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Kurzfassung

Animation besteht aus der sequenziellen Darstellung mehrerer Einzelbilder mit geringfügi-
gen mutualen Unterschieden um den visuellen Effekt einer Bewegtbildszene zu erreichen.
In der sogenannten limitierten Animation werden diese Einzelbilder als Vektorgraphiken
mit spezifischer semantischer Bedeutung gezeichnet. Diese können als reine Animations-
bilder bezeichnet werden. In manchen Arbeitsabläufen sind diese reinen Animationsbilder
lediglich als Rastergraphiken vorhanden, was eine aufwändige manuelle Vektorisierung
dieser erfordert.

Diese Arbeit erkundet in welchem Umfang Methoden zur Vektorisierung von Linien-
graphiken verwendet werden können, um diesen Prozess zu automatisieren. Zu diesem
Zwecke wird eine Liniengraphikvektorisierungsmethode entworfen und entwickelt, welche
die strukturellen Informationen reiner Animationsbilder berücksichtigt. Zusammen mit
existierenden, modernen Methoden wird diese Methode anhand eines Datensatzes von
reinen Animationsbildern evaluiert. Diese reproduzierbare Evaluierung zeigt, dass die
Performanz der entworfenen Methode über verschiedene Auflösungen von Eingabebildern
und binären und nicht-binären Versionen von Eingabebildern hinweg erstaunlich stabil
bleibt. Zudem liefert die Methode bessere Resultate als bestehende moderne Methoden
für Eingabebilder mit der standardmäßigen Auflösung von reinen Animationsbildern.
Weiters ist sie bis zu 4.5-Mal so schnell als die zweitschnellste Deep Learning-basierte
Methode. Nichtsdestotrotz zeigt die Evaluierung, dass weder die entwickelte Methode
noch bestehende Methoden Vektorgraphiken mit ausreichend visueller Ähnlichkeit und
semantisch korrekten Vektorstrukturen produzieren kann.
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Abstract

Animation consists of sequentially showing multiple single frames with small mutual
differences in order to achieve the visual effect of a moving scene. In limited animation,
these frames are drawn as semantically meaningful vector images which could be referred
to as clean animation frames. There are limited animation workflows in which these
clean animation frames are only available in raster format, requiring laborious manual
vectorization.

This work explores the extent to which line-art image vectorization methods can be
used to automatize this process. For this purpose, a line-art image vectorization method
is designed by taking into account the structural information about clean animation
frames. Together with existing state-of-the-art line-art image vectorization methods, this
method is evaluated on a dataset consisting of clean animation frames. The reproducible
evaluation shows that the performance of the developed method is remarkably stable
across different input image resolution sizes and binarized or non-binarized versions of
input images, even outperforming state-of-the-art methods at input images of the default
clean animation frame resolution. Furthermore, it is up to 4.5 times faster than the
second-fastest deep learning-based method. However, ultimately the evaluation shows
that neither the developed method nor existing state-of-the-art methods can produce
vector images that achieve both visual similarity and sufficiently semantically correct
vector structures.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Aim of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Raster Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Vector Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Vectorizaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Limited Animation Production . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Clean Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Metrics and Losses . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 31
2.3.4 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . 44
2.3.5 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.6 Encoder-Decoder Framework . . . . . . . . . . . . . . . . . . . 50

3 Related Work 55
3.1 Line-art Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Cross-Domain Line-Art Vectorization . . . . . . . . . . . . . . . . . . . 59

4 Animation Line-art Vectorization 61
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



4.1.1 Marked-Curve Reconstruction Model . . . . . . . . . . . . . . . 64
4.1.2 Iterative Curve Reconstruction Algorithm . . . . . . . . . . . . 69

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Human-generated Dataset . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.4 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.4 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . 103
4.3.5 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.1 Setup and Limitations . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.2 Earlier Architectures . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.3 Marked-Curve Reconstruction Model configurations . . . . . . 141

5 Conclusion 149
5.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2 Limitations and Disadvantages . . . . . . . . . . . . . . . . . . . . . . 151

5.2.1 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3.1 Data Improvements . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3.2 Architectural Improvements . . . . . . . . . . . . . . . . . . . . 154
5.3.3 Further Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A Additional Evaluation Results 157
A.1 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

List of Figures 165

List of Tables 173

List of Algorithms 175

Acronyms 177

Bibliography 179



CHAPTER 1
Introduction

deep learning
model

input: raster image output: vector image

(a) The general design of the proposed objective. Input and output images are provided by Tonari
Animation.

input: raster image output: vector image

deep learning
model

(b) Highlighted section of input and output images, which reveals structural differences.

Figure 1.1: Overview of the research objective. The objective is to automatically convert
clean animation frame line-art raster images into vector images. Zooming into the figure
reveals the structural difference between the input and the output image. Note that the
output image is taken from the gold standard test dataset. For a genuine reconstruction
result of the developed line-art vectorization method, refer to Figure 4.1

In principle, animation consists of sequentially showing single frames in order to achieve
the visual effect of a moving scene. Limited animation is an animation technique in
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1. Introduction

which frames are not completely redrawn (like in full animation), but where the moving
parts (also called cels) are reused over frames. While both full animation and limited
animation techniques reuse some fixed parts (like the background), the reusing of cels by
limited animation leads to the characteristic stiff style and reduces the cost to produce
an animated series. Today, the technique is primarily used in hand-drawn animations,
often under the term anime popularized by Japanese media.

While limited animation was mostly replaced with full animation and 3D animation in
the western world, it still enjoys continued relevance due to the growing importance of
anime. This importance is underlined by Napier [2016], who estimates that anime made
up over 60 percent of all animated shows in 2016. Unsurprisingly, anime is especially
prevalent in Japan, where it accounts for 6 of the top 10 highest-grossing films in 2021
[Motion Picture Producers Association of Japan, Inc, 2021]. According to Masuda et al.
[2023], the worldwide market for anime monotonically grew from 1266.1 billion Yen in
2009 to 2742.5 billion Yen in 2021 (with an exception in the year 2020). This trend
suggests that limited animation will continue to be relevant in the future.

The hand-drawn limited-animation production process is composed of four phases. Based
on the storyboard produced in the first phase, animators repeatedly draw and improve
rough key frames in the second phase. These keyframes are line drawings only drawn for
critical moments in a scene and contain mostly cels. In the third phase, the keyframes are
vectorized and cleaned. To achieve the visual effect of fluidity, a large number of frames
in between the keyframes are drawn. In contrast to full animation, these inbetweens are
not redrawn completely, but reuse the majority of a keyframe while only editing small
parts of the image. Finally, in the fourth phase, the clean frames are colored and enriched
with special effects and a background image.

Thus, the production consists of creative parts such as the drawing of keyframes and
tedious tasks such as the creation of inbetweens. The latter tasks are a ripe target for
automatization, freeing up animation studios to focus on the creative parts of their work.
This work explores the automatization of one such task, specifically the vectorization of
clean animation frames.

Traditionally, computational tasks are automated using hand-crafted algorithms with
manually set parameters. While this is feasible for well-defined and structured tasks,
it is unfeasible for complex, ambiguous tasks with high-dimensional data, such as the
vectorization of clean animation frames. A different automatization technique that
is better fit for these types of tasks is machine learning. Contrary to hand-crafted
algorithms, machine learning consists of assembling a large dataset of inputs and outputs
and defining an algorithm which exploits statistical correlations in this dataset to fit a
model that generalizes to data outside of this dataset. A subset of machine learning that
has increased in importance in recent years is deep learning, in which the model fit to
the dataset is an artificial neural network [Rosenblatt, 1958].

In this chapter, Section 1.1 provides the motivation for the research. Section 1.2 details
the research question and related research objectives. Section 1.3 lists the challenges
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1.1. Motivation

associated with the research objectives. Section 1.4 gives a summary of the main
contributions of this work. Finally, Section 1.5 outlines the structure of the thesis.

1.1 Motivation
In order for the limited animation production process to proceed as quickly and as
accurately as possible, clean frames need to be drawn as vector images. Contrary to
raster images, which represent an image using a raster of color values, vector images
represent an image using a hierarchy of graphical primitives. The primitives used in this
case are lines and curves. Having the clean frame as vector line art enables accurate
and easy editing. Furthermore, vector files are resolution-independent and require less
data to represent an image than lossless raster formats, where the color of each pixel
needs to be stored somehow. Moreover, by their nature they also contain the semantic
composition of the image, which is potentially useful for downstream tasks.

In many animation studios, limited animation frames are initially drawn on paper, i.e., in
raster format. Afterwards, these frames need to be manually traced in order to produce
clean frames in vector format. This manual conversion is a tedious and time-intensive
process, requiring roughly an hour per frame. Hence, it would be beneficial to have a
method which can convert the clean frame into vector format automatically.

Even disregarding the step from rough animation frames in raster format to clean frames
in vector format, there are scenarios where the clean frame is only available as a raster
image. This could be due to various reasons, including discontinuity in the production
workflow (e.g., when different studios are contracted for different steps), the need to
export an image from the drawing program to another application, or the existence of
old production data that needs to be reused.

Once the clean animation frame is available in vector format, it increases the efficiency of
successive workflow steps. An example is the creation of the frames inbetween keyframes,
where artists can naturally utilize existing keyframes and only edit a small part of the
image. As an example, the curves making up strains of hair could simply be moved
instead of needing to be completely redrawn in the case of a raster image.

In summary, in the event of clean animation frames being only available in raster format,
it is necessary to manually vectorize the images before they can be used efficiently.
Therefore, this work explores the possibility of automatizing this laborious process using
line-art image vectorization methods.

1.2 Aim of the Work
The purpose of this work is to create a method to automatically convert clean animation
frame raster images into corresponding vector images. As mentioned in Figure 1.1, this
method consists of a deep learning model trained on clean animation frames. For the
resulting line-art vector image to be useful for artistic purposes, the content needs to

3



1. Introduction

be semantically meaningful, i.e., the arrangement, topology and parameterization of
graphical primitives (i.e., lines and curves) need to make sense and be close to how
artists would draw. This prevents traditional algorithms [Selinger, 2003, Weber, 2002,
Noris et al., 2013] to be used for that purpose, as these often produce vector images
that visually resemble the raster image closely, but contain semantically meaningless
vector primitives - for example, a naive but visually convincing vectorization solution is
to represent each pixel as a small line.

In detail, this work will attempt to answer a

Research Question 1 (RQ1) , which is to what extent is it possible to automatically
vectorize clean animation frame line art in a manner that is semantically meaningful?

1.3 Challenges
Creating the deep learning-based method to vectorize clean animation frames represents
a challenge in itself, due to the visual structure of the images. Specifically, it is crucial
that the output of the proposed deep learning model is structurally similar to real clean
frame vector images, i.e., that the output consists solely of the primitives that artists use
to draw clean animation frames. Hence, it is necessary to find a representation of these
primitives that is suitable for deep learning models.

Another challenge is the low amount of available data. While a small dataset (N = 139)
of raster/vector image pairs of clean frames was provided to us as part of a research
project (and drawn at the Tonari Animation studio), this is not a sufficient quantity
to fit a deep learning model. Since there is little publicly available data for this task,
extending the dataset is non-trivial. In order to achieve this, data augmentation methods
have to be used in addition to procuring public data.

Moreover, clean animation frame images often contain a large amount of curves (usually
more than 1000 lines per image). The proposed solution needs to be designed in a way
to handle this large amount of primitives, since prior deep learning-based works are often
suited only for images with a lower amount of curves. Additionally, it is necessary for
the image vectorization method to be applicable at lower image resolutions, since clean
frame raster images (especially older production data) are often at a resolution for which
existing algorithms were not designed. Furthermore, it is unavoidable that the resulting
vector images will contain errors and therefore need to be corrected manually. Hence,
the solution should focus more on getting the curves it generates correct, rather than
covering all curves in the input image. In other words, a solution that generates half of
the curves completely correct is preferable to a solution that generates all of the curves
only somewhat correct, since in the latter case all curves have to be manually corrected
anyway.

Finally, the clean animation frame vectorization method should be designed as a deep
learning model, as this makes it easier to adapt it to vectorize raster images from different

4



1.4. Contributions

domains using finetuning. This is important for a related task, which is motivated in the
following: One factor that has greatly limited successful attempts in the field of deep
learning in hand-drawn limited animation production is the scarce amount of available
production data that can be used for training. While it is probably fruitless to attempt
to design a system that generates the whole animation automatically, solving individual
steps in the production process might be possible. It is clear that training such models
would require a large amount of production data, specifically production data that is in
reverse order of the actual production workflow. As an example, if a large dataset of clean
keyframes and associated inbetweens (as well as animation timesheets) was available, it
would be possible to train an inbetween generation model. Other potential uses include
clean frame coloring, inpainting or compositing.

While the obvious way of attaining an animation production dataset would be for a
studio to publish it, thus far no such dataset has been published, which presents another
challenge. An alternative would be to synthesize the data. The differentiable nature of
the proposed line-art vectorization algorithm could be utilized for that purpose. While
the model will be trained using clean frames as input data, it might be possible to extend
or finetune the model to use images of another domain (such as final animation frames) as
input. Then, it could be used for a cross-domain vectorization model in order to convert
raster images of one domain (e.g., final animation frames) into vector images of another
domain (i.e., clean frames). Figure 1.2 depicts such a model. Since final animation frames
are readily available in high quantity and quality, this would potentially make it possible
to synthesize a large dataset of clean frames requiring only small supervision. However,
creating such a model is not the focus of this work, rather, the above-mentioned line-art
vectorization method is designed in a way such that it could in principle be extended
to cross-domain line-art vectorization. Most importantly, this means that the model is
nearly end-to-end differentiable, such that it can be easily finetuned on other data. This
is a characteristic that traditional algorithms [Selinger, 2003, Weber, 2002, Noris et al.,
2013] do not possess.

In summary, the quantity of the data and the qualitative structure of the data domain
impose a range of restrictions which need to be accounted for in the architecture design
of the method. Furthermore, the method should be based on a deep learning model in
order to enable adaptability to other input data domains.

1.4 Contributions
To answer RQ1, the Research Objective 1 (RO1) is to create a method for line-art
vectorization that takes clean animation frame raster images as input and outputs
the corresponding semantically meaningful vector image. This method is described in
Section 4.1 and based on a deep learning model to enable it to be adapted to different
input image domains. Furthermore, it is designed to fit the qualitative structure of clean
animation frames as input and output images.

Accordingly, the Research Objective 2 (RO2) is to perform an evaluation that ascertains
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1. Introduction

deep learning
model

input: final frame raster image output: clean frame vector image

Figure 1.2: An overview of cross-domain line-art vectorization, a potential extension
of the proposed solution. Here, the objective is to convert final animation frame raster
images (example by Celibidache and P.A. WORKS [2017]) into clean animation frame
vector images by extending or finetuning the deep learning model depicted in Figure 1.1.

the extent to which the developed method and existing state-of-the-art line-art image
vectorization methods are able to vectorize clean animation frames. This evaluation is
described in Section 4.3. Great care is taken to ensure that this evaluation is reproducible.
Due to this, the whole evaluation is not only conducted on the clean animation frames
provided by Tonari Animation, but also on a publicly available subset of the Sketch-
Bench [Yan et al., 2020] dataset. Furthermore, the code for the evaluation is publicly
available at https://github.com/nopperl/marked-lineart-vectorization.
Ultimately, while the evaluation shows advantages of the developed line-art image vec-
torization method compared to existing state-of-the-art methods, no method is able to
satisfactorily vectorize clean animation frames.

RO1 A deep learning-based method for clean animation line-art vectorization.

RO2 A reproducible evaluation assessing the extent to which line-art image vectorization
methods can vectorize clean animation frames.

1.5 Structure
Chapter 2 describes the necessary prerequisites required to understand the proposed
solution. Chapter 3 gives an overview of prior work related to the research objectives. The
proposed solution is described and empirically evaluated together with state-of-the-art
methods in Chapter 4. Chapter 5 revisits the research objectives, lists limitations and
provides potential future work.

6
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CHAPTER 2
Background

This chapter details the theoretical background of clean animation frame vectorization.
Section 2.1 gives an overview of both raster and vector images as well as the process
of vectorization, i.e., converting raster images to vector images. Section 2.2 describes
the process for hand-drawn limited animation in more detail. Section 2.3 explains deep
learning, which is the technique used in this work to develop an automatic clean animation
frame vectorization method.

2.1 Vectorization
In a digital context, images can be represented using either raster or vector data formats.
These are introduced in Sections 2.1.1 and 2.1.2, respectively. This work is concerned
with image vectorization, i.e., the conversion of raster images into corresponding vector
images, which is described in Section 2.1.3.

2.1.1 Raster Images
Digital visual data are most commonly represented using raster data formats. Raster
images store visual data as a raster, a 2-dimensional grid of uniformly sized squares. Each
of these squares can be referred to as pixel and is defined by its location and its color.

Raster images can be naively stored using numerical two-dimensional arrays or matrices.
The pixels location in the array is directly mapped to the location on the grid (and
therefore on the display). This way, the only information that needs to be stored explicitly
for each pixel is its color. Usually, a color is defined using a color model such as the RGB
or the CMYK model. In the case of RGB, a color is defined as the intensity of each of
the components red, green and blue. These components are then mixed according to
their respective intensity using simple addition to produce a color. Using this additive
model, a broad spectrum of colors can be represented using only 3 numerical values. This

7



2. Background

Figure 2.1: Example of an image represented using a raster of 13x12 pixels. Notice that
color information is stored explicitly per pixel.

Figure 2.2: A color wheel exemplifying the Red-Green-Blue (RGB) color model. The
box next to each color displays the intensities of the red, green and blue component
respectively (with black indicating zero intensity). The three components are added in
order to produce the displayed color. Created by Németh [2013].

8



2.1. Vectorization

is shown in Figure 2.2. Furthermore, the numerical values are bounded and usually in
[0, 1] (representing relative amounts) or in [0, 255] (in absolute amounts, intentionally
the maximum amount which can be stored in a bit). This data format is exemplified in
Figure 2.1.

There exist multiple ways of storing raster images. The naive storage format mentioned
above is referred to as bitmap. Since the location of each pixel of the grid is implicitly
given, the only information that needs to be stored is the color (i.e., three numerical values)
per pixel. Other formats such as the commonly used Portable Network Graphics (PNG)
[Boutell, 1997] or JPEG attempt to reduce the necessary storage space using compression
algorithms. The format can also be extended to include opacity (i.e., transparency) as an
additional fourth component of the color model (then referred to as RGBA color model).
The grid (and in turn the array) can also be extended by a third dimension in order to
represent three-dimensional graphics (referred to as voxel data).

2.1.2 Vector Images

(a) A vector image consisting of 5
shapes.

(b) A raster image consisting of 50x50
pixels

Figure 2.3: An example image in both vector and raster format. By zooming in, it is
possible to experience the fundamental difference between the two formats.

A different way to represent images are vector images. In contrast to raster formats,
vector data formats represent images using graphical primitives. These primitives are
the most basic geometries which constitute images, such as points, lines or polygons.
Using these low-level primitives, it is also possible to define higher-level shapes like
text, circles or parametric curves. Each primitive or shape can carry attributes such as
the color it is filled with, location or size. These primitives can be arranged both in a
hierarchical and in a topological structure, i.e., their spatial relations can be explicitly
defined. Figure 2.3 gives an example of an image in both vector and raster format.
The vector image in Figure 2.3a is stored using a vector format called Scalable Vector
Graphics (SVG) [Bellamy-Royds et al., 2018], which is developed by the World Wide
Web Consortium and is widely used, especially on the world wide web. The underlying
SVG contents can are shown in Listing 1. Note that, in contrast to storing each pixel
and its color, the SVG file stores way less data.

Vector images possess specific advantages over raster images, depending on the context
they are used in. The advantages arise from the fact that the image is represented using
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2. Background

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<svg
width="100"
height="100"
version="1.1"
xmlns="http://www.w3.org/2000/svg"
xmlns:svg="http://www.w3.org/2000/svg">

<circle
style="fill:#ffee00;stroke-width:0.264999;fill-opacity:1"
cx="13.658114"
cy="13.587115"
r="10" />

<path
style="stroke:#000000;stroke-width:0.27px;stroke-linejoin:miter"
d="m 5.42,14.74 c 3.75,8.27 12.45,8.06 17.34,0.038" />

<ellipse
style="fill:#0000ff;fill-opacity:1;stroke-width:0.324317"
cx="11.310536"
cy="11.553639"
rx="1.3157237"
ry="2.5536389" />

<ellipse
style="fill:#0000ff;fill-opacity:1;stroke-width:0.324317"
cx="15.776539"
cy="11.553638"
rx="1.3157237"
ry="2.5536389" />

<path
style="fill:#ff00ff;fill-opacity:1;stroke-width:0.264999"
d="m 11.728484,16.514472 1.290489,2.182378 -2.535239,0.02641 z" />

</svg>

Listing 1: The image displayed in Figure 2.3a as SVG file.
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2.1. Vectorization

only a few graphical primitives and their mutual relations.

Small storage size A vector image is generally smaller than a raster image, since in
contrast to raster images it does not describe each pixel, rather only the primitives and
their relations. In general, it holds that if the number of primitives required to represent
an image is roughly at least less than the number of pixels, the storage size of the vector
image will be lower than the corresponding raster image.

Easy editability The primitives and structure of a vector image can be easily loaded
and edited, which is not the case for raster images, which can only be edited at a pixel
level.

Resolution-independence Since the vector image only defines graphical primitives
without an explicit raster, it is independent of the resolution of the raster it is displayed
on. That means that vector images can be zoomed in indefinitely without losing their
apparent quality, or smoothness. In contrast, zooming into a raster image will quickly
reveal non-smooth parts.

It is important to note that the above-mentioned advantages are not intrinsic to the
vector format itself. The nature of vector formats (and in turn, their advantages) can be
reduced ad absurdum. For example, consider a vector format which stores images using
the graphical primitive of squares only. A size, fill color and location can be defined for
each of these squares. If these squares are then arranged in a grid and of uniform size, this
vector image is in essence a raster image in vector format. Viewed another way, a raster
image could be considered an optimized way to store such a naive vector image, since in
raster formats the size and location of each square does not need to be explicitly stored.
To conclude this thought experiment, it is important to note that such a naive vector
format loses most advantages associated with vector images (i.e., resolution-independence,
easy editability and smaller storage size). Hence, the advantages of vector formats are
not intrinsic to their representation of images, rather, each specific vector image needs to
be defined using primitives that match the semantic composition of the image, not just
the visual appearance.

To reiterate the above conclusion, an important characteristic of a good-quality vector
image is that it consists of semantically meaningful primitives and structure. That
is, a vector image should describe the visual components using appropriate primitives
intuitive to humans (in addition to their mutual relations) and not just match the visual
appearance perfectly on a pixel-level. Not only does this provide a high-level description
of visual content, but it also reduces the storage space required and retains the important
resolution-independence. However, it is clear that these advantages are only given if the
visual can actually be represented using the graphical primitives given by the vector
format. Hence, there is no general superiority of one image format over the other. Rather,
whether vector or raster formats are appropriate always depends on the given task.
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2. Background

Figure 2.4: Example of line art. Drawn by Santiago Rial [Yan et al., 2020].

An example of an image domain which is appropriate to be displayed using vector formats
is line art. This category subsumes drawings that depict objects using lines and curves
contrasted with more plain backgrounds. An example is shown in Figure 2.4. This
visual style is used for a variety of purposes, such as comics, novel illustrations, technical
drawings and also animation frames of cartoons. Since line art intentionally attempts
to depict objects using simple primitives, it is uniquely suited to be represented using
vector formats.

2.1.3 Vectorizaton

raster image vector image

vectorization

rasterization

Figure 2.5: The process of vectorization and rasterization.

Image vectorization - also referred to as image tracing - is the process of converting a
raster image to a vector image. The inverse of this process (converting a vector into a
raster image) is referred to as rasterization. The process is depicted visually in Figure 2.5.
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2.2. Limited Animation Production

There exists a non-injective relation between vector images and raster images, i.e., for
each vector image, there exists a corresponding raster image, but multiple vector images
can have the same corresponding raster image. In turn, for each raster image, there can
be multiple corresponding vector images. Therefore, it is always possible to convert a
given vector image into the corresponding raster image. However, when converting a
raster image into a vector image, there exists multiple (in essence, infinite) potential
corresponding candidates.

Since there is a non-unique set of vector images that map to the same raster image, it is
non-trivial to ascertain the quality of the vectorization result. As explained in Section 2.1.2,
in order for the resulting vector image to actually benefit from the advantages of the
format, the primitives and structure need to be semantically meaningful with respect to
a specific usage. Traditional vectorization algorithms attempt to approximate meaningful
primitives using surrogate heuristics, whereas learned algorithms attempt to exploit
statistical correspondences in the training data to derive a meaningful result. In general,
measuring the primitives and structure of a generated vector image is highly dependent
on the intended usage of the vector image.

It is important to note that most displays used today are raster displays. Hence, in order
to actually view a vector image on a display, it is necessary to rasterize the vector image.
However, most viewing software does not rasterize the vector image a priori, instead, it
is interpreted and lazily rendered at the zoom and position level indicated by the user.
This can be experienced by zooming into a vector image in this document.

2.2 Limited Animation Production
Limited animation is an animation technique in which moving parts (or, cels) of a drawing
are reused across multiple frames. This stands in contrast to full animation, in which
every frame is completely redrawn, which leads to a more fluid animation style. Hence,
in order to provide a compelling experience for viewers, limited animation has to rely
more on visual tricks such as rich backgrounds (which mostly remain still within a scene
and therefore can be reused).

Figure 2.6 gives an overview of the typical production process for hand-drawn limited
animation. Note that since limited animation enjoys wide application in the Japanese
animation industry, it contains both English and corresponding Japanese production
terms. The process starts with the director creating a storyboard, which contains very
rough sketches giving an overview of the animation sequence. Based on the storyboard,
the key animator draws the layout (or, 1st key animation) on paper. It encompasses
all keyframes in a given scene (also referred to as cut), as well as instructions for later
stages (such as camera movement). The keyframes themselves do not produce fluid
animation, since they are only drawn for critical stages within an animation sequence
(beginning, junctures and end). The 1st key frames already include rough sketches for
the background as well as the cels. The layout is then normally checked and possibly
corrected by the animation director. After the layout is approved, the rough 1st key
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2. Background

Figure 2.6: Example of a limited animation production workflow [Furansujin Connection,
2016]. The steps dealing with Sakuga (i.e., the steps following 2ND KEY APPROVED
and before COMPOSITING) are usually done using vector images.

frames are cleaned up while taking the animation director’s corrections into account in
order to produce 2nd key animation frames. This process can be repeated multiple times,
until the animation director finally approves the keyframes.

Afterwards, the approved keyframes are retraced and digitized as vector images. These
clean final frames are not full drawings, but include the outlines of each object in a scene,
decorative lines, as well as lines indicating shadows, lighting and color regions. It can
be interpreted as a semantic description of the essential parts (mostly cels) of the final
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2.2. Limited Animation Production

(a) A final composed animation frame by Uchida et al. [2019], which is in raster format by default.

(b) The corresponding re-imagined clean animation keyframe in raster format provided by Tonari
Animation.

Figure 2.7: An example of a clean animation keyframe and the corresponding final
animation frame.
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2. Background

frame. An example can be seen in Figure 2.7b.

The keyframes are retraced as vector images since this format makes it easy to apply
succeeding steps in the workflow. Vector images can be easily and accurately edited by
simply altering primitives. Furthermore, images are often worked on at different scales,
where the resolution-independent nature of vector images is beneficial. This is especially
important when working on tiny details of the image.

Figure 2.8: Three successive clean frames of an animation scene in vector format provided
by Tonari Animation. If rapidly shown in succession, the person appears to be moving.
Notice minor differences among them, such as the angle of the pencil or the location of
strains of hair.

While up to now only keyframes were drawn, in order to produce fluid movement between
them, inbetweens are created using the clean keyframes as reference. This is done at
such a late stage in order to speed up the process (since only keyframes need to be
revised and refined in the initial steps as opposed to all frames). Inbetweens need to be
drawn exactly like the keyframe, while having small deviations for moving parts. For the
workflow succeeding this step, there is no distinction between keyframes and inbetweens
anymore. The resulting images are referred to by various terms interchangeably; most
consistently used is the term douga (動画, lit. moving image) in Japanese limited
animation production. Figure 2.8 depicts three examples of douga.

After the clean frames are drawn and approved, they are colored according to their
color indications. The color indications in the key animations serve to retain temporal
consistency for the coloring. Nowadays, this is done digitally using bucket filling, i.e.,
changing the color within a closed area in the image. The precise nature of the vector
image makes this process easier, since there is no ambiguity where exactly color areas
are located. Since the resulting animation video will be displayed on raster displays at a
fixed resolution, for succeeding steps it is not necessary for the frames to be in vector
format anymore. Hence, they are rasterized and composited with the background, which
was drawn in parallel in raster format. While in theory, clean frames could be rasterized
at any arbitrary size, usually, they are rasterized with a width of 720 pixels. Finally,
camera movement, special effects, 3-D animation and small fixes are added. An example
of such a final frame is depicted in Figure 2.7a.
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2.2. Limited Animation Production

P0

P1

P2

(a) A quadratic bezier curve, defined by
a start point P0, an end point P2 and
one control point P1.

P0

P1

P2

P3

(b) A cubic bezier curve, defined by a
start point P0, an end point P3 and two
control points P1 and P2.

Figure 2.9: Examples of bezier curves.

2.2.1 Clean Frames

The focus of this work are the clean frames as used in the production workflow after
the 2nd key animation and prior to the coloring, as shown in Figure 2.7b. Digital clean
frames are primarily drawn using bezier curves [de Faget de Casteljau, 1986] as graphical
primitive. Bezier curves are smooth parametric functions that approximate real-world
strokes. Figure 2.9 gives two examples of bezier curves. They are parameterized by a
start and an end point, as well as a variable number of control points. The curve is then
constructed using a combination of linear interpolations between the points. The number
of control points indicates the degree of the curve; most commonly used are quadratic
and cubic bezier curves, as nearly all relevant shapes can be represented using them.
Note, that a bezier curve of degree n can also be represented by a bezier curve of degree
m > n. Furthermore, every bezier curve can be split at any point into two bezier curves
of the same degree.

Clean frames can be considered a type of line art, specifically defined by the following
features.

• Constant stroke width: Clean frames are drawn using mostly quadratic and cubic
bezier curves with a constant stroke width. While line art usually uses variable
stroke widths, this is not a common style for limited animation, specifically in
Japanese productions.

• High number of curves: On average, the amount of curves per image over 1000
(see Section 4.2.1), which is significantly more than the amount of curves used for
simple line art that is often the target for automatic vectorization (such as doodles,
fonts or cartoons).
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Highlights

Shadows

Edge Lines

Color Details*

*

1.Black area fillings

2.Lineless color changes (eg: aqua skin to sclera)

3.Color information for eyes

4.Blush lines

5.No fill crosses

6.Gradient indications

7....Books

Figure 2.10: Our proposed standardized keyframe color schema, which is used in the
dataset [Kugler, 2023].

• Semantically meaningful colors: The color of each curve carries semantic meaning,
namely as indication for succeeding steps in the animation pipeline. There is no
industry-standard for the color scheme, with studios mostly opting to use their
proprietary schemes. The scheme used by example images in this work (all provided
by Tonari Animation) is defined in Figure 2.10. It can be observed in Figure 2.7.
For example, note how the regions enclosed by blue lines are colored darker than
the ones enclosed by red lines.

• Exact boundaries: In order to speed up the colorization step of the production
workflow, it is necessary to ensure that all color regions are sufficiently enclosed by
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2.3. Deep Learning

curves. This way, coloring can be trivially accomplished using bucket filling.

Even if clean frames are drawn as vector images, they might sometimes only be available
in raster format. This could be the case of older clean frames, different studios working
on different stages of the workflow or if it is necessary to export the image from the
drawing program to another program. In this case, they need to be manually retraced
before inbetweens are created, which can take around an hour. Hence, there is a need to
have an automatic way of vectorizing them.

Figure 2.11: The essential information of a clean animation keyframe. In essence,
Figure 2.7b with all filled color regions removed.

The objective of this work is to create an automatic way of vectorizing clean frames. For
the vectorization, it is not necessary to handle the filled color regions, since those can
be easily restored using pre- or post-processing and, failing that, can be trivially added
manually. The essential part are the lines and curves themselves, as shown in Figure 2.11.

Finally, in order for the vectorization method to be practically suitable, it is important
that the result minimizes the amount of manual fixing required. Hence, it is more
important that the restored lines are correct, even at the expense of not all lines in the
input image being covered.

