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Abstract

Climate change is profoundly affecting the global water cycle, increasing the

likelihood and severity of extreme water-related events. Better decision-support

systems are vital to accurately predict and monitor water-related environmental

disasters and optimally manage water resources. These must integrate advances

in remote sensing, in situ, and citizen observations with high-resolution Earth

system modeling, artificial intelligence (AI), information and communication

technologies, and high-performance computing. Digital Twin Earth (DTE)

models are a ground-breaking solution offering digital replicas to monitor and

simulate Earth processes with unprecedented spatiotemporal resolution.

Advances in Earth observation (EO) satellite technology are pivotal, and here

we provide a roadmap for the exploitation of these methods in a DTE for

hydrology. The 4-dimensional DTE Hydrology datacube now fuses high-

resolution EO data and advanced modeling of soil moisture, precipitation,

evaporation, and river discharge, and here we report the latest validation data

in theMediterranean Basin. This system can now be explored to forecast flooding

and landslides and to manage irrigation for precision agriculture. Large-scale

implementation of such methods will require further advances to assess high-

resolution products across different regions and climates; create and integrate
compatible multidimensional datacubes, EO data retrieval algorithms, and
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models that are suitable across multiple scales; manage uncertainty both in EO

data and models; enhance computational capacity via an interoperable, cloud-

based processing environment embodying open data principles; and harness AI/

machine learning. We outline how various planned satellite missions will further

facilitate a DTE for hydrology toward global benefit if the scientific and

technological challenges we identify are addressed.
KEYWORDS

hydrology, remote sensing, flood, drought, water resources management, Digital
Twin Earth
Key points

• The increasing likelihood and severity of extreme water-
related events necessitate high-precision decision-support
systems to predict and monitor water-related
environmental disasters and optimally manage
water resources.

• A Digital Twin Earth (DTE) of the terrestrial water cycle
offers a ground-breaking solution for monitoring and
simulation, but it requires high-resolution (1 km, 1 hour)
satellite Earth observation (EO) data and an
understanding of the human impact on
hydrological processes.

• High-resolution EO data are now being integrated with
advanced and spatially distributed modeling systems,
enabling large-scale applications of a DTE for hydrology
to be explored to forecast flash floods and landslides,
enable precision agriculture, monitor fires, and develop
what-if scenarios for flood risk assessment and water
resources management.

• To scale up a DTE for hydrology, we need to assess high-
resolution products across regions and climates, integrate
compatible, multi-scale EO data and models, manage
uncertainty in data, and implement collaborative
research infrastructures.

• Various planned satellite missions will further facilitate a
DTE for hydrology toward global benefit if the scientific
and technological challenges we identify are addressed.
Introduction

Human-induced climate change is affecting all components of

the global water cycle, increasing the likelihood and severity of

extreme water-related events, including heavy precipitation,

flooding, landslides, drought, and wildfires (1, 2). These events

are already causing substantial mortality, agricultural disruption,
02
economic damage, and ecological impacts, and their intensity and

impact are projected to increase (1, 2). A new generation of

decision-support systems is vital to better predict and monitor

water-related environmental disasters and optimally manage

water resources.

In recent years, high-resolution observations (<1 km, <1 day)

now available from remote sensing, in situ monitoring networks,

and new sensor technologies and techniques (including drones and

citizen science research) have been coupled with increased

computational and storage capacity and advanced machine

learning methods to produce high-resolution hydrology

modeling systems.

In the past two decades, the challenge of reconstructing the

terrestrial water cycle at high resolution has been addressed

mainly by the development of global hydrological and land

surface modeling (3–8). Several global hydrological and land

surface models now exist and the first intercomparison studies

have improved our knowledge of the global water cycle (9, 10).

The pioneering studies on hyper-resolution global hydrological

modeling were performed by Wood et al. (3) and Bierkens et al.

(5), who highlighted the challenges in building a Digital Twin

Earth (DTE) of the water, energy, and carbon cycles even before

the term DTE had been coined by the community. These

challenges were related to processing representation and

parameterization, limited availability of high-resolution

observations for model inputs and model testing (11, 12), high

computational expenses, and particularly the inclusion of human

impacts on the water cycle (6). Indeed, modeling any of the Earth’s

physical processes becomes even more challenging when

including the effects of human behaviors. To address these

challenges, some authors have proposed the use of “hybrid”

modeling approaches (13) that couple physical (process-based)

models with the versatility of (data-driven) machine learning to

estimate variables for which our knowledge remains limited (14).

These approaches facilitate a seamless incorporation of recently

available satellite datasets (e.g., soil moisture or groundwater

storage) that are typically difficult to integrate into physically

based models (15). Nowadays, hybrid approaches are also being
frontiersin.org
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used to characterize traditionally elusive components of the

terrestrial hydrological cycle, such as evaporation (16).

Earth observation (EO) provides different products for

describing the water cycle but mostly at coarse spatial resolution

(>10 km). For instance, remote sensing soil moisture products at

coarse resolution can be obtained from different satellite platforms

and sensors, such as the Soil Moisture and Ocean Salinity (SMOS),

the Soil Moisture Active and Passive (SMAP), or the Advanced

SCATterometer (ASCAT) platforms. More recently, the Sentinel-1

Copernicus satellites have enabled native high-resolution (<1 km)

soil moisture datasets (i.e., not considering products obtained

through downscaling) (17–21). Exploitation of the Sentinel

constellation (Sentinel-1, -2, and -3) has also allowed this for

variables such as evaporation (22–24), precipitation [e.g., Karger

et al. (25); Filippucci et al. (26); He et al. (27)], snow depth (28), and

river discharge (29–31). Moreover, the integration of Sentinel with

Landsat, Moderate Resolution Imaging Spectroradiometer

(MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS)

provides the potential to develop long-term datasets for evaporation

[e.g., Jaafar et al. (32)] and river discharge (33) at high

spatial resolution.

This article explores how recent high-resolution data of both

space (<1 km) and time (<1 day), e.g., from the Sentinel

constellation, have provided the possibility to obtain an accurate

and high-resolution DTE of the water cycle, and it offers a roadmap

for the future exploitation of these methods toward global benefit.

