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Abstract—Machine learning typically relies on the assumption
that training and testing distributions are identical and that data
is centrally stored for training and testing. However, in real-
world scenarios, distributions may differ significantly and data
is often distributed across different devices, organizations, or edge
nodes. Consequently, it’s to develop models capable of effectively
generalizing across unseen distributions in data spanning various
domains. In response to this challenge, there has been a surge
of interest in federated domain generalization in recent years.
Federated Domain Generalization synergizes Federated Learning
and Domain Generalization techniques, facilitating collaborative
model development across diverse source domains for effective
generalization to unseen domains, all while maintaining data
privacy. However, generalizing the federated model under do-
main shifts remains a complex, underexplored issue. This paper
provides a comprehensive survey of the latest advancements in
this field. Initially, we discuss the development process from
traditional machine learning to domain adaptation and domain
generalization, leading to federated domain generalization as well
as provide the corresponding formal definition. Subsequently, we
classify recent methodologies into four distinct categories: feder-
ated domain alignment, data manipulation, learning strategies,
and aggregation optimization, detailing appropriate algorithms
for each. We then overview commonly utilized datasets, appli-
cations, evaluations, and benchmarks. Conclusively, this survey
outlines potential future research directions.

Index Terms—Domain shift, domain generalization, privacy-
preserving, federated domain generalization, machine learning.

I. INTRODUCTION

HUMANS possess an extraordinary aptitude to transfer
their knowledge and expertise in novel situations and en-

vironments they have not experienced before, while machines
struggle to reproduce this proficiency, especially regarding out-
of-distribution (OOD) data [1]. This raises pertinent questions
regarding the efficacy of machine learning (ML) models across
different contexts. For instance, can a model train to detect
tumors in medical images obtained from one type of scanner
maintain its effectiveness when applied to images from another
scanner or imaging protocol? Similarly, does a robot trained
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to execute a task within a simulated environment possess the
capability to generalize its skills to the real world? Addition-
ally, there is a concern about whether a speech recognition
system trained on audio recordings from one speaker would
perform well when tested on recordings from a different
speaker or whether a language model trained on text from
one domain (e.g., news articles) would apply to text from
a different domain (e.g., social media). The resolution of
these questions hinges on the ML models’ ability to navigate
the prevalent issue of domain/dataset shift [2]. Domain shift
refers to the discrepancy in distribution between the source
domain employed for training and the target domain utilized
for testing [3]–[5]. It is a pervasive issue in ML, significantly
impacting the models’ generalization and robustness across
unseen domains in real-world scenarios.

Recently, deep learning has made revolutionary advances
and emerged as a powerful tool in a variety of fields, including
image recognition, natural language processing, speech recog-
nition, and robotics, among others. However, the prevalent
assumption in deep learning algorithms is that all samples in
both training and test datasets are independent and identically
distributed (IID) [6]—an assumption that often does not hold
in OOD scenarios encountered in real-world applications. This
discrepancy, known as domain shift, can significantly degrade
a model’s performance when applied to unseen domains. To
tackle the issue of domain shift, the technique of domain gen-
eralization (DG) [1], [7], [8] has been developed, enhancing
model generalization across disparate domains, irrespective of
their similarity to the training domain.

There has been significant research in the area of DG,
and numerous strategies have been developed to tackle the
issue of domain shift. Predominantly, DG methods have
been centralized, utilizing a central server that accesses data
from all source domains for DG tasks. Specifically, domain
alignment methods [20]–[26] aim to align feature distributions
between the source domains and target domains, thereby
improving model generalization. This approach directly tack-
les the issue of domain shift by ensuring that the model
perceives the source and target domains as similar, thereby
facilitating improved performance on unseen domains. Data
augmentation techniques [27]–[33] seek to expand the training
dataset’s size and diversity, enhancing adaptability without
new data collection. Data augmentation acts as a complemen-
tary strategy to domain alignment by enriching the model’s
training environment, thereby indirectly reducing the impact
of domain discrepancies. Meta-learning strategies [34]–[40]
focus on optimizing the model’s initialization or optimization
process for quick adaptation to new tasks or domains with
minimal additional training. This approach addresses the gen-
eralization issue by preparing the model to efficiently learn
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TABLE I
COMPARISONS OF RELATIVE SURVEYS.

Ref. Year Domain Scope

Bonawitz et al. [9] 2019 Federated Learning A scalable production system for FL in the domain of mobile devices.
Yang et al. [10] 2019 Federated Learning A comprehensive secure federated learning framework that includes horizontal,

vertical, and transfer learning.
Li et al. [11] 2020 Federated Learning Unique characteristics, challenges, current approaches, and future research

areas.
Kairouz et al. [12] 2021 Federated Learning Recent advancements, the challenges and open problems.
Csurka et al. [13] 2017 Domain Adaptation An overview of DA and transfer learning in visual applications

Kuw et al. [14] 2019 Domain Adaptation Sample-based, feature-based, and inference-based methods.
Wilson et al. [15] 2020 Domain Adaptation A unsupervised domain adaptation methods in deep learning.
Wang et al. [16] 2018 Domain Generalization Data manipulation, representation learning, and learning strategy.

Zhou et al. [1] 2022 Domain Generalization Background, existing methods and theories, and insights and discussions on
future research directions

Sheth et al. [17] 2022 Domain Generalization Invariance via Causal Data Augmentation, Invariance via Causal representation
learning, and Invariance via Transferring Causal mechanisms.

Shen et al. [18] 2021 Out-of-Distribution Generalization Definition, methodology, evaluation, and implications of Out-of-Distribution
generalization.

Li et al. [19] 2022 Out-of-Distribution Generalization Existing methods, theories, and future research directions related to out-of-
Distribution generalization.

Our work 2023 Federated Domain Generalization Theories, methodologies, datasets, applications, evaluations, benchmarks, and
future research directions.

from limited data in new domains, rather than directly align-
ing domain features or augmenting data. Ensemble learning
methods [41]–[47] synthesize predictions from models trained
on various domains, using ensemble techniques to identify
common patterns and enhance generalization to unseen do-
mains. This technique enhances model robustness and gener-
alization by aggregating insights from multiple perspectives,
thereby mitigating the risk of overfitting to domain-specific
features and elevating performance on unseen domains. How-
ever, these methods may significantly infringe upon data
protection laws like the EU/UK General Data Protection
Regulation (GDPR) [48], as tremendous privacy-containing
data is stored in locally distributed locations due to the rise of
ML and the proliferation of Internet of Things (IoT) devices
[49]. For instance, public transportation, ride-sharing services,
and logistics companies data on the transportation industries;
banks, insurance companies, and credit rating agencies data
of financial institutions; patient privacy data of healthcare in-
stitutions; schools, universities, and online learning platforms
data of educational institutions. Therefore, developing a highly
generalizable model in real-world scenarios that can ensure
both privacy and high model performance is a dilemma [50].
On one hand, it requires careful consideration of privacy
concerns across multiple domains. On the other hand, without
simultaneous access to source domains, it would be difficult
to accurately identify and learn domain-invariant features for
improving model generalization.

Resolving the above dilemma necessitates a thorough com-
prehension of federated learning (FL) [51]. As a promising
paradigm within distributed machine learning, FL facilitates
the training of algorithms across a wide array of decentralized
edge devices or servers. Each of these clients retains its local
data samples, thereby preventing the need for direct data
exchange. This approach contrasts with traditional centralized
learning methods, which necessitates aggregating data on a
single server. FL primarily aims to utilize rich and diverse

data sources, ensuring user privacy and reducing the need
for extensive data transmission. Building upon this, federated
domain generalization (FDG) [50], [52]–[54] leverages FL
alongside DG techniques to enable multiple source domains to
collaboratively learn a model that adeptly generalize well to
unseen domains while keeping their data private. However,
the technical complexity of achieving model generalization
across domain shifts in FL settings remains a challenge with
limited research focus thus far. Given the evolving landscape
of DG research, the introduction of the FL, characterized by
distributed data domains, presents new challenges that necessi-
tate innovative approaches. As stated above, most conventional
solutions achieve DG by accessing multi-source domains in
a centralized manner, while each client can only access its
local data in FDG. In addition, local optimization of the
FL model may result in a bias toward its data distribution,
which reduces its generalizability to new target domains. As a
result, conventional DG methods are unsuitable for the unique
requirements of FDG scenarios.

This paper presents the first comprehensive survey on the
topic of FDG, aiming to introduce recent advances in this
field with an emphasis on its theories, methodologies, datasets,
applications, evaluations, benchmarks, and future research
directions. To our knowledge, there have been few recent
attempts [1], [9]–[19] to explore this area, but their focus
differs significantly from the scope of our survey. Table I
provides a summary of comparisons between existing but
related surveys and our work. Specifically, Bonawitz et al.
[9] introduced a system design for federated learning (FL) on
mobile devices utilizing TensorFlow, addressing the challenges
and open questions in mobile phone domains. Yang et al. [10]
developed a secure FL framework as a solution to the obstacles
faced by AI in industries where data exists in isolated islands
and data privacy and security are strengthened. The framework
includes horizontal FL, vertical FL, and federated transfer
learning (FTL), and can be applied to various businesses
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Structure of the Survey

Section II : PRELIMINARIES Section III: METHODOLOGIES Section IV: DATASETS AND
APPLICATIONS

Section V: EVALUATIONS AND
BENCHMARKS

Section VI:   FUTURE
RESEARCH DIRECTIONS

EvaluationsFederated Domain
Alignment

Data Manipulation

Datasets

Learning
Strategies

Applications

Benchmarks

Aggregation
Optimization

Federated
Learning

Domain
Adaptation

Domain
Generalization

Federated Domain
Generalization

Metrics

Privacy-preserving
FDG

Strategies
FDG to novel

categories

...

Heterogeneity

Label shift

Continuous FDG

Section III: METHODOLOGIES

Fig. 1. The Structure of our proposed survey.

successfully. Li et al. [11] explored the principles of FL,
which entails training statistical models on remote devices
or in siloed data centers while maintaining data localization.
The authors elaborated on the intrinsic challenges of FL,
summarizing existing strategies and articulating avenues for
future investigation. Kairouz et al. [12] surveyed recent
advancements, pinpointing the challenges and open problems
in FL research.

Kouw et al. [14] conducted a comprehensive review of

TABLE II
FREQUENTLY USED ACRONYMS

Acronym Meaning

ML Machine Learning
FL Federated Learning
DA Domain Adaptation

FDA Federated Domain Adaptation
DG Domain Generalization

FDG Federated Domain Generalization
DIR Domain-Invariant Representation

MMD Maximum Mean Discrepancy
DANN Domain Adversarial Neural Networks
DFKD Data-free Knowledge Distillation
UDA Unsupervised Domain Adaptation
WD Wasserstein Distance
SGD Stochastic Gradient Descent
NLP Natural language processing

MTSSL Multi-Task Self-Supervised Learning
IID Independent and Identically Distributed
IoT Internet of Things

OOD Out of Distribution
FID Fréchet inception distance

LFRL Lifelong Federated Reinforcement Learning
FZSL Federated Zero-Shot Learning
GAN Generative Adversarial Networks

GDPR General Data Protection Regulation
IRM Invariant Risk Minimization
KL Kullback-Leibler Divergence
KD Knowledge Distillation

MAML Model-Agnostic Meta-Learning
mIoU mean Intersection over Union

recent advancements in DA, examining the fundamental ques-
tion: how can a classifier effectively learn from a source do-
main and generalize to a target domain? The authors presented
different approaches to solving the problem of DA in ML
and they are categorized into sample-based, feature-based,
and inference-based methods. Csurka et al. [13] provided
an overview of DA and transfer learning in visual applica-
tions. They discuss the state-of-the-art methods for different
scenarios, including shallow and deep methods, and relate
DA to other ML solutions. Wilson et al. [15] conducted an
extensive survey on the methodologies used in single-source
unsupervised deep DA, which integrates deep learning with
DA techniques to reduce reliance on costly target domain
annotations. They performed a detailed comparative analysis
of various approaches within this realm, focusing on the eval-
uation of alternative methods, discerning unique and shared
components, analyzing outcomes and theoretical frameworks,
and investigating potential applications and future research
directions.

DG extends the ideas behind DA by preparing a model
to generalize across unseen target domains without requiring
access to their data during the training phase. Wang et al. [16]
reviewed recent advances in DG, which deals with the call
into question of developing models capable of generalizing
to unseen test domains. The authors also discuss the theories,
algorithms, datasets, applications, and potential research topics
related to DG. Zhou et al. [1] provided a comprehensive
literature review of DG in ML, in which the review covers
the background, existing methods and theories, and potential
future research directions. Sheth et al. [17] discussed the
problem of distribution shifts in ML models and how it
affects their generalization capabilities. They survey various
DG methods that leverage causality to identify stable fea-
tures or mechanisms that remain invariant across different
distributions. OOD Generalization broadens the concept of
DG to address the challenge of ensuring model robustness
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A. Data Preparation (Section III)

B. Local Model Training (Section III)

Data
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B1. Learning Strategies

Representation
Learning

Federated
Domain

Adaptation

Data-Free
Methods

Regularization
Strategies

...

Federated
Adversarial
Alignment

Wasserstein
Distance

Contrastive Loss Prediction
Consistency

...
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D. Model Evaluation (Section IV & Section V)
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Applications

C. Aggregation (Section III)

Weight Optimization Gradient Optimization Aggregation Policy

Refinem
ent

Fig. 2. The architecture and workflow of FDG.

when encountering data that significantly deviates from the
training distribution, including entirely new scenarios that
were not represented in the training data. Shen et al. [18]
discussed the OOD generalization problem in ML and pro-
vided a comprehensive review of existing methods, evaluation
metrics, and future research directions in OOD generalization.
The primary objective is to develop and rigorously assess
models and approaches capable of adapting to distributional
changes, demonstrating robust generalization, and resolving
the prevalent issue of inconsistencies in data distributions
encountered in real-world settings. Li et al. [19] reviewed
recent advances in OOD generalization on graphs, which goes
beyond the in-distribution hypothesis and presents a detailed
categorization of methodologies into three categories based on
their integration points within the graph ML pipeline.

FDG can be seen as an extension of OOD generalization to
the FL paradigm, where the call into question is not only to
handle unseen distributions but also to do so in a manner that
is compatible with the decentralized and privacy-preserving
principle of FL. Despite the notable advancements in FL and
DG across various fields recently, a comprehensive survey that
cohesively covers theories, methodologies, datasets, applica-
tions, evaluations, benchmarks, and future research directions
in FDG has yet to be undertaken. Our objective is to furnish
researchers with an in-depth review of the current landscape
and to catalyze further investigation in FDG and related fields.

To achieve this, we have conducted an extensive review of
the existing literature and synthesized the main ideas and
contributions of the most relevant works. We aim for this
survey will serve as a valuable resource for researchers aiming
to expand their knowledge of FDG and to foster progress in
this critical area.

The organization of this paper is delineated as follows,
illustrated in Fig. 1. Frequently used acronyms are summarized
using table II. We begin by providing an introduction to the
field of FL, traditional ML, DA, DG, and FDG in Section II.
Then, we introduce the existing methodologies for FDG,
including federated domain alignment, data manipulation,
learning strategies, and aggregation optimization algorithms
in Section III. Next, we present the datasets and applications
in Section IV and evaluations and benchmarks in Section V.
Furthermore, in Section VI, we provide a concise summary
of the insights derived from existing research and engage in
a discussion concerning the future research directions in the
field. Finally, a comprehensive conclusion of this paper is
presented in Section VII, summarizing the key findings and
insights derived throughout the study. On the analysis of the
sections, we derive a generalized architecture and workflow of
FDG, as depicted in Fig. 2.

II. PRELIMINARIES
In this section, we begin by providing an overview of FL,

DA, DG, and FDG. Subsequently, we discuss the integration
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of FL and DG. For the convenience of readers, we have
summarized frequently used notations in Table III.

A. Federated Learning

Artificial intelligence has swiftly emerged as a fundamental
element of our daily lives, fueled by notable advancements
and breakthroughs in deep learning techniques across various
domains. Moreover, the widespread adoption of IoT devices
has resulted in enormous amounts of data being stored in
locally distributed locations. In addition, with the proliferation
of sensitive and private data, concerns over data privacy have
become increasingly prominent. In response to these concerns,
FL has been introduced as a solution to uphold data privacy
concerns while facilitating collaborative ML.

As illustrated in Fig. 3, we depict a scenario consisting
of a model engineer, an admin, a central server, N clients,
and M end users. The set of clients is denoted by N =
{1, 2, · · · , ı, · · · ,N}, while the set of end users is denoted
by M = {1, 2, · · · , ȷ, · · · ,M}. Each client ı ∈ N possesses

TABLE III
FREQUENTLY USED NOTATION.

Notation Meaning

N The set of clients
N The number of clients in FL.
M The set of end users in FL.
M The number of end users in FL.
Si The dataset of client i
|Si| The size of local dataset of client i
H Hypothesis space.
h Labeling function from a H.
X Non-empty input space.
Y Output space.

PXY Probability distribution of the joint input-output
space.

S Domain.
M The number of Domains.

Ssource The set of the source domains.
Starget The set of the target domains.
M The number of source domains.
n The size of the domain.
Si Domain i.
ni The size of the domain i.
κı The selected subset from the local dataset Si of client

i for local model training.
|κı| The size of the chosen subset κi from client i.
ωt Aggregated global model at round t.
ωı
t+1 Local model from client i at round t+ 1.
ω∗ The optimal weights of the global model.
η The learning rate of FL training.

θ(h, ĥ) The difference in the source domain between two
labeling function h and ĥ.

θs(h) The risk of labeling function h on the source do-
mains.

θt(h) The risk of labeling function h on the target domains.
λH Complexity of H for prediction tasks.
d Vapnik-Chervonenkis dimension of H.
E Expectation operator.
Us Unlabeled samples of size k from source domain.
Ut Unlabeled samples of size k from target domain.
ψ̂(h) The estimation of the average risk over all possible

target domains.
πi π A normalized mixing weights.