2.3 Deep Learning
When attempting to tackle a task computationally, it is common to explicitly define an
algorithm that solves the task in a structured way with manually set parameters. In
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2. Background

practice, this approach is often unfeasible for complex tasks with high-dimensional data,
such as image generation or speech recognition. A different approach is machine learning,
i.e., to assemble a dataset of correct inputs and outputs and defining an algorithm which
exploits statistical correlations in the dataset to fit a model that generalizes to data
outside of this dataset. Deep learning is a subset of machine learning that has gained
traction in recent years due to practical successes [Ciresan et al., 2012, Krizhevsky et al.,
2012, Silver et al., 2016, Devlin et al., 2019, Brown et al., 2020, Rombach et al., 2022,
Ouyang et al., 2022].

The basis of deep learning are neural networks [Rosenblatt, 1958], which are explained
in Section 2.3.1. Different ways of formulating objectives for and measuring neural
networks are explored in Section 2.3.2. Section 2.3.3 describes Convolutional Neural
Networks (CNNs) [Fukushima and Miyake, 1982, LeCun et al., 1989], which are a type
of neural networks suited for spatial data such as raster images. The equivalent for
sequential data, Recurrent Neural Networks (RNNs) [Rumelhart et al., 1986], are detailed
in Section 2.3.4. The Transformer architecture [Vaswani et al., 2017, Schmidhuber, 1992],
a recently developed model architecture attempting to combine the advantages of CNNs
and RNNs is introduced in Section 2.3.5. Section 2.3.6 describes a flexible framework
for generative models called encoder-decoder framework [Sutskever et al., 2014, Mikolov,
2012].

2.3.1 Neural Networks

x0

x1

x2

h0

h1

h2

h3

o0

o1

input
hidden

output

x θin xT θin θh fa(xT θin)θh

Figure 2.12: Architecture of a multi-layered perceptron (MLP). Circles of same color
represent the variables within a layer, while the connections between circles indicates
weights. The mathematical representation is given below.

Consider a set of input data x ∈ Rm and a set of outputs y ∈ Rl of unspecified dimensions,
which are related by the ground truth function F (x) = y, F : Rm → Rl. In the context
of machine learning, x can be referred to as predictors and y as the response or label. For
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example, in the case of binary image classification the predictor could be a sequence of the
color values of all pixels in an image, while the response could be a dichotomous variable
indicating whether the image is part of the positive class. The objective of a machine
learning algorithm is to fit a model f that approximates F using freely changeable (or,
learnable) parameters θ, i.e., f(x; θ) ≈ F (x).

Neural networks [Rosenblatt, 1958] can be viewed as special, nonlinear case of the
approximation f . Specifically, a neural network consists of three types of layers:

• One input layer x

• n hidden layers and

• one output layer o

Intuitively, each hidden layer learns to detect important features of the preceding layer.
These features are then used in the last layer - the output layer - to compute the relevant,
task dependent outcome.

The standard feedforward neural network, the MLP, is depicted in Figure 2.12. Note
that Figure 2.12 depicts a neural network with only one hidden layer. Theoretically,
this 1-layered MLP is able to approximate any function [Hornik et al., 1989, Cybenko,
1989]. However, in practice, it has been shown that neural networks that consist of many
hidden layers perform better on complex functions [Amari, 1967, Safran and Shamir,
2017, Petersen and Voigtländer, 2018]. The amount of hidden layers is also referred to as
the depth of the neural network, leading to the term deep learning [Dechter, 1986, Chen
et al., 2001].

In the MLP architecture, each hidden layer consists of a predetermined size k of nodes.
Every node is connected to all nodes of the preceding layer (hence also called fully
connected). Each of these connections is assigned a learnable weight θ. Thus, the value of
each node is the weighted sum of all nodes of the preceding layer. Therefore, each layer
in a neural network can be described as inner product h = xT θ, where x is the vector of
nodes of the preceding layer and θ ∈ Rk×|x| is a matrix, where θi∀i ∈ [0, k] is a vector of
weights for one node. For brevity, the bias term is omitted. Intuitively, each node is a
specific representation of the preceding layer which assigns a certain importance (i.e.,
weight) to every node of the preceding layer.

After the node values of the hidden layer are computed, an activation function ϕ(x) is
applied on them. Early MLPs were inspired by biological neural networks and used
the sigmoid activation function defined in Equation (2.1). This function is depicted in
Figure 2.13a. A similar activation function is the tanh activation function defined in
Equation (2.2) and depicted in Figure 2.13b. Contemporary neural networks mainly use
the Rectified Linear Unit (ReLU) activation function [Nair and Hinton, 2010] defined in
Equation (2.3) and depicted in Figure 2.13c.
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(c) ReLU activation function.

Figure 2.13: Graphs depicting activation functions.

σ(x) = 1/(1 + exp(−x)) (2.1)

tanh(x) = sinh(x)
cosh(x) = ex − e−x

ex + e−x
(2.2)

relu(x) = max(0, x) (2.3)

The output of each hidden layer is thus ϕ(h) = ϕ(xT θ). Notice that ϕ serves as
nonlinearity. If ϕ was not used, the output of an n-layered neural network could be
computed using o = xT �n

i=0 θi = xT θ. This is equivalent to the multiple linear regression
model y = xT β + ϵ.

With the activation function ϕ(x), a two-layered MLP is defined by Equation (2.4).

o = ϕ(ϕ(xT θin)θh) (2.4)

In Equation (2.4) θin are the connection weights between the input and the hidden layer
and θh are the connection weights between the hidden and the output layer.

Optimization

In order to approximate the ground truth function F (x) using the model f(x; θ), the
optimal parameters θ⋆ have to be found. In machine learning parlance, this is referred
to as fitting, or training the model. In the case of neural networks, this means finding
the optimal parameters θ⋆

i for each hidden layer, such that f(x; θ⋆) ≈ F (x). Historically,
fitting neural networks often failed to converge to optimal parameters [Minsky and Papert,
1969]. However, this changed with the introduction of the backpropagation algorithm
(also referred to as reverse-mode differentiation) [Dreyfus, 1962, Linnainmaa, 1970], which
made it possible to efficiently train neural networks.
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The first step in optimization is weight initialization, i.e., to initialize the learnable
parameters θi with random numbers. Next, the output of the neural network is computed
as o = f(x; θ). In order to evaluate the output of the network, a loss function is
defined as L(o, y). L calculates the error between o and the ground truth y. It is
important to choose a proper loss function fitting the specific task. A simple loss function
sometimes used in image generation is the mean squared error, or L2 distance, defined
by Equation (2.5).

L2(o, y) =
�|o|

i=1(oi − yi)2

|o| (2.5)

Using the Stochastic Gradient Descent (SGD) algorithm, the loss function L can be used
to guide the training process towards optimal parameters. This is done by computing
the gradients ∂L/∂θi for each weight parameter using backpropagation. These gradients
indicate how the loss L changes when θi is increased by an infinitesimal amount. As the
loss function needs to be minimized, the parameters are updated using the SGD update
step defined by Equation (2.6).

θi = θi − η
∂L

∂θi
(2.6)

η in Equation (2.6) is a hyperparameter called learning rate or step size. It controls the
magnitude of the weight parameter updates and is often a small positive number, as
higher numbers quickly lead to exploding or vanishing gradients [Hochreiter, 1991].

The SGD update step, i.e., computing the outputs and changing the parameters is
repeated until a set of parameters that results in a sufficiently small loss is found. In
recent times, several enhancements to the SGD algorithm were proposed. Most of them
are adaptive optimization algorithms, i.e., they adapt the learning rate η according to
the previous gradients or parameter updates. Chief among them are Adam [Kingma and
Ba, 2015], AdamW [Loshchilov and Hutter, 2019] and RMSprop [Hinton et al., 2014].
While it is still unproven that these optimization algorithms are strictly better than SGD
[Hardt et al., 2016, Wilson et al., 2017], they do perform better on some tasks and model
architectures [Liu et al., 2020, Anil et al., 2019].

For the optimization process to work, it is crucial that the gradients required for the
update step ∂L/∂θi can actually be computed. This means that the loss function L(o, y)
needs to be differentiable, i.e., there must be a derivative at all points in its domain. Since
o = f(x; θ) and since the gradients are computed directly with respect to individual
θi ∈ θ, it follows that the model f itself also needs to be differentiable. As an aside,
the ReLU activation function defined in Equation (2.3) is actually not differentiable at
x = 0. In order to enable it to be used in the model anyways, the derivative at x = 0 is
arbitrarily set to 0 (relu′(0) = 0).
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Regularization

A common occurrence while training neural networks is overfitting, i.e., finding parameters
θ that closely fit the data used to train the network, but do not generalize to unseen
data. In order to prevent this, several regularization schemes are employed.

Model and Dataset Size In general, the larger a model is (i.e., the more freely
changeable parameters θ it contains) in relation to the dataset size, the easier it is to
overfit. Therefore, an important design decision to reduce overfitting is to either reduce
the model parameters to the smallest capacity required to converge or to increase the
dataset size.

Weight initialization Weight initialization is an important decision for the training
process, as wrongly initialized neural networks do not converge to a sufficient result
[Glorot and Bengio, 2010, Sutskever et al., 2013]. Therefore, one often draws the initial
weights of each hidden layer from a Gaussian distribution θi ∼ N (0, 1) and scales the
variance with a constant. One commonly used method is Xavier initialization [Glorot
and Bengio, 2010], which scales the random numbers by 2/(npre + nnext), where npre
is the number of nodes of the preceding layer and nnext is the number of nodes in the
succeeding layer. Another initialization scheme specifically designed for ReLU neural
networks is He initialization [He et al., 2015] with a scale factor of

�
2/n, where n is the

number of nodes of each hidden layer.

Batch normalization Neural networks are normally fitted by processing subsets of
the training dataset - batches - in parallel. This is primarily done to utilize the nature of
Graphics Processing Units (GPUs) in order to speed up the training process. However, it
is also possible to use batch statistics to normalize individual observations with respect
to the batch. This batch normalization [Ioffe and Szegedy, 2015] ensures that batches
are normally distributed, which might improve the stability of the training process. The
authors claim that internal covariate shift - i.e., differing distributions of intermediate layer
outputs - are detrimental to convergence. However, there exist alternative explanations
for how batch normalization actually brings about its regularizing effects in practise
[Santurkar et al., 2018, Yang et al., 2019, Kohler et al., 2019].

More specifically, given a batch xB ⊂ x, each observation xi ∈ xB is centered using the
batch mean µB = 1

m

�m
i=1 xi and scaled by the batch variance σ2

B = 1
m

�m
i=1(xi − µB)2

as given by Equation (2.7). In this equation, k denotes the dimension, since batch
normalization is applied per-dimension.

x̂
(k)
i = x

(k)
i − µ

(k)
B��

σ
(k)
B

2
+ ϵ

(2.7)
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Dropout Another way to regularize neural networks and reduce overfitting is to
randomly set individual nodes in hidden layers to 0. This technique is called dropout
[Hinton et al., 2012] and makes the model more robust with respect to individual nodes
and their connection weights, since it can not rely on the node value being present.

Dropout is mainly applied while fitting the model. Consider the hidden layer h = h−1θ.
After computing the hidden layer nodes h using the preceding layer h−1 and the connection
weights θ, each node h ∈ h is independently set to 0 with probability p (it is common
to set p = 0.5). Since this is independently done for every step of the optimization
process, different nodes will be "dropped" at each step. Hence, in order to maximize the
optimization objective, the connection weights have to be fitted in a way that is robust
to a share p of the nodes randomly being dropped (and thereby a share p of the weights
not contributing to the output).

2.3.2 Metrics and Losses
Recall that a machine learning model f(x; θ) = o approximates a ground truth function
F (x) = y by being fitted to an input dataset (x, y) in order to produce outputs o that
fit the ground truth output (or, response) y. It follows, that there is a need for a single
numerical value to measure this fit. There are two ways this value is calculated and used
in relation to a machine learning model: firstly, to evaluate the model after it has been
trained using metrics (often against other models or baselines) and secondly, in order
to guide the training process using loss functions. This section introduces these related
concepts.

Classification

Since metrics and losses formulate the objective, they depend on the task of the model.
Machine learning tasks can be roughly divided into two categories by the nature of the
response y. While in regression tasks, y is continuous, in classification tasks y is discrete.

Regression does not impose strict assumptions on y is therefore the standard case
introduced in Section 2.3.1. An important image-related task that roughly falls into this
category is image generation, i.e., to generate output images o that look similar to the
ground truth y.

On the other hand, classification has more strict assumptions on y. The task is to assign
to an input x a predefined class out of S classes. Since machine learning models operate
on vectors, the class in the ground truth is represented as a vector y ∈ RS , where each
element yi ∈ y is an indicator of the class i ∈ [1, S]. If the input is assigned class s,
ys = 1 and yj = 0∀j ∈ [1, S] except j = s. Appropriately, the output of the model o has
the same structure as the ground truth y, except it usually consists of continuous class
probabilities instead of categorical class indicators, i.e., whereas yi ∈ {0, 1}, oi ∈ [0, 1]. In
the case of binary classification, i.e., if S = 2, the two class probabilities are exactly the
inversion of each other and can be reduced to a single probability, i.e., in this case the
class is represented by a single number.
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input output

segmentation

Figure 2.14: An example of image segmentation, where the circles in the image have to
be segmented.

There are image-related tasks that can be framed as classification tasks. Consider the
case of image segmentation, which has the objective of partitioning an image into multiple
segments, where each segment belongs to one of multiple classes. All regions of a class
share certain task-dependent characteristics. Figure 2.14 shows an example of an image
segmentation task. This example depicts a binary image segmentation task where the
image has to be segmented into two classes: segments that correspond to circles and the
rest.

In other words, the output of a segmentation model assigns a class to each pixel of the
input image. Given an input image x ∈ RW ×H×C of width W , height H and C color
values per pixel, the output is o ∈ RW ×H×S , where S is the number of classes. In detail,
each pixel xi,j ∈ x at location (i, j) in the input image x is assigned a vector oi,j ∈ o
of length |oi,j | = S, where the element os ∈ oi,j indicates the probability that the pixel
belongs to class s ∀s ∈ [1, S]. Furthermore, it holds that os ∈ [0, 1]∀s and �|o|

k=0 ok = 1.
In the special case of S = 2, the class dimension of the output vector can be interpreted
as a monochrome color model and the output can be visualized as an image in which
the positive class is indicated as black and the negative class is indicated as white. An
example of this is shown in Figure 2.15. Note that clean animation keyframes can be seen
as image segmentation output of corresponding final animation frames (see Figure 2.7).

Keep in mind that image segmentation is often associated with class imbalance, i.e.,
under-representation of a class in the training dataset, which has to be considered by
metrics and loss functions.

Metrics

It is important to evaluate how good a model f performs. This is measured using
metric that computes the difference between the model output o and the ground truth y.
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output ground truth

o(5,4)=0.1≈y(5,4)=0 

o(3,1)=0.9≈y(3,1)=1 

Figure 2.15: An example of binary image segmentation using binary classification. On
the left, an output of a model that has not yet converged is visualized as a monochrome
image. The ground truth data is displayed on the right. Note the continuous class
probabilities being used in the model output.

However, notice that y is used to both fit the model and evaluate it. Therefore, a model
that trivially memorizes the input and output data would attain a perfect evaluation
score. However, this model would not generalize to unseen data. Since the primary aim
of a model is to be applied to unseen data, it is conductive not to evaluate the model on
these instead of the data it has been fitted to.

In order to attain evaluation on unseen data, the principal training scheme is splitting the
available dataset of input data x and labels y into a training dataset xtrain ⊂ x, ytrain ⊂ y
and a test dataset xtest ⊂ x, ytest ⊂ y, where xtrain ∩ xtest = ∅ and ytrain ∩ ytest = ∅.
The training dataset is used solely to fit the model, while the test dataset is used to
evaluate the model. Special care needs to be taken such that there is no information leak
from the test dataset into the training dataset.

Specifically, the metric functions introduced below are applied on the ground truth of the
test dataset ytest and the model output o = f(xtest; θ), where θ has been fitted using the
training dataset xtrain, ytrain. The metrics are introduced for regression and classification
models, respectively.

Regression This section introduces two common metrics that can be used to measure
models trained for regression tasks. Let o and y be in Euclidean space, then the ordinary
distance between them y−o (i.e., the error) can be directly calculated and used as metric.
However, by simply computing the subtraction, large negative distances would actually
contribute to minimizing the error. There are two common metrics which prevent this.
While the mean absolute error (MAE) (also referred to as L1 distance) as defined in
Equation (2.8) uses the absolute of the error, the mean squared error (MSE) (or, L2
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distance) as defined in Equation (2.5) uses the square of the error. These metrics can be
used as a simple way to calculate the difference between two images.

L1(o, y) =
�|o|

i=1 |oi − yi|
|o| (2.8)

Classification This section introduces metrics for binary classification models, which
are used for the binary image segmentation task explained in Section 2.3.2. Binary
classifiers are often evaluated by first computing their confusion matrix, which counts all
possible configurations of class assignments per input observation (i.e., pixel in image
segmentation). It is displayed in Table 2.1, where TP refers to the true positives, i.e.,
the amount of observations to which both the model and the ground truth assign the
positive class, FP refers to the false positives, i.e., the amount of observations to which
the model assigns the positive and the ground truth assigns the negative class and FN
refers to the false negatives, i.e., the amount of observations to which the model assigns
the negative and the ground truth assigns the positive class.

Table 2.1: Confusion matrix for a binary classifier.

y = 1 y = 0
o = 1 true positives (TPs) false positives (FPs)
o = 0 false negatives (FNs) true negatives (TNs)

As confusion matrices consists of four numbers, they somehow need to be reduced to a
single number. There are different ways of doing that, which are described below.

An easy metric that is commonly used is accuracy as defined in Equation (2.9). Notice
that ACC ∈ [0, 1]. However, this metric does not take into account the proportion of
positive class observations over negative class observations in the dataset. Therefore, in
the case of class imbalance, the metric is biased towards the over-represented class.

ACC = TP + TN

TP + FP + TN + FN
(2.9)

One strategy of combating class imbalance in binary classification problems is to consider
the intersection between the output and the ground truth. This is done using the
Intersection-over-Union (IoU) [Gilbert, 1884, Jaccard, 1912, Tanimoto, 1958] (also referred
to as Jaccard index), which is defined in Equation (2.10). Notice that J ∈ [0, 1]. As the
name suggests, IoU divides the intersection, i.e., the amount of observations to which
both the output and the ground truth assign the positive class by their union. It can be
seen in Equation (2.10) that only the amount of true positives increases the IoU metric.
Hence, even if the negative class is over-represented, it does not affect the metric.
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J = TP

TP + FP + FN
(2.10)

Another metric that is closely related to the IoU is the dice coefficient [Dice, 1945,
Sørensen, 1948] (also referred to as Sørensen index or F1 score), which is defined in
Equation (2.11). Notice that S ∈ [0, 1]. It differs from the IoU by multiplying the true
positives by 2. This way, the true positives contribute exactly the same as the false
positives and false negatives together to the denominator. Aside from that, it is identical
to the IoU and related by S = 2J/(1 + J). Hence, the IoU and dice coefficient are
positively correlated.

S = 2TP

2TP + FP + FN
(2.11)

Losses

As explained in Section 2.3.1, loss functions are an integral component of the optimization
process of neural networks. This section will detail important loss functions used for
tasks involving raster images. A loss function L(o, y) is the mathematical representation
of the optimization objective (i.e., the task). It assesses the fit of the model to the
training dataset by computing the numerical error between the neural network output o
and the ground truth y. The loss function is used to guide the model to convergence
(i.e., optimal performance). Since neural networks are optimized by adjusting the model
parameters θ using SGD, it needs to be a continuous function, i.e., small changes of the
argument should not lead to large changes of the image. This implies that the function
is differentiable at all elements in its domain.

In general, it is possible to optimize neural networks using simple metrics such as accuracy
(explained further in Section 2.3.2). However, in most cases, there exists a loss function
that encapsulates the same meaning, but satisfies the above properties, leading to better
convergence performance by the model.

Again, as is the case for the above metrics, loss functions are introduced first for regression
and subsequently for classification tasks.

Regression The regression metrics MAE and MSE as defined in Equations (2.5)
and (2.8) can be directly used as a loss functions, since they are continuous. However,
both have their own advantages and disadvantages. Since the MSE amplifies values, it is
not as robust to outliers as the MAE. On the other hand, it is smoother at values near 0.
In order to combine the advantages of both losses, Huber [1964] introduced the Huber
loss, which is defined in Equation (2.12). A hyperparameter δ ∈ R+ serves as threshold.
If the absolute error is below this threshold, the squared error is used, otherwise the
absolute error is used.
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Huberi(o, y) =


1
2(y − o)2 |y − o| ≤ δ

δ ∗
�
|y − o| − 1

2δ


otherwise

Huber(o, y) =
�|o|

i=0 Huberi(o,yi)
|o|

(2.12)

The MAE, MSE and Huber losses measure the similarity between images at a pixel level.
However, this assumes that every pixel contributes uniformly to the similarity, which is
often not the case. Furthermore, it has been posited that Euclidean losses suffer from the
curse of dimensionality [Zimek et al., 2012], i.e., are not meaningful for high-dimensional
data such as images. A different method of measuring the similarity is to calculate
the difference of high-level features of the images. Johnson et al. [2016] introduce the
perceptual loss function, which implements this principle. They first process both the
output and the ground truth image using a pre-trained deep neural network such as a
ResNet trained on the ImageNet dataset (see Section 2.3.3) to extract high level features
from the ultimate hidden layer. Then, the loss function is simply the difference between
these feature vectors.

Classification

Recall that binary classification tasks such as image segmentation are often associated
with class imbalance, i.e., under-representation of a class in the training dataset. If this
is not considered in the loss function, the optimization process often converges to the
local optimum of simply ignoring this class.

Cross-entropy Loss The cross-entropy loss is a popular loss function for classification
tasks. It is defined for S classes in Equation (2.13) and is related to the softmax function
defined in Equation (2.27) (see Section 2.3.5). Note that k is the assigned class in
the ground truth, i.e., for which yk = 1. Intuitively, the loss function interprets the
individual elements of o as unnormalized logarithmic class probabilities and calculates
their difference to the ground truth class indications y. That is, CE(o, y) is minimized
if ok = 1 and oi = 0 ∀i ∈ [1, S] given that i ̸= k. Equation (2.13) contains the term
ws ∈ [0, 1], which weights the distance per class. The standard cross-entropy loss is
unweighted, i.e., ws = 1∀s ∈ [1, S]. In the case of class imbalance, it makes sense to
balance the contribution of each class to the loss by increasing or decreasing their weight
respective to their representation. In this case ws ̸= 1 for at least one s ∈ [1, S] and the
loss is referred to as weighted cross-entropy loss. In case of binary classification, binary
cross-entropy loss as defined in Equation (2.14) can be used.

CES(o, y) = −wk log
	

exp(ok)�S
j=1,j ̸=k exp(oj)

�
(2.13)
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BCE(o, y) = CE2(o, y) =
�

−w log(o) if y = 1
−w log(1 − o) otherwise

(2.14)

Focal loss The weighted binary cross-entropy loss defined in Equation (2.14) combats
class imbalance in binary image segmentation tasks by weighing predictions of the positive
class over the negative class. However, Lin et al. [2017] proposed that weighing incorrect
predictions over correct predictions leads to better results. This is implemented as
a modification to the binary cross-entropy loss called focal loss. Focal loss is defined
by Equation (2.15), where γ ∈ [0, ∞) is the focusing parameter and α ∈ [0, ∞) is the
balancing parameter. While the balancing parameter α adjusts the weight by which correct
predictions are down-weighted, the focusing parameter γ adjusts the rate at which correct
predictions are down-weighted. Note that if γ = 0 or α = 0, FL(o, y) = BCE(o, y).

FL(o, y) =
�

−α(1 − o)γ log(o) if y = 1
−(o)γ log(1 − o) otherwise

(2.15)

Dice Loss A different strategy of combating class imbalance in binary image segmen-
tation problems is to measure the overlap between the output and the ground truth, as
is done in the IoU (see Equation (2.10) and the dice coefficient (see Equation (2.11)).
However, these functions are not continuous. [Milletari et al., 2016] introduced a differen-
tiable version of the dice coefficient which is defined in Equation (2.16). This dice loss
function is unaffected by class imbalance by design. One disadvantage is that it is not as
smooth as the binary-crossentropy loss function.

dice(o, y) = 1 − 2yo + 1
y + o + 1 (2.16)

2.3.3 Convolutional Neural Networks
The MLP architecture introduced in Section 2.3.1 is designed for general-purpose input
data, i.e., it does not impose strict assumptions on the input data. In contrast, the CNN
architecture [Fukushima and Miyake, 1982, LeCun et al., 1989] is designed for spatial
data such as raster images.

A raster image could be represented as a flattened vector containing a sequence of color
values of all pixels x ∈ RD, where D is the product of the image width W , image height
H, and number of color values per pixel C. This way, raster images can be used as
input data for MLPs. However, these input vectors quickly get very large. Consider a
small raster image of width W = 224 and height H = 224 containing C color values per
pixel (with C = 3 under the usual assumption of using the RGB color model. The input
vector representing this image would consist of W × H × C = 224 × 224 × 3 = 150528
entries. Now, since the MLP architecture consists of fully connected layers, the nodes
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of the first hidden layer need to be connected to every element in the input vector.
Assuming a hidden layer size of 1000, the vector of connection weights would consist of
224 × 224 × 3 × 1000 = 150528000 elements. This is disadvantageous for two reasons.
First, the storage space required for the vector would be very large. Assuming that
every entry is stored using a 32-bit floating point value, this would amount to a storage
size of 150528000x32 = 602112000B ≈ 602MB for one layer alone. Secondly, and more
importantly, due to the sheer number of freely changeable parameters, the model is very
hard to optimize and likely to overfit.

The amount of parameters can be reduced by replacing fully connected layers with locally
connected layers, i.e., hidden layers in which nodes are not connected to all input nodes,
but just to a smaller subset of input nodes. This could be done naively by just splitting
the input layer into mutually exclusive subsets and connecting hidden layer nodes to a
specific subset. However, in CNNs, the locally connected layers are constructed by taking
the spatial structure of raster image data into account. This is done first by arranging
raster images in a 3-dimensional grid according to the image width, image height and
the number of color values (also called channels) x ∈ RW ×H×C . Next, the assumption is
made that pixels that are spatially close are related to each other. Thus, each hidden
layer node is connected to a rectangular (usually square) subregion of nearby pixels in
the input vector (i.e., the raster image). This subregion is also called receptive field of
the hidden layer node and is usually quite small with respect to the width and height, an
example being a width and height of 3 pixels, although there are indications that larger
receptive fields perform better in practice [Liu et al., 2021, 2022]. It is important to note
that while the receptive field is locally connected in the spatial dimensions (i.e., width
and height respectively), it is fully connected along the non-spatial dimension (i.e., the
channels, in this case the number of color values per pixel).

The spatial structure of input images should be preserved across locally connected hidden
layers. In other words, nodes with neighbouring receptive fields should be next to
each other. Hence, locally connected hidden layers are arranged as 2-dimensional grid
h ∈ RWh×Hh , where Wh is the width and Hh is the height of the hidden layer. If padding
is used, Wh = Wh−1 = W and Hh = Hh−1 = H, i.e., the width and height remain the
same across layers. Every node ni,j ∈ h at position (i, j) in a locally connected layer
computes ni,j = x[i:i+c,j:j+c]θi,j where x is the whole input matrix, c is the receptive field
size (e.g. c = 3) and θi,j ∈ Rc×c×C are the connection weights (i.e., parameters) of the
node. Put another way, the node computes higher-level features from the low-level input
data of its receptive field. In this way, it is a differentiable feature extractor. Since it is
differentiable, it can be used to learn feature extraction using the optimization approach
described in Section 2.3.1. This approach is also called representation learning. Since
θi,j ̸= θk,l∀i, j, k, l, each node in this architecture would learn a different feature extractor.
However, the feature extraction process itself should be invariant to the location of the
receptive field. As an example, a potential feature extraction task could be to detect
whether an object is present in the receptive field. It is clear that the object will certainly
not be in the same location in every image. In this case, every node should perform this
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object detection on its receptive field. Therefore, all nodes need to perform the same
feature extraction. This is ensured by having the weights be shared across nodes, i.e.,
θi,j = θk,l = θ∀i, j, k, l. Weight sharing also drastically reduces the amount of freely
changeable parameters. Since θ ∈ Rc×c×C , such a layer requires only C ∗ c2 connection
weights. Given a receptive field size of c = 3 and number of colors per pixel C = 3, this
adds up to 27 weights, which is drastically lower than the 150528000 weights required for
a fully connected layer.

oi,j =
c�

k=0

c�
l=0

wk,lxi+k,j+l (2.17)

The nodes of locally connected layers with shared parameters perform a computation
that is similar to discrete convolution, which is defined in Equation (2.17) and visually
represented in Figure 2.16. In Equation (2.17) oi,j is the element at position (i, j) of
the output feature map o ∈ RWo×Ho (with Wo denoting the width and Ho the height), c
is the receptive field size, xi+k,j+l is the element at position (i + k, j + l) of the input
map x ∈ RW ×H×C , and wk,l is the element at position (k, l) of the kernel w ∈ Rc×c×C .
Intuitively, the kernel is a linear transformation encoded as a matrix, which is moved
across the image width-first and used to successively compute matrix multiplications
with (i.e., apply a linearly transformation on) the corresponding subregions of the input
matrix. In other words, the linear transformation is convolved with the input matrix. Due
to the similarity to convolution, the aforementioned locally connected layers are called
convolutional layers. The important difference is that in convolutional layers, the kernel
consists of parameters that are optimized during the learning procedure, i.e., w = θ.

Convolutional layers as introduced above share their parameters across all nodes. Hence,
only one feature extraction task can be performed per layer. In order to perform multiple
feature extractions per layer, the layer is simply replicated multiple times along a non-
spatial dimension. Recall that a convolutional layer is arranged as a 2-dimensional grid
h ∈ RWh×Hh . This layer is now replicated Ch times in order to create a 3-dimensional
grid h ∈ RWh×Hh×Ch . The parameters are only shared across the spatial dimesions (i.e.,
width and height), but not across the channel dimension. Due to this replication, given a
receptive field size c and input matrix channel size C, the parameter vector θ ∈ Rc×c×C

extends to θ ∈ Rc×c×C×Ch . Hence, such a layer requires c2 ∗ C ∗ Ch weights. Using
the above example of c = 3, C = 3 and a reasonable Ch = 64, this adds up to 1728
weights, which is still considerably smaller than the 150528000 weights required for a
fully connected layer. Thus, by increasing the parameters along the channel dimension,
this hidden layer performs Ch different feature extraction tasks. Each feature map per
channel dimension is also called a filter, correspondingly, Ch is referred to as the filter
size. Furthermore, the hidden layers now possess the same dimensionality as the input
layer (i.e., the input image).

Note that the input layer as well as the convolutional layers are 3-dimensional matrices.
Furthermore, while the convolutional layers are always locally connected along the spatial
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Figure 2.16: Example of a convolution with padding to preserve width and height by
Dumoulin and Visin [2016]. The left image depicts the receptive field used to compute
the output element at location (1,1) in the output map. The right image depicts the
receptive field used to compute the output element at location (2,1).

dimensions (i.e., width and height), they are fully connected along the non-spatial
dimension. This makes it trivial to use the convolutional layer output as input for a
succeeding convolutional layer, i.e., to stack hidden layers. Just as in MLPs, nonlinearities
are required between the layers, with the most commonly used being ReLU activations.
By stacking multiple convolutional layers, it is possible to perform hierarchical feature
extraction. While the first convolutional layer operates on low-level data (i.e., pixels), the
succeeding layer operates on the extracted features of the first layer. Successively, layer n
extracts features from layer n−1. Thus, the local features extracted in the first layers will
be used to extract increasingly global features in the last layers. Finally, global features
are used for downstream tasks, such as classification or object detection. Figure 2.17
gives a visual interpretation. The receptive field of nodes in each convolutional layer is
quite small. However, since nodes of deeper layers operate on the output of previous
nodes, they indirectly operate on the receptive field of each node in their direct receptive
field. In the end, the final nodes operate on an receptive field that indirectly spans the
whole image.