Indeed, these current EO capabilities allow high-resolution data to

be integrated into modeling systems both as forcing data and as

validation datasets, thereby warranting an update of the

requirements and the challenges to be addressed beyond those

previously identified (3, 5). While we differ in our approach from

Rigon et al. (34), who described an example of theoretical

architecture for building a DTE in hydrology without specifying

its content (i.e., without showing real-world examples or an actual

implementation of the concept), we concur with these authors

regarding the need to promote a new participatory way of doing

hydrological science, where researchers can contribute

cooperatively to characterize and control model outcomes in

different regions worldwide. We also build on the study by Alfieri

et al. (35), who described the main results obtained from the

integration of remote sensing data and advanced modeling over

the Po River Basin under the first phase of the DTE Hydrology

project funded by the European Space Agency (ESA).

First, we briefly describe the overall framework of DTE

Hydrology in which, for the first time, high spatiotemporal

resolution satellite products of soil moisture, precipitation,

evaporation, snow depth, and river discharge are integrated into

advanced hydrological modeling systems (35). Second, we focus

on the main challenges (e.g., quality assessment for soil moisture

and evaporation, products, and model selection, ensuring a

balance between product consistency and independence and

uncertainty assessment) to be addressed when developing a

reliable remote-sensing-based datacube for hydrology,

specifically for the key variables of the water terrestrial balance:

precipitation, evaporation, soil moisture, and river discharge.
Frontiers in Science 03
Third, we explore the capabilities of future satellite missions.

Finally, we outline the priority steps necessary to develop an

operational, high-resolution DTE for hydrology.
DTE Hydrology: a prototype for
exploiting high-resolution EO
in hydrology

The overall objective of DTE Hydrology is the 4-dimensional

(4D) reconstruction of the terrestrial water cycle at high resolution

through the integration of the most recent satellite observations and

advanced hydrological modeling (Figures 1, 2 show an example

over the Po River Basin).

The Po River Basin in northern Italy was selected as the first

case study owing to the availability of high-quality ground

observations to calibrate and test the quality of the satellite

observations and modeling system. The 4D DTE Hydrology

datacube is currently available for the whole Mediterranean Basin,

and its development for the whole of Europe is planned. Three

applications of the model were investigated: flooding simulation

(36), landslide prediction, and irrigation water management. What-

if scenarios are developed to provide decision-makers with a digital

modeling platform to visualize, monitor, and forecast natural and

human activity on the planet in support of sustainable development

and the prediction and management of environmental disasters (see

https://explorer.dte-hydro.adamplatform.eu/).

Building the DTE Hydrology tool involved four sequential steps:
• building the 4D DTE Hydrology datacube—a high-

resolution (1 km, daily/hourly, 2016–2022) EO- and

modeling-based dataset (Table 1),

• developing a high-resolution modeling system utilizing the

4D DTE Hydrology datacube (e.g., as input data, for

parameterization, in a data assimilation framework, etc.)

to provide a 4D reconstruction of the terrestrial water

cycle (Figure 3),

• integrating the modeling system into the cloud-based DTE

Hydrology simulation and visualization tool,

• exploiting the DTE Hydrology tool to develop user-oriented

case studies and what-if scenarios focusing on flood and

landsl ide hazard mapping and water resources

management (Figure 3).
This work led to a regional DTE prototype focusing on the

terrestrial water cycle, hydrological processes, and their

impacts (35).
High-resolution EO-data hydrological
cycle reconstruction

The first step in the DTE Hydrology project was the building

of the 4D DTE Hydrology datacube, offering an advanced data-
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driven reconstruction of the hydrological cycle. Multiple satellite

products were tested for the variables of soil moisture,

precipitation, evaporation, and river discharge. Based on the

results of the validation and the modeling simulation, a final
Frontiers in Science 04
version of the 4D DTE Hydrology datacube was selected and

made available openly to the science community (see Figure 3 for

the Po River Basin; the dataset for the whole Mediterranean Basin

can be found here: https://viewer.earthsystemdatalab.net/

?dataset=hydrology).

The 4D DTE Hydrology datacube fuses satellite and modeled

data from high-resolution satellite products.
FIGURE 1

High-level description of the Digital Twin Earth (DTE) Hydrology
modeling framework. The four-dimensional, i.e., three dimensions in
space and one in time, the DTE Hydrology datacube (soil moisture,
precipitation, evaporation, and river discharge) fuses earth
observation and modeled data from high-resolution satellite
products. This is integrated into the advanced hydrological modeling
system CONTINUUM to predict high-resolution (1 km, 1 hour) soil
moisture, evaporation, and river discharge. The modeling output is
combined with satellite observations in the application modules for
landslide prediction, flooding simulation, and irrigation.
FIGURE 2

Digital Twin Earth (DTE) Hydrology sample outputs for (A) soil
moisture, (B) evaporation, and (C) precipitation.
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Satellite data
Soil moisture

An improved high-resolution (1 km) soil moisture product was

obtained by applying the RT1 algorithm (37) to Sentinel-1

observations. The resulting soil moisture product has a spatial

and temporal resolution of 1 km and nearly 3 days, respectively,

and a temporal coverage from 2017 to 2022 for the Mediterranean

Basin. The RT1 algorithm is a first-order expansion of the radiative

transfer equation, modeling backscatter as the result of scattering

from a (rough) surface covered by vegetation. It is assumed that

multiple scattering does not contribute to the signal at the sensor.

As for all soil moisture retrieval algorithms from microwave

observations, the challenge is to separate the signal coming from

the soil from that of vegetation. This is even more important at high

spatial resolution, as the signal is not an aggregation over

multiple vegetation types. DTE Hydrology leverages high-

resolution products to obtain the most reliable soil moisture at 1

km and parametrizes vegetation dynamically using the Leaf Area

Index from the Copernicus Global Land Service (300 m version).

Quantitative validation of soil moisture at high spatial resolution is

challenging owing to a lack of reference data at the scale necessary.

Therefore, validation was carried out with ERA5-Land soil moisture

at 9 km (38). High accuracy was found, especially over croplands
Frontiers in Science 05
(39). The high spatial detail can potentially provide more reliable

soil moisture information over areas of complex topography in

comparison to coarse-resolution soil moisture products.

