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Kurzfassung

Eines der Ziele der String Phänomenologie ist es, die grundlegenden Eigenschaften
der Raumzeit des Universums in einer konsistenten, effektiven Theorie bei niedrigen
Energien zu beschreiben. Von kosmologischen Observationen wissen wir, dass sich
unser Universum beschleunigt ausdehnt. In Einsteins Relativitätstheorie kann dies
durch eine positive kosmologische Konstante beschrieben werden. In String Theorie
ist es möglich diese durch ein skalares Feld zu beschreiben, welches an einer Stelle
in seinem Potential mit positiver Energie sitzt. Oft wird ein stabiles Minimum des
skalaren Potentials verwendet, um eine de Sitter Raumzeit zu erhalten. Konstruktio-
nen von de Sitter Raumzeiten in der String Theorie sind nicht trivial und werden oft
kritisiert. In dieser Dissertation werden Themen behandelt, die mit Konstruktionen
von de Sitter Raumzeiten in effektiven Theorien, die von der String Theorie kommen,
zusammenhängen.
Ein wichtiger Bestandteil einer Klasse von Modellen sind (anti)-Dp-Branen, welche
wir im Rahmen von Supergravitation beschreiben werden. Besonderes Augenmerk
liegt auf der anti-D3-Brane im KKLT Modell, welche dazu dient, die Energie des
Vakuums positiv zu machen. Hier geben wir eine vollständige Beschreibung, inklu-
sive aller Felder, die im Volumen der Brane vorkommen. Des Weiteren zeigen wir,
wie das KKLT Modell, welches ursprünglich in Typ IIB String Theorie erfunden
wurde, auch in Typ IIA mittels anti-D6-Branen funktioniert. Außerdem führen wir
eine “massenproduktions Methode” ein, welche es erlaubt, unkompliziert viele de
Sitter Vakua zu konstruieren. Aufbauend darauf untersuchen wir Modelle, die auf
7 Torus Kompaktifizierungen von M Theorie basieren. Wir finden, dass auch solche
Konstruktionen zu de Sitter Raumzeiten führen können und zeigen, wie sie mit Typ
II Supergravitation zusammenhängen.
Eine neuere Entwicklung im Bereich der String Phänomenologie sind die sogenannten
Sumpfland Vermutungen. Hier liegt unser Augenmerk auf der de Sitter Vermutung,
welche behauptet, dass konsistente Konstruktionen von de Sitter Raumzeiten in der
String Theorie nicht möglich sind. Wir zeigen, dass es schwierig ist, de Sitter Minima
in klassischen Typ IIA String Kompaktifizierungen zu finden. Nachdem wir die ur-
sprüngliche Behauptung durch explizite instabile Lösungen widerlegen, präsentieren
wir unsere eigene, verbesserte de Sitter Sumpfland Behauptung, welche sich von der
überarbeiteten Version der ersten Behauptung in einigen Aspekten unterscheidet.

Die vorliegende Dissertation basiert auf den Publikationen [1–8], an welchen ich
während meines Doktoratsstudiums gearbeitet habe.
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Abstract

One of the main goals of the field of string phenomenology is to describe the prop-
erties of our spacetime in low-energy effective models related to and consistent with
string theory. It is known from observations that our universe undergoes acceler-
ated expansion, which can be described in Einstein’s theory of general relativity as
a positive cosmological constant. Within string theory descriptions, this is realized
by a scalar field with a positive value of its potential. Oftentimes, this is modeled
by having the scalar at a stable, positive minimum. One then obtains a de Sitter
spacetime. Constructions of de Sitter spaces from string theory are not straightfor-
ward and face many criticisms. In this thesis we address several aspects related to
this topic.
We investigate the description of general branes in supergravity and in particular
describe the uplifting anti-D3-brane of the KKLT model, including all world vol-
ume fields. Additionally, we translate the type IIB based KKLT model into type
IIA and introduce a mechanism that allows for the rapid construction of many de
Sitter solutions. Related to this we investigate models based on twisted 7-tori from
M-theory and their relation to type II supergravity. These setups can also yield de
Sitter solutions using the same mass production mechanism.
One of the more recent and serious claims against the construction of de Sitter
spaces in string theory, the de Sitter swampland conjecture, is also addressed here.
We highlight the difficulty of obtaining a stable, positive vacuum energy in classical
type IIA flux compactifications and their reliance on O-plane sources. Then, we turn
our attention to the conjecture itself. Contrary to the initial claim, we find many
unstable de Sitter points in numerical searches and go on to present our own refined
conjecture that differs in several key aspects from the refined version of the original
conjecture.

This thesis is based on the publications [1–8] that I worked on during my doctoral
studies.
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Chapter 0

For the Uninitiated

The world we live in is a curious place and we humans are trying to comprehend
as much about it as possible. This lead us to develop different subjects of natu-
ral science. Physics represents the most fundamental of those theories, beating out
mathematics due to formality. However, physics is still divided into many different
categories ranging from applied, like condensed matter physics, to theoretical and
fundamental, sometimes bordering on the field of pure mathematics 1. During the
human pursuit to understand the laws of nature physicists have pushed to ever more
fundamental theories. This lead to the discovery of the theories of the very small
with Quantum Mechanics, and the very large, described by General Relativity. Un-
fortunately, the combination of the two proves to be troublesome. Theories that
attempt to quantize gravity are collected under the umbrella of Quantum Gravity.
Perhaps the most promising theory to date is known as String Theory and considers
tiny, vibrating strings as the fundamental object of the theory. String Theory does
allow for a quantum theory that includes gravity but the connection to the physics
at energy scales that we can probe in experiments is not clear. In particular we need
to be able to obtain both the Standard Model of Particle Physics and the spacetime
properties of the universe from string theory. The present work is motivated by the
latter.
In 1998 a curious property of the universe was detected. The space around us is
expanding at an accelerated rate. This statement might seem mundane at first but
has important implications. For one it implies that, as time progresses, certain parts
of the universe will become unobservable as not even light will be able to reach us.

1The reader may feel free to consider physics as little more than “applied mathematics”. If the
reader is a mathematician he may find the mercy in his heart to forgive me for this statement.
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More importantly for this work is, however, that it leads to the following question:
What causes this expansion? Due to the lack of any concrete ideas and the behavior
of the expansion matching a positive and constant vacuum energy very precisely the
name Dark Energy has been coined. Geometrically, a universe with accelerated ex-
pansion can be described, on large scales, as a de Sitter spacetime, a geometry with
positive and constant cosmological constant.
At this point the reader might ask them self how this connects to string theory ex-
actly. In string theory, unlike general relativity, we cannot add an arbitrary constant
to our theory in order to obtain the desired spacetime geometry. In fact, the geom-
etry is obtained in the process of building a model. One important feature of string
theory is that it lives naturally in higher dimensions than the usual 3+1 that we
observe in our daily lives and indeed also in all experiments to date. Superstring
Theory requires 10 dimensions in order to be consistent and anomaly free. This
theory, furthermore, has the property of supersymmetry, which relates bosons with
fermions. This is currently the most popular method in order to include fermions,
such as electrons, in the theory. Supersymmetry, like extra dimensions, has also not
been observed in experiments up to this date.
This raises the question why theoretical physicists are still investigating string theory
if it describes a universe with a wrong number of spatial dimensions and includes
a symmetry that is not observed in nature. The answer has to do with the notion
of effective theories. In short, full string theory is constructed to be valid up to
energies close to the Planck scale. At significantly lower energies, however, not all
details of string theory matter. Nature is then approximated sufficiently well2 by
an effective theory. At the energies we currently probe these theories would be the
Standard Model and General Relativity. We thus expect that, in the process of going
to lower energies, the extra dimensions become small and supersymmetry breaks at
some point. Both of these things can be accomplished, in principle.
In order to go from 10 dimensions down to our familiar 4 we perform what is called
a Compactification. For this we split spacetime in two parts, the 3+1 dimensions we
observe and a compact space with 6 dimensions. The choice of the internal geom-
etry is crucial for the resulting effective theory. In the process of compactification
scalar fields, so-called moduli, that describe the properties of this manifold have to
be considered. These moduli contain information about the size and shape of the
space and are dynamical. During the compactification we need to stabilize them
such that their dynamics does not appear in the effective theory. While this is a
difficult task in general it also opens up possibilities. For example, if a modulus is

2Read: Indistinguishable in experiments due to insufficient of precision.
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stabilized at the minimum of a potential with a positive energy this can act as a
cosmological constant in the effective theory! Thus, a string compactification can
solve the dark energy problem. The properties of the internal manifold also play a
role in supersymmetry breaking, however, also other ingredients like D-Branes, can
play a role. Branes are extended objects in string theory on which strings can end.
They play an important role in many models and, as already mentioned, can break
supersymmetry, depending on their orientation.
At this point the reader might conclude that string theory allows for a realistic de-
scription of the nature we observe3. The devil, however, lies in the details. Currently,
no model is known that reproduces even the basic properties of our spacetime and
is without major criticism. There are numerous properties one needs to achieve that
go beyond the scope of this simple overview. Due to this, it is necessary to tackle
one problem at a time before one can hope to fit the pieces of the puzzle together.
To this end several different aspects of string compactifications will be described in
this thesis in the hope that they may contribute to the field as a whole and bring us
closer to understanding the fundamental nature of the world we live in.

3The valued reader might also think that this is contrived beyond reason. Unfortunately,
convincing them of the contrary would require more space than is available in this thesis.
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Chapter 1

Introduction

The goals of applying string theory to our physical world are roughly split into two
categories. One half is trying to reproduce the Standard Model of particle physics,
one of the most successful physical theories in history. The other, is concerned with
gravity and the large scale universe. From cosmological observations we know that
the universe is expanding in an accelerated manner [9]. The two most popular at-
tempts to describe this behavior are that either the spacetime of our universe is de
Sitter or that it is undergoing quintessence. In the context of low-energy effective
theories obtained from string theory, both situations are described by a scalar field in
a potential. For de Sitter, the scalar rests at a (meta-) stable minimum with positive
vacuum energy. In the case of quintessence, the scalar rolls slowly on a flat slope such
that the positive vacuum energy changes only by an amount that is unobservable on
timescales below the cosmological. In both scenarios one needs to build low-energy
effective models that are consistent with string theory. The framework of these mod-
els is supergravity. Unfortunately, supergravity does not sufficiently restrict models
in order to ensure that they consistently lift to string theory. This is the concern of a
field that has recently emerged under the name of the swampland program [10–12].
While this program has yielded several so-called swampland conjectures, here we are
mostly interested in the de Sitter swampland conjecture [13], that effectively forbids
dS solutions to be consistent with string theory. In this thesis we will investigate
several aspects related to the description of spacetime in string theory motivated
models.
In chapter 2, based on [4, 8], we consider important ingredients that are used in one
of the the most successful classes of constructions of de Sitter spaces from string
theory, namely the anti-branes of the Kachru-Kallosh-Linde-Trivedi (KKLT) model
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[14]. First, we review, in detail, non-linear supergravity and how it can be used
in order to incorporate different contributions into the supergravity potentials. For
this constrained supermultiplets [15–20] are used that allow us to write a situation
that has broken supersymmetry in terms of a (seemingly) linear Lagrangian. In the
second section of this chapter we show how any Dp-brane can be written using this
formalism [8] and we investigate general, supersymmetry-breaking branes [21–27].
The focus will be on intersecting D6-branes and we clear up a long-standing mis-
conception about the description of such setups in the 4d effective theory [28–31].
In particular, we show that the description of a supersymmetric brane intersecting
another brane that breaks supersymmetry is always non-supersymmetric. Following
this, we give the complete description of the anti-D3-brane in the KKLT setup [4],
including all world volume fields [32]. This includes all bosonic and fermionic con-
tributions and once again utilizes constrained multiplets.
In the next chapter 3, following [5–7], we move on to construct de Sitter vacua of
our own. After reviewing the basic KKL(MM)T model [14, 33] we port it from type
IIB to IIA in section 3.2 [5]. In type IIA we can only utilize anti-D6-branes in order
to lift a stable anti-de Sitter solution to a positive vacuum energy. We work with
the so-called STU-model in a particular setup with only F6-flux. The superpotential
incorporates non-perturbative corrections in all moduli directions, that are vital to
the success of the setup. We argue that these corrections can appear, even for the
volume modulus due to M-theory U-duality. The anti-brane is again introduced by
the use of constrained superfields. We find explicit models where the masses of all
moduli are positive and we are able to satisfy basic string theory consistency condi-
tions such as a large internal volume and small coupling. In section 3.3 we expand
upon a mechanism [6], first discovered in [34], where, by going first to Minkowski
space, it is possible to guarantee that the procedure yields a stable de Sitter solution
after the uplift. This works as follows: One first constructs a Minkowski minimum
with no flat directions. Then, a parametrically small downshift, included into the su-
perpotential, will yield a stable AdS point. After this one can perform an uplift either
via an anti-D3-brane in type IIB or an anti-D6-brane in IIA. For this procedure we
utilize the Kallosh-Linde double exponent superpotential [35] for which we also proof
that the resulting de Sitter point has positive masses if the Minkowski progenitor
has no flat directions and the downshift is small. A further nice feature of the mass
production procedure is that there is no need for an extreme fine-tuning of the uplift.
Since we can vary the downshift, the uplift can be a lot larger then it would be if
performed from Minkowski space directly. We also present several explicit examples,
both in type IIA and IIB, based on different internal manifolds and show that the

6



procedure works in each of them. In the second to last section 3.4 of chapter 3, we
consider more general, M-theory inspired models [7], based on compactifications on
a generalized, twisted 7-torus [36–39]. Interestingly, we find models that allow us to
forego the racetrack potential by inclusion of tree-level flux terms. We investigate
different kinds of models and their relation to type II supergravity compactifications.
It is even possible to not include any non-perturbative contributions in certain di-
rections, due to the included fluxes. A particular case relies on conjectured S-fluxes.
Using these we are able to build a model in type IIB that does not require any sort
of non-perturbative contributions. We also present explicit, numerical solutions for
all of these models and show that the mass-production procedure works in each of
them.
In chapter 4 we review the works [1–3] and turn our interest to the de Sitter swamp-
land conjecture [13] and related issues. We first briefly review the general idea of the
swampland program [10–12] before turning our attention to the de Sitter conjecture
[13, 40] and its implications. After earlier considerations along similar lines [41], the
original de Sitter conjecture [13] proposed a bound on the ratio of the first deriva-
tive of the scalar potential to the value of the potential that effectively forbids any
extremum with positive vacuum energy. In section 4.2 we discuss scaling limits of a
particularly simple compactification in type IIA [2], inspired by the AdS solutions of
[42], where the 4-flux is unconstrained. The goal is to find a limit where the solutions
are trustworthy, with large internal volume and small string coupling. To that end,
we review different ingredients that can appear in such compactifications and we
also present an explicit example. Next, we show that the initial de Sitter swampland
conjecture is too strict [1], as it also forbids unstable extrema with positive vacuum
energy. We highlight that such points have been found previously [43, 44] and, in
addition, present many new solutions that we obtained via a numerical search. To-
gether with other issues of the original conjecture [45] this lead to a refinement in
[40]. Finally, in section 4.4 we present our own refinement of the de Sitter swamp-
land conjecture [3]. It is given as a single expression inequality on both the first and
second derivative of the scalar potential which translates nicely into constraints on
the slow-roll parameters of cosmology. We also show that our conjecture differs from
the refined original one [40] in some areas of parameter space. This has implications
on the allowed cosmological models. In particular our conjecture does allow for slow
roll inflation in certain cases and does restrict quintessence models.

The present thesis is based on the works [1–8] published during the course of my
doctoral studies at TU Wien under the supervision of Timm Wrase.
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Chapter 2

D-Branes in 4d Supergravity

2.1 Non-linear Supersymmetry and Supergravity

Before we can come to the two main topics of this chapter, non-supersymmetric
branes, that we discussed in [8], and the complete action of the anti-D3-brane in the
KKLT setup, as per our work [4], we have to review some tools that we will be using
that might be not as well known as necessary. These are non-linear supersymmetry,
its description via constrained multiplets and the so-called new D-term. Since these
methods play an important role throughout this thesis we dedicate this section to
this purpose.

2.1.1 Constrained Superfields in local Supersymmetry

When supersymmetry is broken spontaneously, it is still realized in a non-linear man-
ner on the multiplets in supergravity. This means that there is still an identification
of fields, however, this identification now follows a non-linear transformation. Al-
though originally conceived as a model to get massless neutrinos, we can use the
Volkov-Akulov (VA) action [46] as a simple example to highlight non-linear super-
symmetry [47]:

SVA = −M4

�
E0 ∧ E1 ∧ E2 ∧ E3 with ,

Eµ = dσµ + λ̄γµdλ .

(2.1.1)

In this case the λ is the 4d Goldstino associated with the breaking of N = 1 super-
symmetry. This action is still invariant under a non-linear transformation:

δ# = '+
�
λ̄γµ'

�
∂µλ . (2.1.2)
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However, this can be re-written in a way that looks linear by the use of constrained
superfields [15–18]. The principles of constrained superfields were investigated in
these earlier works but only rather recently they have been re-discovered and applied
in supergravity modern model building, for some examples see: [4, 5, 8, 32, 34, 47–51].
Here, we can use a nilpotent chiral field in order to re-write the VA-action. A chiral
superfield X has an expansion in superspace that is given to be:

X = x+
√
2ψθ + Fθ2 . (2.1.3)

Where x is a scalar, ψ a spinor and F an auxiliary field. Note that ψ  = λ and that
there is no simple identification between the ψ in the expansion of X and the fermion
of the VA-action λ. Rather, they are related via a non linear field redefinition [52].
Finally, the superspace coordinates are θ and due to their grassmannian nature this
expansion is exact. Now, if we impose the nilpotency constraint:

X2 = 0 , (2.1.4)

we find that the only remaining degree of freedom is the fermion ψ, as the scalar is
fixed to be:

x =
ψ2

2F
, (2.1.5)

which requires �F 
  = 0, for consistency. Using X we then can write the Volkov-
Akulov action (2.1.1) as:

SVA =

�
d4x

�
d2θ

�
d2θ̄XX̄ +M2

��
d4x

�
d2θX + h.c.

�
. (2.1.6)

After employing the nilpotency condition and performing the superspace integral we
can recover the original Volkov-Akulov action if we also perform the correct field
redefinition [52], relating ψ to λ.
Furthermore, if we decide to add the secondary constraint:

− 1

4
XD̄2X̄ = M2X ⇒ F = M2 + fermions (2.1.7)

to the above it is possible to write an equivalent action to the VA-action either as a
pure F - or pure D-term:

SVA,F =

�
d4x

�
d2θ

�
d2θ̄XX̄ , (2.1.8)
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SVA,D = M2

��
d4x

�
d2θX + h.c.

�
. (2.1.9)

The equivalence of these two formulations is implied by the secondary constraint
given in equation (2.1.7).
Importantly, the choice of constrained multiplet is not unique. Many different options
are available [32, 53]. Not limiting ourselves to their applicability to the VA theory
and repeating the nilpotent chiral field for completeness, we mention the following
options:

• The nilpotent chiral field X = x+
√
2ψθ + Fθ2 with X2 = 0 gives:

X =
ψ2

2F
+
√
2θψ + θ2F . (2.1.10)

• A chiral superfield Y = y +
√
2χθ +G2θ2 satisfying XY = 0 (X2 = 0) yields:

Y =
ψχ

F
− ψ2

2F 2
G+

√
2θχ+ θ2G . (2.1.11)

• One can remove the fermion from a chiral superfield Z = z +
√
2θω + θ2H by

the condition XD̄α̇Z̄ = 0 (X2 = 0). Then both the fermion and the auxiliary
field are determined:

ω = iσµ

�
ψ̄

F̄

�
∂µz ,

H = −∂µ

�
ψ̄

F̄

�
σ̄νσµ

�
ψ̄

F̄

�
∂νz +

�
ψ̄2

2F̄ 2

�
�z .

(2.1.12)

• The constraint that removes the gaugino Λα from a real vector field V is XWα =

0, where we used the field strength chiral superfield

Wα = −1

4
D̄2DαV = −iΛα + Lβ

αθβ + σµ
αα̇∂µΛ̄

α̇θ2 , (2.1.13)

with
Lβ
α = δβαD − i

2
(σµσν)βαFµν . (2.1.14)
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The gaugino Λα can then be expressed as:

Λα =+
i√
2

1

F
Lβ
αψβ − ψ2

2F 2
∂µ

�
Ḡ ¯̇αL̄

α̇
β̇√

2F̄

�
σ̄µβ̇γ'γα

− i

2

ψ2

F 2
σµ

αβ̇
σ̄νβ̇γ∂µ

�
ψ̄2

2F̄ 2
∂ν

�
Lδ
γψδ√
2F

�


− 1

2

ψ2

F 2

ψ̄2

F̄ 2

�
∂

�
ψ√
2F

��2
∂µ

�
ψ̄α̇L̄

α̇
β̇√

2F̄

�
σ̄µβ̇γ'γα .

(2.1.15)

These expressions are valid for supersymmetric theories using the superspace for-
malism. How constrained multiplets can be used in the context of supergravity was
discussed in [54], for a review about constrained superfields in SUSY and SUGRA
see [55]. Here we will review what is needed for the action of the anti-D3-brane in
the KKLT setup in the following section.

2.1.2 Supergravity and constrained Multiplets

In this section we focus on the explicit constrained multiplets we are going to use
in order to describe the anti-D3-brane in the KKLT setup. This set is not unique
but instead based on convenience and it is possible to find different descriptions.
Here, we work in the conventions of [56], as opposed to the last section, where 4d

fermions are described using four-component Majorana spinors. They are related to
the spinors from before in the following way:

Ω =

ψ

ψ̄

 . (2.1.16)

In order to bridge the gap between the notation of the previous section, where we
dealt with constrained superfields in the superspace formulation, we quickly re-write
the VA-model in the notation of this chapter. The chiral multiplet we consider here
is called X and consists of the scalar we call X as well, a fermion PLΩ and the
auxiliary field F . We impose the same nilpotency condition X2 = 0 as before, in
order to remove the scalar, and find that it is given to be:

X =
Ω̄PLΩ

2F
. (2.1.17)

Coming to the VA action we finally see significant differences in the notation. In the
notation of [56] we can write an invariant action for the chiral multiplet X in the
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following way:

S = [XX̄]D +M2[X]F

=

�
d4x

�
−Ω̄PL/∂Ω +

Ω̄PLΩ

2F
�Ω̄PRΩ

2F̄
+ FF̄ +M2(F + F̄ )

�
.

(2.1.18)

Immediately, it is evident that the equation of motion for the auxiliary field changes
as it now also appears as part of the composite expression replacing the supersym-
metric partner of the Goldstino. Due to this fact one has the be careful when going
on-shell if supersymmetry is realized non-linearly.
The equation of motion for the auxiliary field is:

F =−M2 − 1

4M6

�
Ω̄PRΩ

�
�
�
Ω̄PLΩ

�
+

3

16M14

�
Ω̄PRΩ

� �
Ω̄PLΩ

�
�
�
Ω̄PRΩ

�
�
�
Ω̄PLΩ

�
,

(2.1.19)

which yields the on-shell action that reproduces the Volkov-Akulov action (2.1.1) up
to a field redefinition [57]:

S =

�
d4x

�
−M2 − Ω̄PL/∂Ω +

1

4M4

�
Ω̄PLΩ

�
�
�
Ω̄PRΩ

�
− 1

16M12

�
Ω̄PRΩ

� �
Ω̄PLΩ

�
�
�
Ω̄PRΩ

�
�
�
Ω̄PLΩ

��
.

(2.1.20)

2.1.3 Coupling to Gravity

Since we are interested in a supergravity action, where our constrained multiplets
couple to gravity, we will employ the superconformal approach of [56]. The supercon-
formal symmetry is very useful for computations but not realized in nature, hence we
will need to break it in order to recover the typical Poincaré symmetry of spacetime.
An important feature of the superconformal approach is that it is not necessary to do
field redefinitions when going to Einstein frame. The type of action that we employ
here is of the following form:

S =
�
−3X0X̄0e−

K(X,X̄)
3

�
D
+
�
(X0)3W (X)

�
F
+
�
fAB(X)Λ̄APLΛ

B
�
F
, (2.1.21)

with a set of chiral multiplets {XI}, I = 0, . . . , n and {ΛA}, A = 1, . . . ,m a set
of vector multiplets. X0 plays the special role of the compensator field with Weyl
weight 1, as opposed to the other chiral multiplets with weight 0. As is usual, K is
the Kähler potential, W the superpotential and fAB the gauge kinetic function. In
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order go from the superconformal theory to Poincaré supergravity the compensator
is fixed to:

X0 =
1

κ
e

K
6 , (2.1.22)

which introduces the Planck scale into the theory. In our conventions we will set
κ = 1.
The supergravity equivalent to the global supersymmetry Volkov-Akulov model (2.1.18)
can be obtained by choosing Kähler- and superpotential:

K = XX̄ ,

W = W0 +M2X ,
(2.1.23)

with a nilpotent chiral multiplet X that contains the Goldstino. Applying the su-
perconformal action to this example with just one chiral multiplet we find:

S =
�−3X0X̄0 +X0X̄0XX̄

�
D
+
�
(X0)3 (W0 +M2X)

�
F
. (2.1.24)

In solving this model one has to keep in mind to break the superconformal symme-
try and use the constraint coming from the nilpotency before going on-shell. The
obtained theory is the generalization of the supersymmetric Volkov-Akulov theory
(2.1.18) and is called pure de Sitter supergravity [58–62] as it only has the graviton
and its supersymmetric partner as degrees of freedom while the Goldstino is a pure
gauge mode.

2.1.4 Constrained Multiplets in Supergravity

In this section we will review all constrained multiplets that will be needed for the
description of the anti-D3-brane action in the KKLT setup and non-supersymmetric
branes in general. It has been shown that there are ways to remove any component
from a supersymmetry multiplet in [19]. Going beyond the scope of what we use
here it is even possible to have off-shell linear supersymmetry by the use of Lagrange
multipliers [20].

For completeness, we start with the nilpotent chiral field X one final time.
It has the components X = {X,PLΩ, F} and the constraint:

X2 = 0 , (2.1.25)
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gives the scalar in terms of the fermion in the following way:

X =
Ω̄PLΩ

2F
. (2.1.26)

Constraining chiral multiplets Yi with Y i = {Y i, PLΩ
i, F i} by the condi-

tions:
XY i = 0 , (2.1.27)

where here and in the following X will be the nilpotent chiral field from above, gives
the scalar of the multiplet as [63, 64]:

Y i =
Ω̄iPLΩ

F
− Ω̄PLΩ

2F 2
F i . (2.1.28)

Since we once more have removed the scalar, the remaining degrees of freedom are
fermionic in nature. These multiplets have been successfully used in order to describe
the world-volume spinors of the anti-D3-brane [47, 48] which will be very useful for
our work here.

The chiral multiplets Ha with Ha = {Ha, PLΩ
a, F a} will be constrained such

that:
XH̄a = chiral. (2.1.29)

This removes the fermion and the auxiliary field [18]1:

PLΩ
a =

/DHa

F̄
PRΩ ,

F a = Dµ

�
Ω̄

F̄

�
γνγµ

�
PRΩ

F̄

�
DνH

a +
Ω̄PRΩ

2F̄ 2
�Ha .

(2.1.30)

With this we have removed all fermionic degrees of freedom from the multiplets Ha.
Note, that a superpotential W (H) will not lead to masses for the scalars in Ha but
instead to fermionic Goldstino interactions. Scalar masses can be introduced into
the theory via the Kähler potential if desired.

1We remind the reader that we are using the supergravity conventions of [56].
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Finally, we will use a chiral field strength multiplet PLΛα with components
{PLΛα, (PLχ)βα, F

Λ
α }. We further specify the components:

(PLχ)βα =
√
2

�
−1

4
(PLγ

abC)βαF̂ab +
i

2
D(PLC)βα

�
,

F̂ab = eµae
ν
b (2∂[µAν] + ψ̄[µγν]λ) ,

FΛ
α = ( /DPRΛ)α .