To summarize, the advantage of CNNs over traditional image processing is that they are
learned hierarchical feature extractors, i.e., it is possible to fit the feature extraction on a
training dataset instead of handcrafting features using heuristics. Since they are fully
differentiable, they can also be finetuned to specific downstream tasks, i.e., the feature
extraction process can be tailored to different tasks such as image classification, object
detection and image generation. The advantage over standard MLPs is that they have
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Figure 2.17: Simplified receptive field of locally connected hidden layer nodes

an inductive bias for spatial data. That means that they exploit the spatial structure
of raster images by having translation-invariant feature extractors while simultaneously
reducing the amount of freely changeable parameters. Furthermore, since the convolution
operation can be efficiently implemented for GPUs, CNNs can be computed very quickly
[Chellapilla et al., 2006, Ciresan et al., 2012, Krizhevsky et al., 2012].

Further layers

While the main component of CNNs are convolutional layers as described above, there
are other layer types that are commonly used in CNNs architectures. This section gives
an overview of selected CNN layers.

Pooling Recall that, if appropriate padding is used, the width and the height across
layers remains the same, i.e., Wh = Wh−1 = W and Hh = Hh−1 = H. For networks that
are very deep, i.e., that stack a lot of convolutional layers, this fact leads to a high number
of parameters and computations. In order to reduce this, pooling layers are inserted.
These reduce the width and height of an input vector using a simple, differentiable
heuristic. Chief among them is max-pooling, which simply reduces a rectangular (usually
square) receptive field to its highest number.

Given a receptive field size c, a max-pooling layer reduces an input matrix h ∈ RWh×Hh×Ch

to max-pool(h) ∈ RWh/(c∗c)×Hh/(c∗c)×Ch by simply outputting the maximum value of
successive receptive fields of c × c values, i.e., where the node ni,j ∈ max-pool(h) at
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Figure 2.18: Example of a max-pooling operation.

location (i, j) is ni,j = max(h[i:i+c,j:j+c]). Note that pooling layers operate per channel,
i.e., do not reduce the non-spatial dimension. A visual example disregarding the depth
dimension is given in Figure 2.18. Another pooling operation that is frequently used is
average-pooling, which computes the average of all values within a receptive field. This
is a suitable pooling type for large receptive field sizes, since all elements in the receptive
field uniformly contribute to the output.

Global pooling While a CNN of stacked convolutional layers is a powerful hierarchical
feature extractor, the output structure is not suited for the most tasks CNNs are used
for. Note that the output feature matrix at the end of the convolutional layers is 3-
dimensional, while most tasks require flat vectors. A common task is image classification,
which requires as output a vector consisting of as many entries as there are classes (as
described in Section 2.3.2. There are two ways of restructuring the 3-dimensional feature
matrix into such a vector. The first is global pooling [Lin et al., 2014], which is a pooling
layer with a receptive field size that is equal to the total size of the feature matrix. This
intuitively reduces the spatial dimensions of the output feature map (width and height,
respectively) to 1. Since the receptive field size is very large, average-pooling is used
instead of max-pooling. Just as with local pooling layers, global pooling does not change
the non-spatial dimension of the vector. Hence, the channel dimension size of the global
pooling output vector is equal to the filter size of the preceding convolutional layer fn−1,
which is a hyperparameter that can be freely chosen. In other words, the output of
the global pooling layer is of dimensions 1 × 1 × fn−1. Since the spatial dimensions are
1, this matrix can be squeezed into a vector of dimension fn−1. Therefore, by setting
the filter size of the ultimate convolutional layer fn−1 to the output size required for
the specific downstream task l (for image classification, this would be the number of
classes) and applying global pooling afterwards, the output of the CNN can be structured
in a way that is suitable for downstream tasks. Note, that this requires very little
additional parameters. As the global pooling layer is parameter-free and parameters
in a convolutional layer are shared across space, the parameters added to the network
are equivalent to the parameters of the final convolutional layer c2 ∗ fn−2 ∗ fn−1, where
fn−1 = l.

A different way to restructure the 3-dimensional output matrix of convolutional layers
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Figure 2.19: Example of strided convolution without padding by Dumoulin and Visin
[2016]. The left image depicts the receptive field used to compute the output element
at location (1,1) in the output map. The right image depicts the receptive field used to
compute the output element at location (2,1).

o ∈ RW ×H×fn−1 is to directly flatten it into a vector o ∈ RW ∗H∗fn−1 , which is a
differentiable operation. This is then followed up by a fully connected hidden layer with
a size equivalent to the required output size l. The output of this layer would then
be l. While this is conceptionally simpler than the global pooling approach described
above, it introduces more parameters. Since the layer is fully connected, this approach
requires W ∗ H ∗ fn−1 ∗ l parameters, while the global pooling approach only requires
c2 ∗ fn−2 ∗ fn−1 parameters, where c ≪ W and c ≪ H. Furthermore, since the spatial
dimensions are reduced to 1 in a parameter-free way, the global pooling approach is more
robust to spatial translations than the fully connected approach.

Strided convolution The convolutional layers described above use the convolution
operation defined in Equation (2.17). This convolution is a special case of a strided
convolution with a stride of s = 1. Intuitively, the receptive field on which the kernel
(or, filter) is applied on starts at the beginning of the width dimension and is moved
horizontally by successive steps in the width dimension. After it reaches the end of the
input matrix in the width dimension, it is moved vertically by one step in the height
dimension and back to the beginning in the width dimension. Now, the process repeats
until the receptive field has traversed the whole input map.

oi,j =
c�

k=0

c�
l=0

wk,lx(s−1)∗i+k,(s−1)∗j+l (2.18)

The step size by which the receptive field is moved across the input map is also called
stride. In strided convolutions, the stride is a hyperparameter that can be freely changed.
This operation is defined in Equation (2.18). In Equation (2.18), the stride is denoted
by s ∈ [1, min(W, H)]. Note that setting the stride to s = 1 eliminates the stride term,
leading to the convolution defined in Equation (2.17). Setting the stride s > 1 leads to a
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Figure 2.20: Example of a transposed convolution without padding by Dumoulin and
Visin [2016]. The left image depicts the receptive field used to compute the output
element at location (1,1) in the output map. The right image depicts the receptive field
used to compute the output element at location (2,1).

larger spacing between the receptive fields, which effectively reduces the amount of times
the kernel is applied in order to produce an entry in the output matrix. Therefore, this
leads to an output matrix that is smaller than the input matrix. In other words, strided
convolution with s > 1 leads to a downsampling of the input matrix. In this aspect, it
is quite similar to a pooling operation. An example of strided convolution for s = 2 is
depicted in Figure 2.19.

Transposed Convolution The transposed convolution (also called deconvolution or
fractionally strided convolution) operation is the inverse to strided convolution. While
strided convolution downsamples the input matrix and therefore reduces the spatial
dimensions, transposed convolution upsamples the input matrix in order to increase
the spatial dimensions. A visual example of transposed convolution can be seen in
Figure 2.20. Intuitively, the input matrix is padded with empty (or, zero-valued) elements
in order to produce an output matrix with increased spatial dimensions. Here, the stride
hyperparameter can be interpreted as the stride of the output matrix instead of the input
matrix.

CoordConv An important property of convolutional layers is that they are invariant to
spatial translation. However, for some tasks, this property is actually harmful. A simple
example of such a task is mapping carthesian coordinates into one-hot pixel encodings,
i.e., to generate an image in which the pixel at the input location is marked. In order to
relax translation-invariance, Liu et al. [2018] introduced the CoordConv layer, which is
depicted in Figure 2.21. Let x ∈ RW ×H×C be the input matrix to a convolutional layer.
In order to preserve spatial information, explicit coordinate data is concatenated to the
non-spatial dimension of the input matrix. In the usual case of 2-dimensional space, the
location in space can be represented by two coordinates (i, j), where i ∈ [0, W ) denotes
the location in the width dimension and j ∈ [0, H) denotes the location in the height
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Figure 2.21: Comparison of a conventional convolution layer and a CoordConv layer for
input data in 2-dimensional space [Liu et al., 2018].

dimension. For each spatial axis, a matrix c ∈ RW ×H is concatenated to the depth
dimension of x. In the 2-dimensional case, one coordinate matrix ci is successively filled
with increasing integers column-wise, while another coordinate matrix cj successively
filled with increasing integers row-wise. Now, by linearly combining the concatenated
coordinate vectors, it is possible to uniquely identify the spatial location of each element
in the original input data. In practice, the values in the coordinate vectors c ∈ c are
scaled to c ∈ [−1, 1] in order to fit the scale of other input data.

Since CoordConv layers - just like convolutional layers - are fully connected in the
non-spatial dimension, the explicit concatenated spatial information is used in the
computation of every element in the output matrix. Since the connection weights to
the coordinate vectors are freely changeable, the model is able to learn whether to use
spatial information depending on the task. Liu et al. [2018] showed that CoordConv
layers outperform conventional convolutional layers on a variety of tasks such as image
generation, object detection and image classification.

1-dimensional convolution Motivated by a desire to apply CNNs on sequential data
such as text and inspired by Time Delay Neural Networks (TDNNs) [Bottou et al., 1989],
Collobert et al. [2011] introduce 1-dimensional convolutional layers, which operate on
only one spatial dimension. This makes it possible to apply convolutions on sequential
(or, temporal) input data, which is often arranged using using 2-dimensional matrices
x ∈ Rt×f , where t is the sequence length and f is the number of features per element in
the sequence. By interpreting t as singular spatial dimension (i.e., assuming linear space
along a single axis), it is possible to define 1-dimensional (or, temporal) convolutional
layers that perform the same operations as 2-dimensional convolutional layers do on
input data in 2-dimensional space.
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Figure 2.22: Schema of a 1-dimensional convolution.

hi,j =
c�

k=0
wj,kxi+k (2.19)

Let x ∈ Rt×f be the input sequence, c denote the receptive field size and h ∈ Rth×fh

be the hidden layer output, where just like in 2-dimensional convolutional layers th = t
assuming padding is used and fh is the filter size. Then, the 1-dimensional convolutional
layer is defined by Equation (2.19), where hi,j is the element at location (i, j) in the
output matrix h and w ∈ Rfh×c×f is the kernel, i.e., the parameters or connection weights.
The output h has the same dimensionality as the input sequence, with a singular spatial
(or, temporal) dimension and a channel dimension the size of the numbers of filters. This
way, the output of this 1-dimensional convolutional layer can in turn be used as input
for a successive 1-dimensional convolutional layer, just like 2-dimensional convolutional
layers. A visual example can be seen in Figure 2.22.
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Figure 2.23: Residual learning block [He et al., 2016a].

Architectures

While the above sections introduced the main building blocks of CNNs, this section
describes CNN architectures that combine them in a way that has led to empirical
successes [Russakovsky et al., 2015].

As described in Section 2.3.1, MLPs generally perform better the deeper they are, i.e.,
the more hidden layers are used. This is especially true for CNNs, which are explicitly
designed to exhibit hierarchical representation learning [Fukushima and Miyake, 1982,
Szegedy et al., 2015]. However, it has been shown that CNNs that exceed a certain depth
threshold actually underperform [He et al., 2016a]. In order to solve this problem, He
et al. [2016a], Srivastava et al. [2015] propose to computationally connect layer outputs
that are far away in the graph. This way, the learning signal does not just propagate
between directly neighbouring layers, but can skip layers. Hence, this connection of layers
at different depths is called skip connection. Skip connections increase the diversity of
paths to deeper layers, resulting in improved accuracy and faster convergence during
training.

A simple skip connection proposed by He et al. [2016a] is the residual connection, i.e.,
to simply sum the outputs of a hidden layer with the outputs of a hidden layer at a
different depth. This residual connection is depicted in Figure 2.23. This figure shows
two arbitrary hidden layers in a deep CNN, with x denoting the output of the preceding
hidden layer, which is used as input for the first hidden layer. At the end of the block,
the output of the second hidden layer is connected through addition with the identity
of the output of the hidden layer preceding this block. This addition with the identity
function is parameter-free and differentiable. This way, there are now two paths the
signal can be propagated to, without increasing the parameter size. One path includes
the intermediate first hidden layer, while the other one skips it. Note, that for the matrix
addition to work both summands need to have the same dimension.

The ResNet architecture proposed by [He et al., 2016a] stacks a large number of residual
blocks in order to form a deep CNN which does not suffer from convergence issues. This
CNN architecture is depicted in Figure 2.24. The CNN consists of an initial convolutional
layer, followed by a max-pooling layer, 16 residual blocks, a gloval average-pooling layer
and an ultimate fully connected layer. In total, this architecture consists of 34 layers.
The input image is resized to a width and height of 224 pixels. This is a common
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practice for CNNs, since high resolution input images would lead to a higher number of
parameters. The first convolutional layer performs strided convolution with a stride of
s = 2, receptive field size of c = 7 and a channel size (or, filter size) of f = 64. Since
s = 2, the output feature map of this layer has a width and height of 224/2 = 112.
Afterwards, the max-pooling layer with a receptive field size of 2 further reduces this to
112/56. This output is then used as input for the first of a sequence of 16 residual blocks.
The convolutional layers in all residual blocks are performed with a receptive field size
of c = 3. Intermittently, a strided convolution with s = 2 is used in order to halve the
output size. The convolutional layer immediately following such a halving has double
the filter size of the preceding layer fi+1 = fi ∗ 2. All other convolutional layers have the
same filter size as their predecessor.

Recall that for addition in the residual connection, the summands need to have the same
dimension. This means, given that layers i and its successor j have a different filter size
than preceding layer h, a residual connection of h to j is not possible. In order to enable
such a connection, a convolutional layer with receptive field size c = 1 is applied on the
output of the preceding layer oh before being added to the output of the connected layer
oj . Crucially, the filter size of this 1x1-convolution is identical to the the filter size of the
succeeding layers i and j. Since c = 1, the convolution preserves the spatial dimensions
of the output, but changes the filter size to match layers i and j. This projection shortcut
enables residual connections across layers with different filter sizes, but also introduces
(a low amount of) additional parameters. It is preferable to keep filter sizes constant in
order to use parameter-free residual connections as much as possible. In the few instances
in which the filter size changes in the ResNet architecture, projection shortcuts have to
be used immediately afterwards. These are indicated by dotted arrows in Figure 2.24.

Since the ResNet architecture was trained and tested for an image classification task,
the output feature map has to be structured into a vector with a cardinality of 1000
(which is the number of classes in the ImageNet dataset [Russakovsky et al., 2015]).
In order to achieve this, global average-pooling is used in order to reduce the output
feature matrix into a vector with cardinality 512, which is the filter size of the ultimate
convolutional layer. Afterwards, a fully connected layer is used to produce an output
vector of cardinality 1000.

The 34-layer ResNet described above was empirically shown to solve the degradation
problems experienced by deep CNN without residual connections [He et al., 2016a].
Therefore, He et al. [2016a] introduced ResNet architectures that were even deeper.
For computational efficiency, residual blocks are replaced by bottleneck blocks, which
are depicted in Figure 2.25. Here, the two convolutional layers of residual blocks are
replaced with three convolutional layers. The first convolutional layer has a receptive
field size c = 1 and a filter size f = 64. This layer solely serves to reduce the filter size.
The succeeding convolutional layer with a receptive field size of 3 performs the usual
feature extraction on this reduced filter size. The final convolutional layer again has a
receptive field size of 1 and a filter size of 256. As an inverse to the first layer, it serves to
increase the filter size to the same size it is in output of the preceding block. This way,
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Figure 2.24: ResNet architecture design with 34 layers and residual blocks instead of
bottleneck blocks [He et al., 2016a].
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Figure 2.25: Comparison of a residual block (left) and a bottleneck block (right) [He
et al., 2016a].

the convolutional layer performing feature extraction is a bottleneck with smaller input
and output filter size. This serves both as regularization and to increase computational
efficiency.

By replacing all residual blocks in the ResNet-34 architecture with bottleneck blocks,
the number of layers is increased to 50. He et al. [2016a] show that this model already
performs better than ResNet-34. He et al. [2016a] build even deeper models by stacking
more bottleneck blocks, arriving at a ResNet model with 152 layers, which yielded the
best empirical results.

The ResNet architecture has been widely used to create deep CNN architectures. There
exists a range of extensions and modifications to the original architecture, including
ResNetv2 [He et al., 2016b], Wide ResNet [Zagoruyko and Komodakis, 2016], ResNeXt
[Xie et al., 2017] and most recently ConvNeXt [Liu et al., 2022].

2.3.4 Recurrent Neural Networks

While the MLP is a general purpose architecture and the CNN has an inductive bias
for spatial data, the recurrent neural network is a neural network architecture with an
inductive bias for sequential (or, temporal) data. The original architecture introduced by
Rumelhart et al. [1986] equips neural networks with memory capabilities. In contrast to
other neural network architectures such as MLPs or CNNs, individual forward passes on
inputs are not independent. Let xn be an input sequence. Just like with neural networks,
recurrent neural networks perform a forward pass according to f(x0; θ). Contrary to
neural networks, the forward pass for the next input x1 depends on the forward pass of
the previous input, i.e., f(x1; θ; f(x0; θ)). This loop-like functionality enables RNNs to
take previous inputs and predictions into account when computing new predictions. The
simple RNN architecture is defined in Equations (2.20) and (2.21).

ht = ϕ(ht−1θh + xtθx) (2.20)
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ot = htθo (2.21)

Note that all variables in Equations (2.20) and (2.21) are temporal, i.e., depend on t.
Only the learnable parameters θ are constant. ht is the state of recurrent neural network.
It represents all individual inputs and state changes up to xt. The output ot is computed
by taking the current state ht into account. Thus, a RNN can natively handle temporal
inputs.

Recurrent neural networks are optimized in the same way as standard neural networks.
However, due to the temporal component introduced in Equations (2.20) and (2.21), the
gradient can not be computed using standard backpropagation. The gradients needed
for loss function optimization are computed using the backpropagation-through-time
algorithm [Robinson and Fallside, 1987].

In practice, standard recurrent neural networks are not able to generalize well and do not
take long-term dependencies into account because they suffer from vanishing or exploding
gradients [Hochreiter, 1991, Bengio et al., 1994].

Gated Recurrent Units

In order to alleviate the convergence problems of standard recurrent neural networks,
Hochreiter and Schmidhuber [1997] introduced the Long Short-Term Memory (LSTM)
recurrent neural network. In addition to the hidden state ht, it introduces a cell state c
and a corresponding set of update equations which do not suffer from gradient problems.
A simplified variant of the LSTM architecture are Gated Recurrent Units (GRUs) [Cho
et al., 2014a]. Its authors claim that GRUs work better than LSTMs. Equations (2.22)
to (2.25) detail the update procedure similar to Equations (2.20) and (2.21). Note that
ot = ht.

zt = ϕsigmoid([ht−1, x]θz) (2.22)

rt = ϕsigmoid([ht−1, x]θr) (2.23)

h̃t = ϕtanh([rtht−1, x]θh) (2.24)

ht = (1 − zt)ht−1 + zth̃t (2.25)

It is still unknown whether GRUs truly improve upon LSTMs. A large-scale study [Greff
et al., 2017] compared LSTM variants on speech recognition, handwriting recognition and
music modeling tasks and found no significant difference. Another study [Jozefowicz et al.,
2015] used a different hyperparameter optimization algorithm and compared LSTMs
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and GRUs on arithmetic, XML modeling, language modeling and music modeling tasks.
They conclude that GRUs perform better than LSTMs.

CNN or RNN?

As discussed in Section 2.3.3 and Section 2.3.4, both 1-d convolutional and recurrent
neural networks can handle temporal data. While only RNNs can properly handle
sequences of unknown length, for input data of fixed length, it is of interest to know which
architecture is better suited. This comparison was investigated by Yin et al. [2017], Bai
et al. [2018]. Both come to the conclusion that 1-dimensional CNNs lead to better and
faster convergence than RNNs on sequence classification tasks. Keep in mind, however,
that the empirical results using toy problems might not generalize.

2.3.5 Transformer
The Transformer introduced by Vaswani et al. [2017] is a neural network architecture
that essentially combines the advantages of RNNs and CNNs. Like RNNs, it can be used
for sequential data, but like CNNs it can be efficiently computed on GPUs using matrix
multiplications. The Transformer consists almost solely of self-attention modules, which
are explained below.

Self-Attention

Attention is a general purpose mechanism for neural networks introduced by Bahdanau
et al. [2015] and was originally intended for machine translation RNNs. It allows to assign
each element xi of an input set X an attention weight αi. Crucially, this mechanism is
differentiable, so it can be fitted along with the neural network model.

Originally, attention was intended to compute values using both an input sequence (text
in Bahdanau et al. [2015]) and an output sequence (RNN hidden states in Bahdanau
et al. [2015]). However, the form of attention used for Transformers operates over a single
input sequence only. This form is called self-attention (or inter-attention).

Let X ∈ Rn×m be a set of n elements with m features. In the general form, the self-
attention mechanism transforms X into a contextualized set Y ∈ Rn×m. The resulting
set is of the same length as X and yi ∈ Y can be interpreted as representing the value of
xi ∈ X taking into consideration all other elements of X. Mathematically, this can be
achieved by first computing attention weights A as the dot-product of X with itself, as
can be seen in Equation (2.26). This equation uses the unit softmax function defined
in Equation (2.27) to produce a pseudo-probability distribution from the unbounded
attention scores, i.e., to bound them to [0, 1] and let them sum to 1. The contextualized
set Y can then be computed as the weighted sum of X using the attention weights, as
defined in Equation (2.28).

A = softmax(XX′) (2.26)

46



2.3. Deep Learning

softmax(x)i = exp(xi)�|x|
j=1 exp(xj)

(2.27)

yi =
n�

j=1
αijxj (2.28)

In conclusion, the element yi ∈ Y is computed by attending to individual elements of
X with different weights. This attention variant using a weighted sum introduced here
is also called soft attention, since all input elements contribute to the output. There
also exists hard attention described in Xu et al. [2015], which explicitly selects elements
instead of using a weighted sum of all elements. Since this is not differentiable, it is more
complex to integrate it in the optimization procedure.

This self-attention mechanism can be further extended with learnable parameters. Notice
in Equations (2.26) and (2.28) that X is used three times in the self-attention mechanism.
Different learnable parameters W ∈ Rm×m are used for these three occurrences. To
distinguish them more easily, these are defined analogous to a continuous dictionary as
query Q = XWQ, key K = XWK and value V = XWV. In Equation (2.29), the query
and the key are matched to produce a compatibility (i.e., the attention weights), which
is then used in Equation (2.30) to retrieve the values. It is also clear that this attention
variant is called self-attention because Q, K and V are computed using the same input
X.

A = softmax(QK′) (2.29)

Y = AV (2.30)

The self-attention variant described until now is called dot-product attention [Luong
et al., 2015, Graves et al., 2014]. There also exists additive attention [Bahdanau et al.,
2015]. This approach first computes attention scores sij by concatenating qi and k′

j and
using the concatenated vector as an input to a single layer MLP. This can be seen in
Equation 2.31. In this equation, qi∥kj ∈ Rnm, WA ∈ Rnm are the learnable parameters
and ϕ is a non-linearity such as the tanh function. Then in Equation (2.32) the softmax
function is used to compute the attention weights.

sij = ϕ(WA[qi∥kj ]) (2.31)

αij = softmax(s)ij (2.32)

In practice, additive attention leads to better results than dot-product attention if the
feature dimension m is large [Britz et al., 2017]. However, it can be seen that, to compute
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the entire attention matrix A, additive attention needs to use the neural network nm
times. This cannot be restructured into a single matrix multiplication due to the non-
linearity. Contrary to that, dot-product attention can simply be computed using a matrix
multiplication, which is more suited for GPU workloads. To remedy this situation, scaled
dot-product attention [Vaswani et al., 2017] has been introduced. This simply normalizes
the dot product by 1/

√
m to counteract the adverse effect of large values of m and has

largely replaced additive attention.

A = softmax
QK′

√
m


(2.33)

Another way of stabilizing self-attention is multi-head attention [Vaswani et al., 2017],
which is analogous to using multiple channels in CNNs. Multiple heads of the self-
attention function h are computed in parallel using different learnable parameters in
Equation 2.34. The h output matrices are concatenated and projected to the original
dimension Rn×m using the learnable linear transformation WY ∈ Rn×nh in Equation 2.35.
Intuitively, this allows to attend to different embeddings simultaneously. Vaswani et al.
[2017] set h = 8 for their architecture.

Yheadi = Self-Attention(X; Wi
Q, Wi

K, Wi
V). (2.34)

Y = WY
�
∥h

i=0Yheadi


(2.35)

The main computational problem of standard self-attention is that its space and time
complexity is quadratic in the set length n. This quickly becomes a problem for larger
values of n. Multiple approaches were proposed to modify self-attention to achieve lower
runtime, memory or IO complexity [Choromanski et al., 2021, Dao et al., 2022].

Another approach to solve this computational problem is local attention [Luong et al.,
2015]. The self-attention variant described above can be seen as global attention, since
it uses the entire input set X to compute each output vector yi. In local attention,
only a constant number of neighbours is used. This is computationally more efficient,
but restricts the contextualized output vectors from taking longer-range dependencies
into account. In practice, most works utilize standard self-attention and deal with the
complexity by increasing hardware resources.

Standard Transformer

While (self-)attention was originally only used as an add-on for RNNs, the Transformer
architecture introduced by Vaswani et al. [2017] consists solely of global scaled self-
attention modules stacked with an MLP. They showed that this is not only simpler
but actually preferable to using RNNs. While the Transformer uses a fixed number of
self-attention modules, an RNN requires n sequential operations. This is an advantage,

48



2.3. Deep Learning

Figure 2.26: Transformer architecture by Vaswani et al. [2017].

since it has been established that a shorter path length between two positions makes it
easier to learn long-range dependencies [Kolen and Kremer, 2001].

The Transformer architecture is depicted in Figure 2.26 and consists of stacked transformer
blocks, with each block consisting of multi-head self-attention and layer normalization
[Ba et al., 2016] (similar to batch normalization as described in Section 2.3.1) followed
by a simple MLP and layer normalization. The MLP is position-wise, i.e., it is applied
to each output vector yi individually. The architecture employs residual connections [He
et al., 2016] around each individual block step.

The Transformer architecture can be used for any kind of real-valued set data. Originally,
it was intended for Natural Language Processing (NLP) tasks and thus to beused with
text data as input. However, text data is sequential in nature, while the Transformer
architecture does not preserve order information due to the permutation-equivariant
self-attention layers. This is similar to using 1-dimensional CoordConv layers as described
in Section 2.3.3. In order to be able to use sequential data, the Transformer architecture
concatenates a positional encoding to each input element before applying self attention.
The Transformer architecture employs global attention and thus computes the attention
of all input pairs.

Since the Transformer continually leads to new successes in NLP [Devlin et al., 2019,
Brown et al., 2020, Touvron et al., 2023], there have been numerous attempts to apply it
on visual data. These Vision Transformers (ViTs) perform comparably and in some cases
outperform CNNs on a variety of tasks such as image classification and object detection
[Dosovitskiy et al., 2021, Liu et al., 2021].
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Figure 2.27: Schema of the autoencoder architecture.

2.3.6 Encoder-Decoder Framework
An important general framework for generative deep learning architectures is the encoder-
decoder framework. To motivate this, first, the autoencoder architecture [Kramer, 1991]
is introduced.

Recall that neural networks are universal function approximators, i.e., they approximate
an arbitrary real-valued ground truth function F (x) = y, F : X → Y using freely
changeable parameters θ as f(x; θ). In many tasks, the input and output data are part
of different vector spaces, e.g. in image classification x ∈ X being an image and y ∈ Y
being the class probabilities. The autoencoder architecture was introduced by Kramer
[1991] to solve the task of condensing the input x into a an efficient (i.e., smaller) code
z ∈ Z, which can be used to fully reconstruct x. It must hold, then, that this code
contains all essential information about the input data. This code is referred to as latent
code, or, since it is represented as a vector, latent vector.

For the purpose of finding efficient encodings, the autoencoder consists of two neural
networks. The encoder e defined in Equation (2.36) is an MLP which maps the input
x ∈ X to the latent vector z ∈ Z using freely changeable parameters θe. In turn,
the decoder d defined in Equation (2.37) is an MLP which maps the latent vector z
to an output vector x′ ∈ X with x′ ≈ x (or, in the optimal case x′ = x) using freely
changeable parameters θd. The complete autoencoder is then defined by Equation (2.38)
and depicted in Figure 2.27. The autoencoder is optimized using gradient descent of a
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loss function measuring the distance between x′ and x such as the L1 or L2 distance
described in Section 2.3.2. Furthermore, an important design consideration is that the
latent vector is smaller than the input vector, since if dim(z) = dim(x), the autoencoder
might converge to the identity function as local optimum.

z = e(x; θe) (2.36)
x′ = d(z; θd) (2.37)

x′ = d(z; θd) = d(e(x; θe); θd) (2.38)

Autoencoders were proposed for dimensionality reduction, since the latent vector theo-
retically contains all necessary information of the input data in smaller form. This can
be useful as a compression technique. Additionally, it is possible to apply vector space
operations on the latent vector that might not have been possible or practical on the input
data, such as linear transformations or distance measures. Furthermore, it is possible to
use autoencoders for generative tasks by using the decoder of an optimized autoencoder
on its own. By sampling an arbitrary zk ∈ Z and inputting it into an optimized d, it
is possible to generate new output data x′

k ∈ X that follows the same distribution of
the training input data (e.g. if X is an image space, generating new images that are
similar to the images in the training dataset). In turn, since the encoder is differentiable,
optimized encoders can also be used on their own for downstream tasks. For this reason,
autoencoders have found a wide range of applications [Cho et al., 2014b, Theis et al.,
2017, Hinton and Salakhutdinov, 2006].

By generalizing the autoencoder to inputs and outputs of different distributions, one
arrives at the encoder-decoder framework [Sutskever et al., 2014, Mikolov, 2012] as
depicted in Figure 2.28, which is used by a wide variety of recently successful neural
network architectures such as the Transformer (as explained in Section 2.3.5). As an
example, Mikolov et al. [2013] use an encoder-decoder architecture to encode words (i.e.,
character sequences) into semantically meaningful latent vectors. The encoder-decoder
framework is defined in Equation (2.39), which is a generalization of Equation (2.38).
Note that the output vector y ∈ Y of the decoder d follows a different distribution than
the input vector x ∈ X . Furthermore, the optimization objective is not y = x, as is the
case in autoencoders, but is replaced with a task-dependent objective.

y = d(z; θd) = d(e(x; θe); θe) (2.39)

As an aside, there exist different versions of and modifications to the autoencoder
architecture. Chief among them is the variational autoencoder (VAE), which attempts to
normalize the latent space Z s.t. ∀zi ∈ z ∈ Z, zi ∼ N (0, 1), where N(µ, σ) is a normal
distribution with mean µ and standard deviation σ. In order to achieve this, a loss term
which calculates the divergence between z and the standard-normal distribution N (0, 1)
is added to the autoencoder loss. Usually, Kullback–Leibler (KL) divergence [Kullback
and Leibler, 1951] is chosen as loss function.
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Figure 2.28: Schema of an architecture following the encoder-decoder framework.

Feature Combination

There exist encoder-decoder architectures with multiple encoders but only one decoder,
most commonly if input from different modalities is used to generate a single output. In
this case, multiple latent vectors have to be combined into a single latent vector suitable
for consumption by the decoder. This is referred to as feature combination, or feature
fusion. Two common types of feature combination are introduced in this section.

zo = z0|z1| . . . |zN = |Ni=0zi (2.40)

A simple feature combination technique is to concatenate the latent vectors into a single,
latent vector, as defined in Equation (2.40). This is parameter-free and quick to compute.
Let |zi| be the length of an input latent vector. Then the length of the output latent
vector is |zo| = �N

i |zi|. Hence, the combined latent vector is of a different length
than the input vectors and quickly grows very long. If the decoder requires the latent
vector to be of a specific length, or if the concatenated latent vector would be too long,
learned feature combination is preferable. In this technique, the concatenated latent
vectors are input followed by a fully connected layer, which produces a combined latent
vector of the hidden layer size, which can be set as a hyperparameter. It is defined by
Equation (2.41), where f is a fully connected hidden layer. Note, however, that depending
on the length this introduces a considerable amount of parameters. As an aside, learned
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feature combination by concatenation is similar to additive attention as introduced in
Equation (2.31).

zo = f(|Ni=0zi; θ) (2.41)

Note that there exists a wide range of feature combination types other than the ones
explained above. As an example, the skip connections introduced in Section 2.3.3 are a
kind of feature combination by addition.
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CHAPTER 3
Related Work

This chapter details existing work on vectorization and vector conversion across different
image domains, specifically for the case of line art. Section 3.1 details works that attempt
to generate a corresponding vector image given a raster image and is related to the
implementation of the deep learning model for line-art vectorization as described in
Section 1.4 (see RO1). Section 3.2 explores cross-domain line-art vectorization, which
is required for the potential extension of the model into final animation frame to clean
animation frame vector conversion. While cross-domain vectorization is not the focus of
this work, the goal is to design the model in a way that makes it easily adaptable for
this task.

