
Fast Parallel Hypertree Decompositions in Logarithmic

Recursion Depth

GEORG GOTTLOB, University of Calabria, Italy and University of Oxford, UK

MATTHIAS LANZINGER, TU Wien, Austria and University of Oxford, UK

CEM OKULMUS, Umeå University, Sweden

REINHARD PICHLER, TU Wien, Austria

Various classic reasoning problems with natural hypergraph representations are known to be tractable if a

hypertree decomposition (HD) of low width exists. The resulting algorithms are attractive for practical use in

fields like databases and constraint satisfaction. However, algorithmic use of HDs relies on the difficult task of

first computing a decomposition of the hypergraph underlying a given problem instance, which is then used to

guide the algorithm for this particular instance. The performance of purely sequential methods for computing

HDs is inherently limited, yet the problem is, theoretically, amenable to parallelisation. In this article, we

propose the first algorithm for computing hypertree decompositions that is well suited for parallelisation.

The newly proposed algorithm log-k-decomp requires only a logarithmic number of recursion levels and

additionally allows for highly parallelised pruning of the search space by restriction to so-called balanced

separators. We provide a detailed experimental evaluation over the HyperBench benchmark and demonstrate

that log-k-decomp outperforms the current state of the art significantly.

CCS Concepts: • Information systems → Relational database query languages; • Mathematics of comput-

ing → Hypergraphs; • Computing methodologies → Parallel algorithms;

Additional Key Words and Phrases: Hypergraph decomposition, hypertree width, parallel algorithms

ACM Reference Format:

Georg Gottlob, Matthias Lanzinger, Cem Okulmus, and Reinhard Pichler. 2024. Fast Parallel Hypertree Decom-

positions in Logarithmic Recursion Depth. ACM Trans. Datab. Syst. 49, 1, Article 1 (February 2024), 43 pages.

https://doi.org/10.1145/3638758

This work was supported by the Austrian Science Fund (FWF) project P30930-N35 and by the Vienna Science and Technol-

ogy Fund (WWTF) [10.47379/VRG18013, 10.47379/NXT22018, 10.47379/ICT2201] and by the Christian Doppler Research

Association (CDG) JRC LIVE. Georg Gottlob is a Royal Society Research Professor and acknowledges support by the Royal

Society for the present work in the context of the project “RAISON DATA” (Project reference: RP\R1\201074). Matthias

Lanzing acknowledges support by the Royal Society project “RAISON DATA” (Project reference: RP\R1\201074). The work

of Cem Okulmus is supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the

Knut and Alice Wallenberg Foundation.

Authors’ addresses: G. Gottlob, Dipartimento di Matematica e Informatica, University of Calabria Via P. Bucci - Edificio

30B, 87036 Arcavacata di Rende, Italy and Department of Computer Science, University of Oxford, 7 Parks Road, Oxford

OX1 3QG, UK; e-mail: georg.gottlob@sjc.ox.ac.uk; M. Lanzinger, Institute of Logic and Computation, TU Wien Favoriten-

straße 9-11, 1040 Wien, Austria and Department of Computer Science, University of Oxford, 7 Parks Road, Oxford OX1

3QG, UK; e-mail: matthias.lanzinger@tuwien.ac.at; C. Okulmus, Department of Computing Science, Umeå University Uni-

versitetstorget 4, 90 187 Umeå, Sweden; e-mail: okulmus@cs.umu.se; R. Pichler, Institute of Logic and Computation, TU

Wien Favoritenstraße 9-11, 1040 Wien, Austria; e-mail: pichler@dbai.tuwien.ac.at.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 0362-5915/2024/02-ART1

https://doi.org/10.1145/3638758

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

https://orcid.org/0000-0002-2353-5230
https://orcid.org/0000-0002-7601-3727
https://orcid.org/0000-0002-7742-0439
https://orcid.org/0000-0002-1760-122x
https://doi.org/10.1145/3638758
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3638758
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638758&domain=pdf&date_stamp=2024-02-28

1:2 G. Gottlob et al.

1 INTRODUCTION

Hypertree decompositions (HDs) [24] have been demonstrated to be a valuable tool in a
wide field of algorithmic applications. By way of structural decomposition of the hypergraph
representation of problem instances, they induce tractable fragments for fundamental reasoning
problems such as conjunctive query evaluation [24], constraint satisfaction problems [21], and
related counting problems [29]. Other applications can be found in game theory, where problems
such as determining Nash Equilibria [16] and combinatorial auctions [15] also become tractable
in cases where HDs of bounded width exist.

In many of the listed cases, we do not only have theoretical tractability results but in fact
know of algorithms that are suitable for practical applications. For example, in conjunctive query
evaluation, HDs can be used for efficient reduction to an acyclic instance, which allows for linear-
time solving using Yannakakis’ algorithm [33]. Beyond practical algorithms, many of the listed
problems are in fact known to be contained in the complexity class NC2 [8] if a bounded width
HD exists [3, 22, 23]. Importantly, problems in NC2 are considered to be highly parallelisable [8]
and thus the use of HDs in these areas can be even more attractive in parallelised and distributed
scenarios. The promising theoretical properties of hypertree decompositions have also been
experimentally verified. Implementations in specialised database systems have demonstrated the
applicability of HDs in query evaluation by using them (and closely related variants), especially
on difficult instances where current heuristic-based systems struggle [1, 13, 14].

Despite these desirable properties and a demand for worst-case guarantees in various poten-
tial fields of application, the adoption of hypertree decompositions in practice has been slow. One
crucial challenge that is limiting their more widespread use is the computational difficulty of con-
structing good HDs. In general, finding an HD for a given hypergraph H and width at most k is
NP-hard and W[1]-hard when parameterised by k [24] but is tractable when k is fixed, i.e., the
problem is in XP in the terminology of parameterised complexity. In fact, a significantly stronger
upper bound can be given. Finding an HD of fixed width is in the complexity class LogCFL [24]
(contained in NC2), and therefore in theory, highly parallelisable [8]. However, the theoretical par-
allelisability of the problem is demonstrated by construction of an appropriate Alternating Turing
Machine [7], and no practical algorithm that allows for effective parallel computation of HDs is
known. Here we, to the best of our knowledge, propose the first such algorithm.

Related Work. HD computation has received significant attention recently. This is witnessed,
for instance, by the development of the large benchmark data set HyperBench [12], novel algorith-
mic approaches [11, 12, 26], and being the subject of a recent PACE competition [9]. Moreover, a
number of new theoretical results [19, 20] have been presented, which have deepened our under-
standing of the problem. Still, the development of a parallel algorithm for hypertree decomposition
remains a critical open question.

The two state-of-the-art approaches for computing HDs, det-k-decomp [27] and HtdLEO [31],
both rely on techniques that are inherently unsuitable for parallelisation. det-k-decomp is heavily
reliant on extensive caching and would therefore require excessive coordination between threads.
In HtdLEO, the problem is encoded as an SMT instance and is therefore limited by the lack of paral-
lelisation strategies for SMT solvers. While both algorithms perform well on current benchmarks,
their lack of parallelisation ultimately limits them when it comes to solving large instances, i.e.,
finding HDs of large hypergraphs. This situation is especially disappointing as, on the one hand,
single-core performance apparently does not suffice to solve larger instances and, on the other
hand, the problem is in fact highly parallelisable in theory.

Interestingly, in Reference [26], a parallel algorithm BalancedGo is proposed for a slightly more
general problem of computing generalised hypertree decompositions (GHDs) [25]. In HDs,

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:3

the so-called special condition enforces certain constraints on the parent/child nodes in the decom-
position tree, and the tree must therefore be treated as rooted. Crucially, this constraint is no longer
enforced in GHDs, and it is therefore also no longer necessary to consider the decomposition tree
to be rooted. This additional degree of freedom is a key factor in the design of BalancedGo, where it
ultimately allows for simple reassembly of individual decompositions of subproblems into a GHD
of the full hypergraph. However, this freedom comes at a significant additional computational cost
as the corresponding decision problem for computing GHDs is NP-hard even for constant width
2 [20, 25] (i.e., it is not even in XP in the parameterised setting). In practice, this leads to an addi-
tional exponential factor in the algorithms’ complexity in contrast to the complexity of algorithms
for computing HDs.

As a final note, we observe that the parallel computation of tree decompositions has been heavily
studied (see, e.g., References [5, 6, 28]). Roughly speaking, these methods intuitively rely on first
computing a tree decomposition with width bounded in terms of the width parameter k , but
possibly higher than k . In a second step this decomposition is used to find a decomposition of
lower width. There is no known analogue to either step for HDs. It is unclear whether techniques
for the efficient computation of tree decompositions on graphs can help in the computation of
hypertree width in general. Fundamentally, in the hypertree width setting, the cardinality of indi-
vidual bags in a decomposition is no longer boundable in terms of the width parameter, whereas
such a bound is typically key for treewidth techniques. Similarly, using efficient algorithms to
compute the treewidth for typical graph encodings of hypergraphs is not helpful in our setting.
For example, hyperedges become large cliques in the Gaifman graph, which therefore always
has treewidth at least the size of the largest edge (minus 1) and thus is essentially unrelated
to the hypertree width. In summary, current approaches either are not amenable to effective
parallelisation or compute GHDs and therefore potentially cause exponential additional cost. The
goal of this article is to bridge this gap and develop a parallel algorithm for computing hypertree
decompositions.

Our Contributions. As argued above, this goal is not achievable by a straightforward extension
of current approaches. The two principal algorithms for HDs are inherently unsuited for paral-
lelisation while the parallel algorithm for GHDs fundamentally relies on the fact that GHDs are
unrooted. We therefore develop a new theoretical machinery that will allow us to construct HDs
in an arbitrary order instead of being limited to a strict top-down or bottom-up construction of
the HD. This machinery then allows us to build on some of the ideas of BalancedGo while avoid-
ing the complexity of GHDs. Experimental evaluation demonstrates that the resulting algorithm
combines the best of both worlds by scaling effectively with an increase of parallel threads while
avoiding the exponential overhead of GHD computation. Our main contributions are as follows:

— We develop a new theoretical framework of extended hypergraphs and their balanced separa-
tion, and we show that extended hypergraphs always have a balanced separator. To actually
find such balanced separators, it is crucial to apply a novel approach that determines pairs
of parent and child nodes of an HD (rather than a single node) at a time.

— Based on these new results we propose a novel algorithm, log-k-decomp, that searches for
balanced separators at arbitrary positions in a potential HD. We argue that our algorithm
is well suited for parallelisation; in particular, we prove a logarithmic upper bound on the
recursion depth.

— We identify a number of further optimisations of our basic algorithm, and we incorporate
them into a parallelised reference implementation of log-k-decomp.

— We identify the worst-case running time of log-k-decomp as nO (k log(n)), where k is the
width parameter and n the input size. This means that log-k-decomp is, theoretically, not

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:4 G. Gottlob et al.

optimal for a problem in the complexity class XP, which the problem of checking whether
a hypergraph H has hw ≤ k falls under. However, we show in our experiments that our
reference implementation of log-k-decomp is clearly competitive when compared to other
systems that implement XP algorithms, such as det-k-decomp. Moreover, in our hybrid
approach of combining the splitting into subproblems (whose size is guaranteed to be halved
at each step) by log-k-decomp with the sequential det-k-decomp, we are actually back to
a worst-case running time of O(nf (k)).

— We compare the performance of log-k-decomp to det-k-decomp and HtdLEO through ex-
periments over the HyperBench benchmark [12]. We observe that log-k-decomp outper-
forms the state of the art significantly. Furthermore, we experimentally verify the parallel
scaling behaviour of log-k-decomp.

This article is a revised and expanded version of Reference [17]. For our revision, we have added
Section 6, which provides an illustrative example to better explain how our presented algorithm
log-k-decompworks by going through an example run of it. We also added Section 7, which details
a number of optimisations and improvements to the base version log-k-decomp, and we prove
that these optimisations still allow for a sound and complete algorithm. In addition to this, we
have since implemented significant improvements to our proof-of-concept implementation and
managed to solve more instances. We detail in the significantly expanded empirical evaluation
(Section 8) our improvements to the original implementation and provide updated and expanded
results and statistical analyses that show how our implementation fares against the state of the art
in computing HDs when running against the standard HyperBench benchmark.

Structure. We formally introduce important concepts and notation in Section 2. The theoretical
framework of extended hypergraphs and their balanced separation is established in Section 3.
Building on this framework, we introduce the core ideas of the log-k-decomp algorithm and
establish a logarithmic bound on its recursion depth in Section 4. The proof details of the
correctness of the log-k-decomp algorithm are given in Section 5. The following Section 6
illustrates the algorithm further through a detailed example. We then discuss further ways to
optimise the base algorithm in Section 7. The results of our empirical evaluation are presented in
Section 8. We conclude with Section 9.

2 PRELIMINARIES

Conjunctive Queries, Constraint Satisfaction Problems, and hypergraphs. A hypergraph H =

(V (H),E(H)) is a pair consisting of a set of vertices V (H) and a set of non-empty (hyper)edges
E(H) ⊆ 2V (H). We may assume w.l.o.g. that there are no isolated vertices, i.e., for each v ∈ V (H),
there is at least one edge e ∈ E(H) with v ∈ e . We can thus identify a hypergraph H with its
set of edges E(H) with the understanding that V (H) = {v ∈ e | e ∈ E(H)}. A subhypergraph H ′

of H is then simply a subset of (the edges of) H . By slight abuse of notation, we may thus write
H ′ ⊆ H with the understanding that E(H ′) ⊆ E(H) and, hence, implicitly also V (H ′) ⊆ V (H). We
are frequently dealing with sets of sets of vertices (e.g., sets of edges). For S ⊆ 2V (H), we write

⋃
S

as a short-hand for the union of such a set of sets, i.e., for S = {s1, . . . , s�}, we have
⋃
S =

⋃�
i=1 si .

Figure 1 serves as an illustrative example of a hypergraph.
Conjunctive Queries (CQs) are arguably one of the most fundamental types of queries in the

database world. Similarly, Constraint Satisfaction Problems (CSPs) are among the most funda-
mental formalisms in Artificial Intelligence and for modelling combinatorial problems. Formally,
both are given by a first-order formula ϕ using only the connectives in {∃,∧} and disallowing
{∀,∨,¬}. Given such a formula ϕ, the hypergraph Hϕ corresponding to ϕ is defined as follows:
V (Hϕ) = vars(ϕ), i.e., the variables occurring in ϕ; and E(Hϕ) = {vars(a) | a is an atom in ϕ}.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:5

Fig. 1. A hypergraph consisting of 8 edges and 12 vertices.

In the sequel, we will only concentrate on hypergraphs, with the understanding that all results
ultimately apply to CQs and CSPs.

Hypertree decompositions and hypertree width. We introduce the used notation first: Given a
rooted tree T = 〈N (T),E(T)〉 with node set N (T) and edge set E(T), we write Tu to denote the

subtree ofT rooted atu, whereu is a node in N (T). Analogously, we writeT ↑
u to denote the subtree

of T induced by N (T) \ N (Tu). Intuitively, Tu is the subtree of T “below” u and including u, while

T ↑
u is the subtree of T “above” u. By slight abuse of notation, we sometimes write u ∈ T instead of

u ∈ N (T) to denote that u is a node inT . Below, we shall introduce node-labelling functions χ and
λ, which assign to each node u ∈ T a set of vertices or edges, respectively, from some hypergraph
H , i.e., χ (u) ⊆ V (H) and λ(u) ⊆ E(H). For a node-labelling function f with f ∈ {χ , λ} and a
subtree T ′ of T , we define f (T ′) as f (T ′) =

⋃
u′ ∈T ′ f (u ′).

We are now ready to recall the definitions of hypertree decompositions and hypertree width
from Reference [24]: An HD D of a hypergraph H = (V (H),E(H)) is a tuple D = 〈T , χ , λ〉, such
thatT = 〈N (T),E(T)〉 is a rooted tree, χ and λ are node-labelling functions with χ : N (T) → 2V (H)

and λ : N (T) → 2E(H), and the following conditions hold:

(1) for each e ∈ E(H), there exists a node u ∈ N (T) with e ⊆ χ (u);
(2) for each v ∈ V (H), the set {u ∈ N (T) | v ∈ χ (u)} is connected in T ;
(3) for each u ∈ N (T), χ (u) ⊆

⋃
λ(u);

(4) for each u ∈ N (T), χ (Tu) ∩
(⋃

λ(u)
)
⊆ χ (u).

The width of an HD D = 〈T , χ , λ〉 is the maximum size of the λ-labels over all nodes u ∈ T ,
i.e., width(D) = maxu ∈T |λ(u)|. Moreover, the hypertree width of a hypergraph H , denoted hw(H),
is the minimum width over all HDs of H . Condition (2) is called the “connectedness condition,”
and condition (4) is referred to as the “special condition” in Reference [24]. The set χ (u) is often
referred to as the “bag” at node u, and we will also call it the “χ -label” of node u. Analogously, the
set λ(u) will be referred to as the “λ-label” of u.

If we drop the special condition from the above definition, then we get so-called GHD. The
width of a GHD is again defined as the maximum size of the λ-labels over all nodes u ∈ T , and
the generalized hypertree width of a hypergraph H , denoted ghw(H), is the minimum width over
all GHDs of H . The problem of checking if an HD of width ≤ k exists, and, if so, computing
a concrete HD of width ≤ k is known to be feasible in polynomial time for arbitrarily chosen
but fixed k [24]. In contrast, for GHDs, this problem has been shown to be NP-complete even
if we fix k = 2 [20, 25]. Indeed, the special condition makes a huge difference when computing
a decomposition. Intuitively, its effect is the following: When constructing a GHD or HD top-
down, one “guesses” so to speak λ(u) for each node u, starting from the root node. In case of

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:6 G. Gottlob et al.

fixed k , there are only polynomially many choices for λ(u). But then, we have to determine also
χ (u). By Condition (3), χ (u) must be a subset of

⋃
λ(u). However, without the special condition,

effectively all subsets of
⋃

λ(u) need to be considered, creating exponentially many choices for
χ (u). Ultimately, this is the reason why GHD computation is NP-complete even for k = 2. In
contrast, the special condition restricts the possible choices for χ (u) significantly, which makes
HD computation tractable. Actually, as we will see in Section 3, it even allows us to define a normal
form of HDs in which χ (u) is fully determined when we know λ(u ′) of the parent u ′ of u and λ(u).
If u is the root, then the special condition simply implies χ (u) =

⋃
λ(u).

Applications of hypertree decompositions are often formulated in terms of GHDs. As noted
above, if we drop the special condition from the definition of HDs, then we obtain precisely the
definition of GHDs, and hence every HD is also a GHD. In principle, there are two differences
between HDs and GHDs in applications. First, as already discussed, computing HDs is of lower
computational complexity than computing GHDs. Second, due to the special condition restricting
some possibilities, it is possible that ghw(H) < hw(H) [25]. However, it is known that hw(H)

will never be much higher than ghw(H), and indeed it holds that hw(H) ≤ 3 ghw(H) + 1 [2], i.e.,
hypertree width is guaranteed to be at most three times higher than generalized hypertree width.
In practice, the situation is even better as there is no solved hypergraph in the standard benchmark
Hyperbench [12] where hw(H) � ghw(H) holds. Hence, for practical purposes, computing HDs
can be seen as a more efficient way of computing GHDs.