(2.1.31)

Here, F̂ is the covariant vector field strength and D a real auxiliary field. The
matrix Cαβ is used to raise and lower spinor indices and satisfies CT = −C. PLΛα is
analogous to the superfield strength Wα in the superspace approach. The constraint
we employ removes the gaugino and is:

XPLΛα = 0 . (2.1.32)

This will set the lowest component of the field to:

PLΛα =+
1

F
(Ω̄PLχ)α − X

F
/D β
α

�
(Ω̄PRχ)β

F̄

�
+

X

F
/D β
α

�
X̄

F̄
/D γ
β

�
(Ω̄PLχ)γ

F

��
− XX̄

F 2F̄ 2
( /D /DX)βα (γ

µ) δβ(DµΩ̄PRχ)δ .

(2.1.33)

Here, (Ω̄PLχ)α = Ωβ(PL)
γ
βχγα and we have to remember that the scalar in X is

given as X = (Ω̄PLΩ)/(2F ). With this PLΛα describes an abelian gauge vector and
nothing else.

2.1.5 The new D-Term

The final ingredient we will need is the so called new Fayet-Iliopoulos (FI) D-term
[55, 65–68]. This term will play an important role in constructing the action for
the anti-D3-brane. It will help to resolve an issue about the gauge kinetic function
which will be discussed in section 2.3.1. We are only going to focus on what we
need in the following and thus start by considering the chiral field strength multiplet
PLΛα with components {PLΛα, (PLχ)βα, F

Λ
α } and weight 3/2. The gaugino is PLΛα,

Fab is the U(1) covariant field strength and D a real auxiliary field, see (2.1.31) and
the paragraph below that equation for more details. The standard Fayet-Iliopoulos
D-term [69, 70]:

SFI = −ξ

�
d4x

√−g4D , (2.1.34)
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breaks supersymmetry in supergravity spontaneously, however, it requires a gauging
of the R-symmetry, which prevents, for example, a gravitino mass in the Lagrangian.
The new FI-term does not require gauged R-symmetry while keeping all the nice
properties we desire. Utilizing a chiral compensator field X0 and a real multiplet D,
that has components {D, /DΛ, 0,DbF̂ab,− /D /DΛ,−�D}2, we write the new FI D-term
as:

SFI, new = −ξ

�
ω2ω̄2

Σ(ω̄2)Σ̄(ω2)
X0X̄0D

�
D

= −ξ

�
d4x

√−g4X
0X̄0D + . . . ,

(2.1.35)

where the dots represent fermionic terms. Furthermore, we used the multiplets:

ω2 =
Λ̄PLΛ�
X0X̄0

�2 ,
ω̄2 =

Λ̄PRΛ�
X0X̄0

�2 , (2.1.36)

with components:

Λ̄PLΛ = {Λ̄PLΛ ,
√
2PL

�
iD − 1

2
/̂F

�
Λ , 2Λ̄PL /DΛ + F̂− · F̂− −D} , (2.1.37)

and generalizations of the chiral projectors on superspace to the superconformal for-
malism in Σ and Σ̄ [20]. These projectors act on multiplets with weights (Weyl, chiral) =
(w,±(w − 2)) and produce new multiplets with weights:

Σ : (w,+w − 2) → (w + 1, w + 1) ,

Σ̄ : (w,−w + 2) → (w + 1, w − 1) ,
(2.1.38)

that are chiral or anti-chiral. The action of the projectors on ω2 is:

Σ̄(ω2) =
�
X0X̄0

�−2
�
1

2
FµνF

µν +
i

4

'µνρσ√−g4
FµνFρσ −D2 + . . .

�
, (2.1.39)

where we have once again neglected fermionic contributions.
The new D-term (2.1.36) has only D as its pure bosonic sector. All further terms are
required by the superconformal symmetry that our formalism employs. After going
to Poincaré supergravity by fixing the compensator X0 = κ−1eK/6, as discussed in

2For conventions please refer to [56].
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section 2.1.3, the new D-term yields:

SFI,new = −ξ

�
d4x

√−g4e
K
3 D + . . . , (2.1.40)

with κ = 1. Like the original FI D-term this expression will break supersymmetry
spontaneously when added to the standard supergravity action due to the fact that
the auxiliary field D acquires a non-zero vacuum expectation value. The fermionic
contributions in the . . . can be removed by setting the Goldstino equal to zero via a
unitary gauge choice. However, there remains one issue. Comparing the result of the
new D-term (2.1.40) to the original FI D-term (2.1.34) a contribution of the Kähler
potential appears. This spoils the Kähler invariance of the theory. Luckily, this can
be remedied by performing a substitution [71]:

X0X̄0 → X0X̄0e−
K
3 . (2.1.41)

With this replacement the new D-term (2.1.36) can be viewed as containing two real
multiplets with weights (−2, 0) and (4, 0), respectively:

R1 =
ω2ω̄2

Σ(ω̄2)Σ̄(ω2)
,

R2 = X0X̄0e−
K
3 D .

(2.1.42)

The expansion in components begins with the lowest component of R2 while R1 pro-
vides higher order fermionic terms that are required to complete the superconformal
embedding. This method is readily generalized in order to complete any arbitrary
real multiplet R2 with weights (4, 0). We will use this procedure in order to complete
the action of the anti-D3-brane in the KKLT scenario.

2.2 Non-supersymmetric Branes

Supersymmetry has not been observed in any experiments or natural phenomena
thus far. If we want to investigate whether or not string theory can describe the
universe we live in, we have to consider effective low energy theories that come from
string theory and that break supersymmetry during the compactification process
spontaneously. When supersymmetry is spontaneously broken, a non-linear trans-
formation of the fields can still be realized and in that case we are able to use the tools
of non-linear supersymmetry or supergravity and constrained multiplets to describe
it. One way to achieve spontaneous supersymmetry breaking is by including objects
in the theory that achieve this. In particular, here we are interested in Dp-brane
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supersymmetry breaking [21–27], for a review see [72]. Other ingredients, like for
example Op-planes, can also break supersymmetry in a similar way. Importantly, if
supersymmetry is broken at or near the string scale, it is not possible to restore it
below that scale.
Here, we focus on the description of non-supersymmetric Dp-branes in flux compact-
ifications on SU(3)×SU(3) structure manifolds [73]. These theories compactify 10d

superstring theory to 4d, N = 1 supergravity. A space filling Dp-brane then can
break the remaining supersymmetry, not broken by the background, spontaneously.
Our main goal here is to find the correct description of the supersymmetry breaking
object in terms of the resulting supergravity. It is important to stress that the correct
10d results are known [28–31] but they have often been wrongly interpreted in the
language of the 4d supergravity as a D-term. This section is based on [8] where we
rectified this issue and gave the correct description of any SUSY breaking Dp-brane
utilizing non-linear supergravity and constrained multiplets.

2.2.1 Dp-Branes in flat Space

Let us review Dp-branes in type II supergravity on flat space R9,1 [74–79], for some
basic facts. On this background we have maximal N = 8 supersymmetry with
32 supercharges, conveniently packaged into two Majorana-Weyl spinors ε1 and ε2.
Since we will not specify whether we consider type IIA or IIB supergravity the
chirality of the spinors is irrelevant, nevertheless, we mention that in IIA the spinors
have the same chirality while in IIB they have opposite chirality. If we add a Dp-brane
in the directions x0, x1, . . . , xp it will break half of the supersymmetry spontaneously
[74]. This divides the supercharges into two groups. The ones acting linearly on the
Dp-brane world-volume fields satisfy:

ε1 = Γ01...pε2 =: ΓDpε2 , (2.2.1)

with Γ01...p = Γ0Γ1 . . .Γp where we used the gamma matrices of 10 dimensional flat
space. On the other hand, the non-linearly realized supersymmetries have a sign flip
in their behavior:

ε1 = −ΓDpε2 . (2.2.2)

Meanwhile, an anti-Dp-brane behaves exactly opposite to a Dp-brane:

linear: ε1 = −ΓDpε2 =: ΓDpε2 ,

non-linear: ε1 = ΓDpε2 = −ΓDpε2 .
(2.2.3)
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In general, we can put a Dp-brane at an arbitrary angle, where it extends along the
directions x0, x1, . . . , xp−1 while it intersects the axis xp with an angle ϕ in the plane
(xp, xp+1). In this case the unbroken supercharges satisfy:

ε1 =
�
cos(ϕ)Γ01...p + sin(ϕ)Γ01...(p−1)(p+1)

�
ε2 =: ΓDp(ϕ)ε2 , (2.2.4)

and again, the broken charges have again a minus instead of a plus in their relation.
Of course, in flat space, this distinction between branes, anti-branes and branes at
some angle ϕ is rather forced, as we simply could change our coordinate system in
order to transform any of the above cases into a simple Dp-brane and thus they
are physically equivalent. If the background is more involved, like, for example,
SU(3)× SU(3) structure manifolds, this will no longer be the case.
Nevertheless we mention that:

ΓDp(0) = ΓDp ,

ΓDp(π) = ΓDp .
(2.2.5)

Another way to get a physical distinction between different brane orientations is to
add a reference object, like an Op-plane. Let us assume we have an Op-plane along
the directions x0, x1, . . . , xp−1 which projects out half of the supersymmetry. We
are left with 16 linearly realized supercharges:

ε1 = Γ01...pε2 =: ΓOpε2 . (2.2.6)

If we add a Dp-brane without angle to this setup nothing will change for the super-
symmetry. On the other hand, adding an anti-Dp-brane will break the remaining 16

supercharges and supersymmetry will be broken completely. Naturally, the case of a
Dp-brane at an angle ϕ is the most interesting one. There, the 16 charges, preserved
by the background3 will be realized as a combination of linear and non-linear trans-
formations on the brane world-volume fields. This combination will be necessarily
non-linear in total, which will be one of the main conclusions of this section.
Another way to break supersymmetry via branes is by considering a world-volume
flux F = B+F , with B the pullback of the Kalb-Ramond field and F = dA a typical
field strength on the brane. As discussed in [80], such a situation for a D(p+1)-brane
is T -dual to two Dp-branes intersection at an angle ϕ such that:

F = tan(ϕ)dxp ∧ dxp+1 . (2.2.7)

3In this sense we include the Op-plane in the background.
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Due to this duality, we expect that branes with world-volume flux generically break
some of the supersymmetry that would be preserved in the absence of flux. In
particular, the linearly preserved supersymmetries now satisfy [81]:

ε1 = − 1√
g + F

&
2n+l=p+1

1

n!l!2n
'a1...a2nb1...blFa1a2 . . .Fa2n−1a2nΓb1...blε2 =: ΓF

Dpε2 ,

(2.2.8)
where here our convention is '01...p = −1 and the pullback of the gamma matrices
onto the brane world-volume is Γa = ∂ay

MΓM .
The examples we have discussed thus far in flat space can be generalized to other
spaces. Then, the internal manifold can already break some of the supersymmetry
and we have to consider the Gauß law for all ingredients. This generally leads to
reduced supersymmetry, some examples are:

T 6 ⇒ N = 8

T 2 ×K3 ⇒ N = 4

CY3 ⇒ N = 2 .

(2.2.9)

Onto these backgrounds we still can add Op-planes, removing some supersymmetry,
before we add our Dp-branes.

2.2.2 Linear + non-linear = non-linear

In this subsection we show that the description of a combination of linear and non-
linear supersymmetry in the end necessarily has to be non-linear. If we have a
background that has preserved supercharges {QA}, A = 1, . . . , N and then add
a supersymmetry breaking source, for example a Dp-brane, only a subset of the
supersymmetry charges, that can be empty, will still be realized linearly: {Qa},
a = 1, . . . , n < N . We then want to investigate the behavior of the other remaining
charges {Qi}, i = n+ 1, . . . , N .
For this, let us consider a simplified situation where only one set of scalars φA is re-
lated to fermions λA via supersymmetry. The transformation can be written as:

δλA = SAε+ /∂φAε+ . . . , (2.2.10)

with complex constants SA that are not all equal to zero and with additional terms
in the . . . that are not relevant for our discussion here. Splitting the constants
as SA = {Sa, Si}, with Sa = 0 related to the unbroken supersymmetries, we break
supersymmetry spontaneously in the directions that are related to the fermionic shifts
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Si  = 0. We call a supersymmetry transformation non-linear if the shift, related to
{SA} is present:

δsλ
a = 0 ,

δsλ
i = Siε .

(2.2.11)

One may wonder if it is possible to remove the shift by some sort of allowed transfor-
mation. For example, focusing on the set {λi} that has non-linear supersymmetry,
we define:

v = Ki̄λ
iS ̄ =: λT gS̄ , (2.2.12)

with the Kähler metric Ki̄. The action of the shift on the new field v is given to
be:

δsv = Ki̄S
iS ̄ε =

�
STKS

�
ε , (2.2.13)

in matrix notation where, in this case, K is still the Kähler metric. With this we
can redefine the remaining fields as:

λ̃i = λi − Si

STKS̄
, (2.2.14)

with:
λ̃iKi̄S

̄ = 0 . (2.2.15)

The λ̃i now have the property that they do not have a shift part in their supersym-
metry transformations:

δsλ̃
i = 0 . (2.2.16)

With this we have transformed all degrees of freedom initially present in the {λi}
into the λ̃i and v. Importantly, for this to be consistent, we require that

�
STKS

�
=

�S�2  = 0. This means that the best thing we can achieve is to transform the non-
linear behavior into one direction. We conclude that supersymmetry, realized as a
combination of linear and non-linear transformations, will in total always require a
non-linear description. An important caveat is that the parameter, giving the SUSY
breaking scale, has to contain a constant piece that cannot be removed via field
redefinitions. Such cases are readily available, for example, non-supersymmetric Dp-
branes wrapping tori in the internal manifold. In such a scenario the SUSY breaking
parameter is related to the wrapping numbers and cannot be removed.
Compactifications that include SUSY breaking sources thus necessarily require a
non-linear realization of the transformations on the world volume fields. This can,
for example, lead to 4d theories with all supersymmetries realized non-linearly which
are called de Sitter supergravity [59–61, 82–84].
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2.2.3 Supersymmetry Breaking and Unitarity

When any symmetry is broken at some scale F it is expected that it will, likewise,
be restored when going to, or above, that scale. If we naively follow our effective
theory to this scale we anticipate that new fields or other degrees of freedom appear
in order to complete the symmetry. This manifests itself in unitarity violations of
the effective theory. Examples of this happening include the Volkov-Akulov theory
[46, 85] or when coupling a very heavy scalar in a chiral multiplet to supergravity
[86]. We will study this problem in the case of some examples in this subsection.
Before we begin let us mention one notable exception to the above statement. In
inflation the Hubble scale H changes the SUSY breaking scale to be:

F ∼ M2
P

#
m2

(3/2) +H2 , (2.2.17)

with the gravitino mass m(3/2) and MP the Planck scale [20, 87–90]. In the case
of a vanishing scalar potential V = 0 the gravitino mass m(3/2) would give the
SUSY breaking scale. When considering non-linear supergravity models of inflation
one would need to keep this change in mind. For simplicity, we will only consider
situations where we can safely neglect the Hubble scale.

In the KKLT scenario we have a 4d AdS vacuum with N = 1 supersymmetry.
The vacuum gets lifted to de Sitter by the inclusion of an anti-D3-brane at the
bottom of a warped throat which breaks SUSY spontaneously at the same time
[14, 33]. Here, the breaking scale is given by the uplift energy in turn corresponding
to the warped down string scale. Likewise, the whole tower of open string states is
warped down as well. Hence, when going to the SUSY breaking scale, one expects
these states to become relevant and invalidate the initial effective theory.
For the KKLT scenario this is not the whole story. When considering the throat to
be of Klebanov-Strassler (KS) type [91], there is a non-trivial 3-cycle at its bottom.
This introduces a warped down KK-scale that can be below the string scale, meaning
that massive states enter at this scale instead. When anti-D3-branes at the bottom
of the KS-throat polarize into an NS5-brane [92], it can wrap a meta-stable cycle
and linear supersymmetry can be restored by the KK modes [93].

Two Dp-branes that enclose a small angle ϕ � 1 have a supersymmetry
breaking scale given by ϕ/

√
α
, with the string tension 1/(2πα
). Letting ϕ become

ever smaller will give us an arbitrarily small SUSY breaking scale. Still, it is not
possible to describe such a situation using standard supergravity, as we have already
shown. The way supersymmetry is restored when going to the breaking scale is by
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a set of open string states that stretch between the two branes [94–96]. Remember,
this means that our or initial effective theory breaks down and no longer correctly
describes the physics. It is important to find a new theory that replaces it. In the
case of two branes at very small angle this can be done by guessing. It is natural
to expect an SU(2) gauge theory for two branes on top of each other. If the angle
is non-zero a scalar will get an expectation value and the SU(2) theory breaks to
U(1)×U(1). Interestingly, in this example, one finds an infinite tower of states even
though we have a particularly small SUSY breaking scale. It is, however, possible to
find examples that lack such an explicit tower.

Two branes intersecting perpendicular on a toroidal orbifold preserve su-
persymmetry partially. Again, we can rotate one brane slightly away from the special
angle in order to break supersymmetry completely. In this case the SUSY breaking
scale can be below both the KK and string scale and thus no obvious heavy states are
present that can restore the symmetry at the breaking scale. The solution is some-
what different in this case. While supersymmetry is still realized non-linearly, the
theory is nevertheless almost invariant under linear supersymmetry and the world
volume fields are in almost regular multiplets. The contributions from the different
fields then cancel in divergent cross sections and hence no new massive states are
required.
In two of the examples above we found that supersymmetry gets restored by a tower
of states coming in at the symmetry breaking scale, as opposed to a single additional
state. This means that at this scale the initial low-energy effective theory breaks
down and needs to be replaced. This seems to be a generic feature for theories that
break supersymmetry by the inclusion of some source, that is not specifically aligned
in order to avoid this conclusion (see our last example).
This, fairly strong claim, requires some remarks. First, the significant changes do not
need to affect all sectors of the theory. For example, in the KKLT model the SUSY
breaking source sits at the bottom of the warped throat. It follows that effects that
appear in the bulk will not be changed significantly due to the warping. Secondly, it
might be that sources that (almost) preserve supersymmetry are favored by nature,
as they minimize energy. This means that seemingly contrived setups could actually
be more natural than expected. Finally, if supersymmetry is broken by background
effects, like fluxes, and sources are supersymmetric we would not expect to encounter
heavy states near the breaking scale.
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2.2.4 Non-supersymmetric Branes in 4d, N = 1 theories

We now move on to describe the inclusion of supersymmetry breaking branes in 4d,
N = 1 supergravity formalisms. Dp-branes are used in a variety of string models
including applications to cosmology [97, 98] and for constructing standard model like
theories [99, 100]. For convenience we will neglect the model dependent world volume
fields on the branes as their inclusion is technically difficult. Including all of these
world volume fields has been done in certain cases, see for some examples [4, 14, 32,
47, 48, 101]. Furthermore, here we will restrict to compactifications that initially
preserve N = 2 supersymmetry and then add an orientifold projection that removes
one supersymmetry and leaves us with N = 1 SUSY. The internal manifolds will thus
be either CY3-folds in the fluxless case or general SU(3) structure manifolds.

Let us mention a peculiarity of the D3-brane before we come to the descrip-
tion of general Dp-branes in supergravity. In order to not violate Lorentz symmetry
branes need to be spacetime filling. For the case of D3-branes this means that they
cannot be at arbitrary angles. For a type IIB compactification on a CY3-fold we have
N = 2 supersymmetry of the background. Introducing an orientifold projection we
find:

ε1 = Γ0123ε2 =: ΓO3ε2 , (2.2.18)

Putting, on the other hand, a D3-brane along some angle ϕ in the (x3, x4) plane
gives:

ε1 = (cos(ϕ)Γ0123 + sin(ϕ)Γ0124) ε2 , (2.2.19)

meaning we would break Lorentz invariance in the 4d directions since for sin(ϕ)  = 0

the above is proportional to Γ0124. One concludes that the only allowed angles for
a D3-brane with 4 extended directions are {0, π}, corresponding to what is usually
called a brane or an anti-brane. Note that, according to the discussion in section
2.2.1 this also excludes D3-branes with non-zero flux F , even for the allowed values
of ϕ.

For Dp-branes with p > 3 we find that they still need to extend in the non-
compact space and, internally, wrap a p − 3 cycle Σ. The action consists of a DBI
part as well as a CS part and is given to be:

SDp = TDp

�
M3,1×Σ

d4x dp−3ye−φΣ
$

det(−gΣ + F|Σ)� �� �
DBI

−TDp

�
M3,1×Σ

C|Σ ∧ eF|Σ� �� �
CS

,

(2.2.20)
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with the brane tension TDp, the dilaton φ, the metric g and the sum over all RR-
fields C. Furthermore, |Σ denotes the pullback of the quantities onto the brane
world volume. In the following all quantities will be understood as pulled back
automatically. Considering branes on either CY3 or SU(3) structure manifolds we
note that these types of spaces do not have non-trivial 1- or 5- cycles, which rules out
D4- and D8-branes. The manifolds are described by a Kähler (1, 1)-form J and a
holomorphic (3, 0)-form Ω. We note that this is only strictly true in the Calabi-Yau
(CY) case whereas in the case of SU(3) structure manifolds one has a real 2-form
J and a complex 3-form Ω as such manifolds are not Kähler, see [97] for a detailed
description. With these words of caution out of the way we will continue to slightly
abuse these terms and treat both cases in the same way. In [99] it was show that one
can write the DBI part of a supersymmetric Dp-brane action using the characteristic
forms of the internal manifold:

SDBI,5 = TD5

�
M3,1×Σ2

d4x e−φ J ,

SDBI,6 = TD6

�
M3,1×Σ3

d4x e−φ Re(Ω) ,

SDBI,7 = TD7

�
M3,1×Σ4

d4x e−φ 1

2
(J ∧ J − B ∧B) ,

SDBI,9 = TD9

�
M3,1×Σ6

d4x e−φ

�
1

6
J ∧ J ∧ J − 1

2
J ∧B ∧ B

�
,

(2.2.21)

where B is the Kalb-Ramond 2 form and we work in string frame with zero gauge flux
F . These equations are called calibration conditions and readily generalize to non-
vanishing gauge flux F [102–104]. For anti-Dp-branes similar calibration conditions
hold where the main difference to the equations (2.2.20) and (2.2.21) is a minus sign
for the CS-part of the action [49].

The description of general non-supersymmetric branes will require the tools
of non-linear supergravity and we will show in the following how it is possible to
correctly describe such branes in the low-energy effective SUGRA action. This gen-
eralizes the result of [49], where the same was done for anti-Dp-branes. One main
ingredient for this procedure is the nilpotent chiral field X that we already discussed
in section 2.1. When supersymmetry is broken spontaneously, the transformation is
still realized in a non-linear way but fields no longer sit in regular multiplets. Nev-
ertheless, constrained multiplets can be used in order to describe fields in such a
case. The nilpotent chiral field X is able to correctly describe the Goldstino related
to spontaneous supersymmetry breaking by the brane. This will be an important
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topic in the next section 2.3.1 where we discuss one particular setup in great detail.
See the same section as well for a detailed discussion how the brane provides the
Goldstino.
To begin with, we consider the theory before the addition of the supersymmetry
breaking brane. It is described by a Kähler potential Kb4 and a superpotential Wb4

4.
Additionally a gauge kinetic function and potential D-terms could be present in the
theory but we will ignore these possibilities for now. The potentials are obtained by
performing a string theory compactification and they depend on chiral multiplets Φa.
The goal now is to add a general brane to this setup and compute the backreaction
onto the fields Φa. This backreaction is given by the scalar potential VDp(Φ

a, Φ̄a) that
newly appears due to the inclusion of the brane. In the language of supergravity,
this can be achieved by a modification of the Kähler- and superpotential:

K = Kb4 + eKb4
XX̄

VDp

,

W = Wb4 +X .

(2.2.22)

Calculating the scalar potential using these potentials with the usual formula yields:

V = eK
�
KIJ̄DIWDJW − 3|W |2

� (((
X=0

= Vb4 + VDp , (2.2.23)

which is exactly what one expects. Note that the indices I and J run over all fields,
including the nilpotent field X. In the end, one has to set that field equal to zero as
it only contains fermionic degrees of freedom. This means that:

KXX̄ |X=0 = e−Kb4VDp ,

DXW |X=0 = 1 .
(2.2.24)

It turns out that (2.2.22) actually gives the correct result, even for backgrounds
that do not preserve supersymmetry. Furthermore the description is not necessarily
limited to Dp-branes. Indeed, any SUSY breaking ingredient that can be described
using a nilpotent chiral field can be incorporated in this way. For this reason we
occasionally replace VDp by Vnew in the following, when we discussing more general
results. One thing that is not quite obvious is that Vnew is a real function of the fields
Φa, which it needs to be since we include it in the Kähler potential K. Nevertheless,
this should be always the case since Vnew has to be a function of the closed string
degrees of freedom that get packaged into the fields Φa. One more thing to note is

4Read b4 as “before”.
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that in more general cases the Goldstino might not be completely given by the SUSY
breaking ingredient. If the background fields also break supersymmetry the Goldstino
will become a linear combination of the fermion contained in the nilpotent chiral field
X and the fermions in the Φa. This can, for example, happen if the backreaction of
the SUSY breaking source is significant and influences the background fields.
The main task in applying this process to new examples is finding the correct form
of Vnew. This might seem simple, given the expression in (2.2.22), but can become
rather involved for some cases. In particular, when one wants to include all world
volume fields in a given setup. Thus far, this has only been completely done for the
anti-D3-brane in the KKLT setup, see [4] or the following section 2.3. The full result
reduces exactly to our proposal here if one sets all world volume fields to zero. The
reason that the simple prescription here works is that it seems to be an universal
feature, at least for Dp-branes, that the Goldstino can be packaged into a nilpotent
chiral field X while the features of the background, the brane dimension and other
things get put into a scalar function Vnew. We will give some backup to this claim
by investigating some examples in the following where we are able to validate this
claim by recovering the correct results. Let us mention that thus far, whenever this
method was carefully carried out, it did give the correct answer.

2.2.5 Examples of genuine non-supersymmetric Branes

As a first example we consider the anti-D3-brane, which is of particular
interest due to its inclusion as an ingredient in the KKLT model [14, 33]. Depending
on the setup, the brane is either placed in the bulk of the internal manifold or
at the bottom of a warped throat. This gives different expressions for the scalar
potential:

V bulk
D3

=
µ4�−i(T − T̄ )

�3 for the brane in the bulk,

V throat
D3

=
µ4�−i(T − T̄ )

�2 for the brane at the bottom of a warped throat.

(2.2.25)
Here T is the single Kähler modulus of the model and µ a parameter related to the
number of branes and their tension. We will discuss the KKLT scenario in much
more detail in the following sections of this thesis. Here, we focus on the description
using (2.2.22).
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The Kähler potentials for the two different cases are:

Kbulk = −3 log
�−i(T − T̄ )

�
+

XX̄

µ4
,

Kthroat = −3 log
�−i(T − T̄ )

�
+

XX̄

µ4
�−i(T − T̄ )

� = −3 log

��−i(T − T̄ )
�− XX̄

3µ4

�
,

(2.2.26)
where X2 = 0 is required to perform the last step in the second line.
The validity of the above description was verified in [52, 105] and this formalism was
further used in [4, 32] to incorporate all world volume fields of the anti-D3-brane in
the KKLT setup, see also the following section 2.3.

Our next example will be intersecting D6-branes which are also the main
motivation for our considerations here. Intersecting Dp-branes can be used as in-
gredients in flux compactifications and for building Standard Model like scenarios
[99, 100]. We focus on situations where the background initially preserves N = 1

supersymmetry and the branes are responsible for the full breaking of SUSY. Such
constructions were initially viewed as being describable as a D-term in standard su-
pergravity. In the following we will review the arguments that were used for this
conclusion and then we will give the correct description using our method. Let us,
however, clarify that the 10d picture was always correct. The description was ob-
tained using the correct DBI and world sheet action in 10d and the conclusions drawn
from this are, to the best of our knowledge, correct. However, the 4d interpretation
of the behavior as a D-term is the wrong point of view. It is necessary to use non-
linear supersymmetry for that purpose.
Let us review D6-branes wrapping some 3-cycle Σ3 in a type IIA compactification
on T 6/(Z2 × Z2) as our example [28]. For this we define, in our conventions, the
3-form:

ΩΣ =

�
Σ3

e−φΩ , (2.2.27)

and we find the scalar potential originating from the DBI action, as:

VDBI = TD6 e
−2φ vol6

$
Re(ΩΣ)2 + Im(ΩΣ)2 , (2.2.28)

with vol6 the volume of the internal space. In the case that the brane is supersym-
metric one finds that Im(ΩΣ) = 0 and the DBI part of the scalar potential reduces
to VDBI = TD6e

−2φvol6Re(ΩΣ), as Re(Ω) > 0 for SUSY branes. This actually follows
from the action of the D6-brane given in equation (2.2.21) when going to 4d Einstein
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frame. Changing to Einstein frame in four dimensions can be done by writing:�
d10x

#
−gstring

10 e−2φR10 =

�
d4x

#
−gstring

4 vol6R4 + . . . , (2.2.29)

and then letting the metric gstring → e4φvol−2
6 gEinstein. In particular, this means that

the actions in (2.2.21) only pick up a factor of e4φvol−2
6 when changing frames. In [28]

the authors followed [29] and re-wrote the scalar potential in the following way:

VDBI = VF + VD ,

VF = TD6e
4φvol−2

6 Re(Ω)Σ ,

VD = TD6e
4φvol−2

6

�$
Re(ΩΣ)2 + Im(ΩΣ)2 − Re(ΩΣ)

�
.