3.1 Line-art Vectorization
Since there is a non-injective relation between vector images and raster images, converting
a raster image into a vector image is a non-trivial task. Hence, state-of-the-art methods
primarily utilize learned models to achieve this. While there exist methods based solely
on heuristic optimization [Selinger, 2003, Weber, 2002, Noris et al., 2013, Bessmeltsev and
Solomon, 2019, Zhang et al., 2022], they do not produce the intended output for this task.
As mentioned in Chapter 1, the resulting vector primitives rarely resemble the primitives
an artist would draw naturally. Crucially, these algorithms are not differentiable, meaning
that they can not be finetuned to vectorize input images across domains. Additionally,
they require manual hyperparameter tuning for each individual image. Furthermore, each
method relies on strong assumptions on the input image, such as exceeding a specific
resolution, a low signal-to-noise ratio or containing only specific junctions. Finally, and
somewhat counter-intuitively, a learned method could potentially be faster, since the
number of primitives in an animation line-art image is large and traditional methods
have a high runtime complexity in the number of primitives. However, note that this
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Input Output

Figure 3.1: Results of Im2Vec [Reddy, 2021] on two simple line-art sketches from Eitz
et al. [2012]. The image size is 128x128px.

only applies to a zero-shot model and not to the iterative deep learning models explored
in this work.

While image vectorization is not yet a solved task, there have been some recent advances
in deep learning for vector images. Reddy [2021] introduce Im2Vec, an encoder-decoder
architecture consisting of a CNN encoder and a RNN decoder. The CNN encodes the
image into a latent feature vector, while the RNN is used to decode this feature vector
into a fixed-length sequence of vector shapes based on multiple bezier curves. It can be
trained to vectorize raster images without vector supervision (i.e., using only raster images
in the ground truth training set). This would be very useful in the context of line-art
vectorization. The ability to train the model without vector supervision stems from its
usage of a differentiable rasterizer [Li et al., 2020]. In the general case, there are two
main limitations of Im2Vec: The pixel resolution has to be defined at training time and
the model does not scale well to higher resolutions. Additionally, the outputs sometimes
contain degenerate features or semantically useless parts. Since clean animation line art
only includes a subset of possible vector image graphic primitives, this might be avoidable
by imposing (heuristic) geometric constraints.
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However, our experiments showed that Im2Vec only works on a specific type of image,
such as emojis or icons. It does not perform well when trained on line-art images, as can
be seen in Figure 3.1. Additionally, there were no experiments in the paper to output
more than 4 shapes. It is doubtful whether it is possible to train the RNN decoder to
output the large number of bezier curves required for a clean animation frame.

The virtual sketching framework introduced by Mo et al. [2021] is similar to Im2Vec
in that it is trained without vector supervision to vectorize raster images. Other than
that, it differs from Im2Vec in multiple ways. The main difference is that it constrains
the output to only produce quadratic bezier curves. Also, it is an iterative model, i.e.,
the curves are drawn one at a time. The curves are sequentially added to a canvas in a
differentiable manner. After a given number of curves is drawn, the loss is computed and
propagated through all the steps. These two differences make the model more suitable for
professional line art. Other differences to Im2Vec include using a different differentiable
rasterizer [Huang et al., 2019] and a finetuned perceptual loss [Johnson et al., 2016]
instead of an L2 loss. However, since the iterative model is trained mainly by computing
a perceptual loss of the whole output image with the input image, the results are not
semantically meaningful vector images. So while the model produces a collection of
bezier curves that visually resembles the input image at a certain resolution, the vector
image does not preserve the topology or meaningful structure which is necessary for
clean animation frames. Related work includes Su et al. [2021], who use reinforcement
learning as a framework for learning an iterative model in the context of comic line-art
vectorization. The same constraints as with the virtual sketching framework apply here.
Additionally, comic book line art does not translate well to limited animation production
line art, although it would seem so at first glance.

A different approach is to incorporate parts of traditional optimization-based methods.
The state-of-the-art of traditional methods was introduced by Bessmeltsev and Solomon
[2019]. They attempt to detect X and T-junctions by tracing black pixel orientations
with a frame field. However, additionally to the general drawbacks of traditional methods,
the resulting method is not robust to more complex junctions with sharp turns, fine
details or noise in general. Puhachov et al. [2021] try to improve upon that by using a
learned ensemble model to detect curve keypoints (such as junctions, start/end points
and corners). Together with the input image, these keypoints are used by a geometric
flow algorithm to find connections between keypoints and compute their geometry. It
achieves remarkably good results, but has a more narrow aim than the proposed work.
The algorithm focuses on retaining the correct stroke connectivity in the presence of
noise, in their case for scanned pencil drawings. However, clean animation frames are
not noisy and the curves are more narrow and densely connected, forming one large
connected component for curves. Their method produces good results when applied to
clean animation line art. However, resulting vector images contain overparameterized
primitives and fail to vectorize more detailed and smaller shapes.

Similarly, other successful methods focus on extracting keypoints, but using a fully learned
architecture. Guo et al. [2019] use a multi-task CNN architecture to produce a centerline
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image and a junction image. Using this information, another CNN extracts the curve
topology. The topology image of each curve is then traced using cubic bezier least square
fitting. The model is trained using raster supervision and on a synthetically created
dataset. Therefore, it does not generalize well on complex real line art. Furthermore,
the resulting vector image is constrained by the quality produced by the curve fitting
algorithm.

On the other hand, there do exist works that attempt to fully learn a line-art vectorization
model using (partially) vector supervision, which makes it easier to produce semantically
meaningful vector images. Wang and Lian [2021] use both raster and vector supervision
to learn a model that generates fonts glyphs given a reference glyph. Since the number
of curves required for a glyph is small (≈ 10), the model is not trained iteratively but
directly outputs a sequence of drawing commands. Their method is potentially useful,
but it is doubtful whether it generalizes to a large number of curves. Gao et al. [2019]
use solely vector supervision to reconstruct splines (which are generalizations of bezier
curves). However, their approach using a hierarchical RNN is only trained with up to
three splines (with 4 to 6 control points). Bhunia et al. [2021] use line vectorization as
a self-supervised pretraining task to learn suitable sketch embeddings for downstream
tasks. The line vectorization itself is similar to Reddy [2021] in that it uses a CNN as
encoder and a RNN as an encoder to generate the whole image at once. Contrary to
Reddy [2021] it is trained using vector supervision and constrained to output curves as
a sequence of draw commands. Similar to Reddy [2021], the model is only tested with
vector images containing a small number of curves.

In a similar vein, a method to generate technical drawings by Egiazarian et al. [2020] is
also framed as a line vectorization problem trained solely using vector supervision. It
uses the Transformer architecture and is constricted to only handle 10 curves per image.
To handle images with a larger amount of curves, each image is split into fixed-size
tiles. The tiles are processed independently by using the Transformer model to predict
vector primitives to match the curves in the image. The resulting primitives are then
refined using a physics-inspired algorithm by aligning them to the black pixels in the
raster image. Afterwards the primitives of all tiles are merged using a simple heuristic
algorithm. While the model produces good results on technical line drawings, the authors
also demonstrate that it generalizes to other line art. It is limited by the assumption
that there are less than 10 curves within a tile and the reliance on the heuristic merging
algorithm. The authors also show that the pure primitive predictions by the Transformer
model are lacking, requiring the physics-inspired refinement algorithm, which relies on
strong assumptions of the input image. This is displayed in Figure 3.2. Additionally,
the model was only tested for two vector primitives: lines and quadratic bezier curves.
When applied to clean animation frames, it produces images that are both visually and
structurally pretty close to the original at certain parts. However, like Puhachov et al.
[2021] it skips certain smaller and more detailed shapes. Quite paradoxically, it also
produces a lot of superfluous small curves at some parts.
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Input NN NN + Refinement Full

Figure 3.2: Result and intermediates step of the model by Egiazarian et al. [2020] on line
art by Huska [2009].

3.2 Cross-Domain Line-Art Vectorization
To our knowledge, final animation frame to clean animation frame conversion has not
yet been attempted. This task is related to works attempting to generate vector line art
using input images of another domain, such as photos or illustrations.

Mo et al. [2021] provide experiments with generating vector line art using photographs as
input. However, the authors concede that the model does not generalize well to complex
images and produces artifacts.

The model proposed by Puhachov et al. [2021] can be regarded as the state-of-the-
art for sketch to clean vector line image conversion. However, the method relies on
strong assumptions regarding the input image, specifically regarding the background-
foreground threshold, which prevents the method to be used for drawings with a very
noisy background (such as final animation frames).

Li et al. [2019] implement a GAN to generate raster contour sketch images given realistic
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photos as input. It is doubtful whether the results produced by this method would lead to
a semantically meaningful vector image. Either way, Mo et al. [2021] seem to outperform
this method (and produce cleaner results due to the fact that the output is restricted to
vector primitives).

There exists related work specifically related to anime-style illustrations. [Zhang, 2017]
devise a model which produces a raster line art given an illustration. The results contain
substantial artifacts and are therefore not quite usable as clean animation line art. The
two main problems are lack of high quality training data and pixel-level supervision. The
colored-sketch pair dataset normally used for such models [Li, 2017] only superficially
resembles clean animation frames, primarily since the line-art images have variable stroke
widths.

Zhang et al. [2021] generate manga-style images from illustrations. The generation is
constrained by the actual manga creation workflow. The first step of this workflow is
the generation of line art given the illustration using a U-Net architecture [Ronneberger
et al., 2015]. This could be used to generate a raster line art given a final animation
frame. Then, the raster image could be vectorized using the line-art vectorization model.
Unfortunately, the data used to train this model is not public. Furthermore, the provided
results contain artifacts which will likely make it challenging to correctly vectorize the
image.
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CHAPTER 4
Animation Line-art Vectorization

This chapter describes our work, which attempts to answer the research question posed in
Section 1.4, i.e., to what extent it is possible to automatically vectorize clean animation
frame line art in a manner that is semantically meaningful. In order to answer this
question, a method to automatically vectorize clean animation frame line art is developed
based on previous works, which is described in Section 4.1 and depicted in Figure 4.1.
This method is trained on a dataset detailed in Section 4.2. We then evaluate, both

(a) The clean animation frame in raster for-
mat as input.

(b) The output vector image of the line-art
image vectorization method.

(c) Region of the input image. (d) Region of the predicted vectorization.

Figure 4.1: Sample output vector image of the developed line-art image vectorization
method based on the raster clean animation frame provided by Tonari Animation as
input. Zooming into the image reveals structural differences.
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qualitatively and quantitatively, the extent to which this method and comparable works
can automatically vectorize clean animation frame line art on this dataset in Section 4.3.
Finally, in Section 4.4, we describe alternative model architectures explored and provide
an ablation study evaluating different configurations of the method.

4.1 Method
In this section we describe a method to automatically convert line-art raster images into
vector images. The method is visualized in Figure 4.2 and consists of two parts: the
main part is a learned model that takes as input a raster line-art image and a mark on a
curve in this image and outputs a cubic bezier curve which fits the marked curve. The
second part is a lightweight algorithm that uses this model iteratively to reconstruct all
curves in an image. The marked-curve reconstruction model is described in Section 4.1.1,
while the iterative curve reconstruction algorithm is described in Section 4.1.2.

To motivate this architecture, recall that a line-art image consists of a set of bezier curves.
The amount of bezier curves is considerably large (see Section 4.2). Following this, the
task of line-art image vectorization is decomposed into two non-trivial sub-tasks:

• curve identification: given a line-art raster image and an image of already recon-
structed curves (i.e., a canvas image), sample a point that lies on a curve (i.e., a
marker), and

• curve reconstruction: given a line-art raster image and a point lying on a curve
(i.e., the marker), reconstruct the marked curve.

Decomposing the task into these two subtasks with a more narrow objective reduces the
space of possible solutions of the algorithm, thereby aiding the design of the algorithm.
Furthermore, this architecture allows the curve reconstruction and identification to be
independent of the number of curves, further decreasing the solution space. Additionally,
this structure is more amenable to manual fixing of the output (as described in Sections 1.3
and 2.2.1), since missing curves can easily be reconstructed by invoking the curve
reconstruction part with a marker on the curve in question.

Of the two subtasks, curve reconstruction is the more complex part and is handled by
the learned marked-curve reconstruction model introduced in Section 4.1.1. On the other
hand, curve identification is considerably easier to solve for the data primarily considered
in this work (i.e., clean line-art raster images). The curve identification algorithm is
described as part of the iterative curve reconstruction algorithm in Section 4.1.2 and
simply samples a pixel belonging to a curve of a grayscale line-art raster image. Since the
background is white and the curves are colored, this pixel will be black (i.e., closer to 0
than to 1) in a grayscale version of the line-art image. Notice that this curve identification
algorithm is both tailored to clean line-art images and not differentiable. Hence, if the
input image is in a different domain or a fully differentiable algorithm is needed (such as
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(b) The method unrolled at time step t + 1

Figure 4.2: Overview of the proposed method. The method iteratively reconstructs a
given raster line-art image as a vector image. At time step t = 0, an algorithm identifies
a new curve to reconstruct and places a marker on it. This information is then passed to
a learned marked-curve reconstruction model to reconstruct the curve in vector format
using cubic bezier curve parameters. This output is added to a canvas, which is taken
into account when identifying the curve to reconstruct at t + 1. 63
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in the cross-domain line-art image vectorization proposed as an extension of this work
in Section 1.3), it is necessary to replace the proposed curve identification algorithm
with a more suitable alternative. While this is an orthogonal problem, Section 4.1.2 also
describes a potential alternative.

4.1.1 Marked-Curve Reconstruction Model
This section details the architecture of the marked-curve reconstruction model, which is
depicted in Figure 4.3. The model takes as input a line-art raster image with a mark
placed on a curve in it, and outputs the bezier curve parameters fitting the marked curve.
This model was designed by following the principle that reducing the complexity of the
task the model needs to solve increases the probability that the model actually converges
to a suitable state. As an example of a widely used model architecture that follows this
principle, diffusion models [Sohl-Dickstein et al., 2015, Rombach et al., 2022] attempt
to accomplish image generation by iteratively taking small denoising steps instead of
generating the whole image at once.

This is achieved by three design decisions. The most important design decision is to have
the model reconstruct only a single curve instead of all curves per invocation. Since the
amount of curves in clean frame images is quite high (see Section 4.2), this significantly
reduces the space of possible solutions of the model. The other two decisions are based
on the input and the output of the model and are explained below.

Input and Output

The input of the model is a line-art raster image. Additionally, this image contains one
pixel of a different color from the curves and the background lying on a curve. This
pixel is the marker indicating which curve to reconstruct. Importantly, this means that
the location of the curve is already established. This information can be used to reduce
the task complexity for the model by centering the input image on the mark. This
way, the model can be trained on the assumption that the center pixel has to lie on the
reconstructed curve, avoiding the need for the model to learn to reconstruct the curve
at the correct location. Furthermore, note that the centering of the input image on the
mark obviates the need to provide the mark location explicitly to the model, since it
will be on the center for all input images and is thus implicitly provided. This includes
both appending the mark location to the input vector and displaying the mark using a
different color on the input image. Hence, the depiction of the mark in the raster image
is kept purely for illustrative purposes.

The raster input images are represented using the RGB color model, i.e., each pixel
is represented using three numbers in [0, 255]. In order to not let multiplications and
gradients in the architecture explode, the numbers are divided (i.e., scaled) by the
maximum 255 to be in [0, 1]. Furthermore, the model is trained and evaluated using
clean line-art images only, i.e., images which can be binarized into black and white
images, where the curves are black and the background is white. These images could
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Figure 4.3: Architecture overview of the marked-curve reconstruction model. Note that
for brevity, lines with two points are shown instead of cubic bezier curves with four
points.

be represented using a single color channel per pixel, which would slightly reduce the
model size. However, as there was no difference in model performance between RGB
and monochrome input images, the input images are kept in RGB format. This way, no
assumption of monochrome input images is baked into the model and it can also handle
non-monochrome input images.

The output of the model is defined as the parameters of a cubic bezier curve with a fixed
stroke width. The parameters are defined by the start point, the end point and two
control points, resulting in a vector of length 8. This output structure is sufficient to
represent the output data domain considered in this work, i.e., clean animation frames.
Recall that clean frames consist of quadratic and cubic bezier curves with fixed stroke
width of predefined colors, as described in Section 2.2.1. Furthermore, the restrictive
nature of the output structure reduces the task complexity in three ways. Firstly, the
model does not need to learn to use different primitives other than the cubic bezier
curve. This can be achieved since clean frames only consist of quadratic and cubic bezier
curves, and the possibility of representing quadratic bezier curves as cubic bezier curves.
Secondly, the model does not need to learn the correct stroke width of the reconstructed
curve, since it is a constant that can be defined for the whole image. Thirdly, the model
does not need to learn the correct color of the reconstructed curve, since color follows a
predefined schema that can be handled by preprocessing the image.

Model Architecture

The architecture of the marked-curve reconstruction model is depicted in Figure 4.3.
Due to the nature of the task requiring the model to generate complex output based on
high-dimensional input, it is designed as an encoder-decoder architecture. That is, it
consists of an encoder neural network that turns the input image x into a latent vector
z of predefined length L, and a decoder neural network that turns this latent vector
into cubic bezier curve parameters o. In general, the model is designed to be as small
and simple as possible and follows standard practices. Note that a small model size has
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considerable benefits, such as faster computation and less memory requirements, while
aiding regularization (see Section 2.3.1).

Since the input is an image, the encoder is a convolutional neural network. As described
in Section 2.3.3, convolutional layers have an inductive bias for images. Furthermore,
they are locally connected to the input and therefore work for varying input image sizes
(i.e., resolutions). The encoder consists of 6 blocks, where each block is formed by a
2-dimensional convolutional layer, followed by 2-dimensional batch normalization and
ReLU activation. The architecture is designed following standard practices such that the
image size is halved and the channel size is doubled at every convolutional layer.

A disadvantage of using stacked convolutional layers is that the output is a 3-dimensional
matrix, which does not satisfy the structure needed as latent vector to be input to the
decoder. In order to arrive at a latent vector of predefined length L independent of
the input image size, the global pooling technique (see Section 2.3.3 is used). That is,
the last convolutional layer has a filter size corresponding to the latent vector length L.
Following this, a global average pooling layer is used to reduce the space dimensions of
the resulting output, leading to a 1-dimensional latent vector of length L.

The hyperparameters of the encoder layers are displayed in Table 4.1. Each convolutional
layer doubles the filter size of the previous layer and has a stride of 2 and a padding of 1.
The last convolutional layer has a stride of 1. Note that the batch normalization following
each convolutional layer is not displayed. They follow the same size as their preceding
convolutional layer output and are parameterized with ϵ = 10−5 and a momentum of
µ = 0.1.

Note that, as described above, the encoder architecture is designed to handle variably sized
input, with these variables being denoted in Table 4.1. The batch size B is used to process
multiple observations in parallel and increase the effectiveness of batch normalization by
decreasing the variance (see Section 2.3.1). The image width W and height H need to
be a multiple of 2, but can be otherwise freely chosen. The latent vector length L needs
to correspond to the length used for the input vector of the decoder. For this work, the
hyperparameters are set to B = 32, W = H = 512 and L = 128. Note that the width and
height do deliberately not correspond to the exact resolution of clean animation frames
in the dataset (see Section 4.2). This is done to show that the model does not overfit to
a specific resolution. As an aside, CNNs are typically trained on significantly smaller W
and H [He et al., 2016a], especially when trained for image classification. However, these
small image resolutions would compress the clean animation frame beyond a reasonable
possibility of detecting individual curves.

The decoder is a 2-layer MLP, which turns the latent vector of length L into a vector
of length P ∗ 2, where P is the number of cubic bezier curve parameters. Since cubic
bezier curves are parameterized by a start point, an end point and two control points,
P = 4. With only one hidden layer, the decoder is as shallow as possible. The hidden
layer is introduced to enable the decoder to learn non-linear transformations of the latent
vector. It is followed by batch normalization, which is parameterized with ϵ = 10−5 and
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layer output shape # params filter size kernel size stride padding
2-d conv (B, 32, W/2, H/2) 896 32 3 2 1
2-d conv (B, 64, W/4, H/4) 18496 64 3 2 1
2-d conv (B, 128, W/8, H/8) 73856 128 3 2 1
2-d conv (B, 256, W/16, H/16) 295168 256 3 2 1
2-d conv (B, 512, W/32, H/32) 1180160 512 3 2 1
2-d conv (B, L, W/32, H/32) 589952 L 3 1 1

avg pool + squeeze (B, L) 0 L W/32 - -

Table 4.1: Summary of the layers of the encoder neural network of the marked-curve
reconstruction model.

a momentum of µ = 0.1 as in the encoder and a ReLU activation. The output layer
outputs a vector of length 2P . Intuitively, this could directly be used as output. However,
these numbers are unbounded and could theoretically go towards ∞. Hence, the output
is restricted to [0, 1] using the sigmoid activation function (see Equation (2.1)). The x
coordinates of the cubic bezier curve points are then scaled with the image width, while
the y coordinates are scaled with the image height.

layer output shape # params size
linear (B, L/2) 8256 L/2

batch norm (B, L/2) 2(L/2)
ReLU (B, 2P )
linear (B, 2P ) 520 2P

sigmoid (B, 2P ) 520

Table 4.2: Summary of the layers of the encoder neural network of the marked-curve
reconstruction model.

Tables 4.1 and 4.2 show the numbers of learnable parameters of the model. In total, the
model has 2,169,672 learnable parameters. The distribution of these learnable parameters
indicates that the model is encoder-heavy, with a large portion of them assigned to the
convolutional layers. Since the encoder does the heavy lifting, more complex encoder
architectures such as the ResNet [He et al., 2016a] and ConNeXt [Liu et al., 2022] were
tried as alternatives. For these architectures, encoder weights which were pretrained on
larger image datasets such as ImageNet [Russakovsky et al., 2015] are available, obviating
the need to train an encoder from scratch. However, they did not perform significantly
better than the simple encoder architecture introduced here. Hence, they are not used in
order to keep the model as small and simple as possible.

Training

The model is trained to generate a curve that resembles the ground truth (i.e., the gold
standard) curve both visually and in its semantic topology. For this reason, a combination
of a raster-based loss for visual similarity and a vector-based loss for semantic correctness
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is used to train the model. Intuitively, the raster-based loss is used to optimize the model
to output a curve that covers the pixels of the original line as closely as possible. The
vector-based loss is then used to optimize the model to output semantically correct curve
parameters. Furthermore, the vector loss is multiplied with a weight of 100 to not let the
raster-based loss dominate the combined loss. This task-derived loss combination is an
important distinction from related work [Reddy, 2021, Mo et al., 2021, Egiazarian et al.,
2020].

The vector loss follows [Egiazarian et al., 2020] and is an even combination of MAE and
MSE. It is defined in Equation (4.1), where o is the model output, y are the ground truth
cubic bezier curve parameters and L1 and L2 are defined in Equations (2.5) and (2.8),
respectively. The loss is closely related to the Huber loss defined in Equation (2.12).
Intuitively, since the MAE and the MSE have their advantages and disadvantages, the
loss simply uses both using the same weight (see Section 2.3.2).

L(o, y) = 0.5 ∗ L1(o, y) + 0.5 ∗ L2(o, y) (4.1)

Defining a raster-based loss is more difficult, since the model outputs the cubic bezier curve
in vector format, which needs to be rasterized. As described in Section 2.1.2, rasterization
is trivial and can be done deterministically. However, for the loss it is crucial that the
rasterization is differentiable (see Section 2.3.1). Hence, the differentiable rasterizer
introduced by Li et al. [2020] is used to rasterize the cubic bezier curve parameters. This
raster output image is then compared to the raster input image, with all curves aside
from the marked curve removed.

A typical choice for comparing two raster images is to simply use the MSE (or, less
commonly the MAE). However, the rasterized curve image exhibits a significant class
imbalance, since most of the image is white with only the curve being black. Hence, as
described in Section 2.3.2, the dice loss defined in Equation (2.16) is a better choice than
MSE. Accordingly, the performance of the model is evaluated using the IoU defined in
Equation (2.10) of the output and the ground truth curve raster image.

The model is trained using the widely used Adam [Kingma and Ba, 2015] optimizer with
a learning rate of η = 5 ∗ 10−4. The other hyperparameters are set to the default PyTorch
[Paszke et al., 2019] values, i.e., no weight decay, β1 = 0.9, β2 = 0.999 and ϵ = 1 ∗ 10−8.

To visualize the training process, figure Figure 4.4a shows the loss per iteration, where
one iteration indicates one batch of the data being processed. After all batches are
processed, the training continues again starting from the first batch. The batch size is
set to B = 32, which is the largest size possible given available dedicated GPU memory.
Figure 4.4b shows the performance of the model on the validation dataset provided
by Tonari Animation (described in Section 4.3.1). The performance is measured using
the IoU of one reconstructed curve and the ground-truth curve (see Section 4.4.1). It
converges to a single curve IoU of 0.62.
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Figure 4.4: Training progress of a model measured using the loss on the training dataset
and the single curve IoU on the validation dataset per iteration.
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Figure 4.5: Overview of the iterative curve reconstruction algorithm. This overview goes
into more detail regarding the curve identification and reconstruction than Figure 4.2.

4.1.2 Iterative Curve Reconstruction Algorithm
The marked-curve reconstruction model introduced in Section 4.1.1 is the main part of
the line-art image vectorization method, but reconstructs only a single curve without
color or stroke width information given a marked curve on the line-art raster image. In
order to vectorize an entire line-art raster image, an algorithm has to be defined around
the model that performs three tasks:

1. handles color (and stroke width) information,

2. given the input image and a canvas of already reconstructed curves, computes
markers identifying curves to reconstruct, and

3. invokes the marked-curve reconstruction model using the input image and a marker
of an identified curve and places the output on the canvas.

The algorithm is depicted in Figure 4.5 and explained in the following.
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(a) Full clean animation frame. (b) Black segment of the clean animation frame.

(c) Blue segment of the clean animation frame. (d) Red segment of the clean animation frame.

Figure 4.6: Example of a clean animation frame provided by Tonari Animation segmented
by color.

Color and Stroke Width

For the first task, recall that the marked-curve reconstruction model does not output color
information. Since color carriers significant meaning in clean frames (see Section 2.2.1),
it is necessary for the algorithm to produce the correct color information for all predicted
curves. This can be done using simple pre-processing and post-processing steps, which
both reduces the task complexity of the model and ensures that the output is correct.

In detail, note that the color schema of clean animation frames is known a priori, as
defined in Figure 2.10. Hence, it is possible to segment the input image according to
these colors (see Section 2.3.2). Figure 4.6 exemplifies this. Then, the curve colors of each
segment are set to black and each segment is individually input into the marked-curve
reconstruction model. The output of the marked-curve reconstruction model contains
no color information, but since the true color of the segment is known, the color of the
output can be set to the segment color.

In the same vein, the marked reconstruction model does not output stroke width informa-
tion. However, since all curves in a clean animation frame share the same stroke width,
it suffices to define one constant stroke width for the input image and to apply this to
all reconstructed curves. The stroke width can either be defined by the user or inferred
from the input image.
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Curve Identification

In order to indicate to the marked-curve reconstruction model which curve needs to
be reconstructed, the second task consists of sampling a pixel lying on a curve not
already reconstructed given the input image (more specifically an input image segment,
as described in Section 4.1.2) and a canvas image containing already reconstructed curves.
In the case of clean line-art images considered in this work, this can simply be done by
sampling a random black pixel, where a pixel is considered black if it is closer to 0 than to
1. This pixel is guaranteed to lie on a curve. As an aside, a potential improvement to this
algorithm is to always sample the pixel from the largest contiguous area of black pixels,
in order to reconstruct the longest curves first. However, this has not been implemented
in order to keep the algorithm as simple as possible.

In order to ensure that only curves that have not yet been reconstructed are identified,
the canvas image is subtracted from the input image whenever a new curve is added to
the canvas and before the marker pixel is sampled. This also helps the marked-curve
reconstruction model to not output duplicate curves.

Both the curve identification by sampling black pixels and the subtraction of the canvas
image from the input image have the assumption of clean line-art images. Thus, when
the line-art vectorization is applied to input images of different domains, these two parts
have to be adapted. If there exists a binarization algorithm of considerable quality for
this domain (e.g. Su et al. [2010]), then simply binarizing images with this algorithm will
suffice. Otherwise, one alternative is to train a curve identification model. This alternative
would render the entire line-art image vectorization method end-to-end differentiable.
The curve identification model would take as input both the input line-art image and
the canvas image, where the latter could be appended as a fourth color channel to the
former. The output would a vector containing two elements, constrained by the sigmoid
function to lie in [0, 1], indicating the coordinates of the marker. Then, the architecture
would be a convolutional neural network with global average pooling on a filter size of
2 at the end. There are multiple candidates for loss functions. One possibility is to
calculate the distance of the marker to all ground truth curves that are not present in
the canvas image and taking the minimum. This would require the training images to
also be available in vector format.

Marked-Curve Reconstruction Model Invocation

In order to vectorize the entire line-art image, the marked-curve reconstruction model
has to be invoked iteratively until all curves are reconstructed. This is done in multiple
steps, which are laid out in Algorithm 4.1. In this algorithm, the remaining image is
the raster image containing curves that are not yet reconstructed. The canvas image is
stored as vector image using the SVG format. It is rasterized when being used to update
the remaining curves image.

Note, that Line 5 in Algorithm 4.1 constitutes an intuitive stopping criterion enabled
by the progressive canvas image subtraction from the remaining image. The curve
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Algorithm 4.1: Iterative Curve Reconstruction.
Input: A raster line-art image.
Output: A vector line-art image.

1 Segment input image by color;
2 foreach image segment do
3 canvas = an empty vector image of the same size as the input image;
4 remaining = image segment;
5 while number of black pixels in remaining > T ; do
6 Compute marker by applying curve identification on the remaining image;
7 Centered image = center the remaining image on the marker;
8 reconstructed curve = invoke the marked-curve reconstruction model

using the centered image;
9 Inverse the center location of the curve by using the mark location;

10 Add the reconstructed curve to the canvas image;
11 remaining = remaining - rasterized canvas image;
12 end
13 Set color of all curves in the canvas image to the segment color;
14 end
15 Merge the canvas images;
16 return Merged canvas images

reconstruction is iteratively applied until the number of black pixels (i.e., the number of
possible markers) in the remaining image is greater than some threshold T . If the curve
identification and reconstruction worked perfectly, the difference between the rasterized
canvas image and the remaining image would reach 0 at some point. In this case, the
threshold should be set to T = 1. However, since errors in the reconstructed curves are
to be expected, there will remain a number of black pixels that are part of an already
reconstructed curve that does not fully cover the curve in the input image. Repeatedly
invoking the marked-curve reconstruction model on such pixel artifacts will lead to worse
results. Since missing a few curves is not a significant issue, it is tolerable to set the
threshold to a low number of black pixels greater than 1. For this algorithm, the threshold
is set to T = ⌊B ∗ 0.1⌉, where B is the number of black pixels in the original image.

Advantages and Limitations

The theoretical runtime complexity of the algorithm as defined in Algorithm 4.1 is in
O(p), where p is the number of black pixels in the input image, which is connected
to the number of curves n. As the performance of the marked-curve reconstruction
model increases, the runtime will be approximately linear in n. However, it is possible
to significantly reduce the runtime by processing a batch of curves b < n concurrently,
instead of one curve at a time. For this, the curve identification algorithm described in
Section 4.1.2 can be adapted to sample b black pixels instead of a single black pixel. To
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decrease the probability of multiple marks belonging to the same curve being sampled,
the image should be divided in b patches, with a single mark being sampled in each
patch. The marked-curve reconstruction model does not need to be adapted, since it
possesses the ability to processes a batch of inputs, which is already done at training
time. Note that this adaptation increases the memory requirement by roughly b times.
However, since the test dataset is rather small (see Section 4.2), this parallel version of
the algorithm has not been implemented.

