 
two. 

The use of PID controllers can also be considered but was not within the scope of this 
work. 

Figure 6: Schematic of a pH Neutralization Process. Strong base is used for neutralizing acidic 
liquid. The pH measurement pH1 measures the inlet pH and measurement pH3 the outlet. The 
control algorithm calculates the amount of base to be added and controls the valve 
accordingly. [18] 

 

Machine learning has already been used in pH neutralization processes. M. Elarafi and 
S. Hisham showed that an artificial neural network outperformed a traditional PID 
controller. [19]  
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1.5 Automation of chemical experiments 
The field of automation in chemistry dates back in the late 1960s derived from the 
demands in life sciences for more productive testing and analysis. Since then, the field 
expanded to chemical reactions, drug discovery, and material discovery for clean 
energy. Advances in both software and hardware made these systems much more robust 
and versatile. As examples of automated robotic experiments Figure 7 shows a fleet of 
systems with distinct sets of functions was developed by Bristol-Myers Squibb. [20] 

 

 

Figure 7: Examples of automated equipment used for chemical process development. Different 
abilities allow automated workflows for optimization or development processes. [20] 
 

A. Aspuru-Guzik and K. Persson [21] came up with the idea of a platform-based 
approach to accelerate the material discovery process in 2018, and later extended by 
machine learning algorithms by M. Flores-Leonar et al. in 2020. [22] 
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The big difference to earlier automation tasks is that machine learning algorithms can 
make decisions, which enables them to manage tasks like autonomously synthesize, 
process and characterize organic components for example. [23] 

As far as these MAPs (Materials Acceleration Platforms) already handle some of the 
mentioned tasks they are not fully autonomously up till now. It is an ongoing challenge 
to design fully autonomous robots to accelerate the research capabilities for new 
materials. [22] 

 

1.6 Machine learning 
A. Samuel is considered the inventor of machine learning (ML). It is defined as the field 
of study that gives computers the ability to learn without being explicitly programmed. 
It is said that the machine has learnt from its experience if its measurable performance 
in these tasks improves as it gains more and more experience in executing these tasks. 
The purpose of ML is to learn from relevant data and build models that describe the 
data structure.    

ML has already moved into a wide variety of fields, like robotics [24], pattern 
recognition [25], computer games [26], traffic prediction [27], language processing 
[28], medical diagnosis (cancer detection) [29], E-mail spam filtering [30] and product 
recommendation [31] only to name a few. [32]  

One commonly used methodology in ML is called “supervised learning” or “supervised 
machine learning”. It uses datasets as input-data to train algorithms and make 
predictions over an unseen area, once it has been fitted. [33]  

Depending on the problem to solve, different mathematical models are better suited 
than others. Every ML prediction task is a two-step process. A learning step on the one 
hand and a prediction step on the other hand. Therefore, different models can be used. 
There are various commonly used algorithms: Decision tree, Gaussian process, support 
vector machine, or artificial neural network, only to name a few. [32], [34] 
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Today a so called “closed-loop optimization”, based on supervised ML, is widely used 
for chemical reaction optimization and has been first published by L. Coa, D. Russo and 
A. Lapkin [35] and C. Coley, N. Eyke and K. Jensen [36], [37]  

Closed loop in this case means that the predicted pH value of the prior cycle acts as an 
additional new input for the following cycle if the earlier prediction does not meet the 
target pH value criteria. 

 

1.8 Algorithms 
1.8.1 Linear regression 
Regression analysis (RA) is a way in mathematical statistics to generate an equation 
that can make predictions about the input data. Today RA is used in many scientific 
fields, like medicine, biology, agriculture, economics, engineering, sociology, geology, 
etc. [38] 

For example, L. Müller-Wirtz et al. suggested a model to show the correlation 
between exhaled propofol concentration in plasma versus concentration in brain 
tissue. [39] 

C. Doucouliagos and P. Laroche explored the economic impact of unions on 
productivity, using regression methods. [40] 

Historically, linear regression was the first type of regression analysis that was widely 
and extensively used. It goes back to 1805, when Legendre published the earliest form 
– the least square method. [41] 
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Figure 8: Graphical visualization of errors between datapoints (green dots)  and regression 
function (blue line) for a linear regression model.  [42] 
 

The target is to minimize the sum of the squared residuals. Residual means the 
difference between a data point and the regression line (or prediction). A graphic 
representation can be found in Figure 8. A. Legendre used the method for his 
astronomical observations. [41] 

Linear regression will be used to make a prediction or forecast of unseen datapoints by 
training the model on an observed set of data. Beside simple linear regression, where a 
linear relationship between two variables is observed (Equation 13), multiple linear 
regression (Equation 14) and nonlinear regression (Equation 15) also need to be 
mentioned. Multiple linear regression methods answer questions where one dependent 
variable (y) and more than one independent variables (x1, x2,…, xn) are existing. The 
last type, nonlinear regression, assumes, that the relation between dependent variable 
(y) and independent variable (x) is not linear – like in exponential growth models for 
example. [38]  

 𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝜀  Equation 13 
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𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + ⋯ + 𝛽௣𝑥௣ + 𝜀  Equation 14 

 𝑦 = ఈଵା௘ഁ೟ + 𝜀  Equation 15 

 

Where y is the dependent variable, x the independent variable, βi are the regression 
coefficients and ε represents the error term. The regression line is calculated in regards 
of minimizing the error term ε, which represents the “closest” line to all data points. 
[38] 

Interpretation of large datasets is often an issue. Principal component analysis (PCA) 
is the oldest and most widely used technique to reduce a higher dimensional dataset 
into a lower one, without losing relevant statistical information or patterns. Principal 
components are linear combinations of uncorrelated variables. [43], [44] 

 

1.8.2 Random forest 
Random forest can be used for classification and regression tasks. As the name already 
suggests the decision tree algorithm represents rules how data is split up and organized 
in a tree like structure. It belongs to the family of supervised learning algorithms.  Each 
leaf represents different attributes, and each branch represents a value that the leaf can 
take. [32] Figure 9 shows an example for a classification task: 
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Figure 9: Decision tree example. Based on a tree, the leaves representing attributes and the 
branches representing the values for the respective attribute. [45] 
 

If the value for the attribute “Color” is red, then the attribute “Weight” is queried next. 
On the other hand, if the color is blue, the attribute “Texture” is classified instead.  

In case of numerical tasks, like pH adjustments, number ranges are used as attributes 
(Figure 10). The classification process is exactly the same as in the previous example.     

 

Figure 10: Regression task example to predict the salary of professional baseball players in 
terms of years of experience and number of home runs. [46] 
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The random forest model is a specific form of multiple decision trees (hence forest) 
that grew during the training phase. Each tree, also called estimator, uses different 
attribute hierarchy and values, which leads to different results.  

The final prediction of the random forest is calculated as an average over all estimators, 
which is illustrated in Figure 11. 

 

 

Figure 11: Random forest prediction procedure overview. The trees, or estimators, arise during 
the training phase of the algorithm. Different attribute hierarchy and values leads to different 
classification order and therefore different results. The final prediction is the result of an 
arithmetic mean calculation. [47] 

 

1.8.3 Gaussian process regression 
Gaussian process regression (GPR) is a non-parametric, Bayesian regression method. 
[48] 

Non-parametric means that there is no predetermined form of the predictor. Bayesian 
means that prior knowledge (or a-priori knowledge) will be integrated in future 
predictions. [49]  
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GPR is placed into the class of linear smoothers, because the function f(x) is a linear 
combination of observed target values y. It predicts a posteriori Gaussian distribution 
for targets by observation of the input training data. In a nutshell, GPR predicts a 
Gaussian distribution at each datapoint (Figure 12). [50] 

 

 

Figure 12: Visualization of a gaussian process fitted function on available training data [51] 

 

Kernels are used to compute the covariance between datapoints. Covariance is a 
measure of the joint variability of two random variables. [52]  

One big advantage of GPR is that kernels can be composed of simpler kernel functions 
to fit an assumed function, where e.g., prior knowledge of a relationship can be 
implemented. Figure 13 shows an example of different composed kernels for predicting 
atmospheric carbon dioxide (CO2) over the years. [48] 
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Figure 13: Kernel composition example for predicting atmospheric CO2 over the years. [48] RBF 
stands for radial basis function, Lin stands for linear kernel, and Per stands for periodic kernel. 
 