(2.2.30)

For supersymmetric branes this reduces correctly since then VD = 0 which has to
be the case since the D-term cannot uplift the vacuum energy without breaking
supersymmetry. One can then attempt to re-write everything in terms of a gauge
kinetic function and a D-term:

TD6 = e−2φvol6P ,

Re(f) = TD6

$
Re(Ω)2 + Im(Ω)2 = TD6Re(Ω) +O

�
Im(ΩΣ)

Re(ΩΣ)

�
,

(2.2.31)

where the first line describes the moment map P .
We now neglect the higher order terms in the above expressions and use everything
to write:

VD = TD6 e
4φ vol−2

6

Im(ΩΣ)
2

Re(ΩΣ)

1

1 +

%
1 +

�
Im(ΩΣ)
Re(ΩΣ)

�2

=
1

2Re(f)
P2 2

1 +

%
1 +

�
Im(ΩΣ)
Re(ΩΣ)

�2
.

(2.2.32)

One could argue that this is compatible with standard N = 1 supergravity for as
long as |Im(ΩΣ)|/|Re(ΩΣ)| � 1 [28]. Strictly speaking, however, this is only true
iff Im(ΩΣ) = 0, which is, for example, the case for supersymmetric branes. Then,
everything can be written using a standard D-term and standard supergravity is
applicable. If the brane is not supersymmetric, higher order terms need to appear to
mend this discrepancy. These are exactly provided by non-linear supergravity. There
is one more relevant example we would like to mention where standard supergravity
formulas can correctly describe the situation. When anti-D6-branes wrap SUSY

30



cycles that have the opposite orientation we also have Im(ΩΣ) = 0 and everything
works out. In [49] the correct description of anti-branes using non-linear supergravity
and constrained fields was given. In the following we will generalize their result to
arbitrary branes.

2.2.6 Non-linear SUGRA Description for any Brane

Let us begin by describing arbitrary D6-branes by utilizing the method in
equation (2.2.22). This is easy because all we have to do is use the DBI contribution
to the scalar potential and find the modified Kähler and superpotential:

K = Kb4 + eKb4
XX̄

TD6 e−2φ vol6
$
Re(ΩΣ))2 + Im(ΩΣ)2

,

W = Wb4 +X ,

(2.2.33)

where we again used the nilpotent chiral field X. As we mentioned before, the
brane provides the Goldstino via the only degree of freedom of X and we neglect
other, model specific, world volume fields. This readily generalizes to multiple D6-
branes by adding a sum over the individual contributions in the above formulae. The
Goldstino, contained in X, is a linear combination of the fermions coming from each
brane individually. Including world volume fields in this description, in particular in
the case where the background contributes to the supersymmetry breaking due to
the backreaction of the brane, would significantly complicate the description and is
model dependent.
In every case one still needs to make sure that the scalar potential contribution, Vnew,
only depends on the closed string degrees of freedom and is a real function. To be
more specific Vnew has to be a real function of the complex structure moduli ZN . Let
us give an argument that this holds in our simple example here before we move on
to general branes. For this we note that the complex structure moduli in type IIA
can be written as:

ZN =

�
ΣN

�
1

2
C3 + ie−φ

$
vol6 Re(Ω)

�
, (2.2.34)

with the ΣN a basis of the orientifold odd 3-homology. Using this we conclude
that:

Im(ZN) =

�
ΣN

e−φ
$
vol6 Re(Ω) , (2.2.35)

and since the dilaton and the volume are always given by the closed string moduli
Re(ΩΣ) is a real function of the complex structure moduli. For the imaginary part of
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ΩΣ that also gives contributions to the scalar potential we have to do a little bit more
work as it does not appear in the above expression for the ZN . The resolution lies
in the orientifold involution of the O6-plane that is part of the example we consider.
It maps:

σ : Ω → Ω̄ , (2.2.36)

which in turn allows us to write Im(ΩΣ) as a real function in terms of Re(ΩΣ), for
details see [106]. All of this leads us to conclude that Vnew in our example here is
indeed a real function of the closed string degrees of freedom and the formalism works
as intended.

We now generalize further to give the description for arbitrary Dp-branes
utilizing the same tools as above. For the Dp-brane actions we will take the results
found in [102, 103]. As our Ansatz for the metric we use:

ds2 = e2A(y)gµνdx
µdxν + gmndy

mdyn , (2.2.37)

with the warp factor A(y) that depends only on the internal coordinates. Further-
more, we will assume that the internal space has SU(3)×SU(3) structure and use the
pure spinors Ψ̂1 and Ψ̂2 to describe the manifold [102]. Importantly, the definition
of those spinors depends on whether we consider type IIA or type IIB theory. We
re-iterate that the branes fill the 4 extended dimensions of spacetime and they wrap
(p− 3)-cycles Σ in the internal manifold. Using a subscript Σ to denote the pullback
of a quantity onto the worldvolume of the brane and (p− 3) for quantities where we
are only interested in the (p− 3)-form part of the expression we define:

Wm dσ1 ∧ . . . ∧ dσp−3 =
(−1)p

2

�
e3A−φ

�
im + gmk dy

k∧� Ψ̂2

�
Σ
∧ eF

(((
p−3

,

D dσ1 ∧ . . . ∧ dσp−3 =
�
e4A−φIm(Ψ̂1)

�
Σ
∧ eF

(((
p−3

,

Θ dσ1 ∧ . . . ∧ dσp−3 =
�
e4A−φRe(Ψ̂1)

�
Σ
∧ eF

(((
p−3

.

(2.2.38)

Utilizing these quantities we re-write the DBI action of the Dp-brane as:

SDBI, p = TDp

�
M3,1

d4x

�
σ

dp−3y e−φ|Σ
$
det(−g|Σ + F|Σ)

= TDp

�
M3,1

d4x

�
σ

dp−3σ
$

Θ2 + e4AD2 + 2e2AgmnWmWn ,

(2.2.39)

which reduces to the previous D6- brane solution in equation (2.2.28) for p = 6,
Wn = 0 and when going to Einstein frame in 4 dimensions.
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In general, Wn will always be zero for us since it is the derivative of a holomorphic
superpotential that includes the model dependent contributions from the open string
degrees of freedom. Since we choose to neglect world volume fields, except the
Goldstino, we thus set Wn = 0. Now we still need to argue that the remainder,
Θ2 + e4AD2, is a real function of the closed string moduli. The general argument is
that the moduli are a combination of the RR axions and the imaginary parts of the
NSNS sector fields which we will call Z again for convenience. Similar to the D6

example above, Im(Z) can be written directly as a function of Re(Ψ̂1) and Re(Z)

can be related back to Im(Z) as discussed in [97]. Hence, we write generally:

SDBI, p = TDp

�
M3,1

d4x

�
σ

dp−3σ
$

Θ2 + e4AD2 + 2e2AgmnWmWn ,

= TDp

�
M3,1

d4x

�
σ

dp−3σ
$

f(Im(Za)) + g(Im(Za)) .

(2.2.40)

Here, f(Im(Za)) and g(Im(Za)) are real functions and we recover a supersymmetric
Dp-brane for g(Im(Za)) = 0. Since the behaviors of different brane setups get
incorporated into real functions depending on the closed string moduli, this procedure
is applicable in very general setups.

2.2.7 Non-supersymmetric Branes - Interim Summary

In this section we have discussed the correct description of branes in 4d, N = 1 su-
pergravity, independent of their orientation and if they preserve supersymmetry. We
have focused on type II compactifications where the background initially preserves
N = 2 SUSY and added an orientifold projections that projects out one of these
supersymmetries. Previously, while the 10d description and the results drawn from
them have been correct, the re-packaging of the brane behavior into the language of
4d SUGRA has been done incorrectly. Here we showed a general way to include any
brane using non-linear supersymmetry and constrained superfields. Our method,
given in equation (2.2.22), allows us to find the correct description. It is important
to check that the scalar potential, coming from the supersymmetry breaking source,
Vnew has to be a real function of the closed string degrees of freedom. We have shown
how this can be argued for general branes. When neglecting the world volume fields
on the branes and backreactions on the background, as we did here, the brane will be
the sole provider of the Goldstino. It is the only degree of freedom of the nilpotent
field X in our description. Including the world volume fields of the brane is model
dependent and in general rather cumbersome. Also, it then can happen that the
Goldstino is a linear combination of the fermion in X and the other world volume
fermions in such cases. Likewise, it is possible that the brane backreacts onto the
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background which in turn leads to supersymmetry breaking by the background. If
this is the case, the Goldstino will be a composite expression as well.
The result we obtained here is rather general and, in fact, should be applicable for
other SUSY breaking sources, other than branes. Examples include KK-monopoles
or NS5-branes. Other interesting applications for the procedure given here are spe-
cific models where one can study the situation in more detail and include model
specific contributions, such as world-volume fields. We will investigate an explicit
example in the anti-D3-brane in the KKLT setup in the next section.

2.3 The Anti-D3-Brane in the KKLT Scenario

The anti-D3-brane in the KKL(MM)T scenario [14, 33] provides the uplifting contri-
bution to the the scalar potential that raises the minimum from anti-de Sitter space
to de Sitter. The description of the anti-brane in terms of 4d, N = 1 supergravity
has been studied extensively in the last couple of years. Here we extend this de-
scription by including all world-volume fields in a complete effective action for the
KKLT scenario. As will be shown, we find that the action breaks supersymmetry
spontaneously, which might be expected as the anti-D3-branes in the KKLT model
can be viewed as excited states in a supersymmetric description [92].
The connection of the description of the anti-D3-brane to the uplifting contribu-
tions included in the KKLT scalar potential has only been fully understood fairly
recently [52, 105, 107–109]. Nevertheless, a full description of the action has not
been found before our contribution. The action consists of a bosonic part with three
complex world-volume scalars and an U(1) gauge field and a fermionic contribution
that contains four 4 dimensional fermions. In the context of flux compactifications
the fermionic part is only know up to quadratic terms [110–115]. Naively, one would
expect that the focus of the investigation would be on the bosonic part, as people typ-
ically dislike dealing with spinors. The usual argument would be that the fermionic
contributions then are given by supersymmetry. However, the bosonic contributions
on the brane can be projected out using an orientifold and thus, the focus has largely
been on the fermionic part of the action [32, 52, 105, 108, 109, 116]. The combination
of the fermionic action with the bosonic uplifting contribution can be merged into
a Volkov-Akulov type action [85] which can be written using constrained superfields
in 4d, N = 1 supergravity. In [32] the action for all GKP background fields and the
four world-volume fermions has been derived. In [4] we extended the description to
include the remaining contributions, namely the world-volume scalars and the U(1)

gauge field. This will give a complete description of the uplifting anti-D3-brane in
the KKLT background in terms of an effective 4d, N = 1 supergravity action.
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2.3.1 Action of the Anti-D3-Brane in KKLT

Before we can find the complete effective description of the anti-D3-brane we will
review the action in the GKP [117] and the KKLT [14, 33] background. The fields
that will appear in our description are:

• the axio-dilaton τ = C0 + ie−φ,

• a single Kähler modulus T ,

• complex structure moduli UA.

The bosonic and fermionic parts of the D3-brane action are reviewed in the follow-
ing.

The bosonic action consists of a DBI and a Chern-Simons part that combine to
give the complete expression. In 4d Einstein frame these can be written as:

SDBI = −
�

d4x
#

−det (P [gµν + e−φ/2Bµν ] + e−φ/2Fµν) ,

SCS = −
�

P
�
(C0 + C2 + C4) ∧ eB2

� ∧ eF .

(2.3.1)

In our conventions here the string length is ls = 2π
√
α
 = 1, B2 is the NSNS Kalb-

Ramond field and Fµν denotes the field strength of the U(1) gauge field on the brane5.
P is the pullback operation onto the brane world-volume.
The GKP background [117] is warped which makes the identification of the Kähler
modulus Im(T ) rather tedious [118]. In the case of a single Kähler modulus a fixed
overall scaling for all terms in the action exists. We will use the Ansatz [119]:

ds2 = e−6u(x)

�
1 +

e−4A(z)

e4u(x)

�− 1
2

gµνdx
µdxν+e2u(x)

�
1 +

e−4A(z)

e4u(x)

� 1
6

gab̄dz
adzb̄ , (2.3.2)

to identify Im(T ) later on. In this Ansatz the non-compact dimensions are labeled
µ, ν = 0, 1, 2, 3 while the internal directions are a, b̄ = 1, 2, 3. The six-dimensional
compact volume is given by e6u = vol6 and A(z) is the warp factor, depending only
on the internal directions. The purpose of this metric is to interpolate between the
bulk region and the throat. Note that this Ansatz does not solve the mixed parts of
the Einstein equations, where the non-compact and internal coordinates mix. This
will, however, not have any effect on our conclusions. Since we want to investigate

5Note that we have re-scaled the U(1) field strength by 2π compared to other typical con-
ventions. Likewise, the action has been re-scaled by 1/(2π) in order to remove the brane tension
T3 = (2π)−3(α�)−2 = 2π.
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the anti-D3-brane action at the bottom of a strongly warped throat we are interested
in the regime where e−4A � e4u. In this limit the metric becomes:

ds2 = e−4u(x)+2A(z)gµνdx
µdxν + e

4
3
u(x)− 2

3
A(z)gab̄dz

adz b̄ . (2.3.3)

Utilizing this we proceed our investigation of the DBI action [120] in (2.3.1):

SDBI = −
�

d4x
√−g4

�
e4A(H,H̄)−8u(x) +

1

2
e

4
3
A(H,H̄)− 8

3
u(x)gab̄(H, H̄)∂µH

a∂µH̄ b̄

+
1

4
e−φ(H,H̄)FµνF

µν + . . .

�
.

(2.3.4)
Here, the Ha are the world-volume scalars that give the position of the brane, entering
the action via the pullback and the ellipses denote suppressed, higher order terms.
In the following we will consider the brane to be sitting at some point in the strongly
warped throat and then the Ha will denote small fluctuations around that initial
position.
The DBI-part of the action yields all kinetic terms for the scalar fields. In 4d, N = 1

supergravity this this can be described using the Kähler potential [121]:

K = −3 log[−i(T − T̄ ) + k(H, H̄)] , (2.3.5)

with k(H, H̄) the part of the Kähler potential that incorporates the metric of the
compact manifold:

∂Ha∂H̄ b̄k(H, H̄) ≈ 1

6
e

4
3
(A+u)gab̄ . (2.3.6)

Subleading terms are again neglected [122]. Importantly, the no-scale structure of
the Kähler potential is not violated by this contribution. The volume of the internal
manifold depends on the open and closed string degrees of freedom and gets modified
by k(H, H̄):

vol6 = e6u =
�−i(T − T̄ ) + k(H, H̄)

� 3
2 . (2.3.7)

The Chern-Simons part of the action simplifies in the GKP background [117] to:

SCS = −
� �

1

2
C0(H, H̄)F ∧ F + C4(H, H̄)

�
, (2.3.8)

where one has to keep in mind that the contributions from B2 and C2 are projected
out by the orientifold in this setup. We then expand the quantities around the
position of the brane where we use, as mentioned before, Ha as the distance from
the brane sitting initially at (Ha, H̄a) = (0, 0) in the warped throat. To leading order
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we get:
SCS = −

� �
1

2
C0(H, H̄)F ∧ F + C4(H, H̄)

�
= −

� �
1

2
C0(0, 0)F ∧ F + C4(0, 0) + . . .

�
.

(2.3.9)

We then use that C0(0, 0) = Re(τ) and C4(0, 0) = α(z, z̄)
√−g4dx

0 ∧ dx1 ∧ dx2 ∧ dx3

and find for the Chern-Simons action:

SCS = −
�

d4x
√−g4

�
− 1

8
√−g4

Re(τ)'µνρσFµνFρσ + α(H, H̄) + . . .

�
. (2.3.10)

In order to merge the two parts of the bosonic action we first combine the first term
in the DBI action (2.3.4) with the second term in the CS action (2.3.10) to:

Φ± := e4A(H,H̄)−8u ± α(H, H̄) , (2.3.11)

where the sign difference is for branes (minus) and anti-branes (plus). For the D3-
brane the equations of motion in the GKP background enforce e4A(H,H̄)−8u = α(H, H̄)

and thus Φ− = 0 but for the anti-brane the DBI and CS contributions add up and
we find the combined action for the anti-D3-brane to be:

SD3
bosonic = −

�
d4x

√−g4

�
2e4A(H,H̄)−8u +

1

2
e

4
3
A(H,H̄)− 8

3
u(x)gab̄∂µH

a∂µH̄ b̄

+
1

4
Im(τ)FµνF

µν − 1

8
√−g4

'µνρσFµνFρσ + . . .

�
.

(2.3.12)
It is evident that, combining the DBI with the CS action, we get a typical Maxwell
term for the U(1) gauge field. For a D3-brane in our setup we would have preserved
N = 1 supersymmetry and one would use a gauge kinetic function f(τ) = −iτ for
the supergravity description. At this point it is important to note that the gauge
kinetic function has to be holomorphic and may only depend on the axio-dilaton.
The coupling at the brane for the U(1) gauge interaction is given by Re(f(τ)) =

Im(τ) = e−φ. On the other hand, Im(f(τ)) = −Re(τ) = −C0, controlling the theta
term of the Maxwell part of the action. If we now want to consider our anti-D3-
brane, the Chern-Simons action comes with a sign difference and thus it seems that,
in order to match equation (2.3.10), we would need an anti-holomorphic gauge kinetic
function, satisfying f(τ̄) = iτ̄ . Supersymmetry does not allow for this since τ is part
of an unconstrained chiral multiplet. The resolution of this issue is one of the main
points of this chapter and will be discussed later on in 2.3.3. The important physical
conclusion will be that the anti-D3-brane preserves non-linear N = 1 supersymmetry.
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Moving on, we can identify a scalar potential:

V D3(H, H̄) = Φ+ = 2e4A(H,H̄)−8u , (2.3.13)

that gives the attraction of the brane towards the bottom of the warped throat, as
the warp factor A is minimized there. As usual, we expand the scalar potential in
terms of the Ha and H̄ b̄ around the point of attraction:

V D3(H, H̄) = 2e4A0−8u0
�
1 + 2HaHb∂Ha∂HbA0 + 4HaH̄ b̄∂Ha∂H̄ b̄A0

+ 2H̄ āH̄ b̄∂H̄ ā∂H̄ b̄A0 + . . .
�
.

(2.3.14)

The quantities with index “0” are evaluated at H = 0 and we once more neglect
higher order contributions, suppressed by the string scale [120]. From the first term
in this expression we get the typical uplifting term from an anti-D3-brane in a warped
throat which scales like 1/vol

4/3
6 [33].

Before we continue, a remark about the KKLT scenario is in order. The volume
modulus in a GKP background is flat and together with the scalar potential of the
anti-D3-brane this would lead to an instability for the Kähler modulus. This gets
remedied via the inclusion of non-perturbative corrections, usually from gaugino
condensation on D7-branes in the bulk. The argument then is that, since the non-
perturbative effect happens in the bulk and we consider the anti-D3-brane at the
bottom of a highly warped throat, these contributions can safely be neglected. Issues
around these non-perturbative corrections have been discussed in the literature to a
great extend [123–135] and, as of now, it seems reasonable to proceed along, following
the argument given here.

The fermionic part of the anti-D3-brane action has to contain a Goldstino,
responsible for the spontaneous breaking of supersymmetry by the anti-brane. The
goal of this part of the thesis is to offer a complete description of the anti-D3-brane in
the KKLT setup in the language of 4d, N = 1 supergravity. For this, the Goldstino
will be described using a constrained superfield, to be precise, it will be contained in
a nilpotent chiral field.
Before we come to the fermionic action of the anti-D3-brane we need to figure out
how the anti-D3-brane action contains the Goldstino. General Dp-brane actions in
flux backgrounds are know only up to quadratic orders in fermions [110–115]. Discus-
sions focused on the anti-D3-brane in this context can be found in [32, 52, 105, 120].
There are four world-volume fermions on the anti-D3-brane, part of the SU(3) holon-
omy group of the internal manifold. One singlet λ and three χi, forming a triplet. The
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behavior of these fermions is determined by the imaginary self dual (ISD) part:

GISD
3 =

1

2
(G3 − i H6 G3) , (2.3.15)

of the background 3-flux [52, 120]:

G3 = F3 − ie−φH3 = dC2 −
�
C0 + ie−φ

�
H3 . (2.3.16)

The flux gives rise to the following contributions:

• The (0, 3)-flux gives a mass to the singlet λ.

• The interactions between the singlet λ and the triplet χi are determined by
non-primitive (2, 1)-flux.

• The primitive (2, 1)-flux gives the masses for the triplet χi.

In a supersymmetric GKP background the anti-D3-brane is the sole source of super-
symmetry breaking and then λ will be identified as the Goldstino. It does not mix
with the fermion triplet χi and does not receive a mass [52].
If the background already has broken supersymmetry there is a Gukov-Vafa-Witten
(GVW) superpotential [136]:

WGVW =

�
G3 ∧ Ω , (2.3.17)

that is non-zero. Here, the characteristic 3-form Ω of the Calabi-Yau gives rise to an
F-term for the modulus T :

DTWGVW = KTWGVW  = 0 , (2.3.18)

where the Kähler-covariant derivative with respect to T acting on W is: DTW =

∂TW + (∂TK)W = KTW . It follows that G3 has to contain a non-vanishing (0, 3)

contribution which leads to spontaneous supersymmetry breaking due to the back-
ground itself. In this scenario a closed string fermion will be identified as the Gold-
stino. Adding an anti-D3-brane to such a background, λ would no longer be the
Goldstino and, in fact, will get a mass from the (0, 3) part of the 3-flux G3.
Our interest here is the KKLT scenario where, in addition to a non-vanishing GVW
superpotential (2.3.17), we have non-perturbative corrections also depending on the
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Kähler modulus T of form6:
Wnp = AeiaT . (2.3.19)

The parameter A can, in general, depend on the moduli but, under certain conditions,
we can neglect this as those terms are suppressed. The non-perturbative corrections
allow us to find a supersymmetric solution to:

DT (WGVW +Wnp) = 0 , (2.3.20)

which will give a supersymmetric AdS vacuum with ∂TWnp = −KT (WGVW+Wnp). If
we add one or more anti-D3-branes to this setup we can lift the AdS minimum to dS.
However, then the anti-brane is the source of supersymmetry breaking and needs to
come with a massless Goldstino. On the other hand, we saw that the background has
non-zero (0, 3) flux which means the fermion singlet λ obtains a non-vanishing mass
term. Furthermore, all χi also obtain masses and thus can’t act as the Goldstino
either [52]. The solution to this peculiar problem is that the (0, 3) part of the G3 flux
localizes on the source of the non-perturbative contributions [137, 138]. Namely, the
stack of D7-branes that is localized in the bulk of the internal manifold, as opposed
to the location of the anti-D3-brane at the bottom of a warped throat. If the flux
is pulled back onto the anti-brane the contribution vanishes due to the warping.
Then, the fermion singlet λ does not obtain a mass and can act as the Goldstino.
Note however that, once we go beyond the probe limit, this will not be exactly true
anymore. The backreaction of the uplifting anti-D3-brane onto the geometry will
shift the Kähler modulus T away from the position of the supersymmetric minimum
and then DTW  = 0. Thus, the Goldstino becomes a combination of the singlet λ

and the fermionic partner of T .
With this discussion out of the way we go on to investigate the couplings of the
four fermions provided by the anti-D3-brane to the moduli τ , T and UA from the
closed string sector. The fermionic action of the anti-D3-brane [32, 52, 110, 120] to
quadratic order in the world-sheet fermions is given to be [52, 114, 139]:

SD3
fermionic = 2

�
d4x

√−g4

�
e4A−8uθ̄Γµ

�
∇µ − 1

4
eφFµΓ̃0123

�
θ

+
1

8 · 4! θ̄
�
e

16
3
A− 32

3
uΓµmnpqFµmnpq − 2e

8
3
A− 16

3
uΓµνρmnFµνρmn

�
Γ̃0123θ

− i

24
e6A−12ue

1
2
φ
�
GISD

mnp − ḠISD
mnp

�
θ̄Γmnpθ

�
,

(2.3.21)

6See also section 3.1.
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where we are in Einstein frame, as per usual. Greek letters label the non-compact
directions 0, 1, 2, 3 and Latin letters the internal directions 4, 5, 6, 7, 8, 9. θ is the
Majorana-Weyl spinor of type IIB theory with 16 components and we will decompose
it into 4d Weyl spinors [52, 110]. The gamma matrix Γ has unwarped but curved
indices while Γ̃ has flat indices. In supergravity language [56] the fermions are an
SU(3) singlet PLλ and three fermions PLχ

i, forming a triplet. In [52] the kinetic and
the G-flux part of (2.3.21) were considered in a fixed background and we will use
these results here. There it was found that all other terms vanish. Here, we consider
a dynamical background where these terms will give important contributions [4].
First off, we will consider the spin connection term where we adopt the convention
to put a tilde on flat quantities and indices. It is given to be:

θ̄Γµ∇µθ = θ̄Γµ

�
∂µ +

1

4
ω ãb̃
µ Γ̃ãb̃ +

1

4
ω īı
µ Γ̃īı

�
θ , (2.3.22)

where the indices run over ã, b̃ = 0, 1, 2, 3 and i, ı̄ = 1, 2, 3. Terms with mixed indices
in the spin connection, like ω ãi

µ , vanish and thus are omitted. In the above expression
the first two terms form the usual covariant derivative while the last term introduces
an interaction of the fermions and the complex structure moduli UA. In order to
write the spin connection in terms of the Vielbein and the moduli we note that our
metric is block diagonal, consisting of the 4d block of the non-compact directions
and a 6d block of the internal manifold. This immediately tells us that the Vielbein
is also block diagonal. Then, the internal part of the Vielbein satisfies:

eai gab̄e
b̄
ı̄ = δīı . (2.3.23)

Since the geometry of the compact Calabi-Yau (CY) manifold is described by the
Kähler modulus T and the complex structure moduli UA this means that the “inter-
nal” Vielbein eai is a function of those moduli. Furthermore, the holomorphic 3-form
Ωabc = 'ijke

i
ae

j
be

k
c of the CY manifold does not depend on the ŪA and thus we know

that eia and its inverse can only be a function of T , T̄ and UA. Accordingly, we
write:

∂µe
a
i = (∂T e

a
i )∂µT + (∂T̄ e

a
i )∂µT̄ + (∂UAeai )∂µU

A . (2.3.24)

The Kähler modulus gives the overall volume of the CY manifold and since we only
have one such modulus the volume has to depend on some power of (T − T̄ ), to
leading order:

∂T e
a
i = −∂T̄ e

a
i ∝ eai . (2.3.25)
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With this the internal part of the spin connection simplifies to:

ωīı
µ = eāi∂µe

ı̄
ā − eaı̄∂µe

i
a = eāi(∂ŪAeı̄ā)∂µŪ

A − eaı̄(∂UAeia)∂µU
A . (2.3.26)

This expression can be further simplified due to the fact that we only have a single
Kähler modulus and thus only one (1, 1)-form. Using the spin connection we can
define a 2-form. If it is in cohomology it has to be proportional to the Kähler form J

of the Calabi-Yau manifold. In flat indices this means it is proportional to δīı :

ωµīı e
i
ae

ı̄
b̄ ∝ δīıe

i
ae

ı̄
b̄ . (2.3.27)

With this we can use ωīı
µ Γ̃īı = ωīı

µδīıδ
j̄Γ̃j̄/3 to write the following fermionic contri-

bution that has not been considered in earlier works:

θ̄Γµωīı
µ Γ̃īıθ =

1

3
ωīı
µδīıδ

j̄Γ̃j̄

=
1

3
ωkk̄
µ δkk̄

�
3λ̄PRγ

µλ− δi̄χ̄
̄PRγ

µχi
�

=
1

3
δīı

�
eāi(∂ŪAeı̄ā)∂µŪ

A − eaı̄(∂UAeia)∂µU
A
� �

3λ̄PRγ
µλ− δj̄χ̄

̄PRγ
µχj

�
.

