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Kurzfassung

Die Forschung im Bereich der Computer Vision, insbesondere in der Analyse menschlichen
Verhaltens, hat sich überwiegend auf RGB-Datensätze gestützt, die trotz ihres Informati-
onsreichtums Einschränkungen in Bezug auf Lichtverhältnisse und Datenschutzbedenken
aufweisen. Um diese Herausforderungen zu adressieren, präsentiert diese Arbeit einen
umfassenden Ansatz, der RGB-Daten durch thermische und Tiefendaten ergänzt, um
robustere und datenschutzfreundlichere Alternativen zu bieten.

Wir führen TRISTAR ein, ein öffentliches Trimodales Segmentierungs- und Aktionsar-
chiv, das registrierte Sequenzen von RGB-, Tiefen- und Thermaldaten in verschiedenen
Umgebungen umfasst. Dieser Datensatz beinhaltet Annotationen für die semantische
Segmentierung von Menschen, per Bild Annotationen für die zeitliche Aktionsdetektion
und das Verständnis von Szenen. Benchmark-Modelle, die sich auf die Segmentierung von
Menschen und die Aktionsdetektion konzentrieren, zeigen signifikante Verbesserungen
bei der Verwendung von Thermal- und Tiefenmodi.

Darüber hinaus entwickeln wir eine generative Technik zur Erstellung trimodaler Daten-
sätze, indem wir RGB-Daten mittels Unsupervised Learning in Thermal- und Tiefenbilder
übersetzen. Diese Methode hat das Potential Lösung in Szenarien mit begrenzter Daten-
verfügbarkeit oder herausfordernden Bedingungen zu sein.
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Abstract

Research in computer vision, particularly in human behavior analysis, has predominantly
relied on RGB datasets, which despite their information richness have limitations in
terms of lighting conditions and privacy concerns. To address these challenges, this work
presents a comprehensive approach that augments RGB data with thermal and depth
data to provide more robust and privacy-friendly alternatives.

We introduce TRISTAR, a public trimodal segmentation and action archive comprising
registered sequences of RGB, depth and thermal data in different environments. This
dataset includes annotations for semantic segmentation of humans, per image annotations
for temporal action detection and scene understanding. Benchmark models focusing on
human segmentation and action detection show significant improvements when using
thermal and depth modes.

In addition, we are developing a generative technique to create trimodal datasets by
translating RGB data into thermal and depth images using unsupervised learning. This
method has the potential to be a solution in scenarios with limited data availability or
challenging conditions.
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CHAPTER 1
Introduction

Computer vision is indispensable in a variety of research fields. Its utility spans object
recognition [LMB+14, RDGF16], scene reconstruction [KZ02, MAMT15], and advanced
image processing, contributing to academic and commercial advancements. The quality
and type of data used are critical factors in its effectiveness. Traditional datasets
predominantly employ Red-Green-Blue (RGB) imaging due to its accessibility and
richness of detail under ideal conditions.
The prominence of RGB data was solidified with landmark datasets that have become
integral to computer vision research. One of the pioneering datasets, “ImageNet”,
introduced an extensive collection of labeled RGB images suitable for image classification
[DDS+09]. This dataset has millions of images that helped significantly progress Machine
Learning (ML), especially in the training of Convolutional Neural Networks (CNNs)
[KSH12]. A CNN is a deep learning model primarily used for processing data, such
as images, with a grid-like topology. It employs convolutional layers to learn spatial
hierarchies of features from input images automatically and adaptively. Another influential
dataset called “Microsoft COCO” (Common Objects in Context) emerged after ImageNet
[LMB+14]. COCO focuses on object recognition and segmentation in complex everyday
scenes, expanding on the traditional image classification task.
RGB data is not limited to object recognition or image classification. It is also essential
to Human Behavior Analysis (HBA) and used in various domains such as security,
health monitoring, and human-computer interaction [Pop10]. Researchers can analyze
complex patterns of human behavior by interpreting movements, postures, and gestures
captured in RGB images and videos [JLD12]. For example, the healthcare sector leverages
RGB data for patient monitoring, analyzing physical responses or changes to prescribed
treatments [KTK15]. RGB data is widely used in HBA mainly due to its availability
and ease of acquisition. This is because employing standard RGB cameras eliminates
the need for specialized equipment, making it accessible to a broader audience. It also
enables continuous monitoring without requiring direct human oversight.
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1. Introduction

While RGB cameras are helpful for detailed monitoring, their visual nature can be
a disadvantage in certain situations: In settings where lighting conditions or privacy
concerns are critical, the explicit nature of RGB may not be suitable. Including behavioral
and physical details in HBA can lead to situations where privacy is at risk, with the
potential of unauthorized access or misuse. This can compromise an individual’s privacy
and make them vulnerable to potential harm [BEG00].

The lack of privacy preservation can be observed when looking at human faces. Figure 1.1
compares faces in RGB, showcasing that a person can be easily identified in this modality.

Figure 1.1: RGB faces demonstrating the potential for re-identification. The left is the
original face, and the right is another face of the same sequence. Faces are re-identifiable.

On top of privacy concerns, RGB cameras face significant challenges when used in poorly
lit conditions. In scenes with bad lighting, such as in natural or nocturnal settings,
the camera’s ability to capture reliable data can be severely impaired. This results in
compromised data quality that can cause inaccuracies in HBA. Figure 1.2 illustrates
the potential limitations encountered in the RGB modality when operating in different
lighting conditions, underscoring the importance of using more robust imaging alternatives
that perform reliably under a broader range of lighting environments.

Figure 1.2: Illustration of the limitations of RGB cameras in varying lighting conditions,
highlighting the challenges in low-light scenarios for HBA.

The limitations of RGB cameras in terms of their dependence on optimal lighting
conditions restrict their applicability in various HBA scenarios. Based on this and the
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previously raised privacy concerns, there is a need for more robust imaging alternatives
that can perform reliably across a broader range of lighting environments.

Alternative forms of imagery, such as thermal and depth data, can address these challenges.
Thermal cameras use heat signatures, and depth sensors employ structured light or time-
of-flight techniques, enabling operation in complete darkness or uneven lighting [FAT11].
Depth sensors generate images based on calculated depth instead of light reflection.
Structured light depth sensors may not perform well with reflective surfaces or when the
measured surface is hit at a shallow angle. Additionally, the lack of texture information
may make it difficult to differentiate between humans and “human-shaped objects”.
Nevertheless, these sensors can enhance results if the background is far away and is not
affected by lighting conditions.

However, these technologies are not without drawbacks. Depth sensors, which generate
images based on distance measurements rather than light reflection, may struggle with
reflective surfaces or when encountering surfaces at shallow angles. The absence of texture
information in depth sensing can also challenge distinguishing between actual humans
and objects with silhouettes similar to humans.

Despite these issues, depth sensors can be unaffected by lighting conditions. They can
still improve the accuracy of HBA systems, mainly when the background is significantly
from the subject [SFC+11]. This feature ensures uninterrupted HBA across various
environmental conditions, facilitating applications like 24/7 patient monitoring, nighttime
surveillance, or studies of nocturnal human activities. Figure 1.3 demonstrates the
limitations of using RGB for privacy preservation instead of depth and thermal imaging.

Figure 1.3: Comparison of RGB, thermal, and depth data regarding privacy concerns.
The first image shows the original face, while the rest display the face from a different
angle using RGB, depth, and thermal modality.

Visual data obtained under sub-optimal lighting conditions often contains “noise”, neces-
sitating sophisticated post-processing methods or making downstream tasks like action
recognition infeasible. This can be computationally intensive, leading to delays in real-
time monitoring applications and increased operational costs, thus undermining the
cost-effectiveness of RGB. Additionally, RGB does not work in settings with no light.

The comparison between depth and thermal modalities and RGB under different lighting
conditions is illustrated in Figure 1.4. When the background is spatially separated, depth
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1. Introduction

provides a clear outline of the human shape. Thermal images are well-suited for HBA
because humans have a different heat signature when compared to the background.

Figure 1.4: Samples of RGB, Depth, and Thermal modalities under different lighting
conditions are shown in the figure below. The left frame shows RGB, while the middle and
right frames display depth and thermal modalities. As can be seen, the human subject is
more visible in the depth and thermal frames, even under poor lighting conditions.

The figure is divided into three columns that represent different modalities. The left
column illustrates the RGB modality and highlights its dependence on ambient lighting.
The middle column, dedicated to the depth modality, displays its ability to capture
objects’ spatial layout and contours regardless of lighting, offering a more consistent
performance. Finally, the right column focuses on the thermal modality, demonstrating
its proficiency in detecting heat signatures, which makes it also highly effective in diverse
lighting conditions, including complete darkness.

Our qualitative samples hint towards depth and thermal being a more robust alternative
than RGB. Based on our qualitative samples, it appears that depth and thermal imaging
may be a more reliable option compared to RGB. One of the focuses of this thesis is to
investigate whether this claim is valid and determine if there is a significant variance in
performance for downstream tasks, such as action recognition.
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However, even if depth and thermal can improve on RGB, the data available varies
significantly among the data modalities. Depth and thermal availability are considerably
limited, which hinders the development of robust, multimodal vision systems and restricts
their potential in various contexts. The reasons behind this disparity include the historical
focus of research, technological advancements, and practical challenges in data collection
and processing [BRSB23]. No commercial devices allow you to record the registered
depth and thermal [SK22]. Thus, the second focus of this thesis is to investigate and
propose potential solutions to overcome the challenge of data scarcity in thermal and
depth modalities.

The previously explained issues with RGB and the possible solution with supplementing
or replacing RGB with depth or thermal imaging prompt the following research questions:

1. Can the use of depth and thermal modalities be an alternative to RGB for
HBA?

Given the limitations of RGB datasets, exploring the potential of depth and thermal
modalities to enhance or substitute RGB in HBA is beneficial. Through empirical
evidence, we demonstrate the situations where depth and thermal modalities can be a
viable alternatives to RGB. We publish our dataset TRImodal Segmentation and acTion
ARchive (TRISTAR) [SHK23].

2. Can we translate RGB to Depth and Thermal Data with unsupervised
learning?

Acquiring registered RGB, depth, and thermal data can be challenging because no
publicly available sensors can record trimodal datasets [SK22]. This question examines
the feasibility of using unsupervised learning to translate RGB data into these modalities,
addressing the data acquisition gap and exploring the effectiveness of data generation
methodologies in producing accurate depth and thermal representations from RGB inputs.
Our results for this question are published at OAGM [SHSK23].

3. Can unsupervised learning serve as an effective data augmentation strategy
for HBA?

Here, we test if combining a small subset of our training dataset with a more significant
synthetic part performs similarly or better than the original dataset. We show the effect
of augmentation in our third publication at PeRConAI [SHSK24].

This thesis presents a series of contributions, evaluations, and novel methodological
advancements that collectively contribute to the domain of HBA. My key contributions
are summarized as follows:

• An extensive state-of-the-art evaluation of current datasets in the field, beginning
with a focus on RGB datasets in HBA then progressing to depth and thermal
datasets. This evaluation demonstrates that, while depth datasets for HBA exist
and thermal datasets are even less common, most labeled datasets are RGB. The
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1. Introduction

work also delves into sensor fusion to provide a view of dataset availability and
applicability.

• A detailed evaluation of state-of-the-art methods for image translation, with a par-
ticular emphasis on paired image translation techniques. The pix2pix architecture
is explored in greater detail to provide a deeper understanding of its underlying
mechanisms and role in image translation tasks.

• An investigation into related work surrounding segmentation and action recognition,
providing a comprehensive review of current methodologies and their performances.

• The creation and public release of a novel dataset, TRISTAR, encompasses over
15,000 frames with action recognition labels and human segmentation masks. The
peer-reviewed paper titled “A Trimodal Dataset: RGB, Thermal, and Depth for
Human Segmentation and Temporal Action Detection” was presented at the German
Conference on Pattern Recognition (GCPR).