F t((xti) The feature representation of the target domain data.
MMD2(P,Q) The square of maximum mean discrepancy.

a local dataset Sı, which may change over time. The dataset’s
size, denoted by Sı, allows clients to engage iteratively in FL
processes, reflecting the dynamic nature of their datasets. For
local model training, a client may select a subset κı ⊆ Sı,
with its size represented by |κı|. Next, we will introduce
the lifecycle, key actors, and typical processes within an FL
system, respectively.

1) The Lifecycle of a Trained Model in FL System.

The FL process is typically driven by a model engineer
who develops a model for a particular application. Here’s a
high-level overview of a typical FL workflow:

Step 1: Problem Definition. The first step in the FL work-
flow is to define the problem that the model will solve.
This involves identifying the data sources and the target
task, as well as specifying the performance metrics that
will be used to evaluate the model.

Step 2: Model Development. Once the problem is defined,
the model engineer develops a model architecture that is
suitable for the FL paradigm. This involves selecting the
appropriate optimization algorithm, defining the model
parameters, and deciding how to partition the data among
the participating clients.

Step 3: Dataset Preparation. The dataset is prepared by the
data owners, who collect or generate the data that will be
used for training the model. The data is partitioned among
the clients according to the protocol defined in Step 2.

Step 4: Training Initialization. The central server initial-
izes the training process by sending the initial model
weights to the participating clients. This model can be
randomly initialized or pre-trained on a large dataset.

Step 5: Local Training. The participating clients perform
local training using their own data and the initial model
weights. This training is typically done using stochastic
gradient descent (SGD) or a variant of it.

Step 6: Model Aggregation. After local training, the clients
return their updated model weights to the central server,
which aggregates them using an algorithm such as Feder-
ated Averaging (FedAvg) or other Optimized aggregation
algorithms.

Step 7: Model Evaluation. The engineer evaluates the
aggregated model on a validation dataset to determine
its accuracy and generalization performance. If the per-
formance is unsatisfactory, the training process can be
repeated with a different set of initial weights or hyper-
parameters.

Step 8: Model Deployment. Once the model is trained, it
can be deployed to predict new and unseen domains. In
some cases, the model may need to be fine-tuned on new
data to adapt to changing conditions or to improve its
performance.

Overall, the workflow involves multiple iterations of local
training, model aggregation, and evaluation, and it requires
close collaboration between the model engineer and the par-
ticipating clients. The success of an FL project depends on
careful planning, effective communication, and the ability to
adapt to changing conditions and requirements.
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Fig. 3. The lifecycle of a trained model in FL System.

2) The Key Actors in FL System.

FL encompasses a variety of stakeholders, each contributing
distinct roles in the model’s training and deployment phases.
The following outlines the key actors within an FL framework:

Model Engineer: The Model Engineer plays a pivotal role in
the FL system, tasked with the development of the ML
model and the establishment of the training protocol. This
role involves selecting the appropriate model architecture,
optimization algorithm, and partitioning strategy for the
distributed data. The model engineer also evaluates the
performance of the trained model and fine-tunes it as
needed.

Admin: In FL, an admin is a role that involves managing the
overall operation of the FL system. An admin may be
an individual or a team responsible for configuring and
monitoring the system, as well as ensuring its security,
privacy, and compliance with legal and ethical require-
ments.

Central Server: The central server coordinates the FL train-
ing process by collecting and aggregating the model
parameters from the participating clients. The server
performs the model aggregation using algorithms.

Participating Clients: Participating clients are the devices or
organizations that contribute their local data and compu-
tational resources to the FL training process. Participating
clients perform local training on their data and share their
model parameters with the central server for aggregation.

End Users: End-users, comprising individuals or organiza-
tions, utilize the trained model for predictions or decision-
making in novel or previously unseen domains. End-
users may include consumers, businesses, or government
agencies that benefit from the insights generated by the

model. Depending on the application requirements, the
trained model may be deployed on a mobile device, a
cloud server, or an edge device.

Communication Channel: The communication channel is
the medium used for transmitting the model weights
between the central server and the participating clients. It
can be a wireless or wired network connection and must
be designed to ensure the privacy and security of the data
transmitted between the parties involved.

Overall, an FL system involves multiple actors collaborating
to train and deploy a machine-learning model. The success
of an FL project depends on the effective coordination and
communication between these actors, as well as the careful
consideration of privacy, security, and performance concerns.

3) The Typical Process of FL Training.

FL endeavors to construct a robust global model by har-
nessing insights from distributed data without compromising
privacy. The objective of FL is to achieve a global model
ω∗ that optimally minimizes the global loss function L(ω)
across all participating clients. Achieved through iterative local
training and aggregation, this process enables learning from
varied data distributions without direct data access. The typical
FL training process unfolds through several essential steps:

Step 1: Client Selection. In FL, client selection is a piv-
otal step that determines participant involvement in the
training process. The objective is to identify a subset of
clients, denoted as N s from all clients N , where N s ⊆
N , ensuring a representative set that enriches the global
model without compromising data privacy or overex-
tending computational resources. Selection strategies may
vary from random to more sophisticated methods tailored
to identify suitable participants. This is imperative as
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inappropriate clients — such as poor data quality (e.g.,
noise, bias, or irrelevance), limited diversity in data,
heightened privacy risks, substantial resource constraints,
or data that poorly align with project goals—can detract
from the process’s effectiveness, security, and efficiency.
Consequently, meticulous client selection is essential to
preserve the integrity of the global model and secure
successful training outcomes.

Step 2: Download. In this step, the clients first need to down-
load the global model aggregated by the central server
in the previous round t (the global model is randomly
initialized in the first round).

ωı
t = ωt. (1)

where ωt denotes the global model in the round t.
Step 3: Local Training. The participating clients perform lo-

cal training on their respective domains using the down-
loaded model.

ωı
t+1 = ωı

t − η▽Lı(ωı
t;κı). (2)

where η denotes the learning rate, Lı(ωı
t;κı) represents

the local loss function for client ı at round t, ωı
t+1

represents the updated local model parameters for client
ı at round t + 1.

Step 4: Upload. The locally trained models are then trans-
mitted to the central server for aggregation.

Step 5: Model Aggregation. The central server aggregates
the model parameters from the participating clients using
a suitable algorithm. The aggregation process aims to
combine the local model updates into a single global
model that reflects the collective knowledge of all clients.

ωt+1 =

∑
ı∈N s |κı|ωı

t+1∑
ı∈N s |κı|

(3)

where ωt+1 denotes the aggregated global model in the
round t + 1.

Step 6: Iteration. Return to Step 2 until the convergence
criteria are met [55], then terminate the training. The iter-
ative nature of this process ensures continuous refinement
of the model, leading to the optimal global model ω∗ that
minimizes the global loss function L(ω):

L(ω) =

∑
ı∈N s |κı|Lı(ω;κı)∑

ı∈N s |κı|
. (4)

where Lı(ω;κı) is the loss for subset κı given ω.

ω∗ = argmin
ω

L(ω). (5)

This process not only safeguards data privacy but also
leverages diverse data distributions to enhance the model’s
accuracy and generalizability. The culmination of this rigor-
ously designed process is a global model that encapsulates the
collective knowledge of all clients, finely tuned to achieve the
common goal of minimizing the global loss function.

B. Domain Adaptation
Recent studies [56]–[58] have indicated that deep learning

models are vulnerable to significant performance degradation
when evaluated on out-of-distribution datasets, even with
minor variations in the data generation process. Specifically,
it demonstrated that deep learning models exhibit limited
generalization capacity, which can significantly impact their
performance when deployed in real-world scenarios. DA [59]–
[65] emerged as a strategy to circumvent the OOD data
challenge by collecting a subset of data from the target domain,
thereby enabling the adaptation of a model trained on a source
domain with disparate distributions to the target domain. Fig. 4
compares traditional ML tasks and DA tasks. The basic idea
behind DA is that, despite variations between source and
target domains, shared underlying structures or patterns can be
exploited to enhance model performance in the target domain,
as delineated in Definition 2.
Definition 1 (Domain). A domain refers to a collection of
data that is sampled from a joint distribution. Consider a
nonempty input space denoted as X and an output space
denoted as Y . The domain, denoted as S, comprises n samples
S = {(xj , yj)nj=1 ∼ PXY }, where xj ∈ X ⊂ Rd represents
a d-dimensional input sample, yj ∈ Y ⊂ R represents the
corresponding output label, and PXY denotes the probability
distribution over the joint input-output space, where X and Y
represent the respective random variables.
Definition 2 (Domain Adaptation). Let h represent any label-
ing function from the hypothesis space H. Given M source
domains denoted as Ssource = {Si|i = 1, 2, · · ·,M} where
Si = {(xij , yij)}

ni
j=1 represents the i-th domain with true

labeling functions h∗s, it is observed that the joint distributions
between each pair of domains differ (P i

XY ̸= P ı̂
XY , for

1 ≤ i ̸= ı̂ ≤ M ). The goal of DA is to reduce the
disparity between the source domains and target domains,
enabling effective generalization on the target domain Starget,
where Starget is accessible during training but has a distinct
distribution (P target

XY ̸= P i
XY for i ∈ 1, 2, . . . ,M ), with

corresponding true labeling functions denoted as h∗t.
Therefore, the difference between two labeling functions, h

and ĥ, within the source domain can be quantified as follows:

θs(h, ĥ) = Ex∼P s
X
[h(x) ̸= ĥ(x)] = Ex∼P s

X
[|h(x)− ĥ(x)|].

(6)
Similarly, we can get θt when x ∼ P t

X . Let θs(h) :=
θs(h, h∗s) and θt(h) := θt(h, h∗t) denote the risk associated
with labeling function h in the source domain and target
domain, respectively.

DA seeks to reduce the target domain risk, θt(h). However,
directly assessing this risk is often impractical due to the
lack of explicit knowledge about the target domain’s true
distribution. To overcome the issue, Ben et al. [66] proposed a
theoretical framework to approximate the target domain risk,
θt(h), using the more accessible source domain risk, θs(h):

θt(h) ≤ θs(h) + dH∆H(P s
X , P

t
X) + λH. (7)

where the discrepancy between cross-domain distributions is
quantified by the H∆H-divergence dH∆H(P s

X , P
t
X), while the
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Fig. 4. Comparison of traditional ML tasks (left) and domain adaptation tasks (right).

complexity of H for prediction tasks on the source domain
and target domain is assessed by the ideal joint risk λH.
Notably, the H∆H-divergence offers superior finite sample
guarantees compared to other divergence measures and allows
for non-asymptotic bounds. The non-asymptotic bound ensures
that the bound holds a high probability, regardless of the
sample size, which is particularly useful in applications where
the sample size is small or limited. This means that with a
finite sample size, the H∆H-divergence can provide a more
accurate estimate of the difference between two probability
distributions than other measures.
Theorem 1 (DA error bound (non-asymptotic) [16], [66]). Let
Us and U t represent unlabeled samples of size k from the two
domains. The Vapnik-Chervonenkis (VC) dimension [67] of H,
denoted as d. For any h ∈ H and ϵ ∈ (0, 1), the following
inequality holds with a probability of at least 1− ϵ:

θt(h) ≤ θs(h)+d̂H∆H(Us,U t)+λH+4

√
2d log(2k) + log( 2ϵ )

k
(8)

where d̂H∆H(Us,U t) denotes the estimated difference of
dH∆H(P s

X , P
t
X) across two distinct domains based on limited

data samples. DA error bound (non-asymptotic) delineates a
concept wherein learning algorithms are tailored to generalize
towards a target domain utilizing a finite set of samples derived
from both the source domain and target domain during the
training phase. This error bound quantitatively measures the
variance in risk between the target domain and source domain,
encapsulating the difference in average loss. Specifically, it
quantifies the distance between the average loss in the target
and source domains. The bound is non-asymptotic, which
means that it is valid for any size of the sample set, and thus
enables effective control of the generalization performance of
the algorithm in practical applications.

In DA, the discrepancy between the source domain distribu-
tion P s

X and the target domain distribution P t
X poses a signif-

icant challenge. The distribution difference in the above error

bound, denoted as d(P s
X , P

t
X), can impede the generalization

capability of models trained on the source domain when
applied to the target domain. Nonetheless, although direct
control over the distribution difference can be demanding,
a potential approach is to train a representation function
g : X → Z that maps the input data x to a representa-
tion space Z , aiming to minimize the discrepancy between
the distribution of representations from the two domains.
Consequently, this approach aims to align the representation
distributions of both domains more closely, thereby enhancing
model generalization across domains. This technique, known
as DA based on domain-invariant representation (DA-DIR),
focuses on identifying a representation space Z where the
distributions P s

Z and P t
Z from the source domain and target

domain, respectively, are minimized. Achieving this involves
employing methods such as adversarial training, discrepancy
minimization, domain confusion loss, and transfer learning.

DA emerges as a formidable technique for enhancing ML
model performance in instances where the source domain
and target domain exhibit divergent distributions, a prevalent
challenge across numerous real-world contexts.

C. Domain Generalization

DA operates under the premise that either labeled or un-
labeled data from the target domain is available for model
adaptation, a condition not always met in real-world sce-
narios. Acquiring labeled data from the target domain can
be prohibitively time-consuming, costly, or unfeasible due to
ethical or legal restrictions. Moreover, the target domain’s data
distribution might remain elusive, complicating the application
of conventional DA methods that depend on understanding
this distribution. To tackle the issue, DG has been identified
as a potent strategy to enhance the generalization capacity
of ML models across novel and unseen domains. This is
achieved by training models on a heterogeneous collection of
datasets encompassing various domains. The DG methodology
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is depicted on the left side of Figure 5 and is concisely defined
in Definition 3.
Definition 3 (Domain Generalization). Given M source do-
mains Ssource = {Si|i = 1, 2, · · ·,M} where Si =
{(xij , yij)}

ni
j=1 represents the i-th domain, it is observed that

the joint distributions between each pair of domains differ
(P i

XY ̸= P ı̂
XY , for 1 ≤ i ̸= ı̂ ≤ M ). The objective of

DG is to develop a robust and generalizable labeling function
h : X → Y solely utilizing the M source domain data, which
minimizes the prediction error on an unseen target domain
Starget, where P target

XY ̸= P i
XY for i ∈ {1, 2, . . . ,M}:

min
h

E(x,y)∈Starget
[ℓ(h(x), y)] . (9)

where E denotes the expectation operator and ℓ(·) represents
the loss function used to disparity the difference between the
predicted output h(x) and the true output y. The ultimate
aim is to identify the optimal function h(·) that reduces the
expected loss on Starget, thereby demonstrating the model’s
capacity to effectively generalize to novel and unseen domains.

In DG, the concept of an underlying hyper-distribution is
pivotal for understanding the relationship between the source
domain and the target domain. The probability distribution
represents the joint distribution over all possible (x, y) for both
the source domain and target domain. Specifically, assume that
all potential target distributions adhere to a hyper-distribution
P: P t

XY ∼ P , and the same is true for the source distributions:
P 1
XY , P

2
XY , · · ·, PM

XY ∼ P . This framework facilitates gener-
alization to any target domain, regardless of its familiarity, by
training a classifier that integrates domain-specific information
PX into its input mechanism. Consequently, for a domain char-
acterized by the distribution PXY , predictions are structured
as y = h(PX ;x). For such a function h(·), its average risk
across all conceivable target domains is determined by the
subsequent formula:

ψ(h) = min
h

EPXY ∼PE(x,y)∼PXY
[ℓ(h(PX , x), y)] . (10)

However, it is often infeasible to evaluate expectations
exactly. Instead, these expectations can be approximated using
finite domains/distributions adhering to a specified probability
distribution P , along with finite samples of (x, y) drawn from
each distribution. Given that P 1

XY , P
2
XY , · · ·, PM

XY ∼ P , we
can use the source domains and their corresponding supervised
data to estimate the expectation. This is because the source
domains and their associated data are assumed to be drawn
from the same underlying distribution P . As a result, the
estimation of the average risk over all possible target domains
based on the labeling function h(·) is as follows:

ψ̂(h) =
1

M

M∑
i=1

1

ni

ni∑
j=1

ℓ
(
h(U i, xij), y

i
j

)
. (11)

where M is the total number of domains, ni is the num-
ber of samples in domain i, the supervised dataset U i =
{xij |(xij , yij) ∈ Si} represents the empirical estimation for the
marginal distribution P i

X of the features in domain i.

Theorem 2 (Domain generalization error bound [16], [68]).
Let γ := minπ∈∆M

dH

(
P t
X ,

∑M
i=1 πiP

i
X

)
with minimizer

π∗ represents the minimum distance between the target do-
main distribution P t

X and the convex hull Λ formed by the
source domain distributions P i

X . ∆M represents the (M -
1)-dimensional simplex that approximates the target domain
distribution P t

X with a convex hull Λ of source domain
distributions P i

X . The minimizer π∗ corresponds to the weights
that give the best approximation P ∗

X =
∑M

i=1 π
∗
i P

i
X of P t

X

within Λ, where π denotes a normalized mixing weights.
The parameter ρ = supP ′

X ,P ′′
X∈ΛdH(P ′

X , P
′′
X) represents the

diameter of the convex hull Λ. Then, the domain generalization
error bound can be expressed as:

θt(h) ≤
M∑
i=1

π∗
i θ

i(h) +
γ + ρ

2
+ λH, (P

t
X , P

∗
X). (12)

where λH,(P t
X ,P

)
X

represents the ideal joint risk across the
target domain P t

X and the domain with the best approxi-
mator distribution P ∗

X . (M -1)-dimensional simplex is often
used to represent the mixing weights of source domains for
approximating the target domain distribution. Specifically, for
M source domain distributions, they can be viewed as M
points in Euclidean space, and these points can be connected
to form an (M -1)-dimensional simplex. In this simplex, each
point corresponds to a source domain distribution, and each
edge corresponds to a mixing weight of a source domain
distribution (i.e., a real number between 0 and 1). And the
sum of mixing weights for each point is 1, representing
their convex combination. Therefore, these mixing weights
can be used to approximate the target domain distributions,
thus achieving the purpose of DG. In practical implementation,
some optimization algorithms are usually needed to determine
the values of these mixing weights so that the approximated
target domain distributions can be as close as possible to the
actual one.