(2.3.28)
The next new contribution comes from the Fµ term in (2.3.21). Keeping in mind
that Fµ = ∂µC0 = ∂µRe(τ) it is straight forward to compute:

eφFµθ̄Γ
µΓ̃0123θ =

(∂µRe(τ)

Im(τ)
θ̄ΓµΓ̃0123θ

= −i
(∂µRe(τ)

Im(τ)

�
λ̄PRγ

µλ+ δi̄χ̄
̄PRγ

µχi
�
.

(2.3.29)

There are two more new contribution in (2.3.21) that we need to investigate, both
of them related to C4. The first comes from the derivative coupling to the axion C4.
For this we need to know that a Calabi-Yau manifold with a single Kähler modulus
has one (2, 2)-form Y2,2. The normalization of this form is such that it evaluates to
1 when integrated over the 4-cycle Σ4. The volume or Kähler modulus T is made
up of this 2-form and J ∧ J , with J the characteristic 2-form of the Calabi-Yau.
Since T is described in 4d supergravity via a chiral multiplet it furthermore has to
be holomorphic. Using Y2,2 to build a basis we find that the Kähler modulus is given
as:

T : =

�
Σ4

�
C4 − i

2
J ∧ J

�
=

�
Σ4

c4(x
µ)Y2,2 + iIm(T )

�
Σ4

Y2,2 ,

(2.3.30)
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where we also read of that c4(x
µ)Y2,2 = −c4(x

µ) [2Im(T )]−1J ∧ J . We can now use
that ieui e

ū
ı̄ Juū = δīı, with curved indices u and ū to find the first contribution from

C4 to the fermionic action of the anti-D3-brane:

1

4!
e

4
3
A− 8

3
uθ̄ΓµnpqrFµnpqrθ =

Re(T )

2Im(T )
θ̄δīıδj̄Γ

µΓ̃īıj̄Γ̃0123θ

= −i
∂µRe(T )

Im(T )

�
3λ̄PRγ

µλ− δi̄χ̄
̄PRγ

µχi
�
.

(2.3.31)

The remaining term coming from C4 can be related to the above one due to the
self-duality of dC4 in 10d. Using this property one finds that:

FµnpqrΓ
µnpqr = −2e

8
3
A+ 16

3
uFµνρmnΓ

µνρmnΓ̃9 . (2.3.32)

Finally, we can combine all parts from above in order to find the complete fermionic
part of the anti-D3-brane action up to total derivatives:

SD3
fermionic = 2

�
d4x

√−g4e
4A−8u

�
λ̄PRγ

µ∇µλ+ δi̄χ̄
̄PRγ

µ∇µχ
i

+
i

4

(∂µRe(τ))

Im(τ)

�
λ̄PRγ

µλ+ δi̄χ̄
̄PRγ

µχi
�

− i

4

(∂µRe(T ))

Im(T )

�
3λ̄PRγ

µλ− δi̄χ̄
̄PRγ

µχi
�

+
1

12
ωkk̄
µ δkk̄

�
3λ̄PRγ

µλ− δi̄χ̄
̄PRγ

µχi
�

+
1

2
mλ̄PLλ+miλ̄PLχ

i +
1

2
mijχ̄iPLχ

j + c.c.
�
,

(2.3.33)
where we wrote everything in terms of 4d spinors.
As discussed, the masses depend on the the imaginary self dual 3-flux GISD

3 . They
are given as:

m = i

√
2

12
e2A−4u e

φ
2 Ω̄abcḠISD

abc ,

mi =−
√
2

4
e2A−4u e

φ
2 eai Ḡ

ISD
abc̄ J

bc̄ ,

mij = i

√
2

8
e2A−4u e

φ
2

�
ecie

d
j + ecje

d
i

�
Ωabcg

aāgbb̄Ḡdāb̄ .

(2.3.34)

Since we consider the KKLT setup with gaugino condensation on a stack of D7-
branes in the bulk of the internal manifold, the pullback of the G3-flux onto the
anti-brane does vanish. Furthermore, in this background the (2, 1) part of GISD

3 is
primitive and thus GISD

abc̄ J bc̄ = 0 and thus we find that, for our particular setup, two
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of the mass terms from above vanish:

m = 0 and mi = 0 . (2.3.35)

As already discussed, this means that λ remains massless and is the Goldstino related
to supersymmetry breaking. The fermion triplet χi meanwhile does acquire non-zero
masses. Hence, we have a unique Goldstino arising from the source of supersymmetry
breaking, namely the fermion singlet λ.

The complete anti-D3-action for the KKLT model from the perspective of
string theory is the sum of the bosonic part (2.3.12) and the fermionic contribution
(2.3.33), with the masses m and mi set to zero:

SD3 =SD3
bosonic + SD3

fermionic

=−
�

d4x
√−g4

�
2e4A−8u +

1

2
e

4
3
A− 8

3
u∂µH

a∂µH̄ b̄

+
Im(τ)

4
FµνF

µν − Re(τ)

8

'µνρσ√−g4
FµνFρσ

�
+ 2

�
d4x

√−g4e
4A−8u

�
λ̄PRγ

µ∇µλ+ δi̄χ̄
̄PRγ

µ∇µχ
i

+
i

4

(∂µRe(τ))

Im(τ)

�
λ̄PRγ

µλ+ δi̄χ̄
̄PRγ

µχi
�

− i

4

(∂µRe(T ))

Im(T )

�
3λ̄PRγ

µλ− δi̄χ̄
̄PRγ

µχi
�

+
1

12
ωkk̄
µ δkk̄

�
3λ̄PRγ

µλ− δi̄χ̄
̄PRγ

µχi
�

+
1

2
mijχ̄

iPLχ
j +

1

2
m̄ı̄̄χ̄

ı̄PRχ
̄

�
.

(2.3.36)

2.3.2 The D3-Brane Action and Supergravity

Even though our goal is to describe the anti-D3-brane action in the KKLT back-
ground it will be useful to first have a look at the supersymmetric action of the
normal D3-brane. The results of this section will proof useful for the investigation
of the anti-D3-brane case. In particular, we will match the action with the standard
N = 1 supergravity action for a single vector multiplet and three chiral multiplets
because for the D3-brane equation (2.3.12) reduces exactly to that. First, the “up-
lift” term of the bosonic action vanishes for the supersymmetric D3-brane as do
the fermionic mass terms. Taking into account the sign flip in the RR-fields only
one vector multiplet, containing λ and Aµ, and three chiral multiplets with Ha and
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χa := eaiχ
i remain. The D3-brane action is then given to be:

SD3 =SD3
bosonic + SD3

fermionic

=−
�

d4x
√−g4

�
1

2
e

4
3
A− 8

3
u∂µH

a∂µH̄ b̄

+
Im(τ)

4
FµνF

µν − Re(τ)

8

'µνρσ√−g4
FµνFρσ

�
+ 2

�
d4x

√−g4e
4A−8u

�
λ̄PRγ

µ∇µλ+ δi̄χ̄
̄PRγ

µ∇µχ
i

− i

4

(∂µRe(τ))

Im(τ)

�
λ̄PRγ

µλ+ δi̄χ̄
̄PRγ

µχi
�

+
i

4

(∂µRe(T ))

Im(T )

�
3λ̄PRγ

µλ− δi̄χ̄
̄PRγ

µχi
�

+
1

12
ωkk̄
µ δkk̄

�
3λ̄PRγ

µλ− δi̄χ̄
̄PRγ

µχi
� �

.

(2.3.37)

First we will investigate the derivative coupling of the fermions to τ .
The chiral multiplets containing the fermions do not carry any U(1) charge but
couple to all scalars due to the Kähler covariant derivative. The relevant part of the
supergravity action is [56]:

LSUGRA ⊃− δi̄χ̄
̄PRγ

µ

�
∂µ − 1

4
[∂µτ∂τK − ∂µτ̄ ∂τ̄K]

�
χi

− 1

2
δi̄χ̄

̄PRγ
µΓi

kτ∂µτχ
k − 1

2
δi̄χ̄

iPLγ
µΓ̄

k̄τ̄
∂µτ̄χ

k̄ .

(2.3.38)

If we choose the Kähler potential for τ to be:

K(τ) = − log[−i(τ − τ̄)] , (2.3.39)

we obtain exactly the coupling proportional to ∂µRe(τ) in (2.3.37) from the square
brackets above. Furthermore, the prefactor also is correct which tells us that the
mixed index Christoffel symbols Γi

jτ have to be zero.

For the couplings to ∂µRe(T) we have to investigate the very similar looking
part of the Lagrangian:

LSUGRA ⊃− δi̄χ̄
̄PRγ

µ

�
∂µ − 1

4
[∂µT∂TK − ∂µT̄ ∂T̄K]

�
χi

− 1

2
δi̄χ̄

̄PRγ
µΓi

kT∂µTχ
k − 1

2
δi̄χ̄

iPLγ
µΓ̄

k̄T̄
∂µT̄ χ

k̄ ,

(2.3.40)
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now with non vanishing contributions form the Christoffel symbols in the direction
of T . In the limit of large volume we can find the corresponding Christoffel symbols
from the Kähler potential (2.3.5) approximately to be:

Γi
jT ≈ i

2Im(T )
. (2.3.41)

Together with the derivatives acting on the Kähler potential all contributions com-
bine correctly and match (2.3.37), again including coefficients.

In a similarly straightforward manner we can find the coupling of τ to
λ from the supergravity action. For the D3-brane the gauge kinetic function is
f(τ) = −iτ and the kinetic term of the gaugino is normalized such that its prefactor is
Re(f) = Im(τ) = e−φ. Thus, we have to re-scale the fermion singlet like λ = e−φ/2λ
,
which does not lead to any new derivative terms since λ̄γµλ = 0 for 4d Majorana
spinors. The supergravity action for the re-scaled singlet λ
 is:

LSUGRA ⊃− 1

2
Re(f)λ̄
γµ

�
∂µ +

1

4
[∂µτ∂τK − ∂µτ̄ ∂τ̄K]γ9

�
λ


+
i

4
∂µIm(f)λ̄
γ9γµλ
 ,

(2.3.42)

which reproduces the coupling of λ to ∂µRe(τ) in the D3-brane action.

The terms coupling the gaugino to the modulus T do not involve any
Christoffel symbols. Again, using λ
 we can write the standard supergravity ac-
tion and the terms, when compared to equation (2.3.37), match up to a different
prefactor that is caused by the lack of the Christoffel symbols:

LSUGRA ⊃ −1

2
Re(f)λ̄
γµ

�
∂µ +

1

4
[∂µT∂TK − ∂µT̄ ∂T̄K]γ9

�
λ
 . (2.3.43)

The final terms to analyze contain the complex structure moduli UA. The
spin connection (2.3.26) has two independent parts, that are proportional to ∂µU

A

and ∂µŪ
A, individually. By an analogous reasoning as below equation (2.3.26) we

conclude that both terms are proportional to δīı. Hence, we can write:

∂UAeiv = −eiw(∂UAewı̄)evı̄

= −1

3
ejw(∂UAew̄)δj̄δ

īıevı̄

= −1

3
ejw(∂UAew̄)δj̄e

i
v ,

(2.3.44)
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where we used that ∂µeivevı̄ = 0 and v, w, . . . = 1, 2, 3 are curved and warped indices.
We can related this to the (3, 0)-form Ω of the Calabi-Yau manifold in the following
way:

∂UAΩ =
1

3! · 3!∂UA

�
eive

j
we

k
x'ijkdz

v ∧ dzw ∧ dzx
�

=
3

3! · 3!
�
∂UAeiv

�
ejwe

k
x'ijkdz

v ∧ dzw ∧ dzx

= − 1

3! · 3!e
l
t

�
∂UAet̄

�
δl̄e

i
ve

j
we

k
x'ijkdz

v ∧ dzw ∧ dzx

= −ejw (∂UAew̄) δj̄Ω .

(2.3.45)

In order to eventually match this with the component action of the D3-brane we will
expand the 3-form Ω in a cohomology basis as:

Ω = ZKαK − FKβ
K , (2.3.46)

with the 3-form basis given by αK and βK that satisfy
�
αK ∧βL = δLK . The ZK and

FK are functions of the complex structure moduli UA. The expansion of Ω together
with (2.3.45) tells us that:

∂UAZK = −ejv (∂UAev̄) δj̄Z
K ,

∂UAFK = −ejv (∂UAev̄) δj̄FK .
(2.3.47)

The Kähler potential for the complex structure moduli is given in terms of the 3-form
Ω and can be written using the expansion above:

K(U) = − log

�
−i

�
Ω ∧ Ω̄

�
= − log

�
i(ZKF̄K − Z̄KFK)

�
.

(2.3.48)

Finally, we can use this to write the relevant part of the spin connection using the
Kähler potential K(U) as:

ωīı
µδīı = δīı

�
eāi(∂ŪAeı̄ā)∂µŪ

A − eaı̄(∂UAeia)∂µU
A
�

= ∂UAK(U)∂µU
A − ∂ŪAK(U)∂µŪ

A .
(2.3.49)

Before we can use this result to match the component action (2.3.37) with a standard
supergravity expression we need to propose a fitting Kähler potential.

47



One might naively propose:

K = − log [−i(τ − τ̄)]− log

�
−i

�
Ω ∧ Ω̄

�
− 3 log

�−i(T − T̄ ) + k(H, H̄)
�
, (2.3.50)

this, however, is incapable of reproducing the correct D3-brane action. In order to
find the correct expression, we note that the coupling of the fermions λ and χi to
∂µRe(U

A) has the same prefactor as the coupling to ∂µRe(T ). Hence, the complex
structure part has to couple in the same way to the chiral multiplets as the Kähler
sector in the supergravity action. The Kähler potential:

K =− log [−i(τ − τ̄)]− 3 log

�
−i(T − T̄ )

�
−i

�
Ω ∧ Ω̄

� 1
3

+ k(H, H̄)




=− log [−i(τ − τ̄)]− log

�
−i

�
Ω ∧ Ω̄

�
− 3 log

−i(T − T̄ ) +
k(H, H̄)�−i
�
Ω ∧ Ω̄

� 1
3

 ,

(2.3.51)
does reproduce all the required couplings to ∂µIm(τ), ∂µIm(T ), χi and λ
, via stan-
dard supergravity terms. Dropping, as above, the terms containing k(H, H̄) the
relevant supergravity pieces are:

LSUGRA ⊃− δi̄χ̄
̄PRγ

µ

�
∂µ − 1

4

�
∂µU

A∂UAK − ∂µŪ
A∂ŪAK

��
χi

− 1

2
δi̄χ̄

̄PRγ
µΓi

kUA∂µU
Aχk − 1

2
δi̄χ̄

iPLγ
µΓ̄

k̄ŪA∂µŪ
Aχk̄

− 1

2
Re(f)λ̄
γµ

�
∂µ +

1

4

�
∂µU

A∂UAK − ∂µŪ
A∂ŪAK

�
γ9

�
λ
 .

(2.3.52)

As a final note we remark that, in order to produce the correct kinetic terms involving
the world-volume scalars Ha, we require

∂Ha∂H̄ b̄k(H, H̄) ≈ 1

6
e

4
3
(A+u)

�
−i

�
Ω ∧ Ω̄

� 1
3

gab̄ . (2.3.53)

2.3.3 The Anti-D3-Brane Action in Supergravity

We now move on to tackle the description of the supersymmetry breaking anti-D3-
brane in the KKLT setup. This work is an extension of [32] to which we add the
bosonic part of the action, the mixed terms of fermions and bosons as well as the U(1)

gauge sector with the vector multiplet. We will package all fields into the constrained
multiplets of section 2.1 which allows us to use the language of linear supergravity for
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a system with broken and hence non-linearly realized, supersymmetry. The fact that
it is possible to do this, using constrained multiplets to write a system with broken
supersymmetry in a seemingly linear way, aligns with the fact that supersymmetry
is broken spontaneously.

We start by considering the Goldstino λ and the fermion triplet χi which
we will put into a nilpotent chiral field X and into constrained chiral fields Y i,
respectively. The correct Kähler potential coupling the bulk moduli to the world-
volume fermions is [32]:

K =− log [(−i(τ − τ̄))]− 3 log
��−i(T − T̄ )

�
f
�
UA, ŪA

� 1
3

�
− 3 log

�
1− e−4AXX̄

3 (−i(τ − τ̄))
�−i(T − T̄ )

�
f
�
UA, ŪA

�
− e−4Aδi̄Y iȲ ̄

3 (−i(τ − τ̄))
�−i(T − T̄ )

�2
f
�
UA, ŪA

� 1
3



,

(2.3.54)

where we used f
�
UA, ŪA

�
= −i

�
Ω ∧ Ω. From here on out, we will only use

f
�
UA, ŪA

�
as notation for the gauge kinetic function, in order to avoid confusion

between the (3, 0) form Ω of the internal manifold and the fermions in the multiplets
X and Y i. We now need to obtain the correct couplings of the multiplets X and Y i

to the bulk moduli:

• The coupling of τ is fixed by the modular invariance of the world-volume action.
For the details on this see appendix A.1.

• For the Goldstino in X we have to match the coupling using the scalar potential
contribution in (2.3.36). The kinetic term of λ will not be matched, as the
couplings of a Goldstino are not physical and hence can be set to zero. It is
sufficient to write:

PLΩ = PLλ+ . . . , (2.3.55)

where the dots represent higher order terms.

• The couplings of the fermion triplet in Y i can be fixed by comparing with the
kinetic terms of the massive spin-1/2 fields, as we did for the supersymmetric
D3-brane in section 2.3.2. One finds that, suppressing higher order terms, the
Ωi are related to the χi via the field redefinition:

PLΩ
i = 2ie4A−φ

2 f
�
UA, ŪA

� 1
6 PLχ

i + . . . . (2.3.56)
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The superpotential of our model consists of the Gukov-Vafa-Witten flux-potential,
non-perturbative contributions and an uplifting contribution that breaks supersym-
metry:

W = WGVW +Wnp +M2X . (2.3.57)

M is related to the scale at which SUSY breaks, the warped-down string scale. By re-
scaling X we set M2 =

√
2 and the tension of the anti-D3-brane to TD3 = 2π = M4π.

It is evident that the superpotential breaks SUSY via the inclusion of the nilpotent
chiral multiplet X which, in turn, supports our choice to identify the fermion in X

as the Goldstino.
As of now the fermions are massless in the supergravity description. A typical ap-
proach to give them masses would be to add a term Wmass = hijY

iY j to the su-
perpotential [32, 48]. Unfortunately, with a dynamical axio-dilaton, this requires
hij ∝ Ḡ3 to be anti-holomorphic in τ , which is incompatible with supersymmetry.
Here, we instead choose to modify our Kähler potential in order to acquire the desired
terms:

K =− log [(−i(τ − τ̄))]− 3 log
��−i(T − T̄ )

�
f
�
UA, ŪA

� 1
3

�
− 3 log

�
1− e−4AXX̄

3 (−i(τ − τ̄))
�−i(T − T̄ )

�
f
�
UA, ŪA

�
− e−4Aδi̄Y iȲ ̄

3 (−i(τ − τ̄))
�−i(T − T̄ )

�2
f
�
UA, ŪA

� 1
3

+
e−8A �

mijX̄Y iY j + m̄ı̄̄XȲ ı̄Ȳ ̄
�

6M2 (−i(τ − τ̄))
3
2
�−i(T − T̄ )

� 3
2 f

�
UA, ŪA

� 5
6



,

(2.3.58)

where mij is the fermion mass matrix that we discussed above in equation (2.3.34).
This method of including the masses for the fermion triplet is consistent and compat-
ible with modular invariance. Nevertheless, we will give an alternative description of
these terms as part of the superpotential later on in this section. This relies on tools
we will review when coupling the U(1) sector, namely, the new D-term, described in
section 2.1.5.

The world-volume scalars in the Ha give small fluctuations of the anti-brane
around its rest position and come from the DBI part of the action. Hence, their
kinetic terms are the same in the case of the anti-D3-brane as they are for the D3-
brane that we discussed in section 2.3.2. As discussed there, the Kähler potential
(2.3.51) accurately describes the Ha for dynamical complex structure moduli and
axio-dilaton. By putting the world-volume scalars into the constrained multiplets
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Ha of section 2.1.4 we are able to modify the Kähler potential we have found thus
far (2.3.58) in order to include the behavior of the scalars. For this we consider the
warp factor A do depend on the Ha and we shift the volume modulus T :

− i(T − T̄ ) → −i(T − T̄ ) +
k(Ha, H̄a)

f(UA, ŪA)
1
3

= e4u . (2.3.59)

Putting this into the (2.3.58) we find the Kähler potential that now also correctly
reproduces the kinetic behavior of the world-volume scalars:

K =− [(−i(τ − τ̄))]− 3 log
��−i(T − T̄ )

�
f
�
UA, ŪA

� 1
3 + k

�
Ha, H̄a

��
− 3 log

�
1− e−4A(Ha,H̄a)−4u

3 (−i(τ − t̄)) f
�
UA, ŪA

�XX̄

− e−4A(Ha,H̄a)−8u

3 (−i(τ − t̄)) f
�
UA, ŪA

� 1
3

δi̄Y
iȲ ̄

+
e−8A(Ha,H̄a)−6u

�
mijX̄Y iY j + m̄ı̄̄XȲ ı̄Ȳ ̄

�
6M2 (−i(τ − t̄))

3
2 f

�
UA, ŪA

� 5
6



.

(2.3.60)

The shift in −i(T − T̄ ) also leads to a dependence of the non-perturbative super-
potential, Wnp on the scalars Ha. However, these corrections are highly suppressed
compared to our leading order contributions as the non-perturbative corrections orig-
inate from gaugino condensation on a stack of D7-branes in the bulk, while we are
considering an anti-D3-brane at the bottom of a warped throat. Due to this fact we
choose to neglect the contributions to the superpotential (2.3.57).

The vector field in the U(1) gauge sector of the anti-D3-brane action requires a
kinetic term, coming from the DBI-part of the action, and contributions from the
CS-part of the action. While the DBI part matches the considerations for the super-
symmetric D3-brane exactly (see section 2.3.2) we have an issue with the CS action.
There, a sign flip is present for the anti-D3-brane which is problematic since it would
require an anti-holomorphic gauge kinetic function f(τ̄) = iτ̄ , which is forbidden, as
discussed in section 2.3.1. We will be able to correctly incorporate the CS action
here because of the non-linear realization of supersymmetry and the utilization of
constrained superfields and the new D-term of section 2.1.5.
For this we package the U(1) gauge vector into a chiral field strength multiplet PLΛ

with the constraint XPLΛ = 0, which removes the gaugino (see section 2.1.4).
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The standard supergravity action for a vector multiplet, up to fermionic terms, is
[56]:

−1

4

�
f(τ)Λ̄PLΛ

�
F
=

�
d4x

√−g4

�
− Re(f)

4
FµνF

µν

+
Im(f)

8

'µνρσ√−g4
FµνFρσ +

Re(f)

2
D2 + . . .

�
.

(2.3.61)
Here, f(τ) = −iτ and the term proportional to Im(f) = −Re(τ) has the opposite
sign as compared to the component action of the anti-D3-brane in the KKLT setup
(2.3.36). Because of this we need to effectively flip the sign of this term by subtracting
2 · Im(f)'ννρσFµνFρσ/(8

√−g4). In order to achieve this in a supersymmetric way we
will utilize the new D-term as first introduced in [65] and discussed already in section
2.1.5. Here, we want to use it to include a typical U(1) θ-term:

Sθ = −1

4

�
d4xIm(f)'µνρσFµνFρσ + . . . (2.3.62)

into an existing supersymmetric action. For once, the . . . do not stand for fermionic
contributions but generally for additional terms that are needed for supersymmetry.
In fact, our goal is to find these terms. Usually, one would use the Noether method to
determine them. For this, we would vary the action and add terms in order to cancel
the total variation and then start over again until the procedure does not produce
extra terms. The problem with this method is that it is not clear when it will stop.
For non-linear supersymmetry the result can instead be obtained immediately by
considering the multiplets R1 and R2 of section 2.1.5.
For our case here we take:

R1 =
ω2ω̄2

Σ(ω̄2)Σ̄(ω2)
,

R2 = Im(f)'µνρσFµνFρσ ,

(2.3.63)

and view R2 as a real multiplet with weights (4, 0). The gauge kinetic function f(τ)

is then the lowest component of a chiral multiplet with weight (0, 0). Unfortunately,
there is an issue that needs to be addressed. Supersymmetry in our setup is not
broken by the auxiliary field of the vector multiplet but rather by the nilpotent
chiral multiplet X. This means that the auxiliary field of the vector does not acquire
a vacuum expectation value and the quantity Σ̄(ω2) vanishes. It can, however, be
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proven that we can formally replace ω2 via the identification [65]:

ω2ω̄2

Σ(ω̄2)Σ̄(ω2)
=

X0X̄0XX̄

Σ(X̄0X̄)Σ̄(X0X)
=

X0X̄0e−
K
3 XX̄

Σ(X̄0e−
K
6 X̄)Σ̄(X0e−

K
6 X)

, (2.3.64)

which holds for as long the auxiliary field F in the nilpotent chiral field X is non-
vanishing, which is always the case in our setup. Then, in the above expression, the
right hand side never vanishes and we are able to write down the supersymmetric
completion of the θ-action (2.3.62) as:

Sθ = −1

4

�
X0X̄0e−

K
3 XX̄

Σ(X̄0e−
K
6 X̄)Σ̄(X0e−

K
6 X)

Im(f)'µνρσFµνFρσ



D

. (2.3.65)

We go on to write 'µνρσFµνFρσ in terms of the field strength multiplet PLΛ:

1

4
XX̄

'µνρσ√−g4
FµνFρσ = XX̄

�
X0X̄0e−

K
2

�2 1

2i

�
Σ̄(ω2)− Σ(ω̄2)

�
, (2.3.66)

where we have multiplied both sides in order to remove fermionic contributions. We
furthermore use that

�
Σ̄(ω2)− Σ(ω̄2)

�
/(2i) = Im(Σ(ω̄2)) such that we can finally

write the action for the U(1) gauge sector as:

SV =− 1

4

�
f(τ)Λ̄PLΛ

�
F

+

 XX̄
�
X0X̄0e−

K
3

�3

Σ̄
�
X0e

K
6 X

�
Σ
�
X̄0e−

K
6 X̄

�Im(f)Im(Σ(ω̄2))


D

.
(2.3.67)

Importantly, the expansion of the D-term in the above expression is exactly twice
the contribution of the θ-term that we wanted to obtain:

− 1

4

�
d4x Im(f)'µνρσFµνFρσ + . . . , (2.3.68)

with the dots giving the fermionic terms required by supersymmetry. When go-
ing from the superconformal formalism to Poincaré supersymmetry by letting the
compensator X0 = κ−1eK/6 and setting κ = 1 we obtain the result for the bosonic
sector:

SV, bos =

�
d4x

√−g4

�
−1

4
Im(τ)F µνFµν +

1

8
Re(τ)

'µνρσ√−g4
FµνFρσ

�
, (2.3.69)

where we went on-shell by using the equations of motion for D and the gauge ki-
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netic function is f(τ) = −iτ . Expression (2.3.67) contains higher order fermionic
terms that do not appear in the action of the anti-D3-brane as written in equation
(2.3.36). One might fear that this invalidates the match between the two expressions,
however, due to the spontaneously broken supersymmetry, the fermions depend on
the Goldstino and will vanish in unitary gauge. Since they can be set to zero via
a gauge choice these couplings do not have a physical impact and hence the match
holds. This is true for as long as the Goldstino is given only in terms of the fermion
in our nilpotent chiral field X. If, for some reason, the Goldstino becomes a mixed
expression of the fermion in X and the world-volume fermions, this argument be-
comes invalid.
It is still possible to bring (2.3.67) into a more familiar looking form. For this we
need to make use of the constraints on the multiplets X and PLΛα in section 2.1.3.
Furthermore, using Σ(AB) = AΣ(B) [20], for a chiral field A and a field B with
weights (w,w − 2), we observer that:

�
f(τ)Λ̄PLΛ

�
F
=

Σ
�
X̄0e−

K
6 X̄f(τ)

�
Σ
�
X̄0e−

K
6 X̄

� Λ̄PLΛ


F

=

Σ
 X̄0e−

K
6 X̄f(τ)

Σ
�
X̄0e−

K
6 X̄

�
 Λ̄PLΛ


F

.

