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Abstract—Internet of Things (IoT) devices pose significant
security challenges due to their heterogeneity (i.e., hardware
and software) and vulnerability to extensive attack surfaces.
Today’s conventional perimeter-based systems use credential-
based authentication (e.g., username/password, certificates, etc.)
to decide whether an actor can access a network. However,
the verification process occurs only at the system’s perimeter
because most IoT devices lack robust security measures due
to their limited hardware and software capabilities, making
them highly vulnerable. Therefore, this paper proposes a novel
approach based on Zero Trust Architecture (ZTA) extended
with blockchain to further enhance security. The blockchain
component serves as an immutable database for storing users’
requests and is used to verify trustworthiness by analyzing and
identifying potentially malicious user activities. We discuss the
framework, processes of the approach, and the experiments
carried out on a testbed to validate its feasibility and applicability
in the smart city context. Lastly, the evaluation focuses on
non-functional properties such as performance, scalability, and
complexity.

Index Terms—Zero Trust, Blockchain, Edge Computing, Edge-
Cloud Computing, Security.

I. INTRODUCTION

Traditional cybersecurity methods for computer networks
primarily rely on perimeter-based security models. These
models emphasize protecting resources through identity ver-
ification mechanisms, typically employing cryptography to
grant access exclusively to authorized entities. Actors, whether
users or devices, establish their identity by presenting login
credentials, such as usernames and passwords, or certificates
containing relevant details [1]. A logical network component
validates peers’ authenticity before granting access to the re-
quested resource. This authentication approach has historically
been effective and remains prevalent in secure networks today.

The rise of the IoT emerged new challenges regarding
securing resources [2]. Computing continuum infrastructures
typically have many heterogeneous devices that all communi-
cate with each other [3]. The perimeter-based approach faces
some limitations in these extensive scenarios, such as ignoring
insider threats within authenticated networks and challenges
to applying the perimeter concept across the highly dynamic
computing continuum infrastructures. As an alternative, Zero
Trust Architecture (ZTA) offers a promising solution, empha-
sizing perimeter-less, continuous verification to protect digital
assets from potential threats [4]. The core tenet of ZTA is
”never trust, always verify,” advocating rigorous monitoring
and verification of all network traffic before granting access
to a network or resource [4]. Nevertheless, implementing ZTA
in the computing continuum infrastructures requires further ad-

vanced mechanisms to improve decision-making and security
posture.

A smart city is an example of a computing continuum in-
frastructure with many heterogeneous devices. In a smart city,
devices may be equipped with various sensors that monitor
and sense the environment. These devices include cameras
for monitoring pedestrian crossings and traffic congestion,
temperature and humidity sensors for weather monitoring in
public parks, sensors for identifying technical issues in mall
elevators, etc. These devices communicate directly with the
cloud or through an edge server, which transmits the data to
the cloud. In the context of a smart city, sub-networks may
exist, grouping certain devices or servers to function as inde-
pendent networks or all public devices could constitute a single
extensive network (e.g., city scale). With such many devices
operating in a smart city, the potential attack surface becomes
significantly large, elevating the risk of system vulnerabilities.
Furthermore, if an attacker successfully compromises a device
and gains access to the smart city’s internal infrastructure, it
could significantly impact the smart city’s security [5].

The ZT approach can help to reduce the above-mentioned
security risks. ZT principles focus on protecting resources
such as data or services, rather than preserving an entire
network or domain. With the ZT approach, no implicit trust
is assumed, and all entities are treated as untrustworthy at
any time by default, whether internal or external. On each
incoming request, the ZT system verifies some properties of
the requester to decide if the access is granted or rejected.
If the access is granted, the given access rights are always
as strict and atomic as possible only to allow execution of
this specific request. This approach assumes that a connected
peer could be compromised at any time at any transaction and
checks its privileges, access rights, and previous behavior on
every transaction [4]. Such a system must ensure the integrity
of actors’ request history and protection against potential
attackers’ manipulation of the request validation process. A
distributed ledger can mitigate the risk of data tampering while
preventing compromised or inactive validation nodes from
making decisions on access requests [6]. This can be achieved
through a consensus mechanism involving all validating nodes.

