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A B S T R A C T   

Despite the key role of irrigation in the Earth system, we lack fundamental information regarding the distribution 
of irrigated fields, irrigation timing and the amount of water utilized. In the past years, the SM_Delta and 
SM_Inversion approaches have been independently developed to provide estimates of irrigation timing and water 
amounts based on satellite soil moisture data. The SM_Delta approach retrieves irrigation from variations in soil 
moisture between an individual pixel and the surrounding rainfed area, while the SM_Inversion approach esti-
mates the total amount of water entering the soil, then irrigation is derived by subtracting precipitation. In this 
study, we perform a comprehensive assessment of irrigation estimates from the SM_Delta and SM_Inversion al-
gorithms based on Sentinel-1 surface soil moisture retrievals at 1 km resolution. Our analysis focuses on the Ebro 
basin, an irrigated region in Spain covering 83000 km2, during the period 2017–2019. We assess the ability of the 
two methods to discriminate irrigated and rainfed pixels, then we quantify the agreement of irrigation timing and 
water volumes with reference irrigation data. An inter-comparison between estimates from the SM_Delta and 
SM_Inversion methods is carried out considering both temporal and spatial features, i.e., monthly irrigation 
peaks and spatial irrigation patterns. Finally, we explore two potential applications of satellite-derived irrigation 
estimates: attributing irrigation water volumes to specific irrigation systems and to individual crops. We observe 
that both methods erroneously retrieve irrigation over rainfed pixels, and are therefore not suitable to map 
irrigated and rainfed fields. However, when auxiliary information on irrigated fields is available, we find a 
satisfactory agreement between district-scale reference data and satellite-retrieved irrigation, using both the 
SM_Delta and SM_Inversion approaches (Pearson R equal to 0.67 and 0.71, bias equal to − 4.99 and − 4.75 mm/ 
15 days, respectively). When aggregated in space or time, the irrigation estimates exhibit coherent temporal 
dynamics and spatial patterns. For instance, estimates from both SM_Delta and SM_Inversion capture the delayed 
irrigation that occurred in 2018 due to wetter than usual conditions in spring. However, at the pixel-scale, 
limited consistency exists between irrigation estimates from the two methods due to different assumptions 
and parameterizations, e.g., use of constant vs pixel-specific soil water capacity (in the SM_Delta and SM_In-
version, respectively). Overall, the study demonstrates the reliability of irrigation estimates derived from the 
SM_Delta and SM_Inversion approaches, especially when shifting from small spatial and short temporal scales 
(pixel level, sub-weekly) to larger and longer scales (district level, seasonal). Hence, satellite-based irrigation 
estimates could inform water resources managers and basin authorities, as well as serve the modelling com-
munity by providing reliable information on the timing and the amounts of water employed at the basin level.   
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1. Introduction 

Sub-optimal water availability, especially during key phenological 
stages, is a main driver of crop yield losses in many regions of the world 
(Lobell et al., 2009; Vogel et al., 2019). Irrigated agriculture contributes 
to reducing such losses and can therefore enhance food security (Kukal 
and Irmak, 2019). In addition, irrigation enables to expand the 
climate-constrained suitability of certain regions for crop production. 
For instance, several semi-arid and arid locations have witnessed intense 
expansions of irrigation in the past decades, resulting in an overall in-
crease of agricultural land area worldwide (Siebert et al., 2015). 

Recent analysis estimated that irrigated agriculture delivers 
approximately 40% of the entire food production while covering 
roughly 20% of cropland (Unesco, 2019). Furthermore, irrigation is 
responsible for 70% of freshwater withdrawals, as a global average, 
while regionally the percentage varies considerably, reaching up to 
90%, e.g., in the Middle East and South Asia (McDermid et al., 2023). 
Therefore, it is not surprising that irrigated agriculture is often associ-
ated with negative environmental phenomena, such as groundwater 
depletion, soil salinity, and nutrient leaching (Deng et al., 2018; Fami-
glietti, 2014; Pokhrel et al., 2016). Also, extensive irrigation can affect 
local and regional meteorological conditions, by feedbacks on temper-
ature, humidity and precipitation (Cook et al., 2015; Pei et al., 2016). 

Despite the pivotal role of irrigation in the Earth System (McDermid 
et al., 2023), little is known about the amount of water applied at 
field-to-farm level on regional-to-continental scales (Dorigo et al., 2021; 
Massari et al., 2021). Survey-based irrigation estimates, such as those 
from AQUASTAT (https://www.fao.org/aquastat/), are generally pro-
vided as lump yearly values at national level. Even without considering 
the large uncertainties in such estimates, due to, e.g., self-reporting of 
farmers, upscaling procedures, and representativeness of surveyed 
farms, their use is of limited value for many applications. For instance, 
water resource managers, national and regional authorities, and irriga-
tion consortia require spatially explicit and temporally detailed infor-
mation about water consumption for irrigation (Massari et al., 2021). 

Various models, i.e., land surface, hydrological, and crop growth 
models, are increasingly including irrigation schemes to account for the 
impact of irrigation on the energy balance, the water cycle, and crop 
productivity (De Rosnay, 2003; Ozdogan et al., 2010; Pokhrel et al., 
2012). However, irrigation estimates from such models rely on a number 
of assumptions and simplifications. For instance, in many models irri-
gation is triggered whenever modelled soil moisture drops below a 
certain threshold, and the amount of water applied re-establishes 
optimal soil moisture conditions (Massari et al., 2021). In reality, the 
decisions of farmers on when and how much to irrigate are often not 
physically-based but driven by factors, such as water turns and water 
regulations imposed by the irrigation consortia, and crop-specific sub-
sidies, which cannot be represented in models. Even when the models 
contain more complex and advanced irrigation schemes, certain pa-
rameters need to be set a-priori. For example, irrigation efficiency is a 
key parameter often characterized by a static value depending on the 
irrigation system, with high efficiencies for drip irrigation and low ef-
ficiencies for surface methods (Puy et al., 2022a). Even assuming that 
the irrigation system is known, large variabilities exist in the actual 
irrigation efficiencies due to, e.g., farmers’ management and mainte-
nance of the system, the timing of irrigation, meteorological conditions 
during irrigation, and local topography (Benouniche et al., 2014). Dif-
ferences between actual and pre-defined irrigation efficiency lead to a 
variability of irrigation estimates larger than one order of magnitude 
(Puy et al., 2022a). In addition, irrigation estimates from models are 
oftentimes inconsistent among different models, which might lead to 
misguided decisions (Puy et al., 2022b). A possible way to overcome 
some model limitations is offered by data assimilation techniques, which 
use (satellite) observations to constrain models (Reichle, 2008). Various 
studies explored the benefit of assimilating backscatter, brightness 
temperature, or soil moisture, for improving modelled soil moisture 

estimates (De Lannoy et al., 2022; De Lannoy and Reichle, 2016; Hey-
vaert et al., 2023), but further efforts are needed to better integrate 
models and observations when the goal is the retrieval of irrigation 
water amounts (Kumar et al., 2015; Modanesi et al., 2022). 