Similar to DA, the theoretical framework for DG empha-
sizes the importance of leveraging domain-invariant represen-
tation techniques. These strategies aim to achieve two primary
objectives: firstly, to minimize the risk across all source
domains, as indicated by the initial term of the theoretical
bound; and secondly, to diminish the discrepancies in the rep-
resentation distribution between the source and target domains.
The latter objective is quantitatively assessed using metrics γ
and ρ, which serve to measure the divergence between the
representations of source and target domains. By effectively
minimizing this error bound, the model is trained to excel in
generalizing across diverse domains, thereby ensuring robust
performance on unseen domains.

To sum up, DG is a promising approach for developing
models that adeptly navigate the challenges posed by distri-
bution differences across various source domains. It achieves
this by narrowing the distribution gap between the source
domain and the target domain and fostering domain-invariant
representations. This approach ensures that the models are
well-equipped to excel in real-world scenarios, particularly
when deployed on previously unseen target domains.
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Fig. 5. Comparison of domain generalization task (left) and FDG task (right).

D. Fedrated Domain Generalization

Recently, the proliferation of IoT devices has created enor-
mous amounts of diverse data from multiple domains, pro-
viding ideal conditions for DG research. The fundamental
principle of DG is to access the multi-source distributions in
the learning process. However, the sensitive data generated
by IoT devices, such as healthcare and transportation data, are
often subject to strict privacy regulations, making it difficult to
implement traditional DG methods that rely on centralized data
processing. To tackle the issue of training models on data from
multiple domains and obtaining a robust and generalizable
predictive function while preserving data privacy, FDG has
emerged as a promising solution [52]. FDG has many appli-
cations in areas such as healthcare, finance, and autonomous
vehicles, where the data is often distributed across multiple
devices or servers, and the privacy of the data is a critical
concern. The process of the FDG task is illustrated on the
right of Fig. 5 and summarized in Definition 4.
Definition 4 (FDG). Given M source domains Ssource =
{Si|i = 1, 2, ···,M} involved in FL where Si = {(xij , yij)}

ni
j=1

denotes the i-th domain. The joint distributions between each
pair of domains are different: P i

XY ̸= P ı̂
XY , 1 ≤ i ̸=

ı̂ ≤ M . The objective of FDG is to develop a robust and
generalizable labeling function h : X → Y using only M
source domains data that can minimize the prediction error
on unseen target domains Starget (where P target

XY ̸= P i
XY for

i ∈ {1, 2, · · ·,M})) while each domain i can only access its
local data Si:

min
h

E(x,y)∈Starget
[l(h(x), y)] . (13)

where E denotes the expectation operator and l(·) represents
the loss function used to quantify the discrepancy between
the predicted output h(x) and the true output y. The primary
goal is to identify an optimal function h(·) that minimizes
the expected loss on Starget, thereby indicating the model’s

proficiency in generalizing effectively to novel and unseen
domains.

It is crucial to acknowledge that the distinctions among
these concepts may overlap, with their scopes illustrated in
Figure 6. The specific techniques and approaches used in
each area can vary, but they all revolve around adapting or
generalizing models to different domains or decentralized data
settings.

III. METHODOLOGIES: A SURVEY

FDG methods have surfaced as a compelling approach to
tackle domain shift and heterogeneity issues in FL, simultane-
ously ensuring data privacy. Although its potential to enhance
model generalization and robustness in federated settings has
attracted attention in recent years, research in this area remains
relatively sparse. In this section, we aim to fill this gap by
providing an extensive review of the current literature on
FDG, categorizing it into distinct groups according to their
methodologies and motivations, as depicted in Fig. 7.

Domain Generalization

Domain
Adaptation

Federated
Learning

Federated
Domain

Generalization

Fig. 6. The scope of the proposed survey on federated domain generalization.
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A. Federated Domain Alignment

Federated domain alignment [69]–[71] is of utmost im-
portance in FDG as it enhances model generalization across
multiple domains, promotes data efficiency, preserves data
privacy, and enables the applicability of FL in real-world sce-
narios. The primary motivation of federated domain alignment
is to bolster the generalization potential of models across
various domains. By aligning the domains and harmonizing
their data representations, federated domain alignment strives
to mitigate domain shifts and enhance the performance of
models on unseen domains. This aspect is crucial in practical
applications, especially where data privacy and security are
of utmost importance. Federated domain alignment facilitates
efficient knowledge transfer while maintaining the decentral-
ized and secure nature of sensitive data. The objective of
alignment-based FDG methods, focusing on joint distribution,
is articulated as follows:

P (X,Y ) =
n∑

i=1

P (Di)P (X|Di)P (Y |X,Di)

=

n∑
i=1

P (Di)P (Y |Di)P (X|Y,Di)

(14)

where P (X,Y ) represents the joint distribution of input
features X and corresponding labels Y across all domains.
P (Di) represents the distribution of domain i, indicating the
probability of selecting samples from domain i. P (X|Di) rep-
resents the conditional distribution of input features X given
domain i, capturing the domain-specific characteristics of the
data. P (Y |X,Di) represents the conditional distribution of
labels Y given input features X and domain i, describing the
relationship between the features and labels in each domain.
P (X,Y ) sums over all domains i to consider the contribu-

tion of each domain to the overall joint distribution P (X,Y ).
The two equations represent two different decompositions
of the joint distribution, highlighting different relationships
between the variables. In FDG, our main focus is on aligning
the marginal distributions of the source domains. Specifically,
we aim to align P (Di)P (X|Di) to reduce the distribution shift
between domains. This is because we assume that the posterior
probability P (Y |X,Di) remains relatively stable and has a
smaller impact on the model. Therefore, domain alignment
methods primarily concentrate on adjusting the distribution
of input features to mitigate differences across domains and
improve the model’s generalization performance on unseen
domains.

a) Adversarial Feature Alignment
Adversarial feature alignment involves techniques that lever-

age adversarial learning to align feature distributions across
different domains, thereby reducing domain discrepancy and
enhancing model generalizability. In FDG, adversarial feature
alignment plays a critical role in generating models that are not
only accurate but also robust to variations in data distribution,
ultimately leading to improved performance on unseen data.

Peng et al. [69] proposed federated adversarial alignment
to align the feature distributions between different domains
in FL by dividing optimization into two independent steps:

training domain-specific local feature extractors and training
a global discriminator. The following steps are as follows:

1) Local Feature Extractors: A feature extractor Gs is
trained for the source domain Si, and a feature extractor Gt

is trained for the target domain St.
2) Adversarial Domain Alignment: For each source-target

domain pair (Ss,St), an adversarial domain identifier DI is
trained to align the feature distributions of the two domains
adversarially. Initially, the DI is fine-tuned to precisely identify
the originating domain of the features. Following this, the
generator models (Gs, Gt) are trained to confuse DI by
producing features that make it tough for DI to differentiate
between the source and target domains. The objective of DIi
is defined as follows:

LadvDIi
(Ss,St, Gs, Gt) =− Ess∼Ss [logDIi(Gs(Ss))]

− Est∼St
[log(1−DIi(Gt(St)))]

(15)
In the second step, the objective for updating the genera-

tors Gs and Gt (denoted as LadvG
), while keeping LadvDIi

unchanged, is defined as follows:

LadvG
(Ss,St, DIi) =− Ess∼Ss

[logDIi(Gs(Ss))]

− Est∼St
[logDIi(Gt(St))]

(16)

Wang et al. [72] developed a multi-client feature align-
ment framework employing adversarial learning, wherein a
Generative Adversarial Network (GAN) leverages class-wise
information to generate adaptive reference distributions. This
methodology, aimed at extracting DG features across diverse
clients, effectively reduces distribution discrepancies. The
training process is described as follows.

1) Feature Extraction and Generation: A feature extractor
F (·) extracts real features by generating a representation
fs,i = F (xs,i) for each source client i, where xs,i is the
input data. Following this, a generator G(·) employs random
noise z and a one-hot vector y to produce fake features
fs,ifake = G(zs,i|y), maintaining consistency across clients by
adhering to a shared, predefined distribution p(ffake).

2) Discriminator Update Process: The discriminator D(·) is
refined through the integration of both real and fake features,
where real features serve as negative samples and fake ones
as positive, employing a least-squared estimation approach
within its loss function Li

adv d to bolster convergence and
discriminative proficiency between feature types.

Li
adv d = Ez∽p(fs,i

fake)
[D(fs,ifake|y)

2
]−Exs,i∽p(fs,i)[(1−D(fs,i|y))2]

(17)
3) Generator and Feature Extractor Update Process: With

the discriminator’s parameters fixed post-training, the feature
extractor and generator are updated through an adversarial
process. The feature extractor aims to produce features that
the discriminator perceives as positive (real), whereas the gen-
erator strives to create fake features that are indistinguishable
from real ones to the discriminator. This adversarial interplay
is captured in the loss functions Li

adv f and Li
adv f for the

feature extractor and generator, respectively.

Li
adv f = Exs,i∽p(fs,i)[(1−D(fs,i|y))2] (18)
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Li
adv g = Ez∽p(fs,i

fake)
[D(fs,ifake|y)

2
] (19)

4) Iterative Optimization: The training process iteratively
optimizes the discriminator and generator until reaching a
Nash equilibrium, indicative of the discriminator’s diminished
ability to distinguish between real and synthetic features.

While both the above methodologies share the overarching
goal of leveraging adversarial learning for domain general-
ization in FL, they differ in their specific techniques and
the scope of their application. The former concentrated on
domain-specific alignment, whereas the latter pursued a more
generalized strategy for feature alignment across multiple
clients.

b) Minimizing Contrastive Loss
The contrastive loss [25], [26] encourages similar represen-

tations for samples from the same domain and dissimilar repre-
sentations for samples from different domains by maximizing
agreement within positive pairs and minimizing agreement
within negative pairs. The essence of minimizing contrastive
loss is to sculpt a representation space where akin samples
are drawn nearer, while disparate samples are distanced. The
mathematical formulation of contrastive loss is delineated as
follows:

LContrastive =
1

2N

N∑
i=1

yḋ2 + (1− y)max(margin− ḋ, 0)2

(20)
where N is the number of sample pairs, y is a binary label
indicating whether a pair of samples are similar (positive
pair, y = 1) or dissimilar (negative pair, y=0), ḋ is the
distance between the representations of the paired samples, and
margin is a hyperparameter that defines the minimum desired
distance between representations of dissimilar samples.

Li et al. [73] proposed the MOON (model-contrastive
federated learning) framework that leverages model-level con-
trastive learning to bridge the gap between global and lo-
cal features and improve the performance of FL, surpassing
other state-of-the-art algorithms. As an extension of [73], an
improved contrastive loss [74] is utilized by considering the
projected features of pseudo-data as positive pairs and incorpo-
rating the projected local feature of both pseudo-data and local
data as negative pairs. To enhance model invariance across
domains, an alignment loss is deployed between the original
sample and its hallucinated counterpart using a negative-
free contrastive loss [75] at the logit level. To tackle the
underexplored issues of data heterogeneity and class imbalance
in FL, a novel privacy-preserving framework, FedIIC [76],
has been proposed. This framework adeptly calibrates deep
models to tackle imbalanced training through the use of intra-
client and inter-client contrastive learning techniques, resulting
in superior performance across both realistic and established
scenarios. Tan et al. [77] proposed a lightweight framework
called FedPCL (Federated Prototype-wise Contrastive Learn-
ing), enabling clients to jointly learn by fusing representations
from multiple pre-trained models, improving each client’s
ability to leverage class-relevant information in a personalized
manner while maintaining compact shared knowledge for
efficient communication. Liu et al. [78] introduced a Feder-
ated Contrastive Learning (FedCL) approach that integrated

contrastive learning with FL to enhance model generalization
across heterogeneous medical data, demonstrating superior
performance in medical image classification.

To sum up, this approach helps to align the representations
of different domains, reducing the domain shift and enhancing
the model’s ability to generalize across diverse domains.

c) Wasserstein Distance
The Wasserstein distance, also known as the Earth Mover’s

distance, is a measure of the dissimilarity between probability
distributions. In FDG, the Wasserstein distance serves as a
quantitative measure to evaluate the disparity between dis-
tributions across various domains. This approach facilitates
the development of models with enhanced generalizability to
previously unseen domains.

Chen et al. [79] introduced a Wasserstein-based feature
critic with meta-optimization into FL, which effectively im-
proved the robustness and generalization capability of the
proposed method. Nguyen et al. [80] proposed a Wasserstein
distributionally robust optimization scheme called WAFL for
FL, which is more general than related approaches and is
robust to all adversarial distributions inside the Wasserstein
ball. Lin et al. [81] introduced a robust federated meta-learning
framework that utilizes Wasserstein distance and Lagrangian
relaxation to efficiently optimize the distance metric, enabling
gradient-based methods to solve the problem effectively.

In summary, the integration of the Wasserstein distance
within the objective function of FDG methods facilitates
the learning of domain-invariant representations, enabling im-
proved generalization across federated domains.

d) Minimizing Maximum Mean Discrepancy
Maximum Mean Discrepancy (MMD) [82] serves as a

statistical metric for quantifying the differences in probability
distributions across various domains. In FDG, MMD is em-
ployed to reduce the distributional shifts between domains,
thereby facilitating domain alignment. The objective is to
minimize MMD to foster domain-invariant representations,
enabling the model to capture and leverage commonalities
across domains while retaining unique domain features. The
calculation of MMD is as follows:

MMD2 (P,Q) =

∥∥∥∥∥∥ 1

n′

n′∑
j=1

υ (xj)−
1

n′′

n′′∑
ȷ̂=1

υ (yȷ̂)

∥∥∥∥∥∥
2

(21)

where P and Q are probability distributions of the feature
representations of two domains, n′ and n′′ are the number
of samples in each domain, and υ(·) is a feature mapping
function that maps the samples to a high-dimensional space.

Chen et al. [83] implemented D-WFA using the MMD
distance between the source and target clients, which helps
to reduce domain differences and improve the generalization
capability. To sum up, we can effectively solve the domain
shift problem and enhance the generalization capabilities of
FL models by incorporating MMD in FDG. The proposed
method [84] enables the aggregated gradient to incorporate
information from multiple domains by connecting gradient
alignment with MMD, aiming for better generalization on
unseen domains. Zhang et al. [85] employed MMD to measure
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Fig. 7. Categorization of FDG Methods.

and optimize the distance between different domains by cal-
culating the squared distance between the kernel embeddings
of the data representation distributions within the reproducing
kernel Hilbert space, with unbiased empirical estimation used
to reduce computation load. Zhang et al. [86] introduced
a blockchain-based decentralized federated transfer learning
approach for collaborative machinery fault diagnosis. This
method overcomes the issues of data quality and quantity
by guaranteeing data security and privacy, thereby achieving
high testing accuracies and presenting a viable solution for

real-world industrial applications. Wang et al. [72] developed
a federated adversarial domain generalization network for
machinery fault diagnosis, facilitating collaborative training
between a central server and multiple clients to ensure data
privacy. This approach resulted in significant performance
improvements and showed potential for tasks related to data
privacy-preserving generalization in diagnostics.

Overall, minimizing the MMD facilitates FDG by encour-
aging feature representations from various domains to exhibit
similar means in high-dimensional space, thereby reducing
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distributional discrepancies. This promotes the alignment of
domains and improves the generalization capability of models
across different domains.

e) Prediction Assessment
Prediction consistency and prediction disagreement repre-

sent two interconnected aspects of model evaluation in FDG,
each playing a distinct role in enhancing the generalization
capabilities of federated learning systems across decentralized
domains.

Prediction consistency refers to the similarity in predic-
tions made by different models trained across various clients
or by a single model under different conditions for the same
input. In FDG, consistency is indicative of a model’s ability to
learn domain-invariant features that are robust across unseen
domains. High prediction consistency suggests that models are
capturing the underlying patterns in the data that are common
across domains, thereby improving the model’s generalization
to new and unseen domains. Zhang et al. [87] leveraged
prediction consistency to enhance the generalization capability
of the model. The inference results for the target domains
are obtained by majority voting on the predictions made
by multiple source domains. Considering the fact that these
source domains have different parameters, prediction consis-
tency generally improves the model’s generalization capability
while reducing the risk of overfitting. Thus, it is desirable to
minimize variations in the inference results among the source
domains. To achieve this, the loss function Lp is defined as
follows:

minLp =
1

ntM

nt∑
j=1

M∑
i=1

∥Is,i
(
F t(xtj)

)
− Ī

(
F t(xtj)

)
∥,

Ī
(
F t(xtj)

)
=

1

M

M∑
i=1

Is,i
(
F t(xtj)

) (22)

where nt represents the number of target client data samples,
M represents the number of source inference models, F t(xtj)
represents the feature representation of the target domain data
xtj in the model, Is,i represents the inference module at the
i-th source domain, Ī

(
F t(xtj)

)
denotes the mean value of

predictions obtained from the source inference models.
Prediction disagreement underscores the variations in

outcomes generated by distinct models or a single model
under varying conditions for the same input, revealing critical
insights into the diversity and domain-specific characteristics
of decentralized datasets. This divergence is instrumental in
fostering the development of models with enhanced gener-
alizability and robustness within FDG, thereby ensuring the
aggregated model’s efficacy across diverse unseen domains.
Guo et al. [88] introduced FEDIIR, a novel approach that im-
plicitly learns invariant relationships for OOD generalization
in federated learning, leveraging prediction disagreement and
inter-client gradient alignment to enhance model performance
while adhering to privacy and communication efficiency prin-
ciples.