Furthermore, an advantage of this algorithmic structure is that it significantly eases the
effort required to manually fix an output image. While identification of missing curves
is a trivial task for humans, fixing wrongly reconstructed curves is tedious. Following
this, the algorithm is designed to maximize the former in lieu of the latter. On the
one hand, it allows to post-hoc reconstruct curves that were missed by the first run of
the algorithm without affecting the rest of the output by simply placing a mark on a
random point of the curve in question and invoking the marked-curve reconstruction
model. On the other hand, by letting the learned model focus on reconstruction of a
single curve, its reconstruction results will be at least better than a model that needs to
perform reconstruction and identification of all curves, thereby reducing the need to fix
reconstructed curves.

Lastly, there are two issues associated with overlapping curves, i.e., pixels which are
part of multiple curves. Firstly, this directly affects the iterative curve reconstruction
algorithm. Suppose the marked-curve reconstruction model outputs one of the multiple
overlapping curves, then this curve will be placed on the canvas image and removed from
the input image. In this process, the overlapping pixels will also be removed, leaving
behind a hole in the remaining curves, effectively splitting them. Hence, if the hole is
large enough, the curve reconstruction model will reconstruct only one part of the split
curve instead of the whole curve. Secondly, the curve reconstruction model will receive
ambiguous information on which curve to reconstruct during training in these cases,
hampering its ability to derive meaningful gradients at all in the worst case. However,
both of these issues are negligible since the amount of overlapping curves is small, as the
calculation in Section 4.2 shows.

4.2 Dataset
The dataset used to train and evaluate the line-art vectorization method consists of
two parts: a human-generated and a synthetic dataset. Both datasets contain clean
line-art images as vector images using the SVG file format, with a uniform color for the
background (white) and the curves (black). An example indicating the vector primitives
used can be seen in Figure 4.7, with each primitive represented using a mutually exclusive
color. The first part is described in Section 4.2.1 and consists of line-art images drawn
by professional and amateur artists. The synthetic part is described in Section 4.2.2.
Section 4.2.3 notes irregularities and limitations of the assembled dataset. Steps taken to
deal with these irregularities and further processing steps are described in Section 4.2.4.
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images images with overlapping curves
tonari 139 138
sketchbench 425 -
tuberlin 20000 -

Table 4.3: Summary of the subsets of dataset.

4.2.1 Human-generated Dataset

Figure 4.7: A clean animation keyframe in vector format with all outline (i.e., black)
curves indicated by alternating colors. Original keyframe provided by Tonari Animation.

The human-generated data is the most important part of the dataset, since it enables the
marked-curve reconstruction model to reconstruct curves in a semantically meaningful
way. It consists 20564 vector images from three sources displayed in Table 4.3. As noted
in Section 1.3, a small dataset of 139 real-world clean animation frames is provided by
Tonari Animation, which is detailed in Section 4.2.1. While it forms the heart of this
dataset, the amount of data is rather limited, necessitating additional sources of data.
Two additional sources are used: One of these comes from a sketch cleanup benchmark
by Yan et al. [2020] and is explained in Section 4.2.1. Since this is also rather limited in
size, a collection of amateur sketches by Eitz et al. [2012] is used as additional dataset of
medium-to-low quality but large quantity.
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Figure 4.8: An example of a clean animation frame from a sample animation sequence
depicted in Figure 2.8, provided by Tonari Animation.

Tonari Clean Animation Frames

Figure 2.7b shows one of 194 clean animation frames in raster format provided by Tonari
Animation for an earlier work by Kugler [2023]. Since they are not vector images, they
cannot be used for this work. However, for 50 of these clean animation frames, the
original Clip Studio [CELSYS, Inc., 2021] files used to draw the images were still available,
enabling access to the underlying vector primitives. Additionally, Clip Studio files of 4
sample animation sequences were provided, from which 89 clean animation keyframes
and inbetweens could be extracted. An example of this additional data can be seen in
Figure 4.8. In total, this leads to a dataset of 139 clean animation frames in vector
format provided by Tonari Animation. Note that inbetweens are very similar to each
other (see Section 2.2), thus containing a high amount of redundant information, limiting
their usefulness to train the model. Still, due to the low amount of available data, all
inbetweens are used.

Since the Clip Studio files provided by Tonari Animation are in a format which cannot be
used to train or evaluate the marked-curve reconstruction model, the vector primitives
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have to be manually extracted from these files. For this, the trial version of Clip Studio
version 1.10.5 [CELSYS, Inc., 2021] was used on a Windows 10 machine. Using the
Export Vectors function, each of the 139 clean animation frames was exported as SVG file.
Figure 2.11 shows the result of this extraction on the example in Figure 2.7b. The color of
the curves is preserved according to the schema defined in Figure 2.10. This information
is used by the iterative curve reconstruction algorithm as noted in Section 4.1.2. Note
that only curves could be exported, with filled color regions missing from the output.
However, as mentioned in Section 2.2.1, they can trivially be added by bucket filling and
are thus not an integral part of the clean animation frame. Hence, only the curves are
considered for this work.

It is important to note that while images are available in vector format and can be
theoretically displayed at all resolutions, they are generally drawn with a target resolution
of 720x405px by Tonari Animation.

SketchBench

The rough sketch cleanup benchmark by [Yan et al., 2020] provides public high-quality
line-art vector images. These are sourced from a varied and balanced amount of domains
and artists and processed according to a workflow depicted in Figure 4.9. First, 151
sketches of the genres freeform, fashion, products, logos and architecture drawn by various
artists are retrieved online. These sketches were drawn on paper or digitally and are only
available in raster format. Then, up to 3 out of 7 contracted artists per sketch trace
clean vector versions of the rough sketch raster image, yielding 425 SVG images. These
traced vector images contain curves indicating shadows, textures and scaffolds, which
are removed to produce clean vector versions of the original rough sketch raster image.
Furthermore, the curves are normalized to a constant stroke width.

Only clean line-art images are used to train the marked-curve reconstruction model.
Hence, the rough raster images and the traces before cleanup are removed, with only
the normalized and cleaned versions of the traced sketches remaining in dataset. These
images are indicated by the norm_cleaned.svg suffix of their filename. In total, this
leads to a dataset of 425 vector images.

The dataset resembles the Tonari clean animation frames closely, containing only quadratic
and cubic bezier curves with a constant stroke width. However, it differs in some respects.
Out of the images, sketches of the freeform genre are overrepresented and most closely
resemble clean animation frames. However, due to a general lack of data, sketches of all
genres are used for this work. Furthermore, there are only black curves in this dataset.
Hence, the segmentation noted in Section 4.1.2 does not need to be performed on this
data.

TU Berlin amateur sketch collection

In order to increase the size of the human-generated dataset, the amateur sketch collection
by Eitz et al. [2012] is also used. The sketches were collected by TU Berlin for the purpose
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(a) A rough sketch drawn on
paper as raster image.

(b) Full vector tracing of the
original rough sketch.

(c) Normalized and cleaned
version of the vector trace.

Figure 4.9: Available versions of an example freeform sketch in the SketchBench dataset
[Yan et al., 2020].

(a) An amateur sketch of the
airplane category.

(b) An amateur sketch of the
house category.

(c) An amateur sketch of the
fish category.

Figure 4.10: Example of the TU Berlin amateur sketch collection by Eitz et al. [2012].

of creating a classification model. Hence, the dataset contains in total 20,000 amateur
sketches of 250 pre-defined categories. The categories are derived from the LabelMe
dataset [Russell et al., 2008] and contain objects such as airplanes, houses, and fishes.
Examples are displayed in Figure 4.10. The sketches are drawn by 1,350 amateur artists
contracted using Amazon Mechanical Turk. They contain only outlines and are drawn
without a reference image, with a median drawing time of 86 seconds. The images are
also available in the SVG format, which can be readily used for this method.

There exist other collections of amateur sketch vector images such as Quick, Draw! [Ha
and Eck, 2018]). These could also be added in order to increase the overall dataset
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tonari sketchbench tuberlin
paths median 495.00 44.00 13.00

IQR 210.00 96.00 15.00
curves median 1476.00 156.00 78.00

IQR 1041.00 381.00 72.00
curves / path median 1.00 2.00 4.00

IQR 2.00 1.00 4.00
path length median 65.61 219.82 176.01

IQR 29.90 327.81 223.20
curve length median 9.60 67.82 32.17

IQR 6.83 106.37 19.42
overlap curves median 10.00 - -

IQR 10.00 - -

Table 4.4: Summary statistics for the human-generated subsets of the dataset

size. However, the TU Berlin dataset is already dominating the other, high-quality
sources by number of images. If the Quick, Draw! dataset was added, the marked-curve
reconstruction model would be even more biased to amateur sketches, to the detriment
of performance on professional line art. Hence, other amateur sketch collections are not
considered in this work.

Statistics

All images in the human-generated dataset are clean line-art images in vector format.
The images contain a uniform background and cubic bezier curves, which are grouped
together to form paths. Table 4.4 shows statistics of the dataset and its subsets. Note
that the median is used as robust location estimate and inter-quartile range (IQR) as
robust scale estimate. This is due to the assumption that there are outliers in the data,
which can have an outsized influence due to the limited size (excluding the TU Berlin
subset). Figure 4.11 shows the left skewed nature of distributions of the example clean
animation frame depicted in Figure 4.6a and corroborates this assumption.

The statistics displayed in Table 4.4 help with deciding on which level of graphic primitives
the method should be based. There are two options: basing the method on curves, which
gives more flexible and fine control over the vector output and reduces the complexity
for the model by only requiring to reconstruct a single primitive, or paths, which can be
considered more semantically meaningful but would require the model to reconstruct a
group of curves at a time.

Table 4.4 shows that the average number of curves per path for the high-quality subsets is
very small. To exemplify this, Figure 4.11c shows the distribution of the number of curves
per path in the image depicted in Figure 4.6a. There seems to be a bimodal distribution,
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(a) Histogram of the length of each path.
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(b) Histogram of the length of each curve.
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(c) Histogram of the number of curves per path.

Figure 4.11: Statistics of the clean animation frame depicted in Figure 4.6a.

with most paths either consisting of a single curve or more than 2 curves. It is clear
that the overwhelming majority of paths belongs to the former, making this higher-level
primitive somewhat redundant. Interestingly, both the average and the variance of the
number of curves per path in the TU Berlin subset is significantly higher than in the
high-quality subsets, indicating that a significant amount of amateur artists made more
use of this primitive than professional artists. However, since the focus of the method
should lie on the high-quality subsets, it is decided to base the method on curves and to
discard path information.

Another important information for the decision between curves and paths is the average
length of each, which is measured in pixels. Interestingly, Table 4.4 shows that the average
curve length of Tonari clean animation frames is significantly lower than the other two
subsets, with SketchBench images having the longest curves on average. The same finding
is maintained for the average path length. Furthermore, the ratio of curve length by
path length is similar for the Tonari and TU Berlin subsets, with the SketchBench subset
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having roughly double the ratio. In general, and even for the Tonari clean animation
frames, curves seem on average to be long enough to be independently recognized and
restored, further corroborating the use of curves as graphical primitive. Still, due to the
high variance of curve and path lengths and the seemingly bimodal distribution of the
amount of curves per path, using paths as base graphical primitive is also a legitimate
avenue.

Furthermore, when looking at the statistics, two peculiarities in the data become apparent.
Firstly, Tables 4.3 and 4.4 show that there exists a significant amount of overlapping curves,
where two curves are considered overlapping if they have more than one intersection and
there is at least one intersection that is not at the start or the end point, with a tolerance
of 0.1. This calculation is computationally expensive, as this requires comparing every
curve with every other curve. Hence, this information is only provided for the important
Tonari subset. Interestingly, the average number of overlapping curves per image is
36 ± 36 with the average number of overall curves per image being 1476 ± 1041. This
suggests that most images contain only a little amount of overlapping curves. However,
since nearly all images have at least one curve overlapping another, this needs to be
accounted for when dealing with these images.

4.2.2 Synthetic Dataset
Since the human-generated part of the dataset is limited in size, the dataset also includes
synthetic data. While automatic vectorization of existing clean line-art raster images is not
yet possible (as this is the whole purpose of this work), the reverse, i.e., the rasterization of
vector line-art images is trivial, as described in Section 2.1.3. Hence, for the synthetic data,
line-art vector images are automatically generated and rasterized. However, automatic
generation of line-art vector images is challenging. Since automatically generating high-
quality line-art vector images such as the Tonari clean animation frames is still an open
research question, one has to resign oneself to a lower quality of the generated images.
Due to this low quality, the synthetic dataset is combined with the human-generated
dataset at a 1 to 5 ratio at train time, i.e., for every training epoch, the human-generated
vector images are topped up with synthetic vector images matching a fifth of their
amount.

The generation algorithm defined for this work simply produces a low number of random
cubic bezier curves for a vector image. The main hyperparameter of the algorithm
is the curve amount range, which is set to [3, 8] unless otherwise stated. This means
that the algorithm produces at least 3 and at most 8 curves per image, with the actual
number being chosen randomly. The generation is restricted to this low amount in order
to minimize the probability of overlapping curves, which otherwise would need to be
detected and removed in a computationally costly manner. The curves themselves are
generated by sampling 8 random numbers independently from the uniform distribution
with interval [0, 1). These numbers constitute the coordinates of the 4 points needed to
parameterize a cubic bezier curve. Since the synthetic image needs to have the same
size as the human-generated images, the x-coordinates and y-coordinates of the random
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(a) Image with 3 random cubic bezier curves. (b) Image with 5 random cubic bezier curves.

Figure 4.12: Example images of the synthetic dataset. Note the apparent low quality in
comparison with other example images in Figures 4.8 to 4.10.

points are scaled by the image width and image height chosen by the human-generated
dataset, respectively.

Figure 4.12 shows examples of synthetic line-art images. It can be seen that they differ in
quality from the human-generated dataset. Furthermore, they contain significantly fewer
curves. In combination, the curves in the human-generated dataset form recognizable
objects, while the random synthetic curves do not represent shapes that can be found
in clean animation frames. Hence, it is clear that the synthetic dataset is not similar
to the clean animation frames (on which the method is intended to be used on) and is
wholly insufficient to train the marked-curve reconstruction model. However, by being
used in combination with the human-generated dataset, it can serve another purpose: it
provides new learning signals to the model. Importantly, the human-generated dataset
contains a limited amount of semantic objects to the visual presence of which the model
could theoretically overfit. On the other hand, the synthetic images contain only curves
that are guaranteed to not be in a semantic relationship with each other. Therefore, the
synthetic dataset forces the model to focus on reconstructing a single curve correctly
when no semantic visual indications are present. Furthermore, the synthetic data likely
contains curve shapes not present in the human-generated data. Fitting the model to this
data can be useful when the model is applied to images containing objects and curves
that are visually very different from the ones in the human-generated dataset. Keep in
mind, however, that this is only beneficial to the model if the semantics-free data forms
but a small part of the entire dataset.

To optimize the runtime of the algorithm, a batch of points is directly created on the
GPU per invocation. The images are synthesized on-line instead of precomputed, i.e.,
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the generation algorithm is run concurrently to the training process, generating new
data for each training iteration. Another possibility is to run the generation algorithm
beforehand and to save a large amount of precomputed random images on disk. These
could then be loaded at training time. The on-line variant is chosen because it has three
advantages: firstly, it ensures that every batch generated consists of new data, preventing
overfitting if the model is run for a long time. Secondly, it requires no disk space, while
the disk space required for the precomputed images can be considerably large. Thirdly,
it makes changes to the generation algorithm easier, since the images do not have to be
precomputed after every change. Furthermore, the runtime difference between generating
a batch of 8 random numbers directly on the GPU versus loading the images from disk
to the GPU is negligible.

4.2.3 Limitations
The dataset assembled for this work is of considerable quality, but still comes with a
range of limitations. It is important to note that these significantly affect the model
training and the evaluation.

Since publicly available clean animation frames in vector format are rather limited, the
amount of high-quality data in the dataset is considerably small. This is a major limitation
of the dataset, as training a deep learning model usually requires a large amount of data.
While the synthetic data introduced in Section 4.2.2 increases the dataset size significantly,
it is not of sufficient quality to effectively alleviate this limitation. There exist some other
publicly available high-quality data, such as sample data of open animation tools like
OpenToonz [DWANGO Co., Ltd., 2023]. However, the amount of vector images in these
samples is very limited. Additional sample data exists for proprietary animation tools
like CACANi [CACANi Pte Ltd., 2022], which can not be used without the tool and are
similarly few in number. Another possibility is to extend the dataset with sources from
different domains such as product design sketches [Gryaditskaya et al., 2019]. This was
not considered in this work beyond the SketchBench subset due to the focus on clean
animation frames.

Another limitation stems from the assumption that different artists draw vector images
using slightly different graphical primitives and topologies. Hence, the distribution of
artists in this dataset affects the performance of the line-art vectorization method. This
distribution is rather skewed in the Tonari subset. Out of this subset, the initial 50 images
were drawn by a single artist, while the artist information about the 89 keyframes and
inbetweens is unknown. On the other hand, the distribution of artists in the SketchBench
and TU Berlin subsets are rather even, which renders them helpful in preventing possible
overfit to the artist distribution in the Tonari subset.

Irregularities

Furthermore, there are various irregularities in the Tonari clean animation frames that
need to be accounted for when processing them. The biggest is that there are a number
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(a) The vector image rasterized normally, zoomed into the right upper eye region.

(b) The vector image rasterized normally with the color of the white patch set to magenta, thus
making it visible.

(c) The vector image rasterized with the white patch removed, rendering the underlying incorrect
curve visible.

Figure 4.13: An example of a white patch being used to correct incorrect curves. While
the patch and the incorrect curve is not visible in the rasterized image, it is still present
in the vector structure of the image. The full clean animation frame can be seen in
Figures 2.7b and 2.11.

of apparently incorrectly drawn curves in the images. These are ostensibly erased by
drawing a white curve with high stroke width over them. Figure 4.13 shows an example
of such a patch, which is not visible when rasterized, but is still present in the underlying
vector topology. Another irregularity is that curves often extend outside the viewbox, as
depicted in Figure 4.14.

Additionally, some images contain a significant amount of overlapping curves, as noted in
Table 4.4. Tables 4.3 and 4.4 show that Tonari clean animation frames contain 39 ± 39
overlapping curves on average, with almost all images containing overlapping curves.
As an example, the image shown in Figure 4.8 contains 428 overlapping curves. This
includes both curves with a long overlap, as displayed in Figure 4.15a and curves with a
minor overlap, as displayed in Figure 4.15b. As noted in Line 16, overlapping curves can
lead to incorrect outputs of the line-art vectorization method.

Altogether, these irregularities are not apparent once the vector images are rasterized,

83



4. Animation Line-art Vectorization

(a) The vector image rasterized using the
specified view box.

(b) The vector image rasterized using a view
box of 720x465px.

Figure 4.14: An example of a clean animation frame with curves extending outside of
the specified view box of 720x405px. Notice the extended curves at the bottom. Original
clean animation frame provided by Tonari Animation.

(a) The frame depicted in Figure 4.8 zoomed
in to the cap region showing a black and a
blue curve in the middle with a long overlap.

(b) The frame depicted in Figure 4.8 zoomed
in to the right eye, showing two black curves
on the left of the eye with a minor overlap.

Figure 4.15: Examples of overlapping curves in the clean animation frame displayed in
Figure 4.8.

but are still problematic when the vector structure of the images is used for training and
evaluating the method.

There are also two irregularities that are visible both in vector and in raster format. One
of them can be seen when considering the color distribution of paths shown in Table 4.5.
As only the Tonari clean animation frames contain colors other than black, Table 4.5
only shows information about this subset. It can be seen that there is a considerable
amount of paths of a different color than the ones allowed according the the schema
defined in Figure 2.10. White is the most present color that is not in the schema, which
can be explained with the white patches displayed in Figure 4.13. The other colors not
allowed by the schema are only used by less than 200 paths. It can safely be assumed
that these are artifacts of artists choosing a slightly wrong color while drawing.
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Figure 4.16: Number of curves per stroke width other than 2px in the Tonari clean
animation frames.
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hex string Color Part of schema Number of paths
#000000 000000 True 45289
#0000ff 0000ff True 13944
#ffffff ffffff False 5149
#ff0000 ff0000 True 3728
#00ff00 00ff00 True 486
#120a0a 120a0a False 76
#0c0606 0c0606 False 63
#180d0d 180d0d False 10
#ff8000 ff8000 False 7
#49ff49 49ff49 False 6

Table 4.5: The colors used in the Tonari clean animation frames. Colors not part of the
clean animation frame schema defined in Figure 2.10 are indicated.

(a) The clean animation frame with the ir-
regular patch.

(b) The clean animation frame with the ir-
regular patch removed.

Figure 4.17: An example of an irregular patch in an animation sequence frame provided
by Tonari animation.
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The other irregularity is the existence paths with a stroke width that differs from the
constant stroke width defined for the image. These are present in some Tonari clean
animation frames. Keeping in mind that the constant stroke width for clean animation
frames is set to 2px, the distribution of paths with a different stroke width is displayed
in Figure 4.16. They are mostly either white patches as described in Section 4.2.3
and Figure 4.13 or spurious indications and corrections in the sample animation sequence
frames displayed in Figure 4.17.

While it might seem trivial to manually fix the irregularities mentioned in this section
at a first glance, it turns out to be impossible for non-professional artists. Instead,
automatic preprocessing steps are taken to reduce the amount of irregular curves, which
are described in Section 4.2.4. However, note that the preprocessing steps are rudimentary
and conservative, and do not exhaustively remove all irregular curves. This is especially
the case for the types of overlapping curves depicted in Figure 4.15, where it is impossible
to unambiguously remove one of the overlapping curves.

4.2.4 Processing
The dataset described in this section consists of human-generated and synthetic vector
images, where the former are stored on disk in the SVG format. Before these human-
generated images can be used to train or evaluate the method, several preprocessing
steps have to be applied, which are described below. The images are processed in parallel
using GNU parallel 20220922 [Tange, 2022], with the processing steps implemented using
Python 3.8.12 [Python Core Team, 2019].

Curve correction

The first preprocessing steps are motivated by the statistics and irregularities mentioned
in Table 4.4 and Section 4.2.3. Since the line-art vectorization method is based on curves
instead of paths as graphical primitive, the vector images are converted into flat images
only consisting of curves. In order words, paths and other group structures are removed
from the vector files using Inkscape 1.0 [Inkscape Project, 2020].

The next preprocessing step is to remove irregular curves from the Tonari subset. These
include curves with a color that is not allowed by the clean animation frame schema
defined in Figure 2.10 and curves with a stroke width that is different from the constant
stroke width defined for the clean animation frames (i.e., 2px). As already established in
Table 4.5, the incorrectly colored curves are few in number, thus making them safe to
remove. The curves with irregular stroke width are larger in number, but are not part of
the semantic structure of the clean animation frame. Recall that they mostly include
white patch corrections or other indications as shown in Figures 4.13 and 4.17. Hence, it
is safe to remove these curves.

While it might seem visually counter-intuitive to remove white patches, as this renders
visible curves which the artist intended to hide, it makes sense when considering the
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underlying vector structure. Drawing white patches over curves only alters their appear-
ance once rasterized, but does not affect their vector representation. Furthermore, these
white patches are often drawn over only a part of a curve. Hence, it is challenging to
unambiguously derive the correct vector representation of only the curves (or, only the
parts of curves) which are intended to be shown. Therefore, white patches are simply
removed entirely to lay bare all curves and ensure equivalence between the raster and
vector representation of the image. A more conservative alternative would be to sidestep
the ambiguity and simply remove all curves which intersect with a white patch. This
alternative was not considered in this work as this would greatly reduce the already
scarce amount of training data.

Note that, as white patches make up a large portion of overlapping curves, removing
them also reduces this issue. However, there still remain overlapping curves of the type
depicted in Figure 4.15, which cannot be easily removed automatically.

For this preprocessing step, the svgelements 1.9.5 Olsen [2022] Python package is used.

Rasterization

It is important that all images in the dataset are available in vector format, which
enables them to be used to compute the loss for the model and to evaluate vectorization
methods. Furthermore, raster versions of these images are required as input data for the
vectorization methods. All subsets in the dataset provide raster image versions of the
vector images. However, in order to ensure consistency across the input images, the same
rasterization scheme is applied to all.

For the consistent rasterization, one option would be to use the rasterization algorithm
used by Clip Studio [CELSYS, Inc., 2021] for all images, since this would perfectly match
the clean animation frame images in production at Tonari Animation. However, this was
not done for two reasons: firstly, the rasterization algorithm used in Clip Studio could not
be determined and cannot easily be used programmatically. Secondly, using a different
rasterization algorithm shows that the model does not overfit to a specific rasterization
algorithm. Hence, the open source CairoSVG 2.5.2 [CourtBouillon, 2021] algorithm was
used for the rasterization. It was applied to all curves of all vector images with consistent
settings consisting of a uniform curve color, no fill color and round line endings. The
raster images are stored using the PNG format. Furthermore, note that these raster
images are not just important as input data, but also to compute the raster-based loss
mentioned in Section 4.1.1. The loss is computed using rasterized input images and the
model output rasterized using the differentiable rasterizer by Li et al. [2020]. Since the
differentiable rasterizer is already used for the model outputs, it would be possible to use
the same rasterizer for the inputs as well. However, CairoSVG [CourtBouillon, 2021] is
preferred for this purpose due to its significantly lower runtime. Moreover, Figure 4.18
shows that the rasterization output of CairoSVG [CourtBouillon, 2021] is visually similar
enough to the differentiable rasterizer [Li et al., 2020].
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(a) Rasterization using CairoSVG [Court-
Bouillon, 2021].

(b) Rasterization using the differentiable ras-
terizer by Li et al. [2020].

Figure 4.18: The example vector image of Figure 4.9 rasterized using the differentiable
rasterizer by Li et al. [2020] and CairoSVG CourtBouillon [2021] with the same settings.
Note that, even though the former is a differentiable rasterizer, the results are visually
similar, save for slightly thicker strokes.

An important decision of the rasterization algorithm is the resolution. While vector
images can be displayed at any resolution, the resolution of the raster images significantly
affects the output quality. Since the Tonari clean animation frames were drawn for a
720x405px resolution, it can be assumed that real-world clean animation frames on which
the vectorization method needs to be applied will be available at a similar resolution.
Hence, the resolution of the rasterization resolution is chosen as the highest exponential
of 2 smaller than the width of 720px, i.e., 512x288px. Choosing a resolution that is lower
than the target resolution both helps with preventing overfitting to the clean animation
frame resolution and trains the model to perform well at lower resolutions. Note that
the image is squared to show that the model does not overfit to the aspect ratio of
clean animation frames. All vector images in the dataset are rasterized consistently to
512x288px, preserving the aspect ratio with the larger of the width or height set to 512.

Another important decision during rasterization is the stroke width, which is usually
set using pixel values and therefore visually connected to the resolution. Due to the
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homogeneous nature of the stroke width of the processed curves, it can be freely set
to a consistent value for all vector images. The stroke width is rather arbitrarily set
to 0.512px for all images. This value is a bit lower than the stroke width used for the
Tonari clean animation frames, which is 2px for a resolution of 720x405px. This ensures
that the method does not overfit to the clean animation frame stroke width. Still, this
stroke width in combination with the resolution is large enough that the marked-curve
reconstruction model could in theory notice all curves.

The raster images are represented using the RGB color model, i.e., using 3 color channels
with interval [0, 255]. As described in Section 4.1.1, the channels are scaled by 255 to
produce channels with interval [0, 1]. Since all raster images are monochrome (even the
Tonari clean animation frames after the segmentation by color mentioned in Section 4.1.2),
it is also possible to use a single channel instead. However, as noted in Section 4.1.1,
both variants perform similarly, with the RGB variant allowing easier generalization to
different domains and model architectures.

Data Augmentation

After the preprocessing steps, data augmentation is performed on the human-generated
dataset. Data augmentation is another technique to synthetically increase the dataset
size and consists of applying meaningful transforms to existing data to derive new data.
An additional benefit of data augmentation is that it forces the model to be equivariant
to these transformations. Usual image processing data augmentation techniques are
based on raster images and cannot be used for this work, since the augmented raster
image needs to correspond to the original vector image. Hence, data augmentation
techniques are derived for and applied on vector images. The resulting new images are
then rasterized to produce corresponding transformed vector and raster images. Similar
to the synthetic dataset explained in Section 4.2.2, the data augmentation is performed
on-line, i.e., concurrently to the training process.

The data augmentation transformations are efficiently implemented as curve manipula-
tions using the svgpathtools 1.4.4 package [Roth, 2021]. They include curve mirroring,
rotation, reversion and dropout. All transformations are independently applied with a
probability of 50% per iteration. The transformations are displayed in Figure 4.19 and
explained in the following: Curve reversion reverses the orientation of the curves, i.e.,
swaps the order of the curve parameters, which affects only the vector structure and not
the visual representation. While curve mirroring flips curves according to the horizontal
axis of the image, curve rotation flips curves according to the diagonal of the image. These
augmentations make the model more robust to different curve orientations. On the other
hand, curve dropout removes a random percentage of curves lying between [0%, 90%]
from the image, which is a very important simulation of the input to the marked-curve
reconstruction model at various timesteps of the iterative curve reconstruction model.
It increases the robustness of the model to partially reconstructed images. Another
augmentation technique that was considered is translation, which is obviated by the
centering of the input image to the mark location.
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(a) Curve mirroring. (b) Curve rotation. (c) Curve reversion. (d) Curve dropout.

Figure 4.19: Various data augmentation transformations applied to the example image
displayed in Figure 4.8.

4.3 Evaluation
To answer the RQ1, this section evaluates the extent to which the line-art vectorization
method developed in this work and comparable state-of-the-art methods are able to
automatically vectorize clean animation frame line art. Prior works include the traditional
AutoTrace algorithm [Weber, 2002], the algorithm by Puhachov et al. [2021] combining
deep learning and heuristic optimization and two deep learning-based algorithms by
Egiazarian et al. [2020], Mo et al. [2021]. The evaluation is performed both qualitatively
and quantitatively on a held-out portion of the dataset detailed in Section 4.2. Great
care is taken to ensure reproducibility of the evaluation results. For this purpose,
Section 4.3.1 extensively describes the experimental setup. Section 4.3.2 lists limitations
of the experimental setup. Section 4.3.3 defines the metrics used for the quantitative
evaluation. The evaluation results are shown in Sections 4.3.4 and 4.3.5.

4.3.1 Setup
For the experimental setup, the dataset detailed in Section 4.2 is split into a training,
validation and test set according to standard practices. While the training split is used
to train the model, the validation split is used to evaluate different configurations during
the design of the method and the test split is held out to be used for the final evaluation
to measure overall performance. Table 4.6 gives a summary of these dataset splits.

Note that in Table 4.6, only Tonari clean animation frames are considered for the test
split, since the vectorization of clean animation frames is the objective of this work.
Hence, 10 random images from the Tonari subset are used for the test dataset. The
remaining dataset is split into a training set and a validation set, where the validation
split consists of a random sample of 10% of the high-quality human-generated subsets of
the dataset.

Since the test dataset used for the final evaluation is not publicly available, the results
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Split Tonari SketchBench TU Berlin Synthetic Total
Train 116 383 20000 4100 24599
Validation 13 42 55
Test 10 10

Table 4.6: Distribution of the dataset splits over the dataset subsets displayed in Table 4.3.
Note that the synthetic subset is newly generated for each epoch.

are tricky to reproduce. In order to increase the reproducibility of results, a separate
evaluation is conducted on a publicly available dataset. For this, a random selection
of 41 images of the SketchBench subset is used. In order to attempt to approximate
the results on the Tonari subset, these images are drawn from the freeform genre of the
dataset, since they resemble clean animation frames the most. Care is taken to achieve
an even distribution of artists. Furthermore, every version of the same reference image is
included to prevent information leak into the training set. This can be seen in Figure 4.20.
Importantly, this separate evaluation includes model training with all SketchBench test
dataset images removed from the training dataset, in order to prevent information leak
from the test dataset. Note that the Tonari subset remains a part of the training dataset,
making the training challenging to reproduce. Therefore, the trained model is provided
at https://github.com/nopperl/marked-lineart-vectorization.

Implementation

The experiments were conducted on a CentOS Linux release 7.9.2009 machine equipped
with an NVIDIA GeForce GTX 2080 Ti GPU (with 11 gigabyte of dedicated memory)
using the NVIDIA driver version 460.32.03. The algorithm is implemented in Python
3.8.12 [Python Core Team, 2019] with the PyTorch 1.8.1 [Paszke et al., 2019] deep learning
framework using Compute Unified Device Architecture (CUDA) 10.2 [NVIDIA Corpora-
tion, 2020] and CUDA Deep Neural Network (cuDNN) 7.0 [Chetlur et al., 2014] for GPU
acceleration. Torchvision 0.9.1 [TorchVision maintainers and contributors, 2016], Pillow
8.4 [Clark, 2015], scikit-image 0.18.1 [van der Walt et al., 2014] and ImageMagick 7.0.10
[ImageMagick Studio LLC, 2023] are used for efficient image processing. Throughout
the implementation of this work, the number 1234 is consistently used to seed random
number generators.