Therefore, this paper proposes a novel approach based
on ZT architecture which integrates blockchain technology
into ZT to further enhance the system’s security posture.
Essentially, the blockchain component serves as an immutable
database for saving request history, which is used for verifying
the trustworthiness of actors via a consensus. The ZTA com-
ponents on the edge are responsible for enforcing the defined
policies and granting or rejecting incoming requests. We
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present a Proof-of-Concept (PoC) system and evaluate non-
functional properties by executing several test cases. The eval-
uation focuses on non-functional properties like performance,
scalability, and complexity. The results are compared between
the various system configurations, and we demonstrate how
design decisions may affect the non-functional properties.
Our evaluation shows promising results and the feasibility of
integrating blockchain in ZT.

The remaining sections are structured as follows. Related
work is presented in Section II. Section III introduces and
explains our proposed blockchain-based zero trust framework
designed for distributed computing continuum systems. Fur-
thermore, we present the implemented PoC by listing its com-
ponents with their responsibilities. Evaluation and results are
discussed in Section IV. Finally, we conclude our discussion
in Section V.

II. RELATED WORK

Xiaojian et al. [7] introduced ZT security in a power IoT
network. Their system evaluates multiple actors’ attributes
to calculate trust levels and compares them with resource
security levels, which are determined by resource importance.
DeCusatis et al. [8] applied the ZT security concept uniquely
in a cloud computing context. Their innovative architecture
uses steganography to embed authentication data in TCP
packets, preventing network fingerprinting. Samaniego et al.
[9] introduced Amatista, a blockchain-based middleware for
IoT resource access management, following the zero trust
paradigm. Amatista features a unique two-level hierarchical
mining process, with first-level miners validating sender iden-
tities and forwarding data to second-level miners. Amatista
falls short of implementing the complete ZT aspect as recom-
mended by NIST [4], primarily focusing on using blockchain
and miners for trust evaluation of incoming requests.

Chen et al. proposed a ZT architecture for medical systems
to address these challenges [10]. Their approach goes beyond
simple identity checks, introducing a four-dimensional (4D)
access control framework assessing the ‘subject’ (i.e., actor’s
identity), ‘object’ (i.e., resource), ‘environment’ (i.e., network
or system), and ‘behavior’ (i.e., access history). Sultana et
al. [11] introduced a ZT blockchain approach for sharing
medical test results. The system records the sender, receiver,
and file location in blockchain blocks, focusing on trans-
ferring large data with a separate database. However, the
proposed approach does not fully implement ZT aspects as
recommended by NIST. The system lacks validation of peer
behavior and dynamic privilege adjustments, which are key
aspects of NIST’s ZT architecture. Dorri et al. [12] used
blockchain to secure IoT communication in smart homes. In
their system, each smart home has a single central miner that
controls access permissions based on identity, lacking the ZT
property of evaluating device trustworthiness before granting
access. This check is, however, one of the main properties
of a ZT architecture [4]. Nevertheless, there has not been
any research that implements blockchain-based ZT in Edge-

Fig. 1. System components and network diagram.

Cloud environments, which focuses on the applicability and
feasibility aspects.

III. BLOCKCHAIN-BASED ZERO TRUST

A. System Design and Processes

The developed system consists of three groups of com-
ponents: (i) ZTA components, (ii) blockchain components,
and (iii) IoT components. The system is designed to comply
with the ZTA tenets and implement the core components
mentioned in the ZTA definition of the NIST [4]. Furthermore,
the blockchain components are implemented using the Hy-
perledger Fabric framework (HLF)1, building a permissioned
blockchain. The PoC focuses on a smart city use case, address-
ing network properties like component distribution across mul-
tiple edge servers and low-computational-power IoT devices.
The role of ZTA components is to enforce policies and grant
or reject incoming requests. On the other side, the blockchain
components include a distributed ledger implemented as a
permissioned blockchain for logging incoming requests and
their access decisions. The IoT components allow users and
stationary IoT devices equipped with environmental sensors to
access the system. The components interact by communicating
over the Internet, with synchronous and asynchronous calls
executed against REST APIs. An overview of the system
components and network diagram is depicted in Figure 1. In
the following, we explain the role of each component and the
processes within the developed system.