The single kernel functions can be simply added or multiplied to give a new complex 
kernel function containing characteristics of multiple kernels. Equation 16 shows an 
example for such a kernel used during this work. 

 

K = C(1.0)*(RBF() + DotProduct()) Equation 16 

 

Parameter C is related to the kernel function of support vector machines (SVM) and is 
a measure of misclassification of training data. Lower values for C result in a smoother 
curve, whereas higher values of C aims for an exact classification of the training data. 
[53] 

RBF stands for radial basis function that computes how close two datapoints are to each 
other. Equation 17 shows the mathematical calculation for two datapoints X1 and X2: 

 𝐾(𝑋ଵ, 𝑋ଶ) = exp (− ||௑భି௑మ||మଶఙమ ) Equation 17 
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Where σ is the variance and the expression ||𝑋ଵ − 𝑋ଶ|| the distance between X1 and 
X2. [54] 

 

1.8.4 Artificial neural networks 

Artificial Neural Networks (ANNs) mimic the process how the human brain operates. 
That is why the single decision nodes are called (artificial) neurons. Each of them can 
transmit a signal to another neuron, like synapses in biological systems. Each neuron 
typically has a weight, that can increase or decrease during the learning process – like 
the process we know from strengthening neural pathways in biological brains.  

ANNs consists of at least three layers: one input layer, one or more hidden layers and 
one output layer. Each layer can contain any number of neurons. (Figure 14) 
 

 

Figure 14: Schematic of an artificial neural network (ANN). The circles are called neurons. The 
“x” labelled circles are forming the input layer. The lines are representing the information flow 
from left to right through the hidden layer with the circles labelled with an “a”. The “y” labelled 
circles form the output layer. [55] 
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The calculation of the output hi is described by Equation 18 below: 
 ℎ௜ = 𝜎൫∑ 𝑉௜௝𝑥௝ + 𝑇௜௛௜ௗே௝ୀଵ ൯  Equation 18 

 

Where σ is the activation function, N the number of input neurons, i the neuron in the 
hidden layer, Vij the weights, xj inputs to the input neuron, and Tihid the threshold terms 
of the hidden neurons. The purpose of the activation function σ is to generate 
nonlinearity on the one hand, and to prevent the ANN from paralysis by divergent 
neurons on the other hand. Different activation functions are available – among the 
most common ones are: sigmoid (or logistic), hyperbolic tangent, rectified linear unit 
and exponential linear unit (see appendix A for further details). [32], [56] 

 

1.9 Hyperparameters  
Hyperparameters are input parameters for machine learning algorithms, that directly 
affect the learning process and therefore the performance of the machine learning 
model. Optimal hyperparameter finding is crucial for ML algorithms, because they have 
a massive influence on how the algorithms behave during operation. These 
hyperparameters are variables that need to be tuned to design a good performing 
algorithm. This so called hyperparameter optimization (HPO) - or tuning - will be 
performed during the training phase. In practice different models will be trained with 
different hyperparameters and finally the prediction performance is compared with 
each other to find the optimum. There are two common methods of HPO: manual and 
automatic search. Manual search requires fundamental understanding for the 
underlying task, which is pH adjustment is this case. One needs to decide which 
parameters have more effect on the outcome than others and give more weight to them. 
Automatic search can be realized with different Blackbox-solutions. Two of them are 
grid search, which tries each combination of hyperparameters to find a global optimum, 
and random search which uses a random combination of hyperparameters in a set range, 
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as an example. Random search has efficiency advantages over the expensive grid search, 
but is not suitable for more complex tasks. [57]  

Expensive in this case means, that grid search takes huge amounts of computational 
time. Therefore, manual optimization was chosen over an automatic method for the 
present work. 
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22  MMeetthhooddss  
The following section describes the methods and experimental steps in order to decide 
which algorithm and hyperparameter setup will be used for further live testing.  

 

2.1 Datasets 
Different monoprotic and polyprotic substances were used as buffer examples. For each 
binary buffer system and mixtures, a separate data frame was generated. This led to 18 
different datasets for investigating the efficiency and accuracy of different machine 
learning algorithms. The available datasets are listed in Table 1. 
 

Table 1: Overview of the used binary buffer solutions, as well as the ratios and amount of 
titration datapoints. 

IIDD bbuuffffeerr  ssyysstteemm rraattiioo ttoottaall  ddaattaappooiinnttss  
1  acetate - citrate  1:1  97 
2 acetate - citrate 1:2 127 

3 acetate - citrate 2:1 87 
4 acetate - KH2PO4 1:1 62 

5 acetate - KH2PO4 1:2 68 

6 acetate - KH2PO4 2:1 62 
7 ammonium - acetate 1:1 62 

8 ammonium - acetate 1:2 62 
9 ammonium - acetate 2:1 62 

10 ammonium - citrate 1:1 117 
11 ammonium - citrate 1:2 117 

12 ammonium - citrate 2:1 142 
13 ammonium - KH2PO4 1:1 52 

14 ammonium - KH2PO4 1:2 52 
15 ammonium - KH2PO4 2:1 52 

16 citrate - KH2PO4 1:1 127 
17 citrate - KH2PO4 1:2 150 

18 citrate - KH2PO4 2:1 137 
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The dataset consists of pH and pKa values for the buffers, the number of protons of the 
buffers, as well as concentration and volume of the acid and base for titration. Figure 
15 shows the titration curve of the binary buffer system ammonium-acetate with a ratio 
of 2:1 as an example. 

 

 

Figure 15: Titration curve for the binary buffer system ammonium-acetate with a ratio of 2:1. 
The addition of acid or base is indicated in ml on the x-axis. The addition of acid is indicated by 
a negative sign and the addition of base by a positive sign. 
 

Only two of the total amounts of datapoints per dataset were used for the benchmark 
as an initial input (training-data) for the prediction of the pH value in the unexplored 
area. The others served as so called “test-data” to verify the prediction of the algorithm. 
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2.2 Benchmarking of different ML models within closed loop optimization  
The system benchmark with optimized hyperparameters was done with regards to 
guided closed-loop optimization which is an iterative process (Figure 16). The binary 
buffer systems from Table 1 were used to perform a comparison of the different 
optimized algorithms to compare the results and decide which one is the best 
performing.  

 

 

Figure 16: Principle of Closed-Loop Optimization. Initial input of datapoints (1), followed by 
training the model and predicting the titration curve based on the available information (2). 
Selecting the amount of acid or base depending on the position of measured pH on the curve 
(3). Verifying if the measured pH is within a range of ±0.2 of the target pH (4). If not, the dataset 
will be updated with the newly obtained datapoint (5) and finally the model will be retrained 
(6). This cycle continues until the target is met. [58] 
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During step 1, random datapoints serve as initial inputs and the ML model is trained 
on them. After that, the model is performing curve fitting, based on the available data 
in step 2 which leads to the prediction of the titration curve. Depending on the position 
of the measured pH value the amount of acid or base is predicted and added in step 3. 
During step 4 the algorithm compares the actual pH with the target pH. A deviation of 
±0.2 is acceptable. If the value is within this range the titration is finished, otherwise 
the new data is added to the existing training data (step 5) and the model will be 
retrained in step 6.  

