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Abstract

In the past decades computer networks started playing major roles in peoples social, professional, and official lives.

Massive amounts of private and confidential data is sent through networks on a daily basis. We need to protect that

data from unauthorized and potentially malicious access. This requires authentication and encryption. Authentication

and encryption are usually implemented in software, but hardware can be used to improve speed and security. An

upcoming technology in cloud-environments are field-programmable gate arrays (FPGAs) and we use that architecture

to showcase our work.

In the context of digital circuitry, physical unclonable functions and random number generators are a promising tech-

nology for authentication and key-generator for encryption algorithms respectively. Most implementations of physical

unclonable functions and random number generators leverage timing phenomena in the circuits. The effectiveness of

the designs depends on the timing of the circuits. Often, the designs use timing phenomena that provoke metastabilities

or that violate setup- and hold-time requirements. We find that common design tools try hard to avoid the phenomena

that we want to leverage, as they lead to non-determinable states that are usually undesired. The implementation must

therefore be done manually by a skilled engineer.

Manual implementation, i.e., placement and routing, with strict timing requirements is a hard and time-consuming task.

It requires trial and error and a deep understanding of the underlying architecture. We propose a novel timing constraint

tailored to security primitives and a placement and routing algorithm that respects our novel timing constraint. We

name the constraint DELAY_GROUP. It annotates nets that need to have equal delay. Our novel timing constraint can be

defined directly in the design in hardware description languages or during synthesis in tool command language (TCL).

Our algorithm interacts with state-of-the-art synthesis tools via TCL. First, the algorithm places the design in a fashion

to keep cells that are connected by nets within the same DELAY_GROUP at equal distance on the FPGA. Second, the

algorithm guides the synthesis tool to finding routes between these cells that have equal delay. The algorithm substitutes

the manual effort needed during the implementation of security primitives. We thereby reduce the amount of time a

skilled engineer needs to spend on the implementation by over 98%, from two months to under six hours.

We conduct experiments on the Xilinx Virtex UltraScale+ VCU118 development board. Our algorithm guides the vendor-

specific synthesis software Vivado to a suitable implementation using TCL. The development board connects to a host

computer using universal synchronous receiver/transmitter (UART) and outputs oscillating signals used in the random

number generator design to a high speed oscilloscope using a low-voltage differential signaling link. As a use-case

design we choose the self timed ring based true random number generator (TRNG), a high performance random number

generator (RNG) design that meets the AIS 20/31 criteria. We first analyze the predicted timing calculated by static timing

analysis. This confirms our algorithm generates implementations that meet our timing constraint. Then, we measure
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the real timing using the oscilloscope to attest the functionality of the true random number generator. Lastly, we check

the final output, the generated random numbers, using stochastic test suites.

The experiments show that our algorithm matches the implementation performance of a skilled engineer in less time

without manual intervention of an engineer on the example of a self timed ring true random number generator. Our

algorithmmanages to keep the relative delay difference within all individual delay groups under 30%. The implemented

true random number generators pass the FIPS 140-2 rngtest and the NIST 800-22 stochastic test suites.

We conclude that our algorithm is suitable to implement security primitives with much less effort compared to the

state-of-the-art synthesis flow. This makes the implementation cheaper by cutting down on design costs, more reliable

by removing the human from the design loop, and more easily portable as our algorithm reduces the effort of moving to

a different hardware target. This enables low-budget projects to deploy reliable security measures within their devices.

We predict our work to make basic security primitives more accessible to engineers.



Kurzfassung

Computernetzwerke spielen seit den letzten Jahrzehnten eine große Rolle im sozialen Leben, in der Arbeit sowie bei

Amtswegen. Unvorstellbare Mengen an privaten und vertraulichen Inhalten werden täglich von solchen Netzwerken

übertragen. Diese Inhalte müssen vor unbefugten und vermeintlich böswilligen Zugriffen geschützt werden. Dafür sind

Authentifizierung und Verschlüsselung notwendig. Diese werden üblicherweise in Software implementiert, Hardware

kann jedoch verwendet werden, um die Funktionen zu beschleunigen und sicherer zu gestalten. Eine aufkommendeMe-

thode um Hardware-Security in Cloud-Umgebungen zu implementieren sind Field-Programmable-Gate-Array (FPGAs).

Wir verwenden FPGAs zum Veranschaulichen unserer Arbeit.

Bei digitalen Schaltungen sind Physical-Unclonabe-Functions für die Authentifizierung, und Zufallsgeneratoren zum Er-

zeugen von Schlüsseln für Verschlüsselungsalgorithmen, beliebte Technologien für hardwaregestützte Security-Systeme.

Die meisten Implementierungen von Physical-Unclonable-Functions und von Zufallszahlengeneratoren reizen Phäno-

mene aus, die von sehr kurzen zeitlichen Effekten stammen. Diese Effekte, wie z.B. Metastabilitäten, verhindern die

Bestimmbarkeit des Verhaltens der Systeme. Die meisten Entwicklungswerkzeuge verhindern das Auftreten solcher

Effekte deshalb systematisch. Sie müssen durch gezieltes manuelles Platzieren und Routen der Netze provoziert wer-

den. Die Implementierung muss also von einem erfahrenen Entwickler in mühsamer manueller Arbeit durchgeführt

werden.

Diese Arbeit ist sehr zeitaufwendig und damit mit hohen Kosten verbunden. Iterativ müssen Lösungen ausprobiert und

so lange verbessert werden, bis das Zeitverhalten zufriedenstellend ist. Dies verlangt viel Zeit und ein tiefes Verständ-

nis der verwendeten Architektur. Wir präsentieren in dieser Arbeit eine Methode das Zeitverhalten auf eine Weise zu

beschränken, die auf Security-Primitive zugeschnitten ist. Dazu entwickeln wir einen Algorithmus, der aktuelle Ent-

wicklungswerkzeuge ansteuert und diesen Prozess somit automatisiert. Wir nennen die Zeitverhalten-Beschränkung

DELAY_GROUP. Die Beschränkung notiert Verbindungsnetze welche die gleiche Zeitverzögerung beim Signaltransport

aufweisen sollen. Sie kann sowohl direkt in der Hardware-Beschreibung oder während der Synthese in tool command

language (TCL) angegeben werden. Unser Algorithmus interagiert dann mit aktuellen Synthese-Werkzeugen über TCL.

In einem ersten Schritt werden Logikzellen, die mit Netzen in derselben DELAY_GROUP sind, äquidistant zueinander

platziert. Dann werden die entsprechenden Netze so geleitet, dass sie dieselbe Zeitverzögerung aufweisen. Unser Algo-

rithmus ersetzt den manuellen Aufwand der zum Implementieren von Security-Primitiven notwendig ist. Dadurch wird

die Zeit, die ein erfahrener Entwickler in die Implementierung investieren muss um 98% reduziert, von zwei Monaten

auf unter sechs Stunden.

Wir führen Experimente auf einem Xilinx Virtex UltraScale+ VCU118 Entwicklungsboard durch. Unser Algorithmus

interagiert hier mit dem vom Hersteller zur Verfügung gestellten Synthesewerkzeug Vivado. Das Entwicklungsboard
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ist über universal synchronous receiver/transmitter (UART) an einen Host-Computer und über eine differentielle Nieder-

spannungsleitung mit einem Oszilloskop verbunden. Als Beispieldesign verwenden wir den self-timed-ring basierten

Zufallszahlengenerator, ein hochperformanter Zufallszahlengenerator, der den AIS 20/31 Richtlinien entspricht. Um zu

überprüfen, dass das Zeitverhalten unserer Beschränkung entspricht, analysieren wir das vorhergesagte Zeitverhalten

mithilfe von statischer Analysen. In einem zweiten Schritt messen wir das tatsächliche Zeitverhalten mit dem Oszil-

loskop, um die Funktionalität zu bestätigen. Zuletzt analysieren wir die produzierten Zufallszahlen mit stochastischen

Testbatterien.

Wir zeigen anhand des Beispiels eines self-timed-ring Zufallszahlengenerators, dass unser Algorithmus die Implemen-

tierung eines erfahrenen Entwicklers in weniger Zeit und ohne menschliches Einschreiten erledigen kann. Unser Algo-

rithmus hält die relative Zeitverzögerungsdifferenz zwischen allen Netzen unter einer definierten Schranke von 30%.

Der so implementierte Zufallszahlengenerator produziert Zufallszahlen, die die FIPS 140-2 rngtest und die NIST 800-22

stochastischen Testbatterien bestehen.

Der Algorithmus kann also verwendet werden, um Security-Primitive wie Authentifizierung und Verschlüsselung mit

wenig Aufwand in Hardware zu implementieren. Das macht die Implementierung durch Verminderung der benötigten

Arbeitszeit kostengünstiger, durch das Entfernen des Menschen in der Implementierungs-Kette zuverlässiger und durch

die Automation leichter portierbar. Das erlaubt selbst Projekten mit kleinem Budget den Einsatz solcher Schutzfunktio-

nen in deren Geräten. Wir erwarten, dass unser Algorithmus dazu beiträgt, die Einstiegsschwelle für Schutzfunktionen

in digitalen Schaltkreisen zu verringern.
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Chapter 1

Introduction

This chapter elaborates the need for hardware security in digital circuitry and why hardware security primitives are ex-

pensive to implement (Section 1.1). We give a scenario where hardware security is of particular importance by scheming

a motivating example (Section 1.2). In Section 1.3 we propose a novel design flow for the automated implementation of

hardware security primitives. The novel design flow is suitable for a wide range of hardware security primitives, but

some designs still cannot be implemented automatically as explained in Section 1.4. We condense our goals into two

research questions in Section 1.5.

1.1 Problem statement

In cryptography, high-quality cryptographic keys are needed to maintain a sufficient degree of confidentiality. High-

quality keys mainly depend on highly unpredictable random numbers. Because it is hardly possible to derive truly

unpredictable random numbers in software systems, it is necessary to exploit unpredictable user input, uncontrollable

network communication or physical noise as sources of entropy. In digital systems, examples for physical random

sources include jittery signals and circuit metastability. To exploit such physical random sources, a digital design must

meet tight physical constraints. These usually constrain the placement and routing (PnR) steps in the design and verifi-

cation flow to meet strict timing requirements. In state-of-the-art design flows for physical random sources, this is done

manually, requires manual PnR skills, and is usually a very time-consuming process. Also, resulting implementations

are architecture-dependent. The same process has to be carried out for each and every target architecture.

The state-of-the-art design process for physical random sources also has severe implications on security. Becausemanual

PnR is necessary for implementing true random number generators (TRNGs), a potential user of a cryptosystem cannot

synthesize a high-level description for a given high-security application on-the-fly. This means that the user has to use

pre-built TRNG implementations, and has to trust these implementations. However, to maintain a high level of security

the user must have full control over the physical random source which includes being able to instantiate a TRNG core

at runtime in reconfigurable environments. However, as the target architecture is not necessarily known at design

time, TRNG instantiation requires to fully automate PnR under the given physical constraints that enable to exploit the

physical random source. This is not feasible yet with existing design flows.

17
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This work elaborates a method to enable a fully-automatic synthesis of high-level designs under given physical con-

straints. We propose a set of physical parameters and a methodology to constrain these parameters at hardware descrip-

tion language (HDL) level. We show that using our methodology, (1) we significantly reduce the design-time of TRNGs,

and (2) we significantly increase the security level of a system that runs a high-security application.

1.2 Motivating example

Deploying an application to the cloud is a prominent technique to improve and reduce time to market while keeping

costs low, but it also introduces a higher demand for security. This is because the deployer is not in physical control of

the hardware anymore. As the cloud service provider (CSP) cannot be trusted, the hardware provided by the CSP cannot

be trusted either. Developers are responsible for encrypting all confidential data to protect it not only from third party

access, but also from access from the CSP. This is particularly hard, because the CSP has access to the hardware.

Most encryption algorithms rely on random numbers, so the need for secure data protection implies a dependency on

random numbers. In a cloud setting, random numbers can be obtained from:

• A dedicated hardware TRNG

• A software TRNG that extracts entropy from environmental noise such as device drivers and network traffic

Both these sources are in control of and can be manipulated by the cloud service operator meaning they cannot be

trusted.

To establish a root of trust we propose using a user-controlled hardware TRNG by instantiating a hardware TRNG core

in a field-programmable gate array (FPGA) on the remote machine. As discussed in Section 1.1, this is no trivial task and

requires a lot of design time. Therefore, we propose a novel design flow for hardware TRNGs to accelerate development

of the core.

We instantiate a TRNG core on a Xilinx Virtex Ultrascale+ FPGA and connect it via a universal synchronous receiver/-

transmitter (UART) interface to a host PC. The UART interface can be used to configure the TRNG and retrieve bytes of

random data. We show the improved performance using stochastic tests on the generated random data that is transferred

to the PC.

To showcase the usability of the proposed design flowwe synthesize a self timed ring (STR)-based TRNG (STR-TRNG) core

in different configurations. In a comparison of digital-only TRNGs published by Petura et al.1 it was the best performing

core but also one of the hardest to implement.

Figure 1.1 shows the cores presented by Petura et al.2 in the Area-Power-Performance design space. The ring-oscillator-

based elementary TRNG (ERO-TRNG), ring-oscillator-coherent sampling based TRNG (COSO-TRNG), coherent-sampling-

based TRNG using Phase-locked loops (PLLs) (PLL-TRNG) and transition-effect-ring-oscillator-based TRNG (TERO-TRNG)

are all low-power, low-area but also low-performance cores. The multi-ring-oscillator-based TRNG (MURO-TRNG) per-

forms a little better at the cost of significantly higher area and power consumption. The STR-TRNG offers by far the

highest performance by using less area than the MURO-TRNG and consuming only 20% more power.
1 O. Petura et al. “A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA Devices”. In: 2016 26th International Conference on Field
Programmable Logic and Applications (FPL). Aug. 2016.
2 Ibid.
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Figure 1.1: TRNG cores presented in O. Petura et al. “A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA
Devices”. In: 2016 26th International Conference on Field Programmable Logic and Applications (FPL). Aug. 2016 compared
by power, area, and performance. More details can be found in Table 2.1.

1.3 Proposed design flow

Figure 1.2 shows the state-of-the-art (left) and the proposed design flow (right). The cumbersome manual PnR task is

replaced by a PnR algorithm that takes into account the timing constraints defined on HDL or Xilinx Design Constraints

(XDC) level. It removes the human from the loop providing a fully autonomous synthesis flow without the need for

intervention.

1.4 Limitations

The proposed flow has a few shortcomings. It can only generate cores that have no timing dependencies that cannot

be checked with static timing analysis (STA). Also, one still needs to select an appropriate TRNG design and, therefore,

understand the TRNG designs. To improve that, we suggest a few improvements to the flow to further aid designers in

integrating a TRNG in their circuits with minimal knowledge:

• Generic TRNGs

Instead of constraining physical properties on HDL-level, one could implement a TRNG interface which creates a

TRNG based on area / power / performance requirements. The designer would only need to specify the maximum

available area and power for the core and the desired performance and, if possible, the tools would automatically

select and constrain a core based on that.

• Consider hardware feedback.

The proposed flow can be used to implement TRNGs designs for which the quality of the TRNG is dependent on

its routing. The routing dependencies however must be known at design time and cannot change from device

to device. A resulting design would then produce random numbers of similar quality on multiple devices within

the same family. This is not the case for all designs. E.g., the TERO-TRNG from Petura et al.3 needs to be placed

and routed for each single device individually. This could be supported by incorporating the target device into

the design-cycle. First, constraints are defined based on some heuristic. The design would need to be synthe-

sized based on those constraints and programmed onto the target FPGA. The electronic design automation (EDA)

software would then need to monitor the desired runtime properties and adapt the constraints accordingly. This
3 Ibid.
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HDL

Synthesis

Techmapped netlist

Place and Route

Post Place and Route netlist

Timing analysis

Timed netlist

Bitstream generation

Bitstream

Partial
PnR Constrain PnR

High-Level
timing constraints

Partial
PnRManual PnR

State-of-the-art
approach

Proposed, automatic approach based on
constraints for security primitives

Figure 1.2: Comparison of the current state-of-the-art design flow for field-programmable gate arrays (left) and our
proposed flow to facilitate the placement and routing of security primitives (right). We introduce high-level timing
constraints specific to security primitives. We can then avoid the time-consuming manual placement and routing step
with our proposed algorithm that respects these timing constraints.

hardware in the loop cycle could then be continued until all requirements are met or the synthesis-tool is certain

that no such configuration exists.