B. ZTA Components

1) The Policy Enforcement Point (PEP): PEP is a single
logical component, but it can be divided into two physical
components, as per the NIST definition [4]. In the PoC system,
the PEP includes a server-side component, referred to as
PEP, and two client-side components: Analyser and Client.

1Hyperledger, https://www.hyperledger.org/



Users and stationary IoT devices communicate through the
Client component, while system administrators interact with
the Analyser component. The Client component serves as
a gateway, enhancing incoming requests with crucial actor
details before forwarding them to the PEP. Access to the
PEP component is limited to the two client-side components.
Meanwhile, the Analyser component is accessible only to
administrators and retrieves maintenance data, such as con-
nected policy engines and actor request history. The PEP
component receives incoming requests from the client-side
components and forwards them to the Policy Administrator
for validation. Upon successful validation and access granting,
the PEP retrieves or sends the requested data to or from
the relevant Persistence Managers. For example, if the local
government deploys a new stationary device in a public park
to measure outside temperature and wishes to connect it to the
smart city network, an administrator would employ the Client
component to submit a creation request to the PEP, which
then forwards it to the PA. If the PA approves the access,
the PEP dispatches the new stationary device’s details to the
Authentication Persistence Manager (AUTH-PM) for storage,
making the device recognized by the system. In case of access
denial, the PEP communicates no further with any PM but
informs the requester of the rejection.

2) The Policy Administrator (PA): PA is responsible for
validating incoming requests and generating access tokens for
the PEP, which are necessary for PM access. The PA doesn’t
perform the actual validation but sends a validation request to
all known PEs that conduct the verification. The validation
process employs a straightforward consensus algorithm: all
PEs begin validating the incoming request, and each PE
informs the PA upon validation completion. If more than
half of all PEs yield the same decision, it is accepted as
correct. Depending on the request type, the PA either awaits
PE validation completion or sends the validation request to
all PEs and promptly notifies the PEP that validation has been
initiated. Non-administrative data-saving requests are executed
asynchronously, while administrative and GET requests are
processed synchronously. This distinction improves system
performance, especially when IoT devices regularly send sen-
sor data, where response receipt is not always necessary. In
the case of asynchronous execution, the PA informs the PEP
through a message broker. Whether executed synchronously
or asynchronously, the PA dispatches an access token to both
the PEP and the corresponding PM upon access approval. This
access token comprises a unique secret (string), a time-to-live
value indicating its validity duration (in seconds), and a list
of access rights specifying the type of requests permitted with
the access token. The PEP must include this token with the
request when accessing the PM.

3) Policy Engine (PE): The PoC employs multiple identical
PEs, each running an instance of the Trust Algorithm (TA),
which contains access policies and rules. The TA serves as
the validation system’s core and executes it as soon as a
validation request arrives from the PA. In the PoC implemen-
tation, the TA is static in the order of security checks, which

means that each incoming request from any actor is always
validated the same way. All PEs are triggered simultaneously,
and the TA executes synchronously. The TA collects various
data about the requester (user or stationary actor) and the
incoming request from different components. It then evaluates
this data step by step to make a decision. The TA checks
requester authenticity with data from the AS (identity checks),
assesses requester vulnerabilities from the OSV component
(environment checks), examines incoming request parameters
using the PC (usage checks), and reviews requester history
for suspicious activities from the Blockchain Peer Monitoring
(BC-P-MON) component (behavior checks). The TA itself
runs synchronously and is deterministic. All security checks
are executed and the result of all of them are taken into
consideration when building the validation decision. The caller
is also informed about all security check failures and their
severity. In our PoC implementation, for instance, we use the
severity levels LOW, MODERATE, HIGH, and CRITICAL. All
critical failures result in the rejection of the validated request.
Once validation is complete, the PE transmits the decision
to the PA. The TA validates incoming requests via the other
components as explained in the next subsection.