Throughout this article, we will be dealing with a hypergraph H and a treeT of an HD of H . To
avoid confusion, we will consequently refer to the elements inV (H) as vertices (of the hypergraph)
and to the elements in N (T) as the nodes of T (of the decomposition).

3 CONNECTION SUBHYPERGRAPHS AND THEIR BALANCED SEPARATION

We introduce here an extension of subhypergraphs and then proceed to define the needed def-
initions of hypertree decomposition, components, and balanced separation on this new type of
extended subhypergraph.

The key idea of our algorithm is to split the task of constructing an HD into subtasks of construct-
ing parts of the HD, which will be referred to as “HD-fragments” in the sequel. These HD-fragments
can later be stitched together to form an HD of a given hypergraph. This splitting into HD-
fragments is realised by choosing a node u of the HD and splitting the HD into one subtree above
nodeu and possibly several subtrees rooted at child nodes ofu. The crux of our decomposition algo-

rithm will be that the HD-fragment corresponding to the subtreeT ↑
u aboveu and the HD-fragments

corresponding to the subtreesTui
rooted at the child nodesui ofu can be computed independently,

that is, in parallel. However, at the end, these HD-fragments have to be stitched together to form
a larger HD-fragment and, ultimately, to form the entire HD of the original hypergraph H . To this
end, we have to keep track of, for each HD-fragment, how it connects to other HD-fragments.

The important interface information for the HD-fragment corresponding to the subtreeT ↑
u above

node u is the contents of χ (u). We thus introduce the notion of special edges. In case of the HD-

fragment “above” node u (i.e., the HD-fragment corresponding to the subtreeT ↑
u) this special edge

is simply the set χ (u) of vertices. Similarly, for each of the subtrees Tui
rooted at the child nodes

ui of u, we have to keep track of the interface to χ (u) in the form of a set Conn of vertices, which
is the intersection χ (Tui

) ∩ χ (u).

3.1 Connection Subhypergraphs and Their HDs

At the heart of our decomposition algorithm in Section 4 will be a recursive function Decomp, which
takes as input a subset E ′ of the edges E(H), a set of special edges Sp, and a set of vertices Conn.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:7

The goal of Decomp is to construct a fragment of an HD, such that every edge e ∈ E ′ is covered
by some node u ′ in the HD-fragment (i.e., e ⊆ χ (u ′)), all special edges are covered by some leaf
node of this HD-fragment (hence, these are the interfaces to the HD-fragments “below”), and Conn
must be fully contained in χ (r) of the root r of this HD-fragment (hence, this is the interface to
the HD-fragment “above”). Formally, the function Decomp deals with extended subhypergraphs of
H in the following sense.

Definition 3.1 (Connection Subhypergraph). Let H be a hypergraph. An extended subhypergraph
with connection interfaces (or connection subhypergraph, for short) of H is a triple 〈E ′, Sp,Conn〉
with the following properties:

— E ′ is a subset of the edge set E(H) of H ;
— Sp is a set of special edges, i.e., Sp ⊆ 2V (H);
— Conn is a set of vertices, i.e., Conn ⊆ V (H).

Notice that both edges and special edges are sets of vertices. Special edges are, in general, not
edges of the hypergraph. They are generated in the course of our decomposition algorithm to
keep track of the interface between HD-fragments that may then be constructed independently.
To easily refer to the vertices of a connection subhypergraph H ′ = 〈E ′, Sp,Conn〉, we shall use the
notation V (H ′), where we define V (H ′) =

⋃
E ′ ∪

⋃
Sp ∪ Conn.

We now extend several crucial definitions introduced in Reference [24] for hypergraphs to con-
nection subhypergraphs. We shall also introduce a different type of normal form, one that will
deviate in one crucial point from the one introduced in Reference [24].

Definition 3.2 (Hypertree Decomposition). Let H be a hypergraph, and let H ′ = 〈E ′, Sp,Conn〉 be
a connection subhypergraph of H . An HD of H ′ is a tuple 〈T , χ , λ〉, such that T = 〈N (T),E(T)〉 is
a rooted tree, and χ and λ are node-labelling functions with λ : N (T) → 2E(H)∪Sp and χ : N (T) →
2V (H ′), such that the following conditions hold:

(1) for each u ∈ N (T):
If λ(u) = {s} for some s ∈ Sp, then u is a leaf in T and χ (u) = s ,
else λ(u) ⊆ E(H) and χ (u) ⊆

⋃
λ(u) must hold;

(2) each f ∈ E ′ ∪ Sp is “covered” by some u ∈ N (T), i.e.:
If f ∈ Sp, then λ(u) = { f } and, hence, χ (u) = f ,
else f ∈ E ′ and f ⊆ χ (u) must hold;

(3) for each v ∈ V (H ′), the set {u ∈ N (T) | v ∈ χ (u)} is connected in T ;
(4) for each u ∈ N (T), χ (Tu) ∩

(⋃
λ(u)

)
⊆ χ (u);

(5) the root r of T satisfies Conn ⊆ χ (r).

Clearly, H can also be considered as a connection subhypergraph of itself by taking the triple
〈E(H), ∅, ∅〉. Then the HDs of the connection subhypergraph 〈E(H), ∅, ∅〉 and the HDs of hyper-
graph H coincide.

The ultimate goal of the above definition of an HD of a connection subhypergraph of some
hypergraph H is to capture fragments of an HD of a hypergraph H , which can be stitched together
to actually yield an HD of the entire hypergraph H . This is also the reason why, in Condition (1)
above, edges in λ(u) may be chosen from the entire set E(H) of edges in H . But ultimately, the
“task” of an HD-fragment is to cover all edges and special edges of H ′. That is why in Conditions
(2) and (3) only E ′ (and not E(H)) is mentioned.

We note that we are slightly sloppy in using the terms “fragment of an HD” or, synonymously,
“HD-fragment”: In the first place, we thus mean a part of an HD of the original hypergraph H . The
goal of our decomposition algorithm is to split the task of constructing an HD of H into pieces
and to construct such HD-fragments. However, as mentioned above, we need to keep track of

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:8 G. Gottlob et al.

Fig. 2. An example connection subhypergraph of the hypergraph from Figure 1. The vertices are represented

by letters. Special edges are marked by green and dotted hyperedges, and the vertices in Conn are marked

in bold, red font. Next to it is an HD of width 2 of this connection subhypergraph.

the interfaces between various HD-fragments. In particular, special edges are introduced to keep
track of the interface between an HD-fragment above some node u in the final HD and the HD-
fragments below this node u. Therefore, we also refer to an HD that consists of a part of the final
HD plus possibly some leaf nodes that cover special edges (i.e., that contain the aforementioned
interface information) as an “HD-fragment.” Actually, HDs of the connection subhypergraph that
we consider in our decomposition algorithm are such HD-fragments, i.e., they contain a part of an
HD of the original hypergraph H plus possibly leaf nodes that cover the special edges of H ′.

Example 3.3. An example of a connection subhypergraph is shown in Figure 2, as well as an HD
of this connection subhypergraph. We can see that no λ-label uses more than two hyperedges, and
thus this HD has width 2, and the hw of the hypergraph is ≤ 2. In fact, the hypergraph contains
alpha cycles [10], e.g., {e2, e3, e4, e5}. Hence, we also know that its hw must be > 1. Taken together,
its hw is therefore exactly 2.

In Reference [24], Definition 5.1, a normal form of HDs was introduced. In Definition 3.8, we
will carry the notion of normal form over to HDs of connection subhypergraphs. To this end, it is
convenient to first define the set of (possibly special) edges covered for the first time (in top-down
direction) by some node or by some subtree of an HD.

Definition 3.4. Let H ′ = 〈E ′, Sp,Conn〉 be a connection subhypergraph of some hypergraph H ,
and let D = 〈T , χ , λ〉 be an HD of H ′. For a node u ∈ T , we write cov(u) to denote the set of edges
and special edges covered for the first time at u, i.e., cov(u) = { f ∈ E ′ ∪ Sp | f ⊆ χ (u) and for all
ancestor nodes u ′ of u, f � χ (u ′) holds}. For a subtree T ′ of T , we define cov(T ′) =

⋃
u ∈T ′ cov(u).

Example 3.5. To illustrate the function cov , we shall give some example evaluations of it when
applied to the HD given in Figure 2. Clearly, any (special) edge covered at the root node u1 is
covered for the first time in an HD, so we have cov(u1) = {e1, e6}. For the internal node u4, we
have cov(u4) = {e4, e3}. So we see that the special edge e3 is actually covered for the first time in
u4. The node u5 is only needed to satisfy Condition (2) of Definition 3.2, where we require that
each special edge must appear in a node with a single edge in the edge cover, namely the special
edge itself.

Components of a hypergraph or, more generally, of a connection subhypergraph, play a crucial
role in the construction of a decomposition and also for the definition of our normal form for HDs
of a connection subhypergraph.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:9

Fig. 3. Connected components and their respective separator, visually marked.

Definition 3.6 (Connectedness, Components). Let H be a hypergraph, let U ⊆ V (H) be a set of
vertices, and let H ′ = 〈E ′, Sp,Conn〉 be a connection subhypergraph of H .

— We define [U]-adjacency as a binary relation on E ′∪Sp such that two (possibly special) edges
f1, f2 ∈ E ′ ∪ Sp are [U]-adjacent if (f1 ∩ f2) \U � ∅ holds.

— We define [U]-connectedness as the transitive closure of the [U]-adjacency relation.
— A [U]-component of H ′ is a maximally [U]-connected subset C ⊆ E ′ ∪ Sp.

Example 3.7. An example for a separator that generates multiple connected components can be
seen in Figure 3. The separator S is the union of e2∪e6, marked via thicker edges. The corresponding
[S]-componentsC1 = {e3, e4, e5} andC2 = {e1, e7, e8} are highlighted visually. Note that edges fully
covered by S (in our example, e2 and e6) are not part of any [S]-component.

Let S be a set of edges and special edges with U =
⋃
S . Then we will also use the terms [S]-

connectedness and [S]-components as a short-hand for [U]-connectedness and [U]-components,
respectively.

3.2 Normal Form of HDs of Connection Subhypergraphs

Analogously to the normal form of HDs of hypergraphs in Reference [24], we now introduce a
normal form of HDs of connection subhypergraphs.

Definition 3.8 (HD-normal Form of connection subhypergraphs). Let H ′ = 〈E ′, Sp, Conn〉 be a
connection subhypergraph of some hypergraph H , and let D = 〈T , χ , λ〉 be an HD of H ′. We
say that D is in normal form if for every node p in T and every child node c of p the following
properties hold:

(1) The set cov(Tc) of edges is a [χ (p)]-component of H ′;
(2) there exists f ∈ cov(Tc) with f ⊆ χ (c);
(3) χ (c) =

(⋃
λ(c)

)
∩
(⋃

cov(Tc)
)
.

We will show in Claim A of the proof of Theorem 3.10 that, in any HD ofH ′, cov(Tc) is the union
of one or several [χ (p)]-components. Condition 1 of the normal form requires something stronger,
namely that cov(Tc) is exactly one [χ (p)]-component Cp of H ′.

Condition 2 serves to eliminate redundant nodes from an HD. As will be seen in the “Condi-
tion 2”-part of the proof of Theorem 3.10, if there is no such f ∈ cov(Tc) with f ⊆ χ (c), then
χ (c) ⊆ χ (p), and we can actually delete node c from the HD.

Condition 3 is the only place where we deviate from the normal form in Reference [24]. The pur-
pose of Condition 3 in Reference [24] is to make sure that χ (c) is uniquely determined whenever
λ(c), χ (p), and cov(Tc) are known. However, there also would have been other choices to achieve

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:10 G. Gottlob et al.

Fig. 4. An example for a non-normal form HD. This HD decomposes the connection subhypergraph given

earlier in Figure 2.

this goal. Our Condition 3 chooses χ (c) minimally. That is, to ensure the special condition, χ (c)
must contain all vertices from

⋃
λ(c) that occur in χ (Tc). Since, by definition, all edges in cov(Tc)

are covered at some node inTc , all vertices from
(⋃

λ(c)
)
∩
(⋃

cov(Tc)
)

must occur in χ (c). How-
ever, as will become clear in the proof of Theorem 3.10, there is no need to add further vertices
to χ (c), since vertices not occurring in

⋃
cov(Tc) can never violate the connectedness condition

at node c as long as we stick to our strategy of choosing χ (u) minimally also for all nodes u ∈ Tc .
In contrast, Condition 3 in Reference [24] chooses χ (c) maximally. That is, also all vertices in(⋃

λ(c)
)

that occur in χ (p) are added to χ (c). This deviation from the normal form in Reference
[24] is crucial for the design of our algorithm, since, in our construction of an HD, we will be able
to derive the possible sets cov(Tc) as soon as we have λ(p) and λ(c), but we will “know” χ (p) only
much later in the algorithm.

In the sequel, to improve readability, we will often use the nameCp when referring to the unique
[χ (p)]-component of H ′ from Condition 1 of Definition 3.8, which coincides with cov(Tc).

Example 3.9. We already saw an example of a normal form HD in Figure 2 with the connection
subhypergraph right next to it. We shall call this connection subhypergraph H ′ = 〈E ′, Sp,Conn〉,
where E ′ = {e1, e2, e4, e5, e6, e7, e8}, Sp = {e3}, and Conn = { f ,д,h}. This connection subhyper-
graph in turn is based on the hypergraph we saw earlier in Figure 1. To illustrate the differences
between normal form and non-normal form HDs, we give an example of an HD that violates the
normal form stated in Definition 3.8 in Figure 4. To understand why it does not satisfy Defini-
tion 3.8, we note that there are exactly two [χu1]-components of H ′, and yet u1 has only one child
node. Condition (1) requires for each [χu1]-component of H ′ to be covered in a separate subtree,
whereas the non-normal form HD covers both components in the same subtree.

We now carry over two key results from Reference [24], whose proofs can be easily adapted to
our setting of connection subhypergraphs.

Theorem 3.10 (cf. Reference [24], Theorem 5.4). LetH ′ be a connection subhypergraph of some
hypergraph H , and let D be an HD of H ′ of width k . Then there exists an HD D′ of H ′ in normal
form, such that D′ also has width at most k .

Proof. The proof proceeds in several steps:

Claim A (cf. Reference [24]. Lemma 5.2). Let p, c be nodes in the HD D such that p is the parent
of c . Moreover, let C ′ be a [χ (p)]-component of H ′ with C ′ ∩ cov(Tc) � ∅. Then C ′ ⊆ cov(Tc) must
hold.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:11

Proof of Claim A. We proceed by contradiction. Suppose that C ′ ∩ cov(Tc) � ∅, but C ′ �

cov(Tc) holds. That is, there exist (possibly special) edges e, e ′ ∈ C ′ such that e ′ ∈ cov(Tc) and
e � cov(Tc), i.e., e is covered by some nodeu ∈ N (T) outsideTc . However, e, e ′ are [χ (p)]-connected,
i.e., there exists a sequence of (possibly special) edges e = e1, e2, . . . , e� = e ′ such that any two
neighbouring edges ei , ei+1 are [χ (p)]-adjacent. By assumption, e1 is covered by some node outside
Tc , and e� is covered by some node in Tc . Hence, there must exist edges ei , ei+1 such that ei is
covered by some node outsideTc and ei+1 is covered by some node inTc . But ei and ei+1 are [χ (p)]-
adjacent, i.e., they share a vertex x that is not in χ (p). So ei is actually covered by a node outsideTc

that is different from p. Hence, vertex x violates the connectedness condition of HDs (Condition 3
of Definition 3.2)—a contradiction. �

Claim B (cf. Reference [24]. Lemma 5.3). Let p be a node in the HD D. Moreover, let C be a
[χ (p)]-connected set of edges and special edges of H ′, and letV =

(⋃
C
)
\ χ (p). Moreover, for any set

of vertices X ⊆ V (H ′), let nodes(X) denote the set of nodes u in the HD D with χ (u) ∩ X � ∅. Then
nodes(V) forms a connected subtree of D.

Proof of Claim B. We proceed by induction of the number of edges inC . First, consider a single
edge e . By the connectedness condition of HDs (Condition 3 of Definition 3.2), we must have that,
for every x ∈ e \ χ (p), nodes({x}) induces a connected subtree of D. Moreover, by Condition 2
of Definition 3.2, there exists a node u in D with e ⊆ χ (u). Hence, u ∈ nodes({x}) for every
x ∈ e \ χ (p), and, therefore, also nodes(e \ χ (p)) forms a connected subtree of D.

For the induction step, it suffices to show that, for any two (possibly special) edges e, e ′, if e, e ′

are [χ (p)]-adjacent, then nodes((e∪e ′)\ χ (p)) forms a connected subtree of D. We have just shown
that nodes(e \ χ (p)) and nodes(e ′ \ χ (p)) form connected subtrees of D. Moreover, since e, e ′ are
[χ (p)]-adjacent, they share a variable x � χ (p). By Condition 3 of Definition 3.2, nodes({x}) is a
connected subtree of D. Hence, this latter subtree connects the two subtrees nodes(e \ χ (p)) and
nodes(e ′ \ χ (p)) and, therefore, also nodes((e ∪ e ′) \ χ (p)) forms a connected subtree of D. �

We are now ready to show that any HD can be transformed into an HD in normal form without
increasing the width. This transformation proceeds top-down. Consider an arbitrary HD D =

(T , χ , λ) of a connection subhypergraph H ′. Let (p, c) be a pair of nodes in D that violates one of
the Conditions 1–3 of the normal form, and suppose that p is highest up in the tree T with this
property. Then we can transform D as follows to ensure that (p, c) satisfies the Conditions 1–3.

Condition 1. By Claim A, we have that cov(Tc) is the union of one or several [χ (p)]-components.
By Condition 1 of the normal form, there is exactly one [χ (p)]-component Cp of H ′ satisfying
Cp ⊆ cov(Tc) and, therefore,Cp = cov(Tc). Suppose that this is not the case, i.e., there exist [χ (p)]-
componentsC1, . . .C� withCi ⊆ cov(Tc) and � ≥ 2. For every i , letVi =

(⋃
Ci

)
\ χ (p). By Claim B,

nodes(Vi) forms a connected subtree ofTc . LetTi denote this subtree. We take an isomorphic copy
T ′

i of Ti . For every node u ∈ N (Ti), we write u ′ to denote the corresponding node in N (T ′
i) under

the isomorphism betweenTi andT ′
i . Then we define labelling functions χ ′

i and λ′i on the nodes in

T ′
i as follows: For every u ′ ∈ N (T ′

i), we set χ ′
i (u

′) = χ (u) ∩
(⋃

Ci

)
and λ′i (u

′) = λ(u).
Now we transform D as follows: We delete the entire subtreeTc fromT . Instead, we append the

treesT ′
1 , . . . ,T

′
�

as new subtrees immediately belowp, i.e., the roots r ′1, . . . , r
′
�

of the treesT ′
1 , . . . ,T

′
�

become new child nodes ofp. Clearly, every pair (p, r ′i) satisfies Condition 1 of the normal form, i.e.,
there exists a [χ (p)]-component Cp of H ′ such that Cp = cov(Tc), namely Cp = Ci . Moreover, it is
easy to verify that none of the Conditions 1–5 of Definition 3.2 is violated by this transformation.