Care was taken to optimize the algorithm and evaluation scripts for computational
efficiency. The marked-curve reconstruction model is implemented using PyTorch routines
which are compatible with the Open Neural Network Exchange (ONNX) standard [Bai
et al., 2019]. This enables the PyTorch model to be converted to an ONNX model.
This model format is optimized for inference and provides a wide range of runtimes for
various computing environments. The ONNX model is deployed using ONNX Runtime
1.15.1 [ONNX Runtime developers, 2021] in order to vectorize the test set images for
the evaluation results. Note that the CUDA execution provider is used for this purpose,
as initial experiments showed it to be faster than the NVIDIA TensorRT or the central
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(a) Drawn by Branislav Mirkovic [Yan et al.,
2020].

(b) Drawn by Maria Hegedus [Yan et al.,
2020].

Figure 4.20: Two clean line-art vector images drawn by different artists based on the
rough reference sketch shown in Figure 4.9. Notice minor difference between the two
versions.

processing unit (CPU) execution provider. Table 4.7 shows that inference with the ONNX
model is significantly faster than with the PyTorch model.

Recall that the marked-curve reconstruction model consists of roughly 2M learnable
parameters, as described in Section 4.1.1. These model parameters are represented
using matrices of 32-bit floating point numbers [Institute of Electrical and Electronics
Engineers, 2019]. This is the default datatype of PyTorch and was assumed to be precise
enough. Furthermore, since the amount of parameters is small enough for the available
GPU memory, data types with a lower number of bits per number or automatic mixed
precision (AMP) [Micikevicius et al., 2018] are not considered.

Since an important aspect of this work is reproducibility, the code repository is open
sourced at https://github.com/nopperl/marked-lineart-vectorization.
It includes code to train and evaluate the model as well as code to reproduce statistics,
graphs and tables displayed in this work. Furthermore, it is accompanied with an
extensive readme on how to set up and reproduce the experiments, figures and tables in
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torch ONNX
median IQR median IQR

subset
tonari 26.06 38.76 9.49 13.18
sketchbench 46.93 36.16 15.83 16.14

Table 4.7: Comparison of the average runtime measured in seconds of vectorizing an
image in the Tonari and the SketchBench test set using the the ONNX and the PyTorch
[Paszke et al., 2019] respectively. It can be seen that the faster performance of the ONNX
model is statistically significant.

this work.

In order to ensure a reproducible setup, the training and evaluation is run inside a
Docker container [Merkel, 2014]. The image for this container can be reproduced by
building it according to the Dockerfile definition provided in the open source repository.
The base image used is pytorch/pytorch:1.8.1-cuda10.2-cudnn7-devel and
is available in the Docker Hub. As an alternative, an installation script for creating an
Anaconda [Anaconda, 2020] environment with all required dependencies is provided.

Further tools used for the evaluation include pandas 2.0.3 [McKinney, 2010] for data
manipulation, SciPy 1.11.1 [Virtanen et al., 2020] for statistics, Matplotlib 3.5.0 [Hunter,
2007] for plots and NumPy 1.21.4 [Harris et al., 2020] for CPU-based numerical compu-
tation.

Prior work

In addition to the line-art vectorization algorithm developed in this work, a range of
prior work is evaluated on the test datasets. These consist of state-of-the-art methods
with publicly available code, which is important for reproducibility. In detail, prior works
considered for the evaluation are:

• AutoTrace [Weber, 2002], which is a widely used traditional line-art image vector-
ization method, which fits the intended task well since it works on clean line-art
images and outputs bezier curves,

• The line-art image vectorization algorithm developed by Puhachov et al. [2021],
which combines deep-learning based keypoint extraction with a curve reconstruction
algorithm using poly-vectors and geometric flows,

• A deep learning-based algorithm trained using vector supervision by Egiazarian
et al. [2020] primarily to vectorize technical line drawings, and

• A deep learning-based line-art vectorization algorithm by Mo et al. [2021] trained
solely using raster supervision.
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Similar to the case for the marked-curve reconstruction model, Docker containers are used
for the inference of models of prior work. However, note that building a single Docker
image for both the marked-curve reconstruction model and prior work is impossible due
to a range of mutually conflicting dependencies. Hence, for the inference of prior work,
separate Dockerfiles are created for reproducibility and contributed to the respective code
repositories. Each prior work evaluation is performed in a separate Docker container.

A consistent, identical line-art image vectorization procedure is set up for all methods.
The test set line-art raster images are cleaned and segmented by color into grayscale
raster iamges. These images are input as-is into the respective methods. The outputs
are processed to SVG files of a consistent format with the aspect ratio given by the
input image, consisting of cubic bezier curves. Additionally, all output vector images
are rasterized using CairoSVG [CourtBouillon, 2021] with white background and at the
stroke width returned by the respective method. The vectorization pipeline is completely
rerun for each image, i.e., for each image, the algorithm is set up and the model is loaded
into memory from scratch, thereby avoiding potential unintended information leak and
to ensure consistent runtime measurements.

In general, the raster line-art image vectorization is performed using the default hyperpa-
rameters for all prior work. However, some necessary alterations are taken, which are
described in the following.

AutoTrace [Weber, 2002] By default, the AutoTrace algorithm [Weber, 2002] traces
outer lines of strokes. However, since clean animation frames use a constant stroke
width and do not contain holes within a stroke, outerline vectorization yields redundant
results and unnecessarily introduces potential errors. Hence, the AutoTrace algorithm is
instructed to perform centerline tracing using the -centerline argument. Furthermore,
the background color for input raster images is defined to be white to improve the curve
detection.

Deep Vectorization of Technical Line Drawings [Egiazarian et al., 2020] The
line drawing image vectorization algorithm developed by Egiazarian et al. [2020] processes
the input raster image into tiles to individually vectorize. During this process, the tiles
are repatched by calculating a scale which takes the number of curves identified in the
tiles into account. In some cases this scale was rounded to 0, causing a divison by zero.
The algorithm was altered to set the minimum of this repatch scale to 1.

Virtual Sketching [Mo et al., 2021] By default, the virtual sketching algorithm
introduced by Mo et al. [2021] generates 10 vector images given a single raster image,
with each vector image reproduction starting from a different random curve. The user is
supposed to choose the best image out of the 10. In order to stay consistent with other
works and to decrease the runtime, only one vector image is generated per raster input
image. Furthermore, the virtual sketching algorithm produces curves with a dynamic
stroke width according to a linear schedule. However, their SVG conversion script converts
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these stroke widths to a constant value. This parameterization is actually closer to the
intended output for this work and therefore maintained.

Polyvector Flow [Puhachov et al., 2021] Puhachov et al. [2021] developed and
evaluated their line-art image vectorization method using the proprietary Gurobi 9.1.1
library [Gurobi Optimization, LLC, 2023]. An academic license could be acquired for
this library, but was incompatible with version 9.1.1. Hence, version 9.1.2 is used for the
evaluation. Furthermore, as described in Chapter 3, the algorithm uses the polyline
SVG primitive to represent strokes, which is overparamterized for the images considered
in this work. This primitive is converted to a sequence of cubic bezier curves to stay
consistent with the ground truth test dataset and other methods. Just like other methods,
the comparison with the test data is performed at an individual curve level, thereby
discarding the sequence information. An alternative would be to compare the output
vector images with the ground truth vector images at a cubic bezier curve sequence level,
since the ground truth also includes cubic bezier curve sequences stored using the path
SVG primitive. However, in order to stay consistent with other methods and due to the
low number of curves per path in the ground truth (see Section 4.2.1), this is not done.

4.3.2 Limitations
It is important to keep in mind that this evaluation of the performance of clean line-art
image vectorization algorithms is limited by a range of factors. The most important
limiting factor is the data. The reproducibility of results is significantly affected by the
proprietary nature of the test dataset used for the evaluation. In order to alleviate this
issue and provide reproducible results, in addition to the Tonari clean animation frames,
a random subset of the SketchBench [Yan et al., 2020] clean line-art images is used as
additional test dataset for evaluation. Furthermore, note that while the marked-curve
reconstruction model was not trained on the Tonari test set, it was trained on data coming
from the same domain of clean animation frames. This is not the the case for other
methods, which were mostly trained on data from adjacent domains such as professional
sketches.

A further limiting factor is the experimental setup. As described in Section 4.3.1, each
method is run in its own Docker container. Hence, the execution environment is different
for all methods. The influence of the execution environment on the evaluation results
could not be determined.

Moreover, there are limitations that are specific to each prior work. For one, the deep line
drawing vectorization algorithm proposed by Egiazarian et al. [2020] includes a physics-
based algorithm which refines the curves reconstructed by the trained Transformer
[Vaswani et al., 2017] model, as described in Section 3.1. Figure 3.2 shows that it
significantly improves their result and can be considered integral to their method. However,
it is important to keep in mind that it is not differentiable. Furthermore, the same
algorithm could be applied to other methods to improve their results. This is not done,
thereby lending a theoretical advantage to the method by Egiazarian et al. [2020].
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Another limitation specific to AutoTrace [Weber, 2002] is that it is the only method not
run on a GPU. This is done since a GPU implementation of the algorithm could not be
found and it is unclear whether it can be efficiently implemented using General-purpose
computing on graphics processing units (GPGPU) in the first place. This limitation
could theoretically affect the runtime of the algorithm.

Furthermore, there are two limitations associated with the line-art vectorization algorithm
developed by Puhachov et al. [2021]. As described in Section 4.3.1, it depends on the
proprietary Gurobi library [Gurobi Optimization, LLC, 2023], which diminishes the
reproducibility of their results. Furthermore, note that the algorithm segfaults when
the number of black pixels is very low in an image. This happened for the lime color
segment of one image at 512px resolution in the Tonari test dataset, which is therefore
not considered in the evaluation.

4.3.3 Metrics
In order to quantify the extent to which the line-art vectorization method developed in
this work and related state-of-the-art methods are able to automatically vectorize clean
animation frames, consistent metrics are used to calculate the difference between the
ground truth (i.e., the gold standard) and the vectorization results. This section explains
the metrics used for this purpose.

In detail, the vectorization methods are given a raster image Xraster as input and produce
an output vector image Ŷ, where Ŷ = (ŷj)n

j=0 is a sequence of cubic bezier curves of
arbitrary length n and each cubic bezier curve ŷ = (ŷi)8

i=1 is a sequence of 8 numbers,
which represent the curve parameters (i.e., the start point, end point and two control
points as explained in Sections 2.2.1 and 4.1). The metrics measure how well Ŷ matches
the ground truth vector image Y corresponding to the ground truth input image Xraster,
where again Y = (yj)m

j=0 is a sequence of cubic bezier curves of length m.

IoU Based on the RQ1, an important characteristic of the output vector image is
its visual similarity to the ground truth. Following related works [Egiazarian et al.,
2020, Mo et al., 2021, Guo et al., 2019], this is measured using the IoU metric defined
in Equation (2.10). Recall that the IoU ranges from [0, 1], where 1 indicates a perfect
match and 0 a perfect miss. To calculate the confusion matrix for Equation (2.10) (see
Table 2.1), the rasterized output image Ŷraster and the raster input image Xraster are
binarized, with black pixels defined as true values and white pixels defined as false values.
Since the IoU is calculated using raster images, it follows that it measures only how well
the output bitmap overlays the input bitmap [Yan et al., 2020, Puhachov et al., 2021]
and does not consider the vector structure when comparing the images.

Curve error The second important characteristic when answering the RQ1 is that
the vector structure and primitives of the output image Ŷ match the ground truth
image Y. As explained in Sections 2.1 and 2.1.3, this is tricky to measure, as there are
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multiple semantically correct vector images that can be produced given a raster image as
input. For the evaluation, the structure of the ground truth images in the test dataset
is considered the gold standard, and vector outputs are evaluated by how close their
structure is to the ground truth.

Since the work discards hierarchical information of the vector image and represents vector
images as a single sequence of cubic bezier curves (see Section 4.2.1), the vector structure
of images is measured at the individual cubic bezier curve level. In order to measure
how close the cubic bezier curves of the output image Ŷ = (ŷj)n

j=0 are to the ones in
the ground truth image Y = (yj)m

j=0, the minimum error to the ground truth curves
minm

j=0 d(ŷ, yj) is calculated for each output curve ŷ. As there is no natural relation
between output and input curves, the curves with the minimal distance to each other
are assumed to match. The total curve error is then defined by Equation (4.2) as the
average of these individual curve errors, with lower values indicating a better fit to the
ground truth vector structure.

curve error(Ŷ, Y) = µn
i=0


m

min
j=0

d(ŷi, yj)


(4.2)

In detail, the function chosen to measure the individual curve error d(ŷ, y) is the sum of
absolute errors defined in Equation (4.3). It calculates the sum of the absolute difference
of each curve parameter |ŷi − yi|. There are two considerations for why this function is
chosen. Firstly, it is important to calculate the sum of curve parameter errors instead of
the mean, as is done in the MAE defined by Equation (2.8). This leads to the error scaling
linearly with errors in individual parameters |ŷi − yi|. In the MAE, the contribution of
individual parameter errors is diminished by taking the mean of all errors. As an example,
consider the two cubic bezier curves shown in Figure 4.21, in which all parameters match
except a single number. Even though nearly all parameters are identical, their visual
representation is completely different. This is not well reflected in the MAE, which is
0.375 for the example. On the other hand, the sum of absolute errors is 3, which is
exactly the absolute difference of the deviating number. A disadvantage of using the
sum instead of the mean is that it does not normalize for the sequence length, leading to
insufficient comparability of two sequences of varying length. However, since all curves
compared using this metric consist of 4 points (i.e., 8 numbers), this is of no further
concern.

d(ŷ, y) =
8�

i=0
|ŷi − yi| (4.3)

The second consideration for the error function chosen is that the absolute error is used
instead of the squared error. This is due to the fact that the squared error diminishes small
differences and exaggerates large differences, as described in Section 2.3.2. Furthermore,
the absolute value is more efficient to compute than the squared value.
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(a) A cubic bezier curve parameterized with
the start point (4, 5), end point (3, 1) and
control points (3, 2) and (1, 4).

(b) A cubic bezier curve parameterized with
the start point (4, 5), end point (3, 4) and
control points (3, 2) and (1, 4).

Figure 4.21: Two cubic bezier curves with identical parameters except the y-coordinate
of the end point. Note, that even though nearly all parameters are identical, the visual
representation of the curve is completely different.

As an aside, using the IoU as error function d(ŷ, yj) for the total curve error was
considered as an additional metric. However, this metric was ultimately not implemented
due to high computational requirements.

Curve ratio Recall that the output vector image Ŷ = (ŷj)n
j=0 and the ground truth

vector image Y = (yj)m
j=0 consist of n and m cubic bezier curves, respectively. Given

an output image Ŷ that visually resembles the ground truth Y, a simple measure of
matching vector structures is to consider the ratio number of output curves and ground
truth curves n/m ∈ [0, n]. In the case of perfectly matching vector structures, n = m and
n/m = 1. In the case of mismatching vector structures, n/m ̸= 1, with values closer to 1
indicating closer matches. Note that this metric should be considered in combination
with the IoU, since it is also possible for the number of curves to match for visually
dissimilar images.

Curve length The average curve length is an interesting property of vectorization
methods, as it shows the kind of primitives the methods are biased towards. The value is
calculated by evaluating the cubic bezier curves and measured in pixels. Note that there is
no semantic preference towards shorter or longer curves. Hence, it makes sense to consider
this information in combination with the average curve length in the ground truth listed
in Table 4.8. Values closer to the ground truth can be considered as representing a closer
match to the ground truth vector structure. However, the curve length alone is neither
sufficient nor necessary to conclude that.
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Curve distance An important quality of a line-art vector image is that there are no
unintended holes between curves. As explained in Section 2.2.1, unintended holes in
clean animation frames increase the difficulty of successive steps in the limited animation
process. Furthermore, since junctions can only be represented using coincident curves,
having holes in intended junctions can have an adverse effect on downstream applications
[Yan et al., 2020]. Therefore, following Yan et al. [2020], holes between curves are
measured using the the minimum distance of each curve endpoints to each other curve
endpoints. Similar to Yan et al. [2020], the minimum distances are aggregated by sum
instead of the average, since the average would benefit methods that erroneously output
short curves with small distances for visually continuous curves in the input image. In
detail, given an output vector image Ŷ = (ŷj)n

j=0, the metric is defined by Equation (4.4),
where E = [0, 1, 6, 7] defines the indices of the start and the end point parameters of a
curve. There exists a small number of outliers with a minimum distance larger than
50 pixels, which are ignored since they are too far removed from other curves to be
considered constituting holes within curve sequences.

µn
i=0

 n
min
j=0

�
k∈E

|ŷi
k − ŷj

k|
 (4.4)

Note that there are two limitations associated with this metric. Firstly, it unduly considers
some types of curves as having holes. Figure 4.22 shows that there exist curves which
are intentionally not connected to any other curve, but are placed in the close vicinity of
other curves. Secondly, the metric does not normalize for the sequence length, which
limits comparability since most methods output a different numbers of curves for the
same raster image. Hence, as with the curve-length metric, the curve distance has to
be considered together with the corresponding ground-truth metric in Table 4.8. The
closer the value is to the ground-truth baseline, the closer the vector structure can be
considered to match the ground truth, while values that are higher than the baseline
indicate more unintentional holes. For values that are smaller than the ground-truth
baseline, two interpretations can be considered: If the curve ratio n/m < 1, it follows
that the output vector image simply contains fewer holes in proportion to the curve
ratio. Otherwise, it shows that the method outputs fewer unintentional curves than the
ground truth, which is unlikely but not impossible, due to the irregularities described in
Section 4.2.3.

Runtime A metric only tangentially related to the correct vectorization of a raster
image, but still important for the application of the vectorization method is the runtime
required to produce a vector image. The metric is measured in seconds, with lower values
indicating faster algorithms. The runtime is measured using GNU Time [Keppel et al.,
2018] by adding the CPU time spent in the kernel and in the user mode. An alternative
would be to take the wall clock time, i.e., the total elapsed time between start and finish
of the process. However, this value is not used since it could be inconsistently influenced
by other processes blocking required resources.
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Figure 4.22: The clean animation frame shown in Figure 2.11 zoomed into the nose
region, which contains intentionally unconnected curves. Such curves include the black
curve representing the right nostril, the black curve representing the upper lip or the
black curve representing the crinkle below the left eye.

GPU Memory usage Another performance metric only tangentially related to the
correct vectorization of a raster image is the maximum amount of dedicated GPU memory
required by the process. This is important since dedicated GPU memory is often a
limiting factor. It is measured using the nvidia-smi tool in mebibyte (MiB), where
lower values indicate less memory usage. It is not measured for AutoTrace [Weber, 2002]
since it does not use the GPU.

Another important characteristic of output vector images is the number of overlapping
curves, which could be calculated similar to Section 4.2.1. However, since the calculation
of overlapping curves is computationally expensive, this metric was not considered.
Furthermore, overlapping curves are less of an issue than holes between curves, as
described in Section 1.3.

Each performance metric is calculated per curve, leading to a metric distribution over all
curves for each image in the test dataset. The two exceptions to this are the IoU and the
runtime, which are calculated per image, leading to a distribution over all images in the
test dataset. In any case, these distributions are represented using aggregate measures for
location and skew. Usually, the mean and standard deviation are used for this purpose.
However, these measures have low statistical efficiency when applied to non-normal data.
Figure 4.23 shows the distributions for the metrics of the line-art vectorization method
developed in this work applied to the image shown in Figure 4.1. It can be seen that the
distributions do not follow the normal distribution, as they are left-skewed and contain
outliers. This is corroborated by applying the Shapiro-Wilk test [Shapiro and Wilk,
1965] on the data, which yields a p-value lower than 0.05 for all distributions, thereby
rejecting the null hypothesis that the samples were drawn from the normal distribution.
Thus, the median and the IQR are chosen as robust alternatives for the location and
skew measure. The only exception is the IoU shown in Figure 4.23d, which is reasonably
normal distributed. Still, to keep metrics consistent, the median and IQR are used as
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aggregate measures for the IoU as well.

The metric distributions and other distributions are often compared against each other
in subsequent sections, e.g. when comparing differences in model performance. In order
to ascertain whether differences are actually statistically significant, the Wilcoxon-Mann-
Whitney U-Test [Wilcoxon, 1945, Mann and Whitney, 1947] is used. This test is used
because it is nonparametric and has relaxed assumptions of the underlying distribution.
The null hypothesis H0 is that the model metrics follow the same distribution. The
alternative hypothesis HA is that they follow different distributions. The primary interest
lies in the location of the distributions. The output of the statistical test is a p-value,
which indicates the probability of the observed sample given the assumption of H0 being
true. Under the assumption of a significance level of α = 95% = 0.95, if p < 1 − α = 0.05,
H0 is rejected and HA is accepted. This setup is used throughout the text when statistical
significance is mentioned.
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Figure 4.23: The distributions of all metrics calculated for the line-art image vectorization
method developed in this work. The top three metrics are calculated for the image shown
in Figure 4.1. The bottom three metrics are calculated for the entire Tonari test dataset.
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curves curve length curve distance
median IQR median IQR median IQR

tonari 512-0.512 205.00 423.00 2.56 0.79 1555.82 1832.41
1024-1.024 205.00 423.00 5.12 1.57 1725.81 3489.33

sketchbench 512-0.512 208.00 266.00 12.43 14.29 2355.22 1237.41
1024-1.024 208.00 266.00 24.85 28.57 2726.03 2330.49

Table 4.8: Selected metrics of the vector images in the test dataset. This information
can be used as baseline for the corresponding metrics in Table 4.9. Note that the ground
truth images are scaled to all evaluation resolutions to produce baseline values in all
resolutions for convenience.

4.3.4 Quantitative Evaluation
To answer the RQ1, this section provides a quantitative evaluation of the extent to which
the line-art vectorization method developed in this work and related state-of-the-art
methods are able to automatically vectorize clean animation frames. For this purpose,
the methods are applied to vectorize a test dataset consisting of these images. Using the
metrics described in Section 4.3.3, it is possible to ascertain and compare the results of
the methods.

autotrace polyvector-
flow

virtual-
sketching

deepvec-
techdraw

marked

IoU ↑ median 0.02 0.12 0.29 0.28 0.30
IQR 0.01 0.11 0.06 0.07 0.05

curve ratio median 0.23 1.35 0.30 0.19 0.43
IQR 0.11 1.08 0.14 0.13 0.15

curve length median 1.00 0.55 11.16 9.06 8.19
IQR 0.41 0.04 4.18 2.10 2.45

curve distance median 891.00 439.18 1442.91 917.50 1361.28
IQR 1535.00 1126.02 1782.80 974.06 1498.03

curve error ↓ median 20.37 14.05 20.08 17.58 16.76
IQR 19.15 14.64 9.12 10.03 5.36

runtime ↓ median 0.35 14.82 22.99 97.73 9.49
IQR 0.31 23.95 7.34 72.20 13.18

Table 4.9: Comparison of the performance of the marked line-art image vectorization
method and four prior works on the Tonari test subset at a resolution of 512px. If
possible, the result of the best and the second-best performing method for the metric is
indicated using bold and italics fonts, respectively.

Table 4.9 shows the performance of the following line-art image vectorization methods:
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autotrace polyvector-
flow

virtual-
sketching

deepvec-
techdraw

marked

IoU ↑ median 0.02 0.09 0.27 0.27 0.30
IQR 0.01 0.05 0.04 0.05 0.05

curve ratio median 1.01 3.47 1.00 0.71 1.36
IQR 0.83 1.35 0.77 0.46 0.72

curve length median 1.00 0.55 14.27 9.70 11.38
IQR 0.41 0.03 2.00 2.78 4.01

curve distance median 2359.00 863.19 2619.79 1533.96 2549.28
IQR 641.00 1179.56 482.01 387.16 958.53

curve error ↓ median 50.82 39.73 51.01 42.18 46.72
IQR 31.58 44.97 29.90 22.00 37.58

runtime ↓ median 0.43 25.41 28.00 121.91 15.83
IQR 0.20 24.78 3.87 36.39 16.14

Table 4.10: Comparison of the performance of the marked line-art image vectorization
method and four prior works on the SketchBench test subset at a resolution of 512px.

method memory ↓
polyvector-flow 1128
virtual-sketching 2760
deepvectechdraw 1935
marked 1008

Table 4.11: Maximum dedicated GPU memory measured in MiB required by the deep
learning-based line-art image vectorization methods.

• The method developed in this work, identified as marked,

• The traditional algorithm by Weber [2002], identified as autotrace,

• The vectorization algorithm combining deep learning and heuristic optimization by
Puhachov et al. [2021] identified as polyvector-flow,

• The deep learning-based algorithm using raster supervision by Mo et al. [2021],
identified as virtual-sketching, and

• The deep learning-based algorithm using vector supervision by Egiazarian et al.
[2020], identified by deepvectechdraw.

The methods are applied on the Tonari clean animation frame test dataset rasterized at a
resolution of 512px, while preserving the aspect ratio (see Section 4.2.4). The performance
is measured according using metrics explained in Section 4.3.3. Recall that the average
curve length and the average curve distance should be close to the ground truth values,
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which are listed in Table 4.8. The curve ratio is calculated with the number of curves
listed in the same table. For the remaining metrics, the results can be interpreted more
easily. While the arrow in the column name indicates whether larger or smaller numbers
represent better performance, the results of the best and the second-best performing
method on the metric are indicated using bold and italics fonts, respectively.

Table 4.9 shows that the line-art vectorization method developed in this work outputs
vector images that resemble the input raster image the closest. It achieves this with the
second-smallest curve error behind the method by Puhachov et al. [2021] and with a
curve distance that is close to the ground truth, just behind the method by Mo et al.
[2021]. Interestingly, it uses roughly half the curves of the ground truth, with curves
on average being nearly twice as long. Finally, it is also the fastest deep learning-based
method, while requiring the least amount of dedicated GPU memory (see Table 4.11).

Note that the traditional method by Weber [2002] significantly outperforms all other
methods on the runtime. On the other hand, it has the highest curve error and lowest
IoU, suggesting ill-fitting outputs. The method by Puhachov et al. [2021] also achieves a
surprisingly low IoU, but also the best curve error. Note, that the output images of this
method contain significantly more curves than other methods due to the overparamterezied
outputs mentioned in Section 4.3.1. This leads to a low curve distance, since most curves
are just splitted parts of a long polyline.

The other two deep learning-based methods by Mo et al. [2021], Egiazarian et al. [2020]
approach the IoU of the method developed in this work, albeit with a significantly higher
curve error and runtime. Additionally, the method by Egiazarian et al. [2020] outputs
the lowest amounts of curves, but the curves of the method by Mo et al. [2021] are still
longer on average, suggesting that this method produces more curves that do not fit the
ground truth curves.

Table 4.10 shows that similar results are maintained on the publicly available Sketch-
Bench test dataset, demonstrating reproducibility and generalizability of the evaluation.
Unsurprisingly, since the SketchBench images in general contain significantly fewer curves
than Tonari images (see Section 4.2.1), the curve ratio ends up significantly higher.

In general, recall that the IoU is in [0, 1]. Hence, most methods produce output images
that surprisingly do not cover the input image well. This suggests that no method
reproduces clean animation frames to the extent required by the task considered in this
work.
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Results with higher resolution input images

autotrace polyvector-
flow

virtual-
sketching

deepvec-
techdraw

marked

IoU ↑ median 0.01 0.67 0.49 0.52 0.31
IQR 0.00 0.05 0.04 0.14 0.04

curve ratio median 0.27 17.49 0.63 0.32 0.39
IQR 0.14 5.93 0.15 0.13 0.11

curve length median 1.41 0.50 14.81 17.39 15.75
IQR 0.41 0.02 2.17 4.80 4.83

curve distance median 954.00 5068.26 2999.09 1622.45 1745.01
IQR 2091.00 7893.17 4545.06 1669.95 2070.26

curve error ↓ median 31.99 33.99 31.52 28.81 34.76
IQR 25.92 38.28 20.31 12.80 18.17

runtime ↓ median 1.48 113.41 38.21 136.90 9.46
IQR 0.25 244.59 27.34 164.06 10.48

Table 4.12: The same comparison as Figure 4.24 with input images of resolution 1024px.

autotrace polyvector-
flow

virtual-
sketching

deepvec-
techdraw

marked

IoU ↑ median 0.01 0.74 0.50 0.58 0.30
IQR 0.00 0.04 0.03 0.07 0.03

curve ratio median 1.11 78.40 2.47 0.97 1.31
IQR 0.55 58.65 1.15 0.46 0.77

curve length median 1.41 0.52 16.99 26.60 23.40
IQR 0.00 0.01 1.72 11.05 7.68

curve distance median 2390.00 12440.78 7069.76 2540.16 2680.15
IQR 1291.00 5584.74 3125.29 1886.62 1642.49

curve error ↓ median 102.56 109.27 94.82 72.07 93.62
IQR 47.00 56.38 55.52 33.63 72.84

runtime ↓ median 1.84 280.16 56.01 300.92 15.73
IQR 0.44 132.90 17.81 186.96 13.91

Table 4.13: The same comparison as Table 4.12 on the SketchBench test dataset instead
of the Tonari test dataset.

The methods by Weber [2002], Puhachov et al. [2021] performed unusually low on the
evaluation in Table 4.9. A potential cause for this was identified as the low resolution of
input images at 512px. To ascertain this hypothesis, the evaluation was rerun with input
images rasterized at twice the resolution, i.e., 1024px, while preserving the aspect ratio.
Note that this does not affect the training of the marked-curve reconstruction model, i.e.
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the model trained on a resolution of 512px is used. Keep in mind that this is significantly
higher than the standard resolution of clean animation frames considered in this work
(see Section 4.2.1). Hence, performance increases of methods at this resolution will likely
not materialize when they are applied to real-world clean animation frames, which likely
will only be available at a lower resolution.

Table 4.12 shows the evaluation results on higher resolution. Note that the metrics
measured in pixels are affected by the increased resolution, i.e., given an identical vector
structure, a curve error of 20px at 512px resolution corresponds to 40px at 1024px
resolution. It is clear that all prior methods except AutoTrace [Weber, 2002] perform
significantly better than at 512px resolution. The method by Puhachov et al. [2021]
even reaches an IoU well over 0.5, i.e., its outputs cover more than half of the input
image correctly on average. This is dampened by a high curve error and curve distance,
indicating incorrect vector structures. The method by Egiazarian et al. [2020] performs
similarly well, with a lower IoU but better curve error and curve distance, seemingly
striking a different balance between visual resemblance and semantically correct vector
structures.

Interestingly, the metrics of the method developed in this work stay remarkably stable at
the increased resolution. This intriguing property is investigated in Figure 4.24, which
shows the differences of metrics at both resolution sizes. Note that, since metrics measured
in pixels scale linearly with the resolution size, they are normalized by the resolution
size, i.e., the values of metrics measured at the resolution of 1024px are divided by 2.
The method developed in this work is the only one for which metrics do not significantly
change depending on the input image resolution. This is especially remarkable for the
runtime, which significantly and predictably changes for all other methods. The only
exception to this is the curve error and the curve distance, which significantly increases
only for the method by Puhachov et al. [2021]. Since the increase in curve distance of this
method is especially drastic, it cannot be displayed in Figure 4.24e. Furthermore, the
IoU and curve ratio of AutoTrace [Weber, 2002] and the curve length of the method by
Egiazarian et al. [2020] do not change significantly. Also of interest is that the curve length
of the method by Mo et al. [2021] actually significantly decreases at high resolutions.

Table 4.13 and Figure 4.25 show that similar results are maintained on the SketchBench
test dataset, with the curve error of the method developed in this work slightly improving
against other methods.

One potential reason for this remarkable input image resolution invariance of the method
developed in this work is the selection of reconstruction curves using marks, which
explicitly forces the model to reconstruct curves which other methods might not have
detected. This can be the case for curves that are too thin or contain some spots at low
resolutions.