C. Other Components

1) Authentication Service (AS): The AS supplies data for
the TA, containing information on known users and station-
ary actors, including their IDs, access rights, and IP/MAC
addresses (only for stationary actors). The AS performs two
types of checks: (a) for users, it verifies access rights, and
(b) for stationary actors, it additionally compares incoming
IP/MAC addresses with those in the database. The TA uses
this data to ensure that the requester’s access rights match the
incoming request. The AS is a read-only component, unable to
modify the database. To add, update, or delete authentication
details, the Authentication Persistence Manager (AUTH-PM)
is responsible (see the description of Persistence Managers
(PMs) below for more PM responsibilities).

2) Operating System Vulnerability (OSV): The OSV is
another component used for validation. It saves details about
known vulnerabilities of operating systems. The source of this
information could be an external service like the Common
Vulnerabilities and Exposures (CVE) service2 or the known
vulnerabilities could be added manually via an API. For
simplicity, some hardcoded vulnerabilities are inserted on
startup, and new vulnerabilities can be added via the OSV
API in the PoC. Details about the requester’s operating system
are included in the incoming request, and this information is
checked against the data in the OSV’s database.

3) Parameter Checker (PC): The PC is responsible for
checking the parameters of incoming requests, more precisely,
syntactic and semantic correctness of values, e.g., if an IP
address is syntactically correct or if the temperature reading
value is semantically valid.

2https://www.cve.org/



4) Blockchain Peer Monitoring (BC-P-MON): The BC-P-
MON component has the identity - i.e., certificate and private
key - of a peer from within the blockchain network. It can
fetch the historical data of actors from the blockchain through
the installed chaincode (smart contract). The fetched data is
checked for malicious or suspicious activities by the TA. For
instance, if the last X requests had been rejected because the
actor tried to fetch data from a restricted resource, and the
next incoming request tries to fetch the same data again, the
TA can recognize this suspicious activity and block the actor
temporarily. There could be more sophisticated techniques
when analyzing the history of actors in place. The TA could
also check for specific patterns in the history to identify
malicious or hijacked actors.

5) Persistence Manager (PM): There are many different
PM components in the PoC. Each resource type has a dedi-
cated PM in front of it; accessing it is only possible through
the dedicated PM. Every incoming request must go through the
whole ZT chain, starting with the client-side PEP component
through the PA, PE, validation, and PM. No resource is
allowed to take a shortcut. This implies that every request
type has to have a PM to handle it. For instance, if the
system wants to support reading the electricity consumption
of public buildings, it has to implement a PM that can access
the electricity data of those buildings. As seen in Figure 1,
some PMs access databases are also accessed by validation
components. For instance, the AUTH-PM and AS components
are connected to the AS-DB. It is, however, not possible to
modify data in the AS-DB from the AS component. The AS
component only supports fetching data needed for validating
incoming requests. It does not have methods to, e.g., delete
or modify data, whereas the AUTH-PM component has full
access (read and write) to the database. Additionally, as
mentioned above, the PM can only be accessed via a valid
access token, which must be registered by the PA first.

6) Blockchain Peer Logging (BC-P-LOG): This component
is used for logging incoming actor requests in the blockchain.
The PA sends a log request to this component after the PEs
consent to a validation decision. The BC-P-LOG component
also has the identity - again, certificate and private key - of a
peer from the blockchain. It takes the incoming request and
the decision outcome as input from the PA and sends it to the
chaincode to persist in the blockchain.

D. Blockchain

In addition to the above-mentioned components for ensuring
ZT in the PoC, dedicated components are needed to build and
run a permissioned blockchain within the system3. The only
connection between the ZT components and the blockchain
components are the BC-P-* components. This connection is
established by allowing those components to use the certificate
and private key of the same peer from within the blockchain
network to interact with the installed chaincode. All other ZT

3The blockchain network is used as another additional component that
provides input for the trust algorithm.