Remotely sensed observations of hydrological variables that are 
proxies of irrigation, as for instance soil moisture, vegetation produc-
tion, and land surface temperature, offer another opportunity do derive 
irrigation. In fact, remote sensing enables consistent monitoring of the 
Earth surface, providing spatially detailed and temporally continuous 
observations. A complete overview of how different satellite data can be 
used to estimate irrigation is given in Massari et al. (2021). Soil mois-
ture, being directly linked to irrigation through the induced increase in 
soil water content, is suited to retrieve irrigation, as demonstrated with 
synthetic experiments and through the analysis of in-situ measurements 
(Brocca et al., 2018; Filippucci et al., 2020; Zappa et al., 2022). In 
particular, two irrigation retrieval algorithms based on satellite soil 
moisture information have been developed in recent years: the SM_Delta 
(Zappa et al., 2022, 2021; Zaussinger et al., 2019; Zohaib and Choi, 
2020) and the SM_Inversion (Brocca et al., 2018; Dari et al., 2023, 2022, 
2020; Jalilvand et al., 2019; Zhang et al., 2022) methods. In the 
SM_Delta approach, irrigation was originally conceived as the difference 
between satellite and modelled soil moisture data at coarse-resolution 
(> 10 km), assuming that satellite observations contain (at least 
partially) irrigation-related signals, while modelled soil moisture based 
on meteorological forcing only does not (Zaussinger et al., 2019). More 
recently, the SM_Delta approach was revised to meet the increasing 
availability of high-resolution (≤ 1 km) satellite soil moisture observa-
tions, i.e., from Sentinel-1 (Zappa et al., 2021). In this adapted meth-
odology, instead of considering modelled soil moisture as baseline, 
irrigation is derived as the soil moisture difference between an irrigated 
pixel and its surrounding area (Zappa et al., 2022). 

Alternatively, the SM_Inversion approach is based on the inversion of 
the soil water balance equation, where the unknown quantity is set to 
the total amount of water entering the soil, i.e., over agricultural areas, 
precipitation plus irrigation. Then, irrigation is obtained by subtracting 
precipitation from the total amount of water entering the soil. The 
SM_Inversion approach has been used extensively, both with coarse- and 
high-resolution soil moisture products (Brocca et al., 2018; Dari et al., 
2023, 2022, 2020; Jalilvand et al., 2019). 

The two approaches represent the state-of-the-art of irrigation re-
trievals using remotely sensed soil moisture observations, and both have 
been validated against ground reference data. However, a direct com-
parison of irrigation estimates derived from the SM_Delta and SM_In-
version approaches has not been carried out yet. To increase confidence 
in the reliability of satellite-derived irrigation estimates, and promote 
their employment across various end-users, estimates obtained from 
different approaches should be consistent, especially when the input 
data is the same. 

The objective of this work, therefore, is to fill this gap and i) assess 
the agreement between irrigation estimates derived from the SM_Delta 
and SM_Inversion approaches and forced with the same input data, ii) 
explore the features of the irrigation estimates in terms of spatial pat-
terns, temporal dynamics, and specific characteristics (e.g., number of 
irrigation events per year, average irrigation water amount per event) 
depending on irrigation system and crop type, and finally iii) identify 
strengths and limitations of each irrigation retrieval approach. Both 
methods have been applied over the Ebro basin, an extensively irrigation 
region in Spain, and are based on soil moisture derived from Sentinel-1 
using the RT1 (first-order radiative transfer) model (Quast et al., 2023). 
The analysis is further complemented by considering a modelled 
approach, in order to assess the added value of satellite-based irrigation 
retrievals. In particular, model-only simulations by based on the con-
figurations from Modanesi et al. (2022b), (2021) obtained with the 
Noah-MP land surface model (Noah-MP LSM; Niu et al., 2011), coupled 
to a sprinkler irrigation scheme (Ozdogan et al., 2010) are used as an 
independent irrigation dataset. 
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2. Data and Methods 

2.1. Study area 

Our analysis is carried out over the Ebro basin, located in north-east 
Spain (Fig. 1). The Ebro basin covers an area of approximately 
83000 km2 and is characterized by contrasting topography, ranging 
from the Cantabrian range and the Pyrenees in the north (up to 3000 m 
a.s.l.) to the flat Ebro river valley in the central part of the basin 
(López-Moreno et al., 2011). Consequently, a large spread in meteoro-
logical conditions is found within the basin, with precipitation varying 
between 300 and 2450 mm/year and annual average temperature 
ranging between 1 and 16 ◦C (López-Moreno et al., 2008). The abun-
dance of water in mountainous areas has driven the construction of 
dams and regulation of the main rivers in order to serve hydropower 
production and irrigation (López-Moreno et al., 2002). Irrigated agri-
culture covers roughly 10% of the total area of the Ebro (Isidoro and 
Aragüés, 2007) and consumes up to 90% of the water resources in the 
basin (Quiroga et al., 2011). The most common crops cultivated in the 
Ebro are summer (mostly alfalfa and maize) and winter (mostly cereals) 
crops, followed by fruit trees, vegetables and vineyards (Quiroga et al., 
2011; Salvador et al., 2011). Two additional datasets covering the entire 
Ebro basin are employed: i) a map classifying the irrigation systems in 
the Ebro basin (drip, sprinkler, and flood) available at 1 km resolution 
(LIAISE-Ebro-Methods-Irrigation-1 km, LE-MI-1, Barella-Ortiz et al., 
2022), and ii) the EUCROP2018 dataset (d’Andrimont et al., 2021), also 
available for 2018 at 10 m resolution. The latter was upscaled to match 
the spatial resolution of the irrigation datasets using the mode, i.e., most 
common crop, after classifying as summer, winter, and permanent crops. 