The number of iteration cycles to reach the target pH will be compared for different 
models, data representations and initialization strategies. The lower the average of 
iteration cycles, the better the prediction performance of the algorithm. 

Figure 17 shows an example of the prediction of the four used models: artificial neural 
network (ANN), random forest (RF), linear regression and gaussian process (GP). 

 

 

Figure 17: Comparison of prediction between artificial neural network (ANN), random forest 
(RF), linear regression, and gaussian process (GP) of an acetate-citrate 1:1 buffer system after 
four observations. [59] 
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33  RReessuullttss  aanndd  DDiissccuussssiioonn  
The following chapter starts with the optimization results of the different models (3.1 
Optimization of the used models), followed by the benchmark of the optimized 
algorithms (3.2 Benchmark results) which leads to the final decision of the best 
performing algorithm. 

Finally, there is a comparison between two different feature-sets as an input (3.3 
Feature-set comparison), to decide how much information the algorithm needs to make 
proper predictions.   

 

3.1 Optimization of the used models 
The results tables show the number of iteration cycles needed to reach the target of pH 
6 (±0.2) and pH 7 (±0.2) for the buffer systems ammonium-acetate (am-ac) 1:1 and 
1:2, respectively. The reason for different pH targets is the lack of experimental raw 
data around pH 6 in case of the buffer systems am-ac 1:1 and am-ac 1:2. 

Each result for every buffer system is already an average consisting of ten single 
experiments. The column average represents an average of the average for the 
according hyperparameter.  

For the optimization procedure a dataset-split of 5:95% was used. That means 5% of 
the available data for each of the 18 mixtures served as training data and 95% served as 
test or verification data. The low amount of only 5% training data (3-6 datapoints in 
this case) prevents the system from getting overfitted.  

For detailed results of the single experiments, see appendix B. 
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3.1.1 Optimization of the Gaussian process 
Table 2 provides an overview of the different kernels applied to seven buffer systems. 
The result of the optimization process is shown in Figures 18,19 and in Table 3. 

 

Table 2: Overview of different kernels used during the optimization process of gauss process 
regression. RBF stands for radial basis function and C is the hyperparameter for support vector 
machines (SVM). 

KK11  C(1.0)*(RBF() + DotProduct()) 
KK22  C(0.1,(1e-5, 1e2))*RBF(100,(1e-3, 1e5))+RBF(12,(1e-3, 1e5))+RBF(1,(1e-3, 1e3)) 
KK33  C(0.1,(1e-5, 1e2))*RBF(1,(1e-3, 1e3)) 
KK44  C(1)*RBF(1,(1e-3, 1e3)) 
KK55  C(1)*RBF(1,(1e-1, 1e3)) 
 

 

 

Figure 18: Comparison of different kernels for the optimization of the gaussian process 
regression (GPR). Each bar represents the calculated average of ten single experiments. The 
error bars represent the error of mean value. 
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Table 3: Results of different kernels for the optimization of the gaussian process regression 
(GPR). The numbers below the binary buffer systems represent an average of ten single 
experiments. The “average” column is the arithmetic mean for each learning rate and SEM is 
the standard error of the mean. 

 
aacc--ccii  
((11::11))  

aacc--ccii  
((11::22))  

aacc--ccii  
((22::11))  

aacc--  KKHH22PPOO44    
((11::11))  

aacc--  
KKHH22PPOO44    

((11::22))  

aamm--aacc    
((11::11))  

aamm--aacc    
((11::22))  

aavveerraaggee  SSEEMM  

KK11  9.0 7.3 10.1 7.0 6.6 10.0 11.2 8.74 0.63 
KK22  5.7 2.9 4.2 2.2 3.0 4.0 5.9 3.99 0.49 
KK33  4.2 2.8 3.7 3.3 3.8 4.9 6.1 4.11 0.38 
KK44  3.7 1.8 3.9 3.0 2.7 5.3 6.0 3.77 0.51 
KK55  2.9 1.7 3.2 2.4 2.3 4.9 5.2 3.23 0.47 

 

 

 

Figure 19: Average number of iteration cycles of 10 single titration experiments. Five different 
kernels were tested for their ability to reach a pre-defined pH target. Error bars representing 
the error of the mean value. 

 

The kernels 1-5 are commonly used ones. Each of them has their strengths and 
weaknesses in different tasks. The dot product portion of kernel 1 (K1) clearly shows a 
disadvantage when it comes to achieving a low number of iteration cycles.  
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There is hardly any noticeable difference in average iteration cycles between kernels 2 
to 5. Kernel 5 was chosen for the following benchmark.  

 

3.1.2 Optimization of the artificial neural network 
The ANN was optimized by manually changing the values of each single 
hyperparameter. These are learning rate, epochs, activation function, number of 
neurons and number of layers. Table 4 shows the final hyperparameters after 
optimization. 

 

Table 4: Final set of hyperparameters of the artificial neural network (ANN) 
resulting from a manual optimization. 

LLeeaarrnniinngg  rraattee  0.015 
EEppoocchhss  1000 
AAccttiivvaattiioonn  ffuunnccttiioonn  ELU 
NNuummbbeerr  ooff  nneeuurroonnss  40 
LLaayyeerrss  3 
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3.1.2.1 Learning rate 
The learning rate determines the step size during each iteration towards the target. If 
the learning rate is too small, the number of iterations and thus the calculation time will 
be disproportionately high. On the other hand, if the learning rate is too high, the 
method can fail to converge at all (Figure 20) [60].  

 

 

Figure 20: Graphic representation of the learning rate. If the learning rate is too low, the 
iteration process takes too long and is inefficient (left). If the learning rate is too high, the 
problem of overshooting increasingly occurs (right). The middle representation shows an 
idealized approximation of the target with a proper learning rate. [61] 
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The lower the number of average iterations, the more efficient the system. The 
minimum number of cycles was determined by starting with a learning rate of 0.005 
and was increased by 0.01 increments towards a learning rate of 0.035. The results are 
represented by Figures 21, 22 and Table 5. 

 

 

Figure 21: Comparison of different learning rates for the optimization of the artificial neural 
network (ANN). Each bar represents the calculated average of ten single experiments. The 
error bars represent the error of mean value. 
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Table 5: Result of different learning rates for the optimization of the artificial neural network 
(ANN). The numbers below the binary buffer systems represent an average of ten single 
experiments. The “average” column is the arithmetic mean for each learning rate and SEM is 
the standard error of the mean. 

LLeeaarrnniinngg  
rraattee  

aacc--ccii    
((11::11))  

aacc--KKHH22PPOO44  
((11::11))  

aamm--aacc  
((11::22))  

ccii--KKHH22PPOO44  
((22::11))  

aavveerraaggee  SSEEMM  

0.035 8.7 5.9 6.7 3.1 6.10 1.00 
0.025 3.8 4.3 9.5 5.9 5.87 1.12 
0.015 10.2 3.7 5.8 4.6 6.07 1.25 
0.005 12.4 3.5 6.0 5.4 6.83 1.67 

 

 

 

Figure 22: Average number of iteration cycles of 10 single titration experiments. Four different 
learning rate values were tested for their ability to reach a pre-defined ph target. Error bars 
representing the error of the mean value. 