1.5 Research questions

We aim to answer the following research questions:

1. Do common designs of the security primitives ’true random number generator (TRNG)’ and ’physical unclonable

function (PUF)’ possess common general properties related to their physical implementation?

2. To what extent can we automate the implementation of security primitives in reconfigurable digital circuits and

how much development time can be saved by automation?



Chapter 2

Preliminaries

Cybersecurity is an omnipresent property in today’s computer-aided world. With governments starting to regulate

how businesses must handle confidential data, it has evolved from best-practice to unavoidable duty.1 All businesses,

no matter how little or large, need to protect all processed customer data from unprivileged access. Moving data across

public networks is risky, so all data flow needs to be secure.

Data flow is usually modeled in layers. These layers commonly include,2 but are not limited to,3

1. The application layer,

2. The presentation layer,

3. The session layer,

4. The transport layer,

5. The network layer,

6. The data-link layer and

7. The physical layer.

This work focuses on Layer 7. It was shown that hardware security primitives are susceptible to malicious attacks4 and

to Trojan insertion in the integrated circuit (IC) supply chain.5 Researchers found widely used central processing units

(CPUs) susceptible to side-channel attacks.6

1 European Commission. Art. 32 GDPR: Security of processing. Ed. by European Commission. https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679. Apr. 27, 2016. (Visited on 05/10/2021).
2 J. Day and H. Zimmermann. “The OSI reference model”. In: Proceedings of the IEEE 71.12 (Dec. 1983).
3 M. Yildiz et al. “A Layered Security Approach for Cloud Computing Infrastructure”. In: 2009 10th International Symposium on Pervasive Systems,
Algorithms, and Networks. ISSN: 2375-527X. Dec. 2009; J. K. Barr et al. “Layered security in digital watermarking”. en. US8190901B2. May 29, 2012.
4 M. Rostami, F. Koushanfar, and R. Karri. “A Primer on Hardware Security: Models, Methods, and Metrics”. In: Proceedings of the IEEE 102.8 (Aug.
2014).
5 C. Krieg, C. Wolf, and A. Jantsch. “Malicious LUT: A stealthy FPGA Trojan injected and triggered by the design flow”. In: 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). ISSN: 1558-2434. Nov. 2016; C. Krieg et al. “Toggle MUX: How X-optimism can lead to
malicious hardware”. In: 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). June 2017.
6 P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: 2019 IEEE Symposium on Security and Privacy (SP). ISSN: 2375-1207. May
2019; M. Lipp et al. “Meltdown”. In: arXiv:1801.01207 [cs] (Jan. 2018). arXiv: 1801.01207.
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Hardware

y = f(x)

Software

x y

Environment

Figure 2.1: Software encapsulation. Designers usually design Hardware to absorb any environment impact within an
operating range. Software is thereby protected from environmental change and can run deterministically.

This chapter explores the current state-of-the-art in hardware security primitives (Section 2.1). We focus on true ran-

dom number generators (TRNGs) (Section 2.1.1) and physical unclonable functions (PUFs) (Section 2.1.2). We show that

hardware security primitives are dependent on particular timing requirements that are hard to satisfy (Section 2.2). We

select a security primitive from the class of TRNGs, the self timed ring (STR)-based TRNG (STR-TRNG), as a use-case

example (Section 2.3).

2.1 Security primitives in reconfigurable hardware

Software needs hardware to run on. Hardware encapsulates software by absorbing environmental noise, as seen in

Figure 2.1. This makes software deterministic. Software will only change its behavior when either the perceivable

environment or the input data change.

This is generally considered a good thing, as determinability improves software stability. However, because the input

data and the software-environment it operates in can be controlled, software is encapsulated in a deterministic world

without randomness.

Things are different for hardware, as the environment is much harder to control. Examples for environmental variations

include temperature and power fluctuations, cosmic rays, and process variations; there are numerous factors that affect

the internal of a hardware circuit. Hardware designers take great measures to prevent environmental changes to be

visible to the user on it’s output. This includes wide voltage7 and timing tolerances8 in logic circuits and error correction

code (ECC) techniques.9

On the other hand, hardware also affects the environment. Electronic andmagnetic fields can be used to observe internal

hardware signals. This is called a side channel attack.

With these variations in mind, hardware can be designed:

1. for non-deterministic behavior, i.e., random number generators (RNGs), for

7 JEDEC. Interface Standard for Nominal 3 V/3.3 V Supply Digital Integrated Circuits. Tech. rep. JEDEC, June 2006; JEDEC. 2.5 V ± 0.2 V (Normal
Range) and 1.8 V – 2.7 V (Wide Range) Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated Circuits. Tech. rep. JEDEC,
June 2006.
8 Xilinx. UG903 Vivado Design Suite User Guide: Using Constraints. Ed. by Xilinx. 2019.1. June 21, 2019.
9 M. Y. Hsiao. “A Class of Optimal Minimum Odd-weight-column SEC-DED Codes”. In: IBM Journal of Research and Development 14.4 (July 1970).
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2. deterministic behavior unknown and unpredictable during production, i.e., PUFs10 or to

3. hide sensitive information from side channel attacks by producing additional electronic and magnetic fields.

Intellectual property cores (IP cores) that are designed to provide such functionality are often considered hardware security

primitives.11 In this work, we elaborate on Security primitive 1, RNGs, and Security primitive 2, PUFs.

RNGs and PUFs will be discussed in Section 2.1.1 and Section 2.1.2 respectively with a focus on RNGs since we build an

RNG as our use-case example. Concrete design examples will be given for field-programmable gate arrays (FPGAs) for

the same reason.

2.1.1 Random number generators

Random numbers are needed in a variety of applications. In some domains, such as video gaming, there is no strict

requirement on the quality of the random numbers. In other domains, such as gambling and cryptography, predictable

random numbers can cause loss of capital12 or leakage of restricted information.13 Due to the deterministic property of

processes, unpredictable random numbers can be hard to obtain. RNGs need a source of entropy. Example sources of

entropy include:

1. Network traffic,

2. Timing and values of input/output (I/O) devices,

3. Radioactive decay,

4. Sensor noise,

5. Quantum noise,

6. Deterministic procedures,

7. Metastability of logic blocks,

8. Clock jitter, and

9. Combinations of the above.

If users are in full control over a system, they can freely choose an adequate source of entropy from the list above.

However, if they are not in control of the physical hardware (e.g., in cloud environments), most of the options listed

above are not available. Entropy source 1 and Entropy source 2 can be controlled by the cloud service provider (CSP)

and are therefore not trustworthy enough as sources of entropy for cryptographic algorithms. Sensors are needed for

Entropy source 3 to Entropy source 5. These sensors are usually not available in a cloud setting and if they would be,

they would be in control of the CSP and therefore also unsuitable for security applications. Random numbers obtained

from deterministic procedures (Entropy source 6) are not truly random. As the word suggests, they are calculated
10 T. Rahman. “Hardware-based security primitives and their applications to supply chain integrity”. PhD Dissertation. University of Florida, 2017.
11 Y. Bi et al. “Emerging Technology-Based Design of Primitives for Hardware Security”. In: J. Emerg. Technol. Comput. Syst. 13.1 (Apr. 2016).
12 R. Forgrave. The Man Who Cracked the Lottery. en. https://www.nytimes.com/interactive/2018/05/03/magazine/money-issue-iowa-lottery-fraud-
mystery.html. May 2018. (Visited on 06/24/2021).
13 M. Green. The many flaws of Dual_EC_DRBG. https://blog.cryptographyengineering.com/2013/09/18/the-many-
flaws-of-dualecdrbg/. 2013. (Visited on 02/19/2021).

https://blog.cryptographyengineering.com/2013/09/18/the-many-flaws-of-dualecdrbg/
https://blog.cryptographyengineering.com/2013/09/18/the-many-flaws-of-dualecdrbg/


24 CHAPTER 2. PRELIMINARIES

deterministically. Anybody with knowledge of the used procedure can potentially predict the generated numbers. They

fall into the class of Pseudo random number generators (PRNGs). State-of-the-art approaches14 include:

• The Mersenne Twister,

• The Well Equidistributed Long-period Linear (WELL) family,

• The XORShift, and

• The Tausworthe random number generator.

Hardware implementations for reconfigurable hardware exist as well.15

Some CSPs offer FPGAs as a shared resource, allowing users to implement custom logic connected to their cloud in-

stances. In that case, Entropy source 7 and Entropy source 8 can be used as entropy sources in such cloud environ-

ments.

Petura et al. present a variety of commonly used RNG implementations16 for FPGAs. They select six designs based on

the following criteria:

1. Digital-only design

2. AIS-20/31 compliance

(a) Simple and comprehensible design

(b) Clearly defined source of entropy

(c) Stationary random process with feasible stochastic model

(d) Accessible raw binary signal for testing

3. FPGA vendor- and family agnostic

AIS-20/31 compliance allows the generated random numbers to be used in cryptographic applications. Criterium 1

and Criterium 3 make them easily portable to many hardware targets.

All designs in Petura et al.’s work share the basic working principle: a slow, jittery clock clks is used to sample a much

faster clock clkf in order to extract entropy from the jitter of clks. An example circuit demonstrating the sampling is

shown in Figure 2.2a.

The timing diagram of the sampling process can be seen in Figure 2.2b. The time-function of the sampling clock, clks,

has windows of uncertainty around its edges. These windows stem from the clock’s imprecise timing and are called

jitter windows. Jitter is an inherent property of all clock generators. It is defined as the deviation from true periodicity

and measured either as an absolute value in seconds or relative to the clock period in percent.
14 K. Bhattacharjee, K. Maity, and S. Das. “A Search for Good Pseudo-random Number Generators : Survey and Empirical Studies”. In:
arXiv:1811.04035 [cs] (Nov. 2018). arXiv: 1811.04035.
15 M. Bakiri et al. “Survey on hardware implementation of random number generators on FPGA: Theory and experimental analyses”. en. In:
Computer Science Review 27 (Feb. 2018).
16 O. Petura et al. “A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA Devices”. In: 2016 26th International Conference on Field
Programmable Logic and Applications (FPL). Aug. 2016.
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(a) Clock-sampling random number generator circuit. The fast, precise clock clkf is sampled by the slow, imprecise
clock clks.

Jitter ?

clks
clkf

’1’ ’0’

(b) Entropy extraction from clock-jitter. The jitter in the sampling clock makes the sampling result in a random bit.

Figure 2.2: Schematic (Subfigure a) and timing diagram (Subfigure b) of the clock-sampling random number generator.

In Figure 2.2b, jitter windows are illustrated as overlapping double-edges (one jitter window is highlighted by an orange

circle). The actual edge of the signal may occur at any time during such a window. The exact moment is determined at

random. This makes it a derogatory property of clocks, but opens the possibility to exploit that uncertainty to extract

randomness.

If such a jittery clock is used to sample a second clock, it is indeterminable at what exact time the sampling takes place.

If that second clock is faster than the jittery clock, multiple clock-periods of the fast clock will fit into the windows of

uncertainty of the jittery clock. This is shown in the orange rectangle in Figure 2.2b. It implies that the sampling may

result in a logic 1 or 0, and the outcome is dependent on the exact timing of the sampling edge. This is illustrated by

the magnified regions in the purple circles, with the orange line showing the exact occurrence of the edge. In the left

circle, the rising edge of clks occurs while clkf is high, so the sampling results in a 1. In the right circle, the jitter causes

the rising edge of clks to occur at a slightly different point during the period. In this case, the sampling results in a 0

because clkf is low when the rising edge of clks occurs.

Petura et al. implemented and tested six such designs on three FPGA families from different vendors. The evaluated

designs are:

1. The ring-oscillator-based elementary TRNG (ERO-TRNG),

2. The ring-oscillator-coherent sampling based TRNG (COSO-TRNG),

3. The multi-ring-oscillator-based TRNG (MURO-TRNG),

4. The coherent-sampling-based TRNG using Phase-locked loops (PLLs) (PLL-TRNG),

5. The transition-effect-ring-oscillator-based TRNG (TERO-TRNG) and
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TRNG type FPGA Area Power Bit rate Efficiency Entropy Entropy Feasib. &
device (LUT/Reg) [mW ] [Mbits/s] [bits/µWs] 1/bit * Bit rate Repeat.

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5 Metric 6 Metric 7

Spartan 6 46/19 2.16 0.0042 1.94 0.999 0.004

Cyclone V 34/20 3.24 0.0027 0.83 0.990 0.003ERO-TRNG
SmartFusion 2 45/19 4 0.014 3.5 0.980 0.013

5

Spartan 6 18/3 1.22 0.54 442.6 0.999 0.539

Cyclone V 13/3 0.9 1.44 1600 0.999 1.438COSO-TRNG
SmartFusion 2 23/3 1.94 0.328 169 0.999 0.327

1

Spartan 6 521/131 54.72 2.57 46.9 0.999 2.567

Cyclone V 525/130 34.93 2.2 62.9 0.999 2.197MURO-TRNG
SmartFusion 2 545/130 66.41 3.62 54.5 0.999 3.616

4

Spartan 6 34/14 10.6 0.44 41.5 0.981 0.431

Cyclone V 24/14 23 0.6 43.4 0.986 0.592PLL-TRNG
SmartFusion 2 30/15 19.7 0.37 18.7 0.921 0.340

3

Spartan 6 39/12 3.312 0.625 188.7 0.999 0.624

Cyclone V 46/12 9.36 1 106.8 0.987 0.985TERO-TRNG
SmartFusion 2 46/12 1.23 1 813 0.999 0.999

1

Spartan 6 346/256 65.9 154 2343.2 0.998 154.121

Cyclone V 352/256 49.4 245 4959.1 0.999 244.755STR-TRNG
SmartFusion 2 350/256 82.52 188 2286.7 0.999 188.522

2

Table 2.1: Evaluation of random number generators on FPGAs by O. Petura et al. “A Survey of AIS-20/31 Compliant
TRNG Cores Suitable for FPGA Devices”. In: 2016 26th International Conference on Field Programmable Logic and Appli-
cations (FPL). Aug. 2016

6. The STR-based TRNG (STR-TRNG)

They compared them on the basis of seven key parameters (Metrics):

1. Area in lookup table (LUT) and register counts,

2. Power consumption in mW ,

3. Bit rate in Mbits/s,

4. Efficiency in bits
µWs ,

5. Entropy per bit in 1
bit ,

6. Entropy × Bit rate in 1
s , and

7. Feasibility and repeatability on a scale from 1 to 5. Easily portable designs that produce good results across all

tested devices score highest (up to 5). Designs that need manual intervention for each device score lowest (down

to 1).

In the following we discuss their findings, which are summarized in Table 2.1: All designs show an entropy per bit of

0.92 or more making them suitable for cryptographic use. Three of the designs stand out in particular: The ERO-TRNG,

theMURO-TRNG and the STR-TRNG are all based on the entropy extraction from jittery clocks discussed in Section 2.1.1
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Figure 2.3: Schematic of a ring oscillator (Subfigure a) and three true random number generator circuits (Subfigures b
to d) as evaluated in O. Petura et al. “A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA Devices”. In:
2016 26th International Conference on Field Programmable Logic and Applications (FPL). Aug. 2016.

and illustrated in Figure 2.2b. They all use a ring oscillator (RO) for jitter extraction (schematic in Figure 2.3a). They

have a comparable entropy per bit of at least 0.98, but they differ strongly in Metric 1 to Metric 4 and Metric 7.

We discuss the results for these three designs in more detail (performance numbers for comparison are given for the

Spartan 6 implementation. Performance numbers for the Cyclone V and SmartFusion 2 implementations can be found

in Table 2.1):

1. The ring-oscillator-based elementary TRNG (ERO-TRNG)17 is based on two ROs of the same size. One of the

ROs feeds a clock divider which in turn samples the second RO (Figure 2.3b). It can be implemented on any FPGA

without manual intervention. It produces good results while being relatively small (46 LUTs, 19 registers), but it

is very slow (Output bit rate: 0.0042Mbits/s).

2. The multi-ring-oscillator-based TRNG (MURO-TRNG)18 aims at mitigating the shortcomings of the ERO-

TRNG by adding more ROs. m ROs are implemented in parallel and fed through an exclusive-or (XOR) gate

(Figure 2.3c). The result is sampled by one more RO that again has its output frequency divided. The resulting bit

rate is much higher (2.57Mbits/s), but comes at the cost of size (521 LUTs, 131 registers) and power (54.72mW ).