While prediction consistency aims to ensure that the model
learns generalizable features, prediction disagreement offers
insights into model diversity and domain-specific biases. To-
gether, they provide a comprehensive framework for evaluating

and improving the generalization performance of federated
models. By judiciously analyzing and leveraging both con-
sistency and disagreement, FDG can effectively address the
challenges posed by domain drift and data decentralization,
leading to models that are both robust and highly generalizable
across diverse domains.

f) Prototype Learning
Prototype learning, a pivotal concept in ML, empha-

sizes identifying ‘prototypes’—representative samples within
a dataset that encapsulates the diversity present across the data.
In FDG, prototype learning entails each client pinpointing
prototypes specific to their domain, while a global model
synthesizes this data to discern shared prototypes, thereby
uncovering commonalities across domains and concurrently
safeguarding data privacy.

Huang et al. [89] introduced Federated Prototypes Learning
for addressing domain shift in FL by constructing cluster
and unbiased prototypes to provide domain knowledge and
a fair convergence target, demonstrating its effectiveness and
efficiency on tasks. Liu et al. [90] introduced PGCT, a novel
prototype-guided cross-training mechanism for FL, designed
to address data heterogeneity and knowledge forgetting by
leveraging client-specific data prototypes for consistent rep-
resentation learning and feature augmentation, demonstrating
superior performance over existing methods. Yu et al. [91]
introduced a prototype-based contrastive loss to enhance class-
wise alignment within the embedding space, thereby improv-
ing the model’s generalization capabilities.

Leveraging prototype learning within FDG adeptly mitigates
the issues posed by domain shift and privacy concerns. This
approach enables the crafting of models that are not only
adept at preserving privacy and efficiency but also excel in
generalizing to novel, unseen domains.

B. Data Manipulation

The performance of ML models is significantly influenced
by the quality and quantity of the training data, especially
in DG where the models are expected to generalize well to
unseen domains. However, acquiring a large and diverse set
of training data that covers all possible domains is often infea-
sible or expensive. In addition, the privacy concerns associated
with sensitive data make it difficult to collect and store data in
a centralized manner. In FDG, data manipulation techniques
have been devised to surmount the aforementioned difficulties,
thereby generating more diverse and representative training
datasets. One such technique is data augmentation, which can
be used to create additional training data by modifying the
existing data through techniques such as rotation, scaling, and
adding noise. Furthermore, adversarial data augmentation can
be used to generate difficult examples that can help improve
the model’s robustness against domain shifts and adversarial
attacks.

The objective of data manipulation can be expressed math-
ematically as:

min
ω

M∑
i=1

νiLi

(
Ŝi, ω

)
+ ξR (ω) (23)
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where M is the total number of domains, ω represents the
model parameters to be learned, νi represents the importance
of domain i in FL and is determined based on the quantity and
quality of the domain i, Li(Ŝi, ω) measures the performance
of the model on the domain i and includes both real and
synthetic data generated by data generation techniques. The
hyperparameter ξ regulates the balance between fitting the
manipulated data and model complexity, where a higher ξ
favors simplicity and may increase training error, while a lower
ξ permits greater complexity, enhancing fit but risking over-
fitting. The regularization term R(ω) encourages the model
to learn domain-invariant features that are less sensitive to
domain shifts and can improve generalization performance.
Depending on the specific techniques used and the formula for
manipulating the data Ŝi, existing work on data manipulation
can be broadly categorized into two main categories: data
augmentation and data generation.

1) Data augmentation-based FDG
Data augmentation-based FDG involves applying various

transformations to the existing training data, such as rotating,
scaling, or adding noise, to create new training data that
are similar to the original ones. This can help increase the
diversity and robustness of the training data and improve the
model’s generalization performance to unseen domains. Here,
the Ŝi = Si∪Ai, where Si is the local real dataset of domain
i and Ai is the set of random perturbations used for data
augmentation.

a) Domain randomization
In FDG, domain randomization can be used to simulate the

variability of the data across different clients by randomizing
certain aspects of the data during training. This can help the
model learn to be robust to domain shifts and better generalize
to unseen clients.

Duan et al. [92] used local domain randomization augmen-
tation to create a globally balanced distribution. Guo et al.
[74] proposed FedDebias, a unified algorithm that leverages
mean-based random noise augmentation that can reduce the
learning bias on local features and augment model efficacy
without introducing real data. Liu et al. [52] employed the data
augmentation of random rotation, scaling, and flipping in FL
tasks. Atwany et al. [93] applied data augmentations including
resizing, horizontal and vertical flipping, random grayscale,
ColorJitter, random rotation, translation, and Gaussian blur
to fundus images to improve model performance and intra-
domain generalizability.

b) Style Transfer Data Augmentation
Style transfer data augmentation [94] is a technique that

leverages the principles of neural style transfer to generate
new training examples by combining the content of one image
with the style of another, enhancing the diversity and richness
of the training dataset.

Shenaj et al. [95] took full advantage of the source dataset
during the pre-training stage with style transfer data aug-
mentation, randomly loading the target styles in the source
images to mimic the target distributions. Chen et al. [96]
proposed cross-client style transfer in FL involves each client
computing and sharing their local styles with the central server,
which can be either single-image styles or a local image style

bank, to facilitate the data augmentation process and enhance
diversity in the training data. Georgiadis et al. [97] introduced
style transfer FL aimed at COVID-19 image segmentation,
tackling data variability and privacy constraints. This method
utilizes a denoising CycleGAN at each client node to enhance
robustness and attain performance on par with centrally-trained
models. Lewy et al. [98] developed an augmentation process
that partitions images into batches within each node, computes
statistics from a randomly chosen image, and then applies
these statistics to augment each image in the batch, effectively
emulating a node-specific style transfer augmentation. Yan
et al. [99] presented FedRDN, an innovative and potent data
augmentation approach designed to alleviate feature shifts in
skewed feature distribution scenarios within FL. This approach
showcases robust scalability and generalizability, providing a
plug-and-play solution that seamlessly bolsters the efficacy of
diverse FL models.

Apart from the data augmentation-based FDG mentioned
above, there are other popular techniques for data augmen-
tation. Zero-shot augmentation generates diverse and realistic
augmented samples by leveraging external knowledge or pre-
trained models without requiring any additional labeled data,
enhancing model generalization and performance. Hao et
al. [100] introduced Fed-ZDA, a FL system that leverages
zero-shot data augmentation to generate pseudo-exemplars of
unseen classes while ensuring privacy, aiming to enhance
fairness and accuracy performance uniformity across clients
in federated networks. Semantic knowledge augmentation is
a technique used in ML to improve model performance and
generalization by leveraging external semantic knowledge to
generate more accurate, diverse, and semantically consistent
training data. Sun et al. [101] enrich the semantic space
by combining text embedding, Gaussian noise, and attribute
labels during the training process, making the model bet-
ter adapt to the instance-level visual space and enhancing
performance and generalization capabilities. Deep stacked
Ddata augmentation-based FDG leverages the power of deep
learning, data augmentation, and FL techniques to enhance
the generalization capability of models across all domains. By
augmenting the data and aligning the gradients, the models
become more robust and capable of handling unseen domains,
thereby improving the performance and applicability of FL
in real-world scenarios. Tian et al. [84] proposed a deep
stacked transformation data augmentation approach (called
BigAug) for generalizing models to unseen domains, achiev-
ing good generalization on several unseen datasets. Yu et
al. [102] proposed a novel data augmentation method, termed
Symmetry-Inspired Data Augmentation, which notably ex-
pands the sample size while minimizing memory requirements,
thus significantly advancing FDG within the realm of medical
imaging. These methods have proven effective in creating
diverse, domain-invariant training samples, thereby enabling
efficient knowledge transfer and adaptation across disparate
domains, all the while maintaining data privacy under the FL
paradigm.

2) Data generation-based FDG
Data generation-based FDG involves synthesizing new

training samples from scratch using generative models like
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Variational Autoencoders or Generative Adversarial Networks.
In essence, the generative models used in data generation-
based FDG are designed to produce new samples that strike a
balance between similarity and diversity. The similarity in sta-
tistical properties ensures that the new samples are representa-
tive of the source domain, facilitating effective learning. Mean-
while, the introduction of variations in content and appearance
broadens the model’s exposure to potential variations it might
encounter in unseen target domains, thereby improving its
generalization capabilities. Data generation-based FDG can
help overcome the limitations of limited and biased training
data and improve the model’s ability to generalize to new and
unseen domains. Here, the Ŝi = Si∪Ci, where Si is the local
real dataset of domain i and Ci is the virtual domain dataset
used for data generation.

a) Generative model
The generative model can be used to generate synthetic

data that captures the common characteristics of the different
domains, enabling better DG. The choice of generative model
for FDG depends on factors such as the characteristics of the
data from different domains, the availability of labeled data in
each domain, and the desired level of DG.

Zhang et al. [103] proposed FedDA, a data augmentation
method based on GAN for generating high-quality overlap
samples by learning features from both overlap and non-
overlap data, effectively expanding the available training
data and enhancing the effect of data augmentation. Guo et
al. [104] demonstrated the efficacy of ACGAN in managing
data imbalance and enhancement tasks. Leveraging its mecha-
nism, ACGAN presented a viable data conduit for preserving
data privacy in federated transfer learning, marking a novel
application for ACGAN. To enable membership inference on
other participants, Chen et al. [105] proposed a novel approach
that utilizes locally deployed GANs to generate samples with
all labels, thereby obtaining the data distribution necessary for
the inference process. Zhang [106] leveraged GANs to gener-
ate synthetic data with the same underlying distribution as the
original dataset, guided by the target FL model’s discriminator,
thereby enriching the training dataset and improving the im-
itative capability of the generated images. Zhang et al. [107]
proposed DPGAN framework allows different hospitals to
employ a privacy-preserving data augmentation method by
utilizing distributed DPGAN models to generate high-quality
training samples, addressing the issue of insufficient training
data and subsequently achieving accurate detection using the
ResNet model in FL.

Yan et al. [108] synthesized samples by a privacy-preserving
generative adversarial network, which solves the cross-client
variation problem and protects privacy with wide applicability.
Li et al. [109] proposed improved FL-GAN to learn globally
shared GAN models by aggregating locally trained generator
updates with the maximum mean difference. Sariyildiz et al.
[110] built a generative model to generate training samples
for unseen classes upon the WGAN [111], [112] that takes a
combination of noise vectors and class embeddings as input,
enabling the production of class-specific samples based on
the information provided by the class embedding. Tang et al.
[113] introduced virtual homogeneity learning, a method for

handling data heterogeneity in FL, which generates a separa-
ble and homogeneous virtual dataset by utilizing StyleGAN
[114] from shared noise across clients to improve conver-
gence speed and generalization performance while preserving
privacy. Zhou et al. [115] developed FEDFA, an innovative
FL algorithm that mitigates feature shift among clients by
probabilistically augmenting local feature statistics based on
global information from the entire federation, offering a robust
solution to improve model performance in the presence of
Non-IID data distributions.

b) Mixup-based augmentation
The models mentioned above can serve as starting points,

and further customization or hybrid approaches may be nec-
essary based on the specific requirements of the FL setting.
Mixup-based augmentation is forced to learn features that are
common across the clients by mixing samples from different
clients during training, thereby improving its ability to gener-
alize to new, unseen clients.

Shin et al. [116] introduced XorMixup, a privacy-preserving
data augmentation technique based on XOR operations, de-
signed to tackle the Non-IID data hurdle in FL. This approach
involves collecting encoded data samples from various de-
vices and decoding them exclusively with each device’s data,
ensuring privacy and enhancing data diversity. Yoon et al.
[117] proposed FedMix, a privacy-protected data augmentation
technique, averaging local batches and subsequently apply-
ing Mixup in local iterations to generate augmented data.
The proposed approach aims to protect the privacy of local
data in FL scenarios while improving performance in Non-
IID settings. Yao et al. [118] generated a certain proxy to
approximate the target distribution for aligning features from
different domains via mixup-based augmentation. [119] allows
the generation of diverse domains by mixing local and global
feature statistics (MixIG) while keeping data private, where
MixIG is constructed by randomly interpolating instance and
global statistics.

3) Normalization Techniques
Normalization techniques unify the distribution of data

across features or datasets, enhancing optimization efficiency
and mitigating issues like gradient disappearance or amplifica-
tion. Within FDG, these techniques are crucial for reconciling
data heterogeneity, thus aiding in the development of consis-
tent and generalizable attributes within robust global models.

Yu et al. [91] developed an enhanced instance normaliza-
tion module designed to concentrate on task-relevant features
while minimizing domain-specific information, thereby boost-
ing the discriminative and generalization capabilities of the
local model. Li et al. [120] introduced FedBN, leveraging
local batch normalization to address feature shift, outperforms
traditional FedAvg and advanced FedProx for non-i.i.d. data in
extensive testing. Zhu et al. [121] developed a Batch-Instance
Style Normalization (BIN) block tailored for FL to address the
domain gap attributed to stylistic variances. This BIN block
is integrated with the segmentation backbone network, form-
ing BIN-Net, which proficiently learns intra-domain features
and concurrently neutralizes inter-domain style disparities, all
without necessitating data access from other centers. Yuan
et al. [50] employed hybrid batch-instance normalization and
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collaboration of frozen classifiers to improve the generalization
of feature extractors. Yu et al. [102] proposed a masked adap-
tive instance normalization technique, addressing the challenge
of generalizing models to unseen sites by minimizing inter-site
discrepancies and standardizing input images from different
sites into a site-unrelated style.

By incorporating data generation techniques in FDG, mod-
els can benefit from increased diversity and representativeness
of the training data. This helps in capturing the shared features
and reducing the domain-specific differences, ultimately lead-
ing to improved generalization performance across domains.

C. Learning Strategies

In addition to data manipulation, the field of FDG has gar-
nered considerable attention within the broader ML paradigm.
FDG research can be classified into several distinct ap-
proaches, including representation learning-based FDG, feder-
ated DA-based FDG, federated transfer learning-based FDG,
federated adversarial learning-based FDG, style transfer-based
FDG, federated meta-learning-based FDG, and other strate-
gies. These approaches are devised to tackle the issue of
training models that can effectively generalize to unseen
domains by employing various techniques and principles.

1) Representation Learning
Representation learning [122] has long been a focal point

in ML, playing a pivotal role in the success of DG. Rep-
resentation learning in FDG follows the same principles as
representation learning in general but is tailored to the FL
setting. The basic principle involves training a neural net-
work to learn a mapping function that transforms the input
data from each domain into a common representation space.
The objective function used in representation learning for
FDG typically includes components that encourage domain-
invariant representations while preserving the utility of the
learned representation for downstream tasks. The goal is
to acquire domain-invariant representations that encapsulate
common features across various federated domains, facilitating
models to generalize effectively to unseen domains. In FDG,
we decompose the prediction function w as w = u ◦ z,
where z represents the representation learning function and
u represents the classifier function. Mathematically, it can be
formulated as:

min
u,z

∑
s∈S

[
E(x,y)∼P (s)Lt(u(z(x)), y) + χLd(z(x), D)

]
(24)

where S represents the set of source domains, E(x,y)∼P (s)

represents the expectation over the data samples (x, y) from a
specific source domain s ∈ S. Lt (·) denotes the task-specific
loss function, which measures the discrepancy between the
predicted output of the representation function u (z (x)) and
the true label y for a given input x. Ld (·) represents the
domain discrepancy loss function, which quantifies the dif-
ference between the representations z (x) and the domain
labels D. The domain discrepancy loss function can be
defined using various approaches, such as maximum mean
discrepancy, adversarial DA, or adversarial neural networks,
depending on the specific method used for FDG. This loss

encourages the learned representations to be domain-invariant,
capturing shared knowledge across different source domains.
The hyperparameter χ controls the trade-off between the task
loss and the domain discrepancy loss, determining the relative
importance of task performance and domain invariance in the
learned representations.

a) Domain-invariant representation-based FDG
Domain-invariant representation-based FDG refers to the

problem of learning models that can generalize well to unseen
domains in the FL setting, while also capturing domain-
invariant representations.

Federated adversarial learning: Federated domain adver-
sarial learning combines the concepts of FL and adversarial
training to train a global model on multiple source domains.
By incorporating a domain classifier, the model learns domain-
invariant representations that generalize well across domains.

Xu et al. [75] outlined a novel federated adversarial domain
hallucination (FADH) learning framework for FDG, making
the final model more robust to unseen domain shifts. Zhang et
al. [53] introduced FedADG, employing federated adversarial
learning to harmonize distributions across diverse source do-
mains. This method yields a universal feature representation
with strong generalization capabilities across unfamiliar target
domains while safeguarding local data privacy. Peng et al. [69]
extended adversarial adaptation techniques to the constraints
of the FL setting and leveraged feature disentanglement to
bolster knowledge transfer. Zhang et al. [87] introduced deep
adversarial networks as a solution to effectively bridge the
gap between domain distributions while maintaining data
privacy. Micaelli et al. [123] developed a training approach
in which a student network learns to align its predictions with
those of a teacher network, solely relying on an adversarial
generator to discover images where the student exhibits poor
alignment with the teacher and utilizing them for student
training, without relying on any data or metadata. Zhang et
al. [124] developed a knowledge-agnostic approach for on-
device knowledge transfer by adversarially training a gener-
ative model with the global model to obtain higher accuracy
and better generalization performance. Dalmaz et al. [125]
introduced a novel specificity-preserving FL technique for
MRI contrast translation. This approach leveraged an adver-
sarial model to dynamically normalize feature maps across
the generator based on site-specific latent variables. Kang et
al. [126] introduced a fine-grained adversarial domain adap-
tation approach aimed at minimizing feature dimensionality,
improving model interpretability, and enabling the acquisition
of domain-invariant features. Zhang et al. [127] developed a
Multi-hop Graph Pooling Adversarial Network tailored for
cross-domain Remaining Useful Life prediction, addressing
the domain drift among varied clients by accommodating the
diverse data distribution. Yu et al. [102] utilized a gradient
reversal layer within the U-net encoder to foster domain-
invariant representations, bolstering model generalization.