Precipitation

A first-of-its-kind satellite precipitation product with an hourly

timescale and 1 km spatial resolution was obtained through the

integration of three parent products (1): the Integrated Multi-

satellitE Retrievals for Global precipitation measurement

(IMERG) late-run product (10 km, 1 hour) (2), the SM2RAIN-

ASCAT product (40) based on the application of the Soil Moisture

to RAINfall (SM2RAIN) algorithm (41, 42) to the Advanced

SCATterometer (ASCAT) soil moisture (10 km, 1 day), and (3)

SM2RAIN applied to Sentinel-1 soil moisture from RT1 (26) (1 km,

3 day). The integration of the three products was optimized

considering the pixel-based signal-to-noise ratios obtained via

triple collocation analysis (35). The resulting precipitation

product has a spatial and temporal resolution of 1 km and 1 hour

and temporal coverage from 2016 to 2019 over the Po River Basin,

and it has been tested for the first time in DTE Hydrology (35). The

product is being extended for the whole Mediterranean Basin, and a

first release is available in the datacube from 2015 to 2022 at a daily

time scale.
TABLE 1 Products contained in the four-dimensional (4D) Digital Earth Twin (DTE) Hydrology datacube.

Product Data source Temporal
coverage

Spatial
resolution

Temporal
resolution

Spatial
coverage

Surface soil moisture Satellite Jan 2017–Sep 2022 1 km ~3 days Mediterranean Basin

Root zone soil moisture Satellite Jan 2017–Dec 2019 1 km 1 day Mediterranean Basin

Actual and
potential evaporation

Satellite Jan 2015–Dec 2021 1 km 1 day Mediterranean Basin

Actual evaporation Model Jan 2017–Dec 2019 1 km 1 hour Po Basin

Precipitation Satellite Jan 2015–Feb 2022 1 km 1 hour Mediterranean Basin

River discharge Satellite Jan 2016–Dec 2019 5 stations ~2 days Po Basin

River discharge Model Jan 2016–Dec 2021 28 stations 1 hour Mediterranean Basin
Each dataset is structured in NetCDF files; the 1 km spatial grid is the same for all variables; the temporal sampling varies for the different variables (3 days, 1 day, 1 hour).
FIGURE 3

Visualization of the Digital Twin Earth (DTE) Hydrology datacube over the Po River Basin, Italy.
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https://doi.org/10.3389/fsci.2023.1190191
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


Brocca et al. 10.3389/fsci.2023.1190191
Evaporation

The high-resolution version of the Global Land Evaporation

Amsterdam Model [GLEAM; Miralles et al. (43)] evaporation

product (25 km, 1 day) was obtained by making use of high-

resolution static and dynamic datasets describing the land surface,

e.g., the MODIS fractional vegetation cover (44) and the 3D soil

hydraulic database (45). Furthermore, datasets from the DTE

Hydrology project were used: Sentinel-1-based soil moisture

retrievals (37) were assimilated through a Newtonian nudging

scheme, and the merged precipitation product (see above) was used

as input for GLEAM. Further advances in making use of high-

resolution observations in GLEAM include the application of Sentinel

3 land surface temperature retrievals for creating high-resolution and

gap-free temperature and net radiation forcing data as well as the use

of high-resolution vegetation properties (46). The assimilation of

Sentinel-1 backscatter observations using either a traditional or

machine-learning-based forward operator has also been explored

(47). The resulting product (1 km, 1 day) of actual and potential

evaporation is available from 2015 to 2021 for the Mediterranean

Basin. The satellite-based high-resolution evaporation product has

been evaluated, with a few stations in Europe showing a performance

similar to the well-established GLEAM product at 25 km resolution

(35). However, given the low availability of eddy-covariance towers,

performances are evaluated mainly over time, and a full spatial

assessment revealing the value of the improved resolution cannot

be performed through comparison to in situ data.

River discharge

The integrated river discharge product first developed under the

ESA RIDESAT project has been further improved in DTE

Hydrology and tested along the Po River at five hydrometric

stations. The product has a temporal resolution of 1–2 days,

thanks to the integration of multiple altimetry tracks (Cryosat-2,

Sentinel-3, Saral/AltiKa) and multiple near-infrared observations

(from MODIS onboard AQUA and TERRA satellites, OLCI

onboard Sentinel-3, and MSI onboard Sentinel-2). The river

discharge was calculated as the product of flow area multiplied by

the flow velocity. Specifically, the flow area is calculated as a

function of the altimetry water level (even in the absence of

bathymetry), whereas the flow velocity is described by the

reflectance index measured by the near-infrared signal of the

multispectral sensor. The coefficients used to estimate the flow

area and velocity were calibrated by minimizing the root mean

square error (RMSE) between the simulated river discharges and

those recorded at ground-gauged stations. The comparison with the

discharge data recorded at the gauged stations along the Po River

shows high performances with an average Nash–Sutcliffe (NS) of

0.81, Kling-Gupta Efficiency (KGE) of 0.88, and relative RMSE

(rRMSE) of 26 %. These performance metrics highlight the

capability of the satellite discharge product to reproduce almost

daily variations with good accuracy.

Snow depth

To reconstruct water-balance timing and seasonality at high

elevations, EO-based snow depth data were also used in DTE
Frontiers in Science 06
Hydrology. These data were retrieved from the Sentinel-1

empirical change detection approach developed by Lievens et al.

(28) and show a resolution of 1 km and daily granularity. This

product, called C-SNOW, was not developed during the period we

used DTE Hydrology, and thus it is not included in the datacube of

this article. Given the essential contribution of snow in driving the

terrestrial water cycle, readers are referred to Lievens et al. (28) and

Lievens et al. (48); data are freely available at https://

ees.kuleuven.be/project/c-snow.

Modeled data
In addition to EO-based products, we have used the fully

distributed cryospheric model Snow Multidata Mapping and

Modeling (S3M) (49) and the hydrological model CONTINUUM

(50) to develop a high-resolution (1 km, 1 hour) modeled product

for root-zone soil moisture, actual evaporation, and river discharge.