Due to the possibility of some of the many ROs locking onto each other, it scores lower on the feasibility and

repeatability scale compared to the ERO-TRNG.

17 M. Baudet et al. “On the Security of Oscillator-Based Random Number Generators”. In: Journal of Cryptology 24.2 (Apr. 1, 2011).
18 B. Sunar, W. J. Martin, and D. R. Stinson. “A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks”. In:
IEEE Transactions on Computers 56.1 (Jan. 2007).
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3. The self timed ring (STR)-based TRNG (STR-TRNG)19 is the best performing RNG in Petura et al.’s comparison

(Output bit rate: 154Mbits/s, Efficiency: 2343.2bits/µWs). It consists of an RO sampling an STR (thoroughly

discussed in Section 2.3). The STR-TRNG is constructed similarly to the MURO-TRNG, but uses clocks produced

by individual stages of anm-stage STR instead of them parallel ROs (Figure 2.3d, details on the STR in Section 2.3).

It spots the highest bit rate and efficiency at the cost of high area usage and power consumption. The STR needs

to be manually placed and routed, resulting in a low score on the feasibility and repeatability scale (2 out of 5).

The numbers in Table 2.1 give the STR-TRNG the edge over other designs in terms of performance. The bad feasibil-

ity and repeatability score make the implementation time-consuming and inaccessible to users with no experience in

manual placement and routing (PnR). We aim to mitigate this shortcoming with our proposed PnR algorithm (Chap-

ter 3) designed specifically for hardware security primitives. It makes the implementation of a STR-TRNG as easy as the

implementation of any other IP-core.

2.1.2 Physical unclonable functions

A second class of non-deterministic circuits are PUFs. PUFs are functions that provide a digital fingerprint as a response

to a challenge input. Hardware implementations capitalize on the presence of process variation to determine a unique

fingerprint on each device. This implies that the behavior changes from device to device but is repeatable. The PUF will

yield the same results on the same device on multiple runs, but different results on different devices. Typically, PUFs

are defined as

Y = P (C). (2.1)

Users can provide a PUF a challenge C , getting back a response Y . Due to the PUF’s properties, response Y depends on

a chip’s physical properties and as the physical properties impose unique variations on each chip, PUFs can therefore

be used to identify this chip. PUFs can be used in security applications to authenticate chips. They are therefore often

considered a chip’s fingerprint.

Popular PUF implementations for FPGAs include the ring oscillator based physical unclonable function (RO-PUF) and the

arbiter PUF, summarized and evaluated by Suh and Devadas,20 both discussed below. To use PUFs for authentication

they must always produce the same result on the same chip but different results on different chips. The result of the

PUF can then be used as an identifier which is unique for a device. This observation leads to the quality parameters on

PUFs defined by Suh and Devadas:21

1. Inter-chip variation vinter : The probability of the result being different on different chips (the higher the better)

and

2. Intra-chip variation vintra: The probability of the result being different for subsequent experiments on the same

chip (the lower the better)

19 A. Cherkaoui et al. “Comparison of Self-Timed Ring and Inverter Ring Oscillators as entropy sources in FPGAs”. In: 2012 Design, Automation
Test in Europe Conference Exhibition (DATE). Mar. 2012; A. Cherkaoui et al. “A Self-Timed Ring Based True Random Number Generator”. In: 2013
IEEE 19th International Symposium on Asynchronous Circuits and Systems. 2013 IEEE 19th International Symposium on Asynchronous Circuits and
Systems. May 2013.
20 G. E. Suh and S. Devadas. “Physical Unclonable Functions for Device Authentication and Secret Key Generation”. In: 2007 44th ACM/IEEE Design
Automation Conference. ISSN: 0738-100X. June 2007.
21 Ibid.
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Figure 2.4: Arbiter PUF circuit as presented in G. E. Suh and S. Devadas. “Physical Unclonable Functions for Device
Authentication and Secret Key Generation”. In: 2007 44th ACM/IEEE Design Automation Conference. ISSN: 0738-100X.
June 2007. All paths from input X to P1 and P2 are of equal length. Ideally, a rising edge on input X would therefore
reach P1 and P2 simultaneously. Due to process variation, this is not the case. There is a race condition from the input
signal X to the two inputs P1 and P2 of the D-flip-flop near the end. The multiplexers steer the input signal X along
different paths according to their select signals. All those paths should have the same delay by design, but this is skewed
by process variation. Therefore, the selection of the paths influences the outcome of the race condition. The output is
then dependent on whether X reaches P1 or P2 first which is dictated by the process variation.

To identify a chip using a PUF, its inter-chip variation must be much higher than the intra-chip variation.22

vinter vintra (2.2)

Only then, the PUF gives consistent responses on the same chip while being different on individual chips, making it

suitable as an identifier.

Arbiter PUF

The arbiter PUF, originally introduced by Lee et al.23 and shown in Figure 2.4, consists of n pairs of multiplexers with

two inputs and a single-bit control signal. Each pair of multiplexers is considered a stage of the arbiter PUF. Stages are

marked with dashed lines in Figure 2.4. The inputs for the first stage (stage C[0]), are all connected to the same signal

X . The two multiplexers in each subsequent stage are connected to the same inputs and share the same control signal.

The output pair of one stage connects to the input pairs of the next stage. The outputs of the last stage, stage n, are

connected to the inputs of a D-flipflop, with one of the outputs (P1) sampling the other (P2). The sampling results in a

race condition between the clock input signal and the data input signal of the D-flipflop.

The control signals C[i] of the n stages form a challenge vector C and determine two paths from input X to the two

inputs of the D-flipflop.

A critical requirement for the arbiter PUF is that all wires connecting the multiplexers and the multiplexers themselves

are designed to have equal delay. This makes the delay between an edge occurring at the input X and its arrival at the

inputs of the D-flipflop independent from the paths selected by the challenge vector C . Due to process variations this

assumption is very unlikely to hold. Some paths will be faster than others and most importantly: the same path will

have different delays on different devices.

22 Ibid.
23 J. W. Lee et al. “A technique to build a secret key in integrated circuits for identification and authentication applications”. In: 2004 Symposium
on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525). June 2004.
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Figure 2.5: Arbiter physical unclonable function timing example. The difference in delays d1 and d2 alone dictates the
result of the function. Is C chosen so that X reaches P1 before P2 (d1 < d2), the result is 0, otherwise it is 1.

The D-flipflop near the output is used to determine which of the two paths (P1 or P2) selected byC has the longer delay.

If the path to the clk input (P1) is faster than the path to the D input (P2), the sampling will result in a logic 0, as D is

still 0 at the time the rising edge arrives at clk. If the path to the clk input is slower than the path to the D input, the

sampling will result in a logic 1, as D is already 1 at the time the rising edge arrives at clk.

Figure 2.5 shows an example behavior of an arbiter PUF with two stages (the challenge signal C is therefore a two-bit

signal). In this example, the user iterates over all possible challenges, allowing time in between for the arbiter PUF to

respond. Shortly after the challenge signal is set, X is set to high for a short period of time. Due to the delay within

the arbiter PUF, the rising edge of theX signal is seen at the inputs P1 and P2 after a delay (d1 and d2 respectively. As

discussed before, these delays depend on the device on which the PUF is implemented). Because the paths from X to

P1 and P2 are different, the delay is different as well (d1 and d2 respectively). For the challenge C = 00, the first edge

is seen at P1 after t0; therefore, the D-flipflop samples P2. This sampling results in a 0 visible at Y because P2 is still

low at t0 (the edge reaches P1 earlier than it reaches P2). The second time the edge reaches P1 is at t1 for challenge

C = 01. The delay to P2 was smaller; therefore P2 is already high when the sampling happens and a 1 is seen at the

output. The rest of the challenges compute similarly, resulting in the complete correspondence between challenge and

response as seen in Table 2.2.

Challenge Response

00 0
01 1
10 0
11 1

Table 2.2: Example arbiter physical unclonable function

The output Y for all possible challenge vectors C ∈ Z < 2n is therefore depending on the device. Suh and Devadas

determine the inter-chip variation of the arbiter PUF to 23% and the intra-chip variation to 0.7%. The property in

Equation (2.2) is satisfied, making the PUF usable as a chip identifier.

Ring oscillator PUF

The RO-PUF, introduced by Suh and Devadas and depicted in Figure 2.6, also utilizes the delay-variance between devices

to create a PUF. n identical ring oscillators are connected to two n× 1 multiplexers with multi-bit control signals CA

and CB . The outputs of both multiplexers are connected to one counter per multiplexer. At the end, the outputs of the

two counters are compared.
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Figure 2.6: RO PUF circuit as introduced in G. E. Suh and S. Devadas. “Physical Unclonable Functions for Device
Authentication and Secret Key Generation”. In: 2007 44th ACM/IEEE Design Automation Conference. ISSN: 0738-100X.
June 2007. Multiple identical ring oscillators are implemented in parallel. Their frequency will differ slightly due to
process variations. Challenge signals CA and CB select two of them. The two selected clocks drive a counter each. The
comparison near the output indicates which clock is faster and is, therefore, dependent on the process variations.

CA and CB are used to select two of the ROs. Due to manufacturing imperfections, the ROs will oscillate with slightly

different frequencies. The difference in frequencies results in one of the counters counting faster. The comparator

towards the output then decides which RO has the higher frequency.

The multi-bit multiplexer control signals CA and CB can again be considered challenges with Y as the challenge re-

sponse.

In the experiments conducted by Suh and Devadas, the inter-chip variation per bit is 46.14%, very close to the ideal of

50%. The intra-chip variation is 0.48%.24 Since the inter-chip variation is much larger, Equation (2.2) is satisfied, the

RO PUF identifies a chip and can therefore be used for authentication.

2.2 Timing requirements

The TRNG and PUF designs presented in Section 2.1 have one particular property in common: the performance of the

designs depends on their routing. In particular, routes must satisfy delay requirements. Satisfying timing constraints is

a common problem in digital IC development. FPGA vendors therefore include the option to constrain paths in their

synthesis and PnR tools.25

Before discussing timing constraints, we investigate how timing is assessed for FPGAs in Section 2.2.1. Second, we show

typical constraints for FPGA designs in Section 2.2.2. These are the constraints that most FPGA vendors implement.

Section 2.2.3 elaborates what additional requirements are necessary for security primitives and justifies why those are

not typically implemented in electronic design automation (EDA) tools.

24 Suh and Devadas, “Physical Unclonable Functions for Device Authentication and Secret Key Generation”.
25 Xilinx. UG945 Vivado Design Suite Tutorial: Using Constraints. Ed. by Xilinx. 2019.1. June 24, 2019; Xilinx, UG903 Vivado Design Suite User Guide:
Using Constraints.
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Figure 2.7: Example synchronous circuit (Subfigure a) and the result of a static timing analysis on said circuit. (Subfig-
ure b)

2.2.1 Static timing analysis

There are multiple ways to determine the timing of a digital circuit. Transistor-level simulation can yield highly accurate

results, but is unfeasible for large designs due to design complexity. When designing for FPGAs one does not usually

have knowledge of the exact gate-level design of the FPGA, completely disqualifying gate-level simulation for this use-

case. The second option is in-circuit testing, which is also very precise. In-circuit testing is also not an option on FPGAs

since designers do not have timing-accurate access to internal signals. The last option is static timing analysis (STA).

It uses an abstract model of the hardware in various environmental conditions to give delay boundaries for the design.

Depending on the model it can be very accurate while scaling well for large designs.

STA checks every path in a design against the timingmodel of the device. This process yields the delay a signal traversing

that path will experience. That delay may originate from the length of a wire or from the switching speed of a logical

element. The result of the STA is a timing graph. Nodes in the original design are nodes of the timing graph, including

their switching delay. Interconnecting wires are the graph’s edges. The delay of a wire is the weight of the edge. This

can be seen on the example of Figure 2.7. The simple circuit in Figure 2.7a shows a synchronous XOR operation on two

signals A and B. The corresponding timing graph can be seen in Figure 2.7b. The weight of the edges between the

nodes is the delay between the corresponding logic gates di.

2.2.2 Typical timing requirements in electronic design automation

Timing requirements are usually defined for synchronous circuits and not for asynchronous circuits. In synchronous

circuits, a clock signal dictates the pace of operation by synchronizing the data transfer in D-flipflops. Figure 2.7 shows

an example implementation of a synchronous two-input XOR operation with all D-flipflops driven by the clk clock

signal. Figure 2.8 shows the timing diagram for an arbitrary sequence of inputs, with A , B and Y being the two input

signals after synchronization and the output signal before synchronization respectively.

A circuit must meet the following requirements to perform as expected:

1. Results must be steady during a window of time around the sampling positive (or negative) edges of the clock

signal. All input signals must be stable tS seconds before the sampling edge (setup time) and all output signals

must be held stable for at least tH seconds after the sampling edge (hold time). This is due to metastability which

develops in synchronization elements when the input changes very close to sampling edges.



2.2. TIMING REQUIREMENTS 33

tS tStH tH

t0 t1 t2

clk

A

A

B

B

Y

Y

Figure 2.8: Possible timing diagram of the example synchronous circuit in Figure 2.7, showing hold-time tH and setup
time tS .

This requirement is met for the circuit given in Figure 2.7 with the timing in Figure 2.8. The times when sampling

edges occur are marked with a dashed purple line and the window in which the signals are not allowed to change

is bounded by two dashed orange lines.

2. All operations between two synchronization elements must complete within one clock cycle.

This requirement is also met in Figure 2.8. The result Y of the XOR gate G1 is computed at t2, well before the

next sampling clock edge.

3. Input changes are only registered if they are visible for at least one sampling clock edge.

This requirement is not met in Figure 2.8. The time the input A is high (starting at t0) is not long enough to be

sampled by FA. The change is therefore never visible at A and has no impact on the result. Input B on the other

hand stays high after t1 and is therefore sampled properly by FB .

If one of these requirements is not met, placement and routing of the circuit must be improved or the clock frequency

has to be changed.

STA gives designers insights about the timing of their implemented circuits and allows them to verify whether their

expectations are met. EDA tools use STA to check the timing during synthesis to optimize PnR according to the require-

ments listed above. To make that possible, designers have to declare their needs to the EDA tool via timing constraints.

Such timing constraints typically include:26

1. Clock constraints: If all properties of a clock signal are known, the STA model is sufficient to assess the timing

in terms of setup and hold times for all synchronized signals. The designer therefore has to provide the following

properties of all clocks in a design:

(a) Period

(b) Duty-cycle

(c) Latency

26 Xilinx, UG945 Vivado Design Suite Tutorial: Using Constraints; Xilinx, UG903 Vivado Design Suite User Guide: Using Constraints; R. Cofer and
B. F. Harding. Chapter 9 - Design Constraints and Optimization. Ed. by R. Cofer and B. F. Harding. Embedded Technology. Burlington: Newnes, 2006.
Chap. 9.
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(d) Jitter

2. Input constraints: STA can only determine the timing within the boundaries of a device. To check the design

against setup and hold time violations, EDA tools need to be made aware of delays existing outside the device.

This is done by specifying minimum and maximum delays from the originator (e.g., another chip) to the input

pin on the device relative to the clock signal(s) that synchronizes the signal. They indirectly specify during which

timeframes (relative to the clock) the device can expect the input to be valid. The PnR algorithm has to make sure

the device samples the input only during those timeframes.

3. Output constraints: The routes to an output interface must be checked as well, to make sure the output produced

by the device is within the specs of the device receiving it. This is also done by specifying minimum andmaximum

delays from the output pin of the FPGA to the input interface it feeds relative to the synchronizing clock. The

minimum and maximum delays specify the timeframes (relative to the clock) the output signal needs to be valid

for the receiving chip to safely register it. The PnR algorithm must make sure the device only produces outputs

that match this specification.

2.2.3 Timing requirements for security primitives

The constraints presented in Section 2.2.2 all follow the same goal: To produce a design that behaves the same on all

devices all the time in a wide range of environments. This is not desired when designing any of the security primitives

presented in Section 2.1: RNGs use environmental noise to extract entropy while PUFs use device characteristics to

compute a device-specific fingerprint. Nevertheless, five out of six designs presented by Petura et al.27 and both designs

presented by Suh and Devadas28 need careful placement and routing to produce satisfactory results. They follow the

exact opposite goal, to make designs highly conditioned by environmental noise (RNG) or by device characteristics

(PUF).