Condition 2. Suppose that (p, c) is a pair of nodes in D that satisfies Condition 1 but violates
Condition 2 of the normal form. Let Cp denote the [χ (p)]-component with cov(Tc) = Cp . By the

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:12 G. Gottlob et al.

violation of Condition 2, there is no f ∈ Cp with f ⊆ χ (c). Note that then there is also no f ∈ Cp

with f ∈ λ(c). Indeed, suppose to the contrary that there were some f ∈ Cp with f ∈ λ(c). Then,
by the special condition of HDs (Condition 4 of Definition 3.2), all vertices in f would have to be
in χ (c), and Condition 2 of the normal form would not be violated by (p, c).

It follows that λ(c) contains only edges and special edges that are covered outsideTc . Hence, by
the connectedness condition of HDs (Condition 3 of Definition 3.2), we must have χ (c) ⊆ χ (p).
But then we may simply delete the node c from T and turn all child nodes of c into child nodes of
p. Clearly, this does not lead to a violation of any of the conditions of the definition of HDs.

Condition 3. Suppose that (p, c) is a pair of nodes in D that satisfies Condition 1 and 2 but vio-
lates Condition 3 of the normal form. Let Cp denote the [χ (p)]-component with cov(Tc) = Cp . By

Condition 1 of HDs in Definition 3.2, we have χ (c) ⊆
(⋃

λ(c)
)
. Moreover, by the connectedness

condition of HDs (Condition 3 of Definition 3.2), we must have χ (p) ∩
(⋃

Cp

)
⊆ χ (c).

We can thus perform the following operation on the entire subtree Tc : All vertices from χ (Tc)

that are outside
(⋃

Cp

)
shall be removed from the χ -labels of the nodes in Tc . That is, for any

n ∈ Tc , we may set χ (n) =
(⋃

λ(n)
)
∩
(⋃

Cp

)
. From the reasoning above, it follows that this may

not lead to any violations of the conditions of Definition 3.2. �

3.3 Properties of Connection Subhypergraphs and Their Normal Form HDs

We move on to showing two key properties of connection subhypergraphs. First, we show that
property (1) of Definition 3.2 can be strengthened. Not only is there always an HD such that
cov(Tc) is a [χ (p)]-component, but in fact there is also an HD such that cov(Tc) is always a [λ(p)]-
component. Second, we show that a connection subhypergraph can always be separated in a bal-
anced fashion by a bag of one of its HDs.

Toward the first goal we first show the following intermediate lemma.

Lemma 3.11 (cf. Reference[24], Lemma 5.8). Let H ′ be a connection subhypergraph of some hy-
pergraph H and let D = 〈T , χ , λ〉 be an HD in normal form of H ′. Moreover, let p, c be nodes in T
such that p is the parent of c and letCc ⊆ Cp for some [χ (p)]-componentCp of H ′. Then the following
equivalence holds: Cc is a [χ (c)]-component of H ′ if and only if Cc is a [λ(c)]-component of H ′.

Proof. It is convenient to prove the following claim first:

Claim A. Let H ′ be a connection subhypergraph of some hypergraph H and let D = 〈T , χ , λ〉 be
an HD in normal form ofH ′. Moreover, let p, c be nodes inT such that p is the parent of c andCp is the
[χ (p)]-component of H ′ with Cp = cov(Tc). Then, for any two (possibly special) edges e, e ′ ∈ Cp , the
following equivalence holds: e and e ′ are [χ (c)]-adjacent if and only if e and e ′ are [λ(c)]-adjacent.

Proof of Claim A. By Condition 1 of Definition 3.2, we have χ (c) ⊆
⋃

λ(c). Hence, [λ(c)]-
adjacency clearly implies [χ (c)]-adjacent. We only need to prove the opposite implication. So sup-
pose e, e ′ ∈ Cp are [χ (c)]-adjacent. That is, they share some vertex x with x � χ (c). We show
that e, e ′ are [λ(c)]-adjacent by proving that x �

⋃
λ(c). By the special condition of HDs (Condi-

tion 4 of Definition 3.2), we have χ (Tc) ∩
(⋃

λ(c)
)
⊆ χ (c). Moreover, Cp = cov(Tc) and, therefore,⋃

Cp ⊆ χ (Tc). Taking these two subset-relationships together, we thus get
⋃
Cp ∩

(⋃
λ(c)

)
⊆ χ (c).

Therefore, if x ∈
⋃

λ(c) were the case, then, together with x ∈ e ′ ∈ Cp , we would have x ∈ χ (c).
But x was chosen with the property x � χ (c). Hence, also x �

⋃
λ(c) holds. �

Proof of the “if” direction. Suppose that Cc is a [χ (c)]-component of H ′. By Claim A, if two
(possibly special) edges e, e ′ ∈ Cp are [χ (c)]-adjacent, then they are also [λ(c)]-adjacent. Hence,
any [χ (c)]-connected subset ofCp is also [λ(c)]-connected. Moreover, by χ (c) ⊆

⋃
λ(c), a maximal

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:13

[χ (c)]-connected set is also maximal [λ(c)]-connected. Hence, inside Cp , a [χ (c)]-component is
also a [λ(c)]-component.

Proof of the “only if” direction. Suppose that Cc is a [λ(c)]-component of H ′. Hence, in par-
ticular, it is [λ(c)]-connected, and it is maximal with this property. Clearly, by χ (c) ⊆

⋃
λ(c).Cc is

also [χ (c)]-connected. It remains to show that it is maximal with this property.
We proceed by contradiction. Suppose to the contrary thatCc is not maximally [χ (c)]-connected.

Then there exists a (possibly special) edge e ′ ∈ Cp \Cc such that e ′ is [χ (c)]-adjacent to some e ∈ Cc .
By Claim A, then e and e ′ are also [λ(c)]-adjacent. However, this contradicts the assumption that
Cc is maximally [λ(c)]-connected. �

The principal proof ideas of Theorem 3.10 and Lemma 3.11 are the same as for the corresponding
results (Theorem 5.4 and Lemma 5.8) in Reference [24]. The main technical difference between the
proofs here and there comes from the fact that we have defined [U]-components in Definition 3.6
as sets of edges and special edges while they are defined as sets of vertices in Reference [24]. We
have made this decision in order to simplify the presentation of our decomposition algorithm in
the next section. In addition, some of the proof arguments for Theorem 3.10 and Lemma 3.11 could
be slightly simplified compared with the corresponding results in Reference [24].

As has been noted above, our deviation from Reference [24] in the definition of the χ -label
of nodes in a normal form HD is essential for the design of our decomposition algorithm to be
presented in the next section. However, as far as the proof arguments of Theorem 3.10 and Lemma
3.11 are concerned, this deviation is inessential, since the “downward” components in an HD are
not affected by adding or removing vertices from the χ -label of the parent node to the χ -label of
the child node. However, for our purposes, we need a slightly stronger version of the above lemma:
Recall that the HD construction in Reference [24] proceeds in a strict top-down fashion. Hence,
when dealing with λ(c), the bag χ (p) is already known. This is due to the fact that, initially at the
root r , we have χ (r) =

⋃
λ(r) by the special condition. And then, whenever λ(c) is determined and

χ (p) plus a [χ (p)]-component are already known, χ (c) can also be computed. However, in our HD
algorithm, which “jumps into the middle” of the HD to be constructed, we do not automatically
have χ (p) available when determining λ(c). Hence, we need to slightly extend the above lemma
to the following corollary, which allows us to identify [χ (p)]-components with [λ(p)]-components
also for the parent node p.

Corollary 3.12. Let H ′ be a connection subhypergraph of some hypergraph H and let D =

〈T , χ , λ〉 be an HD in normal form of H ′. Moreover, let p, c be nodes in T such that p is the par-
ent of c . Then, the following property (1’) holds: There exists a [λ(p)]-component Cp of H ′ such that
Cp = cov(Tc).

Proof. We distinguish the two cases as to whether p is the root node of T or not.
Root node. Letp = r . Moreover, let c be a child node of r . We know, by the definition of the normal
form, that cov(Tc) is a [χ (r)]-component. It remains to show that cov(Tc) is also a [λ(r)]-component.
To this end, we first show (analogously to the proof of Claim A in the proof of Lemma 3.11) that
two edges e, e ′ ∈ cov(Tc) are [χ (r)]-adjacent if and only if they are [λ(r)]-adjacent.

By Condition 1 of Definition 3.2, we have χ (r) ⊆
⋃

λ(r). Hence, [λ(r)]-adjacency clearly implies
[χ (r)]-adjacency. We only need to prove the opposite implication. So suppose e, e ′ ∈ cov(Tc) are
[χ (r)]-adjacent. That is, they share some vertex x with x � χ (r). We show that e, e ′ are [λ(r)]-
adjacent by proving that x �

⋃
λ(r). Clearly, x ∈ V (H ′) = χ (Tr). Moreover, by the special condition

of HDs (Condition 4 of Definition 3.2), we have χ (Tr) ∩
(⋃

λ(r)
)
⊆ χ (r). Hence, since we are

assuming x � χ (r), we must have x �
⋃

λ(r).

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:14 G. Gottlob et al.

It is now easy to show that cov(Tc) is a [λ(r)]-component: Since cov(Tc) is a [χ (r)]-component,
we know, in particular, that cov(Tc) is [χ (r)]-connected. Hence, since we have just shown that
[χ (r)]-adjacency inside cov(Tc) implies [λ(r)]-adjacency, we conclude that cov(Tc) is also [λ(r)]-
connected. Moreover, since cov(Tc) is maximally [χ (r)]-connected and χ (r) ⊆ λ(r) holds by the
definition of HDs, cov(Tc) is also maximally [λ(r)]-connected and, therefore, a [λ(r)]-component.

Node different from the root. Consider an arbitrary node p in T and let c be a child of p.
Moreover, let p̂ be the parent node of p. By the definition of the normal form, we know that cov(Tp)

is a [χ (p̂)]-component Cp̂ and cov(Tc) is a [χ (p)]-component Cp . Moreover, we have Cp ⊆ Cp̂ . By
Lemma 3.11, we may conclude that Cp is a [λ(p)]-component. �

In Reference [12], balanced separators were used to design an algorithm for GHD computation.
Below, we formally define balanced separators for our notion of connection subhypergraphs and
we show that such a balanced separator always exists.

Definition 3.13 (Balanced Separators). Let H ′ be a connection subhypergraph of some hyper-
graph H , and let D = 〈T , χ , λ〉 be an HD of H ′. A node u of T is a balanced separator if the
following holds:

— for every subtree Tui
rooted at a child node ui of u, we have |cov(Tui

)| ≤
|E′ |+ |Sp |

2 and

— |cov(T ↑
u)| <

|E′ |+ |Sp |

2 .

Intuitively, this means that none of the subtrees “below” u covers more than half of the edges
of E ′ ∪ Sp and the subtree “above” u even covers less than half of the edges of E ′ ∪ Sp.

Lemma 3.14. Let H ′ be a connection subhypergraph of some hypergraph H , and let D = 〈T , χ , λ〉
be an HD of H ′. Then there exists a balanced separator in D.

Proof. We show that, given an arbitrary HD, we can always find a balanced separator as follows:

Initially, we set u = r for the root node r of T and distinguish two cases: If |cov(Tui
)| ≤

|E′ |+ |Sp |

2
holds for every subtree Tui

rooted at a child node ui of u, then u is a balanced separator and we

are done. Otherwise, there exists a child node ui of u such that |cov(Tui
)| >

|E′ |+ |Sp |

2 holds for
the subtree Tui

rooted at ui . Of course, there can exist only one such child node ui . Moreover, by

cov(T ↑
ui
) ∩ cov(Tui

) = ∅, we have |cov(T ↑
ui
)| <

|E′ |+ |Sp |

2 .

Now set u = ui and repeat the case distinction: If |cov(Tui
)| ≤

|E′ |+ |Sp |

2 holds for every subtree
Tui

rooted at a child node ui of u, then u is a balanced separator and we are done. Otherwise, there

exists a child node ui of u such that |cov(Tui
)| >

|E′ |+ |Sp |

2 holds for the subtree Tui
rooted at ui .

Again, there can only be one such ui . So we set u = ui and iterate the same considerations. This
process is guaranteed to terminate, since, eventually, we will reach a leaf node of T . �

4 THE LOG-K-DECOMP ALGORITHM

Algorithm log-k-decomp, whose pseudo-code description is shown in Algorithm 1, aims at con-
structing an HD in normal form according to Definition 3.8 of width ≤ k for a given hypergraph
H and integer k ≥ 1. W.l.o.g., we assume that H is connected, since, otherwise, we can always
compute an HD for each connected component of H separately and then construct an HD of H by
combining the HDs of the connected components in an arbitrary way, e.g., choose the HD of one
connected component and append the root node of any other HD as additional child of arbitrary
nodes of the chosen HD. It is easy to verify that no condition of the definition of HDs can thus be
violated.

The task of constructing an HD is split into subtasks that can then be processed in parallel.
At the heart of log-k-decomp is the recursive function Decomp: It takes as input a connection

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:15

ALGORITHM 1: log-k-decomp

Type: ConnSub=(E: Edge set, Sp: Special Edge set, Conn: Vertex set)

Input: H : Connected Hypergraph

Parameter :k : width parameter

Output: true if hw of H ≤ k , else false

1 begin

2 Hcomp � ConnSub(E: H , Sp: ∅, Conn: ∅)

3 return Decomp(Hcomp) � initial call

4 function Decomp(H ′: ConnSub)
5 if |H ′.E | ≤ k and |H ′.Sp | = 0 then � Base Cases

6 return true

7 else if |H ′.E | = 0 and |H ′.Sp | = 1 then

8 return true

9 foreach λp ⊆ H s.t. 0 ≤ |λp | ≤ k do � ParentLoop

10 compsp � [λp]-components of H ′

11 if ∃i s.t. |compsp [i]| >
|H ′.E |+ |H ′.Sp |

2 then

12 compdown � compsp [i] � found child comp.

13 else

14 continue ParentLoop

15 if V (compdown) ∩ H ′.Conn �
⋃

λp then

16 continue ParentLoop � connect. check

17 foreach λc ⊆ H s.t. 1 ≤ |λc | ≤ k do � ChildLoop

18 χc �
⋃

λc ∩V (compdown)

19 if V (compdown) ∩
⋃

λp � χc then

20 continue ChildLoop � connect. check

21 Hcompdown
:= ConnSub(E: compdown.E, Sp: compdown.Sp, Conn: ∅)

22 compsc � [χc]-components of Hcompdown

23 if ∃i s.t. |compsc [i]| >
|H ′.E |+ |H ′.Sp |

2 then

24 continue ChildLoop

25 foreach x ∈ compsc do

26 Connx � V (x) ∩ χc

27 Hx � ConnSub(E: x .E, Sp: x .Sp, Conn: Connx)

28 if not(Decomp(Hx)) then

29 continue ChildLoop � reject child

30 compup .E � H ′.E \Hcompdown
.E

31 compup .Sp � (H ′.Sp \ Hcompdown
.Sp) ∪ {χc }

32 Hcompup
� ConnSub(E: compup .E, Sp: compup .Sp, Conn: H ′.Conn)

33 if not(Decomp(Hcompup
)) then

34 continue ChildLoop � reject child

35 return true � hw of H ′ ≤ k

36 return false � exhausted search space

subhypergraph H ′ of H in the form of parameter H ′ (with three fields H ′.E, H ′.Sp and H ′.Conn for
the sets of edges, special edges of H ′, and the interface of the HD-fragment to be constructed with
the parts “above” in the final HD, respectively). This function returns “true” if an HD-fragment of
width ≤ k of H ′ exists and “false” otherwise. The initial call to Decomp (line 3) is with the original
hypergraphH viewed as connection subhypergraph with empty set of special edges and empty set

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:16 G. Gottlob et al.

as connection interface. This connection subhypergraph is created by the call of the constructor
ConnSub on line 2.

The key idea of function Decomp is to construct an HD of H ′ by finding a balanced separator
(referred to as node c in Algorithm 1) of the HD to be constructed and to partition the set of
edges and special edges of H ′ via this balanced separator. The HD construction then proceeds
by recursively calling function Decomp for such subsets. More formally, let C1, . . . ,Cm denote all
[χ (c)]-components of H ′ and let C0 = {e ∈ H ′.E ∪ H ′.Sp | e ⊆ χ (c)}. Then H ′.E ∪ H ′.Sp can
be partitioned into the sets C0, . . . ,Cm . For complexity reasons, our algorithm aims at finding
an appropriate value of λ(c) rather than χ (c). Clearly, for bounded width k of the desired HD,
there are only polynomially many candidates for λ(c) while there are, in general, exponentially
many candidates for χ (c). By Corollary 3.12, for an HD in normal form, all [χ (c)]-components of
H ′ covered by a subtree rooted at a child of c are also [λ(c)]-components. But now we face two
problems: (1) Which components of H ′ are covered by a subtree rooted at a child of c (as opposed
to components that are covered by some node above the balanced separator c) and (2) how can we
determine C0, i.e., the edges and special edges covered by χ (c)?

We solve these problems by also searching for the λ-label of the parent node p of c . Indeed, in
an HD in normal form, cov(Tc) corresponds to a [χ (p)]-component Cp (referred to as compdown

in Algorithm 1). By Corollary 3.12, Cp is also a [λ(p)]-component. This allows us to solve the
first problem, since the [λ(c)]-components that are covered by a subtree rooted at a child of c
are precisely those [λ(c)]-components that are a subset of Cp . Knowing Cp = cov(Tc) also allows
us to solve the second problem in a very simple way: We know that cov(Tc) is partitioned into
the (possibly special) edges covered by χ (c) and the (possibly special) edges contained in one of
the [χ (c)]-components inside Cp . Hence, C0 consists of all (possibly special) edges in cov(Tc) not
contained in one of the [χ (c)]-components inside Cp . In function Decomp, the set C0 is only dealt
with implicitly in that we call Decomp recursively for all [χ (c)]-components inside Cp (on line 28)
and for the connection subhypergraph containing all edges and special edges of H ′ outsideCp (on
line 33). In other words, the edges and special edges of H ′ that are not contained in one of the
[χ (c)]-components inside Cp and that are outside Cp (that is, the edges and special edges covered
by χ (c)) are considered as done and are not contained in any recursive call to Decomp.

We now explain informally the various steps of function Decomp. A formal proof of the
correctness of Algorithm 1 (in particular, of function Decomp) will be provided in Section 5, and
an example will be worked out in detail in Section 6. The base case of function Decomp is reached
(lines 5–8) when the existence of such an HD-fragment is trivial, i.e., either there are at most k
edges and no special edges left or there is no edge and only one special edge left. In these cases,
the desired HD-fragment simply consists of a single node whose λ-label either consists of the ≤k
edges or of the single special edge, respectively.