 
A learning rate of 0.005 is clearly too low. Learning rates between 0.015 and 0.035 are 
inside a small range of 4%. Although a learning rate of 0.025 had the least average 
iterations, we decided to continue with a learning rate of 0.015 because of smaller 
standard deviation in favor of robustness. In addition to that, the 0.015 learning rate 
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showed better results when combining them with the other optimized hyperparameters 
of the ANN.  

 

3.1.2.2 Epochs 
One epoch represents one full training cycle of the ANN. All available data will exactly 
be used once. [62] 

It is self-explanatory, that the computing time increases with a higher number of 
epochs. For this reason, the target is to find the lowest possible number of epochs with 
reasonable accuracy. Accuracy means low number of iteration cycles in this case. 
Figures 23, 24 and Table 6 are representing the results of the optimization process. 

 

Figure 23: Comparison of different epoch values for the optimization of the artificial neural 
network (ANN). Each bar represents the calculated average of ten single experiments. The 
error bars represent the error of mean value.  
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Table 6: Result of different epoch values for the optimization of the artificial neural network 
(ANN). The numbers below the binary buffer systems represent an average of ten single 
experiments. The “average” column is the arithmetic mean for each learning rate and SEM is 
the standard error of the mean. 

EEppoocchhss  
aacc--ccii    
((11::11))  

aacc--KKHH22PPOO44  
((11::11))  

aamm--aacc  
((11::22))  

ccii--KKHH22PPOO44  
((22::11))  

aavveerraaggee  SSEEMM  

500 23.0 5.4 7.0 5.7 10.28 3.69 
750 19.7 4.3 4.8 8.3 9.28 3.11 

1000 12.4 3.5 6.0 5.4 6.83 1.67 
1250 16.2 3.9 4.9 4.3 7.33 2.57 
1500 14.8 4.0 5.0 5.1 7.23 2.20 

 

On the first view it looks counterintuitive to plot the average number of iteration cycles 
because of the huge discrepancy between the single binary buffer systems. Specially in 
this case it could be considered to print the sum of the average number of iteration 
cycles instead of the average of it. For consistency reasons it was decided to use them 
anyway.  
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Figure 24: Average number of iteration cycles of 10 single titration experiments. Five different 
numbers of epochs were tested for their ability to reach a pre-defined pH target. Error bars 
representing the error of the mean value. 
 
A slight drop of iteration cycles occurred between 500 and 1000 epochs. A value of 1250 
and 1500 epochs respectively showed a slight increase in average iteration cycles. This 
value is also acceptable in terms of computational time. Therefore 1000 epochs gave 
the best result. 
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3.1.2.3 Activation function  
In artificial neural networks typically each neuron in the hidden layer has a non-linear 
activation function (Figure 25).  

 

Figure 25: Illustration of output calculation in artificial neural networks (ANN) using activation 
functions [63] 

 

The activation function is responsible for generating non-linearity out of a former linear 
system. Several pre-defined activation functions are available. The most common used 
ones are sigmoid function, hyperbolic tangent function (Tanh), rectified linear unit 
function (ReLU), and exponential linear unit (ELU) [63], [64]. A detailed description 
of the activation functions mentioned can be found in the appendix B. Figure 26, 27 
and Table 7 showing the results of the optimization process. 
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Figure 26: Comparison of different activation functions for the optimization of the artificial 
neural network (ANN). Each bar represents the calculated average of ten single experiments. 
The error bars represent the error of mean value. 
 

Table 7: Result of different activation functions for the optimization of the artificial neural 
network (ANN). The numbers below the binary buffer systems represent an average of ten 
single experiments. The “average” column is the arithmetic mean for each learning rate and 
SEM is the standard error of the mean. 

AAccttiivvaattiioonn  
ffuunnccttiioonn  

aacc--ccii    
((11::11))  

aacc--KKHH22PPOO44  
((11::11))  

aamm--aacc  
((11::22))  

ccii--KKHH22PPOO44  
((22::11))  

aavveerraaggee  SSEEMM  

Tanh 5.7 3.2 6.9 3.4 4.80 0.78 
ELU 10.9 4.9 5.0 4.9 6.43 1.29 

ReLU 14.1 3.8 6.1 5.6 7.40 1.98 
Sigmoid 12.4 3.5 6.0 5.4 6.83 1.67 
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Figure 27: Average number of iteration cycles of 10 single titration experiments. Four different 
activation functions were tested for their ability to reach a pre-defined pH target. Error bars 
representing the error of the mean value. 
 
Apparently, the activation function Tanh gave the best results. However, it performed 
very badly during the benchmark in combination with the other optimized parameters. 
Therefore, the second-best activation function, ELU was tested with the optimized 
algorithm, and it performed significantly better. This shows the problem of empirical 
hyperparameter optimization. However, this approach is sufficient to compare the 
methods presented. Alternatively, there are a lot of different software guided 
optimization techniques. M. Abdolrasol et al. showed different commonly used 
strategies for further information. [65] 
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3.1.2.4 Number of neurons 
Like in human brain, neurons in artificial neuronal networks are responsible to process 
information and hand them over to the directly connected neurons, if it receives a 
sufficiently strong input signal (Figure 28). [66]   

 

Figure 28: Visualization of a simple artificial neuronal network (ANN) with feedback loop [66] 

 

Increasing the number of neurons in a single hidden layer typically leads to a decreasing 
mean squared error but increases the computational complexity on the other hand [67]. 
Figures 29, 30 and Table 8 showing the results of the optimization process.  
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Figure 29: Comparison of different neuron numbers per layer for the optimization of the 
artificial neural network (ANN). Each bar represents the calculated average of ten single 
experiments. The error bars represent the error of mean value. 

 

 

Table 8: Result of different number of neurons for the optimization of the artificial neural 
network (ANN). The numbers below the binary buffer systems represent an average of ten 
single experiments. The “average” column is the arithmetic mean for each learning rate and 
SEM is the standard error of the mean. 

NNuummbbeerr  ooff  
NNeeuurroonnss  

aacc--ccii    
((11::11))  

aacc--KKHH22PPOO44  
((11::11))  

aamm--aacc  
((11::22))  

ccii--KKHH22PPOO44  
((22::11))  

aavveerraaggee  SSEEMM  

5 17.9 3.4 6.4 7.1 8.70 2.75 
10 12.4 3.5 6.0 5.4 6.83 1.67 
20 11.6 3.6 3.7 5.9 6.20 1.63 
40 7.5 5.0 4.7 3.1 5.08 0.79 
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Figure 30: Average number of iteration cycles of 10 single titration experiments. Four different 
numbers of neurons were tested for their ability to reach a pre-defined pH target. Error bars 
representing the error of the mean value. 
 

There is a continuous decrease of average iteration cycles when increasing the number 
of neurons per layer. Although the buffer system acetate-KH2PO4 does not reflect this 
trend, the average number of iteration cycles clearly negatively correlates with a higher 
number of neurons. More neurons mean more computational time though. With 
respect to calculation time per iteration the experiment was stopped at 40 neurons per 
layer. This value gave a reasonable accuracy : time ratio.  
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3.1.2.5 Hidden layers 
Neurons are arranged in a so-called layer. One differentiates between input-, hidden- 
and output layers (Figure 31). 

 

Figure 31: Simplified artificial neural network (ANN) diagram [68] 

 

Increasing the number of hidden layers in the network typically leads to higher 
accuracy, but increased calculation time on the other hand. [69] Figures 32, 33 and 
Table 9 showing the results of the optimization process. 
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Figure 32: Comparison of different number of hidden layers for the optimization of the artificial 
neural network (ANN). Each bar represents the calculated average of ten single experiments. 
The error bars represent the error of mean value. 

 

Table 9: Result of different number of hidden layers for the optimization of the artificial neural 
network (ANN). The numbers below the binary buffer systems represent an average of ten 
single experiments. The “average” column is the arithmetic mean for each learning rate and 
SEM is the standard error of the mean. 