The modeled dataset covers the period 2016–2021, with the year

2015 being used for model warm-up. The model allows us to obtain

hourly estimates of hydrological variables by using forcing satellite

observations of potential evaporation and precipitation. In Alfieri

et al. (35) we have carried out a set of experiments where satellite

observations are used: (i) as forcing data (precipitation and

evaporation), (ii) for parameter calibration (river discharge), and

(iii) in data assimilation (soil moisture and snow depth). Different

configurations have been analyzed and compared by also

considering a combination of ground-based and satellite products.

We have obtained important insights into the quality of satellite

products, the possibility of integrating such high-resolution

observations into hydrological modeling, and the limitations that

must be overcome to optimally integrate model and satellite

products into a data assimilation framework. Specifically, Alfieri

et al. (35) found that satellite-based evaporation and snow depths

slightly improved the mean KGE at 27 river gauges compared with a

baseline simulation forced by high-quality conventional ground

data. River discharge showed the largest sensitivity to satellite

precipitation, though it generally led to accurate results.

The current version of the 4D DTE Hydrology datacube

contains remote sensing of 1 km and modeled data for the

Mediterranean Basin in the period 2015–2022 (Table 1).
Quality assessment and exploitation of the
DTE Hydrology datacube

A DTE for hydrology must be carefully tested to ensure it

provides robust and accurate predictions for decision-makers.

However, the validation of high-resolution satellite products is

very challenging because in situ observations with the same

spatial resolution and coverage are not available for most

variables except for precipitation (for which the meteorological

radar offers an hourly reference dataset for 1 km). In DTE

Hydrology, we have performed a first validation of satellite data

products and modeling results against in situ observations (35).

Here we report an additional quality assessment exploiting the most

recent version of the DTE Hydrology datacube.
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Hydrological validation
This latest assessment of the DTE Hydrology precipitation

product was conducted using the data forcing in the semi-

distributed conceptual hydrological model known as Modello

Idrologico SemiDistribuito in continuo (MISDc) (51, 52). This

model allowed us to assess multiple precipitation products by

recalibrating it for each forcing dataset (whereas the same process

is more challenging for a fully distributed model owing to the

high computational burden). Specifically, we used two ground-

based datasets: (i) Precipitation observation (Pobs) based on in

situ rain gauge data and (ii) modified conditional merging

(MCM) based on the integration of data from national

meteorological radar and rain-gauge networks. Moreover, four

satellite-based products were considered: (i) IMERG Late Run,

(ii) SM2RAIN-ASCAT, SM2RASC, (iii) the integration of

IMERG and SM2RAIN-ASCAT, i.e., IMERG+SM2RASC, and

(iv) the DTE Hydrology product.

The following procedure was used to evaluate the reliability of

each product for flood simulation. For each product, the MISDc

model was calibrated over the period 2016–2019 and the simulated

river discharge time series was compared against the in situ

observed data. For simplicity, only 18 of 27 in situ gauging

stations available across the Po Basin were considered for this

analysis. Through a sequential calibration (53), the MISDc model

was calibrated over 11 gauging stations; the remaining seven

stations were used for validation.

Figure 4 shows the results (in terms of KGE) for each product

and the 18 stations. The overall performances of the in situ data are
Frontiers in Science 07
very good in accordance with Camici et al. (52). While Pobs and

MCM show similar median values, MCM performs slightly better.

The observed data outperforms the single satellite precipitation

data. In particular, among the investigated precipitation products,

IMERG shows the lowest median KGE value (0.66) whereas

SM2RASC performs better (0.77). Integrating the products

improves the flood modeling performance. In particular, the DTE

Hydrology product increases the median KGE value to 0.82, a value

slightly higher than that obtained using Pobs (0.79) and MCM

(0.81). Considering the high density of rain gauge stations in the Po

River Basin (640 stations), these results are very promising when

striving toward a satellite-based high-resolution (1 km, 1 hour)

precipitation product in Europe.
Irrigation water use
The products contained in the DTE Hydrology datacube have

been exploited also for irrigation water assessment. Indeed, the

capability to capture irrigation dynamics at high spatial resolution

has been investigated through the soil-moisture (SM)-based

inversion approach (54–56), which allows backward estimation of

irrigation rates from satellite soil moisture data. Such a method has

been implemented through RT1 soil moisture, potential

evapotranspiration rates from GLEAM, and rainfall from MCM.

The first experiment was carried out over a 15 km × 30 km tile north

of the city of Reggio Emilia (in the Po River valley), where estimates

of irrigation water use at 1 km resolution were produced for the

irrigation season of 2018. Figure 5 shows the outcome of this
FIGURE 4

The latest assessment of the Digital Twin Earth (DTE) Hydrology precipitation product for discharge modeling shows very good performance. The
figure shows a boxplot of Kling-Gupta Efficiency (KGE) scores computed by comparing observed river discharge for 18 stations with modeled river
discharge obtained using different rainfall products as input into the hydrological model MISDc. For the boxplot of each variable, the numbers above
each indicate the median KGE value, the buffers indicate the minimum and maximum value, and the three horizontal lines in the rectangle indicate
the 25th, 50th, and 75th percentiles.
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application: the largest water amounts were obtained on the eastern

side of the domain, where irrigation amounts >300 mm were

retrieved. The product is currently extended to the whole Po

Valley as well as the Ebro Basin in Spain and Murray-Darling in

Australia; the dataset is freely available, and all details are reported

in Dari et al. (57).