Function Decomp is controlled by two nested loops (lines 9–35 for the outer loop and lines 17–35
for the inner loop), which search for the λ-labels of two adjacent nodes p and c of the desired HD-
fragment, such thatp is the parent and c is the child. The idea of determining two nodesp and c has
been explained above. In particular, we want node c to be a balanced separator of the connection
subhypergraph H ′. By Lemma 3.14, a balanced separator is guaranteed to exist. To find a balanced
separator c , we have to make sure that node c satisfies the two conditions of Definition 3.13, i.e.,
(1) all of the subtrees rooted at a child of c cover at most half of the edges and special edges in

H ′, and (2) the subtree T ↑
c “above” c covers strictly fewer than half of the edges and special edges

in H ′. For the second condition, observe that compdown (chosen at line 12) is meant to be covered
precisely by Tc . Due to the fact that we are searching for an HD in normal form, we may assume
that Tc covers exactly one [χ (p)]-component compdown, which, by Corollary 3.12, is also a [λ(p)]-

component. Further observe that the edges and special edges covered by T ↑
c and the set compdown

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:17

partition the edges and special edges inH ′. Hence, checking if compdown contains more than half of

H ′ (on line 11) is equivalent to checking condition (2), i.e.,T ↑
c covers strictly fewer than half of the

edges and special edges in H ′. To check that c also satisfies the first condition of Definition 3.13,
we have to compute all [λ(c)]-components inside compdown (line 22) and check that the size of each
of them is at most half of the size of H ′ (line 23). Again, since we are only interested in HDs in
normal form, we may assume here that each subtree rooted at a child of c covers exactly one of
these [λ(c)]-components.

If such a balanced separator λ(c) together with the λ-label λ(p) at the parent node p of c has
been found, then several checks have to be performed to make sure that the HD-fragment under
construction satisfies the connectedness condition. For instance, all vertices in the intersection of
Conn (i.e., the interface of the HD-fragment currently being constructed with the remaining HD
“above” this HD-fragment) with component Cp (i.e., a component “below” node p) also have to
occur in

⋃
λ(p) (line 15).

Suppose that all these checks succeed. From λ(p) and λ(c), we can compute χ (c) according to
Condition 3 of the normal form introduced in Definition 3.8 (line 18). In the HD D′ to be con-
structed for the connection subhypergraph H ′, the edges and special edges of H ′ can be split into
three disjoint categories as follows:

(1) the edges and special edges covered by χ (c),
(2) the edges and special edges covered by a subtree rooted at some child node of c , and
(3) the edges and special edges covered in the HD “above” c .

The edges and special edges covered by χ (c) are done and need no further consideration. The
edges and special edges in the second and third category are taken care of by recursive calls to
the function Decomp (lines 28 and 33). To this end, we compute all [χ (c)]-components C1, . . . ,Cm

(line 22). Now suppose thatC1, . . . ,C� with 1 ≤ � ≤ m are the [χ (c)]-components inside the [λ(p)]-
component Cp . Then the function Decomp is called recursively for each of the [χ (c)]-components
C1, . . .C� (line 28). In the call for component Ci , the interface Conni is obtained simply as the
intersection of the vertices in Ci and in χ (c) (line 26, where Ci is referred to as x). All of the
remaining [χ (c)]-components are taken care of by the HD-fragment “above” c , which we try to
construct in another recursive call of function Decomp (line 33). In this recursive call, χ (c) is added
as yet another special edge—in addition to the edges and special edges in the [χ (c)]-components
outside Cp . The additional special edge in the recursive call for the HD-part “above” node c and
the interfaces Conn defined for each of the components as the intersection against χ (c), in the
recursive calls for the HD-parts “below” node c ensure that we can (provided that all recursive
calls of function Decomp are successful) stitch together the HD-fragments of these recursive calls
to an HD-fragment of the connection subhypergraph H ′ of H .

To summarize, if all recursive calls return “true,” then the overall result of this call to function
Decomp is successful and returns “true” (line 35). If at least one of the recursive calls returns “false,”
then we have to search for a different label λ(c) (in the next iteration of the “ChildLoop“). If even-
tually all candidates for λ(c) have been tried out and none of them was successful, then we have to
search for a different label λ(p) of the parent node p (in the next iteration of the “ParentLoop”) and
restart the search for λ(c) from scratch. Only when also all candidates for λ(p) have been tried out
and none of them was successful does function Decomp return the overall result “false” (line 36).

We conclude our informal discussion of Algorithm 1 by mentioning a slightly subtle point
concerning the candidates for λ(p) in the “ParentLoop.” By the condition 0 ≤ |λp | ≤ k on line 9,
λp = ∅ is also considered as a possible candidate. Of course, in the HD D′ to be constructed for
the connection subhypergraph H ′, we do not want to have nodes with empty λ-label and, hence,
also empty χ -label. Nevertheless, this case is included for technical reasons. Actually, the check

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:18 G. Gottlob et al.

on line 15 only succeeds if H ′.Conn is also empty. We are assuming that the input hypergraph H is
connected. Hence, H ′.Conn = ∅ can only occur when the HD D′ to be constructed by the current
call of Decomp contains the root of the HD D of H . In this case, p is a “dummy” parent of node
c , and c will ultimately be the root of D′ and, therefore, also of D. Indeed, the effect of λp = ∅ is
that compsp on line 10 contains a single [λp]-component, namely H ′.E ∪H ′.Sp. Consequently, the
recursive call on line 33 for the component “above” node c is with a connection subhypergraph
that contains no edge and only one special edge, namely χ (c). This means that the corresponding
HD-fragment implicitly constructed for this call of Decomp consists of a single node u with
λ(u) = {χ (c)} and χ (u) = χ (c). When assembling the HD D′ of H ′ from the HDs implicitly
constructed by the various recursive calls of function Decomp, this node u gets merged with the
root c of the rest of the HD D′ of H ′ and, thus, disappears. The details of the construction of an
HD from a successful call of function Decomp will be worked out in detail in the soundness proof
in Section 5.

Below, we state the crucial property of log-k-decomp, which makes this approach particularly
well suited for a parallel implementation.

Theorem 4.1. Algorithm log-k-decomp correctly checks for given hypergraph H and integer
k ≥ 1 if hw(H) ≤ k holds. The algorithm is realised by a main program and the recursive func-
tion Decomp, whose recursion depth is bounded logarithmically in the number of edges of H , i.e.,
O(log(|H |)). Moreover, by materialising the decompositions implicitly constructed in the recursive
calls of the Decomp function, an HD of H of width ≤ k can be constructed in polynomial time in case
of a successful computation (i.e., return-value “true”).

Proof. Theorem 4.1 has several parts. Below, we prove that the recursion depth is bounded
logarithmically in the number of edges of H . The correctness of the algorithm log-k-decomp as
well as the polynomial-time upper bound on the construction of an HD in case of a successful run
of the algorithm (i.e., if it returns “true”) will be proved in a separate section, namely Section 5.

The size of the connection subhypergraph in the call of function Decomp in the main program
can only be bounded by the size of H itself. However, in every subsequent execution of Decomp
for some connection subhypergraph (H ′.E,H ′.Sp,H ′.Conn), we always choose node c as a
balanced separator. By Lemma 3.14, such a balanced separator always exists. The connection

subhypergraphs in the recursive calls are therefore guaranteed to have size at most �
|H ′.E |+ |H ′.Sp |

2 �.
Note that the rounding up is necessary, because the new special edge χ (c) is added in the recursive
call for the HD-fragment above c . Without this special edge, this component is guaranteed to be

strictly smaller than
|H ′.E |+ |H ′.Sp |

2 . At any rate, also with the upper bound �
|H ′.E |+ |H ′.Sp |

2 � on the
size of the connection subhypergraphs of H in the recursive calls, we thus get an upper bound
O(log(|H |)) on the recursion depth. �

Note that we have formulated algorithm log-k-decomp as a decision procedure that decides if
hw(H) ≤ k holds for given H and k . In case of a successful computation (i.e., return-value “true”)
it is easy to assemble a concrete HD of width ≤ k of H from the HD-fragments corresponding to
the various calls of procedure Decomp. In Section 5, we shall discuss the construction of such a
concrete HD as part of the correctness proof of Algorithm 1.

We emphasize two further important properties of algorithm log-k-decomp: First, it should be
noted that the logarithmic bound on the recursion depth does not restrict the form of the HD in
any way. In particular, it does not imply a logarithmic bound on the depth of the HD. The bound
on the recursion depth is achieved by our novel approach of constructing the HD by recursively
“jumping” to a balanced separator of the HD-fragment to be constructed rather than constructing
the HD in a strict top-down manner as proposed in previous approaches [24, 27].

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:19

Second, as was explained at the beginning of this section, it is crucial in our approach that we
search for appropriate λ-labels for a pair (p, c) of nodes, where p is the parent of c . One of the
reasons why we need the λ-label of the parent is that this allows us to determine χ (c) from λ(c).
And only when we know χ (c) we can be sure which edges are indeed covered by χ (c). This knowl-
edge is crucial to guarantee that all of the recursive calls of function Decomp have to deal with a
connection subhypergraph whose size is halved, which in turn guarantees the logarithmic upper
bound on the recursion depth. This strategy is significantly different from all previous approaches
of decomposition algorithms. In References [12, 26], a parallel algorithm for generalised hypertree
decompositions is presented. There, the problem of determining the χ -label of the balanced sep-
arator is solved by adding a big number of subedges to the hypergraph so that one may assume
that χ (u) =

⋃
λ(u) holds for every node u. Clearly, this addition of subedges, in general, leads

to a substantial increase of the hypergraph. In Reference [4], a preliminary attempt to parallelise
the computation of HDs was made without handling pairs of nodes. However, in the absence of
λ(p), we cannot determine χ (c) from λ(c). Consequently, we do not know which edges covered by⋃

λ(c) are ultimately covered by χ (c). Hence, all the edges covered by
⋃

λ(c) would have to be
added to the recursive call of Decomp for the HD-part “above” c , thus destroying the balancedness
and the logarithmic upper bound on the recursion depth.

By Theorem 4.1, Algorithm log-k-decomp guarantees a logarithmic bound on the recursion
depth and thus provides a good basis for a parallel implementation. Nevertheless, it still leaves
room for several improvements. For instance, we can define also negative base cases to detect the
overall answer “false” faster, we can restrict the edges that may possibly be used in the λ-labels of a
connection subhypergraph (and provide them as an additional parameter of the function Decomp),
and so on. These ideas and several further improvements—together with the pseudo-code of the
resulting improved algorithm—are presented in Section 7.

The complexity of log-k-decomp. It is known that deciding whetherhw(H) ≤ k holds for a given
hypergraphH is in XP in terms of parameterised complexity, i.e., there is anO(nf (k)) algorithm that
checks whether a hypergraph with size n has width ≤ k . However, our algorithm log-k-decomp
does not achieve this bound and has a worst-case running time of only nO (k log n): Each call of
Decomp iterates through roughly n2k separator pairs. We cannot significantly bound the number
of balanced separators and thus each recursion incurs another multiplicative factor in the order of
n2k in the worst case. Since recursion can nest up to logn times, we observe the stated worst-case
complexity.

The additional log factor in the exponent is an indirect consequence of our use of special edges.
The canonical XP algorithm for deciding hw ≤ k [24] is stated in terms of a log-space Alternating

Turing Machine (ATM) [7] (wrt. fixed k). It is known that log-space ATMs can be simulated by
polynomial time deterministic Turing Machines [30]. However, this simulation relies on caching
to avoid repetition of computation trees (cf. the NewDetKDecomp algorithm in Reference [12]).
Notably, this cache is always of polynomial size due to the log-space bound on the representation
of each ATM state. In our algorithm, keeping track of special edges is required to guarantee
that decompositions for individual components fit together. Intuitively, this book-keeping of
special edges makes the potential number of different computation trees exponential (in order
logn) and thus on a theoretical level, caching is no longer sufficient to achieve XP running
time.

However, our empirical evaluation in Section 8 confirms that these concerns are mainly of the-
oretical nature as our algorithm clearly outperforms NewDetKDecomp from Reference [12], which
is strictly in XP. In practice, we also employ a hybrid strategy, where we switch to the simpler
NewDetKDecomp algorithm after a sufficient number of balanced splitting steps by log-k-decomp.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:20 G. Gottlob et al.

In Section 8, we will see that this performs best in practice as the benefit of balanced splitting
diminishes once the connection subhypergraphs become small. Such a hybrid method in fact ex-
hibits XP worst-case complexity if we switch to NewDetKDecomp at a constant depth d (leading to
no more than nO (kd) calls of the nO (k) algorithm NewDetKDecomp). At any rate, in our implemen-
tation, we choose a more sophisticated hybridisation strategy (see Section 8.3) for better practical
performance than the constant depth criterion.

log-k-decomp vs. BalancedGo. We conclude this section by pointing out the main difference be-
tween our new log-k-decomp algorithm for HD computation and the BalancedGo algorithm from
Reference [26] for GHD computation. Both algorithms are based on “guessing” a balanced sepa-
rator, computing components relative to this separator, and then recursively decomposing each
component. However, as mentioned in Section 2, in case of GHDs, we do not have the special
condition (Condition 4 in the definition of HDs recalled in Section 2) at our disposal to restrict the
possible values of χ (u) when we know λ(u). Hence, a different method for getting access to χ (u)
and, in the next step, to the [χ (u)]-components is required. Indeed, such a method was proposed
in Reference [20] and then refined in Reference [26]: By adding certain subedges of the edges in
E(H), we may assume w.l.o.g. that χ (u) =

⋃
λ(u) holds. That is, the hypergraph H = (V (H),E(H))

is transformed into a new hypergraph H ′ = (V (H),E ′(H)) such that, for every e ′ ∈ E ′(H), there
exists e ∈ E(H) with e ′ ⊆ e . In References [20, 26] a way to restrict the set E ′(H) is proposed so that
we do not have to add all of 2E(H). Nevertheless, in general, E ′(H)\E(H) is still exponentially big. Of
course, by the NP-hardness of GHD-computation even for fixed k = 2, this exponential blow-up is
to be expected. This is in sharp contrast to our new log-k-decomp algorithm for HD-computation,
where we never need to add any edges to the hypergraph. However, in log-k-decomp, we always
have to “guess” λ(p) of the parent p in addition to the balanced separator λ(c), as was explained at
the beginning of this section.

A minor technical difference comes from the fact that, for HDs, the definition of the root node
is essential (due to the “special condition,” i.e., Condition 4 of Definition 3.2), whereas a GHD
can be rooted at any node. Therefore, in log-k-decomp, the interface of an HD-fragment to the
neighbouring fragment above (i.e., the set Conn of vertices in our algorithm) and the interface to
the neighbouring fragments below (i.e., the special edges) are treated differently. Consequently,
in the splitting step of log-k-decomp, we add a special edge only to the recursive call for the
component “above” node c . In contrast, BalancedGo treats the interfaces to all neighbouring GHD-
fragments equally and, therefore, adds a special edge to each component resulting from a splitting
step. Adding a special edge only to 1 recursive call in case of log-k-decomp (as opposed to adding
a special edge to every recursive call in case of BalancedGo) further increases the complexity
advantage of log-k-decomp over BalancedGo.

To conclude, the big advantage of log-k-decomp compared with BalancedGo is that
log-k-decomp does not add any edges to the hypergraph while BalancedGo, in the worst case,
has to add exponentially many new edges. The price to pay for this by log-k-decomp is that we
always need to “guess” the λ-labels of pairs (p, c), where c is the balanced separator andp its parent.
In BalancedGo, due to the added subedges, only λ(c) needs to be “guessed.” As will be seen in the
experimental results in Section 8, the advantage of not having to add subedges clearly outweighs
the disadvantage of having to deal with pairs (p, c) of nodes.

5 CORRECTNESS PROOF OF LOG-K-DECOMP

We prove the soundness and completeness of the algorithm log-k-decomp given in Algorithm 1
separately. The polynomial-time upper bound on the construction of an HD in case of a successful
run of the algorithm (i.e., if it returns “true”) will be part of the soundness proof.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:21

It is convenient to first prove the following claim:

Claim A. In every call of function Decomp in Algorithm 1 with parameter H ′ it is guaranteed that
H ′.Conn ⊆ V (H ′) holds with V (H ′) =

(⋃
H ′.E) ∪

(⋃
H ′.Sp).

Proof of Claim A. The proof is by induction on the call depth of the recursive function Decomp.
induction begin. The top-level call of function Decomp on line 3 is using the connection subhyper-
graph Hcomp as the parameter, where Hcomp .Conn is defined as ∅. Hence, Hcomp .Conn ⊆ V (Hcomp)

trivially holds.
induction step. Suppose that Claim A holds for every call of function Decomp down to some call level
n and suppose that function Decomp is called recursively during execution of Decomp at call level
n. Suppose that this execution of Decomp is with parameter H ′. The only places where function
Decomp is called recursively are lines 28 and 33. More specifically, Decomp is called with parameter
Hx on line 28 and with parameter Hcompup

on line 33. We have to show that both Hx .Conn ⊆

V (Hx) (on line 28) and Hcompup
.Conn ⊆ V (Hcompup

) (on line 33) hold. On line 28, the condition

is trivially fulfilled, since we have that Hx .Conn = Connx , and Connx is defined on line 26 as
Connx = V (x) ∩ χ (c).