While other methods achieve significantly better results at the high resolution of 1024px,
it needs to be kept in mind that this resolution is higher than the target resolution of clean
animation frames by Tonari Animation. Hence, these high results might not materialize
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when used for real-world data. One potential way to maintain this good performance
of other methods with input images at lower resolutions is to apply super-resolution
models [Dong et al., 2016] to the input images. However, these models would need to be
successfully finetuned to high-resolution line-art images beforehand, which is an open
research question on its own.

An interesting question is if this trend continues at even lower resolutions. However,
this was not attempted, because resolutions that are significantly lower than 512px are
unreasonable small to still expect methods to extract semantically meaningful information
out of input images.
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Figure 4.24: Metrics for the line-art image vectorization methods evaluated on images
with 512px and 1024px resolution, respectively. Points denote the median of the metric,
while vertical bars denote the IQR. Horizontal lines show the trend of the metric. The
metrics for the method developed in this work are emphasized. Note that they are not
significantly affected by the image resolution and none decreases with lower resolutions.
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Figure 4.25: The same comparison as in Figure 4.24 on the SketchBench test dataset
instead of the Tonari test dataset.
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Results with binarized input images

Looking at the results with higher resolution input images, one can assume that the
cause for the bad performance of the methods by Weber [2002], Puhachov et al. [2021]
in Table 4.9 is that the raster input images are not clearly visible enough. One way
to improve this is to binarize the image with a low threshold for black pixels, which
accentuates curves. In order to investigate this assumption, the evaluation was rerun
using binarized input images. Table 4.14 and Figure 4.26 show that the curve ratio
significantly increases for the method by Puhachov et al. [2021] and the curve length
significantly increases for both methods, thus corroborating the assumption. This leads
to the IoU significantly improving for both methods, with the method by Puhachov et al.
[2021] even surpassing the method developed in this work. Furthermore, the method now
achieves the lowest curve error, while the improved curve error of AutoTrace [Weber,
2002] is still the worst value of all methods. On the other hand, the curve distance
significantly worsens for the method by Puhachov et al. [2021], showing that the low
value for non-binarized input images is just an artifact of output images containing a
small amount of curves in the first place.

autotrace polyvector-
flow

virtual-
sketching

deepvec-
techdraw

marked

IoU ↑ median 0.17 0.39 0.29 0.18 0.28
IQR 0.04 0.05 0.02 0.08 0.04

curve ratio median 0.27 7.32 0.40 0.13 0.44
IQR 0.11 2.01 0.13 0.09 0.22

curve length median 9.43 0.50 10.37 9.92 7.99
IQR 4.39 0.04 3.77 4.87 3.19

curve distance median 1230.46 2453.15 1723.93 593.07 1413.85
IQR 1188.55 3520.67 1926.67 498.94 1677.94

curve error ↓ median 19.81 16.26 19.77 20.52 17.68
IQR 11.03 9.61 11.32 30.64 5.68

runtime ↓ median 0.03 59.22 22.92 79.59 9.76
IQR 0.01 117.67 9.47 33.39 11.42

Table 4.14: The same comparison as Table 4.9 with binarization of images applied prior
to running the methods.

However, it can also be seen that binarization is not a silver bullet, as the method by
Egiazarian et al. [2020] is actively harmed by it. With binarized input images, it has a
significantly worse IoU and a worse curve error.

Interestingly, the changes in curve error are not statistically significant for any method.
The methods by Weber [2002], Puhachov et al. [2021] have a significantly higher runtime
than with non-binarized input images, further corroborating that they detect and recon-
struct more curves given binarized input images. Furthermore, the curve ratio of the
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method by Mo et al. [2021] significantly increases. Other than that, most metrics do not
change significantly.

Again, the metrics for the method developed in this work remain remarkably stable on
binarized and non-binarized input images, with none changing significantly. Together
with the similar result on resolution invariance, this shows that the method developed in
this work is more robust to thinner and potentially poorly visible curves, as it is forced
to reconstruct them when they are marked. Furthermore, the IoU and curve error are
only beaten by the method by Puhachov et al. [2021].

autotrace polyvector-
flow

virtual-
sketching

deepvec-
techdraw

marked

IoU ↑ median 0.16 0.41 0.29 0.18 0.30
IQR 0.03 0.02 0.01 0.07 0.05

curve ratio median 0.72 33.38 1.63 0.40 1.35
IQR 0.40 27.34 0.91 0.53 0.77

curve length median 20.42 0.52 13.89 12.32 11.91
IQR 8.20 0.02 1.39 2.91 3.24

curve distance median 1841.21 5900.94 3300.44 1130.48 2512.57
IQR 883.82 2639.11 1414.49 436.67 875.13

curve error ↓ median 40.02 55.18 48.54 57.22 46.66
IQR 12.44 28.78 24.91 24.86 36.51

runtime ↓ median 0.04 136.89 27.13 159.14 16.79
IQR 0.00 78.87 5.36 49.33 13.88

Table 4.15: The same comparison as Table 4.14 on the SketchBench test dataset instead
of the Tonari test dataset.

Table 4.15 and Figure 4.27 show that the results hold on the SketchBench test dataset,
with the exception of the curve error, which actually significantly worsens for the method
by Puhachov et al. [2021].

In general, while the results of the methods by Puhachov et al. [2021], Weber [2002]
significantly improve by using binarized input images, this also shows that these methods
depend on a high signal-to-noise ratio in the input image. As has been shown, this is easy
to achieve for clean line-art images considered in this work by simply binarizing them
using a high threshold. However, binarization is non-trivial for images from different
domains, which would be the input in a possible cross-domain extension of the line-art
vectorization method, as explained in Section 1.3. Under this assumption, methods that
are more robust to non-binarized images (and therefore to a lower signal-to-noise ratio)
can be considered more suited for a possible extension to cross-domain line-art image
vectorization. On the other hand, similar to the super-resolution case mentioned in
Section 4.3.4, this can also be solved by training a separate binarization model for the
specific domain, which could be applied before using the images as inputs to the methods
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by Puhachov et al. [2021], Weber [2002].
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Figure 4.26: Metrics for the line-art image vectorization methods evaluated on binarized
and non-binarized images with 512px resolution, respectively. Points denote the median
of the metric, while vertical bars denote the IQR. The metrics for the method developed in
this work are emphasized. Note that they are not significantly affected by the binarization
of images.
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Figure 4.27: The same comparison as in Figure 4.26 on the SketchBench test dataset
instead of the Tonari test dataset.
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Combining higher resolution and binarization

Since it has been established that higher resolution input images and binarized input
images significantly improve the results of the methods by Puhachov et al. [2021],
Weber [2002] while the method developed in this work remarkably maintains the same
performance, a natural investigation is how a combination of higher resolutions and
binarization affects the results.

autotrace polyvector-
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IoU ↑ median 0.26 0.57 0.44 0.34 0.28
IQR 0.05 0.11 0.02 0.12 0.05

curve ratio median 0.38 14.33 0.70 0.28 0.40
IQR 0.22 6.95 0.16 0.16 0.27

curve length median 18.35 0.56 13.77 17.09 18.67
IQR 6.26 0.05 3.70 4.19 6.07

curve distance median 1814.25 4781.61 3242.38 1369.08 1711.39
IQR 2470.04 8091.26 4562.22 1741.93 2943.68

curve error ↓ median 31.51 27.89 30.60 33.51 38.82
IQR 15.64 20.81 16.35 40.54 37.50

runtime ↓ median 0.05 110.56 39.43 205.20 9.34
IQR 0.01 246.80 26.99 201.60 11.36

Table 4.16: The same comparison as Table 4.9 with binarized input images of resolution
1024px.

Table 4.16 and Figure 4.28 show the results on binarized high-resolution input images.
Note that, again, the curve ratio for the method by Puhachov et al. [2021] is not shown
since it is too large in comparison with other methods. Unsurprisingly, it can be seen
that all prior methods significantly improve their results. However, some results are
significantly worse than with non-binarized high resolution input images. This is the case
for the IoU and curve error for the method by Egiazarian et al. [2020]. It also has a lower
curve ratio. This corroborates the finding in Section 4.3.4 that binarization of inputs
actively harms this method. The case for the IoU also holds for the method by Mo et al.
[2021], while the curve error and curve ratio for this method actually significantly improve.
The curve error and the curve ratio did not improve significantly with binarization alone.
This further shows that binarization is neither completely helpful nor harmful, but has a
complex interaction for this method.

Interestingly, the IoU for the method by Puhachov et al. [2021] is also significantly better
with non-binarized high-resolution input images than binarized high-resolution input
images, even though binarization alone also significantly improved the IoU. On the other
hand, the curve error is significantly better than for both non-binarized high-resolution
input images and binarized low-resolution input images. Furthermore, the curve ratio
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IoU ↑ median 0.24 0.64 0.43 0.36 0.28
IQR 0.04 0.06 0.01 0.08 0.03

curve ratio median 1.10 72.27 2.40 1.01 1.35
IQR 0.47 52.66 1.38 0.86 0.73

curve length median 30.38 0.58 17.73 19.18 24.24
IQR 12.68 0.04 1.71 3.21 8.15

curve distance median 2930.17 11656.21 7108.09 2541.64 2796.84
IQR 1978.72 5179.87 3309.66 1024.38 1840.35

curve error ↓ median 69.80 108.19 93.70 97.45 96.15
IQR 33.87 57.24 55.76 51.75 63.94

runtime ↓ median 0.07 313.40 54.40 338.88 16.99
IQR 0.02 204.41 17.86 166.38 11.69

Table 4.17: The same comparison as Table 4.16 on the SketchBench test dataset instead
of the Tonari test dataset.

is the highest for non-binarized high resolution input images. This shows that given
non-binarized high-resolution input images, the method produces a large number of curves
visually fitting the input image but not the ground truth vector structure. Therefore, this
suggests that for the output of this method, high-resolution input images are important
for the visual quality, while binarization combined with high resolution is important for
a semantically correct vector structure.

Binarized high-resolution input images seem to be the most helpful for AutoTrace [Weber,
2002]. The IoU, curve error, curve ratio and curve length of AutoTrace [Weber, 2002]
significantly improves not only against the non-binarized low-resolution case, but also
against the binarized low-resolution case. Recall that Section 4.3.4 showed that high
resolutions alone do not help this method at all. This result suggests that high resolutions
combined with binarization help the method achieve not only visual resemblance but
also matching vector structures.

The metrics for the method developed in this work again stay remarkably stable for all
combinations of input image resolutions and binarization. This finally confirms that the
method is robust to the input image resolution and binarization. Therefore, it can be
concluded that the method can be applied for non-binarized and/or low-resolution input
images, which increases its utility. However, note that this comes with the drawback
of the results being significantly worse than the best performing method for binarized
high-resolution input images.

Table 4.17 and Figure 4.29 show that the results are maintained for the SketchBench
test dataset. However, as is the case for binarized input images, the curve error for the
method by Puhachov et al. [2021] actually significantly worsens, further showing that
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the vector structures produced by this method do not match the ground truth for this
data domain. Furthermore, the curve error of the method developed by this work slightly
improves against other methods, as is the case for non-binarized high-resolution input
images (see Section 4.3.4). Finally, the curve distance actually significantly improves
for this model, which is the only statistically significant change in all combinations of
datasets, image resolutions and binarizations.
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Figure 4.28: Metrics for the line-art image vectorization methods evaluated on non-
binarized images with 512px resolution and binarized images with 1024px resolution,
respectively. Points denote the median of the metric, while vertical bars denote the IQR.
The metrics for the method developed in this work are emphasized. Note that they are
not significantly affected by the binarization and resolution of images.

For completeness, Figures A.1 to A.4 provide plots for missing combinations of the
binarization and resolution of input images. While Figures A.1 and A.2 show how
increasing the input image resolution affects results for binarized input images, Figures A.3
and A.4 show how binarization affects results of high resolution input images. Note that
on the SketchBench test dataset, there are two metrics that significantly change for the
method developed in this work. Firstly, the curve distance is significantly better on
high-resolution binarized input images than on low-resolution binarized input images.
Secondly, the IoU is significantly worse on binarized high-resolution input images than on
non-binarized high-resolution input images. This may suggest that given input images
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Figure 4.29: The same comparison as in Figure 4.28 on the SketchBench test dataset
instead of the Tonari test dataset.

that are both binarized and in high resolution, the model outputs images with worse
visual similarity but better semantic correctness of the vector structure. However, since
this only concerns a single metric each for one test dataset only, the validity of this
conclusion is limited.
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4.3.5 Qualitative Evaluation
While the main results of the evaluation are detailed in Section 4.3.4, this section shows
some visual results to exemplify the results of the quantitative evaluation.

Figure 4.30 shows the best output of each method for the clean animation frame by
Tonari Animation shown in Figure 4.1. The input image has a resolution of 512px. Note
that the input image is segmented by color, with each segment vectorized individually as
a grayscale image and merged afterwards. Furthermore, the segments are binarized for
the methods by Weber [2002], Puhachov et al. [2021], Mo et al. [2021], since that leads
to higher-quality outputs.

It can be seen that most methods produce a result that is visually similar to the input
raster image, with the exception of the method by Egiazarian et al. [2020]. However, the
main objective is to not only achieve visual similarity but also match the semantically
correct vector structure of the ground truth vector image associated with the input raster
image. Obviously, this is tricky to visualize. Following Guo et al. [2019], Mo et al. [2021],
Puhachov et al. [2021], the vector structure of output images is shown in Figure 4.31
with curves represented using mutually exclusive colors, similar to Figure 4.7. Recall that
an indication for a semantically meaningful vector structure is that visually continuous
curves are stored using a single curve. This can be investigated for each method in
Figure 4.31, by checking if visually continuous curves have a constant color (i.e., are
represented using a single curve). Additionally, the curve structure should match the one
in Figure 4.31a.

Figure 4.31 shows that most methods produce a vector structure that is somewhat similar
to the ground truth, with varying quality and the methods by Egiazarian et al. [2020],
Mo et al. [2021] not performing favourably. The exception is the method by Puhachov
et al. [2021], which produces curves that are significantly smaller than the ground truth.
This is due to the fact that its output primitive does not match the primitives used
in the ground truth and is therefore split into a sequence of cubic bezier curves (see
Section 4.3.1). In Figure 4.32, it can be seen that the vector structure of the output
of this method before being split into cubic bezier curves contains curves that can be
considered more semantically meaningful. However, they are significantly longer than the
ground truth, confirming the mismatch between the primitives used by this method and
the ground truth. Furthermore, the over-parameterization of primitives can be especially
seen on curves that are supposed to be rather straight, e.g. the contours of the blade.

While Figure 4.31 seemingly shows that the vector structure produced by the methods
match the ground truth, zooming into details of the image proves the contrary. All
methods share the property that results appear to be visually correct at first glance,
but looking into details reveals significant deficiencies. The method developed in this
work arguably produces the most closely matching vector structure, with most curves
faithfully reconstructed following their appearance. On the other hand, curves are often
slightly too short, leaving undesirable holes.

The method by Mo et al. [2021] is similar to the method developed in this work in that

118



4.3. Evaluation

(a) Input raster image. (b) Output of the developed method.

(c) Output of AutoTrace [Weber, 2002]. (d) Output of Egiazarian et al. [2020].

(e) Output of Puhachov et al. [2021]. (f) Output of Mo et al. [2021].

Figure 4.30: The output vector image given a Tonari clean animation frame in raster
format as input of each line-art image vectorization method studied in this work.

it faithfully reconstructs curves, but fails to preserve the constant stroke width. The
methods by Weber [2002], Puhachov et al. [2021] do not faithfully reconstruct curves,
with multiple curves often merged into a single curve or altogether missing. This leads
to a visually clean output – even without a significant amount of holes in the case of
AutoTrace [Weber, 2002]. However, the produced vector structure is ultimately far from
the ground truth in Figure 4.33a.
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(a) Ground truth. (b) Output of the developed method.

(c) Output of AutoTrace [Weber, 2002]. (d) Output of Egiazarian et al. [2020].

(e) Output of Puhachov et al. [2021]. (f) Output of Mo et al. [2021].

Figure 4.31: The vector structure behind the images in Figure 4.30 revealed by repre-
senting each curve with a mutually exclusive color.
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Figure 4.32: The output of [Puhachov et al., 2021] in Figure 4.31e without splitting the
output primitive into cubic bezier curves.
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(a) Ground truth. (b) Output of the developed method.

(c) Output of AutoTrace [Weber, 2002]. (d) Output of Egiazarian et al. [2020].

(e) Output of Puhachov et al. [2021]. (f) Output of Mo et al. [2021].

Figure 4.33: The vector structure images in Figure 4.31 at high zoom level to reveal
differences in the details.
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(a) Output given a non-binarized standard-
resolution input image.

(b) Output given a non-binarized high-
resolution input image.

(c) Output given a binarized standard-
resolution input image.

(d) Output given a binarized high-resolution
input image.

Figure 4.34: The outputs of the method developed in this work given different versions of
the input image shown in Figure 4.1a. Note that the outputs stay remarkably consistent
given changing input images.

Robustness to the input image

Recall that the results of the methods by Puhachov et al. [2021], Mo et al. [2021], Weber
[2002] were produced given a binarized version of the input image shown in Figure 4.1a.
This is due to the fact that results on non-binarized input images were of considerably
worse quality. In contrast, the method developed in this work is remarkably robust to the
input image with respect to binarization and resolution, as Figure 4.34 shows. On the
other hand, Figure 4.35 shows how brittle prior work is to non-binarized input images at
the standard resolution considered in this work. While Figure 4.35 only shows examples
of the method by Puhachov et al. [2021], the other methods similarly break down for
non-binarized input images.
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(a) Output given a non-binarized standard-
resolution input image.

(b) Output given a non-binarized high-
resolution input image.

(c) Output given a binarized standard-
resolution input image.

(d) Output given a binarized high-resolution
input image.

Figure 4.35: The outputs of the method by Puhachov et al. [2021] given different versions
of the input image shown in Figure 4.1a.
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(a) Input image. (b) Output of the developed method.

(c) Output of AutoTrace [Weber, 2002]. (d) Output of Puhachov et al. [2021].

Figure 4.36: Outputs of the method developed in this work and the methods by Weber
[2002], Puhachov et al. [2021] on an input image region containing high-curvature shapes
such as circles. It can be seen that every method struggles to reproduce the circle with
high curvature.

Low curvature

Both the method developed in this work as well as the methods by Weber [2002],
Puhachov et al. [2021] produce the best results for shapes with a low curvature, which
make up a large part of the images. The methods by Weber [2002], Puhachov et al. [2021]
additionally produce their best results on longer curves. Figure 4.36 shows outputs for
these methods on an input image with high curvature curves in the eye region. Note
that again, the input was binarized for the methods by Weber [2002], Puhachov et al.
[2021]. It can be seen in the eye region that the methods struggle to reconstruct the
nearly perfect circle in the ground truth and instead approximate it by a sequence of
low-curvature curves. As an aside, it is impossible to represent a perfect circle using a
cubic bezier curve, but as the ground truth shows, it is possible to approximate a perfect
circle in a way that is visually indistinguishable from it [Dokken et al., 1990].

Catastrophic failure

It is important to mention that there are cases where the method developed in this work
catastrophically fails. This happens for one Tonari clean animation frame in the test
dataset, which proves particularly challenging for all methods, as Figure 4.37 shows. It
seems that the image contains too many small and detailed curves for methods to be able
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(a) Input raster image. (b) Output of the developed method.

(c) Output of AutoTrace [Weber, 2002]. (d) Output of Egiazarian et al. [2020].

(e) Output of Puhachov et al. [2021]. (f) Output of Mo et al. [2021].

Figure 4.37: The output images of the methods studied in this work given the challenging
input example. Note that all methods fail reconstructing the input image, with the
method by Mo et al. [2021] performing the best.

to reconstruct it properly at the standard resolution. It can be seen that the methods by
Egiazarian et al. [2020], Weber [2002], Puhachov et al. [2021] simply ignore large parts of
the detailed curves, arguably leading to a cleaner image than the output image of the
method developed in this work. The method by Mo et al. [2021] seemingly performs the
best for this challenging input image.

Two reasons can be identified which lead to this catastrophic failure. Firstly, the marked-
curve reconstruction model was trained on a considerably small dataset and thus likely
did not encounter an input image containing curves similar to the one in this challenging
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example. Secondly, a disadvantage of the formulation of the iterative curve reconstruction
algorithm (see Algorithm 4.1) is that it keeps invoking the reconstructing curves until a
specific number of black pixels are covered, even if the output curves are not meaningful
anymore. The output could likely be improved by stopping the generation earlier or
manually removing the superfluous curves. However, implementing such a quick fix
automatically in the algorithm would harm generalization of the method.

For completeness, Figures A.5 to A.7 show further results of the methods studied in this
work on both the Tonari and the SketchBench test dataset. Note that, again, the input
images are binarized for the methods by Puhachov et al. [2021], Weber [2002], Mo et al.
[2021].
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4.4 Ablation
This section provides additional insights and context for the developed line-art image
vectorization method. Section 4.4.2 describes model architectures explored early in
the work and derives the chronology to the current marked-curve reconstruction model.
Additionally, Section 4.4.3 provides an ablation study of different configurations of the
marked-curve reconstruction model.

Note that, similar to the experiments in Section 4.3, all models are trained with the
number 1234 used to seed random number generators.

4.4.1 Setup and Limitations
Due to computational efficiency and experiment design reasons, there are significant
differences of the model comparisons in this section to Section 4.3.4. First, unless specified
differently, the relevant metric used to compare models is the single curve IoU, i.e., the
IoU between a single randomly chosen curve and its reconstruction by the model. Second,
the metric is calculated on the validation dataset. Both of these decisions greatly reduce
the runtime needed for metric computation, thereby enabling it to be run alongside
training. Furthermore, since the model is applied iteratively on single curves each, the
single curve IoU serves as a passable approximation of model performance. Additionally,
this serves to prevent a leak of the test dataset into model training by it being used to
guide the model design process.

Keep in mind that the models were trained on a rapidly changing codebase, severely
limiting the generalizability of comparisons. In particular, metrics such as the single
curve IoU are not comparable between changed model architectures.

Note that this section provides model comparisons as a post-hoc artifact of the model
architecture design chronology. Thus, not all possible permutations of configurations are
tried. Furthermore, of the permutations that were tried, only a small, selected amount of
results is shown, as a lot more training runs were executed.

4.4.2 Earlier Architectures
This section gives the chronology of earlier architectures explored during the work on
this thesis. This provides an indication of which approaches turned out to be successful
and some indications on how the architecture could be improved.

Note that in general, the output images are displayed in raster format in this section.

Line-art raster image autoencoder

Initially, in order to evaluate the feasibility of reconstructing line-art images, a naive
experiment of training a raster line-art image autoencoder (see Section 2.3.6) was
conducted. Loosely motivated by the transferability of hyperparameters of simpler
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models to more complex models [Yang et al., 2021], this experiment also served as a
starting point for the setting of hyperparameters in the model design phase.

The encoder consists of five stacked convolutional layers with a kernel size of 3, a stride
of 2, padding of 1 and a filter size starting at 32 and doubling until reaching 512. The
length of the latent vector is set to 8 to simulate the 8 control point parameters of a cubic
bezier curve. The decoder is symmetrical to the encoder and consists of 5 transposed
convolutional layers. All layers except the latent vector layer use the ReLU activation
function, with the former using tanh (see Equation (2.2)). The autoencoder is trained on
raster images of 64x64px resolution using the RGB color model consisting of up to 15
synthetically generated random black lines and white background with a batch size of
144 images. At each training iteration, a new batch of images is synthesized.

Of primary interest in this experiment was to determine a suitable learning rate and loss.
With a learning rate of η = 5 ∗ 10−4 and the dice loss defined in Equation (2.16), the
model quickly converges to reconstruct the lines with almost perfect accuracy after just 8
epochs. Figures 4.38d and 4.39c show the resulting images after training to convergence.
Keep in mind that it did not see any image more than once, hence it likely did not overfit
to the training data.

Other than the dice loss, models were also trained using the Huber loss defined in
Equation (2.12) and the binary cross-entropy loss defined in Equation (2.14). With the
Huber loss, the model converges the fastest, but lands in a local minimum of disregarding
the color and reconstructing with significant smear and inconsistencies. Models trained
with the binary cross-entropy loss perform almost as well as ones trained using the dice
loss, but take more iterations to converge. Hence, the dice loss was chosen as starting
point for successive experiments.

Other than losses and learning rates, interesting findings include that the model diverges
without batch normalization [Ioffe and Szegedy, 2015]. Furthermore, setting the activation
function of the latent layer to ReLU allowed the model to converge at a higher learning
rate of η = 5 ∗ 10−3.

Furthermore, there was an attempt to train a VAE by adding a KL divergence [Kullback
and Leibler, 1951] loss to the dice loss. The results in Figure 4.40 show that the model
converged but to a worse quality than without the KL loss. Similar results were obtained
for the binary cross-entropy and Huber loss. Since there is no need to sample outputs
from the latent space, the VAE formulation can be safely ignored.

Im2Vec

Im2Vec [Reddy, 2021] was chosen as initial model architecture for experiments on line-art
image vectorization because it was a recent method with publicly available code, model
and dataset. Recall that Im2Vec is an encoder-decoder architecture, which is depicted in
Figure 4.41. The raster input image is encoded to a latent vector of length 128 using
a CNN. A RNN is used to produce a predetermined number of latent vectors for each
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(a) The input images.

(b) The output images using Huber loss.

(c) The output images using binary cross-entropy loss.

(d) The output images using Dice loss.

Figure 4.38: Output images of the autoencoder models trained on random line images
with different loss functions.
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Figure 4.39: Trends for the losses used to train autoencoders.
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(a) The input images.

(b) The output images.

Figure 4.40: A VAE trained on random line-art raster images.

Encoder

raster input
global

latent code

path
latent codes

vector
output rasterized output

RNN Compositing

Path Decoder Rasterizer

Path Decoder Rasterizer

Path Decoder Rasterizer

sampling

latent code

Path Decoder

Path Decoder

sampled
control points

deformed
control points decoded Bézier path 

(circular 1D CNN)

adaptive
resampler

(circular 1D CNN)

decoder

Figure 4.41: The architecture of Im2Vec [Reddy, 2021].

output shape. These path latent vectors are then decoded into vector primitives using
1-dimensional convolutional layers. Figures 4.42 and 4.43 show the provided results for
the publicly available model on a test dataset consisting of emoji glyphs. Note that,
in general, input images and output images are shown as a sequence of a batch. An
attempt was made to reproduce these results using the publicly available code and dataset.
However, the reproduction converged to a different local minimum of disregarding the
green eyes, which can be seen in Figures 4.44 and 4.45.

Reproduction of Im2Vec [Reddy, 2021] was achieved by disabling the adaptive resampler.
Note that Im2Vec uses closed sequences of bezier curves with a uniform fill color as
primitives to reconstruct images. The control points for these bezier curve are sampled
with a constant interval. The model contains an adaptive resampler as additional step,
which trains the model to change the interval of these control points depending on the
local structure of input shapes. In other words, it trains the model to use quadratic
bezier curves or even lines for simple shapes, while using cubic bezier curves for complex
shapes. Figures 4.46 and 4.47 show that the results with the adaptive resampler disabled
are very close to the input images, with a smooth loss progression. Hence, the adaptive
resampler was discarded from all further runs. The configuration for this reproduction is
provided in the open source repository of this work.
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(b) The validation loss.

Figure 4.42: The training and validation loss of the model provided by Im2Vec [Reddy,
2021].

(a) The input images.

(b) The output images.

Figure 4.43: The test input images and the reconstructed output images of the model
provided by Im2Vec [Reddy, 2021].
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Figure 4.44: The training and validation loss of the attempted reproduction of [Reddy,
2021] using its provided code and dataset.
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(a) The input images.

(b) The output images.

Figure 4.45: The test input images and the reconstructed output images of the attempted
reproduction of [Reddy, 2021] using its provided code and dataset.
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Figure 4.46: The training and validation loss of the attempted reproduction of [Reddy,
2021] using its provided code and dataset.

(a) The input images.

(b) The output images.

Figure 4.47: The test input images and the reconstructed output image of the attempted
reproduction of [Reddy, 2021] using its provided code and dataset.
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(a) The input images. (b) The output images.

Figure 4.48: The input images and the reconstructed output images of [Reddy, 2021]
trained on images with a single cubic bezier curve.

(a) The input images. (b) The output images.

Figure 4.49: The input images and the reconstructed output images of [Reddy, 2021]
restricted to use quadratic bezier curves and trained on images with a single cubic bezier
curve.

With the Im2Vec [Reddy, 2021] model reproduced, the next step was to train it on clean
line-art images. As Figure 3.1 shows, this could not be achieved as the model diverged.
It is safe to assume that the model architecture is not suited for a large number of output
primitives. Hence, the complexity was reduced and the model was trained to reconstruct
a single quadratic bezier curve instead. As Figure 4.48 shows, it successfully converged
to reproduce the curve. It is important to note that the training dataset consisted only
of 2 images, intentionally letting the model overfit to it.

Notice that the reconstructed curves in Figure 4.48 do not exhibit constant stroke width.
This is due to the fact that the Im2Vec model was not able to learn to reconstruct a single
curve using a single bezier curve only and instead represents this curve using a filled
sequence of multiple bezier curves. To prevent this over-parameterization, the output
primitive was restricted to be a single quadratic bezier curve. Figure 4.49 shows that
it was possible to train such a model, although the curve end points do not sufficiently
match the input shapes.

Since the model architecture with output primitives restricted to quadratic bezier curves
worked, the model was scaled up to reconstruct images containing multiple curves instead
of a single curve. Again, the model is trained on a small dataset to intentionally let it
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(a) The input images. (b) The output images.

Figure 4.50: The test input images and the reconstructed output images of [Reddy, 2021]
restricted to use quadratic bezier curves and trained on images with multiple cubic bezier
curves.

(a) The input images. (b) The output images.

Figure 4.51: The test input images and the reconstructed output images of [Reddy, 2021]
restricted to use quadratic bezier curves and trained without overfitting on images with
multiple random cubic bezier curve.
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Figure 4.52: The train and validation loss trends for the model shown in Figure 4.51.
The similarity of the validation loss to the train loss shows that the model did not overfit
to the training data.

overfit to the data. Figure 4.50 shows that it is possible to scale up the model to multiple
curves.

Since a model was successfully overfit to reproduce images with multiple quadratic bezier
curves, the next step was to ascertain whether this is still possible without overfitting.
For this purpose, a model was trained on 500 images, which produces passable results, as
Figures 4.51 and 4.52 show.
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Figure 4.53: Output of a model trained to reconstruct input image containing 25 quadratic
bezier curves.

Iterative single curve reconstruction model

Since the custom model architecture loosely based on Im2Vec [Reddy, 2021] developed in
Section 4.4.2 was successfully used to train a model to reconstruct multiple randomly
generated quadratic bezier curves, the next step is to scale this up to the roughly 1,000
curves required in a clean animation frame. However, training a model to output more
than 15 curves proved unsuccessful. Figure 4.53 shows the results of a model trained on
25 curves. It is clear that the architecture is not suited for such a high number of output
curves, since the output is generated in a single invocation using a RNN [Hochreiter,
1991, Bengio et al., 1994]. Hence, the architecture was changed to an iterative model,
i.e., a model that only generates a single curve per invocation.

This is done by changing the output ŷ to consist only of the parameters of a single curve.
The input to the model is a raster image X displaying multiple random curves and a
raster image displaying already reconstructed curves, also called canvas image. Given
this input, the model is trained to output curve parameters ŷ that match the ground
truth curve y. The ground truth curve is defined as the remaining curve that fits the
generated curve the most. This iterative model can then be used to vectorize an entire
image consisting of line art by iteratively invoking it to reconstruct a remaining curve
until none are left.

The first step is to reproduce the result of the full model on input images of 15 curves
using the iterative model. Once that works, it should be easy to scale up to more than
15 curves. This reproduction proved tricky. Figure 4.54 shows the results of an iterative
model overfit to a small training dataset. Note that input and output images are displayed
as a sequence of 4 images of 64x64px resolution, respectively. As in Figure 4.41, the
input images of this section are raster images containing curves. In contrast, the output
images now display the canvas image using black curves and the curve output by the
model ŷ as a blue curve. Note that this represents only a single invocation of the model.

While the overfitted model produced a perfect reconstruction, training a model without
overfitting on quadratic bezier curves was unsuccessful. Figure 4.55 shows the output of
the best attempt after 3,000 iterations. Note that Figure 4.55 shows 16 input and output
images of resolution 64x64px in 2 rows of 8 images each, respectively. It can be seen that
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(a) Input images. (b) Output images (canvas images in black).

Figure 4.54: The output of the iterative model overfit to a small dataset of images
consisting of quadratic bezier curves.