A concept often used both in RNGs and PUFs are race conditions. These occur when two or more signals are precisely

timed to change at the same time. Depending on which of the input signals arrives first, the output signal changes. PUFs

use race conditions to measure the differences in delay on different devices due to manufacturing imperfections while

RNGs use them to purposefully provoke metastability.

The most common timing constraint for race conditions is equal delay along multiple routes. A short check against

the constraints presented in Section 2.2.2 reveals that in state-of-the-art EDA tools it is not possible to specify such a

timing constraint. Designers have to make sure on their own that the design behaves appropriately by iterative manual

placement and routing with continuously checking its timing properties.

2.3 Use-case example

In this work, we introduce timing constraints for security primitives. We test them on a sample design, an STR-TRNG.

The core itself is presented in Section 2.3.1. The timing requirements on the STR-TRNG that cannot be specified using

traditional timing constraints are discussed in Section 2.3.2. The main quality parameter we maximize is the entropy

27 Petura et al., “A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA Devices”.
28 Suh and Devadas, “Physical Unclonable Functions for Device Authentication and Secret Key Generation”.
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achieved by the RNG. In Section 2.3.3 we showcase methods that can be used to assess the performance of RNGs purely

by the random numbers it produces. State-of-the-art certification entities are listed in Section 2.3.4.

2.3.1 The self-timed-ring-based true random number generator

The STR-TRNG, first introduced by Cherkaoui et al.,29 consists of two oscillating circuits. It is based on the concept

of jitter extraction by clock sampling as discussed in Section 2.1.1 and as shown in Figure 2.2a. The sampling clock

is derived from a common RO with n delay elements. The sampled clock is an STR. STRs, first introduced by Elissati

et al.,30 are oscillation circuits that can produce very high-speed, high-resolution, low phase-noise clocks. Cherkaoui

et al. constructed a stochastic model to calculate a lower bound for the entropy from frequency and jitter measure-

ments.31 They prove that with adequate routing the STR-TRNG produces enough entropy to be used in cryptographic

applications.

The schematic of an m-stage STR is given in Figure 2.10. The STR has two inputs, an active-high reset signal and

an initialization vector (omitted in Figure 2.10 for better readability). At the outputs Fi and Ri it produces an oscilla-

tion.

An m-stage STR consists of m Mueller C-gates Ci. We showcase one of the Mueller C-gates magnified in Figure 2.10.

A C-element hold its value y at the output if both of its two inputs X1, X2 are different from each other, and adopt the

input value if they are equal (Table 2.3). They are arranged in a ring. One input of a C-element is the output of the

X1,n X2,n Yn

0 0 0

0 1 yn−1

1 0 yn−1

1 1 1

Table 2.3: Truth table of the Mueller C-element

previous C-element, the other input is the output of the next element. The connection from the output of stageCi to the

next stage Ci+1 is called forward connection Fi. The connection from the output of stage Ci to the previous stage Ci−1

is called reverse connection Ri−1. The ring can be reset asynchronously by raising the Reset signal. All stages output

their initialization value Initi while the Reset signal is high.

The initialization vector Init is made up ofNT evenly distributed logic ones. The ones are called tokens while the zeroes

are called Holes of the STR. If the number of tokensNT is carefully chosen to be coprime to the sizem of the STR, each

stage will produce an output clock Fi with constant mean phase difference. The higher the number of tokens, the higher

the output frequency.

All outputs Fi are then connected to an XOR gate producing the final clock output (in Figure 2.3d). The XOR gate

calculates the parity of its inputs. That means that the output toggles each time a single input signal toggles. Since the
29 Cherkaoui et al., “Comparison of Self-Timed Ring and Inverter Ring Oscillators as entropy sources in FPGAs”; Cherkaoui et al., “A Self-Timed
Ring Based True Random Number Generator”.
30 O. Elissati et al. “Self-Timed Rings: A Promising Solution for Generating High-Speed High-Resolution Low-Phase Noise Clocks”. In: VLSI-SoC:
Forward-Looking Trends in IC and Systems Design. Ed. by J. L. Ayala, D. Atienza Alonso, and R. Reis. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012.
31 A. Cherkaoui et al. “A Very High Speed True Random Number Generator with Entropy Assessment”. In: Cryptographic Hardware and Embedded
Systems - CHES 2013. Ed. by G. Bertoni and J.-S. Coron. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.
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Figure 2.9: Self timed ring timing. Each stage outputs a clock signal. The output of the individual stages is shifted by
T/STR_SIZE. The final clock is obtained by an or-operation, resulting in a frequency that is STR_SIZE times faster than
the clocks of the individual stages.

internal clocks Fi toggle one after the other, the XOR parity computation results in a clock signal as well. The final

clock clk is m times faster compared to the clocks produced by the individual stages Fi since it toggles for every Fi.

This can be seen in Figure 2.9 on the example of an STR with m = 5 stages.

2.3.2 Timing requirements of the self timed ring

Petura et al.32 give the STR-TRNG a 2 out of 5 (with 5 being very feasible and easily repeatable) on their feasibility and

repeatability scale. This is due to the fact that the STR oscillator needs careful placement and routing in order to obtain

stable and well-timed oscillation.33 When implementing the STR-TRNG, designers need to make sure that two sets of

signals have similar delays. The two sets of signals are:

1. Signals internal to the Mueller C-gates (Ii,1−6, purple in Figure 2.10) and

2. Signals interconnecting the Mueller C-gates (Fi and Ri, orange in Figure 2.10).

The smaller the difference in delay of all signals in those two sets, the more precise and fast the oscillation of the

STR.

This is due to the Charlie effect and the Drafting effect in the Mueller C-gates.34 The requirement in Equation (2.3)

ensures the oscillation to be constant at 50% duty cycle.

NT

NB
≈ Df

Dr
(2.3)

Unfortunately, it is not possible to specify such a constraint in state-of-the-art EDA tools.35 Constraints can only be

defined relative to a clock signal. There is no way of constraining a group of signals to have similar delays.

32 Petura et al., “A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA Devices”.
33 Cherkaoui et al., “A Very High Speed True Random Number Generator with Entropy Assessment”.
34 J. Hamon et al. “High-Level Time-Accurate Model for the Design of Self-Timed Ring Oscillators”. In: 2008 14th IEEE International Symposium on
Asynchronous Circuits and Systems. ISSN: 1522-8681. Apr. 2008.
35 Altera. Quartus II TimeQuest Timing Analyzer, Quartus II 9.0 Handbook, Volume 3. Ed. by Altera. Mar. 2019; Lattice. Timing Closure. Ed. by Lattice.
Oct. 2013; Xilinx, UG945 Vivado Design Suite Tutorial: Using Constraints.
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Figure 2.10: Self timed ring circuit (adapted fromO. Elissati et al. “Self-Timed Rings: A Promising Solution for Generating
High-Speed High-Resolution Low-Phase Noise Clocks”. In: VLSI-SoC: Forward-Looking Trends in IC and Systems Design.
Ed. by J. L. Ayala, D. Atienza Alonso, and R. Reis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012). m Mueller C
gates (detailed sub-circuit on the right) are connected in a circular pattern. All of them oscillate at the same frequency
but are offset to each other. D-flipflops sample them and an xor-gate combines the sampled m Fi outputs of Mueller C
gates. A D-flipflops samples the output, resulting in a random signal R at the output.
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2.3.3 Entropy assessment

Since the use-case we select in this work is an RNG, we need methods to judge its generated random numbers. This can

be done by calculating the entropy of the RNG. Entropy was defined by Shannon36 as

H(X) = −
n

i−1

P (xi)logP (xi). (2.4)

Equation (2.4) describes a metric for the entropy of a random variableX with possible outcomes x1, . . . , xn which occur

with probability P (x1), . . . , P (xn).

This formal equation requires knowledge about the probability of outcomes P (xi). These in turn cannot be calculated

without a precise physical model of the underlying random process, which can be very hard to achieve.

To simplify the quantification of the entropy, we use stochastic tests. Stochastic tests are a tool from probability theory

and quantify the probability of a hypothesis being valid or not. The hypothesis in this case is that the numbers generated

by an RNG are random. The criteria the random numbers have to adhere to are defined as:37

1. All possible outcomes should have the same chance of occurrence,

2. Prediction of outputs should be impossible,

3. Numbers must be generated faster than they are consumed and

4. No predictable patterns should occur.

If the probability of meeting the hypothesis is high enough, stochastic tests can be used as an approximation for the

entropy. This is common practice for RNGs used for security purposes.

In the following, we present four commonly used methods for stochastic testing of RNGs.

Bias

The easiest property to check is the bias of the RNG (Item Criterion 1). For binary random numbers, this means that the

number of ones and the number of zeroes in the sample output is equal (probability of occurrence is 0.5 both for ones

and for zeroes). It can be checked by counting the ones and zeroes in a binary stream and dividing by the length of the

stream (Equation (2.5)).

pbias =
Nones

N
(2.5)

However, it is very simple to satisfy this requirement. Imagine a toggle circuit changing on every clock cycle. Its output

is unbiased but certainly not random.

Therefore, this property is merely necessary, but not sufficient to denominate the underlying process random.

36 C. E. Shannon. “A mathematical theory of communication”. In: The Bell System Technical Journal 27.3 (July 1948).
37 L. Afflerbach. “Criteria for the assessment of random number generators”. en. In: Journal of Computational and Applied Mathematics 31.1 (July
1990).
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NIST test suite

The NIST test suite is a battery of stochastic tests on RNGs38 published by the National Institute of Standards and Tech-

nology (NIST). It consists of the mathematical description of 15 stochastic tests. Multiple software implementations of

the NIST test suite exist that apply these tests with a wide range of input parameters to evaluate one or more streams

of random numbers. The default implementation requires at least 100-106 bits of input data, depending on the test. All

tests can be run on the same input data, this implies that one million bits of input data suffice for the NIST test suite to

run all tests.

Dieharder test suite

A second set of stochastic tests is the dieharder test suite.39 It is based on the GNU scientific library (GSL). Dieharder

does not only consist of tests but also bundles a set of random number generators and is primarily used to test software

RNGs using the GSL RNG interface. This is due to the fact that it can consume over 1012 bits of data to perform all tests

once.

However, it also supports testing on binary input files, which makes them suitable to test RNG implemented in hardware

without providing a GSL interface.

Federal Information Processing Standard (FIPS) 140-2 tests

The FIPS 140-2 standard specifies requirements for cryptographic modules including both hardware and software com-

ponents for certification by the NIST.40 They are defined over the model of the RNG. However, stochastic tests were

developed that aim to test for FIPS 140-2 compliance. An RNG passing the FIPS 140-2 stochastic tests is not guaranteed

certification by NIST. In comparison to the dieharder suite and the NIST suite, the stochastic test suites devised for FIPS

140-2 are easier to pass, a fact that is criticized by researchers.41 It was shown that the FIPS tests are unable to identify

adversarial biases on simple biased-by-design test RNGs. They are deprecated by official standards, but nonetheless still

widely used by hardware designers, e.g. in hardware-level self-test schemes.42

2.3.4 Certificates

Designers of TRNGs may request a third-party entity to certify their design. This assures their customers that the design

is reliable. The main certificates are:

1. The Federal Information Processing Standard (FIPS) certificate43 is split into four security levels. The lowest

level, level 1, targets personal computers. The highest level, level 4, defines requirements for physically unpro-

tected but security critical devices.

NIST provides stochastic tests as a necessary but not sufficient requirement for the FIPS certificate. The tests are

discussed in Section 2.3.3.

38 A. Rukhin et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. 2002.
39 R. G. Brown. Dieharder, A Random Number Test Suite. version Version 3.31. 1, Duke University Physics Department. https://webhome.phy.
duke.edu/~rgb/General/dieharder.php. 2004. (Visited on 02/02/2022).
40 National Institute of Standards and Technology. Security Requirements for Cryptographic Modules. en. Tech. rep. Dec. 2002.
41 D. Hurley-Smith, C. Patsakis, and J. Hernandez-Castro. “On the unbearable lightness of FIPS 140-2 randomness tests”. In: IEEE Transactions on
Information Forensics and Security (2020).
42 Ibid.
43 National Institute of Standards and Technology, Security Requirements for Cryptographic Modules.

https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
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2. The AIS-20/31 certificate defines requirements on the stochastic model of the TRNG.

It is standardized by NIST. Unfortunately, NIST provides no stochastic tests for AIS-20/31. However, the stochastic

models for all TRNGs presented in this work adhere to the requirements of AIS-20/31.44

44 Petura et al., “A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA Devices”.



Chapter 3

Proposed algorithm

Assume we want to place and route a random number generator (RNG) according to the timing requirements discussed

in Section 2.2.3. This requires manual effort, as detailed in Section 3.1. Manual placement and routing (PnR) requires

skilled labor and is time-consuming. After years of experience with the Vivado Design Suite for Xilinx it still takes the

author two months to place and route a 64-stage self timed ring (STR)-based true random number generator (TRNG)

(STR-TRNG). To speed up this process, we propose an algorithm that performs the PnR automatically.

The algorithm acts on timing constraints we defined with security primitives in mind. Designers can set them directly

in hardware description language (HDL) code, as described in Section 3.2. We detail the proposed placement algorithm

in Section 3.3 and the proposed routing algorithm in Section 3.4.

In a first step, the functional constraints are translated to physical constraints on the routes of a design (Section 3.2).

Then, the algorithm places the design so that all constrained cells are placed in a manner to facilitate the routing step

(Section 3.3). This includes placing cells that are connected to each other in proximity and placing cells that are part

of a combinatorial loop in a circle. After the placement step, the algorithm routes the constrained nets accordingly.

(Section 3.4).

3.1 State of the art

Timing requirements are one driving factor of PnR algorithms. Unfortunately, as discussed in Section 2.2.3, the timing

constraints that are widely used do not support PnR of the security primitives discussed in Section 2.1. Users im-

plementing security primitive intellectual property cores (IP cores) need to do the routing manually.1 We illustrate the

state-of-the-art design flow in Figure 3.1 (left).

Once the functional design is complete, the hardware implementation begins. We manually route a STR-TRNG (as

described in Section 2.3) design as a baseline to compare our algorithm to. The target architecture is a Xilinx Virtex

UltraScale+ VCU118 development board.

1 O. Petura et al. “A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA Devices”. In: 2016 26th International Conference on Field
Programmable Logic and Applications (FPL). Aug. 2016.
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HDL

Synthesis

Techmapped netlist

Place and Route

Post Place and Route netlist

Timing analysis

Timed netlist

Bitstream generation

Bitstream

Partial
PnR Constrain PnR

High-Level
timing constraints

Partial
PnRManual PnR

State-of-the-art
approach

Proposed, automatic approach based on
constraints for security primitives

Figure 3.1: Comparison of the current state-of-the-art design flow for field-programmable gate arrays (left) and our
proposed flow to facilitate the placement and routing of security primitives (right). We introduce high-level timing
constraints specific to security primitives. We can then avoid the time-consuming manual placement and routing step
with our proposed algorithm that respects these timing constraints.

As inexperienced users, our approach is mostly based on guesswork, trial, and error. This manual PnR process can be

outlined by the following steps:

1. Visually arrange the cells in a circle.

2. Select a group of nets that need to have equal delay.

3. Route the group.

4. Obtain and evaluate static timing.

5. If all nets have similar delay, move on to Step 8.

6. Select one net that does not satisfy the constraint of it’s group and reroute it.

7. Go to Step 4.
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1 module A (
2 input wire [15:0] ai,
3 output wire [7:0] ao
4 );
5 B b1 (ai[15:8], ao[7:4]);
6 B b2 (ai[ 7:0], ao[3:0]);
7 endmodule
8
9 module B (
10 input wire [7:0] bi,
11 output wire [3:0] bo
12 );
13 C c1 (bi[3], bi[2], bo[3], bo[0]);
14 C c2 (bi[1], bi[0], bo[0], bo[1]);
15 C c3 (bi[1], bi[0], bo[1], bo[2]);
16 C c4 (bi[1], bi[0], bo[2], bo[3]);
17 endmodule
18
19 module C (
20 (* DELAY_GROUP = "X" *) input wire cx1, // local scope
21 (* DELAY_GROUP = "X" *) input wire cx2, // local scope
22 (* DELAY_GROUP = "*+Y" *) input wire cy, // global scope
23 (* DELAY_GROUP = "1+Z" *) output wire cz // relative scope
24 );
25 assign cz = cx1 & cx2 & cy;
26 endmodule

Listing 3.1: Example design using the DELAY_GROUP attribute

8. If there are more groups to route, select the next delay group in Step 2.

This is a tiring process, and it has to be repeated for each target architecture. The implementation of a 64-stage STR-

TRNG takes a skilled developer over two months of full time work. This manual effort has a huge impact on design

cost.