• The development and showcase of innovative RGB to depth and thermal translation
approaches. Initial tests on direct image inpainting were published as preliminary
results at the Austrian Association of Pattern Recognition (AARP) Workshop.
Moreover, a novel image-to-image translation pipeline for static camera scenes was
developed. This fully autonomous pipeline facilitates the translation from RGB
to depth and thermal, given static RGB datasets and suitable depth and thermal
background datasets. The findings were published at the PerConAI workshop,
associated with a conference on pervasive computing.

• An in-depth evaluation that synthesizes all the findings published in the papers. It
is demonstrated that the proposed methods enable translation from RGB to depth
and thermal and support the training of new models on these translated datasets.

The collective efforts and findings presented in this thesis significantly advance the field
of HBA, providing valuable resources for future research and applications.

The remainder of this thesis is structured as follows. Chapter 2 provides an in-depth
overview of the existing literature. It critically examines datasets, synthetic data genera-
tion, and image translation techniques, focusing on their application in the field of HBA.
Chapter 3 is dedicated to our own recorded dataset. It delves into the technical setup and
the data acquisition process, providing detailed insights into the creation and specifics of
our trimodal dataset TRISTAR [SHK23]. We use TRISTAR in the remaining work as a
basis for all experiments. In Chapter 4, the thesis explores innovative methodologies for
translating RGB data into thermal and depth modalities. Here, we explain concepts like
UNet [RFB15] for image translation or ImageBind [GENL+23] for querying a database
of images. The downstream tasks of our synthetic datasets, like human segmentation
and action recognition, are discussed in Chapter 5. This chapter details the evaluation
tasks established for our translation models, emphasizing the real-world applicability
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and relevance of the research. Chapter 6 presents the outcomes of this thesis. It encom-
passes a thorough presentation of the evaluation metrics and methodologies employed,
an analysis of our inpainting techniques, and a discussion of the results obtained from
various modalities and action recognition experiments. Finally, Chapter 7 summarizes
the key insights, discusses the broader impacts of the work, discusses the implications
of our findings, and suggests directions for future research. This thesis presents a series
of contributions, evaluations, and novel methodological advancements that collectively
contribute to the domain of HBA.
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CHAPTER 2
Related Work

Exploring datasets and methodologies in HBA is valuable because it helps in under-
standing underlying patterns and trends, developing accurate models, and gaining a
more comprehensive understanding of data, especially in the context of RGB, depth, and
thermal data. With their historical significance and wide application, the landscape of
RGB datasets offers a foundational perspective on HBA research. An in-depth analysis
reveals the strengths and limitations inherent to this modality, underscoring its critical
role in the field.

We examine the advantages of depth and thermal data over RGB and discuss potential
strategies for overcoming the limitations of RGB. These modalities can address the
shortcomings of RGB, particularly in low-light environments or scenarios that require
increased privacy. By incorporating depth and thermal data alongside RGB, we can
improve our analysis of human behavior.

As the natural depth and thermal datasets are limited, we delve into the realm of data
synthesis. We provide an overview of approaches for synthesizing depth and thermal
images and highlight the potential of image-to-image translation methods.

Finally, we examine progress in image segmentation and human action recognition. These
domains are essential for comprehending the relative efficacy of genuine and synthesized
data in HBA research, which serves as a foundation for future comprehensive ablation
studies.

2.1 Datasets
The increase in datasets, specifically in computer vision and machine learning, is im-
pressive [BRSB23]. While ample RGB datasets are popular due to their simplicity of
collection and wide range of applications, other modalities are less explored. The number
of depth and thermal datasets is smaller than RGB datasets in HBA. Color images are
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preferred because they are easier to collect. Only recent publications show devices for
capturing RGB, depth, and thermal at the same time [SK22]. However, thermal and
depth data can be advantageous and even necessary in certain situations. The following
sections compare the most prominent datasets of each modality and highlight the gap in
availability between RGB, depth, and thermal datasets.

2.1.1 Color Datasets
A few significant RGB datasets have greatly influenced the development of computer
vision. One of the pioneering datasets, ImageNet, offers a vast collection of annotated
images that have facilitated advancements in image classification and object detection
[DDS+09]. The COCO dataset, Common Objects in Context, complements ImageNet
and sets a new dataset scale and diversity standard. It has enabled the development of
advanced deep-learning models that focus on objects within their everyday environments,
providing a diverse array of complex scenes for model training. This has added depth to
object detection and segmentation, making it stand out from other datasets [LMB+14].

Additionally, PASCAL VOC is another significant dataset that has contributed to the
progress in semantic segmentation, a fundamental computer vision task [EVGW+10]. It
includes images across 20 object categories and is notable for its detailed annotations
spanning object detection, segmentation, and classification. The ADE20K dataset, “MIT
Scene Parsing Benchmark”, further expanded the scope of available RGB data [ZZP+17].
It stands out for its extensive range of object and stuff categories, combined with
detailed annotations. This dataset includes a variety of scenes, from urban landscapes
to interior settings, making it a valuable resource for training segmentation algorithms.
The Cityscapes dataset [COR+16] offers a specialized focus on urban environments.
With high-definition images from various cities and detailed segmentation masks, it has
become an essential resource for applications such as autonomous driving. Lastly, the
Mapillary Vistas dataset [NORBK17] demonstrates the potential of crowdsourcing in
dataset creation. It provides diverse, street-level imagery with detailed annotations,
suitable for training models in dynamic urban scenarios.

In the realm of HBA, RGB datasets have enabled many applications. The richness and
variety of these datasets have allowed for extensive research and development in areas such
as facial recognition, emotion detection, and action recognition, which are critical in HBA.
In video content, the Charades dataset [SDFG17] introduced a temporal component,
focusing on action recognition. This dataset comprises video clips that capture a range
of human activities in domestic settings, annotated to provide insights into human-object
interactions. Datasets like the FER-2013 [GEC+13] and the AffectNet [MHM17] have
provided substantial resources for facial expression recognition and emotion detection.
These datasets, with their vast array of annotated facial images, have been pivotal
in training models to understand subtle human emotions, an essential aspect of HBA.
The Kinetics dataset [KCS+17] and UCF101 [SZS12] have been central to the progress
in action recognition. They offer extensive collections of video data that capture a
wide range of human activities, enabling algorithms to recognize and interpret complex
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human actions in various contexts. Samples from the Kinetics and UCF101 datasets are
illustrated in Figures 2.1a and 2.1b, respectively, showcasing the diversity of activities
and scenarios covered.

(a) Sample frames from the Kinetics dataset [KCS+17].

(b) Sample frames from the UCF101 dataset [SZS12].

Figure 2.1: Sample frames from the Kinetics and UCF101 datasets showcasing a variety
of human activities and actions.

The availability of diverse RGB datasets has significantly contributed to the depth and
breadth of research in HBA. These datasets cover various scenarios and environments,
from controlled laboratory settings to unstructured real-world scenes. They provide a
rich resource for training and evaluating models that need to operate in diverse and often
challenging conditions.

In conclusion, the progression of RGB datasets, from foundational ones like ImageNet
and COCO to those tailored explicitly for HBA tasks, is a cornerstone in advancing
the field of computer vision and, particularly, HBA. Their extensive coverage enables
researchers to explore and innovate in understanding and analyzing human behavior
without collecting new datasets.

While RGB datasets have been instrumental, they are less effective under poor lighting
conditions, where depth and thermal modalities excel due to their ability to capture spatial
and temperature variations. Our TRISTAR dataset adds depth and thermal datasets,
and the benchmark models implemented show improvements when supplementing RGB
with depth and thermal.
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2.1.2 Depth Datasets
Depth datasets have emerged as pivotal resources in computer vision, playing a foun-
dational role in tasks that necessitate understanding scene geometry, such as 3D recon-
struction, scene understanding, and object detection in cluttered environments. The
information in these datasets, encapsulating the distance between the camera and the
scene’s objects, brings dimensionality to scene understanding that RGB data alone cannot
offer.

Among outdoor depth datasets, KITTI [GLU12] stands out. Originating from the
Karlsruhe Institute of Technology and Toyota Technological Institute in Chicago, KITTI
provides a diverse array of data, including depth maps, captured in urban and rural
settings. Comprising over 93,000 depth maps, its annotations encompass a variety of
tasks ranging from optical flow to 3D object detection. Another significant outdoor
dataset is Cityscapes [COR+16]. While it contains RGB data and segmentation masks,
Cityscapes offers depth information for its high-definition images sourced from 50 cities.
When juxtaposed with the rich segmentation masks, the depth annotations provide a
comprehensive understanding of urban environments, with applications extending from
pedestrian detection to scene parsing.

NYU Depth, which New York University curated, is a valuable resource for analyzing
indoor environments. This dataset offers various paired RGB and depth images covering
indoor scenes, such as kitchens and bedrooms. It also provides detailed segmentation
masks for over 1,000 object and stuff categories and depth information, which can be
used to predict 3D room layouts and improve indoor scene understanding [SHKF12].

Additionally, the Middlebury Stereo dataset [SS02] has played a crucial role in stereo
vision research. It offers a range of stereo images with ground truth depth data, essential
for depth estimation and 3D reconstruction studies.

The SUN RGB-D dataset [SLX15] further enriches the collection of indoor depth data. It
includes indoor scenes captured with depth sensors, providing a comprehensive resource
for object recognition and scene understanding tasks.

For tracking within enclosed spaces, the IPT dataset [HK21b] is applicable. It is designed
explicitly for tracking tasks and offers depth data captured in constrained environments.
It is particularly suitable for applications like surveillance or robotics, where tracking in
cluttered, constrained spaces is paramount.

Regarding HBA, the depth modality has received limited attention in research, with
only a few publications available on the topic [HK21a, Esc12, AMY18]. The limited
exploration of depth data in HBA can be attributed to several factors. Firstly, collecting
depth data that accurately captures human behavior in a wide range of scenarios is
challenging. It requires sophisticated depth-sensing technology and scenarios where
human subjects are involved in diverse activities. Secondly, interpreting depth data for
understanding complex human behaviors demands advanced algorithms that can process
and analyze 3D spatial information in the context of human actions and interactions.
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Figure 2.2 shows samples from the IPT and MIPT datasets of Heitzinger et al. They
solve the privacy issue, but no action labels are included. Additionally, MIPT even
contains thermal data.

Figure 2.2: Sample frames from the IPT and MIPT datasets, showcasing depth imaging
while addressing privacy concerns [HK21b, HK21a].

There is an abundance of depth datasets available. However, most of them focus on
tracking and positioning. Fewer datasets specifically deal with human activity when
compared to RGB datasets. RGB activity datasets are frequently available. If you require
a new activity recognition dataset, finding one or using foundation models is possible.

2.1.3 Thermal Datasets
Thermal imaging, with its ability to capture temperature distributions, has gained
significant traction within the computer vision community for its manifold applications and
distinctive advantages [HK21a, HK21b, KKH+18]. Unlike its RGB counterpart, thermal
imaging remains impervious primarily to illumination variations. This characteristic
often proves invaluable in low-light scenarios or when discerning living entities based
on their heat signatures. Furthermore, thermal images offer insights into the intrinsic
physiological state of subjects, opening up novel research avenues that RGB imaging
might not cater to.

Another thermal dataset is the OSU Thermal Pedestrian Dataset [DK05]. Curated by
Ohio State University, this dataset is a comprehensive compilation of thermal images
spotlighting pedestrians, encompassing a myriad of environmental settings. From varying
ambient temperatures to different times of the day, this dataset ensures that models
trained on it can detect pedestrians in diverse conditions. However, it’s worth noting
that its primary emphasis lies in pedestrian detection, with limited scope for HBA. The
Terravic Facial Infrared Database can be used for facial recognition. It offers a color
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and thermal facial image mix [Mie05]. This allows for a richer understanding of facial
features and characteristics, proving particularly beneficial in biometric authentication
scenarios where the subtle heat variations of facial landmarks can aid identification.

To leverage thermal data for person re-identification, Kniaz et al. introduced Ther-
malgan [KKH+18]. Within their work, they also published the ThermalWorld dataset.
ThermalWorld explicitly focuses on personal re-identification. MIPT also includes some
thermal samples [HK21a].