(2.3.70)

Using this, the fact that PLΛα is constrained and [CD] = [Σ(C)]F/2 [20] we can
combine the two terms of the U(1) gauge sector into [4]:

SV = −1

4

Σ
 X̄0e−

K
6 X̄f̄(τ)

Σ
�
X̄0e−

K
6 X̄

�
 Λ̄PLΛ


F

: = −1

4

�
f̂D3(τ̄ , X̄)Λ̄PLΛ

�
F
,

(2.3.71)

where we defined the generalized gauge kinetic function for the anti-D3-brane:

f̂D3(τ̄ , X̄) := Σ

 X̄0e−
K
6 X̄f̄(τ)

Σ
�
X̄0e−

K
6 X̄

�
 , (2.3.72)

with f̄ = Re(f)− iIm(f). In this case the gauge kinetic function is a chiral multiplet
in τ and contains Goldstino interactions that are required for the non-linear realiza-
tion of supersymmetry. Importantly, the lowest component of f̂D3 is just f̄(τ̄) with
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higher order fermionic terms that vanish in unitary gauge. It is possible to put this
into the language of constrained multiplets where f̂D3 is a chiral multiplet with the
constraint:

XX̄f̂D3 = XX̄f̄(τ̄) . (2.3.73)

A superpotential description of the fermion masses requires a way to con-
sistently put τ̄ into the holomorphic superpotential W . In order to achieve this we
follow the logic we used when constructing the generalized gauge kinetic function
f̂D3 (2.3.72). We define the chiral multiplet:

M̂ij = Σ


�
X̄0e−

K
6 X̄

�
e−4A−2u mij

Σ
�
X̄0e−

K
6 X̄

�
(−i(τ − τ̄))

1
2 f

�
UA, ŪA

�− 1
6

 , (2.3.74)

which one could call the chiral mass multiplet. Here, mij are the fermion masses
given at the beginning of this section in equation (2.3.34). Again, the component
expansion reads:

M̂ij =
e−4A−2u

(−i(τ − τ̄))
1
2 f

�
UA, ŪA

�− 1
6

mij + fermions , (2.3.75)

where the fermionic terms depend on the Goldstino and vanish in unitary gauge.
Using a constraint to write this we find:

XX̄M̂ij = XX̄

 e−4A−2u

(−i(τ − τ̄))
1
2 f

�
UA, ŪA

�− 1
6

mij

 . (2.3.76)

The superpotential contribution that we would add to (2.3.57) then is:

Wm(M̂, Y ) =
1

2
M̂ijY

iY j . (2.3.77)

This gives the correct mass terms to the fermions contained in the multiplets Y i.
Once again, this crucially depends on spontaneously broken supersymmetry, de-
scribed by the nilpotent chiral multiplet X that has a non-vanishing auxiliary field
F .

The scalar potential V of our setup can now be found using the typical su-
pergravity formula and is of the form:

V = VKKLT + VD3 . (2.3.78)
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Here VKKLT contains the bulk fields of supergravity and for the anti-D3-brane con-
tribution one needs to make sure to only use one description at a time and to set the
constrained multiplets to zero at the end of the calculation as to eliminate fermionic
contributions. We have chosen the Kähler potential (2.3.60) and superpotential
(2.3.57) which gives the uplifting contribution to the scalar potential as:

VD3 =
M4e4A(Ha,H̄a)��−i(T − T̄ )

�
+ k(Ha, H̄a)f

�
UA, ŪA

�− 1
3

�2
⇒ VD3 = 2e4A(Ha,H̄a)−8u .

(2.3.79)

This matches correctly the expression (2.3.13) of section 2.3.1 but comes from a
Kähler and superpotential, as we desired.

2.3.4 Anti-D3-brane Action - Formulas

For practical purposes we will condense the results of the previous subsection here in
order to collect all relevant formulas in one place. The motivation and explanation
for these expressions are found in the prior subsections. The goal of this section
was to find a description of the anti-D3-brane in the KKLT setup in terms of a
Kähler and superpotential. For this we utilized the fact that the anti-brane breaks
supersymmetry spontaneously and we used constrained multiplets in order to obtain
the desired description. We stress once more that constrained superfields are a
convenient description we used here but other ways to write these formulas exist.
Furthermore, the specific choice of constrained multiplets is not unique.
Up to terms quadratic in fermions we can write the anti-D3-brane action (2.3.36) in
4d, N = 1 supergravity as:

SD3 =
�
f̂D3(τ̄ , X̄)Λ̄PLΛ

�
f
+
�
−3X0X̄0e−

K
3

�
D
+
��
X0

�3
W

�
F
, (2.3.80)

where we remind the reader that we are using the conventions of [56]. The generalized
gauge kinetic function for the anti-D3-brane is defined as:

f̂D3 = Σ

 X̄0e−
K
6 X̄f̄(τ̄)

Σ
�
X̄0e−

K
6 X̄

�
 , (2.3.81)

with f̄(τ̄) = iτ̄ .
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The multiplets that contain the world-volume fields are constrained in the following
way: �����

X X2 = 0 Goldstino
Y i XY i = 0 massive fermion triplet

PLΛα XPLΛα = 0 U(1) gauge vector
Ha XH̄a = chiral 3 complex scalars

!!!!! . (2.3.82)

When generating the masses for the fermions from the Kähler potential
we write:

KK =− log (−i(τ − τ̄))− 3 log
��−i(T − T̄ )

�
f
�
UA, ŪA

� 1
3 + k

�
Ha, H̄a

��
− 3 log

�
1− aXX̄ − bδijY

iȲ ̄ + c
�
mijX̄Y iY j + m̄ı̄̄XȲ ı̄Ȳ ̄

��
,

(2.3.83)

with the gauge kinetic function given as:

f
�
UA, ŪA

�
= −i

�
Ω ∧ Ω̄ , (2.3.84)

the a, b, and c are shorthand for:

a =
e−4A(Ha,H̄a)

3 (−i(τ − τ̄))
��−i(T − T̄ )

�
+ k

�
Ha, H̄a

�
f
�
UA, ŪA

�− 1
3

�
f
�
UA, ŪA

� ,
b =

e−4A(Ha,H̄a)

3 (−i(τ − τ̄))
��−i(T − T̄ )

�
+ k

�
Ha, H̄a

�
f
�
UA, ŪA

�− 1
3

�2
f
�
UA, ŪA

� 1
3

,

c =
e−8A(Ha,H̄a)

6M2 (−i(τ − τ̄))
3
2

��−i(T − T̄ )
�
+ k

�
Ha, H̄a

�
f
�
UA, ŪA

�− 1
3

� 3
2

f
�
UA, ŪA

� 5
6

,

(2.3.85)
and finally the fermion mass matrix is (see also (2.3.34) and the discussion there):

mij = i

√
2

8
e2A−4u e

φ
2

�
ecie

d
j + ecje

d
i

�
Ωabcg

aāgbb̄Ḡdāb̄ . (2.3.86)

The correct superpotential for this description is:

WK = WGVW +Wnp +M2X , (2.3.87)

with M2 =
√
2 here and also below. Note once more that the fermion mass terms

do not appear in this superpotential.
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Writing the fermion masses as a superpotential contribution we have a
Kähler potential:

KM =− log (−i(τ − τ̄))− 3 log
��−i(T − T̄ )

�
f
�
UA, ŪA

� 1
3 + k

�
Ha, H̄a

��
− 3 log

�
1− aXX̄ − bδi̄Y

iȲ ̄
�
,

(2.3.88)

with the same a and b as above. The fermion masses are now included in the
superpotential:

WM = WGVW +Wnp +M2X +
1

2
M̂ijY

iY j , (2.3.89)

with the chiral mass multiplet:

M̂ij = Σ


�
X̄0e−

K
6 X̄

�
e−4A−2u mij

Σ
�
X̄0e−

K
6 X̄

�
(−i(τ − τ̄))

1
2 f

�
UA, ŪA

�− 1
6

 . (2.3.90)

2.3.5 The anti-D3-brane in KKLT - Interim Summary

In this section we studied the anti-D3-brane at the bottom of a warped throat in
the KKLT scenario. We found a description that includes all world-volume fields
and couplings using the language of non-linear supersymmetry. The action is super-
symmetric and the symmetry gets broken spontaneously by the anti-brane. With
the results presented here and originally in [4], we have found a complete descrip-
tion that should find ample use in further studies of KKLT-like models and string
phenomenology in general. In particular, in [140] an anti-D3-/D7 setup was dis-
cussed using similar methods as described here. Furthermore, it should be possible
to extend the description here to stacks of anti-D3-branes by promoting the world-
volume fields to have SU(ND3)-symmetry [120]. Such a setup in the KKLT scenario
leads, however, to the polarization of the stack of anti-D3-branes into an NS5-brane
[92]. The resulting theory [93, 101] has been studied but a description in terms of
constrained superfields has not yet been found. Another interesting extension of our
work here regards the large volume scenario (LVS) [141, 142]. There, SUSY is broken
already in anti-de Sitter space before the uplifting brane is introduced. This leads
to a Goldstino that is composed of the world-volume fermions and the closed string
fermions. It should be possible to re-write the action of this situation in a similar
manner as we did here for KKLT. This would be interesting as LVS is one of the
main competitors to the KKLT setup.
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Chapter 3

KKLT-like Constructions

In this chapter we review extensions of the class of de Sitter constructions based on
the KKL(MM)T model [14, 33] that we published in [5–7]. After briefly reviewing the
original setup, we first show a way to translate the setup to type IIA models [5] where
one uses and anti-D6-brane instead of the anti-D3-brane of the original models that
are based in type IIB theory. Importantly, we rely on non-perturbative corrections in
order to achieve the uplift. We go on by introducing the ”mass production method”
[6] in section 3.3 that allows for the easy construction de Sitter vacua without the fear
of tachyonic directions. Finally, based on [7], we consider more general, M-theory
motivated, examples that allow for different kinds of non-perturbative corrections to
be absent.

3.1 KKL(MM)T

The KKLT-scenario [14, 33] is a potentially possible way to obtain meta-stable de
Sitter spaces from string theory. The initial setup is based on a simple type IIB model
with 3 moduli. Here, S is the axio-dilaton, T the Kähler-modulus and U the complex
structure modulus. Note that in more general setups the moduli T and U can split
into many different, independent scalars each, depending on the Hodge-numbers h1,1

and h2,1 of the internal manifold. In the simplest model these are taken to be the
same and the model simplifies. Such an STU -model has the following Kähler- and
Superpotential in IIB supergravity:

K = − log
�−i(S − S̄

�− 3 log
�−i(T − T̄ )

�− 3 log
�−i(U − Ū)

�
,

W = Wflux +Wnp .
(3.1.1)
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In the superpotential the first term comes from introducing p-form fluxes on the
internal manifold and the second term from non-perturbative contributions. In the
KKLT-scenario one follows a three-step process:

1. Use the flux superpotential in order to stabilize the axio-dilaton S and the
complex structure moduli U .

2. Introduce a non-perturbative contribution of the form:

Wnp = AeiaT , (3.1.2)

in order to stabilize the Kähler moduli and obtain a stable AdS space.

3. Add an anti-D3-brane at the bottom of a warped throat, effectively giving a
positive energy contribution to the scalar potential, in order to lift the minimum
of the scalar potential to positive energy.

In figure 3.1 a rough example is given of how the stable AdS space from step 2,
the contribution of the anti-D3-brane and the resulting meta-stable dS space are
plotted.

0.5 1.0 1.5 2.0 2.5 3.0
Im(T)

- 2

- 1

1

2

3

4

5

105

V

V=1

V
D6
_

Vtot

Figure 3.1. Example depiction of the three scalar potentials in KKLT. The dash-dotted
(blue) line is the stable AdS progenitor that gets uplifted by the dashed (green) positive
energy contribution from the anti-D3-brane, in this example placed at the bottom of a
warped throat. The result is a (meta-) stable de Sitter vacuum in the solid (red) line.

The cosmological constant is given by the value of the scalar potential:

V = V0 + VD3 where: (3.1.3)
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V0 = e−K
�
KIJ̄DIWDJW − 3|W |2

�
,

VD3 =
µ

(T + T̄ )p
with p = 2, 3 ,

(3.1.4)

at the minimum. The value of p depends on whether the brane is located in te bulk
(p = 2) or at the bottom of a warped throat p = 3. The idea is that one can tune
the amount of uplift in order to, in principle, match the cosmological constant. The
description of the anti-D3-brane in terms of Kähler- and superpotential has been
discussed in section 2.3 and relies on constrained superfields.
This model has been investigated thoroughly since its inception and many questions
have been raised, for an overview see [143]. A main concern regards the nature of
the non-perturbative corrections. These can arise in 4d supergravity from gaugino
condensation on D7-branes. However, this is a 4d effect that lacks an obvious physical
counterpart in 10d and the description is likewise not immediately clear. Recently it
has been shown that one can indeed match these effects to fermionic coupling terms
in 10d [135], see [123, 128, 129, 132–134, 137, 138, 144, 145] for earlier works on this
and related issues. Another topic under investigation is the stability and possible
singularities of the anti-brane setup at the bottom of a warped throat [146–161].
Currently, the consensus is that such setups can be meta-stable. A more recent,
issue regards the sizes of the bulk of the internal manifold and the warped throat.
It has been claimed [162] that the warped throat needs to be bigger than the rest of
the bulk in order for the model to work, which goes against common intuition about
the internal manifold in typical setups.
Nevertheless, the KKLT scenario remains one of the more promising candidates for
the construction of dS space from string theory.

3.2 Uplifting in Type IIA

The KKLT-scenario [14, 33], as described in section 3.1, gives a possible way of
constructing dS vacua from type IIB string theory using an uplifting anti-D3-brane.
One may wonder if something similar is possible in type IIA as well. First off, since
we are going to consider type IIA theory on SU(3) structure manifolds, only anti-D6-
branes can appear because Dp-branes wrap p− 3 cycles in the internal manifold and
no non-trivial 1- or 5-cycles exist for our choice. This leaves us with an unique choice
for the uplifting brane. An anti-D6-brane in a similar setup was used first in order
to stabilize an existing but unstable vacuum in [49]. The present section is based
on [5] where we instead were interested in uplifting a stable AdS point with the
contribution from the anti-D6-brane, just like in the KKLT model.
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3.2.1 The Type IIA STU-Model

For an explicit construction we will employ a simple 3 moduli setup with S being the
axio-dilaton, T the complex structure modulus and U the Kähler modulus [163, 164].
Note that T and U exchange their physical meaning when going from type IIB to IIA,
due to T-duality. The model is a compactification to 4 dimensions on T 6/(Z2 × Z2)

with added anti-D6-branes wrapping 3-cycles. These branes can either wrap only on
one such 3-cycle (N�

D6
) or wrap directions along both cycles of the geometry (N⊥

D6
).

The Kähler- and Superpotential we will consider are:

K = − log (−i(S − S̄))− 3 log (−i(T − T̄ ))− 3 log(−i(U − Ū)) ,

W = f6 +Wnp .
(3.2.1)

f6 corresponds to a 6-flux and we assume that all other p-form fluxes are turned off.
This is not only due to simplicity but it turns out that including those fluxes leads to
tachyons in the initial AdS space. The non-perturbative part Wnp is given as:

Wnp = ASe
iaSS + AT e

iaTT + AUe
iaUU , (3.2.2)

where we take all parameters appearing to be real and constant. Note that, in
principle, the parameters AS, AT and AU can be moduli dependent. For exam-
ple of one field Φ and since we are interested in Im(Φ) as our modulus, we have:
A(eΦ) ∼= A(0) + A
(0)e−Im(Φ) + . . . which we will approximate by a constant expres-
sion for e−Im(Φ) � 1. For this reason we will require the last condition throughout
our analysis. This corresponds to suppressed higher-order perturbative terms and α


corrections, which is a typical requirement for most string constructions.
Further stringy requirements are flux quantization and the non-trivial Bianchi iden-
tity including the anti-D6-brane charges. The first condition is easily satisfied in
our model as we can set f6 to any value we want. In fact, due to a scaling symme-
try of the model, this can even be achieved after finding a model with non-integer
flux by shifting the position in moduli space and changing the parameters in the
superpotential in the following way:

S → λSS , T → λTT , U → λUU ,

aS → aS
λS

, aT → aT
λT

, aU → aU
λU

,

Ai →
#

λSλ3
Tλ

3
U Ai , f6 →

#
λSλ3

Tλ
3
U f6 .

(3.2.3)
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The Kähler potential shifts by a constant − log(λSλ
3
Tλ

3
U), which can be compensated

via a Kähler transformation that does not change the physics.
The Bianchi identity: �

dF2 − F0H = −2NO6 +ND6 −ND6 , (3.2.4)

on the other hand, needs to be satisfied for each 3-cycle independently. Since the only
non-zero flux we have is F6, we can satisfy this condition only by adding D6-branes
in order to cancel the charges of our uplifting anti-D6-branes and any potential O6-
planes. In principle having D6- and anti-D6-branes on the same cycle could prove
problematic, since they can annihilate, but if one chooses the correct geometry this
can work out [165]. Other possibilities to satisfy the Bianchi identity would require
exotic ingredients, like anti-O6-planes, the study of which is not the subject of this
work.

3.2.2 Origin of the non-perturbative Corrections

The non-perturbative corrections in the superpotential 3.2.2 can arise due to different
effects [166]. For S and T one possibility that is often considered is gaugino con-
densation. The terms then arise from a Yang-Mills (YM) theory on the D6-branes.
Depending on the brane orientation the coupling constants of the YM-theory are
related to the moduli via [164]:�

g
�
YM

�−2

∼ Im(S) ,
�
g⊥YM

�−2 ∼ Im(T ) . (3.2.5)

An alternative explanation for the appearance of non-perturbative contributions in
the superpotential would be Euclidean D2-branes wrapping 3-cycles of the internal
manifold. Such branes would give rise to the wanted terms with aS = aT = 2π.
Thus far the exponent for the volume modulus U has not been motivated. Generally,
such a non-perturbative correction is less established than the other two. Neverthe-
less, there are possibilities for this contribution to arise.
Here we argue that string theory U-duality should exist. String theories exhibit
S- and T -duality. In M-theory it is expected that the two combine into U-duality
[167, 168]. The discrete U-duality contains S- and T-duality as subgroups: E7(Z) ⊃
SL(2,Z) × O(6, 6;Z). This suggests that non-perturbative corrections in the U -
direction can arise since they appear on equal footing in M-theory [169]. One phys-
ical motivation for this claim comes from STU black holes, which exhibit a feature
called string triality, see [170]. Still, the question remains which phenomenon in type
IIA string theory can produce the required terms in the superpotential. One pos-
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sible explanation would be open string worldsheet instantons in N = 1 orientifold
compactifications [171, 172].

3.2.3 The uplifting Anti-D6-Brane

The final step in the procedure is the lift from anti-de Sitter space to de Sitter via
the inclusion of anti-D6-branes. This corresponds to an additional term in the scalar
potential of the following form:

VD6 =
µ4
1

Im(T )3
+

µ4
2

Im(T )2Im(S)
. (3.2.6)

Here, µ4
1 = 2eA1N

�
D6

and µ4
2 = 2eA2N⊥

D6
describe ND6 = N

�
D6

+ N⊥
D6

number of
anti-D6-branes wrapping, potentially warped, 3-cycles. The warp factors are given
by eA1 and eA2 , respectively. The total scalar potential then is:

Vtot = eK
�
KIJ̄DIWDJW − 3WW

�
+

µ4
1

Im(T )3
+

µ4
2

Im(T )2Im(S)
. (3.2.7)

Adding the contribution of the anti-branes directly to the scalar potential might seem
strange and ill-motivated. However, it is possible to include them in the 4 dimensional
supergravity directly by including contributions in the Kähler- and superpotential.
This can be achieved by using constrained superfields. In particular, for this case, one
can use a nilpotent chiral field X = φ+

√
2θχ+Fθ2 with X2 = 0. Here, φ is a scalar,

χ a fermion, F and auxiliary field and θ the superspace coordinates. Importantly,
after enforcing the nilpotency condition, the only remaining degree of freedom will
be χ. Using this field, we can include the contribution of the anti-D6-brane into our
supergravity potentials in the following way [49]:

K =− log
�−i(S − S̄

�− log
�
[−i(T − T̄ )]3

�
− log

�
[−i(U − Ū)]3 − XX̄

eA1ND61
(−i(S − S̄)) + eA2ND62

(−i(T − T̄ ))

�
W =f6 + ASe

iaSS + AT e
iaTT + AUe

iaUU + µ2X ,

(3.2.8)

where we identify µ4
1/2 = 1/8µ4eA1/2ND61/2

. Using these two potentials and the usual
formula for the scalar potential in supergravity V = eK

�
KIJ̄DIWDJW − 3WW

� |X=0,
returns the complete Vtot given in (3.2.7).
Note that under the scaling symmetry that was discussed above, we need to let
µ4
1 → λ3

Tµ
4
1 and µ4

2 → λ2
TλSµ

4
2 in order to leave the model invariant when performing

a re-scaling.
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3.2.4 Explicit Models

The first step in the procedure to find a de Sitter vacuum via an anti-D6-brane uplift
in type IIA is to generate a stable anti-de Sitter minimum. For this we solve the
equations:

DIW = 0 I = {S, T, U} . (3.2.9)

and tune the free parameters such that all masses are positive. In principle, in anti-
de Sitter, it would suffice to find masses above the Breitenlohner-Freedman bound,
however, we choose to focus on strictly positive masses. Solving DIW = 0 implies
∂IV = 01. One simplification we can make is to set the axions Re(S), Re(T ) and
Re(U) to zero. This can consistently be done as long as all moduli masses are positive.
We furthermore choose to fix the position of the minimum at Im(S) = S0, Im(T ) = T0

and Im(U) = U0. Then, we have to solve the equations DIW = 0 with W , given in
equation (3.2.2), in terms of the parameters AI with I = {S, T, U}. Importantly, f6
remains a free parameter, making flux quantization trivial. After a solution is found
one needs to check the mass matrix:

mI
J =

1

2
KJK̄∇K̄∂IV , (3.2.10)

to ensure that all eigenvalues are positive at the minimum2. The mass matrix now
depends on several free parameters:

mIJ = mIJ(f6, aS, aT , aU , S0, T0, U0) , (3.2.11)

that can be used to tune the values of the masses. One important restriction concerns
the values of the aI . Those have to be chosen in order to guarantee that e−aI Im(I)

is small, such that higher order corrections can safely be neglected. In particular,
e−aI Im(I) < O(10−1) was chosen as a numerical bound. Another condition that has
to be met is that, in order to trust the supergravity approximation, we need to have
a large internal volume. For this, we choose the minimum of the volume modulus to
be U0 ∼ O(10). Similarly, we require for the axio-dilaton S0 ∼ O(1), such that we
can neglect string loop corrections.
It is relatively easy to find solutions to DIW = 0, even with all conditions mentioned
above. Here, two such solutions are presented. For both of them our choice for the

1Note that ∂IV = 0 does not imply DIW = 0.
2This expression has to be considered with the Kähler metric in real coordinates.
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minimum in moduli space is:

S0 = T0 = 1 and U0 = 10 . (3.2.12)

The parameters AI are set by the solution of the equations and for the remaining
ones two choices can be seen in table 3.1. The parameter aU is a magnitude smaller
than the other ones which is due to the fact that we have chosen U0 = 10 in order
to obtain a large volume.

f6 aS aT aU

Set 1 1 3 3 0.5

Set 2 2 3.1 3.3 0.32

Table 3.1. Two possible choices of parameters for an anti-D6-uplift in type IIA.

These choices of parameters lead to the masses given in table 3.3 that are all positive.
Furthermore, as can be seen from table 3.2, we satisfy the condition required in order
to neglect the moduli dependence of the parameters AI .

AS AT AU e−aSImS e−aT ImT e−aU ImU

Set 1 −1.70 −5.11 −22.6 0.0498 0.0498 0.00674

Set 2 −3.43 −11.8 −11.0 0.0450 0.0369 0.0408

Table 3.2. The parameters AI and the conditions for them to be moduli-independent.

With stable anti-de Sitter minima found, we can now attempt to lift them to de Sitter
by introducing anti-D6-branes according to equation (3.2.7). For this we choose the
following values for µ1 and µ2:

Set 1 µ4
1 = 2.01 · 10−6, µ2 = 5.21 · 10−6,

Set 2 µ4
2 = µ4

2 = 1.34 · 10−5 .
(3.2.13)

These values were chosen for visibility of the behavior in the plots 3.2. In principle
they can be tuned to achieve any desired value. A physical motivation would be to
match the cosmological constant.
With these uplift values one obtains new masses after the uplift, given in table 3.3.
Importantly, the masses stay positive, which means that the resulting de Sitter space
is meta-stable. Two dimensional plots of all directions are shown in figure 3.2, where
it can be seen how we lift the potential from AdS to dS using the anti-D6-brane.
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The scalar potential of the brane does not depend on the U -direction and hence the
contribution is constant for the U -slice. In figure 3.3 three dimensional plots for all
slices of two moduli are presented, visualizing the (meta-)stability of the model.

Set 1 m 2
1 m 2

2 m 2
3 m 2

4 m 2
5 m 2

6

AdS 4.36 · 10−4 3.79 · 10−4 1.01 · 10−4 7.37 · 10−5 5.66 · 10−5 3.64 · 10−5

dS 3.43 · 10−4 3.38 · 10−4 6.46 · 10−5 5.40 · 10−5 4.15 · 10−5 3.47 · 10−5

Set 2 m 2
1 m 2

2 m 2
3 m 2

4 m 2
5 m 2

6

AdS 1.19 · 10−3 1.01 · 10−3 2.43 · 10−4 2.20 · 10−4 1.64 · 10−4 1.45 · 10−4

dS 8.00 · 10−4 7.40 · 10−4 1.76 · 10−4 1.63 · 10−4 1.61 · 10−4 1.50 · 10−4

Table 3.3. All moduli masses before and after the uplift.

0.5 1.0 1.5 2.0 2.5 3.0 Im(S)
-0.5

0.5

1.0
105 V

0.5 1.0 1.5 2.0 2.5 3.0 Im(S)
-2
-1

1

2

3

4

5
105 V

V=1
VD6_
Vtot

0.5 1.0 1.5 2.0 2.5 3.0 Im(T)
-0.5

0.5

1.0
105 V

0.5 1.0 1.5 2.0 2.5 3.0 Im(T)
-2
-1

1

2

3

4

5
105 V

V=1
VD6_
Vtot

8 10 12 14 Im(U)
-0.5

0.5

1.0
105 V

8 10 12 14 Im(U)
-2
-1

1

2

3

4

5
105 V

V=1
VD6_
Vtot

Figure 3.2. Two dimensional plots showing the scalar potential in the AdS minimum (blue,
dash-dotted), the contribution from the anti-D6-brane (green, dotted) and the resulting,
total dS scalar potential (red, solid) for each direction in moduli space. The left side is for
Set 1 and the right for Set 2.
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Figure 3.3. Three dimensional plots for Set 2, showing the (meta-) stability of the scalar
potential. Top: Im(S) and Im(T ), Middle: Im(S) and Im(U), Bottom: Im(U) and Im(T ).

Two final remarks are in order. First, the parameters are not particularly fine-tuned,
meaning that it was easy to find the two sets presented here. In fact, it is not
hard to find even more examples. The only requirement is to keep the consistency
conditions in mind. Second, this can be extended to a more general 7-moduli model.
For this the moduli T and U split into three independent fields each. When having 7
independent directions the Kähler- and superpotential change to represent that fact
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in the following way:

K = − log
�−i(S − S̄)

�− 3&
i=1

log
�−i(Ti − T̄i)

�− 3&
i=1

log
�−i(Ui − Ūi)

�
,

W = f6 + AS e
iaSS +

3&
i=1

AT,i e
iaT,iTi +

3&
i=1

AU,i e
iaU,iUi .