Fig. 2. The validation process starts from the PA with compromised PE2 and
acts maliciously.

components do not know the blockchain components and vice
versa.

For simplicity, the PoC only consists of a single organization
(called org), with its own certificate authority (called org-ca).
Apart from the organizations’ certificate authority, there is
also a certificate authority for creating TLS certificates (called
tls-ca). This TLS CA creates certificates for the organization
itself, and the organization creates certificates for its peers.
In the PoC, there are three peers (peer1, peer2 and peer3),
but only one peer (peer1) is used for submitting transaction
proposals. This could be extended so that all peers are used
for submitting transaction proposals so that the system can
continue working when one peer is down. Furthermore, there
is only one orderer node, the only component in the ordering
service. Lastly, there is only one channel, and it only contains
one chaincode. This chaincode contains smart contracts for
fetching history data from actors - saved in the world state
- and for persisting incoming requests of actors in the world
state.

In addition to the consensus algorithm of the blockchain,
our PoC implementation uses another consensus algorithm
in a different place as well. The validation process is also
implemented to use a consensus algorithm. The consensus
algorithm of choice is PBFT [13]. In the PoC, the PA lets
all PEs validate the incoming request, and when the majority
results in the same decision outcome, this result is taken as
the correct decision. The Policy Administrator acts as the
moderator, initiates the validation process, and waits for the
results to accept the one with the most occurrences (Majority
Voting system). Figure 2 shows the validation process with
a compromised PE. Again, for an attacker to control the
validation process, it must control at least half of all PEs.



E. Other components

The remaining components (User, IoT device, and Public
service) are actual users and devices with sensors, respectively.
A user could be an employee working for the local government
(e.g., a gardener) who needs to read data from the smart city
(e.g., humidity level in a park). This employee would use a
smartphone or computer with the Python client component
running. On top of that, a user-friendly UI application (e.g.,
a smartphone app or a website) that is connected to the
Python client could be implemented. The public service office
would use the Analyser UI directly for monitoring purposes.
The identity of an actor is given in the HTTP request’s ”X-
Requester” header. This information is in JSON format and
has the following structure:

X-Requester:
{

"agent": "...",
"actor": "...",
"ip_address": "...",
"mac_address": "...",
"os_id": "...",
"os_version": "...",
"auth_token": "..."

}

Actors must add their actor ID and their authentication
token (API key) when accessing one of the client components.
The Analyser component guarantees this by forcing users
to provide their credentials (i.e., actor ID and API key)
before opening the dashboard page. The Client component,
on the other hand, has to be called with the X-Requester
header already present in the HTTP header, but only with the
credentials filled out, which will then be passed to the PEP
component. However, both the Analyser and Client compo-
nents will populate the remaining properties of the requester
header - they don’t have to and cannot be provided explicitly
by the actors themselves. The X-Requester object is then
moved from the header to the payload in the remaining API
calls within the trust zone [4], together with a description of
the original incoming request of the actor. During the whole
validation process, this payload is not modified.

IV. EVALUATION

In this section, we present implementation details and the
evaluation results related to the non-functional properties of
the PoC system. We do not discuss or rate actual compu-
tational logic like the TA or low-level system functionality
but rather consider the system as a whole during the eval-
uation. We define specific test cases and execute them on
the PoC implementation in a controlled environment to test
performance and scalability. We implement various system
variants for comparative purposes and subject them to the same
test cases on the same testbed. In the following sections, we
will discuss the evaluation process and results of the non-
functional properties (i) performance, (ii) scalability, and (iii)
implementation complexity.

A. Implementation details

The ZTA-specific components are all Spring Boot Applica-
tions implemented in Java. Each component in the PoC (as
presented in Figure 1) runs in a Docker container - except for
the actual actors and users (e.g., public service) - and they
are all orchestrated with Docker Compose4. All blockchain
components use Docker images provided by HLF, all ZTA core
components, validation components, PM components, and the
BC logging component use Spring Boot Docker images. The
HLF blockchain components had to be set up and initialized
correctly. The ZTA components had been implemented from
scratch in a microservice manner, meaning that the system is
split up into its smallest possible units (microservices), and the
communication between those units happens via REST APIs
(synchronously). The client-side components of the PEP are
implemented with Angular (Analyser component) and Python
(Client component). For asynchronous communication, Redis5

is used as the message broker of choice.