2.2. Reference data 

Irrigation water amounts applied at the district level are available for 
four irrigated districts over the period 2017–2019 (Fig. 1, right). 
Together, the four irrigation districts cover an area of approximately 
2100 km2. The Urgell (URG) is predominantly irrigated with flood 
irrigation, while the Algerri Balaguer (AB) is characterized by extensive 
use of drip and sprinkler irrigation. In the North- and South- Catalan 
Aragonese districts (NCA and SCA) all three irrigation systems coexist, 
with sprinkler being the most common method (Dari et al., 2021; Paolini 
et al., 2022). In the study area, drip irrigation systems are often asso-
ciated with permanent crops (orchards, vineyards, and olive trees), 
whereas sprinkler and flood irrigation are employed for winter cereals 
and summer crops (Paolini et al., 2022). A total of 11 annual benchmark 
irrigation time series are available, obtained from the four disctricts and 
the 3 years and after disregarding data for the AB district in 2018 
because of a long data gap (> 80 days) during the irrigation period. It is 
worth noting that the benchmark irrigation water amounts were 

obtained dividing the daily volumes of water flowing through the irri-
gation channels (http://www.saihebro.com/saihebro/index.php? 
url=/datos/canales) by the area of each district, as in Dari et al. 
(2020). After visual inspection of the daily irrigation reference time 
series, they were smoothed using a rolling average of 21 days in order to 
reduce the impact of suspicious observations. Note that the subsequent 
comparisons against satellite-based irrigation estimates are conducted 
considering 15-daily, monthly, and yearly cumulative values, hence the 
impact of smoothing the reference time series is negligible (Supplement 
Figure S1). 

2.3. Irrigation estimates 

2.3.1. Satellite-based 
Both irrigation retrievals are based on a Sentinel-1 surface soil 

moisture (S1-SSM) product obtained with a first-order radiative transfer 
model (RT1) (Quast et al., 2023). First, S1 backscatter is resampled to 
1 km resolution to reduce noise and speckle effects, then soil moisture is 
retrieved in relative terms, i.e., degree of saturation. Satellite-based 
irrigation estimates have been retrieved over all agricultural pixels 
within the Ebro basin, according to Corine Land Cover 2018 (CLC 2018). 
The period under investigation consists of three full years, from January 
2017 to December 2019. 

The S1-SSM dataset showed good agreement with ERA5-Land top- 
layer soil moisture (Pearson R of 0.6) and has been successfully 
employed for the estimation of rainfall through the SM2RAIN algorithm 
(Filippucci et al., 2022). However, it should be highlighted that due to 
the mission observation scenario, i.e., partial overlap of some orbits, 
certain regions are observed more frequently than others (Figure S3) 
(Bauer-Marschallinger et al., 2019; Quast et al., 2023).  

• SM_Delta 
The SM_Delta approach was initially developed to derive irrigation 

water use from coarse-resolution satellite products (Zaussinger et al., 
2019). In particular, irrigation is calculated as the difference be-
tween satellite and modelled soil moisture forced with meteorolog-
ical data only, under the assumption that satellite observations 
contain irrigation signals which are not present in the modelled soil 
moisture. Later, the method was adapted for handling 
high-resolution (≤ 1 km) satellite soil moisture products, i.e., from 
Sentinel-1 (Zappa et al., 2021). In the SM_Delta approach, S1-SSM is 
first converted to volumetric units multiplying it by the soil porosity 
derived from SoilGrids (Hengl et al., 2017), as in Zappa et al. (2021), 
and to the water column depth [mm] assuming a soil depth of 5 cm 
(Zaussinger et al., 2019). The updated version of the SM_Delta 
approach allows to calculate irrigation as the soil moisture difference 
between irrigated and surrounding rainfed fields (Zappa et al., 
2022). Assuming that over a relatively small region, i.e., < 25 km 

Fig. 1. Location of the Ebro basin in north-east Spain (left) and zoom in the four irrigation districts (right). Blue pixels in the background depict irrigated pixels 
according to an irrigation map specifically developed for the Ebro basin, i.e., LE-MI-1. 

L. Zappa et al.                                                                                                                                                                                                                                   

http://www.saihebro.com/saihebro/index.php?url=/datos/canales
http://www.saihebro.com/saihebro/index.php?url=/datos/canales


Agricultural Water Management 295 (2024) 108773

4

radius around an irrigated pixel, the meteorological forcing (pre-
cipitation and temperature) is consistent, the soil water balance of 
irrigated (Eq. 1) and rainfed fields (Eq. 2) between two consecutive 
satellite acquisitions can be described as follows: 

dθirrig
/

dt = Irr(t) +P(t) − g(t) − sr(t) − ET(t) (1)  

dθrainfed
/

dt = P(t) − g(t) − sr(t) − ET(t) (2)  

where dθ/dt refers to the soil moisture change, expressed in mm, 
between two satellite acquisitions. Irr and P are irrigation and pre-
cipitation, g, sr, and ET depict drainage, surface runoff, and evapo-
transpiration [mm/day], respectively. The rainfed soil moisture is 
obtained as the average soil moisture of the S1-SSM pixels around the 
irrigated pixel within a 50 ×50 km grid. An additional requirement 
of the SM_Delta method is that over the surrounding region most 
fields are not irrigated simultaneously. The size of the surrounding 
window is selected to ensure a good balance between i) the 
assumption that meteorological conditions are homogeneous, and ii) 
the number of pixels used in the averaging. In fact, only surrounding 
pixels classified as cropland and with NDVI values similar (± 25%) to 
the irrigated pixel are considered to minimize potential differences 
arising from factors other than soil moisture, e.g., vegetation water 
content and structure (El Hajj et al., 2018, 2017). 

Based on irrigated and rainfed soil moisture time series, each 
observation is flagged either as an irrigation or non-irrigation event. 
In particular, irrigation is detected when an irrigated pixel is char-
acterized by a soil moisture difference between two consecutive ac-
quisitions (dθirrig/dt) larger than the difference found for the 
surrounding rainfed pixels (dθrainfed/dt). Based on previous sensi-
tivity analysis to account for noise in the data, we employ the 
following constraint for the detection of irrigation: dθirrig/dt > 1.01 * 
dθrainfed/dt (Zappa et al., 2021). When the temporal gap between two 
satellite acquisitions is longer than 5 days, we conservatively disre-
gard potential irrigation events as the soil moisture observations do 
not allow to effectively capture the irrigation-induced wetting and 
subsequent drying of the soil (Filippucci et al., 2020). 