In summary, federated adversarial learning contributes to
improved generalization performance while ensuring privacy
preservation and data security in the FL setting.

Federated feature alignment: Federated feature alignment,
employed in FDG, tackles the issue of domain shift across
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varied domains within an FL environment. It aims to align
the feature representations of data samples from different do-
mains to improve the generalization capability of the federated
model.

Nguyen et al. [128] presented FedSR, a novel represen-
tation learning framework for FL, which enables domain
generalization while preserving privacy and decentralization,
and incorporates CMI and L2R regularization techniques to
improve generalization performance. To align features [118]
from two domains in FL without direct access to target
data, a proxy was constructed using a reweighted mixup of
server data, which effectively improves model generalization,
robustness, and stability, and further sampling was performed
based on client data density using Gaussian Mixture Models
(GMM) to create a proxy set. Zhang et al. [129] proposed
the FedUFO method, an adversary module is introduced to
minimize feature divergence among different clients, while
consensus losses were employed to mitigate inconsistencies in
optimization objectives, enabling unified feature learning and
alignment in Non-IID FL. Sun et al. [71] proposed FedKA, a
novel FDG method that utilizes feature distribution matching
and a federated voting mechanism to align domain-specific
features and generate pseudo-labels for global model fine-
tuning, enabling domain-invariant learning in the presence of
unknown client data. To learn feature representations from
raw input data, Kang et al. [130] utilized two neural net-
works for each party, where one network captures weakly
shared representations and the other learns domain-specific
representations and three loss terms are proposed to enforce
the desired learning objectives. Wang et al. [131] presented
TrFedDis, a trailblazing network that advanced FL through
feature disentangling and uncertainty-aware decision fusion,
thereby boosting both efficacy and dependability in Non-IID
domain features.

Invariant risk minimization (IRM): IRM [132] is an in-
novative learning paradigm that aims to estimate nonlinear,
invariant, and causal predictors from multiple training envi-
ronments to achieve robust generalization to OOD data. In
deep learning, IRM consists of a feature encoder (g) and a
classifier (h). Here, domain i Si = {(xij , yij)}

ni
j=1 is collected

under multiple source domains i ∈ I . The formulation of IRM
is to minimize the loss function:

min
h,g

∑
i

Ri (h ◦ g) ,

subject to: h ∈ argmin
h′

Ri (h′ ◦ g) , for all i ∈ I.
(25)

where Ri(f) := Exi,yi [l(f(xi), yi)]
The authors in [132] treat the classifier h as a fixed scalar,

resulting in the optimization problem formulation as follows.
Francis et al. [133] utilized IRM to learn invariant predictors

across client domains, achieving optimal empirical risk on all
participating clients. The central objective of the FedGen [134]
framework was to learn invariant predictors by aggregating
local models and masks from participating clients, utilizing
a penalty term similar to IRM as a regularizer to discourage
overfitting to specific data distributions and to encourage gen-
eralization across distributions. Zhang et al. [135] introduced

distributionally robust neural networks, domain adversarial
neural networks, and MMD feature learning, as well as
referencing previous work on invariance methods such as
correlation alignment and IRM, providing a comprehensive
evaluation of these approaches. Luca et al. [136] proposed
a federated version of IRM that follows a similar procedure
to FedAvg, but differs from other federated IRM approaches
(such as CausalFed and CausalFedGSD) that involves data
communication either through intermediate representations or
a shared subset of data, making our Fed-IRM distinct in terms
of data sharing.

Overall, IRM could be used in FDG to solve the problem
of domain shift and ensure model robustness across different
domains, which aims to learn representations that are invariant
to domain-specific variations while still being informative for
the task at hand.

Kernel-based methods: Kernel-based methods provide a
powerful framework to address domain shifts and improve
generalization performance for FDG. These methods can
capture complex relationships and align distributions between
different domains by leveraging kernel functions and operating
in high-dimensional feature spaces, leading to more robust and
transferable models in FL settings.

Tian et al. [84] developed a novel DG method based on
gradient aggregation, leveraging the gradient as a kernel mean
embedding to align distributions across domains and improve
model generalization capability under privacy constraints,
achieving better performance and generalization capability
under the privacy-preserving condition. Huang et al. [137]
introduced the FL neural tangent kernel, a novel analyti-
cal framework for overparameterized ReLU neural networks
trained in FL, which theoretically converged at a linear rate to
a global optimum and demonstrated promising generalization
capabilities. Different distributions of observed data from
multiple sources are modeled separately, and a kernel-based
method was used to adaptively learn their similarities [138],
resulting in an adaptive factor that measures the similarity
between the distributions. In the collaborative learning setting
among distributed clients facilitated by a central server, Salgia
et al. [139] introduced a kernel-based bandit algorithm using
surrogate Gaussian process models, achieving near-optimal
regret performance, and demonstrated the effectiveness of us-
ing sparse approximations to reduce communication overhead
among clients. Hong et al. [140] proposed eM-KOFL and pM-
KOFL algorithms for Online FL achieve near-optimal per-
formance while minimizing communication costs, with pM-
KOFL demonstrating comparable performance to vM-KOFL
(or eM-KOFL) across different online learning tasks.

b) Feature disentanglement-based FDG
Feature disentanglement is a widely adopted strategy for

mitigating challenges related to domain shift and negative
transfer when handling different domains, aiming to sepa-
rate the domain-invariant features and domain-specific fea-
tures from training samples [14], [15]. In FDG, feature
disentanglement-based methods extend the principles of fea-
ture disentanglement to the FL setting and aim to learn disen-
tangled representations by leveraging the distributed data from
multiple source domains while ensuring privacy preservation



PROCEEDING OF THE IEEE, VOL. X, NO. X, JUNE 2024 19

and data locality.
Peng et al. [69] significantly advanced the field by adapting

adversarial adaptation techniques to the specific constraints of
FL. This adaptation, which utilized feature disentanglement,
successfully tackled the dilemmas associated with domain shift
while preserving privacy. Wu et al. [54] optimized domain-
invariant feature extractors for central aggregation and domain-
specific classifiers for central ensembling, allowing for se-
lective knowledge disentanglement between domain-invariant
feature representations and domain-specific classification in-
formation.

By disentangling the features and capturing the domain-
invariant factors, feature disentanglement-based FDG methods
enable the trained model to generalize well to unseen domains
by leveraging the shared knowledge across domains. Such
strategies are instrumental in overcoming domain shift prob-
lems and enhancing model transferability within FL contexts.

Beyond the representation learning-based FDG approaches
previously discussed, several other techniques have garnered
attention. Huang et al. [141] introduced FCCL+, an innovative
FL strategy that mitigates model heterogeneity and catas-
trophic forgetting through the use of cross-correlation and
instance similarity alongside non-target distillation, thereby
enhancing discriminability and generalization across varied en-
vironments. Song et al. [142] implemented a Pseudo-Siamese
Network within local clients to assess discrepancies between
client-specific and global models, improving the delineation
of the feature space for fault diagnosis models. This method
ensures that the feature representations learned do not exces-
sively conform to the idiosyncrasies of the local domains, thus
preserving efficacy in novel domains.

2) Federated Domain Adaptation
Federated domain adaptation (FDA) is an approach that

synergistically combines FL and DA techniques to mitigate
the problem of domain shift in a decentralized setting, thereby
improving model performance when source and target domains
exhibit dissimilar distributions or come from distinct domains.

a) Unsupervised domain adaptation
Unsupervised domain adaptation (UDA) is an ML technique

designed to adapt models from a source domain, where labeled
data is available, to a target domain that lacks labeled data.
In FDG, UDA techniques aim to learn domain-invariant repre-
sentations that capture shared knowledge across domains while
reducing domain-specific differences. The goal is to bridge the
domain gap and enable models to generalize well to unseen
domains without access to labeled data in those domains.

Peng et al. [69] proposed an unsupervised FDA method that
aligns learned representations across different domains with
the data distribution of target domains to solve domain shift.
Wu et al. [54] proposed a new approach called Collaborative
Optimization and Aggregation (COPA) by employing hybrid
batch-instance normalization and collaboration of frozen clas-
sifiers to optimize a generalized target model for decentral-
ized DG and UDA. Zhuang et al. [143] introduced FedFR,
a method for UDA in face recognition, which combines
clustering-based DA and FL to improve performance on a
target domain with different data distributions from the source
domain. Zhou et al. [144] introduced STU-KD, a scheme

for privacy-preserving adaptation of a compact model to
edge devices, which combines DA techniques with knowledge
distillation to efficiently transfer knowledge from a large target
model to the compact model. The proposed DualAdapt method
[118] is an FDA technique that enables the model to adapt to
the target domains while preserving knowledge learned from
the source domains, achieving high accuracy while minimizing
communication costs and computational resources required on
client devices. Niu et al. [145] introduced a novel federated
UDA strategy termed knowledge filter to adapt the central
model to the target data when unlabeled target data is available.
Qiu et al. [146] proposed Federated Semi-Supervised Learning
(FSSL) method, employing federated pseudo-labeling for dis-
tributed medical image domains, enhances FDG by effectively
utilizing unlabeled data.

In summary, UDA in FDG is pivotal for mitigating domain
shift issues and boosting model transferability across federated
domains. This enables models to achieve strong performance
in unfamiliar domains, even with limited labeled data.

b) Zero-shot and few-shot adaption
Zero-shot and few-shot adaptation techniques tackle data

scarcity and bolster model generalization. These methods
empower models to function effectively in tasks or domains
with minimal or no explicit training data, thereby enhancing
adaptability to novel scenarios. In FDG, zero-shot and few-
shot adaptation techniques aim to enhance model generaliza-
tion across distributed domains,

Yang et al. [119] introduced zero-shot adaptation with
estimated statistics to solve the difficulties of FDG, where
the zero-shot adapter facilitates the learned global model in
directly bridging a significant domain gap between seen and
unseen clients during inference. Huang et al. [147] tackled
the issues of few-shot, model-agnostic FL by unveiling a
framework that utilizes public datasets to enhance performance
in the face of limited private data. This approach effectively
navigates issues like inconsistent labels and domain gaps by
employing model-agnostic FL techniques and latent embed-
ding adaptation.

Zero-shot and few-shot adaptation techniques in FDG tackle
domain shifts and privacy concerns, thereby enhancing the
performance of FL in real-world scenarios characterized by
limited data access and distribution constraints.

c) Adversarial domain adaptation
Adversarial domain adaptation (ADA) can also be applied

in FDG, where the goal is to learn models that can generalize
well across multiple domains without explicitly sharing data.
In this scenario, each domain has its data distribution and
potentially different labeling conventions or data biases.

Zeng et al. [148] introduced a novel strategy, one-common-
source ADA, aimed at addressing domain shifts in each
target domain (private data) by leveraging a common source
domain (public data). This strategy includes the use of ADA
with gradient matching loss for pre-training encoders. Zhao
et al. [70] developed a federated multi-source DA method
that integrates transfer learning with FL for machinery fault
diagnosis, prioritizing data privacy. This method employed
federated feature alignment to reduce feature distribution
discrepancies and introduced a joint voting mechanism for
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refining the global model using pseudo-labeled samples. Con-
sequently, this method achieves precise identification of target
data while ensuring the protection of data privacy. Peng et
al. [69] pioneered an approach to FDA by synchronizing the
learned representations among distributed nodes with the target
node’s data distribution. This method leverages adversarial
adaptation techniques, a dynamic attention mechanism, and
feature disentanglement, thereby facilitating knowledge trans-
fer and confronting the domain shift task inherent in FL. Zhang
et al. [53] proposed FedADG, a federated adversarial domain
generalization strategy that harmonizes distributions across
various domains through a reference distribution. This method
guarantees a universal feature representation that generalizes
well, simultaneously safeguarding local data privacy.

By incorporating ADA into FDG, models can learn domain-
invariant representations that capture common features across
multiple domains, enabling the final global model to generalize
well to unseen domains, even in the absence of explicit data
sharing.

d) Gradient Consistency Domain Adaptation
Gradient consistency [149], [150] pertains to ensuring uni-

formity or alignment in the gradients—direction and magni-
tude of model learning—across diverse data domains during
model parameter optimization. The aim of gradient consis-
tency in FDG is to ensure that, despite the distributed and
heterogeneous data environment, models can learn a unified
representation that generalizes across all domains by aligning
gradients.

Zeng et al. [148] proposed a method called gradient match-
ing FDA (GM-FDA), which aims to minimize domain dis-
crepancy by utilizing a public image dataset and training
resilient local federated models specifically for target domains.
In [148], the gradient matching loss LGM is expressed as the
expected cosine distance between ġs(ϑ) and ġt(ϑ), considering
all possible values of ϑ:

LGM = E
ϑ

[
1− ġs (ϑ)

T
ġt (ϑ)

∥ġs (ϑ)∥2 × ∥ġt (ϑ)∥2

]
(26)

where ġs(ϑ) represents the expected gradient vector from the
source domain, ġt(ϑ) represents the expected gradient vector
from the target domain, and the gradients are computed con-
cerning the compatibility model parameters ϑ. ∥·∥ represents
the Euclidean norm and E

ϑ
denotes the expectation over the

compatibility model parameters ϑ. Minimizing the gradient
matching loss LGM aims to align the gradient vectors between
the source and target domains, facilitating domain-invariant
representation learning and improving the generalization ca-
pability across federated domains.

Zhu et al. [151] developed an approach to mitigate the issue
of domain shift in FL by utilizing gradient covariance and the
geometric mean of Hessians. This strategy effectively captures
the consistency across and within silos. Compared to alterna-
tive domain adaptation methods, this approach demonstrates
superior performance. The gradient covariance between two
random variables X and Y is defined as follows:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] (27)

where E[X] is the expected value (mean) of X , and E[Y ]
is the expected value of Y . The expected value operator E[·]
calculates the mean of its argument. By leveraging gradient
covariance, it’s possible to facilitate the integration of learning
from multiple tasks or domains by aligning gradient directions,
thereby improving model generalization and performance on
a wider range of tasks.

Wei et al. [152] introduced a multi-source collaborative
gradient discrepancy minimization method for FDG. This
approach facilitates intra-domain and inter-domain gradient
matching across various source domains, with the objective
of developing a model that remains unbiased towards specific
domains and exhibits superior performance on unseen target
domains. Specifically, the method employs intra-domain gra-
dient matching to synchronize the gradients of classifiers for
original and augmented images from isolated source domains.
This strategy aims to steer local models towards capturing the
essential semantic content present in both types of images.

Lintra
gm = 1− sim(gi, g

′
i) (28)

where sim(·) denotes the cosine similarity measure, gi rep-
resents the gradient of classifier Ci with respect to original
images, and g′i corresponds to the gradient of classifier Ci for
augmented images.

To mitigate the domain gap across decentralized source
domains, inter-domain gradient matching leverages classifier
heads from other domains as intermediaries. This method aims
to minimize gradient discrepancies between the classifier head
in use and those from disparate domains, thus reducing domain
shift and bolstering model generalization across federated
domains.

Linter
gm =

n∑
j=1

(1− sim(g′i, g
t−1
j )) (29)

where g′i denotes the gradient of classifier Ci with respect
to augmented images, while gt−1

j represents the gradient
of classifier Ct−1

j from the j-th source domain concerning
original images. In addition, this approach can be adapted for
FDA tasks through the refinement of the target model using
pseudo-labeled data from the target domain.

These studies demonstrate innovation and diversity in ad-
dressing domain variability in distributed data domains by
adopting gradient consistency as a core mechanism. Although
each method has its unique implementation and focus, they
collectively highlight the importance of achieving domain-
invariant learning and generalization capabilities in FDG.

3) Federated Transfer Learning
Federated transfer learning [10] (FTL) is a valuable ap-

proach that can be utilized in scenarios where two datasets
exhibit differences not only in terms of samples but also in
their feature spaces. It allows models to leverage knowledge
learned from one dataset to improve the performance on a
different dataset with distinct features while preserving data
privacy and security. FTL can also be applied to FDG, where
the goal is to improve the generalization performance of
models across multiple federated datasets that exhibit domain
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shifts and variations. The objective of FTL for FDG is as
follows:

Θ∗ = argmin
Θ

n∑
i=1

δi∗L (Θ, Di)+β∗𭟋 (Θ)+σ∗Ω (Θ) (30)

where Θ denotes the model parameters to be optimized,
Θ∗ represents the optimal model parameters, n signifies the
number of clients within the FL system, L (Θ, Di) is the loss
function that measures the discrepancy between the predicted
outputs of the model and the ground truth labels on client
i’s data Di, δi is the weight assigned to the loss function
L (Θ, Di) for client i, β is a regularization hyperparameter,
𭟋 (Θ) is the regularization term that encourages model param-
eter smoothness or complexity control, σ is a hyperparameter
that controls the trade-off between the regularization term and
the DG term, Ω (Θ) is the DG term that aims to minimize
the distribution discrepancy between different clients’ data
distributions, promoting generalization across domains.

Chen et al. [83] developed the D-WFA framework, which
employs discrepancy-based weighted federated averaging to
collaboratively train a global diagnosis model. This approach
leverages locally labeled source domain data and unlabeled
target domain data, prioritizing data privacy. Zhang et al. [87]
introduced an FTL method for fault diagnosis that addresses
data privacy and the domain shift phenomenon by utilizing
unique models for different users. This method features a
federated initialization stage and a federated communication
stage powered by deep adversarial learning. Zhang et al. [103]
proposed another FTL method for machinery fault diagnostics.
This method uses deep learning-based models trained locally
at each client to ensure data privacy and introduces a novel
DA approach to bridge domain gaps without sharing local data,
showing efficacy in real industrial settings. Li et al. [153] of-
fered the FedSWP framework, enhancing the smart work pack-
aging system for construction occupational health and safety
management. This framework focuses on protecting construc-
tion workers’ personal image information, providing accurate
and personalized safety alerts and healthcare solutions while
addressing privacy concerns. Zhou et al. [154] introduced a
bearing faulty prediction method that combines fFTL with
knowledge distillation. This method, which includes signal-to-
image conversion, multi-source FTL, and multi-teacher-based
knowledge distillation, significantly improves generalization
capability and achieves higher accuracy in bearing fault pre-
diction tasks with a lower parameter size. Fan et al. [155] pre-
sented IoTDefender, a personalized and distributed intrusion
detection framework for 5G IoT. Leveraging FTL and 5G edge
computing, this framework tackles the issues of heterogeneity,
data isolation, and limited data availability. It achieves high
detection accuracy and generalization capability with lower
false positive rates, all while preserving user privacy. Chen
et al. [156] showcased FedHealth, an FTL framework for
wearable healthcare. This framework tackles data isolation and
the demand for personalization by aggregating data via FL and
developing personalized models. It showcases accurate and
privacy-preserving healthcare applications, including wearable
activity recognition and Parkinson’s disease diagnosis.