High-resolution (≤1 km) satellite data available in the

Mediterranean Basin provided a clearer spatial match with the extent

of agricultural fields, compared with coarse resolution products (54),

thereby allowing a more dynamic monitoring of water use for

irrigation across fields. However, to advance applications in

agriculture, a further improvement in resolution, <100 m, is required.
What-if scenario for flood risk assessment and
water resources management

The final results of the DTE Hydrology project have been

showcased in the what-if scenarios for flood risk assessment

(https://explorer.dte-hydro.adamplatform.eu/?use_case=3) and water

resources management (https://explorer.dte-hydro.adamplatform.eu/

?use_case=5) (see Figure 6 and the related Video 1 for examples of the

visualization of the DTE Hydrology Platform) implemented as a

prototype over the Po River Basin (this potentially can be extended

over the whole Mediterranean Basin). The what-if scenarios show
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ease of use and understanding of tools, providing practical

information to decision-makers involved in flood risk and water

resources management. The full details of the implemented

approaches are described in Brocca et al. (58); here, we only

summarize the main aspects and functionalities of the developed

tools. In both approaches, the high-resolution DTE Hydrology

datacube has been integrated into the modular approach by Camici

et al. (52), which has been adapted and improved to include the

human impact on the water cycle for agricultural, civil, and industrial

water use. The modeling approach has been run with a number of

different configurations for the input data to obtain a database of

simulations describing potential future scenarios for the water cycle.

Specifically, the what-if scenario for flood risk assessment

provides river discharge forecasts at six different stations along

the Po River as a function of predefined conditions for initial soil

moisture and 30-day precipitation (see Figure 6C). Similarly, the

what-if scenario for water resources management provides 5-month

forecasts for the main fluxes (precipitation, evaporation, and

runoff), storages (soil moisture and snow water equivalent), and

water uses (civil, industrial, and agricultural) as a function of

predefined conditions for initial soil moisture and snow water

equivalent and 5-month forecasts for precipitation and air

temperature (see Figure 6D). We note that for this scenario,

satellite observations for precipitation, evaporation, snow water
FIGURE 5

Irrigation water management case study. Cumulated irrigation amounts at 1 km spatial resolution over a portion of the Po River valley, Italy (whose
location is indicated on the left side) during 2018.
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FIGURE 6 (Continued)
Frontiers in Science frontiersin.org09

https://doi.org/10.3389/fsci.2023.1190191
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


FIGURE 6 (Continued)

This integrated and interactive system reconstructs and simulates the water cycle and the hydrological processes and interactions with human
activities at unprecedented resolutions and accuracies. (A) Large-scale water balance assessment for drought monitoring over the whole
Mediterranean Basin; (B) Flooding simulation for the Medicane Apollo, a tropical-like Mediterranean cyclone that occurred in October 2021;
(C) What-if scenario for flood risk assessment in the Po River Basin; and (D) What-if scenario for water resources management.
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equivalent, surface and root-zone soil moisture, and irrigation

water use are used as forcing data and for the calibration of

the parameter values of the model. Therefore, the modular

hydrological model has been found able to reproduce all

the variables of the terrestrial water cycle, not only river discharge

as is usually done, thus obtaining a robust tool for decision-making.
Challenges and limitations of
EO-based datasets

The key variables that characterize the hydrological cycle of a

region include precipitation (rainfall and snowfall), evaporation,

soil moisture, snow water equivalent, groundwater storage, and

river discharge. The quality and usability of satellite-based

hydrological products have recently been enhanced, which is in

part thanks to the wealth of new data sources from the Sentinel

constellation. Indeed, besides the products used in the DTE

Hydrology project, additional high-resolution products for soil
Frontiers in Science 10
moisture [e.g., the plot-scale S2MP dataset (59)] and prototype

products for evaporation [e.g., Sen-ET, Guzinski et al. (24) and

ECOSTRESS, Fisher et al. (60)] are available, and a large-scale,

comprehensive comparison of their characteristics and accuracy is a

research priority. Here, we present an overview of the challenges in

EO-based datasets and the potential role of AI and machine

learning in addressing these gaps (Figure 7).
How do we assess the quality of
high-resolution products?

The high-resolution EO-based products developed within the

last couple of years under the DTE Hydrology project are among

the most advanced satellite-based hydrological products currently

available. These have been validated for the first time during the

DTE Hydrology project but over a limited region (70,000 km2) and

temporal span (4 years). Therefore, all products need to be tested

further in different regions and climates to comprehensively assess
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their quality, reliability, and usability for high-resolution

hydrological applications.

The stringent tests necessary to assess these products’

performance at high spatial and temporal resolutions are very

challenging owing to the unavailability of ground observations at

relevant spatial and temporal scales (except for precipitation in

areas covered by meteorological radars). Indirect assessment and

novel approaches must therefore be developed [e.g., Crow et al.

(61)], for instance, by applying the data in case studies for which

high spatial and/or temporal resolution is mandatory.

A soil moisture or evaporation product with a spatial resolution

of 1 km should be able to distinguish between the water variability

of neighboring agricultural fields that might reflect irrigation

practices. To correctly identify irrigated fields, the spatial

resolution of EO-based products must be consistent with the

extent of irrigated fields (62–64). Similarly, high-resolution soil

moisture products can be tested in areas affected by fires, as their

occurrence significantly changes the hydrological regime at high

spatial resolution [(e.g., by forming a crust soil layer at a shallow
Frontiers in Science 11
depth, reducing infiltration rates/capacity (65)]. These changes in

the hydrological regime should be distinguished when high-

resolution products are considered.

An issue related to high resolution in space is the need for dense

temporal sampling for processes characterized by high temporal

variability (e.g., precipitation and flash flooding). Indeed, when

studying processes occurring at small scales, we must complement

the high spatial resolution (e.g., 1 km) with a high temporal

resolution (sub-daily or even hourly). For instance, data at high

spatial resolution allow us to investigate not only large river

flooding but also flash flooding occurring over small basins.

Hourly or sub-hourly data are necessary for this application as

these events develop quickly and occur over very short time periods.

Zappa et al. (64) have underlined the need for high temporal

resolution also for detecting irrigation events and particularly for

estimating irrigation water amounts.