(3.2.14)

Furthermore, the contribution of the uplifting anti-D6-branes changes to represent
the fact that there are now more cycles that can be wrapped:

VD6 =
µ 4
1

Im(T1)Im(T2)Im(T3)
+

µ 4
2

Im(S)Im(T2)Im(T3)

+
µ 4
3

Im(S)Im(T1)Im(T3)
+

µ 4
4

Im(S)Im(T1)Im(T2)
.

(3.2.15)

The procedure is otherwise analogous to what was done before. It is necessary to
solve the 7 equations DIW = 0 in terms of the parameters AS, AT,i and AU,i. Then,
using the remaining free coefficients, S0, Ti,0, Ui,0, f6, aS, aT,i and aU,i, one builds a
stable anti-de Sitter minimum which gets lifted by the choice of the parameters µi

(i = 1, 2, 3, 4) that correspond to the anti-D6-branes. Explicit examples are given in
[5] but are left out here since they do not provide any new insights.

3.3 Mass Production of de Sitter Vacua in Type IIA and
IIB

The method of the previous section is an easy way to obtain de Sitter vacua in type
IIA supergravity models. However, there is no guarantee that one will arrive at a
stable model following this procedure. In [34] it was noted that it is possible to
predict that the masses will stay positive during the procedure if one performs a
detour by first going to Minkowski space. This allows to generate many meta-stable
de Sitter vacua via an easy process. In this section we review the work done in [6],
where this procedure was supplied with explicit examples and generalized for use not
only in IIA but also IIB settings.

3.3.1 The mass Production Procedure

The mass production procedure of meta-stable de Sitter vacua follows an easy 3-step
process in 4d, N = 1 supergravity:

1. Find a Minkowski progenitor model.
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2. Downshift the model to anti-de Sitter via a perturbation to the superpotential.

3. Introduce anti-branes in order to perform an uplift to de Sitter.

Following this path guarantees that the resulting de Sitter point is meta-stable under
certain conditions.
Before going into the details of the construction some remarks are in order. Finding
a Minkowski minimum requires us to solve not only the equations DIW = 0, as we
did before, but also W = 0. This then leads to ∂IV = 0 and V = 0 at the minimum.
Not every possible superpotential allows for such solutions. Importantly, the model
we investigated in the previous section, with W = f6 +

'
I AIe

iaIΦI (I = {S, T, U}),
cannot be solved for Minkowski space. The models of [35, 173, 174], however, are
a generalization of our previous superpotential that do allow for Minkowski vacua.
These are called racetrack models and are schematically of the following form:

W = W0 +
&
I

�
AIe

iaIΦ
I − BIe

ibIΦ
I
�
. (3.3.1)

Here we generalized the f6 term of our type IIA models for use in general setups
and the ΦI represent all appearing moduli. It has been shown that models with such
a superpotential can in fact produce Minkowski minima, see for example [34, 35].
Thus, the superpotential (3.3.1) will be the basis of our investigations in this section.
We will go into detail about the Kallosh-Linde racetrack in section 3.3.2.
The second step in our process, the AdS downshift, can be achieved via adding a
small perturbation to the superpotential of the form W0 → W0+ΔW . This will result
in pushing a Minkowski vacuum with vanishing scalar potential at the minimum to
an AdS vacuum with negative vacuum energy. For small downshifts this is expected
to not change the position of the minimum too much and will not make the vacuum
unstable.
Finally, the uplift follows as before and will lift the vacuum to de Sitter with positive
vacuum energy. Note that we could have lifted starting from Minkowski space,
however, this comes with an issue. Usually, one wants to match the cosmological
constant in semi-realistic constructions. Since the cosmological constant is of order
10−120 an uplift from Minkowski to de Sitter would require an extreme amount of
fine tuning but also leads to a state that is very close to a supersymmetric one. In
fact, the uplift scale and SUSY breaking scale are related: ESUSY breaking ∼ Λ1/4 ∼
10−30MP ∼ 10−3eV . This problem can be alleviated by first going to anti-de Sitter
and thus disentangling the uplift scale from the SUSY breaking scale.
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3.3.2 The Kallosh-Linde Racetrack Potential

The simplest Kähler- and superpotential we can write down in order to explain the
procedure can be written as follows:

K = −3 log
�−i(Φ− Φ̄)

�
+XX̄ ,

W = W0 +ΔW + AeiaΦ − BeibΦ + µ2X ,
(3.3.2)

where X is again a nilpotent chiral field that is used to include the uplifting con-
tributions of anti-Dp-branes. The Minkowski solution is found by only considering
WKL = W0 + AeiaΦ − BeibΦ.
To begin with, let us start by considering the Kallosh-Linde racetrack potential where
we write the single field as Φ = φ + iθ. The solution to WKL = 0 and DW = 0 is
given by:

Φ = φ =
i

a− b
log

aA

bB
with

W0 = −A

�
aA

bB

� a
b−a

+B

�
aA

bB

� b
b−a

,

(3.3.3)

where the axions have once again been set to zero. A solution to these equations
exists for as long as a > b and a · A > b · B. The mass of the field at the minimum
evaluates to:

m2
Φ =

2φ0

9
(W 

)2 =

2

9
aA bB (a− b)

�
aA

bB

�− a+b
a−b

log
aA

bB
. (3.3.4)

In order to go from Minkowski to AdS we now introduce a shift via W0 → W0+ΔW .
This changes the value of the scalar potential V to:

VAdS = −3(ΔW )2

8φ3
0

= −3

8

�
a− b

log aA
bB

�3

(ΔW )2 . (3.3.5)

At leading order, this modification shifts the position of the vacuum in moduli space
only by:

ΔΦ = −KΦΔW

∂2
ΦW

. (3.3.6)

Importantly, the changes, both in mass and position, depend on the tunable and
small parameter ΔW .
Now we can attempt to lift the minimum, with a negative value for the cosmological
constant, to a de Sitter point with nearly vanishing cosmological constant. This
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requires an uplift parameter of approximately:

µ4 ≈ 3(ΔW )2 . (3.3.7)

Then, the gravitino mass in dS is given as:

m2
3/2 = eK(ΔW )2 =

(ΔW )2

8φ3
0

=
µ4

24φ3
0

. (3.3.8)

This model readily generalizes to more moduli and more exponents for each modulus.
In the following we will use the model as given here but for 2, 3 or 7 moduli.

3.3.3 The Mass Matrix during the mass Production Process

The most important claim of this section is that, given a Minkowski progenitor, we
have a deterministic way to arrive at a meta-stable de Sitter vacuum. An important
part of that claim is that masses in a supersymmetric Minkowski minimum are non-
negative. This is discussed in detail in [34], based on earlier work from [173]. Here,
the arguments of this claim will briefly be summarized.
For this discussion it is useful to define a covariant, holomorphic superpotential, also
called the complex gravitino mass as:

eK/2W =: m(za, z̄ā) , (3.3.9)

which depends on an arbitrary number of chiral matter superfields za. In terms of
this quantity the real gravitino mass is M3/2 =

$|mm̄|. The complex masses of the
chiral fermions are then given to be:

DaDbm =: mab , D̄āD̄b̄m̄ =: m̄āb̄ . (3.3.10)

Alternatively, this can be written as [56]:

mab = eK/2 (∂a +Ka)DbW − eK/2Γc
abDcW . (3.3.11)

For a supersymmetric Minkowski minimum, W = 0 and DaW = 0, the
expression for the fermion masses simplifies to:

mMink
ab = eK/2∂a∂bW . (3.3.12)
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Rewriting the scalar potential V = eK (|DW |2 − 3|W |) with this notation we find:

V = maK
ab̄m̄b̄ − 3|m|2 =: |ma|2 − 3|m|2 , (3.3.13)

where the Kähler metric is defined as Kab̄ = ∂a∂b̄K. This scalar potential has an
extremum for:

∂aV = −2mam̄+mabK
bb̄m̄b̄ = 0 , (3.3.14)

and it is supersymmetric if ma = m̄b̄ = 0. Note that non-supersymmetric extrema
are possible as well for 2mam̄ = mabK

bb̄m̄b̄ with ma  = 0 and m̄b̄  = 0.
Writing the scalar mass-matrix as:

M2 =

Vab̄ Vab

Vāb̄ Vāb

 , (3.3.15)

we can go on about our study of the behavior of the masses under our mass production
procedure. In a supersymmetric Minkowski vacuum the mass matrix becomes block
diagonal: �M2

�Mink
=

V Mink
ab̄

0

0 V Mink
āb

 , (3.3.16)

with V Mink
ab̄

= macK
cc̄m̄c̄b̄. Since the diagonal blocks are positive definite we conclude

that all eigenvalues, corresponding to the masses of the scalars in our model, are
non-negative. This can be further underlined by considering an arbitrary vector
φ:

φaV Mink
ab̄ φ̄b̄ = φamacK

cc̄m̄c̄b̄φ̄
b̄ = ΦcK

cc̄Φ̄c̄ , (3.3.17)

with Φc = φamac. Since the Kähler metric Kcc̄ is positive definite the same holds for
the above combination. For the special choice of a racetrack superpotential (3.3.2)
the masses will in fact be strictly larger than zero and this property, as per the
following discussion, will transfer to the resulting de Sitter minimum.

Performing the downshift to anti-de Sitter space is done via the inclusion
of a small shift in W0: W0 → W0+ΔW . Including such a term in the superpotential
will yield an AdS minimum (V < 0). This means that DaW = 0 will still be satisfied
but W = 0 will no longer be the case. Likewise, the complex gravitino mass will no
longer be zero:

m = eKW  = 0 , (3.3.18)
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while we still have
ma = 0 . (3.3.19)

The fermion mass matrix loses its block diagonality but due to the setup we can still
quantify the change for a small shift ΔW . Under this change the Kähler potential
will be unaffected. Going forward we will distinguish quantities by superscripts Mink
and AdS when necessary. To investigate the AdS masses we consider the change
of the position of the minimum: za,Mink → za,AdS. Since we still have unbroken
supersymmetry which leads, at leading order, to

δza = −(mab)
−1KbΔm+ . . . . (3.3.20)

The change in the complex gravitino mass is Δm = eK/2ΔW . For the position of
the minimum the change is small if Δm is smaller than the smallest eigenvalue mχ

of the fermion mass matrix. The fermion mass matrix in AdS at the point z + δz

can be written as:
V AdS
ab̄ = macK

cc̄ − 2Kab̄mm̄ . (3.3.21)

The first part is still positive definite, as in the Minkowski case. We immediately see
that the AdS minimum will be (meta-)stable if the gravitino mass is smaller than
the lightest eigenvalue of the Minkowski fermion mass matrix:

mχ � m3/2 . (3.3.22)

If this condition is satisfied we are certain to find a stable, supersymmetric anti-de
Sitter vacuum by performing a shift in the superpotential from a previously known
Minkowski progenitor.

Under the uplift to de Sitter we likewise need to check what happens to the
position of the minimum and the masses of the model. The lift to dS is performed
by including a nilpotent, chiral field X into the Kähler- and superpotential as in
equations (3.3.2). Because of X we now have new contributions to the scalar potential
and mass matrix. We will include them by using the index I = {a,X}. The de Sitter
scalar potential is

V dS = eK
�|DIW |2 − 3|W |2� = |mI |2 − 3|m|2 > 0 . (3.3.23)

All new contributions have been included by our change of the index. For a successful
uplift the supersymmetry breaking terms in |mI |2 need to be larger than the gravitino
mass.
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The holomorphic/anti-holomorphic part of the mass matrix now evaluates to [175,
176]:

V dS
ab̄ = maIK

IJ̄m̄J̄ b̄ − 2Kab̄mIm̄
I −Rab̄IĪm̄

ImĪ −mam̄b̄ . (3.3.24)

Here, we have not considered the X direction in moduli space since they are funda-
mentally fermionic in nature. Furthermore, Rab̄IĪ is the moduli space curvature ten-
sor. The holomorphic/holomorphic part of the mass matrix in de Sitter reads:

V dS
ab = −mabm̄+mabIm̄

I . (3.3.25)

Once again, we will consider the mass change due to the introduction of the new
contribution in terms of the shift of the minimum. For this we consider the AdS
minimum at za,AdS = za,AdS

r +iza,AdS
i and then the change will be due to the uplifting

contribution in the scalar potential:

V up = µ4eKKXX̄ . (3.3.26)

The de Sitter minimum is located at

∂zaα
�
V AdS + V up� = 0 , (3.3.27)

where α = {i, r}. Using our knowledge about the AdS minimum and the uplift
potential we find for the two terms individually:

∂zaαV
AdS =

�
∂zaα∂zbβV

AdS
�
δzbβ , ∂zaαV

up = µ4∂zaα
�
eKKXX̄

�
. (3.3.28)

With this we can express the shift of the minimum, when going from AdS to dS
as:

δzbβ = −
�
∂zaα∂zbβV

AdS
�−1

µ4∂zaα
�
eKKXX̄

�
. (3.3.29)

Since the uplift is of the same order as the downshift we know that the anti-de Sitter
masses ∂zaα∂zbβV

AdS are larger than the scale of the uplift and thus the shift of the
position of the minimum will likewise be small. Using this result we furthermore find
that the amount of supersymmetry breaking in the direction of the unconstrained
moduli is small compared to the nilpotent one [177]:

|ma|2 � |mX |2 . (3.3.30)

For stability of the de Sitter minimum we require the amount of supersymmetry
breaking to be small compared to the chiral masses. We thus have, together with
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our earlier requirement that the gravitino mass is parametrically small, for a positive
value of the potential at the minimum the following conditions:

mχ � |mI |2 m2
χ � m2

3/2 |mI |2 > 3m2
3/2 , (3.3.31)

where mχ is once again the smallest eigenvalue of the mass matrix. As observed
before, supersymmetry breaking in the chiral directions is very small and thus SUSY
breaking in the nilpotent direction is of the order of the gravitino mass for an almost
vanishing cosmological constant.
Finally, we have to consider the mass matrix (3.3.24). The first term is positive
definite and will be strictly positive if the progenitor Minkowski space has no flat
directions. Because of the conditions in (3.3.31), all other terms in (3.3.24) are
parametrically small and thus we conclude that the de Sitter mass matrix will be
positive definite, or in the case of a Minkowski progenitor without flat directions,
it will have strictly positive eigenvalues. With this we have shown how to obtain a
(meta-) stable dS vacuum from our mass production procedure.

3.3.4 Model Choices in Type IIA and IIB

The discussion up until this point has been about fairly general Kähler- and superpo-
tentials. By considering specific choices we can find stronger bounds on the masses
in our de Sitter model. In the following sections we will show explicit examples in
detail that are based on the choices of K and W we discuss in this section.

For type IIA we consider models based on the superpotentials that were already
studied in [34]:

K = −
n&

I=1

NI log
�−i(ΦI − Φ̄I)

�
,

W = W0 +
n&

I=1

�
AIe

iaIΦ
I − BIe

ibIΦ
I
�
.

(3.3.32)

Here, Φi runs over all the moduli we are considering and W0, aI , bI , AI , BI and NI

are real parameters. For this class of models we find that the mass matrix is diagonal
at the Minkowski minimum when splitting the moduli as ΦI = φI + iθI with the φI

and θI real: VφIφJ VφIθJ

VθIφJ VθIθJ

(((((
Mink

=

m2
φIφI 0

0 m2
θIθI

 . (3.3.33)
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Furthermore, there is a mass degeneracy between the scalars and pseudo-scalars:

m2
φIφI = m2

θIθI . (3.3.34)

When perturbing the model in order to go to an anti-de Sitter minimum by a small
ΔW , the mass matrix will remain block-diagonal:VφIφJ VφIθJ

VθIφJ VθIθJ

(((((
AdS

=

V Mink
φIφJ +ΔφIφJ 0

0 V Mink
θIθJ +ΔθIθJ

 . (3.3.35)

Note that the terms ΔφIφJ and ΔθIθJ can appear in the off-diagonals of the blocks but,
as per our previous analysis, they are parametrically small compared to the diagonal
terms. Now, if we introduce the uplift, as discussed above, we will change the mass
matrix one more time, however, by another parametrically small amount:

VφIφJ VφIθJ

VθIφJ VθIθJ

(((((
dS

=

V Mink
φIφJ +ΔφIφJ + Δ̃φIφJ 0

0 V Mink
θIθJ +ΔθIθJ + Δ̃θIθJ

 . (3.3.36)

Since all the contributions to the mass matrix during the mass production procedure
are small we conclude that we should find V dS

IJ ≈ V Mink
IJ , where I and J symbolically

stand for the fields φI and θI . Furthermore, due to the the mass degeneracy in
Minkowski space we also expect that in AdS and dS at least an approximate mass
degeneracy is present.

In type IIB the superpotential will be the same as in the type IIA case (3.3.32).
The Kähler potential, on the other hand, will differ and in general be of the form:

K = K
�−i(ΦI − Φ̄I)

�
. (3.3.37)

One immediate consequence of this is that already the Minkowski mass matrix is
now only block-diagonal, instead of diagonal:

VIJ |Mink =

VφIφJ 0

0 VθIθJ

 . (3.3.38)

Still, due to (3.3.17), this matrix is positive definite and there will be still a mass
degeneracy between the scalars and pseudo-scalars. Nevertheless, the same argu-
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ments as in type IIA hold and the changes in the masses in the process of going from
Minkowski space to de Sitter will be small.

3.3.5 Explicit Examples in Type IIA

In this section two explicit examples in type IIA will be presented. We will discuss
the seven moduli example and its simplification, the STU model. More details can
be found in [6], from which the numerical data and plots were taken as well.

The seven-moduli model in IIA exhibits an SL[(2,R)]7 symmetry and is closely
related to M-theory models and d = 4, N = 8 supergravity. These models were
constructed by compactifying from 10 to 4 on T 6/(Z2 × Z2) in [178, 179] and are in
particular interesting for future B-mode experiments as discussed in [39, 180]. The
model includes the seven moduli:

ΦI = {S, T1, T2, T3, U1, U2, U3} , (3.3.39)

where S is the axio-dilaton, the Ti (i = 1, 2, 3) are the complex structure moduli
and the Ui are the Kähler moduli. The ΦI , in a sense, can be viewed as the coordi-
nates of the [SL(2,R)/U(1)]7 coset. The Kähler- and superpotential for our example
are:

K = −
&
I

log
�−i(ΦI − Φ̄I)

�
,

W = f6 +
&
I

�
AIe

iaIΦ
I − BIe

ibIΦ
I
�
,

(3.3.40)

where we will utilize the Kallosh-Linde racetrack superpotential. Once again, we
do not consider p-fluxes other than F6. The shift to anti-de Sitter is performed by
letting f6 → f6 +Δf6. The contribution of the uplift to the scalar potential due to
the anti-D6-brane uplift is:

V up
D6

=
µ4
0

Im(T1)Im(T2)Im(T3)
+

µ4
1

Im(S)Im(T2)Im(T3)

+
µ4
2

Im(S)Im(T1)Im(T3)
+

µ4
3

Im(S)Im(T1)Im(T2)
,

(3.3.41)

which can, again, can be obtained using a nilpotent field X [5, 49]. As is evident,
we have now several cycles around which the anti-branes can be wrapped and the
parameters µ4

i can, but do not necessarily need to be, tuned individually.
In order to find solutions to the equations DIW = 0 and W = 0, which will give a
Minkowski minimum, we use the parameters BI and f6. Thus, we can freely choose
the point of the extremum in moduli space and the parameters AI , aI and bI . The
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choices are given in table 3.4. Once again, we set the axions to zero, which will not
produce any problems as discussed in section 3.2.4. The position of the Minkowski
minimum will thus be at S = iS0, Ti = iTi,0 and Ui = iUi,0 where i = 1, 2, 3.
In choosing the parameters we had to keep the same requirements in mind as in
section 3.2.1. Namely, aIΦI needs to be small such that higher-order corrections can
safely be neglected and we choose the Ui,0 large in order to obtain a large internal
volume. Other than that, no particular care is required in choosing the values found
in 3.4. Even with these conditions it is relatively easy to find positive masses, meaning
that the parameters are not particularly fine-tuned. For the downshift parameter we
choose

Δf6 = −10−5 . (3.3.42)

The sign of this parameter does matter and can change the behavior but, for small
downshifts, the qualitative effect will be independent of the sign. For the uplift we
set all the parameters to be equal:

µ4
0 = µ4

1 = µ4
2 = µ4

3 = 5.49028 · 10−15 . (3.3.43)

AS = 1 AT1 = 3.1 AT2 = 3.2 AT3 = 3.3 AU1 = 11 AU2 = 12 AU3 = 13

aS = 2 aT1 = 2.1 aT2 = 2.2 aT3 = 2.3 aU1 = 0.41 aU2 = 0.42 aU3 = 0.43

bS = 3 bT1 = 3.1 bT2 = 3.2 bT3 = 3.3 bU1 = 1.1 bU2 = 1.2 bU3 = 1.3

S0 = 1 T1, 0 = 1.1 T2, 0 = 1.2 T3, 0 = 1.3 U1, 0 = 5.1 U2, 0 = 5.2 U3, 0 = 5.3

Table 3.4. Choices for the position in moduli space and parameters in the 7-moduli
example in type IIA.

The value chosen here, and in the following, have not been selected to match the
observed cosmological constant but rather for illustrative purposes. With the choices
in table 3.4 one obtains a Minkowski minimum with strictly positive values for the
masses and thus, as by our prior discussion, the same should hold for the de Sitter
masses. We give both, the Minkowski and de Sitter, masses in table 3.5. The change
in masses is noticeable but small, as predicted. Furthermore, the mass degeneracy
is broken in de Sitter, to a minute degree. In addition to its eigenvalues, below the
upper right corner block of the dS mass matrix is shown. It is evident that the off-
diagonal terms are much smaller than the diagonal entries, visualizing our discussion
from section 3.3.3.
Due to the sheer amount of plots necessary do properly represent the 7-moduli exam-
ple we instead will use the related STU-model in order to visualize the behavior.
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������������������������������

1.89809 · 10−5 −6.19837 · 10−10 −5.36624 · 10−10 −4.56280 · 10−10 −1.30375 · 10−9 −1.52470 · 10−9 −1.74268 · 10−9

−6.19837 · 10−10 1.30911 · 10−4 −7.38721 · 10−10 −6.46383 · 10−10 −1.24516 · 10−9 −1.44398 · 10−9 −1.64104 · 10−9

−5.36624 · 10−10 −7.38721 · 10−10 9.41667 · 10−5 −5.68241 · 10−10 −1.13520 · 10−9 −1.31758 · 10−9 −1.49834 · 10−9

−4.56280 · 10−10 −6.46383 · 10−10 −5.68241 · 10−10 6.37888 · 10−5 −1.04022 · 10−9 −1.20871 · 10−9 −1.37571 · 10−9

−1.30475 · 10−9 −1.24516 · 10−9 −1.13520 · 10−9 −1.04022 · 10−9 9.96472 · 10−4 −5.36645 · 10−10 −5.74900 · 10−10

−1.52470 · 10−9 −1.44398 · 10−9 −1.31758 · 10−9 −1.20871 · 10−9 −5.36646 · 10−10 1.37262 · 10−3 −6.10079 · 10−10

−1.74268 · 10−9 −1.64104 · 10−9 −1.49834 · 10−9 −1.37571 · 10−9 −5.74900 · 10−10 −6.10079 · 10−10 1.80465 · 10−3

������������������������������

Minkowski de Sitter
m 2

1 1.80473 · 10−3 1.80465 · 10−3

m 2
2 1.80473 · 10−3 1.80465 · 10−3

m 2
3 1.37269 · 10−3 1.37262 · 10−3

m 2
4 1.37269 · 10−3 1.37262 · 10−3

m 2
5 9.96519 · 10−4 9.96472 · 10−4

m 2
6 9.96519 · 10−4 9.96471 · 10−4

m 2
7 1.30924 · 10−4 1.30911 · 10−4

m 2
8 1.30924 · 10−4 1.30911 · 10−4

m 2
9 9.41773 · 10−5 9.41667 · 10−5

m 2
10 9.41773 · 10−5 9.41660 · 10−5

m 2
11 6.37973 · 10−5 6.37888 · 10−5

m 2
12 6.37973 · 10−5 6.37883 · 10−5

m 2
13 1.89843 · 10−5 1.89809 · 10−5

m 2
14 1.89843 · 10−5 1.89806 · 10−5

Table 3.5. The masses in Minkowski and de Sitter for the 7 moduli IIA example. The
changes during the procedure are small but noticeable. A very small deviation from the
mass degeneracy, originally present in Minkowski space, is visible.

The IIA STU model is a simplification of the above case where one identifies
the different complex structure and Kähler moduli:

Ti → T , Ui → U , for i = 1, 2, 3 . (3.3.44)
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The model is then very similar to the model of section 3.2.1 but with the racetrack
superpotential. The Kähler- and superpotential are:

K = − log
�−i(S − S̄)

�− 3 log
�−i(T − T̄ )

�− 3 log
�−i(U − Ū)

�
,

W = f6 +
&

Φ=S,T,U

�
AΦe

iaΦΦ − BΦe
ibΦΦ

�
. (3.3.45)

The uplift contribution to the scalar potential in this model likewise simplifies to

V up
D6

=
µ4
0

Im(T )3
+

µ4
1

Im(S)Im(T )2
. (3.3.46)

Finding solutions to this proceeds as before by first setting the axions to zero and
then solving in terms of f6 and the BI , while the other parameters remain free and
are listed in table 3.6.

AS = 1 AT = 3 AU = 11

aS = 2 aT = 2.1 aU = 1

bS = 3 bT = 3.1 bU = 1.2

S0 = 1 T0 = 1 U0 = 5

Table 3.6. Our choice of parameters for the 3 moduli IIA example.

The downshift, once again, is
Δf6 = −10−5 , (3.3.47)

while the uplift is
µ4
0 = µ4

1 = 1.93753 · 10−14 . (3.3.48)

The resulting masses are given in table 3.7, where we see once more that the masses
change only slightly and the mass degeneracy breaks in de Sitter space. For this
model we illustrate the behavior via some exemplary plots. In figure 3.4 one can
see that the position of the minimum shifts slightly under the procedure. In figure
3.5 the form of the potential for the Im(S) and Im(T ) directions is shown. The
meta-stability of the minimum in these directions is evident. Similar plots can be
obtained for the other directions. Finally, in figure 3.6 a close-up of the minimum,
both in AdS and dS, for the same directions is depicted. The hole seen there is the
part in AdS with negative values for the potential.
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Minkowski de Sitter
m 2

1 9.91957 · 10−5 9.91570 · 10−5

m 2
2 9.91957 · 10−5 9.91551 · 10−5

m 2
3 3.66313 · 10−5 3.66189 · 10−5

m 2
4 3.66313 · 10−5 3.66183 · 10−5

m 2
5 9.15565 · 10−7 9.14587 · 10−7

m 2
6 9.15565 · 10−7 9.14550 · 10−7

Table 3.7. Values for the masses in Minkowski and de Sitter for the STU-model. As in
the 7-moduli case the change in going from Minkowski to de Sitter is evident as well as the
breaking of the mass degeneracy.
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Figure 3.4. The shift of the position of the minimum in the IIA STU-model when going
from AdS to dS for the Im(S) direction. On the left the AdS and dS scalar potential
visually overlap while the anti-brane contribution seems to be at zero. In the close-up on
the right the differences become visible. The anti-D6-brane gives a flat contribution in this
direction (dotted, green) and it is evident that the position of the minimum moves slightly
when going from AdS (dash-dotted, blue) to dS (solid, red).

Figure 3.5. The Im(S) and Im(T ) 3D slice of the scalar potential in the IIA STU-
model. The potential shows a meta-stable behavior around the minimum. The form of
this potential and the other possible slices do not change significantly during the 3 steps
of the procedure.
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Figure 3.6. The minimum of the scalar potential in the Im(S) and Im(T ) slice of the
IIA STU-model. On the left the parts of the potential with negative values is visible as
the hole. On the right the whole of the potential is now positive due to the uplift term.

3.3.6 Explicit Examples in Type IIB

In type IIB we focus on models already investigated in [181–185]3 for their applica-
tions in cosmology. There, they were studied using either LVS or KKLT type uplifts.
The difference for us here is that we use our mass production method with the race-
track superpotential (3.3.1).
Flux compactifications in IIB are slightly different than in IIA. The 4 dimensional
N = 1 supergravity theory in IIB is given by the Kähler- and superpotential [186]:

K = − log

�
i

�
Ω ∧ Ω̄

�
− log (−i(τ − τ̄))− 2 log (V6) ,

W =

�
G3 ∧ Ω .