HHiiddddeenn  
llaayyeerrss  

aacc--ccii    
((11::11))  

aacc--KKHH22PPOO44  
((11::11))  

aamm--aacc  
((11::22))  

ccii--KKHH22PPOO44  
((22::11))  

aavveerraaggee  SSEEMM  

2 10.5 3.5 4.8 5.9 6.18 1.32 
3 8.7 2.8 6.3 7.3 6.28 1.09 
4 12.4 3.5 6.0 5.4 6.83 1.67 
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Figure 33: Average number of iteration cycles of 10 single titration experiments. Three different 
numbers of hidden layers were tested for their ability to reach a pre-defined pH target. Error 
bars representing the error of the mean value. 
 

The optimization of hidden layers was performed with 10 neurons per layer as a 
standard value. It shows a tendency but no significance of higher numbers of average 
iteration cycles the more hidden layers were used. According to the results, it seems 
that 2 hidden layers gave the best result. But in connection with the optimized value for 
the number of neurons per layer (40 neurons) the accuracy decreased significantly. For 
this reason, we decided to increase to 3 hidden layers, which gave good results. Figure 
33 clearly shows that the number of hidden layers has very little influence on the 
performance of the pH adjustment process. 

As already stated for the optimization process of the activation function, the empirical 
search for optimal hyperparameters has its weakness, but this approach is sufficient to 
compare the methods presented.  
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3.1.3 Optimization of the random forest 
 

The only hyperparameter for random forest models is the number of estimators and it 
represents the number of decision trees in the forest. Figures 34, 35 and Table 10 show 
the results of the optimization process. 

 

 

Figure 34: Comparison of different number of estimators for the optimization of the random 
forest (RF). Each bar represents the calculated average of ten single experiments. The error 
bars represent the error of mean value. 
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Table 10: Result of different number of estimators for the optimization of the random forest 
(RF). The numbers below the binary buffer systems represent an average of ten single 
experiments. The “average” column is the arithmetic mean for each learning rate and SEM is 
the standard error of the mean. 

EEssttiimmaattoorrss  
aacc--ccii    
((11::11))  

aacc--KKHH22PPOO44  
((11::11))  

aamm--aacc  
((11::22))  

ccii--KKHH22PPOO44  
((22::11))  

aavveerraaggee  SSEEMM  

200 4.8 3.4 5.5 2.3 4.00 0.62 
300 4.8 3.9 4.9 2.1 3.93 0.56 
400 3.6 2.6 5.4 1.8 3.35 0.67 
500 4.7 4.2 5.7 1.7 4.08 0.74 
600 4.5 2.9 4.4 1.8 3.40 0.56 

 

 

 

Figure 35: Average number of iteration cycles of 10 single titration experiments. Five different 
numbers of estimators were tested for their ability to reach a pre-defined pH target. Error bars 
representing the error of the mean value. 

 

A wide range of different estimator values was tested. The results just moved within a 
21% range. It seems that the number of estimators is not that critical for the current 
task. However, the number of 400 estimators showed a local minimum at an average of 
3.35 iteration cycles to predict the correct target. With respect to calculation time on 
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an average modern personal computer, 400 estimators were chosen as the random 
forest hyperparameter. 

 

3.2 Comparison of the single benchmarks 
Figure 36 and Table 11 showing a direct comparison of the benchmark between 
artificial neural network (ANN), random forest (RF), linear regression and gaussian 
process regression (GPR). 

 

 

Figure 36: Direct comparison of the benchmark result for the artificial neural network (ANN), 
random forest (RF), linear regression and gaussian process regression (GPR). Each bar 
represents the calculated average of ten single experiments. The error bars represent the error 
of mean value. 
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Table 11: Benchmark result of average number of iteration cycles needed to reach the target 
pH for the artificial neural network (ANN), random forest (RF), linear regression and gaussian 
process regression (GPR) with the corresponding error on mean values (SEM). 

rreeggrreessssiioonn  mmeetthhoodd  aavveerraaggee  iitteerraattiioonn  ccyycclleess  ((±±  eerrrroorr  oonn  mmeeaann  vvaalluuee))  
ANN 5.6 (±1.0) 
RF 3.4 (±0.3) 

Linear Reg. 7.1 (±1.9) 
GP 3.1 (±0.6) 

 

Linear regression showed a significantly higher average iteration value than other 
methods for some buffer systems. It performed very poorly, especially with the acetate-
citrate buffer system The performance of linear regression is highly dependent on the 
curve shape. Good results only show up in linear areas of the titration curve. 

Artificial neural networks are tricky in regards of optimization because of five different 
hyperparameters that all influence each other. That makes the hyperparameter 
optimization a time-consuming task. That is why further investigation of the ANN 
hyperparameters could have the largest potential to further reduce the average number 
of iteration cycles of this algorithm.  

Random forest performed very well. Beside the low value of average iteration cycles, it 
showed the smallest error on mean value. In addition to the fact that it is very easy and 
robust in terms of optimization, it also has low computational demands.  

The Gaussian process showed the best results in terms of average iteration cycles. The 
error on mean value was slightly above random forest. The advantage of GP lies in the 
quick calculation of the results which means less computational time. This should be 
considered when it comes to high throughput tasks.   

It needs to be mentioned that the results of all algorithms could still be improved by 
further optimization. However, for the purpose of deciding which algorithm will be 
chosen for further studies, the results are already sufficient. 
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3.2.1 Benchmark of the artificial neural network 
 

 

Figure 37: Graphical benchmark results for the artificial neural network (ANN) with optimized 
hyperparameters. Each bar represents the calculated average of ten single experiments. Error 
bars representing the error of the mean value. 

 

It took an overall average of 5.64 (±2.63) iteration cycles to reach the target of pH 6 
(±0.2) and pH 7 (±0.2) for the buffer systems am-ac 1:1 and 1:2 respectively. Table 
4 shows the final hyperparameters and Figure 37 the graphic result of the benchmark 
after the optimization process. The number of iterations corresponds directly to the 
shape of the titration curve. If the slope is steep in the target region, it is harder to find 
the correct values for adjustment. That is because small amounts of acid or base 
addition will cause big changes in pH value. Each algorithm has a different approach to 
the task. That is the reason why it is vital to investigate whether one or another 
algorithm gives the best results. 

For detailed experimental results see appendix C. 
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3.2.2 Benchmark of the random forest 
 

 

Figure 38: Graphical benchmark results for the random forest (RF) with optimized 
hyperparameter. Each bar represents the calculated average of ten single experiments. Error 
bars representing the error of the mean value. 

 

It took an overall average of 3.85 (±1.86) iteration cycles to reach the target of pH 6 
(±0.2) and pH 7 (±0.2) for the buffer systems am-ac 1:1 and 1:2 respectively. Figure 
38 shows the graphic result of the benchmark after the optimization process. Random 
forest showed relatively constant averages over all buffer mixtures. It needs to be 
mentioned, that some of the error bars are relatively big, especially for the acetate-
KH2PO4 mixtures and the ammonium-acetate 1:1 buffer. This is a weak spot of this 
algorithm. The reason for that might be the shape of the titration curve and therefore 
the difficult curve fitting. For detailed experimental results see appendix C. 
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3.2.3 Benchmark of the linear regression 
 

 

Figure 39: Graphical benchmark results for linear regression. Each bar represents the 
calculated average of ten single experiments. Error bars representing the error of the mean 
value. 
It took an overall average of 7.11 (±5.67) iteration cycles to reach the target of pH 6 
(±0.2) and pH 7 (±0.2) for the buffer systems am-ac (1:1) and (1:2) respectively. 
Figure 39 show the graphic result of the benchmark. Linear regression performed very 
well on the acetate-KH2PO4 buffers, but poorly on the acetate-citrate buffers. The 
reason for the poor performance can be explained by a closer look at the titration curves 
of the buffer systems in Figure 40. Because pH 6 is in a non-linear area of the curve the 
linear regression method shows a poor performance.  
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Figure 40: Titration curves for the binary buffer systems acetate-citrate with ratios of 1:1, 1:2 
and 2:1. The addition of acid or base is indicated in ml on the x-axis. The addition of acid is 
indicated by a negative sign and the addition of base by a positive sign. 
 