For the timestamps in which irrigation was detected, irrigation 
would be obtained as the absolute soil moisture difference between 
irrigated and rainfed pixels. It is implied that, except for irrigation, 
the other terms of the water balance in Eq.1 and Eq.2 are identical. 
However, several studies showed that ET can differ considerably 
between irrigated and rainfed fields (Brombacher et al., 2022; van 
Eekelen et al., 2015). If not accounted for, differences between irri-
gated and rainfed ET can lead to underestimations of irrigation 
(Kragh et al., 2023). Therefore, as suggested in Zappa et al. (2022b), 
we modify the irrigation retrieval by accounting not only for dif-
ferences in soil moisture, but also for differences in ET between 
irrigated and rainfed fields: 

Irr = (dθirrig

/
dt − dθrainfed

/
dt)+ (ETirrig − ETrainfed) (3)  

The ET terms in Eq. 3 refer to actual evaporation rates and are 
obtained by multiplying potential ET (PET) by a stress factor, S. PET 
is computed by GLEAM v3.5b (Global Land Evaporation Amsterdam 
Model) using the Priestley and Taylor equation (Miralles et al., 
2011), and similarly to Martens et al. (2017), the stress factor S (Eq. 
4) accounts for phenological (Eq. 5) and water availability (Eq. 6) 
constraints: 

S = Sveg⋅Swater (4)  

Sveg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
LAI

LAImax

√

(5)  

Swater = 1 −
(

SMmax − SM
SMmax − SMmin

)2

(6)  

Where LAI (Leaf Area Index) and SM represent the time-varying 
values, and LAImax, SMmax, and SMmin the minimum and maximum 
values observed for each pixel throughout the entire period 
(2017–2019), respectively. For the LAI, we employed the Copernicus 
Global Land Service (CGLS) product (https://land.copernicus.eu/glo 
bal/products/lai), while SM refers to the S1-SSM dataset. As we 
expect the water stress Swater to be negligible immediately after 
irrigation, actual ET is calculated as follows: 

ETirrig = PET⋅Sveg (7)  

ETrainfed = PET⋅S (8)    

• SM_Inversion 

The SM_Inversion method (Brocca et al., 2018b) relies on the 
inversion of the satellite soil moisture signal for backward estimating the 
total amount of water entering the soil, which, over irrigated areas, is 
determined by the sum of rainfall plus irrigation. The potential of the 
approach was firstly tested with coarse resolution data (Brocca et al., 
2018a; Jalilvand et al., 2019; Koster et al., 2016). Later on, the method 
was further refined and implemented with high-resolution data (Dari 
et al., 2022, 2020); recently, Dari et al. (2023) used the SM-based 
inversion approach to produce the first ever regional-scale high--
resolution irrigation water use data sets over three major anthropized 
basins: the Ebro basin (Spain), the Po valley (Italy), and the 
Murray-Darling basin (Australia). The method relies on the inversion of 
the soil water balance, expressed as follows: 

Z∗dSM(t)/dt = Irr(t)+P(t) − g(t) − sr(t) − ET(t) (9) 

in which Z* [mm] represents the soil water capacity, and SM(t) is the 
soil moisture expressed as saturation degrees. Consistently with Eq. 1, 
the remaining terms represent irrigation, precipitation, drainage, sur-
face runoff and evaporation rates [mm/day]. Assuming sr(t) to be 
negligible (Brocca et al., 2015), Eq. 9 can be rewritten as follows: 

Win(t) = Z∗dSM(t)
/

dt+ a⋅SM(t)b
+F⋅SM(t)⋅PET(t) (10)  

where Win(t) represents the sum of rainfall plus irrigation, the drainage 
term is expressed as a⋅SM(t)b , with a [mm] and b [-] representing 
drainage parameters (Famiglietti and Wood, 1994). The actual land 
evaporation rate is computed as the potential evaporation, PET(t), 
multiplied by the available soil water content and corrected through an 
adjustment factor F ranging between 0.6 and 1.4. Details on the pro-
cedure for calibrating the algorithm’s parameters a, b, Z∗, and F can be 
found in Dari et al. (2023). After computing the total amount of water 
entering into the soil, i.e., Win(t), the irrigation rates can be estimated by 
removing rainfall from the output, Irr(t) = Win(t) − P(t). Eventual 
negative irrigation rates are set to zero (Jalilvand et al., 2019) and 
negligible irrigation amounts due to random errors are disregarded by 
discarding results when the ratio between weekly estimated irrigation 
and weekly rainfall is lower than 0.2. Consistently with the data 
employed in the SM_Delta approach, irrigation estimates over the Ebro 
basin considered in this study rely on the S1-SSM product retrieved from 
the RT1 model and potential evaporation from GLEAM v3.5b (Martens 
et al., 2017). Additionally, input data of rainfall is obtained from 
ERA5-Land (Muñoz-Sabater et al., 2021). 

2.3.2. Model-based 
The Noah-Multiparameterization (Noah-MP) Land Surface Model 

(LSM) version 3.6 (Niu et al., 2011) was selected to provide 
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deterministic irrigation simulations, which are used as an additional 
dataset to assess the potential of the satellite-based irrigation products. 

The Noah-MP LSM parameterization followed the default recom-
mended option provided in the LIS documentation (https://nasa-lis.gith 
ub.io/LISF/, last access: 05 July 2023): model time step of 15 min and a 
daily output interval, considering a spatial resolution of 0.01◦. The fifth 
generation atmospheric reanalysis European Center for Medium-Range 
Weather Forecasts (ECMWF) Reanalysis (ERA5) (Hersbach et al., 
2020) was used to force the LSM. A model spin up was performed for the 
period January 2000 until December 2014, while the deterministic run 
started from January 2015. 

The Noah-MP LSM was additionally coupled to the sprinkler irriga-
tion scheme developed by Ozdogan et al. (2010) to provide irrigation 
estimates at daily time scale. The irrigation module adds water as 
pseudo-precipitation after checking three main conditions, at the model 
grid scale: (i) where croplands are located and the irrigated land frac-
tion, (ii) the start and end of the growing season and (iii) the root-zone 
soil moisture conditions. The first aspect is controlled by two datasets: 
the first one is a static land cover map, being the 2015 CGLS land cover 
map (Buchhorn et al., 2020), reclassified from the original 23 classes to 
the 14 classes supported by LIS and regridded from 100 m to 1 km 
spatial resolution; the second is the Global Rainfed and Paddy Cropland 
(GRIPC) (Salmon et al., 2015) used as input to map the irrigation frac-
tional area. The growing season was defined based on a user-defined 
threshold of simulated LAI (i.e., LAI > 1) as in Modanesi et al. (2022). 
Finally, the irrigation is applied when the root-zone soil moisture 
availability falls below a user-defined threshold, which has been set to 
50% of the field capacity (FC) as in Ozdogan et al. (2010). For more 
details on the Noah-MP LSM parameterization the reader can refer to 
Modanesi et al. (2022), (2021). It should be noted that these irrigation 
simulations should be taken as poor first guesses that were not calibrated 
in any way. 