(3.3.49)

Here, Ω is a function of the complex structure moduli, τ is the axio-dilaton and G3

is a complex 3-form flux. For our purpose in this part we will only focus on the
Kähler moduli, meaning that the complex structure moduli and the axio-dilaton are
stabilized at an earlier stage which is typical for type IIB compactifications. V6 is
the six dimensional, internal volume given by:

V6 =
1

3!

�
J ∧ J ∧ J =

1

3!
rijktitjtk . (3.3.50)

The rijk are the Calabi-Yau intersection numbers and the ti are volumes of 2-cycles.
We eventually have to make the connection to the notation we used up until now.

3Note that there is difference in conventions between [181–185] and [6]. As is discussed in [6]
this does not have any physical effects.
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For this we use complexified Kähler moduli:

Ti = χi + iτi where τi =
∂V
∂ti

. (3.3.51)

The τi are thus volumes of 4-cycles. This allows us to write V6 in terms of the 4-
cycles.
The uplift in type IIB is facilitated via anti-D3-branes, like in the KKLT scenario.
The brane can be placed either in the bulk of the internal space or at the bottom of a
warped throat [184]. Depending on the placement of the brane both the description
in terms of the 4 dimensional Kähler potential as well as the effective contribution
to the scalar potential change. The Kähler potentials are:

Kbulk = −2 log (V6(τi)) +XX̄ ,

Kthroat = −3 log

�
V

2
3
6 (τi)−

1

3
XX̄

�
,

(3.3.52)

where X is our familiar nilpotent chiral multiplet. Note that from here on we will use
the letters S, T and U to label different Kähler moduli, as opposed to type IIA, where
they labeled different types of moduli. With this changed convention we can use the
racetrack superpotential (3.3.1) to compute the scalar potential and find:

VD3, bulk = eKbulkDXWKXX̄DXW
((
X=0

=
µ4

V 2
6

,

VD3, throat = eKthroatDXWKXX̄DXW
((
X=0

=
µ4

V 4/3
6

.

(3.3.53)

Armed with these formulas we are ready to tackle explicit examples.

The 2 parameter K3-fibration in type IIB will be our first model that is not
set in type IIA. This model depends on two moduli only and the internal volume is
given as [181]:

V6(τi) =
1

2

√
τ1

�
τ2 − 2

3
τ1

�
. (3.3.54)

Importantly, this model does not allow for an LVS-type stabilization [141]. In our
conventions the above expression translates to:

V6(S, T ) =
1

2

#
−i(S − S̄)

��−i(T − T̄ )
�− 2

3

�−i(S − S̄)
��

. (3.3.55)
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Again, we will use the racetrack type potential (3.3.1), set the axions to zero and
use S = iS0, T = iT0 (and in the following U = iU0) as in the type IIA case.
The parameters we pug in are given in table 3.8 and for the downshift and uplift
parameters we plug in:

ΔW0 = −10−5 ,

µ4
bulk = 3.61516 · 10−10 .

(3.3.56)

AS = 1.1 AT = 1.2

aS = 2.1 aT = 2.2

bS = 3.1 bT = 3.2

S0 = 1 T0 = π

Table 3.8. The chosen parameters for the two-moduli K3 fibration.

For brevity and because the values of the masses barely change at all, we will only
focus on the case where the brane is in the bulk of the internal space. As the model
only has two moduli we are able to give all relevant plots. In figure 3.7 the scalar
potential in AdS and dS can be seen for both moduli. As in the type IIA examples,
the position of the minimum shifts only slightly. In the plot 3.8 the shape of the scalar
potential around the minimum is depicted. The overall shape is nearly identical for
AdS and dS, while in the close up the hole, where the values of the potential are
below zero, is clearly visible. At the same point in de Sitter the potential is above
zero.
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Figure 3.7. 2d plots of the scalar potential for both moduli directions in the 2 moduli K3-
fibration model. In the large-scale plot dS and AdS are not distinguishable. The close-ups,
on the right hand side, show the AdS potential (blue, dash-dotted), the de Sitter potential
(red, solid) and the uplifting contribution from the anti-D3-brane (green, dotted). The
shift in the position is barely noticeable with our choice of parameters.

Figure 3.8. Top: The overall shape of the scalar potential around the minimum of the 2
moduli K3 fibration. The local stability is clearly visible but globally the minimum is only
meta-stable. The change from AdS to dS would not be visible here. Bottom: Close up of
the potential around the minimum for AdS (left) and dS (right).
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Finally, the same basic picture for the masses unfolds as in type IIA, evident from
table 3.9. There we give the masses in Minkowski space and de Sitter. The masses
change slightly during the process and in de Sitter the loss of the degeneracy between
scalars and pseudo-scalars can be seen.

Minkowski de Sitter
m 2

1 5.22564 · 10−2 5.21884 · 10−2

m 2
2 5.22564 · 10−2 5.21875 · 10−2

m 2
3 1.38346 · 10−5 1.36014 · 10−5

m 2
4 1.38346 · 10−5 1.35926 · 10−5

Table 3.9. The squared masses for the Minkowski and de Sitter case. Both the changes
when going from Minkowski to de Sitter and the splitting of the degeneracy of scalars and
axionic partners can be seen.

A K3 fibered Calabi-Yau model can be used for so-called fibre inflation [182–
184]. For this example, we first consider a generalization of the 2 moduli K3 fibration
we just discussed by including a blow-up mode τ3. This leads to an internal volume
[182]:

V6(τi) = α
�√

τ1(τ2 − βτ1)− γτ
3/2
3

�
. (3.3.57)

The parameters α, β and γ are positive and model dependent. An example for this
general case is presented in detail in [6]. Here, instead, we immediately focus on the
special case where β = 0, which gives

V6(τi) = α
�√

τ1τ2 − γτ
3/2
3

�
, (3.3.58)

or in our conventions, using S, T and U for the three complex Kähler moduli:

V6(S, T, U) = α

�#�−i(S − S̄)
� �−i(T − T̄ )

�− γ
�−i(U − Ū)

�3/2�
. (3.3.59)

The physical meaning of the moduli here is as follows:

• Im(S) controls the volume of the K3 fiber.

• Im(T ) is proportional to the overall volume of the compactification manifold.

• Im(U) corresponds to the blow-up volume.

The special case with β = 0 can be used for fibre inflation that usually relies on
an LVS type uplift [141]. It is not our intent to construct an inflation model here
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but we are still inclined to investigate models that have potential for applications.
Instead of the usual LVS uplift we will employ our mass production procedure with
the racetrack superpotential (3.3.1) and the parameters given in table 3.10. Note
that we also have to set the model specific parameters α, β and γ.

AS = 1.1 AT = 1.2 AU = 1.3

aS = 2.1 aT = 2.2 aU = 2.3

bS = 3.1 bT = 3.2 bU = 3.3

S0 = 1 T0 = 1 U0 = 1

α = 1 β = 0 γ = 1
2

Table 3.10. Chosen parameters for the 3-moduli K3 fibration with β = 0.

For the downshift and uplift parameters we choose values:

ΔW0 = −10−5

µ4
bulk = 3.10079 · 10−10 ,

(3.3.60)

where we once again will focus on the placement of the anti-D3-branes in the bulk.
Placing the branes at the bottom of a warped throat and using µ4

throat = 2.46069·10−10

will produce similar results. The resulting potential is visualized in figures 3.9 and
3.10.
The values of the eigenvalues of the mass matrix are given in table 3.11, for Minkowski
and de Sitter. Once again, we find the usual picture that they change slightly and
that the degeneracy of scalars and pseudo-scalars is broken in dS.

Minkowski de Sitter
m 2

1 1.01997 · 10 0 1.01957 · 10 0

m 2
2 1.01997 · 10 0 1.01957 · 10 0

m 2
3 1.31424 · 10−1 1.31344 · 10−1

m 2
4 1.31424 · 10−1 1.31338 · 10−1

m 2
5 2.44807 · 10−2 2.44724 · 10−2

m 2
6 2.44807 · 10−2 2.44665 · 10−2

Table 3.11. The squared masses for the fibre inflation model. The masses change minutely
when going from Minkowski to de Sitter and the degeneracy is broken in de Sitter.
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Figure 3.9. 2-dimensional plots of the minimum of the K3-fibration model used for
fibre inflation. The large scale pictures on the left show the AdS and dS scalar potential
overlapping. On the right the close up of the minimum depicts the AdS minimum (blue,
dash-dotted) being lifted to a dS minimum (red, solid). The anti-D3-brane contribution
(green, dotted) is above the close up of the minimum in this case.

Figure 3.10. Form of the scalar potential around the minimum of the fibre inflation model
in the Im(T ) and Im(U) slice in 3d.
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Our final example is based on the Fano three-fold F11 and is sometimes
called a multi-hole Swiss-cheese model. This manifold is topologically equivalent to
a Calabi-Yau three-fold with Hodge numbers h1,1 = 3 and h2,1 = 111. It has been
studied in detail in [187]. The internal volume can be described by [182]:

V6(τi) =
1

3
√
2

�
2[τ1 + τ2 + 2τ3]

3/2 − [τ2 + 2τ3]
3/2 − [τ2]

3/2

�
. (3.3.61)

Translating this to our complex Kähler moduli we obtain:

V6(S, T, U) =
1

3
√
2

�
2
��−i(S − S̄)

�
+
�−i(T − T̄ )

�
+ 2

�−i(U − Ū)
��3/2

− ��−i(T − T̄ )
�
+ 2

�−i(U − Ū)
��3/2 − �−i(T − T̄ )

�3/2 �
.

(3.3.62)

The mass production procedure continues as usual with:

ΔW = −5 · 10−6

µ4
bulk = 9.62862 · 10−11 ,

(3.3.63)

and the other parameters given in table 3.12. The masses obtained with these pa-
rameters are given in table 3.13. As before, we show 2d and 3d plot of the minimum
in figures 3.11 and 3.12.

AS = 1.1 AT = 1.2 AU = 1.3

aS = 2.1 aT = 2.2 aU = 2.3

bS = 3.1 bT = 3.2 bU = 3.3

S0 = 1 T0 = 1 U0 = 1

Table 3.12. Parameter choices for the model based on the Fano 3-fold F11.

Minkowski de Sitter
m 2

1 1.85578 · 10−1 1.85557 · 10−1

m 2
2 1.85578 · 10−1 1.85557 · 10−1

m 2
3 1.00760 · 10−1 1.00753 · 10−1

m 2
4 1.00760 · 10−1 1.00753 · 10−1

m 2
5 1.30646 · 10−2 1.30627 · 10−2

m 2
6 1.30646 · 10−2 1.30626 · 10−2

Table 3.13. Squared masses of the Fano three-fold model in Minkowski space and de
Sitter.
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Figure 3.11. 2d plots of the scalar potential in the Fano three-fold model. All 3 directions
show a similar meta-stable behavior. The AdS potential (blue, dash-dotted) gets lifted to
dS (red, solid) via the contribution of the ant-D3-brane (green, dotted).

Figure 3.12. 3d plot of the Im(T ) and Im(U) slice in the Fano three-fold model with the
meta-stable minimum clearly visible.
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3.3.7 Models with large Downshifts and Uplifts

Up until now we looked at de Sitter models that were obtained by performing small
deviations from Minkowski space. This is an intuitive safe bet if one hopes to be
successful. The way to quantify what is considered small is by requiring that the
gravitino mass is small compared to the lightest field in the mass matrix. During
the investigation of all models presented in [6] it was found that this condition might
not necessarily be required.
First, let us mention that for small ΔW the sign did not matter too much as the
downshift is proportional to its square. For large downshift the linear term becomes
relevant and it is important to use ΔW > 0. Then it is possible to use a large
downshift and a large uplift in order to obtain a stable de Sitter minimum. During
this procedure the masses will now change significantly but they will stay positive,
as will be shown in the example in the following. Another interesting feature ist that
large uplifts allow to control the degree of supersymmetry breaking, which might be
useful for certain applications.
As an example for a model with large shifts we return to our familiar type IIA STU
model4 of section 3.3.5. The relevant potentials (3.3.40) are utilized in the exact
same way as before with the parameters in table 3.14. Here we solved for AS, BS,
BT and BU . The downshift and subsequent uplift are given by the parameters

Δf6 = 1 and µ4
1 = µ4

2 = 8.1479 · 10−5 . (3.3.64)

These values are several orders of magnitude larger than what we have used thus
far. Nevertheless, as can be seen from figure 3.13 we obtain (meta-) stable minima in
AdS and dS. The position of the minimum does shift significantly when going from
Minkowski do anti-de Sitter and then de Sitter:

Im(S) : 1 → 1.03367 → 1.11369

Im(T ) : 1 → 0.13319 → 0.51958

Im(U) : 5 → 4.58783 → 3.88815 .

(3.3.65)

While one does need to be careful to follow this minimum properly during the pro-
cedure there are no obstacles to do so and the procedure works out properly. The
eigenvalues of the mass matrix do change significantly during the procedure but the
minimum does not become unstable. Indeed, as can be seen from table 3.15 the
fields become heavier. The deviation from the mass degeneracy also becomes more

4Here we use our type IIA notation with S being the axio-dilaton, T the complex structure
modulus and U the Kähler modulus.
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aS = 1 aT = 3/4 aU = 1/2

bS = 3/2 bT = 5/3 bU = 2/3

f6 = 1 AT = 3 AU = 20

S0 = 1 T0 = 1 U0 = 5

Table 3.14. The parameters for the IIA STU model with large downshift and uplift.

Figure 3.13. 3d plot of the STU model with large downshift and uplift in to dS. It is
evident that a de Sitter vacuum with small cosmological constant can be obtained after a
large downshift and subsequent uplift. The other possible slices show similar behavior.

distinct. Still, there are no significant problems in the procedure and we obtain the
desired result.

Minkowski de Sitter
m 2

1 1.07895 · 10−2 1.32013 · 10−1

m 2
2 1.07895 · 10−2 1.22573 · 10−1

m 2
3 1.29976 · 10−3 9.61218 · 10−2

m 2
4 1.29976 · 10−3 9.02659 · 10−2

m 2
5 1.05464 · 10−4 2.14932 · 10−3

m 2
6 1.05464 · 10−4 1.87824 · 10−3

Table 3.15. Squared masses in the type IIA STU model with large downshift and uplift.

The idea of large shifts was further investigated in [188] where it was shown that it
is potentially possible to uplift to de Sitter even from models that do not have an
AdS minimum but rather a runaway potential.
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3.4 de Sitter Minima from M-theory and String Theory

This section is based on [7] where we considered moduli stabilization on a twisted
seven torus in M-theory. Generally, this is a special case of a manifold with G2-
structure as Z2 × Z2 × Z2 ⊂ G2. The twisted seven torus is obtained as a toroidal
orbifold X7 = T7/(Z2×Z2×Z2) [36–39] with Betti numbers (b0, b1, b2, b3) = (1, 0, 0, 7).
The quotient can be made non-singular by a choice of a free orbifold action. The
resulting theory corresponds to a maximal rank reduction on the seven torus and
gives 4d, N = 1 supergravity with seven moduli. Finally, we introduce a twist which
can be viewed as Scherk-Schwarz reduction [36, 189–192] of the initial torus.
In 11d one can extend the action of 11d supergravity to a form where the potentials
and dual curvatures appear at the same time. This democratic form results in a
pseudo-action and was studied in [36]. In 10d the corresponding pseudo-action was
proposed in [193]. Here, we follow [36, 38] in order to use these pseudo actions for
moduli stabilization in 4d.
Going one step further, one can consider the generalized twisted seven torus [38,
194, 195]. In this model the inclusion of KK5 and KKO5-planes in 10d or KK6 and
KKO6-planes in 11d allows to lift some restrictions, like the tadpole conditions.
Our goal here is to use models from the generalized twisted seven torus in order to find
Minkowski vacua that then can be used for the mass production procedure we already
discussed [6, 34]. In this section we will always have 7 complex moduli, corresponding
to 14 real fields. Previously, we used a superpotential that prominently featured non-
perturbative corrections in all directions and lacked tree-level flux terms. Moreover,
in the mass production procedure a Kallosh-Linde type double exponent was used.
Here, we will construct models that include quadratic flux terms in the superpotential
and we will find not only that it is possible to have single exponential terms in the
superpotential, but also models where it is not necessary to have exponents in all
directions. The connection to type IIA on a six torus can be made for some of
these models. Finally, by including conjectured non-geometric fluxes [196], we also
present a model that is related to type IIB that does not rely on any non-perturbative
corrections. The origin of the required terms is not clear but can be motivated by
S-duality.
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3.4.1 The Generalized twisted Seven Torus

The Kähler- and superpotential that we will use for the generalized twisted seven
torus model are [36, 38]:

K = −
7&

I=1

log
�−i(ΦI − Φ̄I)

�
,

W = g7 +
1

2
MIJΦ

IΦJ +
7&

i=1

AIe
iaIΦ

I

,

(3.4.1)

where we already made some modifications to the superpotential. The complete
perturbative part of W is

Wpert = g7 +GIΦ
I +

1

2
MIJΦ

IΦJ , (3.4.2)

where all parameters are real. We have set the linear terms to zero via GI = 0 and
introduced a single non-perturbative contribution for each field. Later on we will set
some of those to zero as well, by enforcing the corresponding AI to be zero. For us,
the relevant contributions are a seven flux g7 and the terms quadratic in the moduli
that come from geometric fluxes. All parameters are real and the matrix MIJ has
a vanishing entries on the diagonal and is symmetric. Thus, it gives 21 parameters
in total. In this model, the non-perturbative contributions may arise from wrapping
M2-branes around 3-cycles [197]. For T7/(Z2×Z2×Z2) seven 3 cycles are available,
allowing for non-perturbative corrections in all directions.
The first step in the mass production procedure is to find a stable, supersymmetric
vacuum state with vanishing scalar potential. This is done by solving W = 0 and
∂IW = 0. Once, again we split the complex moduli ΦI = θI + iφI and set θI = 0,
which is consistent for as long as the masses remain positive. The seven equations
∂IW = 0 can be solved in terms of the coefficients AI by setting:

AI = ia−1
I e−iaIΦ

I

MIJΦ
J . (3.4.3)

Then, we use g7 to solve the remaining condition W = 0, giving the desired Minkowski
vacuum state. In our examples, we will also consider models where no exponent ap-
pears in one or more directions. Then, the solutions to the supersymmetry equations
are obtained in terms of flux parameters. By inclusion of some conjectured S-dual
fluxes it is even possible to find a model that does not rely on any non-perturbative
corrections. It is highly non-trivial and unexpected that such a solution can been
found. In order to employ the mass production procedure we have to keep in mind
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that we require there to be no flat directions. We thus have to make sure that mass
matrix in Minkowski space, given to be:

V Mink
IJ̄ = mILK

LL̄mL̄J̄ = eKWILK
LL̄W L̄J̄ , (3.4.4)

has no zero eigenvalues. This is different from the models considered in section 3.3,
since there the double exponent superpotential guarantees that we will be able to
find solutions with no flat directions. Still, in constructing the explicit examples in
[7] and in the following, no particular tedious fine-tuning of the free parameters was
necessary in order to find Minkowski solutions without flat directions.
For convenience, we will use our type IIA notation where:

ΦI = {S, Ti, Ui} , i = 1, 2, 3 , (3.4.5)

but note that the physical interpretation of these fields is not necessarily the same as
before. We also decompose the quadratic terms in the superpotential as [38]:

1

2
MIJΦ

IΦJ = SbkUk + UiC
ijTj + ai

U1U2U3

Ui

+ ci
T1T2T3

Ti

+ SdkTk . (3.4.6)

The 21 independent components of MIJ are translated to ai, bk, ci, dk and the C ij.
It is not necessary to always use all of these terms in order to obtain a Minkowski
minimum and several cases will be explored in section 3.4.3.

3.4.2 Connection to Type IIA

When considering type IIA string theory compactifications on T6/(Z2 × Z2) not all
terms in 3.4.6 are allowed [38, 194, 195]. Namely, the terms proportional to the ci

and the dk have to vanish in standard IIA orientifold compactifications. Additionally,
g7 gets replaced by the six-flux parameter f6. In type IIA we can give a physical
interpretation to the various terms appearing in the superpotential.

• ai U1U2U3

Ui
are two-fluxes.

• UiC
ijTj and SbkUk correspond to non-geometric fluxes.

There are more conditions that need to be satisfied, namely the tadpole constraints.
Luckily, it is possible to include sources in order to fulfill them. The conditions
are:

•
'

i a
ibi = 0 and

'
i a

iC ij = 0 that can be satisfied by (O6/D6) sources.

• biC ij + bjC ii = 0 can be fulfilled by (KK5/KKO5).
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• C ijCjk + C ijCjj = 0 gets relaxed by including (KK5/KKO5)
.

The prime denotes a second set of KK-sources, wrapping a different cycle, see [194].
In the various models we will discuss some of these conditions will be automatically
satisfied while for others we will use them to further constrain some parameters.
Then, no sources are necessary.

3.4.3 M-Theory Examples

Here we will review explicit examples based on the potentials (3.4.1) that were dis-
cussed in detail in [7].

Including only single exponents in each direction is the most straightforward
thing we can try after exploring models with Kallosh-Linde type double exponents
before. The superpotential we consider is:

W1 = g7 + bkSUk + C ijUiTj + ASe
iaSS +

&
i

�
ATi

eiaTiTi + AUi
eiaUi

Ui
�
. (3.4.7)

This model has 19 free parameters, only 8 of which will be required to solve the
Minkowski equations W = 0 and ∂IW = 0 (I = {S, Ti, Ui}) at the point S0, Ti,0 and
Ui,0. We choose to solve for the AI and g7. The remaining parameters can be used
to make sure all masses are positive. The uplift proceeds along the same lines as was
discussed in the previous sections with the magnitude of the uplift given by µ. Our
choice of parameters can be found in table 3.16 and the resulting masses are given
in table 3.17.

S0 1.0 aS 1.0 C11 0.11 C32 0.32

T1,0 1.1 aT1 1.1 C12 0.12 C33 0.33

T2,0 1.2 aT2 1.1 C13 0.13 b1 0.55

T3,0 1.3 aT3 1.1 C21 0.21 b2 0.60

U1,0 5.1 aU1 0.51 C22 0.22 b3 0.65

U2,0 5.2 aU2 0.52 C23 0.23 Δg7 5 · 10−3

U3,0 5.3 aU3 0.53 C31 0.31 µ4 9 · 10−9

Table 3.16. Chosen parameters for the model with 3 single exponents.

In this model, the amount of free parameters allows us to fulfill the tadpole conditions
without including sources. The conditions not automatically satisfied are:

biC ij + bjC ii = 0 ,

C ijCjk + C ikCjj = 0 .
(3.4.8)
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m 2
1 m 2

2 m 2
3 m 2

4 m 2
5 m 2

6 m 2
7

Mk 0.41229 0.22090 0.10343 0.03087 0.01977 0.01275 0.00676

dS 0.41306 0.22137 0.10356 0.03091 0.01980 0.01277 0.00677

Table 3.17. The eigenvalues of the mass matrix for the model with 3 single exponents in
Minkowski and de Sitter. The axions are omitted for brevity.

These conditions can, for example, be solved in terms of the C ij with i  = j. If
we keep the other parameters as before in table 3.16 we obtain the masses in table
3.18. Satisfying the tadpole conditions without sources can be a great advantage for
model building as one has to be very careful about the origins of the sources and
their stability in some cases.

m 2
1 m 2

2 m 2
3 m 2

4 m 2
5 m 2

6 m 2
7

Mk 0.09036 0.02693 0.01390 0.00558 0.00388 0.00159 0.00063

dS 0.08982 0.02680 0.01383 0.00555 0.00388 0.00158 0.00063

Table 3.18. The masses squared in the 3 exponent model where the tadpole conditions
are satisfied.

Omitting the S-exponent can be done without including any new terms. The
superpotential reads

W1 = g7 + bkSUk + C ijUiTj +
&
i

�
ATi

eiaTiTi + AUi
eiaUi

Ui
�
, (3.4.9)

and, because AS is absent, we solve for b1 in addition to the usual parameters. Again,
we use the parameters of table 3.16, except for those that are now determined by
the equations W = 0 and ∂IW = 0. The masses obtained this way are given in table
3.19.

m 2
1 m 2

2 m 2
3 m 2

4 m 2
5 m 2

6 m 2
7

Mk 0.40450 0.21428 0.10857 0.02223 0.01501 0.00998 0.00130

dS 0.40513 0.21465 0.10870 0.00223 0.01503 0.00999 0.00130

Table 3.19. Eigenvalues of the mass matrix for the model without an exponent in the
S-direction.
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The 3 exponents in the Ui directions can be left out by including the terms
proportional to ai in (3.4.6). The superpotential becomes:

W = g7 + SbkUk + UiC
ijTj + ai

U1U2U3

Ui

+ ASe
iaSS +

&
i

ATi
eiaTiTi . (3.4.10)

Instead of the AUi
we now solve for the parameters ai. Keeping the remaining free

parameters the same as in table 3.16 we find the squared masses in table 3.20.

m 2
1 m 2

2 m 2
3 m 2

4 m 2
5 m 2

6 m 2
7

Mk 0.06600 0.05485 0.02910 0.02028 0.01588 0.01061 0.00066

dS 0.06615 0.05494 0.02914 0.02031 0.01590 0.01061 0.00066

Table 3.20. Squared masses for the case without non-perturbative corrections in the
U -directions.

This model is in particular interesting as it still corresponds to a type IIA model.
In [5, 6] type IIA models were studied that had only 6-form flux as perturbative
contributions but relied heavily on the inclusion of non-perturbative corrections in
all directions. In particular, the origin of the exponents in the U -direction required
some motivation as their origin is not fully understood.

Building a model without T and U exponents requires the inclusion of the
terms proportional to ci. The superpotential becomes

W = g7 + SbkUk + UiC
ijTj + ai

U1U2U3

Ui

+ ci
T1T2T3

Ti

+ ASe
iaSS , (3.4.11)

and we solve for AS, the ai and the ci parameters. Note that this model can no
longer be interpreted in terms of type IIA string theory, as discussed in section 3.4.2.
The parameters not set to zero or solved for are still taken from table 3.16 and lead
to the masses in table 3.21.

m 2
1 m 2

2 m 2
3 m 2

4 m 2
5 m 2

6 m 2
7

Mk 0.06964 0.06350 0.02158 0.00380 0.00210 0.00113 0.00083

dS 0.06948 0.06315 0.02152 0.00380 0.00208 0.00113 0.00082

Table 3.21. Eigenvalues of the mass matrix for the model without T and U exponents.

3.4.4 Type IIB Examples

In type IIB models the superpotential has contributions from F-, H- and Q-flux
[163, 196, 198], which are all well-known and established. However, it has also been
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conjectured that, due to S-duality, P-fluxes should appear. These terms naturally
appear in gauged supergravity in 4 dimensions [163]. Keeping only terms even in the
moduli we use the following superpotential:

W = a0 + ai
U1U2U3

Ui

+ S
�
biUi + b3U1U2U3

�
+ Tk

�
C ikUi − ckU1U2U3

�− STk

�
dk −DikU1U2U3

Ui

�
.

(3.4.12)

The superpotential is made up of the following contributions:

• a0 is a constant contribution, similar to W0 in previous sections.

• ai U1U2U3

Ui
comes from F-flux.

• S (biUi + b3U1U2U3) gives H-flux contributions.

• Tk

�
C ikUi − ckU1U2U3

�
represents Q-flux.

• −STk

�
dk −Dik U1U2U3

Ui

�
are the conjectured P-fluxes.