B. Performance

Evaluation of the PoC system’s performance is most effec-
tively done through comparison with alternative systems. We
developed additional systems mirroring the PoC’s functionality
but with distinct architectures. These systems, alongside the
PoC, were deployed in a test environment, and specific test
cases were defined and executed. In the upcoming subsections,
we detail the testbed, PoC variants, test cases, and their
evaluation results.

1) Testbed: The PoC system consists of 30+ components
executed on a powerful server with Linux Ubuntu v22.04.2
(headless), 22 vCores, and 32 GB memory. The components
were executed inside Docker containers which had the whole
power of the host available.

2) Variants: To have a comparable evaluation result, we
implemented different variants of the PoC system. We imple-
mented a basic system with no ZT properties or blockchain.
The concrete variants are listed and described in Table I,
and depicted in Figure 3 and 4. The variants are defined
so that the main technologies of the PoC can be evaluated
for performance impact, e.g., there are variants with ZT
properties but no blockchain properties or variants with fewer
and variants with more policy engine instances. This way, we
can evaluate which part of the system slows the execution
time more than others. All variants produce the same output
when fed with the same inputs. This means that the functional
properties are the same for all variants, and we can fully
concentrate on evaluating the non-functional properties.

3) Test cases: The actual test cases were implemented
as Python scripts, which were executed against the different
variants. Every test script starts in the Client component,
meaning each request goes through the whole process, from
the Client component down to the database. We define five
test cases, which all have different focus. Tests check the

4Docker, https://docs.docker.com/compose/
5Redis, https://redis.io/



TABLE I
WE TESTED FIVE DIFFERENT VARIANTS RELATIVE TO THE ORIGINAL POC

SYSTEM. IN THE TABLE, THE ”EXCLUDES” COLUMN INDICATES
COMPONENTS MISSING COMPARED TO THE POC SYSTEM.

Variant Name Description Excludes
1 Conventional Basic security mecha-

nism where only au-
thenticity and access
rights are checked

All BC components,
PE, PA, all validation
components

2 No BC ZTA system but with-
out a blockchain

All BC components

3 No BC (x4) Same as Variant 2, but
with 4x more PEs (12
in total)

All BC components

4 ZTA-BC The original PoC Nothing
5 ZTA-BC (x4) The original PoC, but

with 4x more PEs (12
in total)

Nothing

Fig. 3. An overview of the ”conventional” system. It excludes all blockchain
components, the policy administrator, the policy engines and all validation
components.

performance impact of synchronous requests compared to
asynchronous requests, measuring how the number of policy
engines affects the overall performance, giving insides into
the scalability of a system variant, etc. The test cases and the
actual requests executed in them are described in the following
list. It needs to be mentioned that each test case sets itself up,
meaning that users’ required or stationary actors are initialized
within the test case’s process. The initialization steps are,
however, excluded from the execution time.

• A user requests data that it does not have access to
(TC1): This is a straightforward test case to demonstrate
which system is faster in recognizing that a user does
not have permission to access the requested resource. It
creates a user with insufficient access rights, and this user
then executes a request to a resource for which it does not
have access rights. The forbidden request is performed
five times a row to eliminate any outliers because of
server hiccups or other unexpected things. The execution

Fig. 4. An overview of the ”no-blockchain” system which excludes all
blockchain elements and stores actor request history in a basic SQL database.
This variant has yet another variant with 12 policy engines.

time of this test case is the time between the sending of
the first request and the response to the last request.

• A stationary actor sends 20 temperature readings
(POST). A user reads them afterward (TC2): In this
test case, a static actor is created, and this actor then
sends 20 temperature readings to the system in a row -
i.e., without halting between the requests. Immediately
after, a user is created, which reads all tasks of this actor
in a single read request. The execution time of this test
case contains the 20 write requests only.