Thermal datasets are not as widely used as other datasets, even though they clearly
distinguish humans in HBA as they have a different heat signature.

2.1.4 Combinations of Modalities

The PST900 dataset [SRZ+20] is one resource that proposes long-wave infrared (LWIR)
imagery as a supporting modality for semantic segmentation using learning-based tech-
niques. This dataset provides 894 synchronized and calibrated RGB and thermal image
pairs with per-pixel human annotations across four distinct classes. In addition to
presenting a unique dataset, the authors introduce a novel passive calibration target.

Another notable resource is the InfAR action dataset [GDL+16], which focuses on action
recognition using infrared data. To our knowledge, only a single dataset exists that
combines RGB, thermal, and depth data [PCB+16] for human segmentation. This dataset
comprises 5,274 frames recorded in three shots in three distinct office scenes. Figure 2.3
shows samples from this unique dataset.

Figure 2.3: Sample frames from the Multi-modal RGB-Depth-Thermal Human Body
Segmentation dataset, illustrating the integration of different data modalities for human
segmentation in office environments [PCB+16].

While there is one dataset, the background variation will likely lead to overfitting these
scenes. Our dataset comprises 18 distinct views, which mitigates the risk of overfitting.
Finally, Brenner et al.’s survey [BRSB23] provides a systematic literature review of the
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fusion of RGB-D and thermal sensor data, highlighting the progress made in this area
over the past decade.

2.2 Synthetic Data
The field of synthetic dataset generation is well-explored, with significant research focused
on remodeling scenes. For example, ThermalSynth [MSG+23] employs specialized shaders
for this purpose. However, this approach is time-intensive and primarily utilized for rare
action modeling, limiting its broader applicability.
In contrast, the problem of translating images to depth maps is addressed using different
methods. For instance, the MiDaS model [RLH+20] can do depth estimation up to a
scale and shift. However, this approach falls short in its inability to predict absolute
depth values, an aspect that newer developments in the field aim to tackle. Recent
models [BBW+23], [SKNF23] leverage diffusion models for depth prediction, improving
the relative depth approach.
As for the translation of RGB to thermal images, ThermalGAN [KKH+18] stands
out. However, its effectiveness might be compromised due to its reliance on an older
architecture, highlighting a potential area for further improvement.

2.3 Image Translation
In digital image processing, image inpainting offers innovative methods for embedding
objects into background scenes. This approach is beneficial when transforming images
from standard RGB formats to other modalities like depth or thermal imaging. This
section highlights critical advancements in image inpainting, emphasizing its applicability
in conditional inpainting using masks, specifically for human figures.
A groundbreaking innovation in this field is the development of conditional Generative
Adversarial Networks (cGANs). In cGANs, the generator and discriminator networks are
conditioned on supplementary data, such as class labels or information from different
image modalities. This strategy is exceedingly effective for applications including photo
refinement, artistic style transfer, and even in the analysis of medical imagery, where
contextual interpretation is crucial.
Deep learning models have facilitated a significant leap forward in image translation
technology, especially those incorporating a U-Net architecture within a Generative
Adversarial Network (GAN) framework. The pioneering model in this domain is Pix2Pix,
which uniquely combines a U-Net architecture with a PatchGAN discriminator for adept
image-to-image translation [IZZE17].
The U-Net architecture was initially developed for biomedical image segmentation.
It features a dual-pathway design: a contraction path to assimilate context and a
symmetrically expanding path for precise localization. This configuration is particularly
effective for tasks requiring spatial awareness in image processing.
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Within the GAN structure, the U-Net acts as the generator, creating images that closely
resemble real images from the desired domain. Conversely, the discriminator is trained to
differentiate between these synthetic images and authentic images from the target domain.
Both the generator and discriminator undergo simultaneous training in a competitive
setting. The generator strives to produce increasingly convincing images, while the
discriminator improves its ability to identify synthetic creations.

The discriminator architecture used is called the PatchGAN discriminator. The Patch-
GAN discriminator divides the input image into overlapping patches. Each of these
patches is independently classified as real or fake. Essentially, it assesses whether each
patch is drawn from the distribution of patches in the real images. The PatchGAN can
understand and critique finer details and textures by focusing on smaller regions of the
image. This is important in tasks like style transfer or photo-realistic image generation,
where details matter. However, because patches are part of the whole image, they also
capture some global context, allowing the model to consider the overall coherence of the
picture. One advantage of this approach is that it is computationally more efficient than
processing the entire image simultaneously. Also, because it focuses on local features, it
tends to be more effective in capturing high-frequency information, which is crucial for
generating sharp and realistic images.

While Pix2Pix works well, further work is needed to improve RGB image-to-image
translation results. Zhao et al. [ZCS+21] proposed a new technique that combines
image-conditional and modulated unconditional generative architectures to overcome
existing inpainting algorithms’ limitations. These algorithms tend to fail when dealing
with large missing regions. The co-modulation technique used by Zhao et al. can help
achieve better results in inpainting large human-shaped masks within images. The study
by Suvorov et al. [SLM+22] introduces a technique called Large Mask Inpainting (LaMa).
This method can deal with large missing areas and complex geometric structures in
high-resolution images. It achieves this by utilizing Fast Fourier Convolutions (FFCs) and
a high receptive field perceptual loss, which expands the effective receptive field of the
inpainting network and the loss function. As a result, this approach leads to significantly
improved inpainting results. In our context, this technique could enable effective human
inpainting into complex background scenes.

2.4 Segmentation and Action Recognition
This thesis uses segmentation as part of its mapping pipeline and action recognition
for evaluation. For segmentation, a combination of a variation of You Only Look Once
(YOLOv7) [WBL23] and Segment Anything (SA) [KMR+23] is used. Action Recognition
is done with various 3D Convolutional Neural Networks [TBF+15, HKS17].

YOLOv7 is a fast, real-time object detection system that views images in a single glance,
predicting object locations and classifications simultaneously [WBL23]. Unlike traditional
systems that perform separate steps for object localization and classification, YOLO
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unifies these processes, enabling it to quickly and accurately identify multiple objects in
complex scenes.

SA introduces a novel approach to image segmentation, encompassing a unique task, an
efficient model, and an extensive dataset [KMR+23]. This project has created the largest
segmentation dataset, featuring over 1 billion masks across 11 million licensed images
that respect privacy. The model at the heart of SA is designed to be promptable, enabling
it to adapt zero-shot to new image distributions and tasks without requiring specific
training for each new scenario. Evaluations of the model’s capabilities on various tasks
have demonstrated its impressive zero-shot performance, often matching or surpassing
results from fully supervised models.

3D Convolutional Neural Networks performed well on action recognition tasks [TBF+15].
Unlike traditional 2D convolutions that process single images, 3D convolutions extend
this by considering the temporal dimension, making them well-suited for analyzing video
data. 3D convolutions extract features from spatial and temporal dimensions by applying
filters to consecutive frames, thus capturing the inherent motion in actions. A prominent
example is the 3D ResNet, an extension of the Residual Network architecture to 3D
convolutions [HKS17]. It leverages residual learning, using shortcut connections to skip
one or more layers in a deep 3D CNN framework. 3D ResNet models are particularly
effective in action recognition tasks, as they can learn complex and nuanced patterns of
motion and appearance that define various actions in video sequences.
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CHAPTER 3
Dataset

Constructing a specialized dataset is essential to address our research questions empirically,
particularly in translating RGB to depth and thermal imagery and evaluating HBA
through action recognition in video sequences. This dataset plays a critical role in several
key areas:

• Comparing RGB, depth, and thermal modality for HBA.

• Paired translation from RGB to depth and thermal with inpainting.

• Comparing synthetic vs real parts of the dataset.

Additionally, the dataset aims to close the gap between depth, thermal, and RGB
modality. While RGB data is a cornerstone in various computer vision applications, as
evidenced in widely recognized datasets like ImageNet [DDS+09] and Microsoft COCO
[LMB+14], its dependency on lighting conditions and inherent privacy concerns pose
significant challenges. In scenarios where accuracy and confidentiality are of utmost
importance, such as in sensitive environments or applications requiring reliable operation
under diverse lighting conditions, relying solely on RGB data can be insufficient. We call
our dataset TRImodal Segmentation and acTion ARchive (TRISTAR).

3.1 Motivation
Our dataset comprises sequences of registered RGB, depth, and thermal images. Addi-
tionally, each frame in the dataset is annotated with human segmentation masks and
action labels. These annotations are crucial for HBA, enabling the detailed study of
human actions within the captured scenes.

Key tasks that arise from temporal action labels of our dataset include:

19



3. Dataset

• Action Identification: Identifying the type of action being performed, such as
running, jumping, or dancing.

• Temporal Localization: Pinpointing the start and end times of the action within
the video sequence. This involves segmenting the video into sections and labeling
each with the corresponding action.

• Contextual Understanding: Analyzing the context of the action, which may
include background scenes, objects, and interactions with other entities in the video.

Figure 3.1 illustrates a representative sample from our trimodal dataset. This figure
showcases the unique aspects of each modality in the following order: RGB, depth, and
thermal imaging alongside a human segmentation mask.

Figure 3.1: Examples from our trimodal dataset, encompassing RGB, depth, thermal
imaging, and human segmentation mask from [SHK23].

The RGB image provides a detailed color representation of the scene, which is essential
for understanding texture and appearance. The depth image offers spatial information,
encompassing the distance of objects from the camera. In contrast, the thermal image
captures the temperature distribution in the scene, which can be particularly useful
for identifying living beings and understanding environmental conditions. The human
segmentation mask distinguishes human figures from their surroundings.
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3.2 Sensor Setup
The CTCAT, as outlined by Strohmayer et al. [SK22], combines RGB, structured
light depth, and uncooled radiometric thermal cameras. The resolution of images is
standardized to 640x480 pixels despite each camera’s unique resolution. The alignment of
the different modalities is achieved using a custom-made, heated checkerboard calibration
pattern with holes. Figure 3.2 shows images of the heated checkboard calibration pattern.

Figure 3.2: Figure from [SK22] to show the calibration process. (a) Front and back
view of the multi-modal geometric calibration target, showing the copper traces of the
custom heating element. (b) Close-up view of the custom heating element. (b) Geometric
calibration setup.

Our dataset is recorded using a stand, a Bluetooth keyboard, a portable monitor, and a
camera setup based on the by Strohmayer et al. obtained calibration parameters [SK22].
Figure 3.3 illustrates our camera setup.

Figure 3.3: The camera setup with the CTCAT unit and the captured scene from
[SHK23].

Central to this setup is the CTCAT unit, depicted in detail on the top right and in action
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on the left. On the left, it combines a portable external monitor and a stand to capture
the entire scene. Adjacent to the CTCAT unit, the figure showcases a trimodal sample.
This setup forms the backbone of our image capture strategy, as described in [SHK23].

3.3 Dataset Design
Building upon the work in the sensor setup, we present our resulting trimodal dataset.
Our dataset encompasses an array of office scenes recorded using a trimodal sensor
arrangement integrating RGB, thermal, and depth data.

To create our multimodal dataset, we draw inspiration from the Charades Dataset [SVW+16]
and the work of Palmero et al. [PCB+16]. Our dataset focuses on office environments,
selected for their various scenarios and activities. Actions are chosen based on their
occurrence in real office settings, as detailed in Table 3.1. Different office spaces are
included, such as open doors of adjacent offices and meeting rooms, each with varying
interactions and lighting conditions.

Table 3.1: List of Actions, States, Transitions, and Locations used for labeling.

Label Items
Action Classification put_down, pick_up, drink, type,

wave
State sit, walk, stand, lie
Transitions get_down, get_up
Location out_of_view, out_of_room,

in_room

TRISTAR contains diverse settings visually represented in Figure 3.4.

Figure 3.4: Variety of office locations and lighting conditions in the dataset.

The figure includes three images that show different light conditions. On the left, there is
a hallway that connects various offices. In the middle is a kitchen corner with sofas with
poor lighting conditions. Finally, on the right, a meeting room is shown. In addition
to these three settings, our dataset includes various recordings of diverse offices. This
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variety of settings is essential for ensuring our findings are robust and applicable across
various office layouts and lighting conditions.