For the same reason, it is also clear from the titration curve in Figure 41, why linear 
regression performs so well with the acetate-KH2PO4 buffer system. The target pH 6 is 
located in a linear area of the titration curve, which makes a huge difference in 
performance of linear regression models. 
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Figure 41: Titration curves for the binary buffer systems acetate-KH2PO4 with ratios of 1:1, 1:2 
and 2:1. The addition of acid or base is indicated in ml on the x-axis. The addition of acid is 
indicated by a negative sign and the addition of base by a positive sign. 
 

The error bars are huge for some buffers compared with the other algorithms. That 
means that the ten single experiments for each bar in the figure differ greatly from one 
another. For the present task the deviation of the single experiments is less important 
than the overall average though. 
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3.2.4 Benchmark of the Gaussian process 
 

 
Figure 42: Graphical benchmark results for the gaussian process (GP) with optimized 
hyperparameter. Error bars represent the error of the mean value. 

 

It took an overall average of 3.27 (±1.64) iteration cycles to reach the target of pH 6 
(±0.2) and pH 7 (±0.2) for the buffer systems am-ac 1:1 and 1:2, respectively. Figure 
42 shows the graphic result of the benchmark after the optimization process. Gaussian 
process showed the lowest overall average of iterations and the second lowest error on 
mean value, beside random forest. As already stated, the overall average value is more 
important than the value for standard deviation for the present task. We can see a rather 
even distribution over all buffer mixtures and error bars.  

For detailed experimental results see appendix C. 
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3.3 Feature-set comparison 
Features incorporate the chemical information about the used buffer system. In order 
to find out, whether more chemical information brings an advantage in reducing the 
number of iteration cycles, the Gaussian process model with optimized hyperparameter 
was used to compare a small and a large feature-set (Table 12). 

 

Table 12: Parameter overview of different feature sets. The small feature set only provides 
information about the buffer concentrations, whereas the large feature set additionally 
includes pKa values, initial pH values, and the number of protons of the buffers. 

ssmmaallll  ffeeaattuurree  sseett  llaarrggee  ffeeaattuurree  sseett  
concentration buffer 1 concentration buffer 1 
concentration buffer 2 concentration buffer 2 

 pKa buffer 1 

 pKa buffer 2 

 initial pH buffer 1 

 initial pH buffer 2 

 number of protons buffer 1 

 number of protons buffer 2 

 

The results do not show any significant advantage of the large feature-set (Figure 43). 
It took an average of 3.17 (±0.57) for the small and an average of 3.09 (±0.55) for the 
large feature set respectively (Table 13, 14). That means that there is no more chemical 
information needed, than the small feature-set provides.  
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Figure 43: Comparison of average number of iteration cycles between a small and a large 
feature set. The small feature set only provides information about the buffer concentrations, 
whereas the large feature set additionally includes pKa values, initial pH values, and the 
number of protons of the buffers. An optimized Gaussian process (GP) was used for both 
feature sets. Error bars represent the error of the mean value. 

  

0

1

2

3

4

5

6

7

8

Av
er

ag
e 

nu
m

be
r o

f i
te

ra
tio

n 
cy

cle
s

Buffer system error bars = error on mean value

Large Feature Set Small Feature Set



 
56 

Table 13: Average iteration cycles of 10 single experiments with small vs. large feature 
set 

bbuuffffeerr  ssyysstteemm  
aavveerraaggee  iitteerraattiioonn  ccyycclleess  --  

ssmmaallll  ffeeaattuurree  sseett  
aavveerraaggee  iitteerraattiioonn  ccyycclleess    

--  llaarrggee  ffeeaattuurree  sseett  
ac-ci (1:1) 2.4 2.9 
ac-ci (1:2) 3.9 1.7 
ac-ci (2:1) 4.4 3.2 

ac-KH2PO4 (1:1) 3.8 2.4 
ac-KH2PO4 (1:2) 2.5 2.3 
ac-KH2PO4 (2:1) 1.6 2.5 

am-ac (1:1) 4.8 4.9 
am-ac (1:2) 4.5 5.2 
am-ac (2:1) 6.3 6.5 
am-ci (1:1) 2.1 2.1 
am-ci (1:2) 2.4 2.3 
am-ci (2:1) 1.9 1.7 

am-KH2PO4 (1:1) 3.0 2.8 
am-KH2PO4 (1:2) 3.5 2.9 
am-KH2PO4 (2:1) 3.6 4.4 
ci-KH2PO4 (1:1) 2.2 2.6 
ci-KH2PO4 (1:2) 1.6 1.5 
ci-KH2PO4 (2:1) 2.5 3.7 
 

 

Table 14: Result of average number of iteration cycles between a small and a large 
feature set. The small feature set only provides information about the buffer 
concentrations, whereas the large feature set additionally includes pKa values, initial 
pH values, and the number of protons of the buffers. An optimized Gaussian process 
(GP) was used for both feature sets. 

ffeeaattuurree  sseett  aavveerraaggee  iitteerraattiioonn  ccyycclleess  ((±±  eerrrroorr  oonn  mmeeaann  vvaalluuee))  
small 3.2 (±0.6) 
large 3.1 (±0.6) 

  



 
57 

44  CCoonncclluussiioonn  
The machine learning approach showed several advantages over conventional 
approaches like manual adjustment or adjustment by PID controllers. Manual 
adjustment has the potential of human error and is slow compared with automated 
systems. The results show that it is possible to adjust an unknown polyprotic buffer 
solution to a predefined pH value with the help of ML algorithms. Linear regression 
does not seem to be suitable for the present task, artificial neural network is tricky in 
terms of hyperparameter optimization, but performed well, and random forest showed 
very good results as well but with far less computational effort with reference to 
hyperparameter optimization. Gaussian process regression accomplished this task 
within three iteration cycles on average. It is not only very efficient at predicting the 
correct volume of acid or base to add to an unknown buffer system, but it is also very 
robust in terms of the lack of chemical descriptors. More chemical information only 
provides marginally better results in terms of iteration cycles. 