2.4. Evaluation & inter-comparison 

2.4.1. Regional-scale assessment: irrigation mapping 
The objective of this analysis is to assess whether irrigation estimates 

from the SM_Delta and SM_Inversion methods can be used to discrimi-
nate irrigated from rainfed pixels. Both satellite-based irrigation re-
trievals are applied to all agricultural pixels within the Ebro basin, i.e., 
without relying on any irrigation map (unlike model simulations), hence 
resembling real-world applications where this information is generally 
not available. 

In the basic configuration, we calculate yearly irrigation water 
amounts for each pixel, and if irrigation is larger than 0 mm/year, the 
pixel is classified as irrigated, otherwise (i.e., irrigation = 0 mm/year) 
the pixel is set as rainfed. To reduce the effect of noise and other arte-
facts, we also define various thresholds of minimum yearly irrigation, i. 
e., a pixel is set as irrigated if yearly irrigation is higher than a pre-
defined threshold. In particular, we consider six exclusion thresholds 
(1%, 5%, 10%, 20%, 30% and 50%) based on all the agricultural pixels 
within the entire Ebro basin. 

Using the LE-MI-1 irrigation map, we classify irrigated and rainfed 
pixels as true positives (TP, irrigation retrieved over an irrigated pixel), 
false positives (FP, irrigation retrieved over a rainfed pixel), true nega-
tives (TN, no irrigation retrieved over a rainfed pixel), and false nega-
tives (FN, no irrigation retrieved over an irrigated pixel). Finally, we 
quantify the mapping accuracy computing three common metrics: user’s 
accuracy (UA), producer’s accuracy (PA) and overall accuracy (OA), as 
shown in Eqs. 11–13. 

UA = TP/(TP+FP) (11)  

PA = TP/(TP+FN) (12)  

OA = (TP+TN)/(TP+TN +FP+FN) (13)  

2.4.2. Assessment at the irrigation district level: timing and quantification 
In-situ reference time series, as well as satellite-based (SM_Delta and 

SM_Inversion) and model-based (Noah-MP) irrigation estimates, are 
available over the four irrigation districts described in Section 2.1. 
Modelled irrigation is included in the following assessment and inter- 
comparison to evaluate the added value of satellite-based irrigation re-
trievals compared to traditional demand-driven models. First, we 
quantify the overall agreement between estimated and reference irri-
gation, both on a yearly basis and at biweekly frequency, which is the 
ideal temporal window required by basin authorities and water man-
agers (Massari et al., 2021). Hence, irrigation time series are resampled 
to 15-daily resolution and the cumulative irrigation water amounts are 
calculated. The analysis is carried out considering three complementary 
metrics describing the similarity between time series: Pearson correla-
tion (Pearson R), bias, and unbiased root mean squared deviation 
(ubRMSD). 

Then, we evaluate the agreement among satellite- and model-based 
irrigation estimates in time and space. In particular, i) we derive the 
month with highest irrigation for each irrigated pixel, as water resources 
managers would benefit from knowing the period during which most 
water is consumed, and ii) we assess to what degree spatial patterns of 
yearly cumulative irrigation correspond. 

Finally, we consider two additional aspects that can serve as a further 
qualitative check, and at the same time offer insights into potential 
applications of these irrigation datasets. First, we determine specific 
features depending on the irrigation methodology employed (drip, 
sprinkler, and flood) by considering yearly total amount, number of 
irrigation events, and average irrigation amount per event. For this 
analysis, daily irrigation time series are used, and timestamps charac-
terized by irrigation amounts larger than 1 mm are flagged as irrigation 
events. Second, we explore differences in the irrigation timing depend-
ing on the crop type (summer, winter, and permanent crops). 

3. Results and discussion 

3.1. Regional-scale assessment: irrigation mapping 

Here, we assess to what degree the irrigation estimates from the 
SM_Delta and SM_Inversion algorithms can be used to map irrigated and 
rainfed pixels. Fig. 2 shows, as an example, the correctness of pixels 
classified as irrigated and rainfed over the Ebro basin for the year 2017, 
considering a 20% threshold, i.e., pixels with a total yearly irrigation 
below the 20% percentile of the entire basin are set to rainfed. Both 
datasets capture irrigation over actually irrigated pixels (true positives, 
dark green), however, it is evident that irrigation is retrieved over 
numerous rainfed fields too (false positives, dark red). The overdetection 
of irrigated pixels is less pronounced in the SM_Delta irrigation dataset, 
which is characterized by the presence of several true negatives, i.e., no 
irrigation retrieved over rainfed pixels (light green colour). The differ-
ence between the two satellite-based irrigation datasets lies in the fact 
that the SM_Delta approach is only dependent on the satellite soil 
moisture dataset, and irrigation is not retrieved if the soil moisture of 
surrounding pixels is consistently higher compared to the pixel under 
analysis. On the other hand, the SM_Inversion method retrieves water 
entering the soil (i.e., precipitation plus irrigation) over each pixel. 
Hence, the reliability of the irrigation estimates derived with the 
SM_Inversion approach depends not only on the quality of soil moisture 
but also on the precipitation dataset used. Gomis-Cebolla et al. (2023) 
recently showed that ERA5-Land precipitation, which is the input to the 
SM_Inversion algorithm, is characterized by underestimations over large 
portions of the Ebro basin, especially during summer months, which 
could cause an overestimation of irrigation. 

A quantitative comparison (user-, producer-, and overall- accuracies) 
among the two datasets, considering different exclusion threshold 
values, is presented in Fig. 2c. Both datasets have the tendency to 
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retrieve irrigation also over rainfed pixels, which leads to UA consis-
tently lower than 0.1. The SM_Delta dataset achieves slightly better UA 
compared to SM_Inversion, while the SM_Inversion performs slightly 
better in terms of PA, i.e., a pixel classified as irrigated is actually irri-
gated. However, the PA decreases considerably by increasing the 
exclusion threshold, as more and more irrigated pixels are set to rainfed. 
The OA tends to increase with higher exclusion thresholds, because of 
the increasing number of true negatives, i.e., pixels set to rainfed 
because of low cumulative irrigation amounts. Nonetheless, PA scores 
show that raising the exclusion threshold leads to an increase of unde-
tected pixels that are actually irrigated. 

Overall, both SM_Delta and SM_Inversion approaches would sub-
stantially profit from being constrained by auxiliary maps of irrigated 
area, so that irrigation is not retrieved over rainfed pixels. To this end, 
spatially detailed (sub-field scale) and temporally dynamic (yearly) 
maps of irrigated areas would provide complementary information to 
the irrigation water amounts retrieved with the two approaches, 
enabling more reliable estimates. In the remainder of the manuscript, 
only actually irrigated pixels according to the LE-MI-1 map are 

considered, while rainfed pixels have been masked. 