3.4 Ground Truth Generation
The ground truth generation process involves using pretrained YOLOv7 and YOLOv8
models to detect human bounding boxes in the RGB images [WBL23, JCQ23]. These
detections are then used as conditions for SAM for preliminary human mask genera-
tion [KMR+23]. Figure 3.5 shows an example of the resulting mask when pretrained
YOLOv6 [LLJ+22] is combined with SAM. The green rectangle shows the result of
YOLOv6, and the slightly transparent green mask shows the result of the SAM.

Figure 3.5: Result of applying YOLOv6 and SAM to an image of the charades dataset.

Using the human masks from the pre-labeling stage as a basis, a team of annotators
labeled the RGB images, with 15,618 frames labeled in total. For increased accuracy,
annotators can access corresponding thermal and depth data, color-mapped to RGB. The
Label Studio1 platform facilitates this large-scale annotation task. Figure 3.6 depicts the
human segmentation annotation process.

Dense per-frame labeling of 14 classes, including actions, states, and transitions, is
performed for action labeling. A spreadsheet system aids in this process, categorizing each

1https://labelstud.io/ (Last accessed on 22.01.2024).
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Figure 3.6: Illustration of the manual human segmentation annotation process using
Label Studio.

frame’s parameters’ actions, states, and locations. The goal is to achieve temporal action
segmentation or detection by identifying specific actions within the frames. Figure 3.7
demonstrates the action label annotation process using a spreadsheet.

Figure 3.7: The action label annotation process using a spreadsheet for temporal action
segmentation.
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3.5 Dataset Analysis
Our dataset encompasses 10 unique office environments with 18 camera angles, 101
shots, and 15,618 frames. Each frame is annotated to provide human masks for semantic
segmentation and dense labels for temporal action detection and scene understanding.
Table 3.2 summarizes the contents of the dataset.

Table 3.2: Details of the Trimodal Dataset.

Content Indoor Human Behavior
Modalities Registered RGB, Depth, Thermal
Type of Data Sequences
Resolution 640x480
Frame Rate 8.7 fps
#Offices 10
#Camera Angles 18
#Shots 101
#Frames 15,618
#Individuals 8
#Actions 14

The dataset split into training, validation, and test sets is structured to ensure a robust
training. Figure 3.8 shows the distribution of individuals of our dataset. Each bar
represents a number of frames the person occurs in.
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Figure 3.8: Distribution of individuals in our dataset.

Persons 1, 2, and 3 are the most frequently captured individuals. They constitute most
of the training dataset and a significant portion of the validation set. This choice aims
to provide a rich and diverse range of behaviors and interactions for the model to learn
from during the initial training phase.

In contrast, the remaining individuals appear less frequently in the dataset and are
predominantly used in the validation and test sets. Furthermore, the dataset takes
into account the Variety of office environments. Different views and office settings are
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exclusively reserved for the validation and test sets. Including unique views and settings
in the validation and test sets is essential for assessing the model’s adaptability and
performance in previously unseen or novel office environments and individuals.

The diversity of actions is illustrated in Figure 3.9, where the number of frames for
each action label is presented. As shown, the action ’type’ has the highest occurrence,
consistent with office settings where typing is a common and often prolonged activity. The
actions ’wave,’ ’drink,’ ’pick_up,’ and ’put_down’ are recorded with similar frequencies,
yet ’pick_up’ and ’put_down’ are less frequent as these represent shorter duration tasks.
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Figure 3.9: Bar chart representing the distribution of action labels in the dataset.

Figure 3.10 shows the distribution of states within the dataset. Walking is the predominant
state, reflecting the high mobility within the office environment. Sitting and standing are
observed almost as frequently as each other, typical for an office setting where people
switch between these two states. Lying down occurs rarely, which is expected due to the
lack of appropriate furniture in such settings.
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Figure 3.10: Bar chart representing the distribution of action labels in the dataset.

The transitions ’get_down’ and ’get_up’ are the rarest states, indicating that once a
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person is sitting, walking, or lying, they tend to maintain that state for extended periods
rather than transitioning frequently. Location labels like in_room, out_of_view, and
out_of_room are also marked within the dataset.

3.6 Dataset Quality Evaluation
We perform a quality assessment to ensure the consistency of our human segmentation
labels. First, we test the quality of human masks. The Jaccardian Index, also known as
Intersection over Union (IoU), is a commonly used metric in image segmentation tasks
to quantify the accuracy of the predicted segmentation. It is defined as the size of the
intersection divided by the size of the union of the sample sets. Mathematically, the IoU
can be represented as:

IoU = Area of Overlap
Area of Union = |A ∩ B|

|A ∪ B| (3.1)

where A and B are the ground truth and predicted segmentation areas, respectively.

In our assessment, the Jaccardian Index averaged 0.948 across 1106 double-labeled
frames, indicating a high degree of accuracy in our labeling process. Figures 3.11a and
3.11b show typical errors identified during this evaluation. Label agreement for actions,
transitions, states, and locations was also high, demonstrating the robustness of our
labeling process.

(a) First case: small labeled area due to a
person leaving the room.

(b) Second case: discrepancy due
to sloppy labeling.

Figure 3.11: Visualization of errors in RGB, thermal, and segmentation masks.

Figure 3.12 presents a confusion matrix for state transitions, explaining the model’s
performance in identifying various states. The matrix particularly highlights the dif-
ficulty in distinguishing between the get_down state and states like walk or stand.
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This confusion primarily stems from the inherent challenge of precisely defining the
transition points in human motion. For instance, when an individual starts sitting down
from a standing position (get_down), it is easily confused with standing, leading to
misclassifications between these states.
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Figure 3.12: Confusion matrix for state transitions in our double-labeled dataset.

The matrix also reveals that the transition to get_down is frequently confused with the
stand and walk states. This is attributed to the subtlety and brevity of the get_down
action, which can be easily overlooked.

3.7 Challenges & Limitations

Despite the contributions of our trimodal dataset to the field of HBA, it is necessary
to recognize its limitations, particularly in comparison to the extensive RGB datasets
available in the domain. These limitations primarily revolve around the dataset’s size
and diversity.

Our dataset, while the largest among existing trimodal datasets, still falls short in size
when compared to the vast collections of RGB-only datasets. The extensive size of RGB
datasets is a key factor in training more robust and sophisticated models, as the depth
and variety in these large datasets contribute significantly to the generalizability and
performance of machine learning models. Our dataset’s size limits the complexity of
models that can be trained and the extent of generalization achievable. Although it is
adequate to address specific tasks within the dataset’s domain, there no statement can be
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made about whether the models can be used in different indoor settings or with various
camera configurations.

Another limitation lies in the diversity of the dataset. While our dataset offers a variety
of scenarios and captures a range of human behaviors, it does not encompass the same
level of diversity observed in larger RGB datasets. These RGB datasets often include a
broad spectrum of environments, activities, and subjects, which are necessary for models
to operate in diverse real-world settings. The limited diversity in our dataset affects
its effectiveness in training models adept at recognizing and analyzing human behavior
across a wide array of situations. These limitations underline the need for continued
development of trimodal datasets in HBA to create more comprehensive and diverse
datasets.
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CHAPTER 4
Mapping RGB to Thermal and

Depth

We introduce a novel approach to increase the quantity of trimodal HBA datasets.
Specifically, we concentrate on converting RGB data, the most commonly used modality
in HBA, into thermal and depth data to overcome limitations associated with RGB
datasets. This conversion allows us to produce new trimodal datasets, which are rare in
the field of HBA. Our main contributions here include:

• Utilization of Accessible Resources: Our pipeline takes advantage of the abundance
of RGB datasets featuring individuals performing various actions and easily obtain-
able background depth and thermal frames. Obtaining these datasets is a relatively
simple task due to their wide availability.

• Development of a Translation Pipeline: We map RGB to depth or thermal images
by conditioning the translation process on suitable depth and thermal backgrounds,
enhancing the accuracy of the transformation.

• Evaluation with Action Recognition: We assess our methodology by training action
recognition models on real and synthetic datasets, demonstrating its utility in
scenarios with limited depth and thermal data.

The remainder of this chapter is structured as follows. First, we explain using image
inpainting to directly draw humans into thermal and depth. Second, we introduce a more
complex pipeline that conditions the UNets on a background frame of the respective
modality, the cropped RGB, and an SDF of the mask.
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4.1 Modality Translation with Image Inpainting
Our first translation process focuses on simply inpainting existing registered thermal
and depth images. Figure 4.1 provides a high-level visualization of our input and output
process, encapsulating the data flow through the translation process.

Depth Pix2Pix

Thermal Pix2PixThermal 
Translation

Depth 
Translation

MSE+BCE Loss

MSE+BCE Loss

Input Generated Ground 
Truth

Figure 4.1: Visualization of our methodology’s input and output process, depicting the
transformation from RGB to depth and thermal modalities.

To translate depth and thermal images, we perform the following steps:

1. We preprocess our TRISTAR dataset to contain pairs of normal frames and frames
with removed humans, as shown on the left in Figure 4.1.

2. We train UNet models to translate the frames with removed humans to the original
thermal and depth images.

3. During inference, one can manually select appropriate background thermal and
depth images and use human masks obtained from static labeled RGB videos to
translate labeled RGB to labeled depth and thermal datasets.

The following section explains the preprocessing, inpainting, and architecture of the
UNet.
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4.1.1 Dataset Preprocessing
The process begins with the TRISTAR dataset [SHK23], which serves as the basis for
creating input-output pairs of images. These pairs are essential for training our mapping
model.

Initially, we extract squared bounding boxes from the segmentation masks. Following
the bounding box extraction, we perform a mask dilation using an 8 × 8 kernel. This
dilation process captures the immediate context surrounding the human figures. Once
we have these dilated masks, we modify the corresponding depth and thermal frames.
The modification involves setting the pixels within these dilated masks to a mean value
representative of each modality. Effectively, this step ’erases’ the human figures from the
frames, leaving us with a neutral background primed for the inpainting process. Finally,
we crop and resize both the edited and the original frame to the previously obtained
bounding box. Details can be observed in Algorithm 1.

Algorithm 4.1: Transform Frame Image
Result: Transform frame image based on mask

1 Function TransformFrame(F, M);
2 Y, X ← Where(M == 1);
3 if Y.size == 0 or X.size == 0 then
4 return CenteredCrop(F ), CenteredCrop(F );
5 end
6 xmin, xmax ← min(X), max(X);
7 ymin, ymax ← min(Y ), max(Y );
8 ∆x ← Int((xmax − xmin) × ρ);
9 ∆y ← Int((ymax − ymin) × ρ);

10 xmin −= ∆x;
11 xmax += ∆x;
12 ymin −= ∆y;
13 ymax += ∆y;
14 L ← max(xmax − xmin, ymax − ymin);
15 Cx, Cy ← (xmin + xmax)//2, (ymin + ymax)//2;
16 xmin, xmax ← Cx − L//2, Cx + L//2;
17 ymin, ymax ← Cy − L//2, Cy + L//2;
18 Fmod ← F.copy();
19 Fmod[M == 1] ← Int(µframe);
20 Fout ← CropAndResize(Fmod, xmin, xmax, ymin, ymax);
21 Fgt ← CropAndResize(F, xmin, xmax, ymin, ymax);
22 return Fout, Fgt;

• F : The original frame image to be transformed.

• M : The mask indicates regions of interest in the frame.
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• Y, X: Arrays of y and x indices where the mask is 1 (region of interest).

• xmin, xmax, ymin, ymax: The minimum and maximum x and y coordinates of the
masked region.

• ∆x, ∆y: Padding added to the x and y dimensions of the cropped region, calculated
as a percentage (ρ) of the region’s width and height.

• ρ: Padding ratio.

• L: The side length of the square cropping region is determined by the larger
dimension of the masked area after padding.

• Cx, Cy: The center coordinates of the cropping region.