• A stationary actor sends 1000 temperature readings
(POST), and a user reads them afterward (TC3):
This test case is similar to the previous one (TC2),
with the only difference being that the stationary actor
sends 1000 temperature readings to the system. This
test case can be compared with the following test case
(TC4) to evaluate the performance difference between
synchronous and asynchronous requests. The execution
time in this test case only contains the execution time of
the 1000 requests, i.e., the synchronous read request is
not considered.

• A user sends 1000 requests (GET) containing some
temperature data (TC4): This test case creates a sta-
tionary actor and a user. The static actor sends five
temperature readings to persist, and the user reads the
persisted data 1000 times (synchronous GET requests).
Like the above test case, the execution time only contains
1000 requests.

• Four stationary actors send data simultaneously
(TC5): This test case demonstrates how the system han-
dles a high load from 4 simultaneously running threads.
Each thread sends and reads data, and all threads execute
the exact requests. Here, the execution time contains the
whole execution from start to end, i.e., it includes the
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Fig. 5. Process for executing a test case against a system variant. This process
is done for each pair of test cases and variants, i.e., 25 times in total.
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creation of the required actors and waits until all threads
are finished.

4) Performance evaluation: The above-listed test cases
were executed against each above-mentioned system variant.
The system had been pre-filled with some data before the tests
were executed. Each test case had been executed five times
in succession, and each system variant had been built and
deployed from scratch before each test run - not before each
test case, but each test run, i.e., before running the script for
filling the system with initial data. This way, we can guarantee
that every test is executed under the same conditions on each
variant. The test cases are executed five times in a row without
resetting the system in between because we also wanted to
consider any increases in execution time with increasing data
in the system. A running system is usually not empty, making
the test cases more realistic. To evaluate the performance, the
average execution time of the five executions is taken and
compared between variants. The evaluation process is drawn in
Figure 5. The performance assessment outcomes are illustrated
in Figure 6 from which several critical insights are derived and
elaborated in the following paragraphs.

Read operations take much longer than write operations
in our ZT system. Comparing test cases 3 and 4 between
different variants, we see that in all ZT variants, TC3 (1000
read requests) takes around 2x the execution time compared
to TC4 (1000 write requests), only in the ”conventional”
system, the time is almost the same. The reason for the
considerable time difference is apparent: read requests are

validated synchronously, and write requests are asynchronous.
Each read request waits for the PEs to reach consensus
for all ZT variants, whereas write requests only trigger the
background validation task immediately after returning to the
requester. The conventional system does not encounter this
difference because there is no validation process involved, i.e.,
read requests do not have to wait for consensus between policy
engines because there are none.

More policy engines mean longer execution time - espe-
cially for read requests. As the validation process includes
waiting for consensus between the policy engines, the exe-
cution time of a request validation increases the more policy
engines are added to the system. The difference is, however,
surprisingly not very big in all cases. For write requests,
where the validation process is executed asynchronously, the
execution time with 4 times more policy engines increases only
around 2,4x (TC1, ZTA-BC), 1,5x (TC2, ZTA-BC), 1,5x (TC3,
ZTA-BC) and 1,7x (TC5, ZTA-BC), respectively. This effect
is more significant for read requests (synchronous validation):
the increase in execution time in TC3 on the ”ZTA-BC (x4)”
in relation to TC4 on the ”ZTA-BC (x4)” system is higher
(approx. +4.7x) than in TC3 on the ”ZTA-BC” in relation to
TC4 on the ”ZTA-BC” (approx. +2.8x)

The presence of a blockchain does not significantly affect
our ZT system’s performance. When reading data from the
blockchain, the query is executed without consensus between
the blockchain peers. This is the default behavior in the
HLF. As the logging of actors’ requests in the blockchain is
executed asynchronously and fetching actors’ request history
from the blockchain does not go through a consensus process,
the presence of a blockchain does not decrease the ZT sys-
tem’s performance significantly. For instance, the difference in
execution time between the No-BC and ZTA-BC systems is
around +1.05x (approx. +5%) in all test cases.