We propose an automated design flow. We extend state-of-the-art PnR tools with a timing constraint designed with

security primitives in mind. The tiresome, manual flow in the left part of Figure 3.1 transforms into the automated flow

without the need of user-interaction as shown on the right side of Figure 3.1.

3.2 Design preparations

The first step in automating the manual process is to formulate the requirement of equal delay, discussed in Section 2.2.3,

in the STR-TRNG IP-core.

We propose an HDL attribute called DELAY_GROUP. It allows the assignment of nets to hierarchically named groups.

The algorithms discussed in Sections 3.3 and 3.4 are designed to implement the design so that nets in the same group

have equal (or similar-enough) delay. We give example annotations for the Verilog HDL, but the attribute can be set

in other languages as well (e.g., VHDL attributes, Electronic Design Interchange Format (EDIF) properties, tool command

language (TCL) properties).

Delay group names are scoped to a hierarchy level. Upon defining a DELAY_GROUP attribute, we can specify where the

group should be valid. Once the synthesis tool reads the design, our algorithm expands all names to absolute names.

These are valid globally for the design. We give an example design in Listing 3.1 and illustrate its hierarchy in Figure 3.2

to aid the explanation of the possible scopes.

Delay groups can be defined:
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A

b1

c1 c2 c3 c4

b2

c1 c2 c3 c4

A/b1/c1/X

A/b1/Z

A/Y

Figure 3.2: Design hierarchy of Listing 3.1. We show the top module A instantiating two modules of type B (A/b1 and
A/b2) that each instantiate four modules of type C (A/b1/c1, A/b1/c2, A/b1/c3 and A/b1/c4 for A/b1 and A/b2/c1,
A/b2/c2, A/b2/c3 and A/b2/c4 for A/b2). The wires in the modules of type C are annotated with DELAY_GROUP
attributes. We use three distinct scoping types for delay groups and highlight one of each using boxes. Global, shown
in the orange box, hierarchical, shown in purple and local, shown in black.

1. Local to the module they are defined in.

If simply a name is given, the delay group is local to the module the net is defined in.

This is the case for group X in module C of Listing 3.1. Wires cx1 (Line 20) and cx2 (Line 21) will be routed to

have the same delay within the same instance of the module. Each instance will have its own delay group. Wires

A/b1/c1/cx1 and A/b1/c2/cx1 will not be routed to have the same delay, as they reside in different instances of

C .

The absolute delay group names deducted by the synthesis tool are A/b1/c1/X for A/b1/c1 (highlighted in a black

box in Figure 3.2), A/b1/c2/X for A/b1/c2, A/b1/c3/X for A/b1/c3, . . .

2. Within n steps of hierarchy above the instantiation of the module.

If nets that need to be assigned to the same delay group reside in different modules, we need a way to match them

together. This can be done by specifying in how many levels of hierarchy above the specification of the net the

group needs to be valid.

In Listing 3.1 this is the case for group Z (Line 23). We defined it to be valid one level of hierarchy above the

instantiation of the module (1 + Z). We can check the hierarchy given in Figure 3.2 to understand that Group Z

is valid for instances of B. A/b1/c1/cz and A/b1/c2/cz will be routed to have the same delay. A/b1/c1/cz and

A/b2/c1/cz will not be routed to have the same delay, as they reside in different instances of B.

The absolute delay group names deducted by the synthesis tool are A/b1/Z (highlighted by the purple box in

Figure 3.2) and A/b2/Z.

3. Globally.

Users can also specify global delay groups. This is done in the same way as Item 2, but an asterisk is used instead

of specifying levels of hierarchy.
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A/b1/c1

A/b1/c2

A/b1/c3

A/b1/c4

A/b2/c4

A/b2/c3

A/b2/c2

A/b2/c1

Figure 3.3: Circular placement of the combinatorial loop in Listing 3.1, consisting of 8 cells

We did this for delay group Y (Line 22). A/b1/c1/cy, A/b1/c2/cy, A/b1/c3/cy, A/b1/c4/cy, A/b2/c1/cy,

A/b1/c2/cy, A/b1/c3/cy, and A/b2/c4/cy will all be routed to have the same delay.

The absolute delay group name deducted by the synthesis tool is A/Y, highlighted by the orange box in Figure 3.2.

Nets attributed with this delay group, no matter where in the design, are assigned to the same group.

As we can see, the scoping of delay groups widens the application domain significantly. In our use-case example, the

STR-TRNG in Section 2.3, we make use of this feature to create one delay group per Mueller C-gate.

3.3 Placement step

Before connecting the individual cells with nets, we have to place them. The placement step is not imperative to meet

the timing requirements, but adequate placing can aid the router to find sufficient routes faster while requiring less

resources. The main goals of the placer are:

1. Identify cells that are part of combinatorial loops consisting of nets that were assigned the same delay group and

place them in a circle, and

2. Place cells that are connected by nets within the same delay group close to each other.

Goal 1 assures that cells within a combinatorial loop are as equidistant as possible. This aids the router to find routes

with equal delay.

We use an adapted version of Tarjan’s algorithm2 implemented in TCL to find combinatorial loops in the design. We

achieve circular routing by counting the cells involved in a combinatorial loop. Half of them are routed, one after the

other, in a column going downwards. We route the other half in an adjacent column going upwards. This assures all

cells have equal distance to their neighbors in the loop. The equidistant placement of the cells makes it easier to find

routes between them that have equal delay.

We illustrate the circular placement for the example design in Listing 3.1 in Figure 3.3. The 8 instances of module C are

connected in a combinatorial loop. The TCL implementation of the placement step is given in Listing 3.2.

2 R. Tarjan. “Depth-first search and linear graph algorithms”. English. In: 12th Annual Symposium on Switching and Automata Theory (swat 1971).
IEEE Computer Society, Oct. 1971.
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58 proc placeCells {cells x starty dir} {
59 upvar $starty y
60 if {[llength $cells] == 0} {
61 return 0
62 }
63 if {[llength $cells] == 1} {
64 set cell [get_cells [lindex $cells 0]]
65 if {[get_property IS_PRIMITIVE $cell]} {
66 if {[get_property GROUPING $cell]} {
67 puts "place_cell $cell SLICE_X${x}Y${y}"
68 if [catch "place_cell $cell SLICE_X${x}Y${y}"] {
69 if {$dir} {
70 incr y
71 } else {
72 set y [expr {$y-1}]
73 }
74 placeCells $cell $x y $dir
75 } else {
76 if {$dir} {
77 incr y
78 } else {
79 set y [expr {$y-1}]
80 }
81 set_property IS_BEL_FIXED 1 $cell
82 set_property IS_LOC_FIXED 1 $cell
83 }
84 }
85 } else {
86 set children [get_cells -hierarchical -filter "PARENT == $cell"]
87 placeCells $children $x y $dir
88 }
89 return 1
90 }
91 set loopCells [findLongestLoop [get_cells $cells]]
92 set maxXLeft 1
93 for {set i 0} {$i<[expr ([llength $loopCells]-1)/2]} {incr i} {
94 set width [placeCells [lindex $loopCells $i] $x y $dir]
95 if {$width > $maxXLeft} {
96 set maxXLeft $width
97 }
98 set cells [lsearch -inline -all -not -exact $cells [lindex $loopCells $i]]
99 }
100 set backupX $x
101 set newX [expr {$x + $maxXLeft}]
102 set maxXRigth 1
103 for {set i [expr ([llength $loopCells]-1)/2]} {$i<[expr [llength $loopCells] -1]} {incr i} {
104 set width [placeCells [lindex $loopCells $i] $newX y [expr {!$dir}]]
105 if {$width > $maxXRigth} {
106 set maxXRigth $width
107 }
108 set cells [lsearch -inline -all -not -exact $cells [lindex $loopCells $i]]
109 }
110 set x $backupX
111 for {set i 0} {$i<[llength $cells]} {incr i} {
112 placeCells [lindex $cells $i] $x y $dir
113 }
114 return [expr {$x + $maxXLeft + $maxXRigth}]
115 }

Listing 3.2: Placer implementation
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3.4 Routing step

The router tries to connect the pins of already placed cells. For each delay group it tries to find routes so the difference

in delay of all nets in the delay group is within a pre-defined relative threshold. This is achieved by iterating through

all delay groups and routing one after the other.

The routing could be implemented in two distinct ways:

1. Extract the complete topology, including timing details, for a field-programmable gate array (FPGA) and implement

a router or

2. Use an existing router and existing timing models to find routes that suit our requirements.

Item 1 requires knowledge of the topology of the target hardware. Vendors don’t always provide that. We choose the

higher level approach, as described by Item 2. It integrates well with the state-of-the-art design approach (Figure 3.1).

We implement it to work with Xilinx Vivado but it is portable to other synthesis tools that support TCL. We target

the Xilinx Ultrascale+ architecture, but the design principle can be transferred to other FPGA architectures. The only

requirement is that the corresponding toolchain supports TCL, which is satisfied for almost all state-of-the-art design

tools.

We outline the main strategy employed by the router in Algorithm 1. The router’s goal is to satisfy all timing require-

ments set by the delay-group attribute. It does so by looking for delay-groups that break the timing requirement. The

router re-routes the fastest (lowest delay) nets in the group until the routing satisfies the timing requirement. The strat-

egy of manual routing (described in Section 3.1) inspires this approach. We give details on the steps of particular interest

below.

Data: Placed design containing delay groups, relative delay difference threshold
Result: Placed and routed design where the delay difference of nets in the same group is within a pre-defined

relative threshold
1 Create map groups = (delayGroupName) → {nets};
2 while groups = ∅ do
3 group = groups[0];
4 if satisfied(group) then
5 remove group from groups;
6 continue;
7 end
8 determine slowestNet;
9 fastNets = {net|delay(slowestNet) ∗ threshold > delay(net)};
10 while fastNets = ∅ do
11 unroute fastNets;
12 determine minDelay and maxDelay for fastNet[0] to satisfy criterion;
13 route fastNet[0] to have delay within [minDelay,maxDelay];
14 if delay(fastNet[0]) > delay(slowestNet) then
15 slowestNet = fastNet[0];
16 end
17 fastNets = {net|delay(slowestNet) ∗ threshold > delay(net)};
18 end
19 end

Algorithm 1: Routing algorithm
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Mapping of group names to nets (Line 1)

First, as discussed in Section 3.2, we derive absolute group names for all nets with the DELAY_GROUP attribute. All

nets with the same absolute delay group name are placed in a list. A map, resolving absolute group names to lists of

nets, is created. Initially, all groups are assumed not to satisfy the timing criterion (delay difference within a pre-defined

relative threshold).

Checking if nets meet criterion (Line 4)

We perform static timing analysis (STA) and find the fastest (smallest delay) net Nf and the slowest (highest delay) net

Ns. Only if the delay difference is within the relative threshold the criterion is met. The criterion can therefore be

expressed as:

delay(Ns) ∗ threshold < delay(Nf ) (3.1)

Determine which nets to re-route (Line 9)

If we find a group that violates the criterion in Equation (3.1), we need to change the routing. The easiest way to do so

is to make the fastest nets take a detour to increase their delay.

Determine acceptable delay boundaries for net (Line 12)

To determine the delay-boundaries for the net we selected, we need to check which possible values would result in our

timing criterion in Equation (3.1) being satisfied.

We illustrate this problem in Figure 3.4. It shows a timeline and delay values for four netsA,B,C andD. NetA (purple)

is very fast and is therefore selected to be rerouted. Nets B, C and D (orange) satisfy the timing criterion. We want to

find the boundary delay values for net A to also satisfy the criterion. As our criterion checks the delay of the fastest

against the delay of the slowest net, there are three possible ways for A to satisfy the criterion:

• delay(B) < delay(A) < delay(D)

• delay(A) > delay(D) ∗ threshold

• delay(B) > delay(A) ∗ threshold

This results in the delay interval [delay(C)∗threshold, delay(B)/threshold], illustrated by a thick line in Figure 3.4.

0

Threshold

Threshold

A B C

D

Figure 3.4: Example delay values of nets A, B, C and D on a time bar
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Route net within allowed delay boundaries (Line 13)

The nets selected in Line 9 must now be routed within the delay boundaries determined in Line 12. We use Vivado’s

built-in route_design TCL command to route the nets accordingly.





Chapter 4

Experiments

This chapter elaborates the experiments to evaluate the performance of the placement and routing (PnR) algorithm dis-

cussed in Chapter 3. Section 4.1 motivates the selection of the cores we use for the experiments. The experimental setup

is described in Section 4.2. We perform static timing analysis (STA), oscilloscope measurements and capture generated

random numbers, as detailed in Section 4.3. We expect our proposed algorithm to outperform the core placed and routed

by Vivado and match the performance of the manually placed and routed core, as discussed in Section 4.4. In Section 4.5,

we evaluate limitations of the experimental setup that may affect the measured data. Finally, in Section 4.6, we give the

results of the experiments.

4.1 Selection of Device under Test

Out of the random number generator (RNG) cores compared by Petura et al.1 we choose the self timed ring (STR)-based

true random number generator (TRNG) (STR-TRNG) to evaluate our PnR algorithm, because out of all the compared

cores it is the fastest and most efficient while relying on precise PnR, making it the ideal example for our experiments

(Section 2.3).

For our purposes we implemented a generic STR-TRNG design using five parameters:

1. STR_Size is the number of Mueller-gates in the STR.

2. RO_Size is the number of delay-elements in the ring oscillator (RO) that samples the STR.

3. For large STRs, the different delays of different paths within the exclusive-or (XOR) gate near the output may

have an impact on performance. Therefore, the output of individual stages is sampled first, then passed to a

tree of synchronous XOR gates.2 The maximum number of XOR-gates within a branch of that tree is defined by

CONCURRENT_XOR.

4. BRAM_WIDTH, the width of the Block RAM (BRAM) used to buffer the random data.

1 O. Petura et al. “A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA Devices”. In: 2016 26th International Conference on Field
Programmable Logic and Applications (FPL). Aug. 2016.
2 A. Cherkaoui et al. “A Self-Timed Ring Based True Random Number Generator”. In: 2013 IEEE 19th International Symposium on Asynchronous
Circuits and Systems. 2013 IEEE 19th International Symposium on Asynchronous Circuits and Systems. May 2013.
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5. BRAM_DEPTH, the depth of the BRAM used to buffer the random data.

These parameters directly affect the digital circuitry of the design. We must therefore generate an individual bitstream

for each combination of parameter values we want to test in our experiments. We select BRAM_WIDTH = 32 and

BRAM_DEPTH = 1048576 for all experiments. This exhausts the BRAM on our development board and gives us a buffer

of 4, 194, 304 bytes (around 4MB). As the functionality of the RO we use in the STR-TRNG design is not dependent on

its routing, we select an RO of 53 inverters for all experiments to keep the number of necessary bitstreams low.

The number of tokens in the ring is configurable at runtime. In contrast to the parameters listed above, the number of

tokens does not affect the circuitry but merely the reset value of each STR stage and can therefore be changed during

reset without flashing a different bitstream. We allow this operation through a universal synchronous receiver/transmitter

(UART) interface. The UART interface interprets each received byte as an unsigned integerNmt. The maximum number

of tokens is STR_Size/2. Nmt represents the number of tokens missing to full occupancy. The number of tokens Nt

circulating in the ring is therefore given as in Equation (4.1).

Nt =
STR_SIZE

2
−Nmt (4.1)

Note that Nt and STR_SIZE must be coprime for the STR to work as a precise clock.3

After the number of tokens is changed, the STR is reset by the UART in order to distribute the correct amount of tokens

in the ring.

4.2 Setup

To conduct the measurements, we flash the STR-TRNG onto a Xilinx Virtex UltraSCALE+ field-programmable gate array

(FPGA) on a VCU118 Rev2.0 development board.4 We connect the board to a host computer. We use a JTAG connection

for programming over JTAG and a UART connection for data extraction and configuration. To evaluate the quality of

the two oscillators contained in the RNG we connect a high-speed oscilloscope (Agilent Infiniium DSO90804A, 8GHz,

40GSa/s) to the Low voltage differential signaling (LVDS) output USER_SMA_CLK.

We choose the VCU118 development board for it’s SubMiniature version A (SMA) connector capable of high frequency

transmission. We want to measure two output clocks, the output of the RO and of the STR. Unfortunately, only one

such output is available. To mitigate this, we use a switch so select which clock is visible at the output.