• Fmod: The modified frame where the masked region is set to a constant value
µframe.

• µframe: Mean frame value or a predetermined constant to fill in the masked region.

• Fout: The cropped and resized output frame based on the modified frame.

• Fgt: The ground truth cropped and resized frame from the original frame.

Figure 4.2 visualizes the stages of the algorithm.

Crop

Crop

Mask

Mask

Figure 4.2: Illustration of the preprocessing algorithm applied to frame images. The
process involves identifying and transforming regions of interest within the frame based
on the mask.

4.1.2 Translation Architecture
The process architecture draws inspiration from the Pix2Pix framework [IZZE17], a
framework for image-to-image translation tasks. Pix2Pix’s adversarial training approach,
which employs a conditional generative adversarial network (cGAN), is particularly suited
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4.1. Modality Translation with Image Inpainting

for tasks that aim to generate images indistinguishable from authentic images in a target
domain. This framework is chosen for its ability to learn a mapping from input to output
images and to model the loss function necessary to train this mapping, making it highly
applicable for thermal and depth inpainting tasks.

In our implementation, we utilize two separate UNets for thermal or depth inpainting.
The UNets are components of the Pix2Pix architecture, consisting of convolutional and
deconvolutional blocks designed for feature extraction and image reconstruction. The
strength of UNets lies in their architecture, which enables precise localization and the
use of context information, which is essential for tasks like inpainting.

The Pix2Pix framework, particularly with its use of UNets, differs from other image-
to-image translation methods, such as those based on variational autoencoders (VAEs)
or standalone GANs. While VAEs are excellent for generating new images, they may
lack the precision of detail that UNets provide. Standalone GANs, on the other hand,
may not always ensure spatial consistency, which is crucial in tasks like inpainting or
modality translation. The Pix2Pix framework, with its conditional GAN setup, ensures
that the generated images are realistic and aligned spatially and contextually with the
input images.

4.1.3 Discriminator Loss

Training our network involves a two-phase approach, each phase targeting a specific
aspect of the model’s performance. Initially, we optimize the network using Mean Squared
Error (MSE) loss. This stage is necessary for ensuring that our model’s output aligns
closely with the target images pixel-wise.

In the subsequent phase, we introduce a discriminator based on the PatchGAN archi-
tecture to further refine the model’s outputs. The choice of PatchGAN is deliberate: it
assesses the authenticity of local image patches, making it adept at detecting finer details
and textures that contribute to the overall realism of the image. This discriminator learns
to distinguish between real and generated images, providing an adversarial component
that encourages the model to produce more realistic and convincing outputs.

Therefore, the final model output is a blend of fidelity to the original dataset, ensured by
MSE loss and enhanced image quality, by BCE loss from the discriminator.

4.1.4 Preliminary Result

Figure 4.3 visualizes the result of the Pix2Pix translation.

This approach is presented as a peer-reviewed paper at AAPR 2023 [SHSK23]. While
our inpainting approach generates similar heating signature and depth values where it
should, the figure clearly outlines room for improvement. Additionally, for inference, the
background has to be selected manually.
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4. Mapping RGB to Thermal and Depth

Figure 4.3: Illustration of the mapping process from RGB to depth and thermal modalities,
showcasing conditional input, inpainted output, ground truth, and error analysis.

4.2 Multimodal Input
The single modality approach encounters limitations that can impact the overall perfor-
mance and applicability of the model:

• Limited Contextual Information: Single modality inputs, such as depth or
thermal data alone, provide a restricted scene view. This limitation can lead to
inaccuracies, as the model might miss out on vital contextual cues.

• Inference Challenges: Models trained on single modality data can struggle with
complex inference tasks, particularly in diverse and dynamic real-world settings.
This is due to the lack of diverse information that other modalities could provide.

• Manual Intervention: The reliance on manual processes, such as selecting the
background, poses a challenge for scalability and automation, limiting the model’s
practicality in various applications.

We propose a second image-to-image translation methodology that transforms RGB into
corresponding depth and thermal data to address these issues, effectively bridging the
gap between these modalities. The core idea is to condition the UNet on multiple inputs
instead of one:

• Depth or Thermal Background

• Cropped and masked RGB frame
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4.2. Multimodal Input

• Signed Distance Function (SDF)

The process involves two primary stages: First, matching backgrounds are located us-
ing [GENL+23], and human masks are segmented by integrating YOLOv6 [LLJ+22], a
state-of-the-art object detection model, with the Segment Anything Model (SAM) [KMR+23].
ImageBind is a technique that aligns various modalities into a unified embedding space.
This embedding is used for identifying matching backgrounds across thermal and depth
frames.
Second, we use a Pix2Pix model to create accurate thermal and depth translations
conditioned on the background, signed distance function, and cropped RGB and masked
RGB. Then, we use a custom algorithm to merge the cropped inpainted frame with the
original background frame.
Figure 4.4 provides a high-level overview of our pipeline.

2. Translation1. Preprocessing 3. Postprocessing
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Figure 4.4: Overview of our proposed methodology, illustrating the integration of Image-
Bind [GENL+23] for obtaining matching backgrounds, YOLOv6 and Segment Anything
Model for segmenting human masks from RGB, and Pix2Pix for modality translation
from [SHSK24].

This method improves traditional image inpainting techniques because additional in-
formation is given with different inputs. The following sections explain each step in
detail.

4.2.1 Locate Background
We utilize ImageBind [GENL+23], a model capable of learning a joint embedding across
multiple modalities, to locate background frames in thermal and depth that closely match
the given RGB data. Formally, let fRGB(I) and fthermal(T ) denote the functions that
compute embeddings for an RGB image I and a thermal image T respectively. For a
set of RGB images from the same sequence {I1, I2, . . . , In}, embeddings are given by
Ei

RGB = fRGB(Ii). The process for thermal embeddings Ej
thermal follows similarly.
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4. Mapping RGB to Thermal and Depth

To calculate similarity measures for an RGB image Ii to a set of thermal images
{T 1, T 2, . . . , T m}, we employ the cosine similarity SC(A, B) and compute a score vector
as:

Si
thermal =


SC(Ei

thermal, E1
RGB)

SC(Ei
thermal, E2

RGB)
...

SC(Ei
thermal, Em

RGB)

 (4.1)

Where the cosine similarity is defined as

SC(A, B) = A · B

∥A∥∥B∥ (4.2)

Since all computed similarities originate from the same RGB sequence, we compute the
average over the cosine similarity between each background embedding and RGB image.
An average score vector is obtained by aggregating scores for multiple RGB images:

S̄i
thermal = 1

n

n

i=1
Si

thermal (4.3)

The index of the background closest to our RGB images is determined by

indexthermal = arg min
j

(S̄j
thermal) (4.4)

The same approach is used for finding matching depth or other domain backgrounds.

4.2.2 Obtain Human Masks
For obtaining human segmentation masks from RGB images, our methodology uti-
lizes a combination of YOLOv6 [LLJ+22], a powerful object detection model, and the
SAM [KMR+23], a versatile segmentation tool. Specifically, YOLOv6 is first employed
to accurately detect human figures within the RGB images, which are then precisely
segmented using the SAM in the cropped regions identified by YOLOv6. This combi-
nation is specifically chosen for its effectiveness in accurately detecting and segmenting
human figures from diverse backgrounds in RGB images. Moreover, the flexibility of this
approach allows for easy adaptation to various contexts beyond HBA, such as animal
behavior analysis, by simply replacing the object detector with one that is more suited
to the new subject matter.
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4.2. Multimodal Input

4.2.3 Pre-Process Data

Figure 4.5 displays extracting and cropping the RGB image and preparing the normalized
Signed Distance Field (SDF).

SDF

Cropped RGB

Figure 4.5: Visualization of extracting RGB and the normalized Signed Distance Field.

The preprocessing begins with creating an SDF based on the previously extracted human
masks. The SDF indicates the distance of each pixel to the nearest boundary of the
human subject, with negative values inside and positive values outside the subject. In
our approach, we invert the SDF, setting negative values to zero, and apply min-max
normalization. This inversion and normalization are crucial as they enhance the model’s
ability to discern spatial relationships within the image, particularly between the person
and their surrounding environment.

Subsequently, we extract the subject from the RGB image using a bounding box slightly
larger than the binary mask. This extraction process is replicated for both the background
and the SDF. Additionally, we apply a masking technique to remove the background
from the RGB image, focusing the model’s attention solely on the human figure. This
step, referred to as "Cropped RGB" in our translation process, significantly simplifies the
translation task and contributes to the stability of the model’s training.

In the final preprocessing step, all inputs are resized to a uniform dimension of 256 × 256
pixels. This standardization is essential for maintaining consistency across the dataset
and ensuring compatibility with our translation models, which are optimized for inputs
of this specific size.
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4. Mapping RGB to Thermal and Depth

4.2.4 Translate Data

The core of our data translation process is a network architecture inspired by the Pix2Pix
framework [IZZE17]. Our approach, however, diverges from the conventional usage
of Pix2Pix, as we focus on translating between modalities rather than within a single
modality. To achieve this, our network utilizes a unique five-channel input comprising
the RGB data, depth or thermal background, and the normalized Signed Distance Field
(SDF). This combination is specifically tailored to facilitate the translation of RGB data
into depth or thermal modalities.

Our backbone architecture is a standard UNet [RFB15], enhanced with an EfficientNet-
B4 [TL19] as its encoder. The choice of EfficientNet-B4 is driven by its proven efficiency
and effectiveness in various image processing tasks, making it well-suited for our complex
translation objectives. Figure 4.6 shows the EfficientNet-B4 architecture.

Figure 4.6: The architecture of EfficientNet-B4, highlighting its key components and
efficiency in image processing [TL19].

Furthermore, we simplify the prediction task for our model by manually adding the
background to the output post-prediction. This step ensures that the model primarily
focuses on accurately inserting the human figure into the scene rather than reconstructing
the entire background from scratch.

The training of our network is guided by a joint objective that involves minimizing
both the L1 loss and the BCE loss. We decide to choose the L1 loss over L2 loss in
our network training due to its effectiveness in preserving image details and avoiding
blurred outputs. L1 loss is more robust to outliers and emphasizes absolute differences,
ensuring small discrepancies significantly impact the loss. This leads to sharper and more
detailed image generation. The L1-loss is calculated about the ground truth thermal or
depth frame, while the BCE-loss is derived from a PatchGAN discriminator as described
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in [IZZE17]. The PatchGAN discriminator evaluates local image patches, providing an
adversarial challenge to our model. This encourages the model to focus on minimizing
the L1-distance error and significantly enhancing the perceptual quality of the translated
images. By addressing both these aspects, we aim to ensure that the translated images
are accurate in terms of content and visually convincing and realistic.

4.2.5 Post-Process Data
The concluding stage of our pipeline is the post-processing of data, focusing on integrating
translated cropped subject images into their original backgrounds. This step ensures
the seamless blend of the translated images within the original context, thus preserving
the scene’s naturalness and coherence. The post-processing procedure is done in the
following five stages:

1. Dilation of the Original Mask: Initially, the original mask is dilated using an
8 × 8 kernel. This expansion aids in preparing the mask for the subsequent blending
phase, ensuring a smooth transition between the translated image and the original
background.

2. SDF Computation: A dilated mask SDF is computed. Within the original mask,
SDF values are set to zero to focus exclusively on the border areas for blending.

3. Inversion and Normalization of the SDF: The computed SDF is inverted
and normalized by dividing by its maximum value, transforming it into a format
suitable for the blending process.

4. Alignment and Extraction of Masks and Translated Images: The masks
and translated images are adjusted to align with the original image dimensions.
The translated and interpolated masks are extracted accordingly.

5. Merging of Translated Image into the Original Image: Finally, the translated
image is merged into the original image. Pixels within the original mask are directly
replaced, and weighted blending is performed at the border using the normalized
SDF values to ensure a smooth transition.

The use of a normalized SDF and careful mask alignment ensures seamless transitions
between frames. The final merging step, combining pixel replacement and weighted
blending, maintains the natural aesthetics of the scene.