By leveraging transfer learning techniques within an FL,
models can learn from multiple domains while preserving
data privacy, enabling improved generalization capabilities and
robustness in diverse federated environments.

4) Channel Decoupling
Channel decoupling is a technique used in ML, particularly

in DG, to disentangle domain-specific information from shared
information in feature representations. It can be used in FDG
to disentangle domain-specific knowledge from shared knowl-
edge by decoupling channel-wise statistics, enabling better
generalization across unseen domains by reducing domain-
specific variations.

Yang et al. [119] proposed a method for client-agnostic
learning with mixed instance-global statistics. In this approach,
local models aim to learn client-invariant representations by
optimizing client-agnostic objectives using augmented data.
Feng et al. [157] put forward the FedMRI algorithm, which
partitions the model into a shared encoder and client-specific
decoders. This architecture preserves domain-specific charac-
teristics while fostering a generalized representation, effec-
tively tackling domain shift issues. Shen et al. [158] intro-
duced the CD2-pFed framework, employing cyclic distillation-
guided channel decoupling to tailor the global model for indi-
vidual clients within FL. This approach effectively navigates
the complexities of heterogeneous data distributions, enhanc-
ing generalization across clients. Tan et al. [77] developed
FedStar, a federated graph learning framework that tackles
the Non-IID problem in graph data. By leveraging struc-
ture embeddings and independent structure encoders, FedStar
extracts and shares essential structure information, securing
structure-based domain-invariant knowledge and mitigating
feature misalignment. Weng et al. [159] proposed FedUCC, an
innovative federated unsupervised cluster-contrastive learning
method for Person ReID. FedUCC employs a three-stage
strategy to discover generic, specialized, and patch knowl-
edge, ensuring cross-domain consistency and maintaining local
domain-specific insights.

By allocating distinct channels to each domain, the global
model is capable of learning domain-specific representations,
thereby efficiently overcoming the issues associated with
heterogeneous data distributions among the participating do-
mains. Channel decoupling allows for fine-grained adaptation
and enhances the model’s ability to generalize across diverse
domains in FL.

5) Style Transfer
Style transfer in FDG refers to the process of transferring

the style or visual characteristics of a source domain to a
target domain in the FL setting. The goal is to generalize the
learned style representations across domains while preserving
the content of the target domain.

Nergiz et al. [160] introduced a federated adaptation of
the neural style transfer algorithm as a data augmentation
technique to solve the issues of data collaboration in compu-
tational pathology, specifically focusing on the highly class-
imbalanced Chaoyang colorectal cancer imaging dataset, while
ensuring privacy preservation without any data leakage. Chen
et al. [96] introduced a DG method called cross-client style
transfer (CCST) for image recognition in FL, which sur-
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passes state-of-the-art methods on DG while being compatible
with existing DG techniques. Shenaj et al. [95] introduced
FFREEDA, a task for Semantic Segmentation in autonomous
driving, proposing the LADD algorithm that utilizes pre-
trained model knowledge through self-supervision and a fed-
erated clustered aggregation scheme based on clients’ style,
demonstrating superior performance compared to existing
approaches. Fantauzzo et al. [161] presented FedDrive, a
benchmark for FL in Semantic Segmentation for autonomous
driving, addressing difficulties of statistical heterogeneity and
DG, evaluating state-of-the-art algorithms with style transfer
methods to enhance generalization capabilities.

It’s important to note that style transfer for FDG is an evolv-
ing research area, and the specific techniques and methodolo-
gies may vary depending on the latest advancements.

6) Federated Meta-Learning
Model-agnostic meta-learning (MAML) [162] is a meta-

learning approach that aims to learn an initial model that
can quickly adapt to new tasks with limited labeled data.
In FDG, MAML is utilized to overcome the obstacle of
generalization across diverse federated domains with varying
data distributions. MAML targets domain shifts by fostering
a meta-level optimization process that facilitates rapid adapta-
tion of models to new tasks using limited data. Instead of
training a model from scratch for each new task, MAML
algorithms aim to learn a good initialization or set of initial
parameters that can be fine-tuned or adapted to new tasks
with minimal data. The specific form of the objective function
may vary depending on the MAML algorithm used, but in
general, it involves a two-level optimization process: inner-
loop optimization and meta-optimization. In the inner-loop
optimization, for each task or episode, the model is trained
on a support set of labeled examples specific to that task.
The goal is to update the model parameters to minimize task-
specific loss or error on the support set. This is typically done
through gradient descent or other optimization techniques.
In the meta-optimization, the meta-parameters of the model
are updated based on the performance of the model on the
query sets of multiple tasks. The objective is to find meta-
parameters that can generalize well across tasks and enable
fast adaptation. The meta-parameters are updated using the
gradients computed from the meta-objective, which is often
defined as the average loss or error across the query sets of
multiple tasks.

a) Inner-loop optimization:
The base learner is fine-tuned using support samples DSi

from the learnable initialization Φ for a fixed number of weight
updates via gradient descent. The task adaptation objective
is to minimize the loss function L(DSi

,Φi,j) using gradient
descent. At the j-th step of inner-loop optimization, the base
learner parameters are updated as:

Φi,j+1 = Φi,j − α∇Φi,j
L(DSi

,Φi,j) (31)

where α is the learning rate.
b) Inner-loop optimization iterations:

After performing J number of inner-loop update steps, the
task-specific base learner parameters become Φi,J .

c) Meta optimization:
The meta-learned initialization Φ is evaluated based on the

generalization performance of the task-specific base learner
with parameters Φi (or Φi,J) on unseen query examples DQ.
The objective of MAML is to minimize the meta-learning
algorithm’s objective function, denoted as L(DQi

,Φi), as
follows:

Φ = Φ− ζ∇ΦT
L(DQi

,Φi) (32)

where ζ is the meta-learning rate.
Chen et al. [163] presented FedMeta, a federated meta-

learning framework that tackles both statistical and systematic
complications in FL. By reducing communication costs, en-
hancing convergence speed, increasing accuracy, and ensuring
privacy, FedMeta surpasses existing optimization algorithms.
Wang et al. [164] inspired by (MAML, proposed GraphFL
methods to navigate the Non-IID issue in graph data and new
label domains, employing a structure that divides each task
into a labeled training set and a separate query set. Jiang
et al. [165] introduced a personalized FL approach utilizing
MAML algorithms. This work elucidates the meta-learning
interpretation of the widely adopted FedAvg algorithm and
proposes a refined version tailored to enhance FL person-
alization, ultimately aiming to improve the global model’s
generalization capability. Lin et al. [81] developed a collabo-
rative learning framework aimed at real-time edge intelligence,
leveraging federated meta-learning to train models across mul-
tiple source edge nodes and swiftly adapt them to new tasks
at target nodes with limited data. Fallah et al. [166] delved
into the generalization properties of MAML algorithms within
supervised learning. They presented a novel stability definition
that accounts for the number of tasks and samples per task,
facilitating an in-depth analysis of MAML’s generalization
error.

Li et al. [167] introduced a cutting-edge pancreas seg-
mentation model that leverages a meta-learning strategy and
latent-space feature flow generation. This approach effectively
reduces interference from background clutter and appearance-
style discrepancies through a coarse-to-fine workflow, achiev-
ing superior performance across three pancreas datasets and
outperforming current state-of-the-art generalization methods.
Chen et al. [168] introduced FedMeta-FFD, a pioneering
method that combines FL and meta-learning to address the
few-shot fault diagnosis task in IIoT. This method allows
clients to utilize external datasets during the training of a
global meta-learner, leading to enhanced convergence speed
and accuracy compared to existing techniques. Khodak et
al. [169] proposed a theoretical framework that merges task-
similarity, online convex optimization, and sequential predic-
tion algorithms. This framework enhances few-shot learning
and FL performance through adaptive task-similarity learning,
improved transfer-risk bounds, and average-case regret bounds
in dynamic or varied tasks.

By utilizing MAML, the model parameters can be updated
on meta-training data, which consists of raw input data from
different federated domains, and then evaluated on held-out
meta-test data generated from frequency space with different
distributions. In addition to the above MAML methods, other
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approaches are being explored in the field of federated meta-
learning for FDG. One is episodic learning, which can be
applied in FDG to improve the transferability of models across
different domains. Liu et al. [52], [170] introduced episodic
meta-learning for training models in FL across varying data
distributions by explicitly simulating domain shifts and em-
ploying a meta-learning approach to update model parameters.
Another one is the meta-critic network, where the meta-critic
network provides feedback on the performance of primary
models across different domains, allowing for guided adapta-
tion and improvement of their generalization capabilities. Chen
et al. [79] proposed a personalized federated optimization
framework with Meta Critic (FedMC) to tackle heterogeneity
in federated networks. This framework effectively identifies
robust and generalizable domain-invariant knowledge across
clients, tackling the issues arising from diverse client data
distributions.

7) Data-free Methods
Data-free [171] methods aim to perform learning tasks

without using any labeled data from the target domains by
leveraging auxiliary information, prior knowledge, or transfer
learning techniques to generalize to unseen domains.

Zero-shot and few-shot learning: Zero-shot learning and
few-shot learning aim to recognize or classify objects from
unseen domains for which no labeled samples are available
during training.

Sun et al. [101] proposed Federated Zero-Shot Learning
(FZSL) to transfer mid-level semantic knowledge and optimize
a generalizable FL model. Sariyildiz et al. [110] proposed
a generative model combined with Gradient Matching loss,
transforming zero-shot learning issues into a supervised clas-
sification task. This approach significantly boosts generalized
zero-shot classification accuracy, surpassing the performance
of prior methodologies. Micaelli et al. [123] demonstrated the
possibility of achieving zero-shot knowledge transfer through
an adversarial approach, where the adversarial generator is
trained to produce rigorous images for a student network to
match the predictions of a teacher network. Zhang et al. [124]
introduced FedZKT, a data-free FL framework that enables
devices to autonomously select on-device models based on
their local resources, facilitating knowledge transfer among
these heterogeneous on-device models through a zero-shot
distillation technique. Li et al. [172] developed a federated
zero-shot fault diagnosis framework that utilizes a semantic
knowledge base, a bidirectional alignment network, and cloud-
edge collaboration to effectively diagnose both local and
global unseen fault categories. Yuan et al. [50] proposed the
Collaborative Semantic Aggregation and Calibration frame-
work, a pioneering approach that facilitates data-free domain
generalization by merging model-based semantic informa-
tion across multiple domains, ensuring adherence to privacy
constraints. Additionally, the framework tackles the issue of
semantic dislocation by implementing cross-layer semantic
calibration, employing an attention mechanism to enhance the
precision of semantic alignment.

By incorporating zero-shot learning and few-shot learning
techniques into FDG, models can improve their ability to
generalize across multiple domains with limited labeled data.

Knowledge distillation: Data-free knowledge distillation
(DFKD) [123], [173], [174] is a technique used to transfer
knowledge from a large, well-trained model to a smaller, more
compact model without the need for labeled training data.

Frikha et al. [171] presented DEKAN, an approach named
Domain Entanglement via Knowledge Amalgamation from
Domain-Specific Networks, which effectively extracts and
combines domain-specific knowledge from existing teacher
models to create a domain-shift-robust student model. Niu
et al. [145] introduced a Mutually Collaborative Knowledge
Distillation, enhancing both federated UDA and DG by learn-
ing domain-invariant features in a data-free manner through
collaborative distillation across disparate local models. Zhu et
al. [175] proposed a data-free knowledge distillation method
for heterogeneous FL, which utilizes a lightweight generator
to aggregate user information and improve the generalization
performance of the global model with fewer communication
rounds. Jeong et al. [176] developed data-free federated dis-
tillation, a distributed model training algorithm for on-device
ML that minimizes inter-device communication overhead. This
method tackles the Non-IID data problem by implementing
federated augmentation, which synthesizes an IID dataset to
enhance performance. Zhang et al. [177] introduced FedFTG,
a data-free knowledge distillation technique for fine-tuning the
global model on the server, effectively mitigating data hetero-
geneity in FL and serving as a complementary enhancement
to existing local optimizers.

DFKD can be leveraged successfully in FDG, wherein
the student model is trained using multiple teachers who
have been trained on diverse source domains, facilitating the
generalization capability to previously unseen target domains.

Semantic Aggregation and Calibration: In FDG, semantic
aggregation and calibration refer to techniques used to con-
solidate and refine semantic representations across multiple
federated nodes in a privacy-preserving manner.

Yuan et al. [50] introduced CSAC, a novel privacy-
preserving method that enables separated DG by unifying
multi-source semantic learning and alignment through an iter-
ative process of data-free semantic aggregation and cross-layer
semantic calibration. Niu et al. [145] proposed a data-free
semantic collaborative distillation approach aimed at acquiring
domain-invariant representations, applicable to both federated
UDA and DG.

By employing semantic aggregation and calibration tech-
niques, FDG methods can effectively leverage shared knowl-
edge across domains while adapting to the specific characteris-
tics of individual domains, leading to improved generalization
performance and robustness in FL scenarios.

8) Federated Domain Translation
Domain translation [178], [179] refers to the task of convert-

ing or adapting content from one domain to another domain
while preserving its meaning and quality. Federated domain
translation is a method that aims to perform translation tasks
across multiple domains in an FL framework while preserving
data privacy and security.

Iterative naive barycenter [180] for FDG aims to find a com-
mon representation or domain-invariant subspace by iteratively
averaging the distributions or representations from multiple
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source domains. Zhou et al. [181] proposed a federated domain
translation method that generates pseudo-data for each client
which could be useful for multiple downstream learning tasks.
Wang et al. [182] introduced FedMed-GAN, a benchmark
for federated domain translation. This benchmark effectively
combats mode collapse, preserves generator performance, and
showcases adaptability across varying data proportions and
distributions.

By translating data or knowledge across domains in the FL
setup, models can benefit from a more diverse and compre-
hensive training dataset, leading to improved performance and
generalization in real-world applications.

9) Regularization Strategies
Regularization strategies in FDG aim to improve the gener-

alization performance of models across multiple domains by
mitigating the negative effects of domain shift and improving
domain-invariant representations.

To combat overconfidence and dropping learning curves
in pseudo-labeling for FDG, Shenaj et al. [95] proposed
using knowledge distillation loss based on soft predictions
and stochastic weight averaging applied to clients’ teachers to
stabilize the learning curve and prevent the model from forget-
ting pre-training knowledge. Zhuang et al. [143] presented a
novel domain constraint loss (DCL) in FL to regularize source
domain training where DCL serves as a regularization term
during the training of the source domain model, promoting
alignment towards the target domain within the aggregated
global model. Zhu et al. [151] proposed a new regularization
methodology called federated invariant learning consistency to
promote both inter-silo and intra-silo consistencies in federated
networks by leveraging the domain-level gradient covariance
and the geometric averaging of Hessians. In addition, the
authors also introduced a novel weighted geometric mean
mechanism to calculate geometric mean with inconsistent
signs on gradients. Atwany et al. [93] employed flatness in the
training of separated DG, incorporating iteration-wise weight
averaging and domain-level gradient variance regularization as
effective techniques. Feng et al. [157] developed a weighted
contrastive regularization method for the globally shared part
of the model, which helps alleviate domain shifts among
clients during training and improves convergence. Liu et al.
[52] employed the InfoNCE objective to impose regularization,
using positive and negative feature pairs, to enhance the
domain-invariance and discriminability of the features in their
FL model, ultimately improving its performance. Huang et
al. [89] implemented consistency regularization to align local
instances with their respective unbiased prototypes, markedly
enhancing both the effectiveness and efficiency of mitigating
domain shifts in FL.

Overall, regularization strategies play a crucial role in FDG
by mitigating overfitting and improving the generalization
performance of models across different unseen domains.

D. Aggregation Optimization Algorithms
a) Weight Optimization

The FedAvg algorithm in FL aggregates global model pa-
rameters based on the number of local model parameters con-
tributed by each client, disregarding the quality and importance

of the local model parameters, which can adversely impact
the performance of the global model. In FDG, optimizing
aggregation weights is crucial to overcoming the dilemmas
posed by heterogeneous data distributions and non-uniform
network architectures across participating clients.

Chen et al. [83] proposed D-WFA, a dynamic weighting
strategy based on MMD, adjusting the weights of clients and
updating multiple local models with generalization capabil-
ity. Zhang et al. [183] presented the Generalization Adjust-
ment (GA) method in FL dynamically calibrates aggregation
weights to optimize the objective, achieving a tighter gener-
alization bound by explicitly re-weighting aggregation instead
of relying on implicit multi-domain data sharing as in con-
ventional DG settings. Yuan et al. [50] introduced a semantic
similarity-based attention mechanism that dynamically assigns
weights to cross-layer pairs, prioritizing pairs with higher
semantic similarity for precise alignment while reducing the
emphasis on less similar pairs to prevent semantic dislocation.
Yang et al. [119] proposed to dynamically generate instance-
wise interpolation parameters for mixing instance and global
statistics with a learning-based network to build the global
model deployed to unseen clients. Alekseenko et al. [184]
proposed a methodology that employs distance measurements
to address Non-IID data in FL, enhancing model generalization
by downgrading the influence (weight) of the most divergent
client.