The validation process takes the most time in our ZT
system. This is verified empirically by checking the increase in
execution time when extending the number of policy engines
by multiple and, for instance, increasing the number of policy
engines from 3 to 12 (4x) almost triples the execution time.
This means that the increase in execution time is nearly linear
to the increase in policy engines. Recall that the consensus
algorithm in the request validation process asks all PEs for
validation and only notifies the PEP about the validation result
when more than half of the policy engines returned the same
decision. This has the consequence that the more PEs are
added to the system, the more decisions of PEs are needed to
reach consensus, the longer it takes for the policy administrator
to accept a decision, and the longer the overall execution time
of the request takes.

C. Scalability

We have demonstrated the system’s potential for scalability
by theoretically allowing the addition of multiple PEs. How-
ever, in practice, when incorporating numerous components,
such as PEPs, the PoC implementation experiences noticeable
slowdowns. This doesn’t necessarily indicate a lack of scala-



bility in the system’s design but can be attributed to various
factors, including thread creation for asynchronous validation,
hardware limitations, and context switches. Expanding system
resources or adding validation properties to the trust algorithm
is possible but requires implementation efforts and cannot
be achieved dynamically during runtime with the current
system design presented in this thesis. Adding new resources
does not affect request execution times while augmenting
trust algorithm policies impacts all incoming requests and
slows down validation. In conclusion, the PoC validates the
feasibility and applicability of the system concept in smart
city contexts but is not production-ready due to lacking certain
non-functional properties (see Section IV-E).

D. Implementation complexity

The PoC system comprises numerous components, includ-
ing eight for zero-trust functionality (PA, PE 1-3, OSV,
AS, PC, BC-P-MON) and six for hosting the permissioned
blockchain. Each incoming request traverses various compo-
nents, such as PEP, PA, multiple PEs, validation components,
blockchain peers, orderer, PM, and finally, the database if the
requester is trustworthy. The PoC involves 30 components,
with each successfully validated request touching around 60%
of the system (19 components). This complexity arises due to
the PoC’s functional capabilities, involving many components
that require intricate orchestration, especially when combining
synchronous (REST APIs) and asynchronous (Message Broker
- Pub/Sub) communication. Setting up the blockchain is also a
complex task despite extensive documentation provided by the
HLF. It involves multiple steps, including organizing, config-
uring certificate authorities, peers, and orderers, implementing
encrypted communication (TLS), deploying chaincode, and
developing client connections. Moreover, additional complex-
ity arises from the validation consensus algorithm and the
static nature of the current TA implementation.

E. Limitations and future work

The evaluation primarily addresses non-functional prop-
erties related to the system’s design and implementation,
complexity, scalability, and performance. The most apparent
non-functional property of such systems, namely the security
property, is not evaluated as it is assumed that the security of
a ZT system is, by design, more effective than the security in
a perimeter-based system. Note that the implemented PoC is
not production-ready in its current state. The emphasis here
was on demonstrating the system’s feasibility, with specific
non-functional properties, such as fault tolerance and high-
availability. Performance can be boosted by implementing a
more efficient consensus algorithm for validation, capable of
handling multiple policy engines and high request loads.

V. CONCLUSION

This paper introduced a novel framework mainly focused on
designing and implementing an edge-supported system with a
ZT architecture backed by blockchain. The proposed approach
leverages blockchain as an immutable database to record

and verify user requests, enhancing security by monitoring
user activities for potential malicious behavior. Throughout
this paper, we have elaborated on the framework’s design,
processes, and presented experimental results from a testbed,
demonstrating its applicability in the context of smart cities.
Our evaluation focuses on non-functional properties, including
performance, scalability, and system complexity. However, it’s
important to note that this paper represents just an initial step
towards the operationalization of the framework. In future
work, we aim to provide a comprehensive technical framework
encompassing technical and architectural aspects.
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