The UART interface is not fast enough to transfer random numbers in real time. We use a buffer to store a sequence of

random numbers that is transmitted once the buffer is full.

The complete setup is illustrated in Figure 4.1. We show pictures of hardware we use in the setup in Figure 4.2.

4.3 Methodology

During the measurements we acquire data from four sources:
3 A. Cherkaoui et al. “A Very High Speed True Random Number Generator with Entropy Assessment”. In: Cryptographic Hardware and Embedded
Systems - CHES 2013. Ed. by G. Bertoni and J.-S. Coron. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.
4 Xilinx. UG1224 VCU118 Evaluation Board User Guide. Ed. by Xilinx. 1.4. Oct. 17, 2018.
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Figure 4.1: Laboratory setup. The system under observation, a Xilinx VCU118 development board, is connected to an
oscilloscope via SMA and to a Host PC via UART and JTAG. We use the oscilloscope to measure the produced clock
signals. We use the Host PC for configuration and to store the generated random numbers.

• Implementation time,

• STA results to confirm the timing requirements are met,

• Oscilloscope measurements to evaluate the oscillation of the RO and STR, and

• Generated random numbers to assert the quality of the TRNG.

Data acquisition using the oscilloscope needs manual intervention to select the clock that is visible to the oscilloscope,

and therefore has to be carried out manually. Gathering random data over UART is done by a script and performed

autonomously for a high number of implementations and configurations.

We carry out the experiments with three kinds of PnR in order to answer our research questions:

1. Default Vivado PnR to prove that the STR-TRNG does not perform adequately if not routed adequately (default

Vivado configuration without knowledge of our novel timing constraint),

2. A manually placed and routed design to show the level of performance an experienced designer can reach, and

3. An implementation generated by the proposed PnR algorithm to make sure we meet the performance of the

manually placed and routed design without the effort of manual placement and routing.

We gather data for multiple configurations, varying the size of the STR (STR_SIZE) and the number of tokens in the ring

Nt. For the manually placed and routed implementation we only use one size (STR_SIZE = 64). Due to the long time

required for manual PnR it is prohibitively expensive to implement more than one size.

We list the steps carried out in the laboratory below:

1. Perform STA in tool command language (TCL)

2. Generate bitstreams
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JTAG
UART

SMA

(a) Xilinx Virtex UltraSCALE VCU118 Development Board

SMA
(b) Agilent Infiniium DDSO90804A Digital Oscilloscope

Figure 4.2: Picture of the laboratory setup. The development board is shown in Subfigure a. It is connected to the
oscilloscope (Subfigure a) using low voltage differential signaling.

3. Test bitstreams individually (performed manually)

(a) Flash bitstream onto device

(b) Select RO clock

(c) Save waveform dump and screen of the oscilloscope

(d) Note clock frequency and duty cycle of the RO



4.4. EXPECTATIONS 55

(e) Select STR clock

(f) Save waveform dump and screen of the oscilloscope

(g) Note clock frequency and duty cycle of the STR

(h) Reconfigure with different number of tokens (via UART)

4. Batch-test bitstreams (performed by a script)

(a) Flash bitstream onto device

(b) Iterate over number of tokens (via UART)

(c) Store generated random numbers

A high-level overview is given in Figure 4.3.

4.4 Expectations

Both for the manually placed and routed implementation and for the implementation generated by the proposed algo-

rithm we expect to see the following improvements over the default Vivado PnR:

• Steeper edges in the clock and constant duty cycle of around 50% due to the timing-dependencies of the STR,

• Frequency should be a little lower compared to the default Vivado design due to the routes being longer in general,

and

• More stochastic tests pass due to the improved quality of the clock.

4.5 Limitations

The precision of the measured data is limited by the experimental setup. In the following, we highlight and discuss

limitations and how the experimental setup could be expanded to mitigate them.

4.5.1 Collection of random numbers

We provide a UART interface to configure the design and retrieve random numbers. The TRNG is faster than the

maximum bit rate of the UART interface. This impedes us to retrieve the random numbers in real time. We therefore

buffer them on BRAM in the FPGA. The TRNG fills up the buffer. Once the buffer is exhausted, all collected random

numbers are transferred to the host PC over UART. This implies that the maximum number of consecutively generated

random numbers is limited by the BRAM capacity, which in turn is limited by the FPGA in use.

The capacity of the BRAM on the VCU118 development board is sufficient to perform meaningful NIST 800-22 tests5

and for rngtest (Section 2.3.3). The dieharder test suite requires more data than the BRAM can store (as discussed in

Section 2.3.3) and is therefore not used.
5 A. Rukhin et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. 2002.
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Implemented Design

Generate bitstream

Bitstream

Flash FPGA

Running target

Configure target

Configured target

Oscilloscope capture

Oscilloscope trace

Python analysis

Eye diagram

Oscilloscope screenshot

Static timing
analysis

Boxplot showing
delay differences

Configure target

Configured target

Capture random numbers

Random numbers

Perform stochastic tests

Results of stochastic tests

Figure 4.3: Execution of experiments. We use static timing analysis, an oscilloscope, python scripts, and stochastic test
suites to gather the data we show in Section 4.6 (orange leafs).
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This issue could be mitigated by:

1. Using an FPGA with more BRAM capacity,

2. Using fast external storage (e.g., Synchronous dynamic RAM (SDRAM)), or

3. Implementing an interface capable of transmitting the random numbers in real time (e.g., Peripheral Component

Interconnect Express (PCIe)).

4.5.2 Metering

We expect the frequency of the STR clock we use in our use-case design to be above 1GHz. The exact frequency depends

on the routing and is not predictable. We need appropriate high-frequency oscilloscopes to capture meaningful data.

The 8GHz, 40GSa/s Agilent Infiniium DSO90804A we use is at its limits. We cannot capture the output of the STR as a

whole, but can only capture the output of a single stage (E.g. F1 instead of clk in Figure 2.9). This means the measured

clock is STR_SIZE slower than the clock that is sampled by the STR-TRNG. This could be improved by using a faster

oscilloscope. For the larger designs, even the fastest oscilloscopes available ( 110GHz6) would not suffice to capture the

final clock output.

4.5.3 Clock interfaces and connectors

A second limitation regarding the measurement of the generated clock, closely related to the limitation discussed in

Section 4.5.2, lies within the interfaces and connectors used to route the clock signal to the measurement device. To

avoid quality impairments in this route, we use SMA connectors and cables rated for 12.4GHz in a LVDS setup. As

there is only one pair of SMA output connectors available (a single signal output requires two connectors due to the

differential signaling), we can only measure one clock at a time. We have to use a multiplexer to select if the RO or STR

single-stage clock is visible at the output.

We could measure both of them at the same time (or even the RO clock and multiple STR single-stage clocks) given a

developement board withmore SMA outputs, a custom board, or an FPGA Mezzanine Card (FMC) breakout board.

4.6 Results

This section evaluates the results of the experiments. We first compare our proposed design flow to the state-of-the-

art design flow in Section 4.6.1. We then divide the results into STA (Section 4.6.2), clock behavior (Section 4.6.3) and

stochastic tests (Section 4.6.4).

4.6.1 Design flow automation

The main metric we can use to compare our proposed, automated, design flow to the state-of-the-art manual approach

is time spent for implementation. However, this metric has two flaws:

1. The time spent during manual PnR is subjective to the designer that performs it. It is out of the scope of this

project to perform a user-study with a sufficient number of users to draw a significant conclusion.
6 Keysight. Infiniium UXR-Series Oscilloscopes. Ed. by Keysight. May 11, 2021.
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2. The time spent during manual PnR is human lifetime of an expert integrated circuit (IC) designer. The time spent

by the algorithm is machine time. We consider the former much more expensive in terms of cost.

Due to a lack of alternatives we use implementation-time as a metric anyhow. We still consider the results representative

due to the large gap between the measured times. We give empirical numbers for PnR of a single 64-stage STR in

Table 4.1. The time for manual PnR is the time spent by the author of this work (highlighted in orange in Table 4.1).

The time for the proposed algorithm is the time spent by an Intel Xeon Platinum 8160 2,1GHz 24C/48T CPU. We do not

need to prepare the hardware design for manual PnR, as manual PnR does not rely on constraints defined in the design

itself.

Step Manual PnR Proposed algorithm
Preparation Not needed 1h
Placement 8 hours 9 minutes
Routing 320 hours 4 hours, 11 minutes
Sum 328 hours 5 hours, 20 minutes

Table 4.1: Implementation-time comparison between manual placement and routing (by a skilled engineer) and our
proposed algorithm (by a server). We highlight the time a skilled engineer needs to spend during the implementation
in orange.

We conclude that automatic routing is over 60 times faster compared to manual routing for our use-case example.

4.6.2 Static timing analysis

The main goal of our algorithm is to meet our novel timing requirement for security primitives (Section 2.2.3). The

most direct metric we use to quantify our algorithm’s performance is the evaluation of the static timing of the resulting

implementation. The interesting traits are the differences in the propagation delays within the stages of the STR and

between the stages of the STR (see Section 2.3). The delay differences of all cirtical paths in the STR-TRNG design are

plotted in a boxplot in Figure 4.4. The STR size is given on the x-Axis, with the relative delay differences on the y-Axis.

They are grouped by STR size. The colors differentiate the PnR method. Our goal is to minimize the relative delay

differences between the different nets, given on the y-Axis. From the box plot it is easy to read statistical properties as

minimum, median, maximum, and 25%- and 75% quantiles.

We give results for the default Xilinx Vivado PnR (without knowledge of timing constraints — orange), for manual PnR

(by a skilled engineer — light gray) and by our proposed algorithm (fully automated — purple). Results for manual

PnR are only available for an STR consisting of 64 stages, we consider the high effort of manually routing all the

configurations out of scope for this work.

We can tell immediately that Xilinx Vivado’s default implementation results in the highest relative delay differences

(Median ≈ 0.5). This means half the nets have at least 1.5 times more delay than other nets in their delay group. This

is expected, as Vivado has no knowledge about our novel timing requirement. Instead, it is driven mostly by physical

resource optimization. The box plot tells us that, in all configurations of the STR, Vivado manages to route some nets

with equal delay, while some nets are up to 1.9 times longer than others.

The problems of the default Vivado implementation are solved by the implementation performed by a skilled engineer.

All relative delay differences lie well below the default implementation’s median. The highest relative delay differences
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Figure 4.4: Results of the static timing analysis, comparing default Xilinx Vivado placement and routing, manual place-
ment and routing and placement and routing of our proposed algorithm. The y-Axis gives the relative delay difference
between the critical nets. The x-Axis gives the size of the self timed ring that was placed and routed.

are within 0.3 while the median is at 0.119. This implementation meets our novel timing requirement, equal delay

within a set of nets, designed for security primitives. We expect the implemented STR to oscillate with a duty cycle

of 50% as required by the STR-TRNG design. Additionally, we expect the resulting STR-TRNG to deliver true random

numbers.

The implementation achieved by our proposed algorithm outperforms even the manual routing effort. The average

median is 0.066, only a little over half the median of the manual implementation. The gaps between the 25% and 75%

quantiles is also more compact compared to the manual implementation.

The timing characteristics of the implementation achieved using our algorithm prove that our algorithm provides the

desired results. It meets the timing requirement we define in Section 2.2.3. We still need to prove our requirement is

appropriate. In section Section 4.6.3 we show that the requirement has the desired effect on the STR.

4.6.3 Clock behavior

The quality of the random numbers produced by an STR-TRNG depends mostly on the quality of the two oscillating

circuits in the design. We aim to confirm the findings of Cherkaoui et al. that the performance of the STR depends on

its timing.7 We want to use the entropy of the jitter of the RO, so the RO needs to have significant jitter. The RO then

samples the STR (Figure 2.2a), so the STR must be much faster than the RO and very precise (Figure 2.2b). We therefore

investigate the quality of the implemented clocks. We do so by capturing raw data using an oscilloscope. For each of

the implemented designs, we:

1. Capture a screenshot of the oscilloscope,

2. List the measured frequency and period length,

3. Give an eye diagram (Infobox 4.2), and

7 A. Cherkaoui et al. “Comparison of Self-Timed Ring and Inverter Ring Oscillators as entropy sources in FPGAs”. In: 2012 Design, Automation Test
in Europe Conference Exhibition (DATE). Mar. 2012.
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Infobox 4.1: Results layout

We perform experiments on different configurations of the STR-TRNG. We dedicate one page to each of the

clocks we measured (Pages 63 to 68). The layout of these pages is explained here.
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First we give a screenshot of the oscilloscope. It gives a first insight

if the measured signal is oscillating or not. Highly irregular clocks

can be identified by the naked eye.

Next, we give an eye diagram (Infobox 4.2) of 10000 clock cycles.

Two lines that stylize the shape of an eye indicate regular oscillation.

The thickness of the lines at the zero crossings shows the maximal

jitter observed during the measurement.

Lastly, we show a histogram and bar plot of 100000 period lengths

observed over time. Here we can see the statistical distribution of

the jitter of the observed signal. A regular clock is expected to have

a peak at the median period length that decays evenly to both sides.

4. Plot the jitter as a histogram and boxplot.

We present the results on one page per measurement (Pages 63 to 68) as explained in Infobox 4.1.

First, we look at the results of the RO in Figure 4.5. The RO does not need any special attention when it comes to PnR.

Due to the nature of the circuit, the timings of the RO nets merely affects its frequency, not its duty cycle or its jitter.

Therefore, it is feasible to use the same implementation of RO throughout all experiments to make sure the RO PnR

does not skew our results.

The oscilloscope trace in Figure 4.5a indicates that the RO produces a regular oscillation at 433MHz with an amplitude

of ≈ 1.2V . The eye-diagram in Figure 4.5b proves this observation. The lines are thin, meaning there is little deviation

between periods. The oscillation is regular enough to produce a clean graph, but there is a noticeable amount of jitter

present. We only care about the timing, so the differences in minimum and maximum voltage are acceptable for this

purpose.

The histogram in Figure 4.5c shows an axially symmetric, bell-curve shaped probability density curve. It is not continu-

ous on the x-Axis because of the sampling interval of the oscilloscope. The shape indicates the RO has a Gaussian jitter

distribution. 90% of the time, the clock edge occurs within a 16ps time window. This is ideal for our purposes.

For the STR we use two different sizes: 64 and 256. For the 64-stage STR we can give results for a Vivado implemen-

tation (Figure 4.6), for a manual implementation (Figure 4.7), and for the implementation by our proposed algorithm

(Figure 4.8). For the 256-stage STR we give results for a Vivado implementation (Figure 4.9) and for the implementation

by our proposed algorithm (Figure 4.10). We do not implement the 256-stage STR manually due to its large size.
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Infobox 4.2: Eye diagrams

We use eye diagrams to visualize qualitative properties of the clock signals produced by our oscillating circuits.

We capture 10000 clock cycles and split the cycles at the zero-crossings into their positive and negative half-

cycles. Then we determine the middle tm,i between the zero-crossings for all collected half-cycles and shift the

half-cycles so that tm,i = 0. Lastly we continue the half-cycles in both directions of the x-Axis to fill the plot.
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The plots give information about the regularity of the oscillation. The overlay of the cycles gives a thin line if

all the cycles are similar. If there are differences between the cycles, the line grows thicker. This is especially

interesting at the zero-crossings. Thin lines at the zero-crossings indicate that all clock cycles have the same

length. The thicker the lines at the zero-crossings, the more jitter is present in the clock signal.

First, we have a look at the Vivado implementation of the 64-stage STR in Figure 4.6. A quick look at the oscilloscope

(Figure 4.6a) already shows that the STR does not deliver a regular clock signal. The individual cycles are of different

duration and the duty cycle is also not constant. The oscilloscope screenshot alone is enough to disqualify the produced

signal as a qualitative clock signal by any means of the definition.

This is also reflected in the eye diagram in Figure 4.6b. The clock signal is not regular enough to produce a decent eye.

The jitter-edges are almost as long as the peak times.

In Figure 4.6c we can see that there is one dominant period length, but are plenty of periods that are shorter than that.

90% of the periods lie within a 1.6ns jitter window.

Next, we see how the behavior changes when implementing the design manually (Figure 4.7). The oscilloscope screen-

shot in Figure 4.7a shows the quality of the oscillation improves dramatically. We measure the frequency of a single

stage of the STR at 63.5MHz. We need to multiply the frequency by the size of the STR to determine the frequency of

the STR as a whole (Section 4.5.2). This results in a frequency of 4.064GHz.