The points described above offer a potential solution to the key problems when it comes 
to industrial scale small volume, different buffer system, high throughput pH 
adjustment tasks. 
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66  AAppppeennddiixx  
A.) Titration curves 
 

 

Figure 44: Titration curves for the binary buffer systems acetate-citrate with ratios of 1:1, 1:2 
and 2:1. The addition of acid or base is indicated in ml on the x-axis. The addition of acid is 
indicated by a negative sign and the addition of base by a positive sign. 
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Figure 45: Titration curves for the binary buffer systems acetate-KH2PO4 with ratios of 1:1, 
1:2 and 2:1. The addition of acid or base is indicated in ml on the x-axis. The addition of acid 
is indicated by a negative sign and the addition of base by a positive sign. 
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Figure 46: Titration curves for the binary buffer systems ammonium-acetate with ratios of 
1:1, 1:2 and 2:1. The addition of acid or base is indicated in ml on the x-axis. The addition of 
acid is indicated by a negative sign and the addition of base by a positive sign. 
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Figure 47: Titration curves for the binary buffer systems ammonium-citrate with ratios of 1:1, 
1:2 and 2:1. The addition of acid or base is indicated in ml on the x-axis. The addition of acid 
is indicated by a negative sign and the addition of base by a positive sign. 
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Figure 48: Titration curves for the binary buffer systems citrate-KH2PO4 with ratios of 1:1, 1:2 
and 2:1. The addition of acid or base is indicated in ml on the x-axis. The addition of acid is 
indicated by a negative sign and the addition of base by a positive sign. 
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Figure 49: Titration curves for the binary buffer systems ammonium-KH2PO4 with ratios of 
1:1, 1:2 and 2:1. The addition of acid or base is indicated in ml on the x-axis. The addition of 
acid is indicated by a negative sign and the addition of base by a positive sign. 
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B.) Activation functions 
a. Sigmoid function 
The sigmoid function has been successfully used in binary classification problems and 
modeling logistic tasks. It should be avoided for small random weights. [70] The 
sigmoid function is given by Equation 19. Figure 47 shows the sigmoid function.  
 𝑓(𝑥) = ଵଵା௘௫௣షೣ Equation 19 

 

 

Figure 50: Sigmoid activation function [71] 

 

b. Hyperbolic tangent function (Tanh) 
The Tanh function is smoother than the sigmoid function and zero centered. Its range 
lies between -1 and 1 [70] and is given by Equation 20. Figure 48 shows the hyperbolic 
tangent function function.  
 𝑓(𝑥) = ௘ೣି௘షೣ௘ೣା௘షೣ  Equation 20 
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Figure 51: Tanh activation function [71] 

 

c. Rectified linear unit function (ReLU) 
The rectified linear unit activation function is the most widely used AF in artificial 
neural networks [72] and is given by Equation 21. Figure 49 shows the rectified linear 
unit function.  
 𝑓(𝑥) = max(0, 𝑥) = ൜𝑥௜ ,   𝑖𝑓  𝑥௜ ≥   00,    𝑖𝑓  𝑥௜  <   0 Equation 21 

 

 

Figure 52: ReLU activation function [71] 
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d. Exponential linear unit (ELU) 
Exponential linear units represent a good alternative to the ReLU because of reduced 
computational complexity which leads to improved learning speed. [73] The 
exponential linear unit is given by Equation 22.  Figure 50 shows the exponential linear 
unit function. 
 𝑓(𝑥) = ൜ 𝑥, 𝑖𝑓 𝑥 > 0𝛼 exp(𝑥) − 1, 𝑖𝑓 𝑥 ≤ 0 Equation 22 

 

 

 

Figure 53: ELU activation function [71] 
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C.) Detailed benchmark results 
a.) Artificial neural network 

Table 15: Detailed benchmark results for the optimized artificial neural network (ANN). For each of the eighteen binary buffer systems, ten single experiments have been 
performed. The column “cycles” shows the number of iterative loop cycles and “pH” the final pH value after the last cycle which must reach the pre-defined pH value ±0.2.  

     EExxppeerriimmeenntt  11  EExxppeerriimmeenntt  22  EExxppeerriimmeenntt  33  EExxppeerriimmeenntt  44  EExxppeerriimmeenntt  55  EExxppeerriimmeenntt  66  EExxppeerriimmeenntt  77  EExxppeerriimmeenntt  88  EExxppeerriimmeenntt  99  EExxppeerriimmeenntt  1100  
IIDD  bbuuffffeerr  ssyysstteemm  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  
1 ac-ci (1:1) 6 5.87 8 5.96 12 6.04 10 5.96 10 5.87 5 5.87 10 5.87 11 5.87 12 5.87 9 5.96 
2 ac-ci (1:2) 11 5.88 7 6.01 4 6.01 12 6.01 11 6.15 7 5.88 6 5.94 6 5.82 6 5.88 10 5.94 
3 ac-ci (2:1) 2 6.11 3 5.82 5 5.82 8 5.82 4 6.11 3 6.11 2 6.11 8 5.90 6 6.11 10 5.82 
4 ac-KH2PO4 (1:1) 3 5.80 2 6.06 3 6.06 7 6.06 3 5.94 4 5.80 4 6.06 8 5.80 3 6.06 4 5.80 
5 ac-KH2PO4 (1:2) 5 6.07 9 6.15 9 5.98 4 5.98 4 6.07 4 6.07 1 5.87 3 6.15 6 5.87 4 5.98 
6 ac-KH2PO4 (2:1) 1 6.19 3 6.19 9 6.19 9 5.93 1 5.83 3 6.19 7 6.19 6 6.19 1 5.83 2 5.93 
7 am-ac (1:1) 7 7.02 6 7.02 1 6.98 3 7.02 1 6.98 5 7.02 6 7.02 1 6.98 6 6.98 8 7.02 
8 am-ac (1:2) 6 5.97 9 5.97 10 5.97 6 5.97 3 5.97 4 5.97 8 5.97 7 5.97 11 5.97 10 5.97 
9 am-ac (2:1) 10 7.14 4 7.14 6 7.14 1 7.14 2 7.14 2 7.14 1 6.95 7 6.95 11 7.14 4 6.95 

10 am-ci (1:1) 6 5.80 3 5.80 4 5.80 8 5.80 10 5.89 4 5.80 5 5.80 8 6.00 8 6.00 9 5.89 
11 am-ci (1:2) 3 5.88 6 5.88 2 6.00 4 6.15 2 6.00 5 6.15 7 5.88 2 5.88 5 5.88 7 6.15 
12 am-ci (2:1) 7 5.99 3 5.85 9 6.16 7 5.92 7 5.99 9 5.99 10 5.85 9 5.92 6 5.92 8 6.06 
13 am-KH2PO4 (1:1) 8 6.16 4 5.93 1 5.93 4 6.16 3 5.93 6 6.16 5 5.93 8 6.16 4 6.16 7 6.16 
14 am-KH2PO4 (1:2) 3 6.02 6 6.02 7 6.02 7 6.02 12 6.02 2 6.02 10 6.02 3 6.02 4 6.02 2 6.02 
15 am-KH2PO4 (2:1) 4 5.96 5 6.12 2 5.96 4 5.96 8 5.96 12 5.96 6 5.96 9 5.96 10 6.12 2 6.12 
16 ci-KH2PO4 (1:1) 7 6.13 3 6.13 4 5.92 2 5.86 1 5.80 6 6.06 8 6.06 5 5.86 6 6.06 3 5.86 
17 ci-KH2PO4 (1:2) 4 5.97 5 5.97 4 5.97 10 5.97 3 5.87 1 5.92 8 5.82 1 5.92 5 5.87 5 5.97 
18 ci-KH2PO4 (2:1) 5 6.12 6 6.17 4 6.17 2 5.88 10 6.17 4 5.82 5 6.01 4 6.06 7 5.95 5 6.12 
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b.) Random forest 
Table 16: Detailed benchmark results for the optimized random forest (RF). For each of the eighteen binary buffer systems, ten single experiments have been performed. The 
column “cycles” shows the number of iterative loop cycles and “pH” the final pH value after the last cycle which must reach the pre-defined pH value ±0.2. 