3.2. Assessment at the irrigation district level: timing and quantification 

3.2.1. District-scale dynamics 
Fig. 3 shows the temporal dynamics of reference and estimated 

irrigation over the four irrigated districts obtained from the SM_Delta 
(green) and SM_Inversion (blue) algorithms, as well as from the Noah- 
MP deterministic run (light brown). Note that irrigation time series 
are provided as 15-daily cumulative values. In addition, the agreement 
between yearly irrigation water amounts is displayed in the scatterplots 
on the right side of each panel. 

Satellite-derived and model-based irrigation estimates are charac-
terized by substantially different dynamics. Irrigation water amounts 
from Noah-MP are simulated over a shorter period due to model 
parameterization, i.e., a-priori determination of the irrigation season, 
and the amplitude is often larger compared to satellite-based estimates. 
Irrigation estimates from the SM_Delta and SM_Inversion approaches 
show rather similar dynamics, nonetheless, discrepancies in the 

Fig. 2. Mapping accuracy obtained considering yearly irrigation estimates from the SM_Delta (panel a) and SM_Inversion (panel b) approaches over agricultural 
pixels only. Example maps showing correctly and incorrectly classified pixels over the entire Ebro basin and detail of the same data on the irrigated districts 
considering an exclusion threshold of 20%; summary of User-, Producer-, and Overall-accuracy (UA, PA, OA) obtained with various exclusion thresholds (c). 
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irrigation timing are found during spring months (April and May) in 
2017 and 2018. 

A possible explanation for this finding relies in the observational 
gaps lasting up to several days found in Sentinel-1 acquisitions in 2018. 
Within the SM_Delta approach, potential irrigation events are conser-
vatively disregarded if two consecutive observations are separated by 5 
days or more, while in the SM_Inversion approach these observations are 
included in the irrigation retrieval. This causes the lower irrigation 
observed in spring 2018 for the SM_Delta estimates. 

When considering yearly water amounts, Noah-MP tends to over-
estimate irrigation in districts and years characterized by low irrigation 
supply and underestimate irrigation in years and districts associated 
with high irrigation amounts (Fig. 3, scatterplots). Satellite-based irri-
gation estimates can better capture the benchmark yearly water 
amounts, however, they are generally underestimating irrigation. This 
finding is consistent with the outcomes of previous studies, which 
highlighted that underestimations are expected when the spatial and/or 
temporal resolution of soil moisture observations are sub-optimal, i.e., 
pixel size larger than irrigated fields and/or revisit time longer than 1–2 
days (Filippucci et al., 2020; Zappa et al., 2022). 

We quantitatively assessed the agreement between reference and 
estimated irrigation time series considering 15-daily cumulative values 
in terms of Pearson R, bias, and ubRMSD (Fig. 4). On average, the three 

irrigation products achieve similar correlation values when evaluated 
against the benchmark irrigation (mean Pearson R around 0.7). Notably, 
both SM_Delta and SM_Inversion products are characterized by slightly 
negative biases (i.e., underestimate irrigation), in contrast to model- 
derived irrigation, and yielded considerably lower ubRMSD compared 
to Noah-MP estimates. Even though metrics from all three irrigation 
datasets fluctuate depending on the specific year and irrigation district 
considered, the satellite-based products are slightly more consistent 
across time and space compared to the model-based estimates. Overall, 
Fig. 4 suggests that satellite-derived irrigation can better represent 
actual irrigation dynamics, especially given that factors explaining (part 
of) such variability are well understood. As an example, the SM_Delta 
consistently shows low correlation and high ubRMSD values over the AB 
district. For context, more than 80% of the irrigated fields in the Algerri- 
Balaguer (AB) are equipped with drip irrigation, and it is known that 
monitoring irrigation from localized systems is more challenging 
(Zaussinger et al., 2019). Also, in most instances, both SM_Delta and 
SM_Inversion obtained lower negative biases (i.e., irrigation estimates 
closer to the reference data) in 2017 compared to other years. The 
explanation for this finding lies in the higher number of Sentinel-1 ac-
quisitions during the main irrigation period, i.e., from March to 
September, in 2017 (84 acquisitions on average over the four districts) 
compared to 2018 and 2019 (70 and 65, respectively). Indeed, fewer soil 

Fig. 3. Reference and estimated irrigation over the four irrigation districts: time series showing 15-daily cumulative irrigation (left) and scatterplots of yearly total 
irrigation (right). Note that the 2018 reference irrigation in the Algerri Balaguer (AB) district was excluded from further analysis because of a long data gap. 

Fig. 4. Agreement between reference and estimated irrigation time series. Note that the evaluation metrics (Pearson R, bias, and ubRMSD) are calculated using 15- 
daily cumulative values. Results for individual districts and years can be identified, and the average values are shown with the black lines. 
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moisture observations are more likely to lead to undetected irrigation 
events, resulting in the subsequent underestimations of irrigation 
amounts (Zappa et al., 2022b). 

3.2.2. Monthly irrigation peaks 
Maps in Fig. 5 show the month with highest irrigation for the three 

products considered, as water resource managers are interested in the 
period during which most water is consumed. As reference irrigation 
data are only available at the district-scale, monthly time series are 
shown to allow a comparison with the irrigation estimates. It is evident 
that differences in spatial variability from Noah-MP irrigation estimates 

reflect underlying model input and parameters (e.g., soil properties), 
and the temporal component is driven by climatic conditions, i.e., pre-
cipitation and evaporation. On the other hand, both satellite-based 
products depict local, i.e., pixel-scale, differences in irrigation timing. 
However, limited agreement exists between the SM_Delta and SM_In-
version estimates in 2017 and, to a smaller extent in 2018. In fact, half of 
the pixels received most water between June and July 2017 according to 
the SM_Delta product, while almost 75% of the pixels were supplied the 
highest irrigation amounts in May based on the SM_Inversion. The 
consistency between the two satellite-derived irrigation estimates seems 
to be stronger in 2018, where the main differences concern irrigation 

Fig. 5. Maps showing the month with the highest irrigation for each of the three years considered (2017–2019). The inset pie charts show the overall distribution of 
the irrigation peak months across the irrigated districts. District-scale reference irrigation time series are also shown for comparison. 
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peaks in the URG district, and, even more, in 2019. Also the spatial 
patterns, i.e., predominant month with highest irrigation, show mod-
erate agreement, at least at the district scale. Overall, the timing of 
satellite-based irrigation peaks reflects relatively well the actual (dis-
trict-scale) irrigation dynamics. Both SM_Delta and SM_Inversion esti-
mates occasionally capture irrigation peaks earlier or later in the season 
compared to reference data, but the difference is generally no longer 
than one month. 