It remains to consider the call of function Decomp on line 33. Suppose that compsc on line 22 is
of the form compsc = {x1, . . . ,x�}. By the definition of components in Definition 3.6, H ′ (that is,
H ′.E ∪ H ′.Sp) can be partitioned into the following disjoint subsets:

— x1.E ∪ x1.Sp, . . . ,x� .E ∪ x� .Sp
—y = { f ∈ H ′.E ∪ H ′.Sp | f ⊆ χ (c)}.
— z = (H ′.E \ compdown.E) ∪ (H ′.Sp \ compdown.Sp)

We thus have V (H ′) =
⋃�

i=1V (xi) ∪ V (y) ∪ V (z) with V (y) ⊆ χ (c). By construction (line 22), all
components xi are contained in compdown. Hence, we actually haveV (H ′) = V (compdown) ∪ χ (c) ∪
V (z). The recursive call of function Decomp on line 33 is with the edges and special edges in z plus
χ (c) as an additional special edge. Hence, we haveV (compup) = V (z)∪ χ (c) when Decomp is called
on line 33 with parameter Hcompup

. It is therefore sufficient to show that H ′.Conn ⊆ V (z) ∪ χ (c)

holds.
By the induction hypothesis, we may assume that H ′.Conn ⊆ V (H ′) holds. The check on line 15

ensures thatV (compdown)∩H
′.Conn ∩ ⊆

⋃
λ(p) holds for the edge set λ(p). Moreover, the check on

line 19 ensures that (
⋃

λ(p))∩V (compdown) ⊆ χ (c). In total, we thus haveH ′.Conn∩V (compdown) ⊆

χ (c). Together with V (H ′) = V (compdown) ∪ χ (c) ∪ V (z) and H ′.Conn ⊆ V (H ′), we may thus
conclude H ′.Conn ⊆ V (z) ∪ χ (c) and, therefore, H ′.Conn ⊆ V (compup) (on line 33). Hence, also
the call of function Decomp on line 33 satisfies Claim A. �

Soundness Proof. Suppose that algorithm log-k-decomp returns “true” when given some
hypergraph H as input. We have to show that then H has an HD of width ≤ k . Algorithm
log-k-decomp returns “true” when the call of function Decomp on line 3 with the connection
subhypergraph Hcomp returns “true.” Hence, it suffices to show that function Decomp is sound, i.e.,
if Decomp returns “true” when called with a connection subhypergraph H ′ as parameter, then H ′

has an HD of width ≤ k . Moreover, we have to show that by materialising the decompositions
implicitly constructed in the recursive calls of function Decomp, an HD of width ≤ k of H ′ can
be constructed in polynomial time whenever Decomp returns “true.” The proof is by induction on
|H ′.E | + |H ′.Sp |.
induction begin. Suppose that |H ′.E | + |H ′.Sp | = 1 and that function Decomp returns “true.” Hence,
we either have |H ′.E | = 1 and |H ′.Sp | = 0 or we have |H ′.E | = 0 and |H ′.Sp | = 1. In either
case, an HD of this connection subhypergraph can be obtained with a single node u by setting
λ(u) = { f } and χ (u) = f , where f is the only (special) edge in H ′.E ∪ H ′.Sp. This decomposition

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:22 G. Gottlob et al.

clearly satisfies all conditions of an HD according to Definition 3.2, the only non-trivial part being
Condition 5: We have to verify H ′.Conn ⊆ χ (u). By Claim A above, we know that in every call of
function Decomp,H ′.Conn is a subset of the vertices inH ′.E∪H ′.Sp. Now in case |H ′.E |+|H ′.Sp | = 1
holds, we have H ′.E ∪ H ′.Sp = { f } for a single (special) edge f and, therefore, χ (u) = f =(⋃

H ′.E
)
∪
(⋃

H ′.Sp
)
. Hence, we indeed have H ′.Conn ⊆ χ (u).

induction step. Now suppose that |H ′.E | + |H ′.Sp | > 1 and that function Decomp returns “true.”
This means that one of the return-statements in lines 6, 8, or 35 is executed. Actually, line 8 can
be excluded for |H ′.E | + |H ′.Sp | > 1. Now consider the remaining two lines 6 and 35. If the return-
statement on line 6 is executed, then we have |H ′.E | ≤ k and |H ′.Sp | = 0. In this case, analogously
to the induction begin, the desired HD consists of a single node u with λ(u) = H ′.E and χ (u) =⋃
H ′.E. Again, all conditions of an HD according to Definition 3.2 are easy to verify; in particular,

the proof argument for Condition 5 is the same as above.
It remains to consider the case that “true” is returned on line 35. This means that, for a particular

value of λ(p) (chosen on line 9) and of λ(c) (chosen on line 17), all recursive calls of function Decomp
(on lines 28 and 33) return “true.” By the induction hypothesis, we may assume that for each of
the connection subhypergraphs processed by these recursive calls of Decomp, an HD of width ≤ k
exists. Note that we are making use of Claim A here in that we may assume that all recursive calls of
Decomp are with properly defined connection subhypergraphs (in particular, the vertex set supplied
as third component of the parameter is covered by the edges and special edges in the first two
components of the parameter of each such call). Now look at these recursive calls: We are studying
a call of function Decomp with parameter H ′, where H ′ is a connection subhypergraph consisting
of a set H ′.E of edges, a set H ′.Sp of special edges and a set H ′.Conn of vertices. The current call of
function Decomp apparently has chosen labels λ(p) and λ(c) for nodes p and c , such that all checks
on lines 11, 15, 19, and 23, are successful in the sense that program execution continues with these
values of λ(p) and λ(c). In particular, there exists a [λ(p)]-component compdown of H ′, satisfying the
conditions V (compdown) ∩ H ′.Conn ⊆

⋃
λ(p) (line 15) and V (compdown) ∩

⋃
λ(p) ⊆ χ (c) (line 19).

Let {x1, . . . ,x�} denote the set of [χ (c)]-components of H ′ inside compdown. Then H ′.E ∪ H ′.Sp
(i.e., the set of edges and special edges in H ′) can be partitioned into the following disjoint subsets:

— x1.E ∪ x1.Sp, . . . ,x� .E ∪ x� .Sp
— (H ′.E \ compdown.E) ∪ (H ′.Sp \ compdown.Sp)
— { f ∈ H ′.E ∪ H ′.Sp | f ⊆ χ (c)}.

From the first two kinds of sets of edges and special edges, the following connection subhyper-
graphs are constructed, for which function Decomp is then called recursively on lines 28 and 33:

— for each xi consisting of a set of edges xi .E and special edges xi .Sp, define Hi = (xi .E,xi .Sp,
xi .Conn) with xi .Conn = V (xi) ∩ χ (c);

— for (H ′.E \ compdown.E) ∪ (H ′.Sp \ compdown.Sp) define H ↑ = (E↑, Sp↑,Conn↑) with E↑ =

H ′.E \ compdown.E) and Sp↑ = (H ′.Sp \ compdown.Sp) ∪ {χ (c)} and Conn↑ = H ′.Conn.

By assumption, the recursive calls of Decomp for each of these connection subhypergraphs return
the value “true.” Thus, by the induction hypothesis, for each of these connection subhypergraphs,
there exists an HD of width ≤ k . From these HDs, we construct an HD of H ′ as follows:

— First take the HD of H ↑. We shall refer to this HD as D↑. Let r denote the root node of D↑.
By Conn↑ = H ′.Conn, we have H ′.Conn ⊆ χ (r).

— Recall that χ (c) was added as a special edge to the connection subhypergraph H ↑. Hence,
by Definition 3.2, the HD D↑ has a leaf node u with λ(u) = {χ (c)} and χ (u) = χ (c). Now
we replace node u in D↑ by node c with λ(c) and χ (c) according to the current execution
of function Decomp. Moreover, for every f ∈ H ′.Sp with f ⊆ χ (c), we append a fresh

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:23

child node cf to c with λ(cf) = { f } and χ (cf) = f . It is easy to verify that the resulting
decomposition (let us call it D′) is an HD of the connection subhypergraph that contains
all edges and special edges of H ′ except for the ones in any of the xi ’s. In particular, node r
with H ′.Conn ⊆ χ (r) is still the root of HD D′.

— Now we take the HDs Di of the connection subhypergraphs (xi .E,xi .Sp,xi .Conn) and ap-
pend them as subtrees below c in D′, i.e., the root nodes of the HDs Di become child nodes
of c . Let us refer to the resulting decomposition as D. It remains to show that D indeed is
an HD of width ≤ k of the connection subhypergraph H ′ of H . The width is clear, since all
HD-fragments of D and also λ(c) have width ≤ k . It is also easy to verify that every edge
in H ′.E is covered by some node in D and every special edge in H ′.Sp is covered by some
leaf node in D. Moreover, also the connectedness condition holds inside each HD-fragment
(by the induction hypothesis) and between the various HD-fragments. The latter condition
is ensured by the definition of components in Definition 3.6 and by the fact that any two
connection subhypergraphs processed by the various recursive calls of function Decomp can
only share vertices from χ (c).

Finally, note that the above construction of HD D from the HD-fragments constructed in the
recursive calls of Decomp is clearly feasible in polynomial time. �

Before we prove the completeness of algorithm log-k-decomp, we introduce a special kind of
connection subhypergraphs: LetH be a hypergraph, and let D = 〈T , χ , λ〉 be an HD ofH with root
r . We call H ′ = (E ′, Sp,Conn) a D-induced connection subhypergraph of H if there exists a subtree
T ′ of T with the following properties:

— E ′ = cov(T ′);
— let B denote those nodes in T that are outside T ′ but whose parent node is in T ′; then Sp =
{χ (u) | u ∈ B}.

— If the root r of T ′ has the parent p in T , then Conn = V (H ′) ∩
⋃

λ(p). Otherwise, if the root
r of T ′ is also the root of T , then Conn = ∅.

An HD D′ = 〈S ′, χ ′, λ′〉 of H ′ is then obtained as follows:

— the tree S ′ of D′ is the subtree of T induced by the nodes of T ′ plus the nodes in B;
— for all nodes u in T ′, we set χ ′(u) = χ (u) and λ′(u) = λ(u);
— for all nodes u in B, we set χ ′(u) = χ (u) and λ′(u) = {χ (u)}.

We shall refer to D′ as the induced HD of H ′. It is easy to verify that D′ is in normal form,
whenever D is in normal form. In the completeness proof below, we shall refer to a D-induced
connection subhypergraph of H simply as an “induced subhypergraph” of H . No confusion can
arise from this, since we will always consider the same HD D of H throughout the proof.

Completeness Proof. Suppose that hypergraph H has an HD of width ≤ k . We have to show
that then algorithm log-k-decomp returns “true.” This is the case if the call of function Decompwith
parameterHcomp on line 3 returns “true,” whereHcomp is the connection subhypergraph (E(H), ∅, ∅).
We are assuming that H has an HD of width ≤ k . Of course, this is then also an HD of Hcomp. By
Theorem 3.10, Hcomp also has an HD D = 〈T , χ , λ〉 of width ≤ k in normal form. Moreover, Hcomp

is clearly a D-induced connection subhypergraph of H . Hence, it suffices to show that function
Decomp is complete on induced subhypergraphs of H . That is, if Decomp is called with an induced
subhypergraph H ′ that has an HD of width ≤ k , then Decomp returns “true.” We proceed by induc-
tion on |H ′.E | + |H ′.Sp |.

induction begin. Suppose that |H ′.E |+|H ′.Sp | = 1. That is, we either have |H ′.E | = 1 and |H ′.Sp | = 0
or we have |H ′.E | = 0 and |H ′.Sp | = 1. In the first case, “true” is returned via the statement on
line 6; in the second case, “true” is returned via the statement on line 8.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:24 G. Gottlob et al.

induction step. Now suppose that |H ′.E | + |H ′.Sp | > 1. If |H ′.E | ≤ k and |H ′.Sp | = 0, then the
return-statement on line 6 is executed and the function returns “true.” It remains to consider the
case that |H ′.E | > k or |H ′.Sp | > 1 holds. By Lemma 3.14, the HD D′ induced byH ′ has a balanced
separator. Let us refer to this balanced separator as the node c in D′. By the balancedness, it can
be easily verified that c must satisfy λ(c) ⊆ E(H) (that is, c is not a leaf node with λ(c) = { f } for
some special edge f). We distinguish the following three cases.
Case 1. Suppose that c is the root node of D′ and c is different from the root of D. Hence, c has a
parent node in D. Let us refer to this parent node as p. If function Decomp has not already returned
“true” before, then it will eventually try λ(p) in the foreach-statement on line 9. Due to the normal
form of D′, all of H ′ is a single [λ(p)]-component. Hence, the if-condition on line 11 is satisfied
and compdown is assigned all of H ′ on line 12. The connectedness check on line 15 succeeds, since
p is the parent of the root of D′ and H ′.Conn = V (H ′) ∩

⋃
λ(p) holds by the last condition of

the definition of induced subhypergraphs. Hence, the foreach-loop on lines 17–35 is eventually
entered. If function Decomp does not return “true” before, then it will eventually try λ(c) in the
foreach-statement on line 17. Then χ (c) assigned on line 18 is the correct χ -label of c according to
the normal form. The connectedness check on line 19 succeeds, since D satisfies the connectedness
condition. By assumption, c is a balanced separator; hence also the check on line 23 succeeds.
Thus, the foreach-loop on lines 25–29 is executed. It is easy to verify that the parameters supplied
to Decomp in the recursive calls on line 28 correspond to induced subhypergraphs. Therefore, all
these calls of Decomp return “true” by the induction hypothesis. Hence, also the statements on
lines 30–33 are executed. In this case, since compdown comprises all edges and special edges of H ′,
Decomp is called on line 33 with compup .E = ∅ and compup .Sp = {χ (c)}. Hence, as was shown in
the induction begin, this call of Decomp returns “true.” Therefore, the return-statement on line 35
is executed and the overall result “true” is returned by function Decomp.

Case 2. Suppose that c is the root node of D′ and c is also the root of D. It is easy to verify that,
in this case, the call of Decomp with parameter H ′ satisfies H ′.Conn = ∅. Indeed, the original
call of Decomp on line 3 is with H ′.Conn = ∅. Moreover, all recursive calls of Decomp on line
28 for the HD-fragment “above” node c let the Conn-part (i.e., the third part) of the parameter
unchanged.

If function Decomp does not return “true” before, then it will eventually try λp = ∅ in the foreach-
statement on line 9. Then compsp on line 10 contains a single [λp]-component, consisting of all
edges and special edges in H ′.E ∪H ′.Sp. Hence, the check on line 11 succeeds and this single com-
ponent will be assigned to compdown on line 12. By the above considerations, we have H ′.Conn = ∅.
Hence, the connectedness check on line 15 trivially succeeds and the foreach-loop on lines 17—35
is eventually entered. If function Decomp does not return “true” before, then it will eventually try
λ(c) in the foreach-statement on line 17. Then χ (c) is assigned the correct χ -label of c according
to the normal form on line 18. Finally, the connectedness check on line 19 trivially succeeds due to
λc = ∅.

From now on, the argumentation is exactly as in Case 1: By assumption, c is a balanced
separator; hence also the check on line 23 succeeds. Thus, the foreach-loop on lines 25–29 is
executed. It is easy to verify that the parameters supplied to Decomp in the recursive calls on
line 28 correspond to induced subhypergraphs. Therefore, all these calls of Decomp return “true”
by the induction hypothesis. Hence, also the statements on lines 30–33 are executed. In this
case, since compdown comprises all edges and special edges of H ′, Decomp is called on line 33 with
compup .E = ∅ and compup .Sp = {χ (c)}. Hence, as was shown in the induction begin, this call
of Decomp returns “true.” Therefore, the return-statement on line 35 is executed, and the overall
result “true” is returned by function Decomp.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:25

Case 3. Suppose that c is not the root node of D′. Then c has a parent node inside D′. Let us refer
to this parent node as p. If function Decomp has not already returned “true” before, then it will
eventually try λ(p) in the foreach-statement on line 9. By Corollary 3.12, the [χ (p)]-componentCp

consisting of the edges and special edges that are covered in D by the subtree rooted at child node
c of p is also a [λ(p)]-component. Hence, one of the [λ(p)]-components computed on line 10 is this
[χ (p)]-componentCp . The check on line 11 is successful, because the child c of p is a balanced sep-
arator. Hence c and the subtrees below c cover more than half of the edges and special edges. The
check on line 15 succeeds because of the connectedness condition in D. Hence, the foreach-loop
on lines 17–35 is eventually entered. If function Decomp does not return “true” before, then it will
eventually try λ(c) in the foreach-statement on line 17. Then χ (c) assigned on line 18 is the correct
χ -label of c according to the normal form. The connectedness check on line 19 succeeds, since
D satisfies the connectedness condition. By assumption, c is a balanced separator; hence also the
check on line 23 succeeds. Thus, the foreach-loop on lines 25–29 is executed. It is easy to verify
that the parameters supplied to Decomp in the recursive calls on line 28 correspond to induced
subhypergraphs. Hence, all these calls of Decomp return “true” by the induction hypothesis. Hence,
also the statements on lines 30–33 are executed. Again, it is easy to verify that also the parameters
supplied to Decomp in the recursive call on line 33 correspond to an induced subhypergraph. Hence,
by the induction hypothesis, also this call of Decomp returns “true.” Therefore, the return-statement
on line 35 is executed and the overall result “true” is returned by function Decomp. �

6 AN ILLUSTRATIVE EXAMPLE

To illustrate the notions introduced in Section 3 and the basic algorithm log-k-decomp shown in
Algorithm 1, we consider the hypergraph H = (V ,E) with V = {x1, . . . ,x10} and

E = {R1(x1,x2), R2(x2,x3), R3(x3,x4), R4(x4,x5), R5(x5,x6),

R6(x6,x7), R7(x7,x8), R8(x8,x9),R9(x9,x10), R10(x10,x1) }.

In other words, H is a the cycle graph with 10 vertices x1, . . . ,x10. A hypertree decomposition D

of H is shown in Figure 5(a).
We now walk through algorithm log-k-decomp, which will allow us to see also the notions

from Section 3 in action. Suppose that we run log-k-decomp with hypergraph H and parameter
k = 2.

In each of the loops on lines 9 and 17, the algorithm searches for a λ-label until it finds a success-
ful one. By “successful,” we mean that the current execution of the main program or of function
Decomp returns “true” (on lines 6, 8, or 35, respectively). To keep things simple in our discussion
below, we will directly choose a successful one with the understanding that this particular λ-label
will eventually be selected by the program unless another successful one has already been found
before.

Main program. The algorithm begins by creating a connection subhypergraph Hcomp with all the
edges {R1, . . . ,R10}, and empty sets for the special edges and for Conn. Then we call the function
Decomp with Hcomp as input (line 3).

Call 1 of function Decomp with parameters H ′.E = {R1, . . . ,R10},H
′.Sp = ∅, andH ′.Conn = ∅. Since

none of the conditions of the base case is satisfied, the ParentLoop will be entered. It will eventu-
ally try λp = {R1,R5}. This splits H ′ into 2 components c1 = {R2,R3,R4} and c2 = {R6, . . . ,R10}.
Component c2 satisfies the size constraint on line 11 and, therefore, becomes compdown on
line 12.

The ChildLoop will eventually try λc = {R1,R6}. On line 18, we thus set χc = {x1,x6,x7}. This
gives rise to a single component compsc [i] inside compdown, namely compsc [i] = {R7,R8,R9,R10}.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:26 G. Gottlob et al.

Fig. 5. Visualisations of the HD constructed as part of Section 6 and the HD-fragments used for its

construction.

This component satisfies both the constraint for connectedness (line 19) and the size constraint
(line 23). Moreover, it leads to two recursive calls of function Decomp: one for the component
compsc [i] = {R7,R8,R9,R10} “below” the “child node” (on line 28) and one for the component c1 =

{R1,R2,R3,R4,R5} “above” (on line 33). For the component “below,” we have x .E = {R7,R8,R9,R10}

and x .Sp = ∅; moreover, we set x .Conn = {x1,x7} on line 26. For the component “above,” we set
Hcompup

.E = {R1,R2,R3,R4,R5} on line 30 and Hcompup
.Sp = {s1} with s1 = χc = {x1,x6,x7} on

line 31; moreover, we retain Hcompup
.Conn = ∅ from the current call of Decomp. Clearly, edge R6

from H ′ is already covered by χc = {x1,x6,x7} and does not need to be further considered.
As we shall work out next, Call 1.1 of function Decomp for the component “below” will return

“true” based on the HD-fragment D1.1 shown in Figure 5(b). Likewise, Call 1.2 of function Decomp
for the component “above” will return “true” based on the HD-fragment D1.2 shown in Figure 5(c).
The leaf node of D1.2 contains the special edge s1, which acts as a placeholder for the node c with
labels λc = {R1,R6} and χc = {x1,x6,x7} from the current call of Decomp.