4.3 Results
The effectiveness and accuracy of our translation method are shown in Figure 4.7. These
results demonstrate the model’s capability to accurately transform RGB images into
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4. Mapping RGB to Thermal and Depth

Figure 4.7: Illustration of the RGB to depth and thermal data transformation quality.

depth and thermal data, particularly highlighting the detailed rendering of human features
in these modalities.

For example, the face is visible within the thermal frame instead of the single modality.
The synthetic thermal data clearly shows that the head is significantly hotter than the
upper body, which is typical for thermal images of humans.

To summarize, our final approach contributes in several significant ways:

1. Simplification of the prediction task using depth and thermal backgrounds, which
aids in isolating the subject of interest from its surroundings.

2. Implement an adjusted Pix2Pix framework to ensure precise translation of subject
details from RGB to the target modality.

3. Interpolation between generated details and prepared backgrounds, facilitating
seamless integration of the subject into the new modality.

42



4.3. Results

4. Conditioning on the cropped and masked RGB image, providing pixel-wise in-
formation of object surface characteristics for more accurate temperature value
prediction.

5. Use a normalized signed distance function (SDF) to add spatial context to the
translations.

Details are described in Algorithm 2.

Algorithm 4.2: Adjust and Integrate Translated Frame
Result: Adjust and integrate translated frame to create final frame

1 Function AdjustAndIntegrateFrame(D, T, M, ymin, ymax, xmin, xmax);
2 H, W ← Shape(M);
3 OD, OT ← Copy(D), Copy(T );
4 # Preparation steps;
5 K ← Ones((8, 8), bool);
6 DM ← BinaryDilation(M, structure = K);
7 IM ← DM and not M ;
8 # Compute SDF for dilated mask and normalize it;
9 S ← ComputeSDF(DM );

10 S[M ] ← 0;
11 if Max(S) ̸= 0 then
12 S /= Max(S);
13 end
14 # Adjust masks and SDF to align with the generated images;
15 ymin ← max(0, ymin);
16 xmin ← max(0, xmin);
17 ymax ← min(H, ymax);
18 xmax ← min(W, xmax);
19 TM ← M [ymin : ymax, xmin : xmax];
20 TI ← IM [ymin : ymax, xmin : xmax];
21 # Apply translations and integrations;
22 OD[M ] ← D[TM ];
23 OT [M ] ← T [TM ];
24 OD[IM ] ← (Blend(OD, D, S))[IM ];
25 OT [IM ] ← (Blend(OT , T, S))[IM ];
26 return OD, OT ;

• D: Depth frame to be adjusted and integrated.

• T : Thermal frame to be adjusted and integrated.

• M : Binary mask indicating regions of interest.
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4. Mapping RGB to Thermal and Depth

• H, W : Height and width of the mask.

• OD, OT : Original depth and thermal frames, respectively.

• K: Kernel used for binary dilation.

• DM : Dilated mask obtained from binary dilation of M .

• IM : Interpolated mask, derived from the difference between the dilated mask and
the original mask.

• S: Signed Distance Field (SDF) computed from the dilated mask.

• TM : Translated mask, cropped based on the bounding box coordinates.

• TI : Translated interpolated mask, cropped similarly to TM .
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CHAPTER 5
Action Recognition and

Segmentation

Our evaluation of the ablation studies and downstream tasks of our dataset and synthetic
dataset pipeline is organized into a series of tasks that demand different deep learning
architectures. The assessment of modalities and synthetic datasets is concentrated on
the following tasks:

• Human Mask Segmentation: This process involves identifying and isolating the
human figures from the background in each video or image frame. Using varying
models, the algorithm detects the outline of human subjects and segments them,
effectively separating them from other elements in the scene. The accuracy of
human mask segmentation directly impacts the performance of subsequent analyses.

• Temporal Action Recognition: Temporal Action Recognition refers to identi-
fying and classifying specific actions or behaviors exhibited by subjects over time
within a video sequence. Unlike static image recognition, this involves analyzing
the temporal dynamics and changes in consecutive frames to recognize actions.
This task is essential for applications, including video surveillance, sports analysis,
and healthcare monitoring, where understanding and interpreting human actions
and activities over time is necessary.

To achieve human mask segmentation, we employ U-Net [RFB15] and a pre-trained
DeepLabV3[CZP+18]. For action and activity recognition, we use a 3D ConvNet [TBF+15]
and a 3D ResNet .
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5. Action Recognition and Segmentation

5.1 U-Net
The U-Net architecture, initially developed for biomedical image segmentation, is a
CNN known for its efficiency for segmentation tasks [RFB15]. U-Net’s architecture
is characterized by its symmetric U-shape, designed to efficiently capture context and
localization information. The network consists of two primary paths: the contraction path
(encoder) and the expansion path (decoder). Figure 5.1 shows the U-Net architecture
and explains its name.
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Figure 5.1: The U-Net architecture demonstrates its symmetric U-shape with an encoder
(contraction path) and a decoder (expansion path) from [RFB15].

The contraction path follows the typical architecture of a CNN. It comprises repeated
application of two 3 × 3 convolutions, each followed by a rectified linear unit (ReLU) and
a 2 × 2 max pooling operation with stride 2 for downsampling. With each downsampling
step, the network doubles the number of feature channels.

The expansion path involves upsampling the feature map and a 2 × 2 up-convolution
that halves the number of feature channels. This is followed by a concatenation with
the correspondingly cropped feature map from the contraction path and two 3 × 3
convolutions, each followed by a ReLU. This path increases the resolution of the output.

A key feature of the U-Net are the skip connections that connect the contraction path to
the expansion path. These connections help the network localize and learn representations
for segmentation by combining general and local features.
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5.2. DeepLabV3

The final layer of the U-Net is a 1 × 1 convolution that maps each feature vector to the
desired number of classes. In the case of binary segmentation, it commonly maps to one
channel with sigmoid, where 0 marks the background and 1 the object, or two channels
that represent the object and the background.
For our evaluation, we utilize a U-Net to segment human masks from images. The
network’s ability to effectively capture context and detailed localization information
makes it well-suited for this task.

5.2 DeepLabV3
DeepLabV3 is an advanced semantic segmentation model. It is designed to segment
complex images into specific classes efficiently and was introduced by Chen et al. [CZP+18].
DeepLabV3 performs superior to U-Nets, especially when pretrained on extensive datasets
like COCO [LMB+14]. Figure 5.2 visualizes the DeepLabV3 architecture.

Figure 5.2: The DeepLabV3 architecture, demonstrating its key components such as
Atrous Convolution and Atrous Spatial Pyramid Pooling (ASPP) from [CZP+18].

DeepLabV3 extends upon U-Nets by integrating the concept of dilated or Atrous convo-
lutions, which enables the model to capture multi-scale contextual information without
losing resolution. This is particularly beneficial for segmenting objects of different sizes
in an image.
One of the distinguishing features of DeepLabV3 is the Atrous Spatial Pyramid Pooling
(ASPP) module. ASPP probes an incoming feature map with filters at multiple scales,
allowing the network to capture both local details and broader context.
DeepLabV3 typically uses a modified Xception or ResNet as a feature extractor, pre-
trained on a large-scale dataset like ImageNet. This backbone is used for initial feature
extraction before the ASPP module. It adopts an encoder-decoder structure, where
the encoder utilizes atrous convolutions for feature extraction, and the decoder refines
the segmentation results, focusing on object boundaries for more precise segmentation.
DeepLabV3 is particularly effective for human segmentation tasks due to its ability to
handle varied object scales and complex scenes.
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5. Action Recognition and Segmentation

We employ a DeepLabV3 model for human segmentation that is pretrained on the COCO
dataset. The first layer channels of the model are modified to align with the modalities
we want to use.

5.3 3D ConvNet
3D Convolutional Networks (3D CNN) have emerged as a powerful tool in computer
vision, particularly for tasks that involve understanding spatial and temporal dynamics
in video data [TBF+15]. In this section, we explore the architecture and application of
3D CNN in our research, mainly focusing on their role in analyzing video sequences for
action recognition and other dynamic tasks.

Figure 5.3 presents a visual comparison between 2D and 3D Convolutional Networks.
Specifically, Figure 5.3a showcases a 2D Convolution, where the convolutional operation
is applied over two dimensions, typically height and width. This is commonly used in
image processing tasks. In contrast, Figure 5.3b displays a 3D Convolution, illustrating
how convolutional layers extend to three dimensions, including the temporal dimension
alongside height and width. This approach is beneficial in analyzing data with a time
component, such as videos.

(a) 2D Convolution (b) 3D Convolution

Figure 5.3: Comparison between 2D and 3D Convolutional Networks. Left: The structure
and processing of a 2D Convolutional Network, focusing on spatial features. Right: The
architecture of a 3D Convolutional Network, highlighting its ability to process both
spatial and temporal dimensions in video data.

In a 3D CNN, convolutional layers apply 3D kernels to the input data. To extract features,
these kernels move along the three axes: height, width, and time to pull features. This
process helps capture spatial features like shapes and textures and temporal features
like movements and actions. The following equation can represent the operation of a 3D
convolution:

V ′
xyz =

i,j,k

Kijk · V(x+i)(y+j)(z+k) (5.1)

where V ′ is the output volume, V is the input volume, K is the 3D kernel, and x, y, z
are the spatial and temporal coordinates of the output volume.
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Similar to 2D ConvNets, 3D ConvNets also utilize pooling layers to reduce the spatial
dimensions of the feature maps, thereby reducing the computational load and the risk of
overfitting. The pooling operation is also performed in three dimensions. After several
convolutional and pooling layers, the network uses fully connected layers to integrate the
learned features into a format suitable for classification or other high-level tasks.

For downstream action recognition tasks, we utilize 3D ConvNets due to their capability
to capture and interpret temporal dynamics in videos. These networks can recognize
and classify complex actions by processing sequences of frames. The ability to analyze
the progression of movements over time makes 3D ConvNets particularly effective in
understanding and identifying various actions and behaviors within video sequences.

The 3D ConvNet deployed in this thesis has been structured to process and analyze
multimodal data. This model comprises four primary convolutional blocks, where each
block consists of a 3D convolutional layer followed by a MaxPooling layer. These layers
work to progressively reduce spatial dimensions while capturing higher-level features.
Subsequent to these convolutional blocks, our model employs an Adaptive Average Pooling
layer, which condenses the feature map into a more manageable size. Finally, the network
is equipped with three distinct classifier sequences, each for specific classification tasks
with varying output dimensions, employing ReLU activation, Dropout for regularization,
and appropriate output layers for multilabel and mutually exclusive label classification.

5.4 3D ResNet
3D Residual Networks (3D ResNets) adapt the ResNet architecture for 3D data, such as
videos or volumetric images. These networks have gained prominence for their effectiveness
in handling the spatial-temporal aspects of video data, making them particularly suitable
for tasks like action recognition and scene understanding in videos.

Figure 5.4: The architecture of a 3D Residual Network demonstrates its ability to process
spatial and temporal information in video data [HKS17].

3D ResNets extend the concept of residual learning to three dimensions. The architecture
introduces residual connections (or skip connections) in 3D convolutional neural networks.
These connections allow the network to bypass one or more layers, which helps alleviate
the vanishing gradient problem and enables the training of deeper networks.
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In a 3D ResNet, the convolutional layers are three-dimensional, processing data across
spatial dimensions (height and width) and the temporal dimension (depth or time). This
approach allows the network to extract features that encapsulate spatial and temporal
information, making it efficient for video analysis.

The key feature of 3D ResNets is the residual connections that skip one or more layers
by performing identity mapping. These connections help preserve the information from
earlier layers and reduce the training difficulties in deep networks. They also enable the
network to learn more refined and complex features from the data.

Like other CNN architectures, 3D ResNets also include pooling layers for dimensionality
reduction and fully connected layers for classification. The pooling layers in 3D ResNets
operate in three dimensions, consolidating both spatial and temporal features.