The oscillation is good enough that imperfections are not perceivable by the naked eye anymore. In this case, we actually

need the eye-diagram and the jitter-analysis to investigate further.
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The eye-diagram in Figure 4.7b shows steep, thin edges. This indicates there is little jitter, which is confirmed by the

jitter analysis in Figure 4.7c.

The last implementation of the STR of size 64 is the one implemented by our proposed algorithm (Figure 4.8). We can

see that the oscillation (Figure 4.8a) is very similar to the one of the manual implementation. The measured single-stage

frequency of the STR is 63.5MHz, again leading to a frequency of 4.064GHz for the STR as a whole.

The eye-diagram in Figure 4.8b and the jitter-analysis in Figure 4.8c also mirror the results of the manual implementa-

tion.

The oscillation of the manual implementation in contrast to the Vivado implementation proves that our proposed con-

straint has the desired effect on the STR. Since the implementation by our proposed algorithm produces an oscillation

that is just as good as the manual implementation we conclude that our algorithm is able to respect our proposed

constraint.

Finally, we want to discuss the performance of the 256-stage STR. We choose this design in hindsight to the results of

the stochastic tests in Table 4.3, that seem to indicate that the Vivado implementation of the 256-stage design produces

better results compared to the other sizes.

For this large design we do not have a manual implementation available. We consider the implementation of such a

large design to be out-of-scope for this work. This means we can only compare the Vivado implementation (Figure 4.9)

to the implementation by our proposed algorithm (Figure 4.10).

First we have a look at the oscilloscope screenshot for the Vivado implementation in Figure 4.9a. As was the case for

the smaller design in Figure 4.6 we can immediately tell that the oscillation did not improve. It looks like every fifth

period, either the high semi-cycle or the low semi-cycles are missing. This behavior of the STR is known as burst-mode

as described by Cherkaoui et al..8 It is a common symptom of badly implemented STRs. It manifests in two distinct

regions in which period-lengths come to lie in Figure 4.9c. While over 75 (upper quartile) of the periods have similar

length, the rest of the periods are much longer than that.

The implementation done by our proposed algorithm on the other hand is very similar to the one of the smaller STR

design. We can again observe a very good oscillation in Figure 4.10a. We measure the frequency at a little less compared

to the smaller design, at 62.8MHz. Once again we have to multiply by the STR size, resulting in the frequency of the

whole STR of 16.08GHz. The eye-diagram (Figure 4.10b) and the jitter-analysis (Figure 4.10c) are almost identical to

the respective figures (Figures 4.10b and 4.10c) of the 64-stage STR.

8 Cherkaoui et al., “Comparison of Self-Timed Ring and Inverter Ring Oscillators as entropy sources in FPGAs”.
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(a) Oscillation captured by the oscilloscope.
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(b) Eye-diagram over 10000 clock cycles.
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(c) Visualization of the jitter. We capture 100000 clock cycles and plot the deviation from the median period length as
a histogram and a bar plot.

Figure 4.5: Analysis of the implemented ring oscillator consisting of 53 inverters used to sample the STR in our STR-
TRNG use-case design.
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(a) Oscillation captured by the oscilloscope.
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(b) Eye-diagram over 10000 clock cycles.
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(c) Visualization of the jitter. We capture 100000 clock cycles and plot the deviation from the median period length as
a histogram and a bar plot.

Figure 4.6: Analysis of a 64-stage self-timed-ring with one missing token implemented by Vivado (without constraints).
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(a) Oscillation captured by the oscilloscope.

−4 −2 0 2 4

t [ns]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

F
1
of

64
-s
ta
ge

ST
R
[V

]

(b) Eye-diagram over 10000 clock cycles.
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(c) Visualization of the jitter. We capture 100000 clock cycles and plot the deviation from the median period length as
a histogram and a bar plot.

Figure 4.7: Analysis of a 64-stage self-timed-ring with one missing token manually implemented by a skilled engineer.
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(a) Oscillation captured by the oscilloscope.
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(b) Eye-diagram over 10000 clock cycles.
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(c) Visualization of the jitter. We capture 100000 clock cycles and plot the deviation from the median period length as
a histogram and a bar plot.

Figure 4.8: Analysis of a 64-stage self-timed-ring with one missing token implemented by our proposed algorithm.
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(a) Oscillation captured by the oscilloscope.
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(b) Eye-diagram over 10000 clock cycles.
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(c) Visualization of the jitter. We capture 100000 clock cycles and plot the deviation from the median period length as
a histogram and a bar plot.

Figure 4.9: Analysis of a 256-stage self-timed-ring with 7 missing tokens implemented by Vivado (without constraints).
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(a) Oscillation captured by the oscilloscope.
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(b) Eye-diagram over 10000 clock cycles.
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(c) Visualization of the jitter. We capture 100000 clock cycles and plot the deviation from the median period length as
a histogram and a bar plot.

Figure 4.10: Analysis of a 256-stage self-timed-ring with 7 missing tokens implemented by our proposed algorithm.
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4.6.4 Stochastic tests

Section 4.6.2 proves our algorithm meets our requirement. Section 4.6.3 shows our requirement has the desired effect

on the behavior of the STR. Lastly, in this section, we show that our use-case example, the STR-TRNG (Section 2.3)

performs as expected when implemented using our proposed algorithm. We do that by evaluating the final output of

the design, the generated numbers, using statistical analysis (Section 2.3.3).

We give the results for the two configurations used in Section 4.6.3, using an STR with 64 (Table 4.2) and 256 stages

(Table 4.3) here. More results can be found in the Appendix (Tables A.1 to A.3).

We perform the following tests on the generated binary files of random data:

• Check for Bias in Python (probability of any bit being ’1’),

• NIST 800-22 tests,9 and

• Rngtest to check compliance with Federal Information Processing Standard (FIPS) 140-2

We present these tests in detail in Section 2.3.3. Unfortunately, the dieharder tests cannot be performed due to the small

amount of random data available offline (Section 4.5.1). The dieharder tests require between 10MB and 100MB of

data, but we can only provide 4MB.

A bias of 50% is a necessary, but not sufficient requirement on RNGs. We can see in the results that the other stochastic

tests will not pass if the RNG is biased (bias = 50%). Furthermore, we found the NIST 800-22 test suite to be much more

restrictive compared to rngtest. In some experiments we see many cases that pass rngtest, but not NIST 800-22. We do

not see any cases where this was the other way around. These findings are in line with the findings of Hurley-Smith,

Patsakis, and Hernandez-Castro.10 These observations allow us to derive a qualitative hierarchy of stochastic tests, with

Bias being the easiest test to pass and NIST 800-22 the hardest.

Looking at Table 4.2 we can tell that the default Vivado implementation does not pass any of the tests. The bias lies

below 40%. The strongly biased numbers do not pass any of the rngtest runs nor the NIST 800-22 test suite. We notice

from the other configurations that the bias improves with STR-size, but the other tests fail for all configurations but

one. For the largest configuration (STR-size = 256 with 7 missing tokens, results can be seen in Table 4.3) we find that

the bias is good enough to pass 99.9% of the rngtest runs and 65% of the NIST 800-22 tests. This is close to acceptable

performance, but looking at the neighboring columns in Table 4.3 indicates that this was a lucky coincidence.

The results for the manual implementation on the other hand look more promising. The bias is constant at 50.27%.

The implementation passes over 99.8% of the rngtest runs. Unfortunately, the bias is not good enough to pass the NIST

800-22 Frequency test. The Frequency test is an extended bias test. Instead of investigating the probability of a logic ’1’

across the whole datastream, the datastream is split into chunks and the bias of the individual chunks is measured. If

the Frequency test fails, all other tests are skipped. This is the case for the manual implementation.

Lastly we look at the results achieved by the implementation with our proposed algorithm. The bias is very close to

50% (±0.01% across all implementations). The individual configurations pass between 99.89% and 99.96% of rngtest

9 Rukhin et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications.
10 D. Hurley-Smith, C. Patsakis, and J. Hernandez-Castro. “On the unbearable lightness of FIPS 140-2 randomness tests”. In: IEEE Transactions on
Information Forensics and Security (2020).
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runs. Most of the NIST 800-22 tests pass with flying colors (10/10 runs pass), except for a few cases (still at least 7/10

runs pass).
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STR Size 64

Strategy Vivado Manual Algorithm

Missing Tokens 1 3 5 7 1 3 5 7 1 3 5 7

Bias
Probability of logic ’1’ 39.50% 32.51% 36.73% 36.43% 50.27% 50.27% 50.27% 50.27% 50.00% 50.00% 50.00% 50.00%

FIPS 140-2
rngtest 0.00% 0.00% 0.00% 0.00% 99.80% 99.90% 99.83% 99.80% 99.92% 99.93% 99.90% 99.92%

NIST 800-22
Frequency test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Block Frequency test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 9/10 10/10 10/10
Runs test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Longest Run Of Ones test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Matrix Rank test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Discrete Fourier Transform test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Non-Overlapping Template Matchings test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Overlapping Template Matchings test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 9/10 10/10 10/10
Universal test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 9/10 10/10 10/10 10/10
Linear Complexity test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Serial test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Approximate Entropy test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Cumulative Sums test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Random Excursions test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 8/10 8/10 9/10 10/10
randomExcursionsVariant test 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 8/10 8/10 9/10 10/10

Table 4.2: Results of the stochastic tests on a Self-Timed-Ring True-Random-Number-Generator of Sizes 64. We show results for the default vivado placement and routing, manual
placement and routing, and our automated placement and routing. All configurations are tested ten times. Bias is the probability of each bit being ’1’. The rngtest produces 1677
pass or fails for each run. The remaining test cases produce a single pass or fail for each run. The number given in the table is the average probability of the test passing. A value of
100% means the configuration passed the test in all ten iterations.
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STR Size 256

Strategy Vivado Algorithm

Missing Tokens 1 3 5 7 9 11 1 3 5 7 9 11

Bias
Probability of logic ’1’ 47.33% 50.49% 48.71% 50.00% 49.79% 49.32% 50.00% 50.00% 50.01% 50.00% 49.99% 50.00%

FIPS 140-2
rngtest 0.00% 9.73% 56.08% 99.90% 99.66% 75.54% 99.92% 99.92% 99.92% 99.94% 99.92% 99.90%

NIST 800-22
Frequency test 0/10 0/10 0/10 10/10 0/10 1/10 10/10 10/10 9/10 10/10 9/10 10/10
Block Frequency test 0/10 0/10 0/10 6/10 0/10 1/10 10/10 10/10 9/10 10/10 9/10 10/10
Runs test 0/10 0/10 0/10 1/10 0/10 0/10 9/10 10/10 9/10 10/10 9/10 10/10
Longest Run Of Ones test 0/10 0/10 0/10 10/10 0/10 0/10 10/10 10/10 9/10 10/10 9/10 9/10
Matrix Rank test 0/10 0/10 0/10 10/10 0/10 1/10 10/10 10/10 9/10 10/10 9/10 10/10
Discrete Fourier Transform test 0/10 0/10 0/10 7/10 0/10 0/10 10/10 10/10 8/10 10/10 9/10 10/10
Non-Overlapping Template Matchings test 0/10 0/10 0/10 10/10 0/10 1/10 10/10 10/10 9/10 10/10 9/10 10/10
Overlapping Template Matchings test 0/10 0/10 0/10 10/10 0/10 0/10 10/10 9/10 9/10 10/10 8/10 10/10
Universal test 0/10 0/10 0/10 8/10 0/10 1/10 9/10 10/10 9/10 10/10 9/10 9/10
Linear Complexity test 0/10 0/10 0/10 10/10 0/10 1/10 10/10 10/10 9/10 10/10 7/10 10/10
Serial test 0/10 0/10 0/10 1/10 0/10 0/10 10/10 10/10 8/10 9/10 9/10 8/10
Approximate Entropy test 0/10 0/10 0/10 1/10 0/10 0/10 10/10 10/10 9/10 10/10 8/10 10/10
Cumulative Sums test 0/10 0/10 0/10 10/10 0/10 1/10 10/10 10/10 9/10 10/10 9/10 10/10
Random Excursions test 0/10 0/10 0/10 6/10 0/10 1/10 9/10 8/10 9/10 8/10 8/10 7/10
randomExcursionsVariant test 0/10 0/10 0/10 8/10 0/10 1/10 9/10 9/10 7/10 9/10 8/10 7/10

Table 4.3: Results of the stochastic tests on a Self-Timed-Ring True-Random-Number-Generator of Sizes 256. We show results for the default vivado placement and routing, manual
placement and routing, and our automated placement and routing. All configurations are tested ten times. Bias is the probability of each bit being ’1’. The rngtest produces 1677
pass or fails for each run. The remaining test cases produce a single pass or fail for each run. The number given in the table is the average probability of the test passing. A value of
100% means the configuration passed the test in all ten iterations.
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Discussion

In this chapter we discuss our main findings. We show that a large selection of security primitives shares a common

property in Chapter 2. We find that they mostly rely on race conditions and therefore their performance depends on

their implementation, more precisely on the timing properties of certain nets. Critical nets must be routed to have equal

delay to provoke a race condition. We define a constraint to annotate critical nets and an algorithm that automates

the implementation process according to the found requirements in Chapter 3. In Chapter 4 we devise and execute

experiments to test our proposed algorithm in conjunction with our proposed constraint. The conducted experiments

show that our algorithm finds an implementation that satisfies our constraint down to an error margin of 30%. It does

so while reducing the time a developer has to spend on the implementation from 328 hours to about 70 minutes.

To demonstrate the value of our work, we show that our automated flow is much faster than the state-of-the-art flow

in Section 5.1 and that it satisfies our novel timing constraint in Section 5.2. In Section 5.3 we find that the timing

requirements have the expected effect on the clocks used in our use-case design which in turn leads to high-quality

random numbers as discussed in Section 5.4. This subdivision reflects the structure of Section 4.6.

5.1 Design flow automation

The main contribution of this work is the automation of the design flow for security primitives on field-programmable

gate arrays (FPGAs). We compare implementation times for a self timed ring (STR)-based true random number generator

(TRNG) (STR-TRNG) by a skilled engineer and our proposed algorithm in Table 4.1.

The state-of-the-art design flow requires an expert to perform the placement and routing (PnR) step. It takes the writer

about two months (328 hours) to place and route the STR-TRNG appropriately. Unfortunately, we cannot measure the

time that is needed to acquire the necessary skills to perform the PnR.

We get around the need for manual PnR by defining constraints in hardware description language (HDL) and devising

an algorithm to respect these constraints. Our proposed algorithm manages to bring the implementation time down

to 5 hours and 20 minutes. This time includes one hour of studying the requirements and defining them in HDL. The

remaining 4 hours and 20 minutes are spent by the algorithm and not the designer. Assuming human time is more

valuable and expensive than computing time, this is a decrease in time of factor 328 (Comparison of human time spent
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during the state-of-the-art design flow versus during our proposed design flow, i.e. the orange cells in Table 4.1). Even

if computing time is valued as highly as human time, we still note a decrease in time of factor 61 (Comparison of human

and machine time spent during the state-of-the-art design flow versus during our proposed design flow, i.e. all cells

in Table 4.1). In contrast to the manual implementation, our automated approach does not require any PnR skills.

It is therefore usable by a wider range of designers and eases the access to security primitives for digital hardware

designs.

To further improve the runtime of our algorithm, we propose two improvements:

1. Find patterns in design and copy routes

This improvement requires two prerequisites:

(a) The design needs to be repetitive (e.g., multiple instances of the same module) and

(b) the FPGA needs to be homogenous.

If both prerequisites are met, we can look for patterns in the design (e.g., for multiple instances of a module, lever-

aging subcircuit matchers (present in most synthesis tools for technology-mapping, e.g., the Ullmann Subgraph

Isomorphism Algorithm1 in Yosys2), or by employing a pattern-based search algorithm3). If matches are found,

we can route one of them and try to apply the found routes to the identical matches. Assuming the FPGA is indeed

homogenous, the routes may be applicable to most instances of the found pattern or module.

2. Determine relative threshold from qualitative requirements on the random numbers

In the current implementation, the user defines a relative threshold that defines how much the delays of nets

within a delay group are allowed to deviate from each other (Section 3.2). Setting the relative threshold too tight

(threshold ≈ 1) results in the algorithm taking a long time to find suitable routes or not finding suitable routes

at all. Setting the relative threshold too loose (0 ≤ threshold 1) results in lower entropy, less speed or the

TRNG nor operating at all.