The HD-fragment D1 of the successful Call 1 of function Decomp is then obtained by taking
HD-fragment D1.2, replacing the leaf node with λ-label {s1} by the node c with λc = {R1,R6}

and χc = {x1,x6,x7} and appending the HD-fragment D1.1 below this node c . In other words, the
HD-fragment D1 is precisely HD D.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:27

Call 1.1 of function Decomp with parameters H ′.E = {R7,R8,R9,R10}, H
′.Sp = ∅, and H ′.Conn =

{x1,x7}. The ParentLoop (line 9) and the ChildLoop (line 17) will eventually choose λp = {R1,R7}

and λc = {R1,R8}, respectively. Then function Decomp is called recursively with parameters x .E =
{R9,R10}, x .Sp = ∅, and x .Conn = {x1,x9} on line 28 for the only component “below” and with
parameters Hcompup

.E = {R7},Hcompup
.Sp = {s2} with s2 = {x1,x8,x9}, and Hcompup

.Conn = {x1,x7}

on line 33 for the component “above.”

Call 1.1.1 of function Decomp with parameters H ′.E = {R9,R10}, H
′.Sp = ∅, and H ′.Conn = {x1,x9}.

This call immediately returns “true”, since we have reached the base case on lines 5 and 6. The
corresponding HD-fragment D1.1.1 consists of a single node with λ-label {R9,R10}.

Call 1.1.2 of function Decomp with parameters H ′.E = {R7}, H
′.Sp = {s2} with s2 = {x1,x8,x9},

and H ′.Conn = {x1,x7}. In the ParentLoop, eventually, λp = {R1,R6} will be chosen on line 9. In
this case, compdown is actually all of H ′, and it clearly satisfies the size constraint on line 11. In the
ChildLoop, λc = {R1,R7} will eventually be chosen on line 17. It gives rise to χc = {x1,x7,x8} on
line 18 with a single [χc]-component compsc [i] = {s2}. Function Decomp will therefore be called
on line 28 with parameters Hx .E = ∅, Hx .Sp = {s2}, and Hx .Conn = {x1,x8}. This call (referred to
as Call 1.1.2.1) returns “true”, since we now have the base case on lines 7 and 8.

The recursive call of function Decomp on line 33 for the “components above” is a special case
where there are actually no such “components above” left. Hence, in this case, we haveHcompup

.E =

∅, Hcompup
.Sp = {s3} with s3 = χc = {x1,x7,x8}, and Hcompup

.Conn = {x1,x7}. This leads to the Call

1.1.2.2 of function Decomp, which returns “true”, since we again have the base case on lines 7 and 8.
In total, Call 1.1.2 of function Decomp is successful and the corresponding HD-fragment D1.1.2

consists of two nodes: the node with λ-label {R1,R7} and its child node with λ-label {s2}

We can now also construct the HD-fragment D1.1 of the successful Call 1.1 of function Decomp.
More precisely, HD-fragment D1.1 is obtained by taking HD-fragment D1.1.2, replacing the leaf
node with λ-label {s2} by the node c with λc = {R1,R8} and χc = {x1,x8,x9} from Call 1.1 and
appending the HD-fragment D1.1.1 below this node c . The resulting HD-fragment D1.1 is shown
in Figure 5(b). That is, D1.1 is the subtree consisting of the bottom 3 nodes u6, u7, and u8, of the
final HD D displayed in Figure 5(a).

Call 1.2 of function Decomp with parameters H ′.E = {R1,R2,R3,R4,R5}, H
′.Sp = {s1} with

s1 = {x1,x6,x7}, and H ′.Conn = ∅. The execution of this function call is very similar to the calls
discussed above. Below, we therefore do not discuss in detail the remaining recursive calls inside
Call 1.2. Instead, we only list for each such call the parameters, the balanced separator χc , and the
corresponding HD-fragments.

In Call 1.2 of function Decomp, eventually the balanced separator with λc = {R1,R3} and χc =

{x1,x3,x4} will be chosen, which gives rise to the recursive Calls 1.2.1 (line 28) and 1.2.2 (line 33)
of function Decomp, which we briefly discuss below.

Call 1.2.1 of function Decomp with parameters H ′.E = {R4,R5}, H
′.Sp = {s1} with s1 = {x1,x6,x7},

and H ′.Conn = {x1,x4}. In Call 1.2.1 of function Decomp, eventually the balanced separator with
λc = {R1,R5} and χc = {x1,x5,x6} will be chosen, which in turn gives rise to the recursive Calls
1.2.1.1 (line 28) and 1.2.1.2 (line 33) of function Decomp. Both of these calls are successful (as we
will show below) and the corresponding HD-fragment D1.2.1 will combine the HD-fragments from
Calls 1.2.1.1 and 1.2.1.2: From Call 1.2.1.2 we will have a leaf-node with special edge s5, which has
the same vertices as χc . We replace this leaf with a new node with λ set to λc . Below this new node,
we attach the resulting HD-fragment D1.2.1.1 from the corresponding call, which consists of only
a single node with λ-label {s1}. Below we briefly discuss how the two Calls 1.2.1.1 and 1.2.1.2 are
processed.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:28 G. Gottlob et al.

Call 1.2.1.1 of function Decomp with parameters H ′.E = ∅, H ′.Sp = {s1} with s1 = {x1,x6,x7}, and
H ′.Conn = {x1,x6}. We now have a connection subhypergraph of H consisting of only a single
special edge. Thus we hit the base case on line 8 and return “true”. The corresponding HD-fragment
D1.2.1.1 consists of one node: the node with λ-label {s1}.

Call 1.2.1.2 of function Decomp with parametersH ′.E = {R4},H
′.Sp = {s5} with s5 = {x1,x5,x6}, and

H ′.Conn = {x1,x4}. As in the Call 1.1.2, we now have a connection subhypergraph of H consisting
of a single edge and a single special edge. Analogously to Call 1.1.2, also Call 1.2.1.2 returns “true”
and the corresponding HD-fragment D1.2.1.2 consists of 2 nodes: the node with λ-label {R1,R4}

and its child node with λ-label {s5}.

Call 1.2.2 of function Decomp with parameters H ′.E = {R1,R2}, H
′.Sp = {s4} with s4 = {x1,x3,x4},

and H ′.Conn = ∅. Analogously to the Call 1.2.1, we have a connection subhypergraph of H consist-
ing of two edges and a single special edge, and again this call of Decomp will return “true”. Since the
recursive calls of Call 1.2.2 are nearly identical to Call 1.2.1, we omit mentioning them explicitly.
The corresponding HD-fragment D1.2.2 consists of two nodes: the root node with λ-label {R1,R2}

and its child node with λ-label {s4}. Note that the root of this fragment also happens to be the root
of D itself, as shown in Figure 5(a). The reason for this lies in the fact that Call 1.2.2. is reached
by always following the recursive call in line 33, where we determine the HD-fragment for the
component above the child. As these HD-fragments make up the HD we are trying to construct,
we are thus traversing this HD upwards and thus eventually reach the root node of D.

We can now construct the HD-fragment D1.2 of the successful Call 1.2 by taking HD-fragment
D1.2.2, replacing the leaf node with λ-label {s4} by the node c with λc = {R1,R3} and χc =

{x1,x3,x4} from Call 1.2 and appending the HD-fragment D1.2.1 below this node c . The result-
ing HD-fragment D1.2 is shown in Figure 5(c).

7 FURTHER COMBINATORIAL OBSERVATIONS AND OPTIMISATIONS

As shown in Theorem 4.1, algorithm log-k-decomp introduced in Section 4 reaches the primary
goal of splitting the HD-construction into subtasks with guaranteed upper bound on the size of the
subtasks. In theory, this is enough to support parallelism. However, this basic algorithm still leaves
a lot of room for further improvements. In this section, we present several optimisations, which
are crucial to achieve good performance in practice. The line numbers below refer to Algorithm 1.
However, in Algorithm 2, we will ultimately also give the pseudo-code for the enhanced algorithm
where all the optimisations mentioned below are included.

Extension of the base case. The recursive function Decomp starts (on lines 5–8) with some simple
checks that immediately give a “true” answer. In contrast, a “false” answer is only obtained in case
of unsuccessful execution of the entire procedure. We could add the following negative case to the
top of the procedure: If H ′.E = ∅, then |H ′.Sp | ≤ 1 must hold. The rationale of this condition is
that if there are no more edges in H ′.E, then we would have to use only “old” edges (i.e., edges
covered already at some node further up in the HD) in the λ-label to separate the remaining special
edges. However, a λ-label consisting of “old” edges only is not allowed, since this would violate
the second condition of the normal form in Definition 3.8.

Root of the HD-fragment. In the current form of procedure Decomp, we always “guess” a pair
(p, c) of nodes, such that p is the parent of c . This also covers the case that c is the root node of
the HD-fragment for the current connection subhypergraph. In this case, the parent node p would
actually be the node immediately above this HD-fragment (in other words, p was the node from
which the current call of Decomp happened) or a “dummy” node (if the balanced separator is the

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:29

ALGORITHM 2: Optimised log-k-decomp

Type: ConnSub=(E : Edge set, Sp : Special Edge set, Conn: Vertex set) � Connection Subhypergraph
Input: H : Connected Hypergraph
Parameter :k : width parameter
Output: true if hw of H ≤ k , else false

1 begin
2 Hcomp � ConnSub(E : H , Sp : ∅, Conn: ∅)

3 return Decomp(Hcomp) � initial call

4 function Decomp(H ′: ConnSub, A: Edge set)
5 if |H ′.E | ≤ k and |H ′.Sp | = 0 then � Base Cases
6 return true

7 else if |H ′.E | = 0 and |H ′.Sp | = 1 then
8 return true

9 else if |H ′.E | = 0 and |H ′.Sp | > 1 then
10 return false

11 foreach λc ⊆ A s.t. λc ∩ H ′.E � ∅ and 1 ≤ |λc | ≤ k do � ChildLoop
12 compsc � [λc]-components of H ′

13 if ∃i s.t. |compsc [i] | >
|H ′.E |+|H ′.Sp |

2 then
14 continue ChildLoop

15 else if H ′.Conn ⊆
⋃

λc then � check if λc is root
16 χc �

⋃
λc ∩V (H ′)

17 foreach y ∈ compsc do
18 Conny � V (y) ∩ χc

19 Hy � ConnSub(E : y .E , Sp : y .Sp , Conn: Conny)

20 if not(Decomp(Hy , A)) then
21 goto ParentLoop

22 return true � c is root of H ′

23 foreach λp ⊆ A s.t. λp ∩ H ′.E � ∅ and 1 ≤ |λp | ≤ k do � ParentLoop
24 compsp � [λp]-components of H ′

25 if ∃i s.t. |compsp [i] | >
|H ′.E |+|H ′.Sp |

2 then

26 compdown � compsp [i] � found child comp.

27 else
28 continue ParentLoop

29 χc �
⋃

λc ∩V (compdown)

30 if V (compdown) ∩ Conn �
⋃

λp then
31 continue ParentLoop � connect. check

32 if V (compdown) ∩
⋃

λp � χc then
33 continue ParentLoop � connect. check

34 Hcompdown
:= ConnSub(E : compdown .E , Sp : compdown .Sp , Conn: ∅)

35 new_compsc � [χc]-components of Hcompdown

36 foreach x ∈ new_compsc do
37 Connx � V (x) ∩ χc

38 Hx � ConnSub(E : x .E , Sp : x .Sp , Conn: Connx)

39 if not(Decomp(Hx , A)) then
40 continue ParentLoop � reject parent

41 compup .E � H ′.E \ Hcompdown
.E

42 compup .Sp � (H ′.Sp \ Hcompdown
.Sp) ∪ {χc }

43 Hcompup
� ConnSub(E : compup .E , Sp : compup .Sp , Conn: H ′.Conn)

44 Aup � A \ Hcompdown
.E � reducing A

45 if not(Decomp(Hcompup
, Aup)) then

46 continue ParentLoop � reject parent

47 return true � hw of H ′ ≤ k

48 return false � exhausted search space

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:30 G. Gottlob et al.

root of the HD of the input hypergraph H and, therefore, does not have a parent node). However,
it would be more efficient to consider the case of “guessing” the root node of this HD-fragment
explicitly. More precisely, we would thus first check for the label λp guessed in Decomp on line 9
(which, in the current version of the algorithm, is automatically treated as the “parent”) if all [λp]-
components have at most half the size of the current connection subhypergraph.

If this is the case, then we may use this node as the root of the HD-fragment to cover the
current connection subhypergraph. This makes sense, since it corresponds precisely to the “search”
for a balanced separator in the proof of Lemma 3.14. That is, if the root of the HD gives rise
to components that are all at most half the size, then this may actually be the desired balanced
separator.

If this is not the case, then we simply proceed with procedure Decomp in its present form, i.e,
there exists exactly one [λp]-component whose size is bigger than half. So we take the guessed
node as the parent and search for a balanced separator as a child of p in the direction of this
oversized [λp]-component.

Allowed edges. The main task of procedure Decomp is to compute labels (i.e., edge sets) λp and
λc of nodes p, c , which will ultimately be in a parent-child relationship in the HD. For these labels,
Algorithm 1 imposes no restriction. That is, in principle, we would try all possible sets of ≤ k edges
for these labels. However, not all edges actually make sense. We should thus add one more param-
eter to procedure Decomp indicating the edges that are allowed in a λ-label of the HD-fragment for
this connection subhypergraph.

More specifically, in our search for the λ-label of some node u, we may exclude from the HD
of the connection subhypergraph Hcompup

(i.e., in the recursive call of function Decomp on line 33)

all edges which are part of some component “below” u. The rationale of this restriction is that, by
the special condition, using a “new” edge in a λ-label forces us to add all its vertices to the χ -label,
i.e., it is fully covered in such a node. But then it cannot be part of a component whose edges are
covered for the first time further down in the tree.

Note that we can yet further restrict the search for the label λc by requiring that at least one
edge must be fromH ′.E, since choosing only “old” edges would violate the second condition of the
normal form. As far as the label λp is concerned, the same kind of restriction can be applied if we
first implement the previous optimisation of handling the root node of the current HD-fragment
separately. If we indeed have to guess the labels λp and λc of two nodes p and c (i.e., the label
λp guessed first was not a balanced separator), then both nodes p and c are inside the current
HD-fragment. Hence, also the label λp must contain at least one “new” edge.

Searching for child nodes first. In Algorithm 1, we first look for λ-labels of potential parent nodes,
and consider afterwards the λ-labels of potential child nodes. Only then do we check if the χ -label
of the child is a balanced separator of the current subcomponent. We have observed that in many
hypergraphs of HyperBench, balanced separators are rare, in the sense that only a small part of the
search space will ever fulfil the properties required. Therefore we should first look for a potential
child s.t. its λ-label is a balanced separator, and only afterwards try to find a fitting parent. While
this may seem slightly unintuitive, it allows us to quickly detect cases where no balanced separator
can be found at all.

In principle, we can determine the precise bag χc for a child c only when we know the λ-label
of its parent. Nevertheless, even if we only have λc , we can over-approximate the χc -label as⋃

λc . Hence, if
⋃

λc is not a balanced separator, then we may clearly conclude that neither is
χc . Actually, the “over-approximation” is not significant anyway: When we later determine an
appropriate λ-label of the parent p of c , we will compute the “downward”-component Cp whose

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:31

size is bigger than
|H ′.E |+ |H ′.Sp |

2 . The HD-fragment rooted at c is then supposed to cover all of Cp .
By Corollary 3.12, we know that the “downward”-componentCp is both, a [λ(p)]-component and a
[χ (p)]-component. Hence, by Lemma 3.11, we know that, insideCp , there is no difference between
the [χ (c)]-components and the [λ(c)]-components.

Finally, note that by searching for the child node first, we get the above described optimisation
of treating the “Root of the HD-fragment” separately almost for free. Indeed, when computing λc ,
we can immediately check if H ′.Conn ⊆

⋃
λc holds. Recall that H ′.Conn constitutes the interface

to the HD-fragment above the current one. Hence, if
⋃

λc fully covers this interface, then c may
be the root node of the current HD-fragment, which is checked on lines 15–22 in Algorithm 2.
Of course, even if λc is a balanced separator, this does not necessarily mean that it is indeed the
root of the current HD-fragment. Hence, either the check on line 15 in Algorithm 2 or one of the
recursive calls on line 20 may fail. In this case, we would simply proceed to the search for the label
λp of the parent node p of c . Note that we can now be sure that p is inside the HD-fragment of H ′.
Hence, in contrast to Algorithm 1, the case of λp = ∅ does not need to be considered here, i.e., on
line 23 in Algorithm 2, we have the condition 1 ≤ |λp | ≤ k rather than 0 ≤ |λp | ≤ k as was the
case for the “ParentLoop” in Algorithm 1.

Speeding up the search for parent λ-labels. The previous optimisation means that, after having
found a λ-label λc for the child that is a balanced separator of the current subcomponent, we need
to find a suitable λ-label of the parent. By “suitable” we mean that we may limit ourselves to edges
that have a non-empty intersection width

⋃
λc . A very high-level explanation why we may exclude

edges e with e ∩
⋃

λc = ∅ from the search space of λp is that the control flow of function Decomp
is mainly determined by the edges and special edges covered by

⋃
λc and the [λc]-components

below c . By the connectedness condition, if e is covered above c and has empty intersection width⋃
λc , then excluding or including e in λp has no effect on the [λc]-components below c . In our

experimental evaluation, we found that this restriction indeed significantly reduces the time it
takes to either find a suitable λp , or detect that no such λ-label exists. Of course, this restriction of
the search space cannot destroy soundness. We will show below that also the completeness of the
algorithm is preserved.

Theorem 7.1. The optimised log-k-decomp algorithm for checking if a hypergraph H has
hw(H) ≤ k given in Algorithm 2 is sound and complete. More specifically, for given hypergraph
H and integer k ≥ 1, the algorithm returns “true” if and only if there exists an HD of H of width ≤ k .

Proof. The soundness and completeness of Algorithm 2 follow almost immediately from the
soundness and completeness of Algorithm 1 together with the above explanations of the various
optimisations. The only non-trivial part is that the last optimisation (i.e., the restriction of the
search space for λ(p)) does not destroy the completeness of the algorithm. The remainder of the
proof will concentrate on this aspect.

Assume that hypergraph H has an HD of width ≤ k . Then the optimised log-k-decomp algo-
rithm without the restriction on the search space for label λp (on line 23) returns the overall result
true. This is due to the fact that, as was argued above, the other optimisations mentioned in this
section do not affect the completeness of the algorithm. Now consider a recursive call of function
Decomp and suppose that it returns true if the restriction on the search space for label λp is dropped.
Of course, if the value true is returned in one of the base cases (lines 6 or 8) or if λc turns out to
be the λ-label of the root node of the current HD-fragment (and true is returned on line 22), then
the restriction of the search space for λp has no effect at all. Hence, the only interesting case to
consider is that the “ParentLoop” (lines 23–47) is indeed executed.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:32 G. Gottlob et al.