High-resolution products may also be assessed by comparison

with high-resolution modeling. For example, Gruber et al. (66) have

highlighted the key role of land surface model outputs in the
FIGURE 7

Addressing challenges and limitations in Earth observation (EO)-based datasets toward an improved Digital Twin Earth (DTE) Hydrology. The key
challenges for DTE Hydrology are as follows: 1) difficulties in assessing EO products’ quality at high spatial and temporal resolution across different
regions and climates; 2) ensuring consistency between satellite data retrieval algorithms and modeling at high resolution; 3) managing the inherent
uncertainties in the accuracy of data from EO and model products; and 4) availability of information and communication infrastructures that could
support higher computational capacity while optimizing data latency and allowing long time series. Artificial intelligence and machine learning
techniques will play a vital role in addressing these challenges.
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evaluation of coarse-resolution satellite soil moisture products. In

this context, a good validation practice for high-resolution datasets

can indeed benefit from model simulations at high spatial

resolution. However, while models can provide regional- or

global-scale simulations at the desired temporal and spatial

resolution, they are characterized by representativeness errors

owing to input data, such as the original spatial resolution of

meteorological forcing data and errors in model parameterization

Gruber et al. (66). In particular, the latter implies uncertainties in

soil texture and vegetation/crop type parameterizations as well as

outdated input information about anthropogenic activities (e.g.,

areas equipped for irrigation; irrigation maps), which can critically

affect high spatial resolution outputs (67, 68). All those limitations

affect the accuracy of modeled products and should be considered

when assessing high-resolution satellite products.
Consistency within retrieval algorithms
and modeling

Importantly, when assessing high-resolution satellite products

or developing high-resolution models, one cannot merely scale up

the computer power and apply algorithms developed at coarse

spatial scales. The algorithms must be advanced to make them fit for

the increased physical complexity at the finer scales. This is due to

the need to consider processes that (i) were not previously included,

and (ii) require more complex parameterization to account for a

wide range of soil, topography, and land use types. As a

consequence, the algorithms become ever more data intensive,

necessitating urgent work toward the integration of satellite data

streams, combining data from different spectral bands,

measurement techniques, and processing levels. Leveraging these

data will require the creation of multidimensional datacube systems

that allow us to develop advanced satellite data retrieval algorithms

and to connect the different data streams with the models. For

example, global applications of high-resolution Copernicus data

require systems connecting existing analysis-ready datacubes for

Sentinel-1 (69) and Sentinel-2 (70).

Moreover, consistency should be ensured between EO-based

products and hydrological/land surface modeling. This can be

achieved in two different steps. The first step would require that

the same ancillary datasets (e.g., land use and land cover, soil

texture, and topography) are used in the modeling and the

retrieval algorithms of satellite products. The second step involves

the development of physically based models linking high-resolution

satellite observations from across the entire electromagnetic

spectrum to hydrological models. This would not only help to

better exploit the synergistic physical information content of

satellite observations from the optical, infrared, and microwave

domains but would eventually also lead to better consistency within

and between the different data records. These two targets are

potentially achievable, but they require a strong collaboration

between the modeling and the remote sensing communities to

integrate their expertise.
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We would like also to underline a potential counterpoint

regarding the relative merit of consistency. If models and remote

sensing retrieval algorithms use the same static spatial inputs, their

errors will be spatially correlated, leading to spurious agreement

between modeled and remotely sensing products. Upon evaluation,

independence may thus often be more desired than consistency.
Managing uncertainty in EO and
model products

Uncertainties inherently affect both EO and model products’

accuracy. On the one hand, models are imperfect representations of

reality with uncertainties reflecting the model physics’ description,

parameterization and input meteorological forcings, initial

conditions, and unresolved scales (71, 72). On the other hand, EO

is characterized by sensor, retrieval, and representativeness errors

(66, 73, 74). Therefore, the integration of EO and models through

merging applications strongly depends on the characterization of

the uncertainties in each (75).

Data assimilation is one of the most viable ways to optimally

integrate EO and models. Through model state update and/or

parameter estimation, data assimilation allows geophysical

quantities to be modeled more accurately and enables the

improvement of initial conditions for subsequent hydro-

meteorological forecasts (72, 74). However, the robustness of any

data assimilation system depends on an optimal representation of the

observation and forecast error covariances. In this context, the

observation error must account not only for instrument errors but

also errors in the observation operator and in the interpolation of the

observations, generally defined as representativeness errors (76).

Because the error characterization relies on high-quality benchmark

data from ground observations, its correct representation either in

satellite data or models is not always guaranteed. To circumvent this

problem, many researchers have proposed error characterization

strategies that compare multiple datasets of the same variable

provided that these datasets satisfy certain mathematical

requirements, such as the independence of their errors (77–80).

Therefore, temporally and spatially collocated model- and EO-

based time series can provide a robust error characterization for

use in data assimilation experiments (23, 81, 82).

The treatment of bias is another important aspect, considering

that most data assimilation methods assume that sources of

information are unbiased (72, 76). Bias arises when the

underlying assumptions of retrieval models are different from

those used by hydrological and land surface models. Researchers

have reported many attempts to correct this bias, most notably by

matching the cumulative distribution function (CDF) between

assimilated observations and model simulations (73, 83). To

better deal with the bias with respect to the model state, spectral

signatures of solar and Earth-emitted radiation can be assimilated

by directly equipping models with calibrated forward operator

components (e.g., based on inverse radiative transfer models or

machine learning) (47, 67, 84, 85).
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Information and
communication technology

Data latency (i.e., the total time elapsed between data

acquisition by a sensor and its availability) is an important

limitation of EO-based datasets for some applications. For

instance, the <1 hour latency required for early warning systems

in developed countries is hardly achievable from remote-sensing

observations. In contrast, the longer latency (≥1 day) required in

developing countries, due to technological limitations in data

collection and sharing, is achievable, and hence the potential of

EO-based datasets should be exploited in these regions. Moreover,

the exponential growth of data volumes, combined with the

possible integration and fusion of cross-satellite missions, are

driving users to request long time series. This is likely to

increase even more in the future, with a substantial impact on

both access and computational performances. Indeed, in some

regions the need for increasingly data-intensive analyses is likely

to cause problems with access to the necessary computational

resources and performance levels.

A new paradigm aims to overcome the l imits of

computational capacity, and thus exploit the full potential of

EO data, by providing centralized data access and a cloud

environment to facilitate the implementation of scalable

processing services. This paradigm involves providing access to

large spatiotemporal data stored in data archives—both public

[e.g., Data and Information Service (DIAS), European Weather

Cloud (EWC), and European Open Science Cloud (EOSC)] and

commercial [e.g., Amazon Web Services (AWS), Google Earth

Engine, Microsoft Azure, CloudFerro, Earth Observation Data

Centre (EODC), openEO Platform, and the Advanced geospatial

Data Management (ADAM) platform]. In addition, several

different platforms have been developed to simplify the use of

these infrastructures and data access.