Notably, the inter-annual variability of the irrigation peaks (as 
shown in the pie charts) derived from satellite-based estimates seems to 
be guided by meteorological conditions, hence the crop water re-
quirements. The irrigation peaks occur earlier in 2017 and 2019 
compared to 2018 according to both satellite-based approaches, with 
more pronounced differences in the SM_Delta estimates. Indeed, 2018 
was characterized by heavy rainfall during April and May, which 
delayed the need for irrigation during the early stages of the growing 
season (as visible in the monthly irrigation reference time series, Fig. 5), 
while in 2017 and 2019 precipitation during the same months was 
considerably lower (Supplement Figure S2). 

3.2.3. Spatial assessment 
The spatial agreement among the three irrigation datasets is rather 

weak, with the highest spatial Pearson R between SM_Inversion and 
Noah-MP equal to 0.22 (Fig. 6). The consistency between yearly irri-
gation retrieved with the SM_Delta and SM_Inversion approaches is even 
lower, and the highest spatial correlation (0.12) between the two is 
obtained in 2017. Despite the rather low scores of spatial R referring to 
the entire irrigated districts area, a few consistent patterns can be 
observed between the SM_Delta and SM_Inversion yearly irrigation 

estimates. For instance, in 2017 both datasets portray lower irrigation in 
the southern part of the Urgell (URG) district, while the most heavily 
irrigated area is located in the Algerri Balaguer (AB) district, according 
to both satellite-based estimates. Such patterns are not reproduced by 
the Noah-MP irrigation estimates. Hence, despite the rather poor 
agreement obtained at the pixel-level, satellite-based estimates can still 
provide consistent spatial patterns when considering larger extents (e.g., 
district and regional scale). 

Also, from Fig. 6 it is evident that the SM_Delta approach generally 
underestimates irrigation compared to SM_Inverison. Such discrepancies 
in amplitude can be explained by the specific model assumptions on soil 
water capacity employed in the two approaches. The soil water capacity 
is calculated multiplying the soil depth by the porosity, hence represents 
the amount of water that can be stored in a certain soil layer. In the 
SM_Delta approach, soil depth is fixed to 5 cm and soil porosity is 
derived from SoilGrids. The latter, i.e., soil porosity, roughly ranges 
between 40% and 43% over the irrigated districts, resulting in soil water 
capacity values of approximately 2 cm. In the SM_Inversion approach, 
soil water capacity is calibrated, and a median value of 7.9 cm was found 
over the Ebro basin, while lower values (approx. 5 cm) were obtained 
over the irrigated districts (Dari et al., 2023). As the soil water capacity 
directly affects the magnitude of the retrieved irrigation, i.e., higher 
values of soil water capacity leading to higher irrigation estimates, 
employing the same soil water capacity in both retrieval methods would 
largely reduce the differences in irrigation amplitude. 

Fig. 6. Maps of yearly cumulated irrigation obtained from the SM_Delta and SM_Inversion approaches, and from Noah-MP. It should be noted that colorbars have 
different upper limits. The heat maps (panels on the right) depict the spatial correlation among the yearly irrigation obtained from the three methods. 
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3.3. Qualitative assessment and potential applications of irrigation 
datasets 

In the following sections, we investigate two additional aspects that, 
on the one hand, serve as a qualitative check and assessment of the 
irrigation estimates, while at the same time showcase practical appli-
cations of such products. Note that, in this work, irrigation estimates 
derived from Noah-MP are based uniquely on a sprinkler irrigation 
scheme and do not discriminate between different crop types. However, 
because of the widespread lack of information on the type of irrigation 
system and the cultivated crops, modelled irrigation estimates are often 
retrieved with similar (sub-optimal) parameterization. 

3.3.1. How much water is used by different irrigation systems? 
Irrigation estimates from satellite soil moisture observations 

(SM_Delta and SM_Inversion approaches) and from a model (Noah-MP) 
are separated based on the irrigation system in place, i.e., drip, sprinkler, 
and flood. Details on the irrigation type within the Ebro basin are given 
in the LE-MI-1 irrigation map. The analysis aims at exploring potential 
differences in irrigation management and practices, total irrigation 
water amounts (Fig. 7a), number of irrigation events and average irri-
gation water amount applied at each irrigation event (Fig. 7b, c), 
depending on the irrigation system. 

Overall, drip methods were found to provide the smallest contribu-
tion to the total irrigation occurring within the four irrigated districts, 
with consistent shares among the three datasets and years ranging be-
tween 11% and 15%. Estimates from the SM_Delta approach suggest a 
modest, but noticeable, shift from flood irrigation in favour of sprinkler 
systems over the period considered (contribution of flood irrigation to 
the total decreases from 41% to 36% between 2017 and 2019, while the 
share of sprinkler irrigation increases). Also, an overall reduction of the 
total amount of water supplied across the three years considered can be 
seen. This result, however, might be biased by the lower number of 
Sentinel-1 acquisitions in 2018 and 2019 compared to 2017. Also, the 
SM_Inversion-derived dataset portrays a drop of flood irrigation in 2019 
compared to 2017, however, an increase in the fraction of flood irriga-
tion is found in 2018 (42, 48, and 40% in 2017, 2018, and 2019, 
respectively). According to Noah-MP estimates, the relative contribution 
of the different irrigation systems to the total irrigation water volume 
varies only slightly across years: drip irrigation ranging between 12% 

and 14%, sprinkler systems accounting for 47–48%, and the remaining 
38–40% ascribable to flood irrigation. We reiterate that, in this work, 
Noah-MP assumes that sprinkler irrigation is the only irrigation system 
in place over the region, and differences in the relative contribution 
from year to year are only caused by spatial differences in irrigation 
amounts over the different LE-MI-1 regions. For instance, in 2017 high 
irrigation water amounts were obtained over the AB district (see Fig. 6), 
where drip irrigation is widespread, resulting in a slightly higher relative 
contribution of drip irrigation in that year (Fig. 7a). 