(a) Input images. (b) Output images (canvas images in black).

Figure 4.55: The output of the iterative model trained without overfitting on images
consisting of quadratic bezier curves.

the only curve that is correctly reconstructed is one that resembles a straight line.

Since the iterative models trained without overfitting produced only straight lines correctly,
the task was simplified to reconstruct lines instead of quadratic bezier curves. Figure 4.56
shows that a model could be somewhat successfully trained to achieve this. Additionally,
Figure 4.57 shows the smooth progression of both the loss and the single curve IoU used
to measure the model during training. Furthermore, the progression on the validation
set looks similar to the training set, showing that the model did not overfit.

There are some changes to the model architecture which enabled the result in Figures 4.56
and 4.57. Most importantly, the loss was changed. It now consists of a combination
of a raster-based and a vector-based loss, with the raster-based loss consisting of the
dice and binary cross-entropy loss as motivated in Section 4.4.2 and the vector-based
loss consisting of the MSE between the generated curve ŷ and the ground truth curve
ŷ. Additionally, as motivated by Section 4.4.2, the KL divergence loss was removed
as it harmed results and served no purpose for this method. Moreover, the Im2Vec
[Reddy, 2021] architecture calculates the loss at multiple resolutions of the input and
the output image, apparently to derive a stronger gradient signal. However, this did not
change results in the conducted experiments and was removed due to high computational
requirements. Finally, in addition to the CNN encoder of the input and the canvas image,
a Transformer [Vaswani et al., 2017] model was added to encode the vector paths of the
canvas image.

One remaining issue of the models shown in Figure 4.56 is that the reconstructed
primitives are often too short. This was improved by two further changes to the model
architecture: Firstly the Transformer-based [Vaswani et al., 2017] path encoder was
removed. Secondly, the ground truth target curve y was fixed to be the longest curve
inside the image, which led to a smoother loss landscape. It seems that structuring the

137



4. Animation Line-art Vectorization

(a) Input images. (b) Output images (canvas images in black).

Figure 4.56: The output of the iterative model trained without overfitting on images
consisting of lines.
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(d) Validation single curve IoU.

Figure 4.57: Loss and single curve IoU for the iterative model trained without overfitting
on images consisting of lines.
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(a) Input images. (b) Output images (canvas images in black).

Figure 4.58: The output of the iterative model trained on images consisting of lines.

(a) Input images. (b) Output images (canvas images in black).

Figure 4.59: The output of the iterative model trained on images consisting of lines with
a resolution of 128x128px.

(a) Input images. (b) Output images (canvas images in black).

Figure 4.60: The output of the iterative model trained without overfitting on images
consisting of quadratic bezier curves.

target this way is necessary, as the model does not have sufficient information on which
curve to reconstruct otherwise.

Figure 4.58 shows that a model trained using the improved architecture generated
primitives that fit the length of the ground truth. This architecture was further scaled
up to a higher resolution of 128x128px, as shown in Figure 4.59. Note that the model
architecture was still not stable enough to be properly scaled up to quadratic bezier
curves, as Figure 4.60 shows.

After the model being somewhat successfully trained, it was evaluated on reconstructing
a whole image. In other words, an algorithm starts with an empty canvas image and
iteratively applies the single curve reconstruction model to reconstruct the longest
remaining curve in the input image until none are left. Figure 4.61 shows this process for
the case of lines. As can be seen, the image consisting of 4 random lines is reconstructed
with some quality, albeit not perfectly. Figure 4.62 shows the same for a model trained on
quadratic bezier curves. While the model outputs look promising, there are also frequent
failure cases for both line and quadratic bezier curve inputs, one of which is shown in
Figure 4.62. This may be due to multiple factors, with the main cause assumed to be
that the information on which curve to reproduce is too ambiguous for the model, which
harms the training process.
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(a) Input. (b) Iteration 1. (c) Iteration 2. (d) Iteration 3. (e) Result.

Figure 4.61: The vectorization process of the single curve reconstruction model on an
input image consisting of 4 random lines. The model is invoked sequentially until the
number of output curves reaches 4. At each time step, the previously reconstructed
curves serve as canvas image.

(a) Input image 1. (b) Final result 1. (c) Input image 2. (d) Final result 2.

Figure 4.62: Two example results of the iterative model applied to images consisting of
quadratic bezier curves. The first reconstruction succeeds, while the second one fails.

Marked iterative model

As Figures 4.59 and 4.60 show, was possible to train an iterative model for lines using the
designed architecture, but the results were not good enough to scale it up to quadratic -
let alone cubic - bezier curves. Hence, the architecture was changed in order to reduce
the complexity of the task for the model. The reduced task of the model is to reconstruct
a single curve, with explicit information about the curve given to the model. This is
in contrast to the model in Section 4.4.2, where the information about which curve
to reconstruct is given implicitly by the curve length or not given at all. The explicit
information is passed to the model via coloring the curve red, which can be seen in the
input images of this section.

Figure 4.63 shows that this new task formulation enabled a model to be trained that
reconstructs the target line nearly perfectly, reaching a high single curve IoU of 0.88.
This could be successfully scaled up to quadratic bezier curves, as Figure 4.64 shows.
This model also reached a high single curve IoU of 0.84.

While the models shown in Figures 4.63 and 4.64 give a good indication of the maximum
potential of a line-art image vectorization model, they cannot be used for real-world data
because they require the target curve to be fully marked to be able to reconstruct it. A
more realistic formulation is that the target curve information is indicated by placing
a mark at a single location of the curve, which reduces the heavy requirements for the
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(a) Input images. (b) Output images.

Figure 4.63: The output of the marked iterative model trained on images consisting of
lines.

(a) Input images. (b) Output images.

Figure 4.64: The output of the marked iterative model trained on images consisting of
quadratic bezier curves.

(a) Input images. (b) Output images.

Figure 4.65: The output of the marked iterative model trained on images consisting of
lines, with a single mark placed on the target curve instead of the entire curve being
colored.

curve identification. Furthermore, the input image is now centered on the mark before
being input into the CNN encoder. Figure 4.65 shows that a model for lines could be
successfully trained using this formulation, reaching a single curve IoU of 0.79. Note that
the mark is indicated as a red pixel on the target line. Accordingly, Figure 4.66 shows
this model architecture scaled up to quadratic bezier curves, again reaching a single curve
IoU of 0.79. Finally Figure 4.67 shows that the model architecture can be scaled to cubic
bezier curves, which is the target primitive of this work. It reached a somewhat lower
but passable single curve IoU of 0.72.

The model architecture derived in this section can be scaled up to cubic bezier curves as
primitives and to a large number of curves due to the iterative nature. Furthermore, to
give an example of how the model works, Figure 4.68 shows the process of vectorizing an
entire input image consisting of 7 quadratic bezier curves, similar to Figure 4.61.

4.4.3 Marked-Curve Reconstruction Model configurations
The marked-curve reconstruction model architecture derived in Section 4.4.2 and shown
in Figure 4.66 forms a good base for a line-art image vectorization algorithm. This section
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(a) Input images. (b) Output images.

Figure 4.66: The output of the marked iterative model trained on images consisting of
quadratic bezier curves, with a single mark placed on the target curve instead of the
entire curve being colored.

(a) Input images. (b) Output images.

Figure 4.67: The output of the marked iterative model trained on images consisting of
cubic bezier curves, with a single mark placed on the target curve instead of the entire
curve being colored.

(a) Input. (b) t = 1. (c) t = 2. (d) t = 3. (e) t = 4. (f) t = 5. (g) t = 6. (h) End.

Figure 4.68: The vectorization process of the marked single curve reconstruction model
on an input image consisting of 7 quadratic bezier curves. The model is invoked
sequentially until the number of output curves reaches 7. At each time step, the
previously reconstructed curves are removed from the canvas image and a mark is placed
on a remaining curve.

provides an ablation of various different configurations of this model.

Setup

During the model design phase, the model was trained using different configurations. The
single curve IoU is used as metric to compare these configurations. In order to achieve
consistent comparability, this metric is collected at iteration 100,000 for every model.
Note that this is not the final performance of the model, as results still improve after
100,000 iterations (see Figure 4.69). However, the rate of improvement decreases over
time, leading to the performance at step 100,000 to be a passable approximation of final
performance. This reduces the time needed to train the models.

Since the metric value at a single point t = 100000 exhibits a large variance, the average
of the values of the last 30 steps leading up to t = 100000 is used as performance indicator.
Again, like in Section 4.3.4, the IQR is provided as a scale measure. Keep in mind that
contrary to Section 4.3.4, the distribution of the single curve IoU is over 30 iterations
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Figure 4.69: The validation single curve IoU for the marked reconstruction model trained
on random cubic bezier curves. Note that while performance improves until the final
step (over 1,000,000), the model already achieves 97% of its final performance at 200k
steps and 94% of its performance at 100k steps.

and thus non-stationary. However, as the change in performance of the model does not
change significantly within 30 iterations, this is not a problem in practice.

As in Section 4.3.4, the arrow in the metric column indicates whether higher or lower
numbers are better, with the results sorted ascending. All values that are not statistically
significantly different from the best value are highlighted. As in Section 4.3.4, the
Wilcoxon-Mann-Whitney U-Test [Wilcoxon, 1945, Mann and Whitney, 1947] is used to
ascertain statistical significance. For the interpretation of this test, again, note that it is
now calculated between the distributions of the metric over the last 30 steps.

Training dataset

Note that in contrast to the models in Section 4.4.2, the input image resolution is
increased to 512x512px in order to match real-world data more closely (see Section 4.2.4).

Synthetic data The models derived in Section 4.4.2 were trained and evaluated solely
using synthetic data (see Section 4.2.2). Attempts to scale these models to the higher
resolution of 512px failed, as all training runs diverged. Together with the fact that the
models are intended to be used on human-generated images, this leads to the assumption
that human-generated data needs to be added to the training dataset. The remaining
question is what the ratio of synthetic data to human-generated data should be. Table 4.18
shows that a ratio of 1 to 5 performs better than an even match between synthetic and
human-generated data. In conclusion, it seems that too much synthetic data is harmful
for performance on human-generated images.

TU Berlin subset While the Tonari and SketchBench subsets are assumed to be
essential for model performance on professional line-art images, it is questionable if the
amateur sketches of the TU Berlin subset are necessary. Table 4.19 shows that the model
actually diverges if the TU Berlin subset is not included, showing that it is necessary to
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Single curve IoU ↑
median IQR

synthetic data ratio
1:1 0.550 0.015
1:5 0.608 0.023

Table 4.18: Comparison of models trained with different amounts of synthetic data.

Single curve IoU ↑
median IQR

TU Berlin subset
without TU Berlin 0.501 0.000
with TU Berlin 0.613 0.002

Table 4.19: Comparison of models trained with and without the TU Berlin subset.

Single curve IoU ↑
median IQR

data augmentation
no data augmentation 0.610 0.002
data augmentation 0.617 0.002

Table 4.20: Comparison of models trained with and without data augmentation.

train a model successfully. Furthermore, this shows that the Tonari and SketchBench
datasets are not sufficient to train a model. This is likely due to their small size. Another
explanation would be that the TU Berlin subset serves as a kind of curriculum learning
[Bengio et al., 2009], providing learning signals for simpler sketches to enable the model
to reach a sufficiently optimized state to take advantage of the learning signals for the
professional line-art images in the Tonari and SketchBench datasets.

Data augmentation As explained in Section 4.2.4, the training dataset is synthetically
increased by applying data augmentation transformations on the human-generated subsets.
Table 4.20 shows that this significantly improves the performance of the model.

Learning rate

A common question when training machine learning models is which learning rate to
use (see Section 2.3.1). The learning rate affects the magnitude of parameter updates
in a single iterations. Table 4.21 shows that the learning rate of η = 5 ∗ 10−4 derived
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Single curve IoU ↑
median IQR

learning rate
0.005 0.527 0.000
0.0005 0.609 0.008
0.00005 0.610 0.001

Table 4.21: Comparison of models trained with different learning rates

Single curve IoU ↑
median IQR

global pooling
no global pooling 0.610 0.002
global pooling 0.611 0.001

Table 4.22: Comparison of a model trained with global pooling and a model trained by
flattening the CNN output using an MLP layer.

in Section 4.4.2 performs the best, together with a lower learning rate η = 5 ∗ 10−5.
Increasing the learning rate to η = 5 ∗ 10−3 leads to divergence. Hence, η = 5 ∗ 10−4 is
maintained as learning rate for the model.

Global pooling

As described in Section 2.3.3, there are two ways of differentiably reshaping CNN outputs
to a flat vector of a predefined size. One is to flatten the CNN output followed by an
MLP layer. The other is to use global pooling, which does not require a fixed width and
height to be set at training or inference time. The other quality of global pooling is that
it contains fewer learnable parameters, which may be a disadvantage or an advantage
depending on the model. Table 4.22 shows that the reduced parameter size is not a
disadvantage and that the model with global pooling performs significantly better than
the model without. Hence, since global pooling is more flexible with respect to the input
image size and has less runtime and memory complexity than the MLP approach, it is
used to reshape the CNN encoder output.

Loss

As the loss function acts as differentiable proxy of the task objective (see Section 2.3.2),
it is an important decision in the model design. Since the model directly optimizes the
loss function, different formulations of it might lead to better or worse performance at
the intended task.
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Single curve IoU ↑
median IQR

curve length loss weight
curve length loss weight 0.602 0.002
no curve length loss weight 0.610 0.002

Table 4.23: Comparison of a model trained with the loss weighted by the curve length
and a model trained without.

Single curve IoU ↑
median IQR

loss
vector loss 0.560 0.010
vector + raster loss 0.608 0.023

Table 4.24: Comparison of a model trained with vector supervision only and a model
trained with vector and raster supervision.

Weighing loss by curve length One shortcoming of the trained model is that curves
are often slightly too short, leaving holes within curve sequences. One potential fix to
this is to assign the curve length as weight to the loss, thus increasing the focus of the
model on longer curves and decreasing it for shorter curves. However, as Table 4.23
shows, this decreases the performance of the model. As it does not improve the curve
length, this loss formulation is not considered further.

Vector vs. raster supervision The combination of vector and raster-based losses
is an important distinction of this method from prior work. Hence, it is important to
ascertain whether it is actually essential for model performance. Table 4.24 shows that
a model trained using the vector-based loss achieves a significantly lower single curve
IoU than a model trained using a combination of a vector- and raster-based loss. Note
that the metric used to measure performance itself is calculated on raster representations
of vector structures, which intuitively shows why a raster-based loss is an important
addition.

Binarization

As shown in Section 4.3.4, binarization of input images improves the results for some
line-art image vectorization methods studied in this work. On the other hand, the
method developed in this work performs remarkably similar when given binarized and
non-binarized input images. To investigate whether this is just an artifact of the training
data, two models are trained with binarized and non-binarized input images, respectively.
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Single curve IoU ↑
median IQR

binarization
binarized 0.606 0.004
non-binarized 0.608 0.023

Table 4.25: Comparison of models trained with and without binarization of input images.

Table 4.25 shows that there is no significant difference between those two models, leading
to the conclusion that model performance does not depend on the binarization of input
images.
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CHAPTER 5
Conclusion

The objective of this work was to ascertain to what extent it is possible to automatically
vectorize clean animation frame line art in a semantically meaningful way. For this
purpose, Chapter 2 provided the theoretical foundations and Chapter 3 explored existing
line-art image vectorization methods. In order to answer the RQ1, Chapter 4 proposed a
clean animation frame line-art image vectorization method and compared it with prior
work on a test dataset provided by Tonari Animation. It could be shown that while
the proposed method outperforms prior work at the default input image resolution,
ultimately all line-art image vectorization methods work only in limited extent for clean
animation frames, especially failing to properly reconstruct details and primitives with
high curvature.

This chapter provides an analysis of advantages and disadvantages of the contributions
in Section 5.1. Section 5.2 summarizes the limitations of this work. Finally, Section 5.3
lists potential future work relating to the research presented in this work.

5.1 Advantages
The developed line-art image vectorization method exhibits a number of advantages
compared to existing methods. These encompass both general advantages and advantages
relating to the application domain of clean animation frames.

Resolution-independence As shown in Sections 4.3.4 and 4.3.5, the performance of
the developed method remains remarkably stable at different input image resolutions. In
contrast, other state-of-the-art methods perform noticeably worse at lower resolutions.
This makes the developed method uniquely suited to be applied to clean animation
frames, which are drawn with a target resolution of 720x405px in the dataset considered
in this work (see Section 4.2). Note that, as mentioned in Section 4.3.4, one potential way
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to apply other methods to input images at lower resolutions is to use super-resolution
models [Dong et al., 2016] on the input images. However, these models would need to be
successfully finetuned to high-resolution line-art images beforehand, which is an open
research question on its own.

Keep in mind that the resolution-independence property was only tested at resolutions
between 512px and 1024px. Resolutions smaller than 512px are unreasonably small to
perform line-art image vectorization on.

Binarization-independence Similar to the input image resolution, the performance
of the developed method remains remarkably stable on binarized and non-binarized
versions of the input image. In contrast, methods such as the ones by Puhachov et al.
[2021], Weber [2002] perform noticeably worse on non-binarized input images. This
decrease in performance is especially pronounced for low-resolution non-binarized images
(see Sections 4.3.4 and 4.3.5). For these kinds of input images, the method developed in
this work is uniquely suited. For other cases, prior work might yield better results.

Nearly end-to-end differentiable The method developed in this work is designed to
be as end-to-end differentiable as possible. This is done in order to improve the ease of
adapting it to input images of other domains via finetuning (see Section 1.3). The only
non-differentiable part is the iterative placing of marker pixels on curves to reconstruct
(i.e., curve identification, as explained in Section 4.1.2). To make the model completely
end-to-end differentiable, this part would need to be replaced with a learned model.

Easy manual fixing It is inevitable that output vector images will contain errors.
These can be roughly divided into missing curves and incorrect curves. As described in
Section 2.2.1, identifying missing curves is easier than fixing incorrectly reconstructed
curves. Hence, the method is decomposed into a curve identification and curve recon-
struction part. This way, missing curves (i.e., errors in the curve identification) can easily
be fixed by placing a marker pixel on it and invoking the curve reconstruction part of
the method (see Section 4.1.2).

Performance The developed method is the fastest deep learning-based method tested,
being significantly faster than other methods (see Section 4.3.4). However, note that it is
significantly outperformed by the traditional AutoTrace [Weber, 2002] algorithm.

On non-binarized low-resolution images, the method is 1.5x faster than the second-fastest
deep learning-based method. However, note that most other methods do not perform well
on such input images. These work better on binarized or high-resolution input images,
where the runtime of the developed method stays remarkably stable, while the runtime
of other methods drastically increases. This leads to a runtime that is up to 4.5 times
faster than the second-best performing method.
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Furthermore, the trained model is also the smallest of all deep learning models considered
in this work, consisting of only 2.2 million parameters with a maximum GPU memory
usage of 1008 MiB (see Table 4.11).

Furthermore, for accessibility and reproducibility, the code, model and parts of the dataset
are publicly available at https://github.com/nopperl/marked-lineart-vectorization.
Note that proprietary clean animation frames form a significant part of the training
dataset, but the evaluation in Section 4.3 was also performed on a publicly available
dataset.

Suited for large number of curves As described in Section 2.2.1, clean animation
frames consist of a large number of curves. In order to handle this, the method is designed
as an iterative algorithm. It shares this property with all other prior work evaluated in
Section 4.3.

5.2 Limitations and Disadvantages
To better contextualize the contributions of this work, this section lists disadvantages
and limitations.

5.2.1 Disadvantages
The developed line-art image vectorization method possesses a range of disadvantages
which limit its application to real-world images.

Holes in curve sequences The developed method on average reconstructs curves
smaller than they appear visually. This leads to a high number of small holes in curve
sequences, which is very undesirable for clean animation frames. As Sections 2.2 and 2.2.1
describe, one step in the limited animation production workflow after the clean animation
frame is drawn is the filling of colors in the regions defined by the clean animation frame.
This can only be done efficiently if the regions are properly enclosed.

Limited semantic correctness As explained in Section 1.2, an important property
of resulting clean animation frames is that their vector structure is semantically correct.
This was attempted by training the marked curve reconstruction model using a vector-
based loss. However, as Sections 4.3.4 and 4.3.5 show, similar to other evaluated methods,
the outputs of the developed method do not sufficiently match the required semantic
structure. This is especially the case for regions with small details such as eyes. These
errors are especially undesirable, as clean animation frames need to be semantically
correct for successive workflow steps, thus requiring laborious manually fixing.

Bias towards low curvature As Section 4.3.5 shows, the developed method possesses
a bias towards generating primitives with low curvature, even if the target shape in the
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input image has a high curvature. It shares this property with other state-of-the-art
methods. This harms the applicability of the method to images containing a high amount
of high-curvature shapes.

Catastrophic failure As Section 4.3.5 shows, the developed method catastrophically
fails to vectorize a challenging clean animation frame in the test dataset. This non-linear
and seemingly random failure mode limits the applicability of this method. A potential
cause for this failure is the low amount of training data, as such failures are common for
underfit deep learning models.

5.2.2 Limitations
There exist limitations in the method design, data and evaluation setup as noted in
Sections 4.1.2, 4.2.3, 4.3.2 and 4.4.1.

Section 4.1.2 describes limitations in the method design, which mainly consist of the
method being unable to handle overlapping curves properly. In these cases, there exist
pixels in the input raster image which belong to multiple curves. Once one of these
curves is reconstructed, the overlapping pixels are removed, leaving behind a hole inside
the other curves to which the pixel belongs. If this hole is large enough, it effectively
splits the curve for the model, which will then reconstruct only the part until the hole.
However, the amount of overlapping curves is rather small in the training and evaluation
data, as shown in Table 4.3.

There is a considerable amount of limitations associated with the data used in this work,
which are described in Section 4.2.3. The main limitation is the scarce amount of data
used to train the model, which serves as a significant bottleneck for model performance.
Furthermore the artist distribution for the Tonari clean animation frames is skewed,
which harms generalization. Moreover, there are a range of irregularities in the Tonari
clean animation frame subset, such as visually erased curves still being present in the
vector structure, overlapping curves and curves with colors and stroke widths that do
not conform to the clean animation frame schema defined in Figure 2.10.

A range of factors limit the evaluation, as described in Section 4.3.2. Most importantly,
the evaluation is based on a subset of proprietary clean animation frames by Tonari
Animation. However, this issue is solved by additionally computing all evaluation steps
with the publicly available SketchBench dataset [Yan et al., 2020]. This includes a separate
model trained without information leak from SketchBench test data. Additionally, there
are limitations in the setup of prior works, such as the refinement algorithm by Egiazarian
et al. [2020] lending an unfair advantage to their method, the method by Puhachov et al.
[2021] requiring the proprietary Gurobi library [Gurobi Optimization, LLC, 2023] and
AutoTrace [Weber, 2002] being run without GPU acceleration.

Furthermore, keep in mind that the line-art image vectorization method as presented in
this work is limited to clean line-art images. However, due to the end-to-end differentiable

152



5.3. Future Work

nature of the method, Section 4.1.2 proposes ways to adapt it to inputs of different
domains.

5.3 Future Work

There are numerous opportunities for future work relating to the research presented.
These mainly pertain to the RO1 and include improvements to the developed method by
changing the data used to train the model (see Section 5.3.1) or the design of the method
architecture (see Section 5.3.2). Furthermore, an important potential extension is the
adaptation of the developed method to new tasks (see Section 5.3.3).

Moreover, a straightforward option for future work regarding the RO2 (i.e., the evaluation)
would be to assess how the developed line-art image vectorization method performs on
different but adjacent domains (e.g., product sketches).

5.3.1 Data Improvements

As noted in Section 4.2.3, the scarce amount of high-quality data is the main limiting
factor of this work. There are multiple potential ways to improve this issue. One is to
train a general line-art image vectorization model on a large dataset consisting of multiple
domains of line-art images such as technical line drawings, product sketches, amateur
sketches, cartoons or illustrations. A successful clean animation frame vectorization
model could then be achieved by finetuning the general model on a small clean animation
frame dataset. For this approach to work, the training dataset of the general model needs
to be several orders of magnitudes larger than the one considered in this work.

Another way to increase the available data is to consider more complex data synthesizing
techniques. The synthetic data used in this work is quite trivial and devoid of any semantic
structure. There may be heuristic optimization or deep learning-based techniques to
synthesize data that matches clean line-art images more closely.

On the other hand, it may be possible to exploit the small available data in a better
way. This might be achieved by a more complex mixture of the data, such as starting
the training process with a high portion of TU Berlin amateur sketches and linearly
reducing the contribution of this subset in the spirit of curriculum learning [Bengio et al.,
2009]. Another possibility is to extract more structural features from the input raster
image using pre-trained models, such as keypoint detection [Puhachov et al., 2021], object
detection [Jocher, 2020], edge detection [Soria et al., 2020] or segmentation [Hu, 2020]
models.

Furthermore, as noted in Section 4.2.1, an important decision is whether to consider
curves or paths of curves as the graphical primitive for the model, with this work deciding
for the former. An interesting question is how the methods studied in this work perform
when using paths as primitive.
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A dialectical approach would be to use both paths and curves as primitives and structure
the model output hierarchically. In other words, the model could be trained to output
either a single curve or a sequence (and possibly a hierarchy) of curves. This would be
useful for domains in which hierarchical information is important, which is not the case
for clean animation frames.

5.3.2 Architectural Improvements
There are multiple potential avenues for improving the architecture of the developed
method. For one, in the iterative curve reconstruction algorithm, the input image is
centered on the target mark prior to being input into the marked curve reconstruction
model. It might also be useful to zoom the input image in the center. This leads to two
benefits. Firstly, the model no longer receives distracting information about the periphery
of the image when the task is to reconstruct only the curve at the center. Secondly, if
the input image is of high resolution, the model would receive the zoomed in region at a
higher resolution than in the standard algorithm design, potentially enabling it to better
discern features about the curve to reconstruct. A potential disadvantage of this are long
curves, which could get clamped by the zoom level. However, such curves are scarce in
the data considered in this work.

Another possibility of improving the iterative curve reconstruction algorithm is to choose a
better stopping criterion described in Section 4.1.2. It is currently defined as T = ⌊B∗0.1⌉,
where B is the number of black pixels in the original image. This might be too high for
some images and too low for others (such as the one shown in Figure 4.37). It might be
possible to derive a stopping criterion that is better suited to the input image by directly
predicting the optimal number of output curves using a small learned model instead.

Furthermore, it might be possible to extend the iterative curve reconstruction algorithm
with more extensive post-processing. One possibility is to use the refinement algorithm
of Egiazarian et al. [2020], which has the potential of significantly improving results (see
Figure 3.2). However, it is not differentiable and has strong assumptions on the input
image.

There are also potential improvements on the model side. As Sections 4.3.4 and 4.3.5
show, the vector structure of the model output is not sufficiently semantically correct. A
safe assumption is that this is due to the vector-based loss not properly evaluating the
output of the model. The vector-based loss used in this work is an even combination of
the MSE and MAE between the output and ground truth curve parameters adapted from
Egiazarian et al. [2020]. Other formulations might work better, such as weighting the
MSE and MAE according to a linear schedule, aggregating the errors with a sum instead
of the average or even differentiably rendering a heatmap of the curve parameters and
using a raster image loss following the keypoint detection loss in Puhachov et al. [2021].

An important decision in the developed method is to use an iterative model. This is
influenced by the inability of RNNs to output large sequences properly [Hochreiter, 1991,
Bengio et al., 1994]. However, it might be possible to successfully train a model that
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outputs all curves at once using a Transformer [Vaswani et al., 2017] instead of an RNN
as decoder. Note that this work only explored using a Transformer model as encoder,
not as decoder. Egiazarian et al. [2020] use a Transformer as decoder, but still reduce
the amount of curves output by the Transformer by splitting the input image into tiles
and processing each tile independently.

An established practice to improve model performance when single models cannot be
feasibly further improved is to use an ensemble of different models [Schapire, 1990,
Ho, 1995]. Hence, it might be possible to improve results by using an ensemble of
state-of-the-art prior work and this model.

One advantage of the developed method is its low runtime. This can be further reduced
by parallelizing the iterative curve reconstruction algorithm as described in Line 16.

5.3.3 Further Tasks
As described in Sections 1.4, 4.1.2 and 5.1, an intrinsic characteristic of the developed
method is that it is nearly end-to-end differentiable. While the focus of this work is
on same-domain vectorization (i.e., turning raster clean animation frames into vector
clean animation frames), in theory it is possible to extend the developed method to input
images of different domains. For this, two parts of the method have to be adapted. Firstly,
the marked curve reconstruction model is trained solely using clean line-art images as
input and is thus not robust to input images of different domains. Due to the end-to-end
differentiable nature of the model, this can be easily solved by training or finetuning the
model on input images of different domains. Secondly, the curve identification algorithm
needs to be adapted to input images of different domains, as laid out in Section 4.1.2.
Alternatively, the algorithm could be extended by a learned model which converts a
raster image of a different domain into a corresponding raster line-art image [Kugler,
2023]. This could then be used in combination to convert final animation frames in raster
format into clean animation frames in vector format.

Furthermore, there exist other tasks to which the developed model could be extended.
These include the generation of inbetween frames based on keyframes or clean animation
frame colorization (see Section 2.2). Moreover, the model output could be constrained
to exhibit temporal consistency, i.e., to consist of curves that remain consistent across
frames of the same scene.
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APPENDIX A
Additional Evaluation Results

This chapter includes figures showing additional evaluation results described in Sec-
tion 4.3.4 and Section 4.3.5.
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A. Additional Evaluation Results

A.1 Quantitative Evaluation
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Figure A.1: Metrics for the line-art image vectorization methods evaluated on binarized
images with 512px and 1024px resolution, respectively. Points denote the median of the
metric, while vertical bars denote the IQR. Horizontal lines show the trend of the metric.
The metrics for the method developed in this work are emphasized. Note that they are
not significantly affected by the image resolution even if they are binarized.
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Figure A.2: The same comparison as in Figure A.1 on the SketchBench test dataset
instead of the Tonari test dataset.

159



A. Additional Evaluation Results

non-binarized binarized
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Io
u

autotrace

polyvector-flow

virtual-sketching

deepvectechdraw

marked

(a) The average IoU.

non-binarized binarized
0.0

0.2

0.4

0.6

0.8

C
u
rv

e
 r

a
ti

o

(b) The average curve ratio.

non-binarized binarized
0

100

200

300

400

R
u
n
ti

m
e

(c) The average runtime.

non-binarized binarized
0

5

10

15

20

25

C
u
rv

e
 l
e
n
g
th

(d) The average curve length.

non-binarized binarized
0

2000

4000

6000

8000

10000

12000

C
u
rv

e
 d

is
ta

n
c
e

(e) The total curve distance.

non-binarized binarized
0

20

40

60

80

C
u
rv

e
 e

rr
o
r

(f) The average curve error.

Figure A.3: Metrics for the line-art image vectorization methods evaluated on binarized
and non-binarized images with 1024px resolution, respectively. Points denote the median
of the metric, while vertical bars denote the IQR. The metrics for the method developed
in this work are emphasized. Note that they are not significantly affected by binarization
even on high-resolution images.
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Figure A.4: The same comparison as in Figure A.3 on the SketchBench test dataset
instead of the Tonari test dataset.
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A.2 Qualitative Evaluation

(a) Input raster image. (b) Output of the developed method.

(c) Output of AutoTrace [Weber, 2002]. (d) Output of Egiazarian et al. [2020].

(e) Output of Puhachov et al. [2021]. (f) Output of Mo et al. [2021].

Figure A.5: The output vector image given a Tonari clean animation frame in raster
format as input of each line-art image vectorization method studied in this work.
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(a) Input raster image of the
SketchBench dataset.

(b) Output of the developed
method.

(c) Output of AutoTrace [We-
ber, 2002].

(d) Output of Egiazarian et al.
[2020].

(e) Output of Puhachov et al.
[2021].

(f) Output of the method by
Mo et al. [2021].

Figure A.6: The output vector image given a SketchBench professional sketch in raster
format as input of each line-art image vectorization method studied in this work.
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(a) Ground truth vector struc-
ture order.

(b) Output of the developed
method.

(c) Output of AutoTrace [We-
ber, 2002].

(d) Output of Egiazarian et al.
[2020].

(e) Output of Puhachov et al.
[2021].

(f) Output of the method by
Mo et al. [2021].

Figure A.7: The output vector image given a SketchBench professional sketch as input
with the vector structure behind the images revealed by representing each curve with a
mutually exclusive color.
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