3D ResNets, are a specialized form of 3D Convolutional Networks. They are essentially
3D ConvNets that incorporate specific layer combinations and skip connections, which
enhance their ability to understand temporal sequences. We employ 3D ResNets alongside
our custom 3D ConvNet to create a more comprehensive and comparable with other
work.

5.5 Other concepts
Modality Fusion is a concept in multi-modal data processing, where information from
different modalities (like RGB, depth, and thermal data) is combined to enhance the
performance of machine learning models. Fusion can occur at different stages: early
(beginning), middle, or late (end).

Early fusion combines raw data from all modalities at the beginning of the process.
While it allows the model to learn from the raw combined data, it may also increase the
complexity and computational cost. Our research focuses on early fusion, which directly
integrates raw data.

Middle fusion involves combining features after they have been processed individually to
a certain extent. This method allows each modality to be processed independently to
extract relevant features before merging which can lead to a more efficient and effective
learning process as the model leverages independent and combined features.

Late fusion combines the outputs of separate models for each modality at the final stage.
This approach is beneficial when different modalities contribute independently to the
final decision but may lack the synergy of combined feature learning.
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CHAPTER 6
Evaluation & Results

In order to accurately assess the effectiveness of the modalities and datasets discussed in
this thesis, a comprehensive evaluation is necessary. By focusing on action recognition
and segmentation tasks, we obtain a better understanding of how these modalities and
datasets perform in real-world scenarios.

The first part of the analysis is an ablation study, aimed at identifying the most effective
combinations of the modalities RGB, depth, and thermal. This study aims to identify
the individual and combined effects of the approaches on model performance.

Furthermore, we examine the role of a discriminator within a U-Net architecture, particu-
larly its impact on the quality of generated outputs. This investigation includes empirical
tests to determine whether the inclusion of a discriminator leads to enhanced accuracy
and segmentation quality.

Another aspect of the study involves experimenting with different input conditions of the
U-Net. By varying the input configurations, the goal is to find the optimal setup that
enhances the network’s efficiency in processing multi-modal data for segmentation tasks.

Finally, we focus on action recognition models. This evaluation is conducted in two
stages: initially assessing the models’ performance on real data to establish a baseline,
and subsequently evaluating their effectiveness with synthetic data. This part of the
evaluation tests the viability of synthetic data in training robust models and explores its
potential to augment data to improve the models’ generalizability and performance in
diverse conditions.

6.1 Evaluation Metrics and Methodologies
In the domain of image segmentation, action recognition tasks, and image translation,
several metrics are employed to assess the performance of models quantitatively.
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6.1.1 Image Segmentation
Intersection over Union (IoU), also known as the Jaccard Index, is a commonly used metric
for image segmentation. It measures the overlap between the predicted segmentation
and the ground truth, quantitatively assessing the model’s accuracy. IoU is defined as
the size of the intersection divided by the size of the union of the two sets (predicted
segmentation and ground truth).

Given a predicted segmentation mask P and a ground truth mask G, the IoU is calculated
as:

IoU = |P ∩ G|
|P ∪ G| (6.1)

|P ∩ G| represents the intersection, common area, of the predicted and ground truth
masks, and |P ∪ G| denotes their union, the total area covered by both masks.

The IoU score ranges from 0 to 1, where 1 indicates perfect overlap, and 0 indicates no
overlap. Higher IoU scores correspond to more accurate segmentation. This metric is
useful in scenarios where the balance between precision, i.e., how much of the predicted
segmentation is relevant, and recall i.e., how much of the appropriate segmentation was
predicted, are crucial.

6.1.2 Image Generation
The Frechet Inception Distance (FID) is a widely used metric for evaluating the quality
of images generated by machine learning models, particularly generative models like
Generative Adversarial Networks (GANs). FID measures the distance between feature
vectors calculated for authentic and generated images, typically extracted using the
InceptionV3 model [HRU+17, SVI+16].

The FID score is calculated as follows:

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)1/2) (6.2)

Where:

• µr and Σr are the mean and covariance of the feature vectors extracted from the
real images.

• µg and Σg are the mean and covariance of the feature vectors extracted from the
generated images.

• Tr denotes the trace of the matrix, which is the sum of the elements on the main
diagonal.

Lower FID scores indicate that the generated images are more similar to the real images,
implying better quality. This metric is particularly useful for quantitatively assessing
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the performance of generative models as it captures the similarity in terms of both the
content and the style of the images.

The InceptionV3 model, used in computing FID, is a deep CNN with high accuracy in
image classification tasks [SVI+16]. By using this model to extract feature vectors, FID
leverages its ability to distinguish detailed and semantic features in images.

Similar to FID, the Kernel Inception Distance (KID) measures the similarity between
real and generated images. However, KID employs a kernel-based approach to calculate
the distance between the distributions of features extracted from real and generated
images using the Inception model [BSAG18].

The KID score is computed using the following approach:

KID = Ex,x′∼Pr [k(x, x′)] + Ey,y′∼Pg [k(y, y′)] − 2Ex∼Pr,y∼Pg [k(x, y)] (6.3)

where:

• Pr and Pg are the distributions of features, based on the Inception model, for real
and generated images.

• k(·, ·) is a characteristic kernel function, such as a polynomial kernel.

• E denotes the expectation.

Unlike FID, which uses a linear layer of the Inception model, KID leverages a kernel
function to compute the mean embedding of the feature vectors in a reproducing kernel
Hilbert space. This makes KID more robust to outliers and variations in sample size.
Lower KID scores indicate more significant similarity between the distributions of real
and generated images, suggesting higher quality of the generated images.

The kernel-based approach in KID allows for a comparison between the distributions of
features, providing a reliable measure of the quality of generated images, especially in
scenarios where robustness to outliers and sample size variations is an issue.

6.1.3 Action Recognition
In action recognition, especially in the context of per-frame multi-label classification, eval-
uating models’ performance requires using specific metrics. These metrics are Accuracy,
Recall, Precision, and F1 Score.

Accuracy in this context refers to the proportion of correctly identified labels for each
frame. It measures the model’s overall correctness across all classes and labels within
each frame. The formula for accuracy is:

Accuracy = Number of Correctly Predicted Labels
Total Number of Labels (6.4)
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Recall, or Sensitivity, assesses the model’s ability to identify all relevant instances of a
label per frame correctly. It is useful for understanding how well the model captures the
occurrence of specific actions within each frame:

Recall = True Positives
True Positives + False Negatives (6.5)

Precision evaluates the proportion of predicted labels for a particular action that is
correct, reflecting the model’s ability to accurately recognize actions in each frame
without overgeneralizing:

Precision = True Positives
True Positives + False Positives (6.6)

The F1 Score is beneficial in the context of multi-label classification as it provides a
balance between Precision and Recall. It is the harmonic mean of these two metrics,
offering a single measure to assess the model’s accuracy in identifying multiple labels per
frame:

F1 Score = 2 × Precision × Recall
Precision + Recall (6.7)

These metrics collectively provide a comprehensive evaluation of a model’s performance
in action recognition tasks, where correctly identifying and classifying each action and
activity in every frame is necessary.

6.2 Benchmarking TRISTAR
Our comprehensive evaluation process focused on training a U-Net and DeepLabV3 for
human segmentation and an action detection model using RGB, thermal, and depth
modalities. To create a fair comparison across these different modalities, we standard-
ized each modality’s input using z-normalization based on the respective training set’s
mean and variance. We then update the size of each model’s input channels to fit the
combination of modalities. For instance, when combining depth and thermal data, the
input channel size was is set to two, whereas utilizing all modalities expands the input
channel size to five.

6.2.1 Split
Our model’s benchmarking involves dividing our dataset into training, validation, and
test splits based on the shot level rather than the frame level. This ensures that all
frames within a single shot are exclusively assigned to one of these sets, eliminating the
risk of information leakage. We also minimize overlaps in offices and subjects within the
different shots. The data is distributed as 63.77%for training, 18.23% for validation, and
18.00% for the test set, corresponding to 9,959 frames in training, 2,848 in validation,
and 2,811 in testing.
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6.2.2 Human Segmentation
For the task of human segmentation, we employ an U-Net [RFB15] and DeepLabv3 [CZP+18]
architectures. We use a DeepLabv3 model pretrained on the COCO dataset, then fine-
tune it on TRISTAR. An early fusion technique is implemented, normalizing the input
frames from each modality and concatenating them to form the multi-modal input. The
DeepLabv3 model, designed initially for RGB inputs, is adapted to include input channels
for thermal and depth modalities. In scenarios including the RGB modality, we replicate
the original RGB weights in the new input layer. For additional modalities we duplicate
the R channel. After ten epochs of training at a learning rate of 0.0001, the model with
the lowest validation loss is selected for testing. Surprisingly, as shown in Tables 6.1a
and 6.1b, the best performance is achieved by excluding the RGB modality, highlighting
the importance of the thermal modality in environments with RGB clutter.

Table 6.1: Results for Segmentation using U-Net and DeepLabv3 on the test set. The
input layers channel are updated to accommodate the concatenation of the models.

(a) Results for U-Net.

RGB Depth Thermal Loss IoU
– – ✓ 0.040 0.659
– ✓ – 0.055 0.580
– ✓ ✓ 0.020 0.775
✓ – – 0.147 0.356
✓ – ✓ 0.062 0.673
✓ ✓ – 0.071 0.553
✓ ✓ ✓ 0.025 0.726

(b) Results for DeepLabv3.

RGB Depth Thermal Loss IoU
– – ✓ 0.041 0.660
– ✓ – 0.045 0.622
– ✓ ✓ 0.023 0.806
✓ – – 0.050 0.586
✓ – ✓ 0.041 0.670
✓ ✓ – 0.086 0.494
✓ ✓ ✓ 0.048 0.619

6.2.3 Action Recognition
Our approach to temporal action detection is based on the method presented in prior
research. We use the same early fusion technique as in the segmentation task for the multi-
modal inputs. Initialized with random weights, the model processes sets of eight frames at
a time, with the first seven providing context and the eighth frame as the prediction target.
The architecture includes four 3D convolution pooling blocks with ReLU activation for
feature extraction, global average pooling, and two MLPs for classification. The results,
detailed in Table 6.2, show that the combination of depth and thermal modalities lead to
the highest performance in action classification, reinforcing the advantages of non-RGB
modalities in complex scenes.

6.3 Inpainting Results
A key aspect of our evaluation involves comparing the performance of the model trained
solely with MSE loss against the model trained with a combination of MSE and BCE loss.
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Table 6.2: Results for Temporal Action Recognition using custom 3D Convolution
Architecture on the test set.

RGB Depth Thermal Loss Accuracy Precision Recall
– – ✓ 2.367 0.903 0.796 0.620
– ✓ – 2.504 0.889 0.749 0.577
– ✓ ✓ 2.347 0.907 0.813 0.626
✓ – – 2.659 0.876 0.704 0.537
✓ – ✓ 2.346 0.904 0.799 0.623
✓ ✓ – 2.465 0.897 0.758 0.629
✓ ✓ ✓ 2.349 0.901 0.783 0.618

Where BCE is the loss created by using the discriminator. To quantitatively assess the
performance, we compute the RMSE, FID, and KID. These evaluations are conducted
using a pretrained Inceptionv3 model, which allows us to analyze the pixel-level accuracy
and the generated images’ semantic and perceptual quality. The metrics are calculated
for the entire image, enabling a comprehensive analysis that includes the person’s contrast
against the background.

Table 6.3 presents the results of this performance comparison, highlighting the differences
between the models trained with MSE loss and the combined MSE and BCE loss in terms
of RMSE, KID, and FID. Lower values in these metrics indicate better performance, with
particular attention given to improvements in the perceptual quality of the images as
reflected in the FID and KID scores.

Table 6.3: Comparison between U-Net with MSE and MSE+BCE on various metrics for
thermal/depth image generation; lower is better.

Modality Metric MSE MSE+BCE

Thermal
RMSE 0.095 0.095
KID 0.089 ± 0.003 0.068 ± 0.002
FID 79.379 63.882

Depth
RMSE 0.139 0.133
KID 0.056 ± 0.002 0.060 ± 0.003
FID 82.096 84.905

It is crucial to acknowledge that in our evaluation, we utilized the latest feature layer
(2048) of the Inception model, originally pretrained on RGB data. Using a model
trained on a different modality than our target modalities (depth and thermal) presents
a limitation in our assessment. Specifically, this mismatch can negatively impact the
expressiveness and reliability of the FID and KID metrics in our context.