In parallel to this technology evolution at the infrastructure

and platform level, data providers and space industries are

focused on the generation of analysis ready data (ARD) and

the evolution of data exploitation service components (e.g.,

Cloud Optimized GeoTIFF; datacube services) to better support

and improve the implementation of algorithms by the

science community.

However, an efficient, global, near-real time processing

environment that could continuously provide higher-level data

products on top of the acquired satellite data might require a

specifically designed IT infrastructure optimized for the data

acquisition, ARD, and product processing and data distribution.

A first practical example for global near-real time emergency

support from EO data has been published recently within the

Copernicus Emergency Management Service. The GloFAS Global

Flood Monitoring (GFM) service provides a worldwide flood

monitoring service by immediately processing and analyzing all

incoming Copernicus Sentinel-1 Synthetic Aperture Radar (SAR)

satellite data (https://www.globalfloods.eu/technical-information/

glofas-gfm/).
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Role of AI/machine learning techniques

Recent years have seen a continuous and rapid development of

new artificial intelligence (AI) and machine learning techniques.

These are expected to improve the outcomes of the DTE Hydrology

project and will be tested and improved in future developments

(14). Beyond the standard applications of AI/machine learning in

the hydrological sciences (e.g., in parameter retrieval, data

assimilation and fusion, downscaling, and anomaly detection), a

few opportunities are particularly relevant in the context of

the DTE:
• Improved parameter estimates. AI/machine learning can

help improve retrievals and make them faster as well as

aid in deploying forward operators in data assimilation

schemes, where complex interactions between the state of

the land surface and observations cannot yet be physically

modeled. Data acquisition schemes are closely related to

data-model integration and fusion; a wealth of simulated

data available through physical models such as radiative

transfer models (RTMs) is becoming increasingly available,

and blending real and simulated data will help avoid

overfitting in observation-scarce regimes while being

consistent and allowing for extrapolation (86).

• Toward robust predictions. In addition to fitting

observations, AI/machine learning can also help elucidate

poorly understood processes. The paradigm of hybrid

machine learning (13, 86) aims to combine well-

established governing laws and principles with the

flexibility of data-driven machine learning approaches,

thereby allowing latent functions and driving forces, and

their parameters, to be determined. Physics-aware machine

learning thus leads to enhanced computational efficiency

and constitutes a stepping stone toward more interpretable

and robust machine learning models (87).

• Emulating costly models. Another obvious form of

integration of AI in a DTE is through developing

emulators (88). Emulators have become important tools

for researchers dealing with computationally heavy models

in many fields and in the remote-sensing and geoscience

communities (89). Emulators are essentially machine

learning algorithms that provide fast approximations to

complex physical (radiative transfer, Earth, or climate)

models—an approach with a long history in statistics.

These surrogate models or metamodels are generally

orders of magnitude faster than the original models and

hence can be substituted for these, opening the door to

more advanced biophysical parameter estimation methods.

• Explainability and counterfactuals. An interesting future

possibility of AI is to answer questions about the systems—

questions not related to the “what?” but to the “why?” and the

“what if?” Answering the “why?” question requires

explainable AI (XAI) modules, i.e., tools that can interpret

what the AI models learned, and a certain interaction with the
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users (87). Beyond interpreting AI models, one may want to

imagine scenarios and assess risks. XAI can help to formulate

hypotheses that go beyond human insights and so indirectly

improve the DTE implementation. This is intrinsically related

to the challenging concepts of causal inference, causal impact

quantification and assessment, and counterfactuals, where

some statistical learning and AI techniques promise

advances (90, 91). Being able to run on-demand models

and what-if scenarios to simulate the sensitivity of some

hydrological parameters and/or variables to atypical and

hypothesized conditions might potentially be a paradigm

shift. These what-if games with data and models could

enable users to assess the impact of factors such as climate

change, pollution, or severe droughts.
Future satellite missions and concepts

In the longer term, new satellite observations will further

extend our ability to reproduce the terrestrial water cycle at high

resolution. Specifically, the following missions/products

are expected:
• L-band (and C-band) future missions. By integrating

Sentinel-1 with the upcoming missions like the National

Aeronautics and Space Administration-Indian Space

Research Organisation (NASA-ISRO) Synthetic Aperture

Radar (NISAR) mission and the Radar Observation System

for Europe at L-band (ROSE-L) synthetic aperture radar

(SAR) mission, the spatiotemporal sampling and accuracy of

soil moisture, water extent, and other hydrological data

products (e.g., flooded areas) could be significantly

improved. This would directly lead to major improvements

in level 3 and 4 products for rainfall and root zone soil

moisture. The integration will be additionally guaranteed by

the future launch of Sentinel-1C and Sentinel-1D satellites,

which will extend the Sentinel-1 mission at least until 2030,

making available a long-term backscatter dataset that will be

useful for several hydrological applications.

• High-resolution thermal missions. Within the Copernicus

program, the Land Surface Temperature Mission (LSTM)

will complement Sentinel observation capabilities with high

spatiotemporal resolution thermal infrared observations

over land and coastal regions in support of agriculture

management services and possibly other applications and

services. The primary objective is to enable monitoring of

the evaporation rates at European field scales by capturing

high spatial and temporal fluctuations in land surface

temperature. Notably in this context, the high-resolution

Thermal Imaging Satellite for High-resolution Natural

resource Assessment (TRISHNA) mission led by the

French Centre National d’Et́udes Spatiales (CNES) and

the Indian Space Research Organisation (ISRO) is

scheduled for launch in 2025 (92).
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• Global Navigation Satellite System (GNSS) reflectometry.

GNSS reflectometry is increasingly seen as a valuable

alternative to SMOS and SMAP to collect L-band data for

the monitoring of soil moisture, water bodies, freeze/thaw

status, and flooded areas. For example, the ESA recently

approved the Scout Mission HydroGNSS (93). However, the

development of robust data products will probably be more

challenging for this bi-static active measurement technique

than for both passive (SMOS, SMAP) and mono-static active

(ASCAT, Sentinel-1, etc.) sensing approaches.