     EExxppeerriimmeenntt  11  EExxppeerriimmeenntt  22  EExxppeerriimmeenntt  33  EExxppeerriimmeenntt  44  EExxppeerriimmeenntt  55  EExxppeerriimmeenntt  66  EExxppeerriimmeenntt  77  EExxppeerriimmeenntt  88  EExxppeerriimmeenntt  99  EExxppeerriimmeenntt  1100  
IIDD  bbuuffffeerr  ssyysstteemm  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  
1 ac-ci (1:1) 1 5.87 4 5.87 4 5.87 8 5.87 3 5.96 3 5.87 4 5.96 4 5.87 4 5.96 5 5.96 
2 ac-ci (1:2) 1 6.01 7 5.88 3 6.01 6 6.01 2 5.94 4 6.01 3 5.94 3 6.08 2 6.08 4 5.94 
3 ac-ci (2:1) 7 5.90 1 6.01 7 6.11 5 6.01 5 5.82 4 5.82 6 5.82 4 5.90 5 6.01 3 5.90 
4 ac-KH2PO4 (1:1) 1 6.18 8 6.18 3 6.18 3 5.94 1 5.80 1 6.18 2 5.94 2 5.94 2 5.94 3 6.18 
5 ac-KH2PO4 (1:2) 5 5.98 4 5.98 3 6.07 2 6.15 1 5.87 1 6.15 8 6.07 6 6.15 3 6.15 1 5.98 
6 ac-KH2PO4 (2:1) 7 5.80 6 5.83 1 5.80 3 6.19 3 6.06 1 6.06 4 5.83 13 6.19 5 6.06 1 6.19 
7 am-ac (1:1) 2 7.02 4 6.98 6 6.98 2 7.02 3 6.98 4 6.98 4 6.98 3 6.98 5 6.98 2 6.98 
8 am-ac (1:2) 4 5.97 7 5.97 4 5.97 6 5.97 8 5.97 3 5.97 6 5.97 4 5.97 4 5.97 8 5.97 
9 am-ac (2:1) 4 6.95 3 7.14 4 7.14 3 7.14 4 7.14 1 6.95 5 6.95 3 6.95 6 7.14 2 6.95 

10 am-ci (1:1) 3 5.89 5 6.11 4 5.80 2 5.89 1 5.89 1 5.89 1 6.00 3 5.89 1 5.89 12 6.11 
11 am-ci (1:2) 5 6.15 4 5.88 5 5.88 4 6.00 5 6.15 3 6.00 6 5.88 3 6.00 5 5.88 3 5.88 
12 am-ci (2:1) 5 5.85 4 5.85 4 5.99 4 5.92 5 6.06 4 5.92 5 5.92 5 5.92 4 6.16 5 5.92 
13 am-KH2PO4 (1:1) 4 5.93 4 6.16 1 6.16 3 5.93 5 6.16 2 6.16 4 6.16 5 5.93 5 6.16 5 6.16 
14 am-KH2PO4 1:2 6 6.02 4 6.02 2 6.02 4 6.02 4 6.02 9 6.02 4 6.02 5 6.02 4 6.02 3 6.02 
15 am-KH2PO4 (2:1) 8 5.96 5 5.96 4 6.12 3 6.12 3 6.12 2 5.96 4 6.12 5 5.96 4 5.96 2 5.96 
16 ci-KH2PO4 (1:1) 3 6.00 4 6.06 4 5.92 6 6.00 3 6.06 1 5.80 4 5.86 2 6.00 3 6.00 1 6.06 
17 ci-KH2PO4 (1:2) 1 6.03 3 5.87 2 5.82 1 6.09 4 5.97 5 5.97 4 6.03 3 5.92 5 6.03 4 6.03 
18 ci-KH2PO4 (2:1) 4 6.01 3 6.12 3 6.12 3 5.88 5 6.12 3 5.88 9 6.06 1 6.06 4 6.01 1 6.17 
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c.) Gaussian process 
Table 17: Detailed benchmark results for the optimized gaussian process (GP). For each of the eighteen binary buffer systems, ten single experiments have been performed. 
The column “cycles” shows the number of iterative loop cycles and “pH” the final pH value after the last cycle which must reach the pre-defined pH value ±0.2. 

   EExxppeerriimmeenntt  11  EExxppeerriimmeenntt  22  EExxppeerriimmeenntt  33  EExxppeerriimmeenntt  44  EExxppeerriimmeenntt  55  EExxppeerriimmeenntt  66  EExxppeerriimmeenntt  77  EExxppeerriimmeenntt  88  EExxppeerriimmeenntt  99  EExxppeerriimmeenntt  1100  
IIDD  bbuuffffeerr  ssyysstteemm  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  ccyycclleess  ppHH  
1 ac-ci (1:1) 5 5.96 1 6.14 3 5.87 2 5.96 1 5.96 2 5.96 2 5.87 6 5.96 5 5.96 5 5.96 
2 ac-ci (1:2) 7 5.88 2 5.88 8 5.94 4 5.82 5 5.88 6 5.82 1 6.01 6 5.88 5 5.82 1 5.82 
3 ac-ci (2:1) 7 5.90 3 5.90 2 6.01 1 5.90 6 6.01 4 5.82 5 5.82 2 6.11 6 5.90 4 5.90 
4 ac-KH2PO4 (1:1) 2 5.80 2 5.80 3 5.94 4 5.80 6 6.06 3 5.94 1 5.94 1 5.94 1 5.94 1 6.06 
5 ac-KH2PO4 (1:2) 2 6.15 1 5.98 3 6.07 1 6.07 1 6.15 1 5.98 6 5.87 4 5.87 1 6.07 3 5.87 
6 ac-KH2PO4 (2:1) 2 5.80 4 5.93 1 6.06 1 5.93 1 6.06 2 5.80 7 5.93 2 5.93 2 5.93 3 5.93 
7 am-ac (1:1) 3 7.02 2 7.02 4 6.98 9 6.98 1 7.02 6 6.98 5 6.98 5 6.98 7 6.98 7 7.02 
8 am-ac (1:2) 7 5.97 6 5.97 7 5.97 6 5.97 5 5.97 4 5.97 3 5.97 6 5.97 6 5.97 2 5.97 
9 am-ac (2:1) 2 7.14 3 6.95 2 6.95 2 7.14 6 6.95 2 7.14 7 6.95 7 6.95 2 6.95 7 6.95 

10 am-ci (1:1) 3 6.11 4 5.89 4 6.00 3 5.89 5 5.80 4 5.89 2 5.80 4 5.80 2 6.00 3 5.89 
11 am-ci (1:2) 3 6.00 7 5.88 1 6.15 3 5.88 1 5.88 3 5.88 3 6.00 4 6.00 2 5.88 4 6.00 
12 am-ci (2:1) 5 5.92 2 5.99 2 6.16 4 5.92 5 5.92 6 5.92 4 6.06 3 5.85 2 5.99 5 5.99 
13 am-KH2PO4 (1:1) 1 6.16 4 5.93 1 6.16 3 6.16 4 5.93 1 5.93 2 6.16 2 5.93 4 5.93 1 6.16 
14 am-KH2PO4 (1:2) 1 6.02 4 6.02 1 6.02 6 6.02 4 6.02 2 6.02 4 6.02 1 6.02 5 6.02 3 6.02 
15 am-KH2PO4 (2:1) 3 5.96 3 6.12 5 5.96 4 6.12 4 5.96 5 5.96 3 5.96 4 5.96 5 5.96 4 6.12 
16 ci-KH2PO4 (1:1) 1 6.19 4 5.92 2 6.00 1 5.92 2 6.13 1 6.19 3 5.86 2 6.00 1 5.80 2 5.92 
17 ci-KH2PO4 (1:2) 2 5.97 3 5.87 4 5.97 2 5.92 2 5.97 2 5.92 1 6.03 2 5.97 1 5.97 5 5.97 
18 ci-KH2PO4 (2:1) 4 5.95 1 6.01 2 6.01 3 5.88 2 5.82 1 6.01 1 6.01 1 5.95 3 5.95 1 5.88 

                      
 