Optimizing aggregation weights in FDG enables effective
integration of client contributions, accounting for their impor-
tance and relevance, resulting in a more adaptive and robust
global model capable of performing well across diverse data
distributions and network architectures.

b) Gradient Optimization
Gradient optimization in FL refers to the process of op-

timizing the model parameters by leveraging the gradients
computed on local participant data. Gradient optimization
plays a crucial role in FDG by enabling efficient parameter
updates across decentralized domains, ensuring convergence
to an optimal global model while considering the variations
in data distributions and network architectures, thereby en-
hancing the model’s generalization capability and performance
across different domains and scenarios.

Federated voting aimed to fine-tune the global model in FL
without using the ground labels of the target domain samples,
thus improving the effectiveness of feature distribution match-
ing [71]. In the global mutual optimization [185], each domain
underwent model distillation to learn from its peers, effectively
mitigating any potential negative impacts of domain-specific
gradient updates on the overall global model. To enhance
the robustness of the global feature encoder across clients,
a domain critic [79] was introduced to regularize the feature
representations learned by both the local and global feature
encoders, utilizing the Wasserstein critic as the chosen distance
metric due to its gradient superiority. Tian et al. [84] intro-
duced an innovative gradient alignment loss to enhance the
gradient aggregation process on centralized servers, aiming to
bolster the model’s generalization to novel yet related domains.
Zeng et al. [148] developed the Gradient Matching Federated
fine-tuning method, which updates pre-trained local federated
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models using the One-Common-Source Adversarial Domain
Adaptation strategy, minimizing the gradient matching loss
between sites to drive the optimization direction towards
specific local minima. Wu et al. [54] introduced a prediction
agreement mechanism to overcome local disparities towards
central model aggregation for achieving better decentralized
DG. Zhang et al. [186] introduced a novel gradient correction
technique, termed GRACE, leveraging feature alignment regu-
larization within a meta-learning framework on the client side
to mitigate the overfitting of personalized gradients.

In summary, optimizing aggregated gradients in FDG is
essential to mitigate domain shift, accommodate data het-
erogeneity, and enhance model performance across various
domains

c) Aggregation Policy:
The aggregation policy in FL refers to the strategy or

algorithm used to combine the model updates from multiple
participating clients and generate an updated global model. In
FDG, designing an effective aggregation policy is essential for
achieving accurate and robust models.

Shenaj et al. [95] introduced a clustered and layer-aware
aggregation policy where global parameters were aggregated
over selected clients and cluster-specific parameters were
averaged within clusters, where clients were clustered based
on their transferred styles using H-Means clustering. Cong
et al. [187] proposed the FDG-GRMA framework, which
leverages a robust model aggregation strategy to construct a
global model that both preserves data privacy and efficiently
diagnoses faults through strategic parameter and feature trans-
missions between the central server and source domain clients.
Zhang et al. [186] employed a consistency-enhanced reweight-
ing aggregation on the server side to recalibrate the aggregated
gradients, thereby improving the global model’s generalization
capabilities across heterogeneous datasets. Chung et al. [188]
advanced FDG by introducing a reparameterization technique
that redefines local entropy, enabling the aggregation of per-
turbed local gradients to approximate global gradients, thus fa-
cilitating robust and generalized model learning across clients

without data sharing. Song et al. [142] proposed aggregation
strategy on the central server involves evaluating each local
model’s performance across other source clients, assigning
higher weights to models with poorer generalization to ensure
that the final aggregated model exhibits enhanced performance
across all domains. Liu et al. [189] introduced a dynamic
aggregation strategy that adaptively weights clients based on
domain-invariance principles, which helps to mitigate domain
variations and enhance the domain generalization capability of
the server model.

Optimizing the aggregation policy effectively helps to com-
bine and utilize knowledge from diverse domains, ensuring the
generation of a robust and adaptable global model capable of
performing well across different domains and scenarios.

E. Dissecting Research Dynamics

Fig. 8 depicts the publication trends across various method-
ologies, identified as Aggregation Optimization (AO), Learn-
ing Strategies (LS), Data Manipulation (DM), and Federated
Domain Alignment (FDA), from 2017 to 2024. Fig. 8 employs
a stacked bar chart to elucidate the cumulative publication
output per methodology alongside the yearly distribution. A
comparative analysis of the bars reveals a marked increase
in publications across all subareas, indicative of a growing
interest in FDG research. The color-coded stratification within
the bars enables an expedient evaluation of the relative volume
of research amongst the subareas, highlighting shifts in the
focus of the research community. It is particularly noteworthy
that the learning strategies methodology has commanded a
significantly higher interest in research, as demonstrated by
its dominant proportion of the total publications.

IV. DATASETS AND APPLICATIONS

In this section, we first provide a summary of the existing
commonly used datasets in FDG. Following this, we discuss
the popular tasks/applications for this research area.

A. Datasets

Table IV provides an overview of several commonly used
datasets in the field of FDG. These datasets have been exten-
sively utilized in various FDG applications, including hand-
written digit recognition, object recognition, transportation
imaging, medical imaging, person re-identification, industrial
edge intelligence, and human activity recognition. They serve
as valuable resources for evaluating and benchmarking the
performance of FDG algorithms and methodologies. Here,
provide a detailed description of several widely used datasets
commonly employed in research studies.

Rotated MNIST, a variant of the original MNIST, incorpo-
rates rotation transformations to the original handwritten digit
images (M0, M15, M30, M45, M60, M75), serving as a bench-
mark dataset for evaluating the robustness and generalization
ability of ML algorithms and models in the context of image
recognition and computer vision tasks. PACS is a demanding
dataset for DG, comprising seven distinct object categories
from four diverse domains (Art Painting, Cartoon, Photo, and
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TABLE IV
DATASETS FOR FDG.

Area & Dataset #Domain #Class #Sample Description Ref.

Handwritten digit recognition
Digit 4 10 203,695 MNIST, MNIST-M, SVHN, USPS [171]
Digits-DG 4 10 219,289 MNIST, MNIST-M, SVHN, SYN [54]
Rotated MNIST 6 10 70,000 M0, M15, M30, M45, M60, M75 [50], [128], [136], [185]
Digit-Five 5 10 215,695 MNIST, MNIST-M, Synthetic Digits, SVHN,

USPS
[71], [145]

Object recognition
Office-Home 4 65 15,588 Art, Clipart, Product, Real-world [53], [54], [96], [119],

[128], [136], [144], [145],
[185], [190]

PACS 4 7 9,991 Art, Cartoon, Photos, Sketches [50], [53], [54], [96],
[119], [128], [136], [145],
[171], [185], [190]

VLCS 4 5 39,305 Ascal, LabelMe, Caltech, Sun [50], [53], [119], [190]
DomainNet 6 345 586,575 clipart, infograph, painting, quickdraw, real,

sketch
[128]

Office-31 3 31 4,652 Amazon, Webcam, DSLR [144]
Office-Caltech-Home 7 65 17,964 Amazon, Webcam, Caltech, Art, Clipart, Prod-

uct, Real-World
[50]

Office-Caltech10 4 10 2,533 Caltech, Amazon, Webcam, DSLR [71], [145]
ImageCLEF-DA 3 12 1,800 ImageNet ILSVRC 2012, Caltech-256, Pascal

VOC 2012
[144]

Amazon Review 4 2 7,671 Books, DVDs, Electronics, Kitchen & house-
wares

[71]

Transportation imaging
Cityscapes 50 19 3,475 Real photos taken in the streets of 50 different

cities
[95], [161]

IDDA 105 16 A synthetic dataset in the field of self-driving
cars

[161]

Mapillary Vistas 66 25,000 The dataset covers diverse scenes from different
domains and cities around the world

[95]

IDDA 105 16 A synthetic dataset in the field of self-driving
cars

[161]

Medical imaging
Skin Lesion 7 7 HAM10000, Dermofit, Derm7pt, MSK, PH2,

SONIC, UDA
[84]

ISIC 2018 7 7 10,015 Melanocytic Nevus, Melanoma, Benign Kerato-
sis, Basal Cell Carcinoma, Actinic Keratosis,
Vascular Lesion, Dermatofibroma

[191]

Fed-ISIC2019 6 8 25,331 Melanoma, Melanocytic nevus, Basal cell carci-
noma, Actinic keratosis, Benign keratosis, Der-
matofibroma, Vascular lesion, Squamous cell
carcinoma, None of the others

[186]

Dermofit Image Library 10 10 1,300 A comprehensive collection of dermatology im-
ages for study, analysis, and diagnosis of skin
conditions

[191]

YawDD 2 3 A dataset of videos, recorded by an in-car cam-
era

[153]

Person Re-identification
Person Re-ID dataset 8 7,270 93,796 DukeMTMCReID, Market1501, CUHK03-NP,

PRID, CUHK01, VIPeR, 3DPeS, iLIDt.
[159]

Industrial Edge Intelligence
CWRU 4 10 900 A widely used dataset for fault diagnosis and

condition monitoring of rotating machinery
[72], [87], [103], [168]

PU / 10 52,497 A 6203 bearing dataset, obtained from Pader-
born University, includes artificially induced and
real damages.

[168]

Human Activity Recognition
UCI Smartphone 30 6 10,299 Walking, Walking upstairs, walk-

ing downstairs, Sitting, Standing, Laying
[156]

Sketch), intricate models to effectively generalize across sig-
nificant domain discrepancies and variations in artistic styles,
renders techniques, and visual representations. Office-Home,
encompassing four distinct domains (Artistic, Clipart, Product,

and Real-World), has gained widespread usage in the fields of
domain adaptation and transfer learning, serving as a valuable
resource for evaluating models’ ability to generalize across
diverse visual domains that encompass stylized and real-world
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images.
Digits-DG is a notable dataset specifically designed for

DG in digit recognition tasks incorporating four distinct digit
datasets (MNIST, MNIST-M, SVHN, and SYN), introducing
variations in font styles and backgrounds to simulate real-
world scenarios and complex models to generalize across
diverse writing styles, backgrounds, and digit representations.
VLCS is a comprehensive benchmark dataset designed to
bridge the gap between vision and language understanding
tasks by providing a rich collection of visual scenes accom-
panied by linguistic descriptions (Ascal, LabelMe, Caltech,
Sun), enabling to explore and develop models that integrate
visual perception and linguistic reasoning. CWRU is a widely
recognized benchmark in ML and fault diagnosis, compris-
ing vibration signals from diverse rotating machinery under
different operating conditions and fault scenarios, providing
researchers with a valuable resource for developing and eval-
uating fault diagnosis and condition monitoring algorithms.

B. Applications

FDG has broad applications in scenarios where data
is distributed across multiple domains (organizations), and
data sharing is limited due to privacy concerns or regula-
tory reasons. Here, we will discuss some of the popular
tasks/applications for FDG.

1) Healthcare
In the field of healthcare, each hospital collects medical data

from its patients, and each hospital has its patient population.
The data collected may differ in terms of demographics,
medical conditions, and treatment protocols. However, the goal
is to develop a model that can accurately predict disease
outcomes for patients from all hospitals, regardless of the
differences in data distribution. The FDG approach facilitates
overcoming this issue by enabling models to be trained locally
at each hospital, thereby ensuring data privacy [75], [192]–
[194]. The locally trained models can then be combined to
obtain a more generalized model that predicts well on any
unseen domain.

2) Finance
The finance industry deals with sensitive and confidential

data and the data is often distributed among multiple insti-
tutions, such as banks, insurance companies, and payment
processors. FL holds significant value in financial applications
as it tackles data privacy concerns, facilitates cross-silo collab-
oration, enhances model accuracy, and provides better financial
services. While FL in finance offers significant benefits in
terms of data privacy and cross-institutional collaboration, the
federated model may indeed face challenges when applied
to unseen finance domains. FDG plays a crucial role in
finance to tackle the above issue by providing financial distress
predictions [195], risk analysis [196], [197], and fault detection
[198]. The adoption of FDG in the finance industry contributes
to the advancement of more precise, flexible, and compre-
hensive models tailored for a range of finance applications,
thereby yielding mutual benefits for financial institutions and
their clients.

3) Education
Educational institutions are increasingly engaging in inter-

national collaborations, allowing students to connect and learn
from peers in different countries, promoting cultural under-
standing and global perspectives. However, educational insti-
tutions must adhere to privacy and data protection regulations
when collecting, storing, and analyzing student data. FDG
could be employed to achieve international collaborations in
educational institutions while preserving data privacy, such
as grades classification [199], digital educational environment
[200]. Introducing FDG in educational institutions helps to
understand data privacy protection, handle data distribution
differences, strengthen transfer learning, foster innovation and
research, integrate theory with practice, and develop the ability
to tackle the complexities of training and generalizing models
in distributed data environments.

4) Transportation
The transportation sector plays a vital role in facilitating

the movement of people and goods within and between cities,
regions, and countries. Transportation data is typically col-
lected and managed by transportation authorities, government
agencies, transportation service providers, and technology
companies, which is crucial to ensure the security and privacy
of information. FDG in the transportation domain can facilitate
data collaboration between cities and regions, support the
design and optimization of intelligent transportation systems
[201]–[203], autonomous drive [95], optimal transport [204],
and enhance capabilities for traffic safety [201]. By applying
FDG methods and techniques, the transportation domain can
leverage distributed data for modeling and decision-making,
leading to more intelligent, efficient, and sustainable trans-
portation systems.

5) Natural Language Processing
In NLP, data plays a crucial role as it provides the foun-

dation for building and training various NLP models and
systems. It’s worth noting that NLP models often require
large and diverse datasets to achieve high performance and
generalization. However, there exists data quality, data bias,
insufficient data volume, arduous data annotation, and data
privacy and ethical concerns in NLP, addressing them ef-
fectively is essential for developing high-quality and reliable
NLP models. The adoption of FDG in NLP tackles issues
related to domain shift, data distribution, privacy, and adapt-
ability. It achieves this by improving the generalization ability,
promoting collaboration while safeguarding data privacy, and
supporting the development of sturdy models for previously
unseen domains [205]–[207].

6) Robotics
In general, robotic systems often involve sensitive data

(i.e., such as images or sensor readings) provided via robots
deployed in various locations or from their surrounding
environments, which may pose privacy and security risks
for centralized data transfer. The convergence of FDG and
robotics has substantial potential to foster knowledge transfer,
and facilitate cross-robot collaboration, resulting in improved
performance, adaptability, and privacy protection of robotic
systems. FDG has paid attention to the robotic areas, such
as learning autonomously [208] to smart robotic wheelchairs
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[209], learning basic table tennis movements from human
inputs [210], cloud robotic systems [211], [212], object recog-
nition and grasp planning in surface decluttering [213]. The
significance of FDG for robotics lies in its ability to enhance
the generalization capability and robustness of robotic systems
across different environments, tasks, and robots, thereby im-
proving their adaptability, performance, and privacy protection
in real-world applications.

7) Industrial Edge Intelligence
Intelligent instrumentation and measurement technology has

advanced rapidly which has resulted in a significant increase
in industrial data. This has led to the inevitable arrival of
the ”era of industrial big data” [214]–[216]. However, the
utilization of industrial big data poses challenges in terms of
data management, analysis, and privacy. FDG is crucial in the
era of industrial big data as it enables scalable processing and
analysis, ensures data privacy and security, facilitates domain-
specific knowledge sharing, and supports real-time analytics.
For instance, [83], [87], [217] utilize FDG techniques to
solve the faulty diagnosis issue in industrial edge intelligence.
Plus, [168] allows clients to leverage indirect datasets from
collaborators, training a global meta-learner capable of ad-
dressing few-shot problems and adapting to new clients or
fault categories with minimal labeled examples and iterations.
By leveraging FDG, industrial organizations can effectively
utilize and derive value from the wealth of data generated in
the industrial environment.

8) Distributed Computing Continuum Systems
The advent of edge computing, complementing cloud com-

puting, has catalyzed the creation of Distributed Comput-
ing Continuum Systems (DCCS) [218]–[222], exploiting the
cloud’s expansive resources along with the edge’s diversity and
immediacy. However, current research on edge computing and
the distributed computing continuum primarily targets niche
problems, yielding solutions of restricted scope. Traditional
computer system architectures fall short of encapsulating
the DCCS’s complexity, characterized by its heterogeneous
devices and networks. Since the functional requirements of
these systems may evolve, services may be dynamically added
or changed, or unexpected events may occur, resulting in
alterations to the underlying infrastructure configuration. This
necessitates a new and innovative representation of DCCS that
is not limited by outdated architectural models. Furthermore,
several research works emphasize the need to distribute func-
tionalities and processes among computing continuum entities
in a decentralized manner [223]–[228]. Therefore, this has
opened the possibility of developing FDG in DCCS for main-
taining data privacy and security [229], enabling cross-domain
model generalization, and enhancing system performance and
robustness in distributed computing environments.

V. EVALUATIONS AND BENCHMARKS

In this section, we provide commonly used evaluation
criteria and benchmarks for FDG.

A. Evaluation
In general, FDG can be evaluated under various strategies

and metrics, they are further discussed below:

1) Evaluation Strategies
When evaluating FDG methods, diverse strategies can be

employed to comprehensively assess the model’s capacity to
generalize effectively to previously unseen domains. Here is a
summary of evaluation strategies commonly used for FDG:

• Leave-one-domain-out cross-validation (LODO) [52],
[53]: Leave-one-domain-out cross-validation is an eval-
uation strategy where one domain is held out during
training, allowing the model’s performance to be assessed
on unseen domains and providing insights into its gener-
alization capabilities across federated settings.

• Test-domain validation set (TEVS) [230]: Test-domain
validation set refers to a subset of data from a specific
domain that is used for model evaluation during the
validation phase.

• Training-domain validation set (TRVS) [230]:
Training-domain validation set refers to a subset of data
from the same domain as the training data that is used
for model validation during the training phase.

2) Evaluation Metrics
Evaluation metrics in FDG aim to assess the performance

and generalization ability of models across different domains
within the FL setting.