Currently, it is up to the user to find an appropriate balance. Usability could be improved by devising formulas to

deduce the threshold from qualitative requirements (speed and entropy) on the random numbers.

In terms of implementation quality our algorithm is limited by the available hardware resources. For the experiments

we configured the algorithm to accept differences in delays of up to 30%. We found that the algorithm is not able

to achieve lower error margins with the available routing resources. We hit the same lower bound during the man-

ual implementation, confirming this limit originates from a lack of resources rather than from a design flaw in our

algorithm.

In addition to the improvement in implementation time, automation brings two more benefits: the implementation is

repeatable and less error-prone.

1 J. R. Ullmann. “An Algorithm for Subgraph Isomorphism”. In: (Jan. 1, 1976).
2 C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/. (Visited on 02/02/2022).
3 C. Krieg. “Pattern-Based Hardware Trojan Characterization for Design Security Assessment”. PhD thesis. PhD thesis. Gusshausstrasse 27–
29/384, 1040 Wien: Vienna University of . . ., 2019.

http://www.clifford.at/yosys/
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5.2 Static timing analysis

In Figure 4.4 we compare the static timing properties of the designs implemented for the experiments. The relative delay

differences for the Vivado implementation are very high, while the delay differences of the manual implementation and

the implementation done by our proposed algorithm are below the 30% threshold we defined. This means that both

the engineer that performed the manual implementation and our algorithm are capable of respecting our novel timing

constraint.

A surprising fact is that the performance of the algorithm does not deteriorate with the size of the STR. Even though

the larger STR means there is more competition for resources between the individual stages, the algorithm still finds an

implementation that is similar in timing to the smaller STR implementations.

As discussed in Section 5.1, the 30% error margin is the best we can do with the resources on the given target platform.

We have to measure the produced clocks in hardware to determine whether that error margin is low enough for the

STR to oscillate fast and precisely. We do so in Section 5.3.

5.3 Clock behavior

The oscilloscope measurements in Section 4.6.3 clearly show that the manual implementation and the implementa-

tions generated by our algorithm produce regular clocks while the Vivado implementation does not. This implies that

the performance of the STR depends on its implementation and our proposed constraint is suitable to find performant

implementations.

Unfortunately, we can only measure the clock output of single STR stages Fi. This is due to two limitations in our test

setup:

1. The accumulated final STR clock clk is clk = Fi ∗ STR_SIZE. Even for smaller STRs (STR_SIZE < 32), that is too

fast to be reliably measured by the measuring tools available to us.

2. We only have a single pair of SubMiniature version A (SMA) clock outputs available on our target hardware. The

two outputs are designed to be used in a Low voltage differential signaling (LVDS) setup, and can therefore only

transmit one clock at a time.

We illustrate how the individual clocks Fi are accumulated into the final clock clk in Figure 2.9. Measuring only a single

Fi at a time means we can only assess the quality of a single stage. While this gives a good indication of how the STR

behaves, it hides the fact that the accumulation of individual clocks is also very reliant on good placement and routing.

E.g., if the net that connects F1 to the accumulating exclusive-or (XOR) has higher delay than the net that connects F2

to the XOR, F1 would shift to the right in Figure 2.9, deforming clk. As we have no faster measurement equipment and

no development boards with more SMA output connectors available we must rely on the stochastic tests to assess the

performance of the STR.

It would be interesting to repeat the experiments on a development board with more SMA output connectors and an

oscilloscope with a higher sampling rate and many SMA inputs. An oscilloscope with a higher sampling rate would

allow us to observe the accumulated final clock clk directly. Given more SMA outputs on the board and inputs on

the oscilloscope, we could observe the output of multiple stages Fi at the same time and even measure the phase shift
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between them. For a reliable measurement of the phase shift, the delay of the nets connecting the output of the stages Fi

to their corresponding SMA output would need to be equal. This would be another use-case for our proposed constraint

and algorithm.

5.4 Stochastic tests

Lastly, we discuss the high-level output of our use-case design: the random numbers produced by the STR-TRNG. We

calculate the bias, and perform rngtest and NIST 800-22 tests. We give results in Tables 4.2, 4.3, A.1 and A.3.

We can immediately tell that the Vivado implementation does not produce acceptable random numbers. The numbers

are highly biased and most of the stochastic tests fail. There is one configuration that seems to do well enough, the STR-

TRNG using a 256-stage STR configured with 7 tokens missing, but we show in Figure 4.9a that the STR was running

in burst mode for that case. The burst mode is described in the original publication of the STR.4 It occurs when the

routing is not satisfactory. When looking at a very short capture, the burst mode may look like a regular clock, but

when looking at a longer capture, one can see that it constantly switches between an oscillation and a constant output.

This is clearly visible in Figure 4.9a and can further be analyzed in Figures 4.9b and 4.9c. This means the result is very

likely not repeatable.

The manual implementation on the other hand looks promising. As discussed in Table 4.1, implementing such a design

by hand is very time-consuming. We therefore only implemented one configuration by hand (STR of size 64). Imple-

menting all configurations manually would improve the significance of our results, but delay this work by over half a

year (consider that the larger designs also take longer to implement).

The manual implementation is less biased and mostly passes the rngtest. However, the small bias that remains is large

enough to cause the NIST 800-22 Frequency test to fail. As that test is a precondition to all other tests, the manual

implementation fails all NIST 800-22 tests. The observation that a design may pass several rngtests but fail NIST 800-22

tests is in line with the observations of Hurley-Smith, Patsakis, and Hernandez-Castro.5 They state that the rngtests are

not hard enough and cannot detect an adversarial bias in a bitstream. As we identified significant bias in our results for

the manual implementation, we suspect that to be the reason that the rngtests pass but the NIST 800-22 tests fail.

The automated implementation is even less biased. The worst bias we could measure was 50± 0.01%. That is enough

to pass the NIST 800-22 Frequency test and all other NIST 800-22 tests most of the time. The results of the stochastic tests

for the automated implementation proves that the STR-TRNG works as advertised.

Comparing the results of the automated implementation and the manual implementation, we see that they have almost

identical performance in terms of clock behavior, but differ in terms of the stochastic tests. We assume this is due to

the flaw of the measurement setup discussed in Section 5.3. The oscilloscope-measurements cannot reflect the timing

properties of the XOR tree at the output of the STR, as we have to measure the clock before the XOR tree.

All tests were performed with a sample size of about 4MB due to the limited buffering capabilities of our target hard-

ware. This could be improved in two ways:
4 O. Elissati et al. “Self-Timed Rings: A Promising Solution for Generating High-Speed High-Resolution Low-Phase Noise Clocks”. In: VLSI-SoC:
Forward-Looking Trends in IC and Systems Design. Ed. by J. L. Ayala, D. Atienza Alonso, and R. Reis. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012.
5 D. Hurley-Smith, C. Patsakis, and J. Hernandez-Castro. “On the unbearable lightness of FIPS 140-2 randomness tests”. In: IEEE Transactions on
Information Forensics and Security (2020).
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• Add external memory as a buffer or

• Implement an interface that is fast enough to transmit the random numbers in real time (e.g., Peripheral Component

Interconnect Express (PCIe)).

With a sample size of 10 − 100MB we could add the dieharder test suite to our selection of stochastic tests to further

support our claims.





Chapter 6

Conclusion

This research identifies common general properties of physical unclonable functions (PUFs) and true random number

generators (TRNGs) that make them hard to implement in hardware. We find that PUFs and TRNGs often depend on

race conditions on certain nets. For the race conditions to occur, these nets need to have equal delay. A skilled engineer

needs to place and route the design accordingly. We conclude that using the state-of-the-art design flow, to implement

security primitives in digital hardware one needs a skilled engineer and a lot of labor.

In this work, we present an alternative flow that allows a person that completely lacks the skills required for manual

placement and routing (PnR) to implement security primitives in digital hardware. We define a constraint DELAY_GROUP

that allows to group nets into groups. We propose an algorithm that then places and routes a digital design on a field-

programmable gate array (FPGA) so that nets that are in the same DELAY_GROUP have the same delay within an error

margin of 30%. This results in a novel design flow for hardware security primitives. The manual effort of PnR is

deprecated. We reduce the human labor required for the implementation by factor 328.

To demonstrate the usefulness of our proposed constraint and algorithm, we follow a chain of implications on a self

timed ring (STR)-based TRNG (STR-TRNG) as a use-case example. We place and route the STR-TRNG by hand first and

then repeat PnR using our proposed constraint and algorithm. We record the difference in the amount of labor that is

required. The manual implementation takes about a month of skilled labor while the automated approach takes mere

hours. In the future, this time could further be improved by leveraging the fact that oscillator circuits are often repetitive.

This means there should be patterns in the design so that routing one occurrence and applying the same route to all

other occurrences could work and reduce the implementation time even more.

Analyzing the physical implementation using static timing analysis (STA) we see both the manual implementation and

the automated implementation meet our novel timing constraint of equal delay up to an error margin of 30%. In both

approaches we see an error margin of 30% is necessary, there are simply not enough routing resources available on our

target hardware to route the design more precisely.

We see the error margin is low enough when analyzing the behavior of the clocks the STR-TRNG produces using an

oscilloscope. We see that both the manual implementation and the automated implementation oscillate appropriately,
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while an implementation that is completely agnostic of any timing requirements fails to produce a usable clock. This

proves the design requires special attention during PnR in the first place.

Lastly we analyze the produced random numbers using stochastic testing. We see that the performance of our selected

use-case example, the STR-TRNG, depends on its internal timing properties. The manual implementation and our au-

tomated implementation, being aware of our novel timing requirement, perform well while the plain implementation

without awareness of the special timing requirements fails even the most basic random tests.

In this work we were limited by the routing and buffering resources of our target hardware, the input/output (I/O)

capabilities of our target hardware, and by our experimental setup. The target hardware did not allow us to keep the

error margin below 30% as discussed above. Also, its single differential SubMiniature version A (SMA) output only

allowed us to observe one of the internal clocks at a time. Due to the sample-rate of our oscilloscope, this clock can

not be the final output of the STR, as that is too fast. Additionally, the target hardware limits the amount of random

numbers we can buffer to 4MB, which is not enough for one widely used test suite, namely dieharder. To further argue

the usability of our work, one would need:

• An FPGA development board with more differential SMA outputs as well as a faster oscilloscope with enough

differential SMA inputs to sample all the FPGA SMA outputs simultaneously, and

• A development board with either more memory to increase the buffer size or a faster communication interface to

transfer the generated random numbers in real time, avoiding buffering at all.

This workmolds the required skill tomanually place and route hardware security primitives into an algorithm. It thereby

reduces the manual effort and skill required to implement hardware security primitives making them more accessible

to hardware designers.



Appendix A

Additional experimental results

Herewe present experimental results for configurations not discussed in Section 4.6 and Chapter 5. Theywere omitted in

Section 4.6 and Chapter 5 as they do not add additional information that affects the conclusion in any way. Nevertheless,

they add value as they show that the results shown in Section 4.6 are not outliers.
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STR Size 16 32

Strategy Vivado Algorithm Vivado Algorithm

Missing Tokens 1 3 1 3 1 3 5 7 1 3 5 7

Bias
Probability of logic ’1’ 11.58% 22.56% 50.00% 50.00% 11.65% 12.56% 13.10% 15.15% 50.00% 50.00% 50.01% 50.00%

FIPS 140-2
rngtest 0.00% 0.00% 99.89% 99.91% 0.00% 0.00% 0.00% 0.00% 99.89% 99.95% 99.96% 99.90%

NIST 800-22
Frequency test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Block Frequency test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Runs test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Longest Run Of Ones test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 9/10 10/10
Matrix Rank test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Discrete Fourier Transform test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 9/10 9/10 9/10
Non-Overlapping Template Matchings test 0/10 0/10 10/10 9/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Overlapping Template Matchings test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Universal test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Linear Complexity test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Serial test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 9/10 10/10
Approximate Entropy test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Cumulative Sums test 0/10 0/10 10/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
Random Excursions test 0/10 0/10 9/10 10/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10
randomExcursionsVariant test 0/10 0/10 8/10 9/10 0/10 0/10 0/10 0/10 10/10 9/10 9/10 10/10

Table A.1: Results of the stochastic tests on a Self-Timed-Ring True-Random-Number-Generator of Sizes 16 and 32. We show results for the default Vivado placement and routing,
manual placement and routing, and our automated placement and routing. All configurations are tested ten times. Bias is the probability of each bit being ’1’. The rngtest produces
1677 pass or fails for each run. The remaining test cases produce a single pass or fail for each run. The number given in the table is the average probability of the test passing. A
value of 100% means the configuration passed the test in all ten iterations.
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STR Size 128

Strategy Vivado Algorithm

Missing Tokens 1 3 5 7 9 11 1 3 5 7 9 11

Bias
Probability of logic ’1’ 59.70% 48.78% 51.42% 51.01% 49.41% 50.38% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%

FIPS 140-2
rngtest 0.00% 18.16% 39.91% 76.39% 73.25% 89.79% 99.92% 99.93% 99.91% 99.92% 99.92% 99.92%

NIST 800-22
Frequency test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 10/10 10/10
Block Frequency test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 9/10 10/10
Runs test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 10/10 10/10
Longest Run Of Ones test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 9/10 10/10
Matrix Rank test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 10/10 10/10
Discrete Fourier Transform test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 9/10 10/10 9/10 10/10 10/10
Non-Overlapping Template Matchings test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 10/10 10/10
Overlapping Template Matchings test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 9/10 8/10 10/10 9/10
Universal test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 10/10 10/10
Linear Complexity test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 8/10 10/10 10/10
Serial test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 10/10 10/10
Approximate Entropy test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 10/10 10/10
Cumulative Sums test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 9/10 10/10 10/10
Random Excursions test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 8/10 8/10 9/10 8/10 8/10
randomExcursionsVariant test 0/10 0/10 0/10 0/10 0/10 0/10 9/10 8/10 9/10 9/10 7/10 7/10

Table A.2: Results of the stochastic tests on a Self-Timed-Ring True-Random-Number-Generator of Sizes 128. We show results for the default vivado placement and routing, manual
placement and routing, and our automated placement and routing. All configurations are tested ten times. Bias is the probability of each bit being ’1’. The rngtest produces 1677
pass or fails for each run. The remaining test cases produce a single pass or fail for each run. The number given in the table is the average probability of the test passing. A value of
100% means the configuration passed the test in all ten iterations.
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STR Size 192

Strategy Vivado Algorithm

Missing Tokens 1 5 7 11 13 17 1 5 7 11 13 17

Bias
Probability of logic ’1’ 46.03% 49.75% 49.72% 50.07% 50.21% 50.33% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%

FIPS 140-2
rngtest 0.00% 99.35% 88.29% 99.90% 99.61% 99.60% 99.95% 99.92% 99.90% 99.96% 99.95% 99.93%

NIST 800-22
Frequency test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 10/10 10/10
Block Frequency test 0/10 0/10 0/10 0/10 0/10 0/10 9/10 8/10 10/10 10/10 10/10 10/10
Runs test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 10/10 10/10
Longest Run Of Ones test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 9/10 10/10
Matrix Rank test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 10/10 10/10
Discrete Fourier Transform test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 10/10 10/10
Non-Overlapping Template Matchings test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 10/10 10/10
Overlapping Template Matchings test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 9/10 10/10 10/10 10/10 10/10
Universal test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 10/10 10/10
Linear Complexity test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 9/10 10/10
Serial test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 10/10 10/10
Approximate Entropy test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 9/10 10/10 9/10 10/10 10/10
Cumulative Sums test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 10/10 10/10 10/10 10/10
Random Excursions test 0/10 0/10 0/10 0/10 0/10 0/10 9/10 9/10 9/10 9/10 9/10 6/10
randomExcursionsVariant test 0/10 0/10 0/10 0/10 0/10 0/10 10/10 10/10 8/10 10/10 8/10 9/10

Table A.3: Results of the stochastic tests on a Self-Timed-Ring True-Random-Number-Generator of Sizes 192. We show results for the default vivado placement and routing, manual
placement and routing, and our automated placement and routing. All configurations are tested ten times. Bias is the probability of each bit being ’1’. The rngtest produces 1677
pass or fails for each run. The remaining test cases produce a single pass or fail for each run. The number given in the table is the average probability of the test passing. A value of
100% means the configuration passed the test in all ten iterations.
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