• Terrestrial water storage and groundwater dynamic. The

next-generation gravity missions (currently named Mass

change and Geoscience International Constellation;

MAGIC) (94) are expected to significantly improve the

temporal and spatial resolution of water storage

measurements from space (weekly, <100 km), thus

providing new observations for hydrological modeling

and prediction in medium scale basins.

• Geosynchronous radar missions. Geosynchronous radar

missions would have a huge potential to study dynamic

hydrological processes at sub-daily time intervals.

Unfortunately, after the deselection of the Hydroterra

mission (one of the candidate missions for ESA’s 10th

Earth Explorer) there are no concrete plans for such a

mission in Europe. However, a Chinese mission is under

development (95).

• High-resolution optical platforms. Further advances in the

field of global terrestrial evaporation monitoring may involve

developments in high-resolution optical platforms (96) and

ongoing and future thermal missions such as ECOSTRESS

(60) and TRISHNA (97). Moreover, the use of CubeSat data,

e.g., from the Planet constellation (98), has already

demonstrated a high potential for monitoring evaporation

at agricultural field scales (99). Whether current evaporation

models (such as e.g., GLEAM) are suited to extract the

intrinsic value of these high-resolution observations, or

whether models specifically dedicated to estimating

evaporation over agricultural fields are more adequate for

this task, remains to be answered.

• Snow cover and snow depth. The Sentinel-3b satellite will

soon provide snow coverage at 300 m spatial resolution and

daily frequency. This is a step change compared to the revisit

time of Sentinel-2, which is between 3 and 6 days. Moreover,

the assimilation of C-SNOW data (from Sentinel-1) into

hydrological modeling has shown the potential of snow

depth for the retrieval of snow water equivalent. C-SNOW

is not operational, but such products are extremely valuable

for next-generation mountain hydrology.

• Meteosat Third Generation (MTG) and EUMETSAT Polar

System-Second Generation (EPS-SG) missions. The MTG

mission, launched in December 2022, and the EPS-SG

mission, planned for launch in early 2025, will deliver

novel data with significant potential to advance weather,

climate, and Earth system research as well as enhance

operational forecasting. Providing next-generation
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precipitation, snow, and soil moisture products at improved

resolution (<5 km), these missions will be highly valuable in

the development of the DTE for the terrestrial water cycle.

• The Surface Water and Ocean Topography satellite (SWOT)

mission. The SWOT mission launched in December 2022,

will enable scientists to measure and track the elevation,

extent, and movement of water across the planet in ground-

breaking detail (100). This will provide a wealth of data for

testing and validating the results of the DTE Hydrology

modeling systems.
Toward a fully operational Digital
Twin Earth of the terrestrial
water cycle

Although high-resolution hydrological modeling and

observations offer valuable opportunities both for future

research and operational applications, substantial challenges

remain to be addressed. The most important high-level

challenges are as follows:
1. In situ observations and satellite-based datasets (e.g.,

precipitation, evaporation, soil moisture, river discharge,

and snow) must be available not only at the high spatial and

temporal resolution but also with sufficient accuracy and

appropriate uncertainty characterization.

2. The representation of physical processes (e.g., infiltration,

surface and subsurface runoff, plant-atmosphere

interaction, and groundwater dynamic) at high resolution

is different from processes at coarse spatial resolution (20

km), as currently modeled by continental and global scale

land surface and hydrological models. The hydrological

community, and specifically the experimental hydrology

field, has considerable expertise in the representation of

physical processes at local and small scales. Experimentalist

hydrologists and regional/global modelers must now

collaborate to develop a modeling system that is reliable

across multiple spatial scales.

3. Human impacts on the water cycle (e.g., through irrigation,

reservoir management, flood protections, and river water

diversion), occurring at very high-resolution, challenge

current attempts to reproduce a digital replica of the

Earth. EO will be crucial in providing information on the

human impact on the water cycle, and such data therefore

need to be optimally and efficiently integrated into the

modeling system.

4. An information and communications technology

infrastructure allowing users (scientists, stakeholders,

and citizens) to easily interact with data and models

needs to be properly designed, scaled, and implemented.

This infrastructure should be an interoperable, modular,

and seamless cloud-based web service (34, 101)

embodying an open data approach based on the FAIR
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(Findability, Accessibility, Interoperability, and Reusability)

principles in order to allow its maximal use and benefit.

Crucially, current computational capabilities are far from

being sufficient to develop high-resolution hydrological

systems at a continental or a global scale, necessitating

investment in suitable infrastructures and expertise.
Conclusion

Advancing toward a DTE for the terrestrial water cycle, and

specifically extending DTE Hydrology across the Mediterranean area

and then throughout Europe, will require a significant effort to address

current knowledge gaps and technological challenges. We must

develop both the technological infrastructures and scientific expertise

that will allow us to create robust systems that can reliably predict the

water cycle and extreme events. The DTE Hydrology project and other

ESA and NASA initiatives are making significant progress in

developing the first high-resolution EO-based products for soil

moisture, precipitation, evaporation, snow water equivalent, and river

discharge over large regions. The datasets are now freely available in the

DTE Hydrology datacube (https://viewer.earthsystemdatalab.net/?

dataset=hydrology), allowing scientists to further advance the

knowledge of the water cycle toward a full DTE for this critical

system. Specifically, in the DTE Hydrology project, new case studies

in southern Italy (Medicane Apollo) and over the full Mediterranean

Basin have been developed and made openly available in the DTE

Hydrology Platform: https://explorer.dte-hydro.adamplatform.eu/.
Related content

VIDEO 1

An overview of the Digital Twin Earth (DTE) Hydrology Platform. This openly

available digital twin of the terrestrial water cycle reconstructs and simulates

hydrological processes and human interactions at unprecedented resolution
and accuracy. The video showcases four case studies and what-if scenarios

available on the platform, for flood and landslide risk assessment and water
resources management in the Mediterranean Basin. Accessible at: https://

www.youtube.com/watch?v=EiGm_vAV9YE.
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