• Accuracy: Accuracy is a prevalent evaluation metric
employed to quantitatively assess the performance of
machine learning models. Except for average accuracy,
previous work [231] followed [232] using the average
accuracy among all classes and the average accuracy of
the unknown classes in federated open-set DA:
The average accuracy among all classes (OS):

Acc(OS) =
1

K+ 1

K+1∑
k=1

|xt ∈ DT
k ∧ ŷk = yk|
DT

k

(33)

The accuracy of the unknown classes (OS∗):

Acc(OS∗) =
1

K

K∑
k=1

|xt ∈ DT
k ∧ ŷk = yk|
|DT

k |
(34)

The average accuracy among known classes (UNK):

Acc(UNK) =
|xt ∈ DT

K+1 ∧ ŷK+1 = yK+1|
DT

K+1

(35)

where ŷ denotes the predicted value, DT
k represents the

set of target samples with the label yk, K := {1, · ·
·, k, · · ·,K} and the unknown class is defined as class K.
However, accuracy may not be suitable for imbalanced
datasets (Non-IID in FL) where the class distribution is
skewed, as it can be influenced by the majority class.
Therefore, it is important to consider other evaluation
metrics.

• Mean Absolute Error (MAE) [233] In FDG, the MAE
serves as a critical metric to evaluate the accuracy of
models across distributed domains.

MAE =
1

N

N∑
k=1

|yk − ŷk| (36)
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where ŷ denotes the predicted value, y denotes the actual
observation, N is the numbers of samples. In FDG, where
models are trained on data from multiple domains without
sharing raw data, MAE provides a valuable assessment
of how well a model generalizes across different sites or
domains.

• Standard deviation (SD) [119]: In FDG, the standard
deviation can be used to assess the distributional differ-
ences or variations across different domains.

• Dice coefficient(Dice) [52]: The Dice coefficient, also
known as the Sørensen-Dice coefficient, is a similarity
metric commonly used in image segmentation tasks and
medical image analysis. It measures the agreement or
overlap between two domains. The Dice coefficient is
calculated as the ratio of twice the intersection of the
two domains to the sum of the sizes of the individual
domains:

Dice(P,Q) =
2 ∗ Comm(P,Q))

|P|+ |Q|
(37)

where Comm(P,Q) represents the number of common
samples between the two domains, while |·| represents the
total number of samples in each domain. This metric is
widely applied in tasks like image segmentation to assess
the accuracy and similarity of segmented domains against
a ground truth or reference. It offers a valuable metric
for evaluating model performance in precisely delineat-
ing domains of interest, proving especially beneficial in
scenarios characterized by class imbalance or an uneven
distribution of domains.

• Hausdorff distance (HD) [52]: Hausdorff distance is
a metric used to measure the dissimilarity or distance
between two domains of points, contours, or shapes. It
quantifies the maximum distance between any point in
one domain and its nearest point in the other domain.
The Hausdorff distance is defined as follows:

HD(P,Q) = max(h(P,Q), h(Q,P))

h(P,Q) = max
p∈P

{min
q∈Q

∥p− q∥}

h(Q,P) = max
q∈Q

{min
p∈P

∥q − p∥}
(38)

where P and Q are the two domains being compared, and
h(P,Q) represents the directed Hausdorff distance from
domain P to domain Q. It is calculated by finding the
maximum distance from each point in P to its nearest
point in Q. Similarly, h(Q,P) represents the directed
Hausdorff distance from domain Q to domain P .

• Wasserstein Distance (WD) [181]: Wasserstein Distance
is a mathematical metric that quantifies the dissimilarity
between two probability distributions. In FDG, the WD
measures the dissimilarity or discrepancy between the
probability distributions of different domains in the FL
setting. The WD is calculated as follows:

WD =
1

M2

∑
m

∑
m′

ŴD(xm, fm′→m(xm)) (39)

where M denotes the number of domains, each ŴD
[234] is computed with the Sinkhorn algorithm.

• Fréchet Inception Distance (FID) score [181]: The FID
score is a metric used to evaluate the quality of generative
models, particularly in GANs. In FDG, it can be used as
an evaluation metric to provide a quantitative measure
of the dissimilarity between the generated samples from
different domains. The FID is defined as follows:

FID =
1

M2

∑
m

∑
m′

F̂ ID(xm, fm′→m(xm)) (40)

The FID [235] could be utilized to assess GAN perfor-
mance and effectively quantify disturbance levels.

• A-distance [186], [231]: A-distance (also known as the
adversarial distance) is a metric used in DG and DA tasks,
which measures the discrepancy between probability dis-
tributions of different domains or datasets.

d̂A = 2(1− 2ε) (41)

where ε represents the generalization error of a two-
sample classifier trained on the binary task of distinguish-
ing input samples between the source and target domains.

• The standard deviation of the mean Intersection
over Union (mIoU) [161]: By computing the mean
and standard deviation of the mean IoU, the average
performance and the variability in performance across
multiple evaluations can be accessed. The mean provides
an overall measure of accuracy, while the standard devia-
tion indicates the consistency or instability of the results.

1) Mean (mIoU): mIoU = 1
N ∗

∑N
i=1(IoUi).

where N is the total number of evaluations and IoUi

represents the Intersection over Union value for the i-
th evaluation.

2) Standard Deviation: SD =

√∑N
i=1((IoUi−mIoU)2)

N .
3) The standard deviation of mIoU: mIoU ± SD.

• Group Effect (GE) [71]: Group effect evaluates negative
transfer caused by inefficient model aggregation in FL,
aiming to quantify the impact of client data differences
on diverse local model updates that ultimately lead to
negative transfer in the parameter space.

TTAf (Gt) =

∑
(x,y)∈DT

1{argmaxj F(x;Gt)j = y}
|DT |

GEt =
1

M

∑
i∈1,2,···,M

TTAf (Gt +∆
(i)
t ) + TTAf (Gt+1)

(42)
where F(x) is the neural network classifier and F(x)j
denotes the j-th element of F(x), DT represents the
target domain dataset, |DT | denotes the size of the target
domain dataset, Gt is the global model at time step t in
the target task, ∆(i)

t is the update of domain i.

B. Benchmarks

We present a comprehensive summary of existing bench-
marks for evaluating the performance of FDG algorithms. Our
analysis covers benchmarks in three categories: centralized
DG, FL, and benchmarks specifically designed for FDG. Also,
the detailed summary of these evaluations and benchmarks can
be found below and in Table V.
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TABLE V
SUMMARY OF EVALUATIONS AND BENCHMARKS.

Paradigm Method Strategy Metrics

DG

DANN [236] TEVS Accuracy
JiGen [237] LODO,TRVS Accuracy

Epi-FCR [38] TEVS Accuracy
MTSSL [238] LODO Accuracy
EISNet [239] LODO,TRVS Accuracy
L2A-OT [29] LODO Accuracy
DSON [46] LODO Accuracy

Mixstyle [28] LODO Accuracy
RSC [240] LODO Accuracy

FL

FedAvg [241] TRVS Accuracy
FedProx [242] TRVS Accuracy
Scaffold [243] TRVS Accuracy

Moon [73] TRVS Accuracy

FDG

FedDG [52] LODO Dice, HD
CSAC [50] LODO Accuracy

FedADG [53] LODO Accuracy
COPA [54] LODO Accuracy

FedHealth [156] TEVS Accuracy
FedIG(-A) [119] LODO Accuracy, SD

FADH [75] LODO Accuracy
CCST [96] LODO Accuracy

FedINB [181] TEVS WD, FID
FOSDA [231] TEVS OS, OS*, UNK
FedDrive [161] TEVS mIoU ± SD

FedKA [71] LODO GE
FOSDA [231] LODO A-distance

• DANN [236] is a neural network architecture designed to
accomplish precise classification of source data while si-
multaneously learning feature representations that exhibit
invariance across multiple source domains.

• JiGen [237] is a supervised framework that leverages
jigsaw puzzles as a training task to learn effective gener-
alization across diverse visual domains.

• Epi-FCR [38] is a scheme that learns domain shift using
episodic training.

• MTSSL [238] is a method that facilitates the learning of
transferable features by employing a self-supervised task
focused on predicting Gabor filter bank responses.

• EISNet [239] is an innovative network that synergisti-
cally integrates self-supervised learning and metric learn-
ing approaches, effectively enhancing classifier perfor-
mance specifically in target domains.

• L2A-OT [29] is a method that leverages synthetic data
augmentation to learn domain-invariant features, facilitat-
ing effective generalization across different domains.

• DSON [46] is a novel scheme that effectively enhances
the generalization performance on target domains by in-
tegrating batch normalization and instance normalization
methods.

• Mixstyle [28] is an innovative method that combines fea-
tures from different source domains to generate synthetic
source domains, comprehensively enabling optimization
of model generalization.

• RSC [240] is an approach that selectively discards dom-
inant features present in the training data to optimize the
generalization capability of a model.

• FedAvg [241] (Federated Averaging) is a distributed

learning algorithm commonly used in FL settings without
any generalization technique.

• FedProx [242] is a novel framework that tackles hetero-
geneity in federated networks by serving as a generalized
and re-parametrized version of FedAvg.

• Scaffold [243] is a novel algorithm that utilizes control
variates to effectively address ’client-drift’ and minimize
communication rounds, demonstrating resilience to data
heterogeneity and client sampling while leveraging data
similarity for faster convergence.

• Moon [73] is an innovative FL framework, employing
model-level contrastive learning to tackle the issue of
heterogeneity in local data distribution.

• FedDG [52] (FDG) is a solution that aims to learn a
federated model such that it can directly generalize to
completely unseen domains.

• CSAC [50] is a novel privacy-preserving method for the
separated DG task.

• FedADG [53] (Federated Adversarial Domain General-
ization) is a scheme that utilizes federated adversarial
learning to solve the DG problem in FL for IoT devices.

• COPA [54] (Collaborative Optimization and Aggrega-
tion) is a decentralized approach for DG and multisource
unsupervised DA, utilizing a collaborative optimization
and aggregation process to construct a generalized target
model without sharing data across domains.

• FedHealth [156] is a pioneering FTL framework for
personalized wearable healthcare, leveraging FL and TL
to overcome cloud-based personalization limitations.

• FedIG(-A) [119] presents a novel approach that inte-
grates client-agnostic learning with a combination of local
training using mixed instance-global statistics and zero-
shot adaptation through estimated statistics for inference.

• FADH [75] (Federated Adversarial Domain Hallucina)
is an innovative FDG approach that prioritizes domain
hallucination to generate samples, optimizing the global
model’s entropy while minimizing the cross-entropy of
the local model.

• CCST [96] is a novel DG method for in FL, enabling
style transfer across clients without data exchange to
promote uniform source client distributions and mitigate
model biases by aligning local models with the image
styles of all clients.

• FedINB [181] is an innovative federated domain trans-
lation method that generates pseudodata specific to each
client, offering potential benefits for multiple downstream
learning tasks.

• FOSDA [231] (Federated OSDA) is an advanced fed-
erated algorithm that incorporates an uncertainty-aware
mechanism to generate a global model by prioritizing
source clients with high uncertainty while preserving high
consistency.

• FedDrive [161] is an innovative benchmark framework
that includes real-world challenges of statistical hetero-
geneity and DG.

• FedKA [71] (Federated Knowledge Alignment) is an
innovative FDG method that utilizes feature distribution
matching and a federated voting mechanism to enable the
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global model to learn domain-invariant client features and
refine its performance with target domain pseudo-labels.

VI. FUTURE RESEARCH DIRECTIONS

This paper offers an extensive and meticulous survey of
the existing literature on FDG, highlighting its inherent ad-
vantages as a fusion of FL and DG, resulting in privacy-
preserving, scalable, and diverse models capable of effective
generalization across multiple domains. To be precise, FDG is
a promising technological breakthrough as a subfiled within
ML that aims to develop models capable of generalizing
well across multiple unseen domains while achieving privacy-
preserving. Most technological developments come with ben-
efits, challenges and limitations, and FDG is not exceptional.
In the near future, several challenges need to beovercome in
order to retain more benefits out of FDG. One of the primary
difficulties faced in FDG is domain shift, which occurs when
a model trained on data from one domain performs poorly on
data from a different domain due to significant differences in
statistical properties. Additionally, data heterogeneity, limited
data availability, high communication overhead and privacy
concerns pose significant dilemmas for FL. To effectively
tackle these issues, a comprehensive identification and analysis
of these challenges is crucial, accompanied by the pursuit of
novel theoretical and technical solutions. Within this context,
this study examines key problems in FDG, including privacy-
preserving FDG, communication-efficient FDG, computation-
efficient FDG, heterogeneity, label shift, scalable FDG, con-
tinuous FDG, and FDG to novel categories.

A. Privacy-preserving FDG

While FL inherently safeguards privacy by retaining data
within local domains, there is a need for further development
of privacy-preserving mechanisms to guarantee that sensitive
information remains secure throughout the model aggrega-
tion phase. The existing FDG methods usually neglect the
research on privacy-preserving mechanisms [50], [52], [96],
[119], [144], [181], [185]. Therefore, how to design robust
and privacy-preserving models that can generalize well across
diverse domains while protecting the sensitive information of
individual clients or domains is worth investigating. Here are
some approaches related to privacy-preserving FDG: Secure
aggregation [244], differential privacy [245], privacy-aware
model selection [246], privacy-preserving data preprocessing
[247], and privacy regulations [248].

B. Communication-efficient FDG

Communication is a major bottleneck for many real-world
applications in FL, as transmitting large model updates from
multiple clients to a central server can be time-consuming and
resource-intensive. Some work [54], [96] has demonstrated
that certain proposed schemes in FDG can lead to increased
communication costs. On the other hand, [181] has highlighted
that neglecting communication limitations can result in poor
model performance in FDG. In this case, it is of utmost
importance to achieve communication efficiency in FDG,

enabling faster and more scalable learning across diverse
domains while minimizing the communication overhead and
associated costs. Here are some strategies and techniques for
achieving communication efficiency: Model compression and
quantization [249], [250], differential updates, selective model
aggregation [251], local adaptation [252], and communication-
efficient aggregation algorithms [253].

C. Computation-efficient FDG

Similar to communication efficiency, Computation effi-
ciency is also a crucial aspect of FDG, as it affects the
speed and scalability of the learning process. While there are
some studies in the field of FDG have indeed highlighted
the need for increased computational resources [54], [119]
and certain proposed methods may not be suitable where the
clients have limited computational resources [52], [96], there
are only very few investigations on reducing the requirement
for computational resources [169]. Here are some strategies
and techniques to achieve computation efficiency: model archi-
tecture optimization [254], adaptive learning algorithms [255],
communication optimization [249], [250], collaborative learn-
ing [256], efficient data sampling and preprocessing [257].

D. Heterogeneity

Heterogeneity in FL leads to performance disparities, com-
munication inefficiency, privacy and security risks, bias and
fairness issues, scalability limitations, and barriers to gener-
alization across domains. In FDG, the participating clients
or domains may have significant variations in terms of data
distributions, feature representations, or label spaces, leading
to a crucial dilemma. Only a limited number of recent studies
paid attention to this concern, such as data and model het-
erogeneity tasks [79], [181], [258] and Non-IID [164]. Here
are some approaches to solving heterogeneity in FDG: data
preprocessing (feature scaling [259], data augmentation [100],
[136], or DA [95], [260]), model adaptation [261], [262],
model personalization [263], adaptive aggregation [264].

E. Label shift

Label shift in FDG refers to the situation where there is a
discrepancy in label distributions between different domains
in the FL setting, which could lead to performance disparities
and hinder the overall generalization capability of the FL
system. Therefore, mitigating label shifts is crucial to ensure
the robustness and accuracy of ML models in real-world
scenarios. Very few recent works [75], [265] paid attention to
Label shift. Here are some potential approaches to solve label
shifts in FDG: domain adaptation [264] and transfer learning
[266].

F. Scalable FDG

Scalability is a crucial aspect of FDG, as it ensures that
the approach can effectively handle large-scale and diverse
datasets from multiple domains. The work [50] pointed out
that exploring scalable methods to implement FSG for large-
scale datasets is very important. Up to now, only FADH [75]
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has been proven to be scalable to different numbers of source
domains. Here are some key considerations for achieving
scalability in FDG: distributed computation [267], [268], com-
munication efficiency [269], [270], model compression [271],
model aggregation [272], and parallel processing [273].

G. Continuous FDG

Continuous FDG refers to the ability of the FL system to
continuously adapt and generalize across multiple domains
over time. However, the predominant research on FDG as-
sumes fixed source domains and a one-time model learning
process, which may not fully capture the dynamic nature of
real-world scenarios. Only a limited number of studies have
explored continuous FDG, with a notable recent investigation
[274] employing incremental learning strategies to tackle
this issue. This approach effectively mitigates catastrophic
forgetting and boosts generalization performance. Here are
some key aspects and approaches related to continuous FDG:
incremental learning [275], adaptive learning [252], DA [276],
and lifelong learning [277], [278].

H. FDG to novel categories

FDG to novel categories highlights the proficiency of
FL systems in extending their generalization capabilities to
previously unseen or novel categories not included in the
training datasets of participating domains. Typically, existing
FDG algorithms operate under the assumption that the label
spaces—defined as the set of potential categories—across
different domains are uniform. However, a more nuanced
and applicable scenario emerges when the source and target
domains possess both overlapping and distinct label spaces,
introducing an augmented category gap between them [279].
Here are some key techniques that could be used for FDG to
novel categories: transfer learning [280], meta-learning [128],
or DA [231].

VII. CONCLUSION

FDG is a significant research area within machine learning,
focusing on generalization learning and privacy-preserving
in distributed scenarios. This paper offers a comprehensive
analysis of the field of FDG, encompassing theoretical foun-
dations, existing methodologies, available datasets, practical
applications, evaluation strategies, evaluation metrics, and
benchmarks. Additionally, through a meticulous analysis of
these methods, several prospective research challenges are
identified, which can pave the way for future investigations
in the field. This survey aims to offer valuable insights to
researchers and serve as a source of inspiration for future
advancements in the field.
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