While powerful in evaluating image quality, the FID and KID metrics are fundamentally
designed for and trained on RGB data. When applied to depth and thermal data,
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their ability to capture and assess the quality of these modalities may be limited. This
limitation arises because the features extracted by the Inception model are inherently
attuned to the characteristics of RGB images, such as color and texture, which may not
be directly applicable or fully representative of depth and thermal data.

Therefore, while our results indicate the usefulness of incorporating an additional BCE
loss-particularly for the thermal modality-it is important to interpret these findings
carefully. Further research and development of evaluation metrics specifically tailored for
depth and thermal data would be beneficial in obtaining a more accurate understanding
of model performance in these modalities.

6.4 Ablation Study Input Modalities
In our evaluation, we conduct an ablation study to determine the impact of various
input combinations on the performance of our translation model. These combinations
include different configurations of backgrounds, masks, and RGB images. Additionally,
we extend our evaluation to include a comparative analysis, wherein we train an action
recognition model on both synthetic and real data from our TRISTAR dataset [SHK23].
This dataset is integral to our evaluation, serving multiple purposes:

• Providing background thermal and depth images for conditioning our translation
models.

• Supplying data for training our translation models.

• Acting as a benchmark for comparing action recognition models trained on synthetic
versus real data.

6.4.1 Ablation Study Translation
Our evaluation focuses on the effectiveness of conditioning the translation model on
different combinations of the following inputs:

• Background: If a suitable depth or thermal background is included.

• SDF: If the SDF is included.

• Crop: If a masked and cropped RGB is included.

• Add: If the background is added to the person at the end.

We assess the model’s performance using three key metrics: FID [HRU+17], KID [BSAG18]
for the semantic similarity between source and target dataset as well as MSE for the pixel
similarity. For our study, we input normalized depth and thermal data into the Inception
model by duplicating the frame three times to create a three-channel grayscale-like “RGB”
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image. To adapt the pre-trained model to our non-RGB data, we extract lower-level
features from an early layer of the model. Table 6.4 showcases the results of our ablation
study for the depth modality.

Table 6.4: Results of Depth Analysis in the Ablation Study

Background SDF Crop Add FID KID MSE
✓ ✓ ✓ ✓ 16.20021 17.91997 0.55078
✓ ✓ ✓ 34.29326 33.63969 0.53175

✓ ✓ 61.38142 57.60419 1.76927
✓ ✓ ✓ 19.01336 20.07544 0.57610
✓ ✓ 22.27072 23.33244 0.57251

Combining all input conditions (adding background, SDF, cropped RGB, and adding the
background post-translation) yields the best performance, as indicated by the lowest FID
and KID scores. This finding suggests that the translation under these conditions is more
semantically similar to real images. Lower FID and KID values signify a closer alignment
with the distribution of real image features. However, a slightly higher MSE score of
approximately 0.55 as opposed to 0.53, though moderate, points to potential discrepancies
at a per-pixel-level comparison, which may not always correlate with perceptual image
quality.

Conversely, not including the background in the final translation results in a marginal
increase in numerical accuracy but significantly elevates both FID and KID scores. This
implies that while the model might be more precise numerically, the generated images’
semantic integrity and perceptual quality are compromised.

Omitting the background altogether while retaining SDF and cropped RGB leads to
the highest increases in FID, KID, and MSE scores. This drastic increase across all
metrics highlights the critical role of the background in preserving both the semantic
and pixel-level quality of the images.

The exclusion of certain conditions, such as SDF or cropped RGB, generally results in
a moderate score increase. This indicates that each condition has a balanced impact
on both the numerical accuracy and perceptual quality of the images, underscoring
the importance of each element in maintaining the overall integrity and realism of the
synthesized images. Table 6.5 shows the results of our ablation study for the thermal
modality.

As with the depth modality, having a background for the model to condition is crucial
for performance and outweighs the impact of not using the cropped RGB and SDF. The
relatively stable FID and KID scores indicate this. However, the numerical performance,
i.e., MSE, worsens when not using the cropped RGB and SDF. This suggests that
while the overall semantic integrity of the images may be maintained, precise pixel-level
accuracy is negatively affected.
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Table 6.5: Results of Thermal Analysis in the Ablation Study

Background SDF Crop Add FID KID MSE
✓ ✓ ✓ ✓ 1.27067 0.42648 0.35773
✓ ✓ ✓ 3.56303 1.78465 0.53721

✓ ✓ 15.5289 9.11526 1.56718
✓ ✓ ✓ 1.0324 0.31805 0.53392
✓ ✓ 1.12273 0.34114 0.55877

6.5 Action Recognition Results
Our evaluation begins with a performance comparison of models trained exclusively on
either synthetic or real data. We design a 3D ConvNet for action recognition within
the TRISTAR dataset, based on our proposal for benchmarking TRISTAR [SHK23].
The quantitative assessment of these models focuses on key metrics, including accuracy,
precision, recall, and F1 score.

The outcomes of this comparison are summarized in Table 6.6. Our findings reveal a
decrease in performance, notably a ∼ 12% reduction in F1 score when models are trained
solely on synthetic data compared to real data. While this reduced performance aligns
with expectations, considering the inherent differences between synthetic and real data,
the performance of the model trained on synthetic data is still acceptable within the
context of our study’s objectives.

Table 6.6: Action Recognition Performance using 3D ConvNet

Test Metric Synthetic Data Real Data
Accuracy 0.8669 0.907
F1 Score 0.5799 0.707
Precision 0.6449 0.813

Recall 0.5268 0.626

These results show the viability of using synthetic data for training action recognition
models. While there is an observable decrease in specific metrics, the overall performance
of models trained on synthetic data offers promising insights, especially considering the
challenges and limitations of acquiring extensive real datasets in specific domains.

Next, we introduced a second model, designed closely in line with the ResNext archi-
tecture [HKS17]. Our initial model served as a baseline, whereas the 3D ResNet model
is taken from an established, research-validated framework, offering advanced features
tailored explicitly for handling complex, high-dimensional data. This model is trained
using three distinct data setups: solely synthetic data, a mixture comprising 10% real
and 90% synthetic data, and exclusively real data. This approach allows us to evaluate
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the efficiency of our methodology in varying data environments, particularly emphasizing
its potential as a data augmentation technique.

The performance of the ResNet model under these different training conditions is sum-
marized in Table 6.7. As anticipated, the model trained exclusively on synthetic data
has slightly lower performance metrics than the other setups. However, an interesting
observation is that the model trained with a mix of synthetic and real data showcases
performance metrics almost identical to those trained purely on real data. This finding
underscores the effectiveness of our synthetic data generation methodology, particularly
in scenarios where real trimodal data is limited or difficult to obtain.

Table 6.7: Action Recognition Performance using ResNet Model

Test Metric Synthetic Data Synthetic Augmentation Real Data
Accuracy 0.8712 0.90462 0.90409
F1 Score 0.5898 0.69637 0.69684
Precision 0.6636 0.78246 0.77610

Recall 0.5307 0.62734 0.63227

These results illustrate the potential of synthetic data, when used in conjunction with real
data, to achieve comparable outcomes to training with real data alone. It suggests that
our synthetic data generation approach can be a reliable augmentation step, enhancing
the training process and improving model performance in real-world applications.

Figure 6.1 shows qualitative samples of two shots from our synthetic dataset. As can be
seen, our method’s depth and thermal heat signatures appear very plausible.

The background of our synthetic data generation pipeline is not perfectly aligned, indicat-
ing that it may not be an exact replica of real-world scenarios. However, this approach
can still be a useful augmentation step in the training process. It can help models for
downstream task to focus on the person and prevent overfitting on the background.
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Figure 6.1: Qualitative synthetic data samples showing depth and thermal heat signatures.
Despite some background discrepancies, the depth and thermal representations are
convincingly realistic.

61





CHAPTER 7
Conclusion

This thesis explored multimodal machine learning, focusing on integrating depth and
thermal for human behavior analysis.

Our work consists of dataset collection and an ablation study for various modalities,
implementing novel translation methods, and developing advanced models for action
recognition and segmentation. Our implementation of RGB to depth and thermal
translation methods shows the potential of image translation in extending the utility
of existing data. This finding is particularly noteworthy as it underscores the value of
depth and thermal modalities in scenarios where RGB data may be limited or ineffective.

Moreover, our research has shown that translating RGB to depth and thermal images
is feasible and practical for training models from scratch. This approach allows for the
extension of training datasets using only RGB frames, which facilitates the development
of models that can use depth and thermal modalities.

Additionally, we have explored using this translation methodology for data augmentation
purposes. Our experiments have revealed that models trained with natural and synthetic
data can perform comparably to those trained exclusively on accurate data. We have
demonstrated that models perform similarly even when trained with a dataset comprising
10% accurate and 90% synthetic data.

The following list summarizes our contributions:

• Creating a new trimodal dataset with action recognition and human mask labels.

• Evaluating the modalities and showing empirically that the combination of depth
and thermal modality can be superior to RGB for specific scenarios, proofing their
usefulness.

• Creating a novel pipeline for RGB to depth and thermal translation.
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• A detailed evaluation of the synthetically generated datasets.

In addition to our empirical findings and methodological advancements, a notable
highlight of our work is the publication of three peer-reviewed papers. The first one to
present TRISTAR our trimodal dataset at GCPR[SHK23], the second to show single
modality translation with Pix2Pix [SHSK23] and finally the entire translation pipeline
at PeRConAI [SHSK24]. Each of these papers contributes disseminates our results and
contributions.

Our research has also practical implications. The methodologies developed can be
leveraged in surveillance, human-computer interaction, and healthcare, understanding
human behavior and actions in poorly lit or privacy-sensitive settings. In conclusion,
this thesis contributes substantially to synthetic data generation and its application in
understanding human behavior.
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CHAPTER 8
Further Work

Our work is not without limitations. In particular, the size and variety of our dataset
TRISTAR and diversity and the constraints of the translation methods employed is
limiting.

One of this study’s primary limitations is the dataset’s limited size and scope. With
around 15,618 labeled frames it is the largest trimodal dataset. However, the significant
size does not encompass the vast array of human actions and interactions in more dynamic
or diverse settings which are present in RGB datasets. This limitation is significant
in behavior analysis and synthesis, where a broader spectrum of data is required for
generalizable and accurate model training. The dataset’s constraint regarding the variety
of actions also poses a challenge, as it limits the model’s ability to learn and replicate a
broader range of human behavior. Further work should consider recording additional
datasets with a greater variety of images.

Another limitation is related to the translation methods introduced. The need for
suitable backgrounds in the database constrains these methods. The dependence on the
availability of appropriate backgrounds restricts the versatility of the translation process,
as it cannot be universally applied across all possible scenarios.

Furthermore, the assumption of a static camera in our methodology introduces limitations.
The static camera restricts the model’s applicability in more dynamic environments where
the camera is moving. In real-world applications, especially in interactive environments,
the ability to process and translate data from moving cameras can be necessary. The
static camera assumption thus limits the model’s practicality and adaptability in such
scenarios.

These limitations highlight several areas for future research and development. Expanding
the dataset to include more diverse human actions and interactions would improve
accuracy and applicability.
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Additionally, exploring translation methods that are less dependent on the background
database and can adapt to dynamic camera movements would open up new avenues for
practical applications. In terms of future work, integrating Diffusion Models could be
another improvement, given their capability to generate high-quality, diverse images.
This approach can significantly enhance the synthesis of realistic human actions and
interactions in diverse environments. The diffusion process could replace the direct UNet
approach used within our pipeline.

Moreover, a comprehensive evaluation and benchmarking against established architectures
like MiDaS [RLH+20] for depth estimation or ThermalGAN [KKH+18] for thermal image
synthesis would provide valuable insights.
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