Let λp be the λ-label chosen on line 23 if no restriction is imposed on the search space. We claim
that we may remove from λp all edges that have an empty intersection width

⋃
λc without altering

the control flow of this particular execution of function Decomp. Actually, it suffices to show that
we may remove one edge e with an empty intersection width

⋃
λc from λp without altering the

control flow of this particular execution of function Decomp. Then the claim follows by an easy
induction argument.

So suppose that λp contains at least one edge e such that e ∩
⋃

λc = ∅, and let λ′p = λp \ {e}. An

inspection of the code of the “ParentLoop” reveals that it suffices to show that this elimination of
edge e from λp leaves compdown unchanged. Indeed, if compdown is still a [λ′p]-component, say, the

ith [λ′p]-component, then the if-condition on line 25 is true. Of course, there can be only one [λ′p]-

component satisfying the condition compsp [i]| >
|H ′.E |+ |H ′.Sp |

2 . Hence, on line 26, for this particular
i , exactly the same value is assigned to compdown for λ′p as for λp . But then also χc on line 29 gets

the same value as without the restriction on the search space of λp . Consequently, also the [χc]-
components computed on line 35 and the parameters supplied to the recursive calls of function
Decomp (on lines 39 and 45) remain the same as without the restriction on the search space. Hence,
function Decomp will ultimately return the value true also if we choose λ′p on line 23.

It remains to show that λp and λ′p indeed give rise to the same component compdown. To avoid con-

fusion, let us write compdown to denote a [λp]-component and comp ′
down

to denote a [λ′p]-component.

Let compdown be the unique [λp]-component that satisfies the condition |compsp [i]| >
|H ′.E |+ |H ′.Sp |

2
on line 25. We have λ′p ⊆ λp . Decreasing a set can only increase the corresponding components.

Hence, there exists a [λ′p]-component, call it comp ′
down

with compdown ⊆ comp ′
down

. We have to show
that compdown = comp ′

down
holds.

The set compdown consists of the edges and special edges of the [χc]-components contained in
compdown (denoted as compsc in the algorithm), and the edges and special edges covered by χc .
Let us refer to these [χc]-components as C1, . . . ,C� . By Corollary 3.12, compdown is both a [λ(p)]-
component and a [χ (p)]-component. Hence, by Lemma 3.11, these [χ (c)]-components are at the
same time the [λc]components contained in compdown. And the edges and special edges covered
by χc are of course also covered by

⋃
λc . Likewise, comp ′

down
consists of the (special) edges of the

[λc]components contained in comp ′
down

plus the (special) edges covered by λc .
By compdown ⊆ comp ′

down
, all [λc]-components C1, . . . ,C� contained in compdown are of course

also contained in comp ′
down

. We have to show that there is no further [λc]-component contained in
comp ′

down
. Assume to the contrary that there exists a [λc]-componentC ′ in comp ′

down
such thatC ′ is

not in compdown. By definition, compdown is [λp]connected while comp ′
down

is [λ′p]connected. Hence,

there exist (possibly special) edges f ′ ∈ C ′ and f ∈ Ci for some i ∈ {1, . . . , �}, such that there is a
path π (represented as a sequence of edges) with π = (f0, f1, . . . , fm), such that f = f0, f ′ = fm ,
and (fα ∩ fα+1) \

⋃
λ′p � ∅ for every α ∈ {0, . . . ,m − 1}. W.l.o.g., choose f , f ′, and π such that

m is minimal. Since f and f ′ are not [λp]-connected, there exists α with fα ∩ fα+1 ∩ e � ∅ while
(fα ∩ fα+1) \

⋃
λp = ∅.

Since all (special) edges in comp ′
down

are either in some [λc]-component contained in comp ′
down

or covered by
⋃

λc , and since we are assuming that π is of minimal length, the path π starts
with f in some [λc]-component Ci , possibly goes through

⋃
λc and ends with f ′ in component

C ′. Recall that e was chosen such that e ∩
⋃

λc = ∅. Hence, the edges fα and fα+1 cannot be
covered by

⋃
λc . By our assumption that π has minimal length, we can also exclude the case

that both fα and fα+1 are in C ′. Hence, at least one of fα and fα+1 must be in Ci . In other words,
e ∩ Ci � ∅. Hence, also e ∩ compdown � ∅. However, by the check on line 32 in Algorithm 2,
we know that V (compdown) ∩

⋃
λp ⊆

⋃
λc . This contradicts the assumption that e ∈ λp and

e ∩
⋃

λc = ∅. �

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:33

8 IMPLEMENTATION AND EVALUATION

We report now on the empirical results obtained for our implementation of the log-k-decomp al-
gorithm. Our experiments are based on the HyperBench benchmark from [12], which was already
used for the evaluation of previous decomposition algorithms, notably NewDetKDecomp [12] (an
enhanced re-implementation of det-k-decomp [27]) and HtdLEO [31].

The goal of the experiments is to determine the exact hypertree width of as many instances
as possible. We compare here the performance of three different decomposition methods, namely
NewDetKDecomp [12], HtdLEO [31], and our implementation of log-k-decomp. Note that while the
tested implementations include the capability to compute GHDs or FHDs, we only consider the
computation of HDs in our experiments here. Our new implementation of log-k-decomp is based
on the open-source code of BalancedGo [26], a parallel algorithm for computing GHDs.

Parallel Implementation. For our experiments, we implemented log-k-decomp including all of
the optimisations presented in Section 7. As discussed above, a crucial aspect of our algorithm
design is that the use of balanced separators allows us to recursively split the problem into smaller
subproblems. The subproblems are independent of each other and are therefore processed in par-
allel by our implementation. Furthermore, following observations made in Reference [26], our
implementation also executes the search for balanced separators in parallel by partitioning the
search space effectively.

The full raw data of our experiments is publicly available [18], as is the source code of our
implementation1 of log-k-decomp.

8.1 Benchmark Instances and Setting

For the evaluation, we use the benchmark library HyperBench [12]. It contains 3,648 hypergraphs
underlying CQs and CSPs from various sources in industry and the literature and is commonly
used to evaluate decomposition algorithms.

A number of our experiments are performed over the full set of HyperBench instances. However,
for some of our experiments it is more meaningful to restrict them to exclude hypergraphs that
are, roughly speaking, too small or have high width. Small instances benefit only marginally from
algorithmic improvements or parallelism, while very high width is of less algorithmic interest as it
exponentially effects algorithms that make use of decompositions. Hence, we propose to exclude
such instances in some cases to make more relevant observations. For the purpose of creating this
restricted set of instances, we focus on instances with more than 50 edges and vertices that are
known to have hypertree width at most 6. There are 465 instances in HyperBench that satisfy
these conditions; we will refer to them throughout this section as HBlarдe .

The instances are available at http://hyperbench.dbai.tuwien.ac.at and also in the published raw
data of our experiments [18].

Hardware and Software. Our implementation is written in the programming language Go using
version 1.14, and we will refer to it as log-k-decomp. We will give more details below on how it is
configured for the experiments we report in Section 8.4. The hardware we use for the evaluation is
a cluster of 12 nodes, using Ubuntu 16.04.1 LTS, with Linux kernel 4.4.0-184-generic, GCC version
5.4.0. Each node has a 12 core Intel Xeon CPU E5-2650 v4, clocked at 2.20 GHz and using 264 GB
of RAM.

Setup of Experiments. For the current extended version of this work, we used the following
time and memory limits: a timeout of one hour is used uniformly for all systems and we limited

1https://github.com/cem-okulmus/log-k-decomp

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

http://hyperbench.dbai.tuwien.ac.at
https://github.com/cem-okulmus/log-k-decomp

1:34 G. Gottlob et al.

available RAM to 1 GB for NewDetKDecomp, to 24 GB of RAM for HtdLEO, and to 40 GB of RAM
for log-k-decomp when using the hybrid version (to be discussed in detail in Section 8.3). The
differences are explained by choosing for each system a limit such that no “out of memory”
error was reported on our machines and it thus roughly reflects an upper bound on the needed
amount of memory for each system to run every single instance in our used benchmark. For
log-k-decomp, each run needs two inputs: a hypergraph H and the width parameter k ≥ 1. For
these tests, we use width parameters in the range [1, 10]. A peculiarity of HtdLEO is that it needs
no width parameter, since it directly tries to find an optimal solution. We use the HTCondor
system [32] to execute the tests. HTCondor is also used to manage the limits to memory and
number of cores accessible by the test instances.

Throughout this section, we will be interested in two key metrics. First, the number of solved
instances, by which we mean instances for which an optimal (i.e., minimal width) hypertree decom-
position is found and proven optimal. Second, the computation time that is necessary to compute
the optimal width decomposition, which we will refer to as the runtime. The “optimal (hypertree-
)width” is always understood as the known optimal width, using all sources of information
available to us: the HyperBench website, past published experiments, and our own experiments.

Importantly, this means that average runtimes are taken only over the instances that the re-
spective algorithm is able to solve, while timed out instances are not considered in the runtime
calculation.

8.2 Implementation Improvements

Parts of this article were published earlier in Reference [17] where we reported on preliminary
versions of some of the experiments reported here. We have since improved the implementation
of the algorithm in various critical aspects and in consequence we wish to note that the results in
this article show significant improvement over those reported in Reference [17]. Here we briefly
summarise these changes.

Detailed low-level analysis of the previous implementation revealed that a significant portion of
the time was spent on memory management in the Go running time. Go uses a garbage collector
to automatically manage dynamically allocated memory and both frequent allocation of memory
and garbage collection itself made up a substantial percentage of the overall execution time. Crit-
ically, the proportion of time spent in memory management increased as the number of parallel
execution threads increased. We observed that the number of memory allocations scaled linearly
with the number of parallel threads, thus also triggering the garbage collection more frequently
in proportion to the number of threads. Our analysis showed that the ever-increasing time spent
with memory management was a key factor of the diminishing returns that we observed when
scaling our implementation to more than four CPUs in the preceding conference paper [17].

To alleviate the high costs of memory management, we improve our implementation in two main
aspects. First, through various low-level optimisations we greatly reduce the number of memory
allocations performed when computing the [S]-components for a separator S . This is the key sub-
routine in the check for balanced separation (cf. Algorithm 7.1) and our changes reduce the number
of overall memory allocations by orders of magnitude. In addition, we configure the garbage col-
lector trigger to adapt to the proportion to the number of CPUs used. That is, when using the
n CPU cores, we set the garbage collector trigger condition to be n times less sensitive than the
standard setting, thus approximately achieving the same overall frequency of garbage collection
for any number of CPUs.

These two measures together, significantly reducing memory allocations overall as well as throt-
tling the garbage collector so that it does not dominate the execution time as the number of used
CPUs increases, help us achieve both better performance overall—we manage to solve more than

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:35

150 new instances optimally within the timeout of one hour and crucially also improve scaling
behaviour when using more CPUs.

8.3 Hybrid Approaches

While our algorithm has desirable properties for parallelisation (in particular, the logarithmically
bounded recursion depth established in Theorem 4.1), this comes at the cost of some overhead
when compared to simpler methods, in particular det-k-decomp. Especially on small and sim-
ple instances, the restriction to balanced separators may act as a detriment to performance that
outweighs its benefits for parallelisation and its effect on severely restricting the search space.

To balance these considerations overall in practice, we therefore also consider hybrid variants
of our implementation. Intuitively, we want to use log-k-decomp as long as the subproblems are
still complex, but once they become simple, we want to switch to an algorithm that is better suited
for those cases. For the simpler algorithm, det-k-decomp is the natural choice, as it performs very
well on small instances as is shown in Reference [12], where an implementation of det-k-decomp
is provided as part of NewDetKDecomp. To determine when the switch is made, we implement two
simple metrics to capture the complexity of a hypergraph:

EdgeCount In EdgeCount we simply use the number of edges of the hypergraph |E(H)| as the
measure of complexity.

WeightedCount The WeightedCount metric is characterised by the formula |E(H)| k
avge∈E(H) |e |

where k is the width parameter of the algorithm. The additional factor compared to
EdgeCount is best understood as two separate additional weightings. Higher width implies
more complex structure and hence we expect more complexity per edge. However, if edges
are on average larger, then it becomes easier to find covers and we therefore also inversely
weight by the average cardinality of the edges.

We investigate the effectiveness of these metrics through a series of experiments. In particu-
lar, we conduct experiments with both metrics and different thresholds for when to switch from
log-k-decomp to det-k-decomp. To be precise, for a metric m and threshold T , log-k-decomp
is executed for a subproblem with hypergraph Hi as long as m(Hi) ≥ T . If m(Hi) < T , then we
switch to an implementation of det-k-decomp written from scratch as part of the code base of
log-k-decomp. A similar strategy is also proposed in Reference [26] in the context of BalancedGo.
However, in that system no metric for the complexity of a subproblem is employed, but rather the
switch to det-k-decomp is always performed at a fixed recursion depth.

Our results for the experiments on HBlarдe are summarised in Table 1. Methods WeightedCount
and EdgeCount refer to log-k-decomp with the respective metric used for hybridisation. The
threshold column refers to parameter T in the discussion above. The experiments for all
log-k-decomp hybrid methods had access to 12 cores, the experiments for NewDetKDecomp and
HtdLEO used only 1 core each, since they do not support parallelism.

Overall, WeightedCount clearly performs best, especially in the number of solved instances.
For thresholds 400 and 600, approximately 90% of the 465 large instances from HBlarдe are solved.
This constitutes a significant improvement over the 37% and 60% achieved by NewDetKDecomp
and HtdLEO, respectively. Note that despite solving more instances—for which det-k-decomp and
HtdLEO timed out—the runtime is also at least 3 times lower for WeightedCount. This is surprising,
as we do not consider timed-out instances in our average runtime calculations.

One surprising observation from the table is that the differences in performance between dif-
ferent thresholds are much smaller for WeightedCount than for EdgeCount. Further investigation
suggests that this is due to the WeightedCount metric decreasing much more rapidly as hyper-
graphs become simpler. At the same time, for subproblems that fall in the range between 200 and

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:36 G. Gottlob et al.

Table 1. Study of Two Hybrid Methods of log-k-decomp on HBlarдe and

a Comparison with NewDetKDecomp and HtdLEO for Reference

Method Threshold Solved Avg. runtime (sec.)

WeightedCount 200 395 92.15
WeightedCount 400 411 93.53
WeightedCount 600 410 87.86

EdgeCount 20 171 130.0
EdgeCount 40 219 145.09
EdgeCount 80 292 117.33

NewDetKDecomp [12] — 174 318.93
HtdLEO [31] — 277 779.39

Bolded entries represent the best value among the compared methods, where ‘best’

is understood as the highest value in the solved column and the lowest value in

the run time column.

600, the performance of switching to det-k-decomp immediately is roughly the same (on average)
as the performance of continuing with log-k-decomp for one or two more steps.

While EdgeCount performs worse than WeightedCount, we can still see a clear improvement
over the state-of-the-art methods NewDetKDecomp and HtdLEO. Especially the significant im-
provement over det-k-decomp is important to observe as it clearly demonstrates the benefits
of our hybrid approach. Recall that when we split our problem into balanced subproblems, each
subproblem is then solved independently in parallel. In the hybrid variant, we will thus eventually
execute our implementation of the det-k-decomp algorithm on multiple subproblems in parallel,
i.e., we can use an inherently single-threaded algorithm effectively in parallel, because we are
able to create balanced subproblems.

8.4 Empirical Evaluation

We compare the aforementioned hybrid version of the log-k-decomp algorithm with the two
state-of-the-art implementations for finding HDs: NewDetKDecomp [12] and HtdLEO [31].

Our results are summarised in Table 2, distinguishing the hypergraphs in the HyperBench bench-
mark by size and origin.2 We distinguish between two main categories, hypergraphs that are de-
rived from applications and hypergraphs that were synthetically generated. In each group, we
report our results split by the number of edges |E | in the instance. Note that the group |E | > 100 of
instances with more than 100 edges is empty for the Application case and thus omitted from the
table. Instances in Group reports the number of instances in each such group. For each algorithm
and each group of instances; we list the number of solved instances (#solved) and statistics over the
runtimes (avg, max, stdev). Times are all in seconds and rounded to a single digit after the comma.
Results over all groups are given in the last row titled “Total.”

As mentioned above, some care is required when comparing times between algorithms. While
NewDetKDecomp has low average time overall, this is partly due to solving fewer instances. The data
therefore demonstrate that, in general, NewDetKDecomp either solves an instance quickly or fails
to find an optimal width decomposition before timing out. Overall, we see that despite solving sig-
nificantly more instances than its competitors, runtimes for log-k-decomp overall are comparable
with NewDetKDecomp and noticeably lower than for HtdLEO.

2HyperBench instances are often categorised more fine-grained in terms of their origin (cf. Reference [12]). For our exper-

iments, we have found the direct effect of hypergraph size to be more informative and therefore report our results in this

way instead.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:37

Table 2. Comparison of Prior Methods and log-k-decomp: Number of Cases Solved and Runtimes

(Seconds) to Find Optimal-width HDs

Hypertree Decomposition Methods

Origin of Size of Instances in

Instances Instances Group

Application 75 < |E | ≤ 100 405

50 < |E | ≤ 75 514

10 < |E | ≤ 50 369

|E | ≤ 10 915

Synthetic |E | > 100 66

75 < |E | ≤ 100 422

50 < |E | ≤ 75 215

10 < |E | ≤ 50 647

|E | ≤ 10 95

Total — 3648

NewDetKDecomp [12]

#solved avg max stdev

97 31.8 3298.0 248.4

276 10.6 1906.0 104.7

253 0.0 0.0 0.0

906 0.0 0.0 0.0

18 0.3 7.0 1.0

87 71.7 3467.0 379.4

38 18.8 1593.0 141.9

290 58.6 3240.0 337.2

95 0.0 0.0 0.0

2060 23.1 3467.0 208.0

HtdLEO [31]

#solved avg max stdev

65 809.5 3156.6 735.2

448 250.0 3281.5 409.3

237 60.1 1017.9 150.3

876 56.6 1427.1 155.0

13 734.0 2507.1 711.7

312 1045.2 3591.1 1287.0

212 101.7 2560.1 246.1

303 412.2 3597.4 850.2

78 28.8 218.5 41.5

2544 280.2 3597.4 676.7

Hypertree Decomposition Methods

Origin of Size of Instances in

Instances Instances Group

Application 75 < |E | ≤ 100 405

50 < |E | ≤ 75 514

10 < |E | ≤ 50 369

|E | ≤ 10 915

Synthetic |E | > 100 66

75 < |E | ≤ 100 422

50 < |E | ≤ 75 215

10 < |E | ≤ 50 647

|E | ≤ 10 95

Total — 3648

log-k-decomp Hybrid

#solved avg max stdev

317 83.8 3325.9 364.6

470 3.3 1506.5 69.5

253 0.0 0.1 0.0

915 0.0 0.0 0.0

35 14.7 295.1 54.7

313 73.9 3565.6 395.0

215 1.1 103.2 7.2

637 21.6 3402.3 179.1

95 0.0 0.0 0.0

3250 20.6 3565.6 190.9

Bolded entries in the solved column represent the highest value achieved among the three compared systems for a

given group, thus marking the best achieved result.