Additionally, we retrieved the average irrigation water amounts and 
the number of irrigation events for each pixel (Fig. 7b, c) to assess if 
differences between irrigation systems can be seen. The SM_Delta 
approach reproduces the diversity of irrigation practices associated with 
the system. Indeed, pixels irrigated with drip methods are characterized 
by lower amounts of water supplied more frequently compared to other 
systems. More water is generally applied during individual flood irri-
gation events, however, fewer irrigation events take place throughout 
the season. Pixels irrigated with sprinkler methods show intermediate 
characteristics. Irrigation estimates from the SM_Inversion yield con-
trasting outcomes: sprinkler irrigation is characterized by higher 
average water amounts, and flood events occur more frequently than 
irrigation under sprinkler and drip systems. It should be noted that the 
SM_Inversion approach assumes that surface runoff is negligible: while 
this is generally true over flat agricultural areas, it might be inaccurate 
when considering flood irrigation. Numerous fields in the URGELL dis-
trict irrigated with flooding methods are in fact characterized by 
drainage systems that allow excess water to flow from one field to 
another. Hence, irrigation is likely underestimated for pixels charac-
terized by flood irrigation, which is predominant in the URGELL. This 
finding is confirmed by Fig. 4, which shows that the largest un-
derestimations from the SM_Inversion approach occur indeed in the 
URG district. Finally, model-based irrigation shows comparable values 
regardless of the irrigation system, as this information was not specified 
to the model. 

It should be noted that differences, especially when considering the 
amount of water per irrigation event, are in general quite low (i.e., few 
mm of water). Nonetheless, the irrigation estimates account only for the 
water infiltrated in the soil, while other losses (due to, e.g., irrigation 
system and meteorological conditions) are not considered. Such losses 
could, however, increase the spread between the different irrigation 

Fig. 7. Yearly irrigation water amounts associated with drip, sprinkler, and flood systems over the irrigated districts (a). Average irrigation water amounts supplied 
during each irrigation event (b), and number of irrigation events per pixel (c), grouped by irrigation system. LE-MI-1 irrigation map was used to separate satellite- and 
model- based irrigation estimates into pixels irrigated with drip, sprinkler, and flood systems. 
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systems (Dari et al., 2020). 

3.3.2. How much water is used by different crop types? 
Fig. 8a compares the monthly irrigation dynamics grouped for 

different crop types derived from EUCROP2018, namely winter, sum-
mer, and permanent crops. Again, this classification is not used neither 
in the satellite-based methods nor in Noah-MP, but we associate the 
estimated irrigation with the given crop map. Note that variations from 
the monthly average irrigation amounts are shown, i.e., a large positive 
(negative) value indicates that a big (small) share of the total monthly 
irrigation is directed towards a specific crop type. The two satellite- 
based irrigation estimates strongly agree, with large and positive 
(negative) irrigation water amounts during late spring and summer 
months for summer crops (winter crops). Irrigation over permanent 
crops is spread more evenly throughout the year, with small peaks in 
spring and autumn. It should be noted that a wide range of woody trees 
is classified as “permanent crops” umbrella, among which orchards, 
which are often irrigated in winter to prevent freezing. Clearly, each 
crop class is characterized by different water requirements across the 
year, depending on fruit development and ripening. Irrigation dynamics 
derived using Noah-MP are considerably different because the model 
does not use EUCROP2018, and assumes a summer crop everywhere. 
Consequently, permanent crops according to EUCROP2018 are exten-
sively irrigated during summer months, while the relative contribution 
of irrigated summer crops is small (hence negative values) during 
summer. 

In terms of irrigation water amounts per event (Fig. 8b) and per year 
(Fig. 8c), the SM_Delta and SM_Inversion approaches yield similar pat-
terns, with higher (lower) values for summer crops (winter crops). 
Nonetheless, the overall amplitude of yearly irrigation water amounts is 
considerably different, with large underestimations obtained from the 
SM_Delta approach compared to SM_Inversion. Conversely, model-based 
irrigation estimates are characterized by similar amounts per event, as 
the irrigation scheme is based only on soil moisture but does not account 
for specific crop requirements. 

4. Conclusions 

Over the past couple of years, the SM_Delta and SM_Inversion ap-
proaches have been developed to retrieve irrigation water amounts from 

satellite soil moisture observed at high spatial resolution. Even if both 
methods have been tested and validated independently, a direct com-
parison among irrigation estimates from the two approaches has not 
been carried out yet. In this work, we performed a thorough inter- 
comparison against reference irrigation data and assessed the consis-
tency of irrigation estimates from the SM_Delta and SM_Inversion 
methods over an extensively irrigated region in Spain. Irrigation esti-
mates from a Noah-MP land surface model deterministic run were also 
included as baseline, even if they only consider sprinkler irrigation and 
no prior information on the cultivated crop types. 

The results revealed that irrigation retrieved from satellite soil 
moisture, using both the SM_Delta and SM_Inversion approaches, shows 
a better agreement with reference data compared to Noah-MP irrigation 
estimates. This finding emphasizes the need of providing reliable data 
constraints (e.g., maps of actually irrigated fields, crop types, and irri-
gation systems) to improve the realism of irrigation estimates produced 
by models. At the pixel-scale, irrigation estimates from the SM_Delta and 
SM_Inversion approaches showed limited consistency, which we could 
attribute to various factors in the retrieval algorithms. Discrepancies in 
irrigation were caused by differences in the estimation of soil water 
capacity and the assumption of negligible surface runoff made in the 
SM_Inversion method. Nonetheless, when aggregated in space or time, 
irrigation estimates from SM_Delta and SM_Inversion yielded consistent 
dynamics and patterns. For instance, estimates from both approaches 
capture the delayed irrigation occurred in 2018, compared to 2017 and 
2019, due to the wetter conditions of spring 2018. Furthermore, the 
different irrigation timing between winter and summer crops was 
correctly captured by the SM_Delta and SM_Inversion irrigation 
estimates. 

Overall, the study demonstrates the potential of employing high- 
resolution satellite soil moisture for the retrieval of irrigation informa-
tion. Despite uncertainties in the irrigation estimates due to i) method-
ological formulations and assumptions, ii) quality and reliability of the 
input data (e.g., spatial resolution, revisit time, noise level), the two 
retrieval algorithms provided consistent results when transitioning from 
small- and short-scales (pixel level, sub-weekly) to larger- and longer- 
scales (district level, seasonal). Hence, remotely sensed irrigation esti-
mates could inform policy makers, e.g., water resources managers and 
basin authorities, and can be beneficial to the modelling community by 
offering reliable constraints on the timing and the amounts of water 

Fig. 8. Deviations of monthly irrigation depending on the crop type, i.e., winter, summer, and permanent crops (a). Large, positive values indicate larger contri-
butions to the total irrigation. Average irrigation water amounts supplied during each irrigation event (b), and yearly irrigation water amounts (c), stratified by 
crop type. 
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employed at the basin level. 
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