HtdLEO with 10 Hour Timeout. The method that is used in HtdLEO fundamentally differs from
the search algorithm here. In HtdLEO, the problem is encoded to the SAT modulo theories

(SMT) setting and the final solving step is handed off to standard SMT solvers. The encoding in
HtdLEO is constructed in such a way that no width parameter is handed to the solver; rather, the
encoding will always try to return the optimal width as its solution. This is a significant difference
to the parameterised search implemented in log-k-decomp (but also previous algorithms such as
det-k-decomp and BalancedGo). This difference makes it naturally difficult to compare runtimes
and the number of optimal solutions directly. To provide a fuller picture we add here Table 3. In
the table, we present the results from running the same experiments with HtdLEO but with the
timeout increased to 10 hours. This increase in timeouts naturally makes the average runtimes
difficult to compare to the values in Table 2. However, importantly, we see that the increase
in solved instances is also moderate, and overall log-k-decomp still solves significantly more
instances than HtdLEO with 10 hours of maximum runtime.

It may be of further interest how these numbers compare to the performance of state-of-
the-art algorithms for finding generalised hypertree decompositions. The results reported for
BalancedGo [26] (on a comparable system, according to the description of the experiments) show
that the best method there solves only 2,924 instances optimally for ghw. In contrast, when
considering the same set of instances, log-k-decomp manages to solve 3,250 of the instances

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:38 G. Gottlob et al.

Table 3. Extension of Table 2 with Runtimes for HtdLEO Extended to 10 Hours

Origin of Size of Instances in
Instances Instances Group

Application 75 < |E | ≤ 100 405
50 < |E | ≤ 75 514
10 < |E | ≤ 50 369

|E | ≤ 10 915

Synthetic |E | > 100 66
75 < |E | ≤ 100 422
50 < |E | ≤ 75 215
10 < |E | ≤ 50 647

|E | ≤ 10 95

Total — 3648

HtdLEO [31] 10 Hour Run
#solved Changes 1 hour run

94 + 29
461 + 13
237 ± 0
876 ± 0

13 ± 0
360 + 48
214 + 2
433 +130
78 ± 0

2766 +222

Fig. 6. Comparison of solved instances (green) and unsolved instances (red), relative to their edge and vertex

size.

tested there optimally. When looking at the average running times over all instances, we get 25.76
s for BalancedGo, but 20.6 s for log-k-decomp. Thus, it solves considerably more instances and
does so faster on average. Furthermore, in none of the cases where BalancedGo finds the optimal
ghw is it lower than the optimal hw . In other words, in practice, the additional complexity of
GHDs compared with HDs is not compensated by achieving lower width (even if, in theory, no
better upper bound on the hw than hw ≤ 3 · ghw + 1 is known [2]).

In our experiments, we also observe that for low widths—i.e., cases where using HDs is most
promising in practice—log-k-decomp is essentially able to solve all instances. In particular, of
the 2,947 instances with width at most 6, log-k-decomp solves 2,941 (99.8%) instances. In contrast,
NewDetKDecomp and HtdLEO time out on 488 and 919, respectively, of those instances. This suggests
that log-k-decomp can be a solid foundation for the integration of HDs in practice going forward.

To gain further insight into the performance of each algorithm with respect to solving instances
optimally, we investigate the size of solved and unsolved instances. To this end, Figure 6 provides
(logarithmic) scatter plots for each of the three algorithms in our tests. In each plot, each instance
is positioned according to its number of vertices and edges. Solved instances for each algorithm
are drawn in green while unsolved instances are drawn in red.

The plots show that our intuition holds true in that solving large instances (in both axis) signifi-
cantly benefits from using log-k-decomp. Most of the remaining hypergraphs are either extremely
large, containing thousands of edges and vertices, or belong to very specific CSP classes that we

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:39

Table 4. Comparison of the Decomposition Methods by How Many Instances Were

Solved for a Specific Width

Width Virtual Best NewDetKDecomp HtdLEO log-k-decomp (Hybrid)

1 709 677 649 709

2 595 586 567 595

3 310 310 273 310

4 386 379 321 386

5 450 38 341 450

6 496 28 307 491

7 249 9 16 233

8 116 1 69 47
9 29 0 1 28

10 1 0 0 1

Bolded entries represent the highest value achieved among the three compared systems for a

given width, thus marking the best achieved result.

know to have very high width (significantly beyond the width 10 limit used in our experiments)
through graph-theoretic arguments.

We want to analyse for how many instances of HyperBench each decomposition method could
determine its width and specifically focus on how well it fares as the width increases. Note that
HtdLEO is unique in this respect, since it determines the optimal width right away. Thus, if we
ask for how many instances HtdLEO could determine if its width is ≤5, for example, then we are
really just counting how many timeouts there were in general. For the parametrised decomposi-
tion methods, however, this question does give us new insights into how its run timescales when
looking for decompositions of larger or smaller width.

For this purpose, we first need the concept of the “Virtual Best” method. This notion simply
aggregates the results of all considered methods and shows for how many instances of HyperBench
we know their hw . We can see in Table 4 how each of the three methods fares when compared
against this virtual best method. For widths up to 7, the Hybrid log-k-decomp is unbeaten, solving
all known instances, as well as solving many of them exclusively.

To provide a more detailed analysis, we also compare for how many instances of hw up to 6,
each method can determine whether an instance has hw of lower than the given number by finding
an HD of such a width or determining that no such HD can exist. Note that this does not require
proving optimality. We can see the results in Table 5. We can see that both log-k-decomp and
log-k-decomp (Hybrid) are very good at this, with the Hybrid determining for 3,437 (over 94%
of) instances whether they have hw ≤ 6. If we limit ourselves to hw ≤ 5, then it determines the
question for 3,612 or 99% of instances.

We perform another set of experiments over the instances in HBlarдe to verify our claims that
log-k-decomp is well suited for parallelisation. For 1 ≤ n ≤ 12, we observe the time taken to find
and verify the optimal width of an instance using n CPU cores. We report on the times to find
these optimum widths averaged over all instances in HBlarдe in Figure 7. We will briefly note

that the ideal scaling function one could expect here is 1
x

, where we normalise the runtime at the
sequential (1 core) case as 1, and divide by the number of cores x . To make the comparison against
this ideal function easier, we added it to Figure 7 as a dotted line. Another way to illustrate this
ideal scaling function is by taking the time when using x cores, and multiplying it with x . This
should produce a constant function in the ideal case. We have also added the runtimes multiplied
by number of cores to Figure 7. We observe near optimal speedups (in the sense described above)

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

1:40 G. Gottlob et al.

Table 5. Comparison of the Decomposition Methods by the Upper Bounds It Could Provide

Problem to solve Virtual Best log-k-decomp (Hybrid) NewDetKDecomp log-k-decomp
hw ≤ 1 3,648 3,648 3,6163 3,648

hw ≤ 2 3,648 3,648 3,631 3,648

hw ≤ 3 3,641 3,641 3,355 3,567
hw ≤ 4 3,626 3,626 2,391 3,178
hw ≤ 5 3,617 3,612 2,485 2,924
hw ≤ 6 3,457 3,437 2,897 2,349

Note that HtdLEO is not being explicitly considered here, since it directly computes the optimal width. Thus it would

have the number 2,544—its number of solved instances—in each row.

Bolded entries represent the highest value achieved among the three compared systems for a given problem, thus

marking the best achieved result.

Fig. 7. Study of log-k-decomp scaling behaviour w.r.t. the number of processing cores used. For computing

the averages, we only consider instances (combination of graph and width) where the sequential case (1 core)

took more than 100 ms to solve. This study involved 465 ∗ 5 = 2, 325 instances, namely every combination of

an instances from HBlarдe and a width between 2 and 6.

up to 8 cores, from about 235 s on 1 core to 31 s for 4 cores for log-k-decomp. This behaviour
is expected, since our parallelisation strategy relies on dividing up the search space for bounded
separators uniformly over the the available cores. Since this requires no communication between

3We note that the reason NewDetKDecomp fails to determine acyclicity (i.e., whether hw ≤ 1) for all graphs is due to a bug

where it will output a HD of width 2 instead of one of width 1 when given certain acyclic graphs. While of low practical

interest, as determining acyclicity is a trivial problem, it is still the case that NewDetKDecomp in its current form fails to

determine all acyclic graphs of HyperBench correctly.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

Fast Parallel Hypertree Decompositions 1:41

threads or other overhead that depends on the degree of parallelisation, the key task of searching
for balanced separators scales evenly in the number of cores. In instances where the search
for separators dominates the runtime, such as negative instances where the full search space is
explored, analysis of our algorithm therefore predicts effectively ideal scaling of performance. In
the data from Figure 7, we observe diminishing returns in the rate of improvement of average
runtime starting from 8 cores, though we still see that the average runtime is reduced. Very
similar scaling can be observed for our Hybrid version.

9 CONCLUSION AND OUTLOOK

In this article, we have introduced a novel algorithm, log-k-decomp, for computing hypertree de-
compositions. Based on new theoretical insights and results on HDs, we were able to propose an
algorithm that constructs decompositions in arbitrary order (rather than, e.g., in a strict top-down
manner) while achieving a balanced separation into subproblems. In this way, we have obtained a
logarithmic bound on the recursion depth of our algorithm, making it particularly well suited for
parallelisation. We evaluated an implementation of log-k-decomp through experimental compari-
son with the state of the art. On the standard benchmark for hypertree decomposition, we are able
to achieve clear improvements both in the number of solved instances and in the time required to
solve them.

In combination, our theoretical results and experiments demonstrate that log-k-decomp
achieves our goal of effective parallel HD computation. We believe that the performance improve-
ments, especially on hypergraphs with low width and for large hypergraphs, lay a strong foun-
dation for more widespread adoption of hypertree decompositions in practice, e.g., for complex
query execution in high-performance database applications.

With HD computation for large and complex hypergraphs becoming practically feasible, one
of the key challenges that block the use of HDs is quickly becoming less problematic. We there-
fore consider full integration of hypertree decompositions into existing database systems and con-
straint solvers to be a natural next step in this line of research.

Experiments suggest that there is significant potential in the study of metrics for hybrid ap-
proaches. In particular, how can we decide effectively when to switch from the balanced sepa-
ration of log-k-decomp to the greedy heuristic-guided method underlying det-k-decomp. This
motivates a more in-depth study of hybridisation metrics in the future.

ACKNOWLEDGMENTS

We are very grateful to the anonymous reviewers for the careful reading and their valuable sug-
gestions that helped to greatly improve the article.

REFERENCES

[1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and Christopher Ré. 2017. Emp-

tyHeaded: A Relational Engine for Graph Processing. ACM Trans. Database Syst. 42, 4 (2017), 20:1–20:44. https:

//doi.org/10.1145/3129246

[2] Isolde Adler, Georg Gottlob, and Martin Grohe. 2007. Hypertree width and related hypergraph invariants. Eur. J. Comb.

28, 8 (2007), 2167–2181.

[3] Foto N. Afrati, Manas R. Joglekar, Christopher Ré, Semih Salihoglu, and Jeffrey D. Ullman. 2017. GYM: A multiround

distributed join algorithm. In Proceedings of the 20th International Conference on Database Theory (ICDT 2017), LIPIcs,

Vol. 68. Schloss Dagstuhl, 4:1–4:18. https://doi.org/10.4230/LIPIcs.ICDT.2017.4

[4] Dmitri Akatov. 2010. Exploiting Parallelism in Decomposition Methods for Constraint Satisfaction. Ph. D. Dissertation.

University of Oxford, UK.

[5] Hans L. Bodlaender. 1989. Improved self-reduction algorithms for graphs with bounded treewidth. In Proceedings

of the International Workshop on Graph-Theoretic Concepts in Computer Science (WG’89), Lecture Notes in Computer

Science, Vol. 411, Manfred Nagl (Ed.). Springer, 232–244. https://doi.org/10.1007/3-540-52292-1_17

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

https://doi.org/10.1145/3129246
https://doi.org/10.4230/LIPIcs.ICDT.2017.4
https://doi.org/10.1007/3-540-52292-1_17

1:42 G. Gottlob et al.

[6] Hans L. Bodlaender and Torben Hagerup. 1998. Parallel algorithms with optimal speedup for bounded treewidth.

SIAM J. Comput. 27, 6 (1998), 1725–1746. https://doi.org/10.1137/S0097539795289859

[7] Ashok K. Chandra and Larry J. Stockmeyer. 1976. Alternation. In Proceedings of the 17th Annual Symposium on Foun-

dations of Computer Science. 98–108.

[8] Stephen A. Cook. 1985. A taxonomy of problems with fast parallel algorithms. Inf. Contr. 64, 1-3 (1985), 2–22. https:

//doi.org/10.1109/SFCS.1976.4

[9] M. Ayaz Dzulfikar, Johannes Klaus Fichte, and Markus Hecher. 2019. The PACE 2019 Parameterized Algorithms and

Computational Experiments Challenge: The Fourth Iteration (Invited Paper). In Proceedings of the 14th International

Symposium on Parameterized and Exact Computation (IPEC’19). 25:1–25:23.

[10] Ronald Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM 30, 3 (1983),

514–550. https://doi.org/10.1145/2402.322390

[11] Johannes Klaus Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider. 2018. An SMT Approach to Fractional Hy-

pertree Width. In Proceedings of the 24th International Conference on Principles and Practice of Constraint Programming

(CP’18). 109–127.

[12] Wolfgang Fischl, Georg Gottlob, Davide Mario Longo, and Reinhard Pichler. 2021. HyperBench: A benchmark and tool

for hypergraphs and empirical findings. ACM J. Exp. Algor. 26 (2021), 1.6:1–1.6:40. https://doi.org/10.1145/3440015

[13] Lucantonio Ghionna, Luigi Granata, Gianluigi Greco, and Francesco Scarcello. 2007. Hypertree decompositions for

query optimization. In Proceedings of the 23rd International Conference on Data Engineering (ICDE’07). IEEE Computer

Society, 36–45.

[14] Lucantonio Ghionna, Gianluigi Greco, and Francesco Scarcello. 2011. H-DB: A hybrid quantitative-structural SQL

optimizer. In Proceedings of the 20th ACM Conference on Information and Knowledge Management (CIKM 2011). ACM,

2573–2576. https://doi.org/10.1145/2063576.2064023

[15] Georg Gottlob and Gianluigi Greco. 2013. Decomposing combinatorial auctions and set packing problems. J. ACM 60,

4 (2013), 24:1–24:39. https://doi.org/10.1145/2505987

[16] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. 2005. Pure nash equilibria: Hard and easy games. J. Artif.

Intell. Res. 24 (2005), 357–406. https://doi.org/10.1613/jair.1683

[17] Georg Gottlob, Matthias Lanzinger, Cem Okulmus, and Reinhard Pichler. 2022. Fast parallel hypertree decompositions

in logarithmic recursion depth. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems (PODS’22). ACM, 325–336. https://doi.org/10.1145/3517804.3524153

[18] Georg Gottlob, Matthias Lanzinger, Cem Okulmus, and Reinhard Pichler. 2023. Experimental data for log-k-decomp.

Zenodo. https://doi.org/10.5281/zenodo.7180787

[19] Georg Gottlob, Matthias Lanzinger, Reinhard Pichler, and Igor Razgon. 2020. Fractional covers of hypergraphs with

bounded multi-intersection. In Proceedings of the 45th International Symposium on Mathematical Foundations of Com-

puter Science (MFCS’20), LIPIcs, Vol. 170. Schloss Dagstuhl, 41:1–41:14.

[20] Georg Gottlob, Matthias Lanzinger, Reinhard Pichler, and Igor Razgon. 2021. Complexity analysis of generalized and

fractional hypertree decompositions. J. ACM 68, 5 (2021), 38:1–38:50. https://doi.org/10.1145/3457374

[21] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2000. A comparison of structural CSP decomposition methods.

Artif. Intell. 124, 2 (2000), 243–282.

[22] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2001. The complexity of acyclic conjunctive queries. J. ACM

48, 3 (2001), 431–498.

[23] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Computing LOGCFL certificates. Theor. Comput. Sci. 270,

1-2 (2002), 761–777.

[24] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree decompositions and tractable queries. J. Com-

put. Syst. Sci. 64, 3 (2002), 579–627. https://doi.org/10.1006/jcss.2001.1809

[25] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. 2009. Generalized hypertree decompositions: NP-hardness

and tractable variants. J. ACM 56, 6 (2009), 30:1–30:32. https://doi.org/10.1145/1568318.1568320

[26] Georg Gottlob, Cem Okulmus, and Reinhard Pichler. 2022. Fast and parallel decomposition of constraint satisfaction

problems. Constr. Int. J. 27, 3 (2022), 284–326. https://doi.org/10.1007/s10601-022-09332-1

[27] Georg Gottlob and Marko Samer. 2008. A backtracking-based algorithm for hypertree decomposition. ACM J. Exp.

Algor. 13 (2008). https://doi.org/10.1145/1412228.1412229

[28] Jens Lagergren. 1990. Efficient parallel algorithms for tree-decomposition and related problems. In Proceedings of the

31st Annual Symposium on Foundations of Computer Science. IEEE Computer Society, 173–182. https://doi.org/10.1109/

FSCS.1990.89536

[29] Reinhard Pichler and Sebastian Skritek. 2013. Tractable counting of the answers to conjunctive queries. J. Comput.

Syst. Sci. 79, 6 (2013), 984–1001. https://doi.org/10.1016/j.jcss.2013.01.012

[30] Walter L. Ruzzo. 1980. Tree-size bounded alternation. J. Comput. Syst. Sci. 21, 2 (1980), 218–235.

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1109/SFCS.1976.4
https://doi.org/10.1145/2402.322390
https://doi.org/10.1145/3440015
https://doi.org/10.1145/2063576.2064023
https://doi.org/10.1145/2505987
https://doi.org/10.1613/jair.1683
https://doi.org/10.1145/3517804.3524153
https://doi.org/10.5281/zenodo.7180787
https://doi.org/10.1145/3457374
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1145/1568318.1568320
https://doi.org/10.1007/s10601-022-09332-1
https://doi.org/10.1145/1412228.1412229
https://doi.org/10.1109/FSCS.1990.89536
https://doi.org/10.1016/j.jcss.2013.01.012

Fast Parallel Hypertree Decompositions 1:43

[31] André Schidler and Stefan Szeider. 2021. Computing optimal hypertree decompositions with SAT. In Proceedings of the

30th International Joint Conference on Artificial Intelligence (IJCAI’21). 1418–1424. https://doi.org/10.24963/ijcai.2021/

196

[32] Douglas Thain, Todd Tannenbaum, and Miron Livny. 2005. Distributed computing in practice: The Condor experience.

Concurr. Pract. Exp. 17, 2-4 (2005), 323–356.

[33] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In Proceedings of the 7th International Conference

on Very Large Databases (VLDB’81). VLDB, 82–94.

Received 14 October 2022; revised 22 June 2023; accepted 4 October 2023

ACM Trans. Datab. Syst., Vol. 49, No. 1, Article 1. Publication date: February 2024.

https://doi.org/10.24963/ijcai.2021/196