Using (3.4.12) we can build a model that does not rely at all on non-perturbative
terms. First, we set the Dik = 0, as they are not required. Then, we find a Minkowski
vacuum without flat directions by solving for a0, ai, b3 and ck and using the param-
eters in table 3.22. Following the mass production procedure we then obtain a
meta-stable de Sitter point with the downshift and uplift parameters

Δa0 = 5 · 10−3 and µ4 = 9 · 10−9 . (3.4.13)

The resulting masses are given in table 3.23.

b1 0.55 C11 −0.11 C21 0.21 C31 0.31 d1 5.1

b2 0.60 C12 0.12 C22 −0.22 C32 0.32 d2 −5.2

b3 0.65 C13 0.13 C23 0.23 C33 −0.33 d3 5.3

Table 3.22. Parameter choices for the model without any exponents in IIB string the-
ory/gauged supergravity.

m 2
1 m 2

2 m 2
3 m 2

4 m 2
5 m 2

6 m 2
7

Mk 0.29074 0.20712 0.01075 0.00383 0.00287 0.00057 0.00016

dS 0.29063 0.20721 0.01073 0.00382 0.00287 0.00057 0.00016

Table 3.23. Mass eigenvalues for the IIB model without non-perturbative corrections.
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3.5 de Sitter Models from Anti-Branes - Interim Summary

In this chapter we have investigated compactifications of string theory and M-theory
that result in meta-stable de Sitter states where anti-branes were used in order to
lift the vacuum energy to positive values. de Sitter spaces are of interest because
the present day accelerated expansion of the universe matches very closely with the
behavior of such a space with positive and constant, albeit very small, cosmological
constant. The first model that can be argued to achieve a de Sitter space from string
theory by uplifting with anti-branes is the KKLT scenario [14, 33]. This model is
based in type IIB string theory and has an uplifting contribution from an anti-D3-
brane. It remains one of the best studied de Sitter constructions to date and while
there have been many criticisms raised, a lot of them have also been disproved or
explained.
In [5] and here in section 3.2, we translated this mechanism to type IIA string theory.
There, the uplift is performed via the inclusion of an anti-D6-brane, which is the
unique choice in type IIA for the manifolds we considered. The procedure relied on
the inclusion of non-perturbative corrections in all moduli directions, some of which
are non-standard. We motivated that they can still appear in the theory and that it
is possible to use them to build meta-stable de Sitter states.
In section 3.3, based on [6, 34] we showed that there is a simple way to guarantee that
a meta-stable de Sitter minimum can be obtained if one first constructs a Minkowski
state without flat directions. We used a Kallosh-Linde type racetrack potential for
all moduli directions. With this we will automatically not have any flat directions.
Under certain conditions it is then straight forward to first go to anti-de Sitter space
via a small downshift and subsequently to a de Sitter via an uplifting contribution
from anti-Dp-branes. Going to AdS first allows to decouple the cosmological constant
scale from the SUSY breaking scale when aiming to achieve a realistic value of Λ =

10−120 in Planck units. We showed under what conditions it is possible to predict
that the masses stay positive and thus also that the dS vacuum state is meta-stable.
Several examples in type IIA and IIB were presented.
Models that do have perturbative contributions to the superpotential were explored
in [7] and section 3.4. These scenarios are motivated by M-theory constructions and
can be matched with type IIA or IIB models in certain special cases. Using tree-level
flux contributions to the superpotential it is possible to follow the mass production
procedure of de Sitter vacua without including the double exponent contribution
to the superpotential in all directions. In fact, in type IIA models were presented
that include non-perturbative corrections only in some directions. Perhaps most
interestingly, a model that does not need exponential terms in the U -directions and
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can still be matched to type IIA string theory was presented. Including atypical
fluxes, conjectured via S-duality, in IIB one finds a gauged supergravity model that
even allows the procedure to work without any non-perturbative contributions to the
superpotential at all.
The extension of the KKLT scenario to type IIA and the development of the mass
production process are interesting extensions of the string model builders toolkit.
The inclusion of unusual contributions in some of the models can serve as an incentive
to investigate the origin of these contributions further, especially with the growing
interest in semi-realistic models that aim to describe future precision cosmology
experiments.
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Chapter 4

The de Sitter Swampland
Conjecture

Critical superstring theory lives naturally in 10 spacetime dimensions. In nature or
experiments we do not observe these extra dimensions and thus, in an attempt to
describe the world we observe using string theory, we compactify down to 4 extended
dimensions and 6 compact ones. The argument then goes such that at low energies 6
dimensions curl up and become so small that we cannot observe them. If we go back
to higher energies the compact directions will extend and become relevant again.
Thus, a string compactification is a low energy, effective theory that we usually
describe in terms of supergravity.
The process of starting from 10d string theory and compactifying down to a realistic
model is difficult and not every step is fully understood as of now. Not only would
we need to start from full string theory but we need to choose a suitable compact
manifold, extended objects like branes, that might be part of the model and fluxes on
different cycles of these manifolds. This is incredibly difficult and thus we often build
models directly in the low energy theory and argue that they should be obtainable
from string theory. This is achieved by certain requirements that we either obtain
from full string theory or that are intuitive. One example is the requirement that
the string coupling is weak. Only then are we able to neglect string loop corrections
which would require control over string theory itself. The list of typical requirements
goes on, with things like flux quantization, tadpole cancellation, large internal volume
and so on. The idea behind swampland considerations is to take inspiration from
these conditions to attempt to restrict possible models. Sometimes, conclusions
drawn from the swampland are said to hold in any theory of quantum gravity. For
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some conjectures this is very reasonable. While for others the arguments are more
suggestive. We will not go into the details of this discussion and will always assume
the context of string theory.
In particular, the swampland program is concerned with whether the UV completion,
in a sense the inverse of a compactification, of a given model is possible or not. This
can be viewed as depicted in figure 4.1. There is a large amount of low energy
effective theories that can be seemingly consistent at low energies, however, only a
subset, called the landscape, can be lifted to full quantum gravity. The rest of the
theories lie within the swampland. For a good overview of the topic see the reviews
[10–12]. In this thesis we will focus on the de Sitter swampland conjecture that will
be discussed in the following section. Based on [2] we investigate the scaling limits
of a certain class of type IIA compactifications for the possibility of finding stable de
Sitter vacua. In section 4.3 we show how the original de Sitter swampland conjecture
has a critical flaw [1] and in section 4.4 we present our own refined conjecture [3].

Figure 4.1. Schematic picture of the relation between the swampland, the landscape and
string theory. Full string theory or quantum gravity arises at or around the Planck scale.
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4.1 de Sitter Space and the Swampland

In order to describe the late time accelerated expansion of our universe it is necessary
to have a positive vacuum energy. One way to describe such a situation is via a de
Sitter vacuum. Models from string theory, that emulate such a situation, were studied
in the previous chapter. Here, we consider that it might be futile to attempt to build
such models. Previously, it was argued that there should be no obstruction to obtain
dS space from string theory. One, very simple, motivation for this claim is that a
rough estimate of the amount of possible, different models from string theory is given
by the number of different Calabi-Yau manifolds, which can be estimated to be at
the very least about 10500 [199]. Considering different setups, for example F-theory,
the exponent can be even larger, by many orders of magnitude. Such a enormous
numbers suggest that there should be many possible theories and certainly some
that allow for a de Sitter vacuum with a cosmological constant that matches what
we observe. Following the anthropic principle [200], one would not be surprised if
everything works out. Nevertheless, explicit constructions of de Sitter spaces remain
very difficult and challenging in string theory setups. As a result, after a similar
argument presented already in [41], the authors of [13] proposed a conjecture that
effectively rules out de Sitter vacua. For any scalar potential V there should be a
bound on its gradient of form

|∇V | ≥ c

MP

V , (4.1.1)

with some O(1) number c > 0. Since for dS V > 0 and at a (meta-)stable minimum
|∇V | = 0, we see that de Sitter vacua are not allowed. The original motivation for
this conjecture were “classical” flux compactifications that do not rely on uplifting
contributions from branes. In a sense these models are simpler than setups that
produce de Sitter vacua via an anti-brane uplift. Later, in [40] an argument, based on
the entropy in de Sitter space was given in order to further motivate the conjecture.
The conjecture (4.1.1) immediately has some problems. First off, it also forbids
unstable maxima with positive values for the potential. Such points, however, can
be abundantly found, as we showed in [1]. We will review our findings in section 4.3.
Another problem appears when considering a coupling of the effective theory to the
Standard Model [45]. It was shown there that the bound is violated by 50 orders
of magnitude when considering the Higgs potential as a scalar potential in string
theory. While the number c is not very well defined and one might even consider
values ranging from 0.01 to 100 as “O(1)”, this is certainly problematic. All of these
findings lead to a refinement of the conjecture, presented in [40], which takes the
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form of two conditions, combined with a logical “or”:

|∇V | ≥ c

MP

V or min(∇i∇jV ) ≤ − c


M2
P

V . (4.1.2)

Here, both c and c
 are order one numbers. Any scalar potential then needs to satisfy
either the first or the second condition. This disallows stable minima but does allow
maxima. For the coupling to the Standard Model sector we find that

|∇V |
V

∼ 10−55

MP

,

min(∇i∇jV ) ∼ −1035

M2
P

.

(4.1.3)

We see that for the Higgs potential the second condition is satisfied. In [3] we
presented an alternative refinement and were able constrain the appearing parameters
using data points from [1]. These results will be presented in section 4.4. However,
before we come to these direct investigations of the swampland conjecture, we want
to have a look at scaling limits of classical type IIA compactifications and the general
possibility of finding a stable de Sitter solution in such setups.

4.2 Scaling Limits of de Sitter Vacua

In this section we review a peculiar feature of certain type IIA flux compactifications
where a certain scaling limit exists that allows for controllable solutions of the low-
energy effective theory. We investigate whether or not this limit does allow for
consistent de Sitter solutions. This section is based on [2] and similar research was
done in [201].

4.2.1 Type II Flux Compactifications

The specific setups we consider here are models that are compactifications of 10d

type IIA supergravity on SU(3) structure manifolds including RR- and NSNS-fluxes,
orientifold planes, Dp-branes and potentially KK-monopoles and NS5-branes. After
compactification, one obtains a 4d, N = 1 supergravity model. A less studied
alternative are type IIB models with O5/O7-planes [202–204]
One subset of these compactifications are massive type IIA models based on flat
Calabi-Yau 3-folds that include O6-planes, NSNS-flux H3 as well as RR-fluxes F0,
F2 and F4. The RR-fluxes are typically constrained by tadpole conditions but in the
particular setup we are investigating the F4-flux is unconstrained. The dimensional
reduction of these theories was studied in [106] and generically lead to AdS vacua
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[42, 179, 205, 206] and in a limit of large F4-flux a separation between the AdS and
KK-scale is obtained. In [207] a numerical investigation of the scalar potential was
performed in an attempt to find regions with positive values for the potential and
very small slow-roll parameter

' =
1

2

|∇V |2
V 2

, (4.2.1)

corresponding to a flat region. For the models considered in [42, 179, 206] no such
regions were found. This is relevant for our discussion here because the slow-roll
parameter is related to the order one parameter of the initial de Sitter conjecture
(4.1.1) in the following way:

' =
c2

2
. (4.2.2)

In fact it is possible to show the lack of these regions in an analytical way [208]. For
this we first define:

ρ = (vol6)
1
3 as the volume modulus and

τ = e−φ
$

vol6 as the dilaton.
(4.2.3)

With this we can schematically write the scalar potential of these models as:

V (ρ, τ) =
AH

ρ3τ 2
+

&
p=0,2,4,5

Ap

ρp−3τ 4
− AO6

τ 3
, (4.2.4)

with the A’s being positive functions of the flux quanta and possibly other moduli
than ρ and τ . From this one can obtain the following condition:

− ρ
∂V

∂ρ
− 3τ

∂V

∂τ
= 9V +

&
p=0,2,4,5

Ap

ρp−3τ 4
≥ 9V . (4.2.5)

This immediately forbids de Sitter critical points since for their existence the deriva-
tives would vanish while the scalar potential is necessarily positive. For the models
investigated in [208] it is possible to find an explicit bound for the slow roll parameter,
and thus also c, as:

' ≥ 27

13
⇒ c � 2 . (4.2.6)

It is then natural to investigate broader classes of models that either relax some con-
straints or include more ingredients [43, 44, 209–218]. In order to avoid the above no-
go theorem and similar ones presented, for example, in [44, 210–212, 215, 219–222]1,
the most straight forward, and also promising, generalization is to go towards non-flat

1All of these satisfy the dS swampland conjecture with c � O(1).
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manifolds. With the natural choice being SU(3) structure manifolds. Furthermore,
it is also possible to study type IIB models that can potentially evade all no-go
theorems. The simplest example that can work is similar to the above Calabi-Yau
case but now on an SU(3) structure manifold with curvature. Additionally, we also
allow for more general sources and let AO6 → Asources. The scalar potential then
becomes:

V (ρ, τ) =
AH

ρ3τ 2
+

&
p=0,2,4,5

Ap

ρp−3τ 4
− Asources

τ 3
+

AR6

ρτ
, (4.2.7)

where we have AR6 > 0 for spaces with negative curvature. Asources is composed of
the contributions from O6-planes and (anti-) D6-branes and behaves like:

Asources ∼ 2NO6 −ND6 −ND6 . (4.2.8)

It turns out that for the non-flat case no simple no-go theorem in the spirit of (4.2.5)
exists. We would, however, like to stress that this does not mean that de Sitter
extrema exist [13] and, under certain conditions, there are still no-go theorems as we
will review in the following. Even if no no-go theorem is known, other reasons for
the lack of dS points can certainly be present.

4.2.2 Maldacena-Nuñez like No-Go Theorem

A well-known theorem by Maldacena-Nuñez [223] states that there are no de Sitter
vacua in the absence of O6-planes. Here, we replicate this result for our model based
on (4.2.7). First off, in our case we generalize to Asources ∼ 2NO6−ND6−ND6 < 0 as
this is the more general form of NO6 = 0 here. In order to arrive at a no-go theorem
we calculate:

0 = ∂τV = −2
AH

ρ3τ 3
− 4

&
p=0,2,4,6

AFp

ρp−3τ 5
− 3

|Asources|
τ 4

− 2
AR6

ρτ 3
, (4.2.9)

at an extremum. In the case of manifolds with negative curvature (AR6 ∝ −R6 > 0)
there exists no solution to the above equation since all terms are negative definite.
If the manifold is positively curved we can solve the equation above and find

AR6

ρτ 2
= − AH

ρ3τ 2
− 2

&
p=0,2,4,6

AFp

ρp−3τ 4
− 3

2

|Asources|
τ 3

, (4.2.10)

where we not only rearranged the terms but also multiplied the whole expression
with τ .
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This expression can be plugged back into the scalar potential (4.2.7) which yields
that:

V = −
&

p=0,2,4,6

AFp

ρp−3τ 4
− 1

2

|Asources|
τ 3

< 0 . (4.2.11)

We thus find that if the amount of D6-branes plus the number of anti-D6-branes
exceeds twice the amount of O6-planes we cannot obtain a de Sitter solution. While
we can, in principle, add (anti-) D6-branes as much as we want the same does not
hold for O6-planes. Their number is given by the number of fixed points under the
orientifold projection which is a fixed property of the internal manifold.

4.2.3 The large F4-Flux Limit for Anti-de Sitter

The type IIA AdS solutions originally found in [42] have the peculiar feature that
the F4 flux is not constrained by tadpole conditions and can become arbitrarily
large. The authors were able to use this feature in order to obtain well-controlled,
supersymmetric AdS solutions with scale separation, meaning that they have large
internal volume and parametrically weak string coupling, see also [117, 141, 224–227]
for more considerations about scale separation in string model constructions. In
terms of the scaling behavior of F4, which we are going to call f4 2, the volume and
string coupling respectively behave like:

vol6 ∝ (f4)
3
2 ,

e−φ ∝ (f4)
3
4 .

(4.2.12)

Additionally, the 4d Hubble constant is parametrically smaller than the KK-scale
1/R as H ·R ∝ (f4)

−1/2. This means that the models are truly four dimensional.
We now attempt to use the scaling freedom of such models in order to circumvent or
at least improve on the dS no-go theorems using our scalar potential (4.2.7). First,
let us start again with flat internal spaces, in particular Calabi-Yau manifolds. We
then have R6 = 0 ⇒ AR6 = 0 and if we take

AF4 = aF4(f4)
2 ,

ρ = (vol6)
1
3 = ρ̃(f4)

1
2 ,

τ = e−φ
$

vol6 = τ̃(f4)
3
2 ,

(4.2.13)

2The F4 flux is given as aF4
(f4)

2 with aF4
an order one parameter.
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we can write the scalar potential in the following way by making all scalings with F4

explicit:

V =
1

(f4)
9
2

�
AH

ρ̃3τ̃ 2
+

AF0

ρ̃−3τ̃ 4
+

aF4

ρ̃τ̃ 4
− Asources

τ̃ 3

�
+

1

(f4)
11
2

AF2

ρ̃−1τ̃ 4
+

1

(f4)
15
2

AF6

ρ̃3τ̃ 4
. (4.2.14)

It is evident that the terms involving the 2- and 6-flux become irrelevant unless they
are allowed to scale as well. Note that the H, F0 and F2 flux are constrained by the
tadpole condition dF2+F0H = NO6 and thus cannot be arbitrarily large. Fortunately,
F2 and F6 are not crucial for moduli stabilization [42] as they only affect the values
of the axions B2 and C3 at their minimum. This limit also allows for an order one
number of O6-planes with small H- and F0-flux as these three are related via the
tadpole condition:

√
2

�
ΣK

d (dC1 + F0B) =
√
2

�
ΣK

F0H = (−2NO6+ND6+ND6)|wrapping ΣK
, (4.2.15)

which holds for all 3-cycles ΣK in integer 3-homology. The conclusion thus being
that even for a small amount of O6-planes one can obtain an arbitrarily well con-
trolled, supersymmetric AdS point. Such AdS solutions have dual CFT3 theories
with interesting features, some of which have been studied in [228].
If one moves away from flat CY-manifolds to internal spaces with non-vanishing cur-
vature, the large F4-flux limit becomes obstructed. This is because the curvature
term is dominant in this limit:

V =
1

(f4)
7
2

AR6

ρ̃τ̃ 2
+

1

(f4)
9
2

�
AH

ρ̃3τ̃ 2
+

AF0

ρ̃−3τ̃ 4
+

aF4

ρ̃τ̃ 4
− Asources

τ̃ 3

�
+

1

(f4)
11
2

AF2

ρ̃−1τ̃ 4
+

1

(f4)
15
2

AF6

ρ̃3τ̃ 4
.

(4.2.16)
With such a potential it is not possible to achieve moduli stabilization at very large
F4 and hence no vacua can exist.
A particular concern that arises after considering the non-flat case is that even in
Calabi-Yau compactifications the localization of the O6-planes might introduce an
effective curvature via backreaction. In such a scenario, however, one first needs to
identify the correct moduli as they will change as well due to the backreaction. Then
it is necessary to fully understand the new, warped, effective field theory. Generically,
it is expected that the effects of the O-plane backreaction should be negligible for
weak coupling and large volume and thus the parametrically controlled AdS vacua
we investigated here should be safe [225, 229–231].
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4.2.4 The large F4-Flux Limit in de Sitter

We would now like to study whether or not the the models we investigated in the last
subsection for the case of AdS allow, in principle, de Sitter points. Numerous no-go
theorems against dS solutions with vanishing mass parameter (AF0 = 0) or positive
internal curvature (AR6 ≤ 0) exist [44, 220, 232] but in general nothing forbids such
points.
The case with vanishing mass parameter would be interesting because then one can
lift the solutions to M-theory. Looking at our simplified scalar potential (4.2.7) with
AF0 = 0 we find:

(−ρ∂ρ − τ∂τ )V = 5
AH

ρ3τ 2
+

&
p=2,4,6

(p+ 1)
AFp

ρp−3τ
− 3

Asources

τ 3
+ 3

AR6

ρτ 2
≥ 3V , (4.2.17)

so that again a stable de Sitter point cannot exist as for this V > 0 and ∂τV = ∂ρV =

0 would be required. One can go further by using the above condition to calculate
a bound on the first slow-roll parameter. For this purpose, we need to identify the
kinetic terms of ρ and τ which are obtained from the dimensionally reduced and
properly normalized Lagrangian [208]:

L =
1

2
R− 3

4

∂µρ∂
µρ

ρ2
− ∂µτ∂

µτ

τ 2
+ . . .

=
1

2
R− 1

2
∂µρ̂∂

µρ̂− 1

2
∂µτ̂∂µτ̂ + . . . .

(4.2.18)

The . . . here stand for all other potential fields appearing in the action. Using this
expression we find the first slow-roll parameter to be:

' =
1

2

(∂ρ̂V)2 + (∂τ̂V)2 + . . .

V 2
≥ 1

3

�
ρ∂ρV

V

�2

+
1

4

�
τ∂τV

V

�2

. (4.2.19)

Together with the condition we obtained for the case with AF0 = 0 (4.2.17) this
yields a bound on ':

' ≥ 1

3

�
3 +

τ∂τV

V

�2

+
1

4

�
τ∂τV

V

�2

≥ 9

7
, (4.2.20)

where the numeric value can be obtained by minimizing the expression with respect
to τ · ∂τV/V .
A similar no-go arises if we require AR6 ≤ 0. Then one obtains:

(−ρ∂ρ − 3τ∂τ )V ≥ 9V , (4.2.21)
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which leads to a numerical bound on the slow-roll parameter: ' ≥ 27/13 [208].
We conclude that setups with vanishing mass parameter and/or negative internal
curvature can never lead to stable de Sitter solutions.
While the large F4 limit of the previous section is obstructed when we have non-
zero curvature, there might still be other limits in the same vein that do allow for
a controlled region with ρ, τ � 1. The hope is then that such a solution would be
likewise under good control. Thus far, we have seen that we require the following
conditions:

Asources > 0 ,

AF0  = 0 ,

AR6 > 0 .

(4.2.22)

We now let the moduli scale in the following way:

ρ ∝ λcρ and τ ∝ λcτ , (4.2.23)

such that λ → ∞ corresponds to a limit with large volume and small coupling. If we
were to keep Asources, AF0 , and AR6 constant in the large λ limit the corresponding
terms would never scale the same as for that to happen one would need:

3cτ = 4cτ − 4cρ = 2cτ + cρ , (4.2.24)

which is impossible to satisfy with just two free parameters, unless we allow the
trivial solution cρ = cτ = 0. Then, however, the volume and dilaton do not scale
as well and we gain nothing. Since, due to the no-goes discussed above, we require
Asources, AF0 , and AR6 to be relevant, we cannot find a limit of parametrically large
volume and weak coupling in this case.
The only way we can have a controlled limit is to allow scaling of other terms in
the scalar potential (4.2.7). It is important to note that all terms in the scalar
potential, except the source term, are quadratic in fluxes [233] with the curvature
being quadratic in the metric fluxes ω. The final term in the scalar potential, Asources

is linear in the number of O6-planes and (anti-) D6-branes:

Asources ∝ 2NO6 −ND6 −ND6 . (4.2.25)

Nevertheless, the tadpole condition involving this source terms:

√
2

�
(ω · F2 + F0H) = −2NO6 +ND6 +ND6 , (4.2.26)
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allows us to replace the Asources term by something that is quadratic in fluxes. More
importantly though is that we notice from the above relation that the scaling of
the sources has to be the same as

√
2
�
(ω · F2 + F0H). We conclude that −2NO6 +

ND6 + ND6 is necessarily negative and, since the amount of O6-planes is fixed by
the compactification manifold, Asources cannot be scaled to become arbitrarily large.
This conversely means that F0 and ω have to be of the same order and thus Asources,
AF0 should all be of the same order as well.
However, one loophole remains. Namely, we can have small Asources and large

�
ω ·F2

and
�
F0H if they have approximately the same magnitude but opposite signs. The

terms then almost cancel and allow a small contribution from the sources. In order
to investigate this situation we allow the following additional scalings:

AH ∝ λcH , AFp ∝ λcFp , AR6 ∝ λcR6 . (4.2.27)

We still need Asources, AF0 , and AR6 to be of same order which boils down to the two
conditions:

− 3cτ = cR6 − cρ − 2cτ and − 3cτ = cF0 + 3cρ − 4cτ . (4.2.28)

This can easily be solved and the relevant terms scale the same for:

cτ = cρ − cR6 and cρ = −1

2
(cF0 + cR6) . (4.2.29)

Unfortunately, this does not facilitate our goal of having parametrically large volume
and small coupling. The reason for this is that all fluxes are bounded from below
and the second condition then implies that cρ must be negative. Which, in turn,
immediately leads to a small volume in the λ → ∞ limit since vol6 = ρ3 ∝ λ3cρ =

λ−3|cρ| .
The conclusion of this investigation is that we are unable to establish parametrically
controlled de Sitter solutions in the setup we discussed thus far. Nevertheless, there
is still some hope left. If we can establish some hierarchies between the different
contributions, represented by the A’s in (4.2.7), it could still be possible to arrive
at a de Sitter point. In setups where only one O6-plane wraps each 3-cycle [234]
this seems, unfortunately, unlikely. Due to the limited amount of O6-planes, one has
F0 and H fixed to a similarly small number as well. For example, let us consider a
compactification on T 6/(Z2 × Z2) with an orientifold projection that flips the signs
of the three circle directions. In this case one has 23 = 8 O6-planes. However,
due to the orbifold of Z2 × Z2 plus an additional Z2 orientifolding leading us to an
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identification of 23 = 8 fixed points. This leaves us with only one O6-plane in the
end. Still, it is in principle possible to have complicated internal manifold with many
fixed points under the orientifold projection and thus a larger number of O-planes.
While we cannot present an explicit example here we will investigate the behavior
of such models in general. To this end, we now allow the sources term to scale
like Asources ∝ λcs , which means that we allow a large number NO6 of O6-planes in
our model. The terms Asources, AF0 , and AR6 then scale the same if we satisfy the
conditions:

− 3cρ + 4cτ − cF0 = 3cτ − cs = cρ + 2cτ − cR6 . (4.2.30)

Furthermore, if we keep in mind that the contributions from fluxes in the scalar
potential are quadratic in flux quanta, we find from the tadpole condition that:

1

2
(cR6 + cF2) =

1

2
(cF0 + cH) = cs . (4.2.31)

With all of these conditions we can calculate a solution that allows for all required
terms to stay relevant at the same time. This is achieved for:

cρ = cs − 1

2
(cF0 + cR6) ,

cτ = 2cs − 1

2
(cF0 + 3cR6) ,

(4.2.32)

cF2 = 2cs − cR6 ,

cH = 2cs − cF0 .

Using these results we can now calculate vol6 = ρ3 and e−φ/
√
vol6 to behave like:

vol6 ∝ λ
3
2

�
2cs−

�
cF0

+cR6

��
,

e−φ ∝ λ
1
4

�
2cs+cF0

−3cR6

�
,

(4.2.33)

in the large λ limit. For a parametrically controlled solution we need a large internal
volume and small coupling. This can be obtained by requiring:

cs >
3

2
cR6 +

1

2
cF0 . (4.2.34)

The solution holds even for the case where cF0 = 0 = cR6 , which allows us to look
at the interesting special case where only the number of O6-planes grows. Then we
find:

vol6 ∝ N3
O6 ,

e−φ ∝
$
NO6 ,

(4.2.35)
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which tells us that controlled solutions can exists for a large number of orientifold
planes. The question remaining is whether such compactifications, that allow for
a large number of orientifold planes, can exist. In the case of F-theory and IIB
compactifications on Calabi-Yau manifolds it is well understood what number of O3-
planes one can expect, the same is not as clear for the case of compactifications on
SU(3)-structure manifolds in type IIA. Constructing an explicit example with a large
number of O6-planes remains an intriguing and challenging open problem.

4.2.5 Additional Ingredients

Thus far we have limited ourselves to the most typical ingredients that can appear
in a scalar potential of a massive type IIA flux compactification. There are, how-
ever, additional contributions one might consider. The issue with including them is,
however, that each new contribution comes with potential issues, like complicated
backreaction effects and new degrees of freedom. Hence, one attempts to build the
simplest model first and only includes more exotic contributions if absolutely nec-
essary. Ingredients we will consider are NS5-branes, NSO5-planes, KK-monopoles
and KKO-planes. Here, we will include them in the same manner as all other con-
tributions to the scalar potential, reducing them to their scalings in ρ and τ with all
additional factors packed into a coefficient. The expressions are:

VNS5 =
ANS5

ρ2τ 2
, VNSO5 = −ANSO5

ρ2τ 2
,

VKK =
AKK

ρτ 2
, VKKO = −AKKO

ρτ 2
,

(4.2.36)

where the coefficients are positive. For the complete expression of these terms we
refer the reader to [210].
For the KK-monopoles and KKO-planes the analysis is trivial since the correspond-
ing terms scale exactly like the curvature does. This allows us to group all three terms
together and define an effective curvature:

ÃR6 = AR6 + AKK − AKKO . (4.2.37)

Again, de Sitter solutions can only exist for as long as this effective curvature term
is positive: ÃR6 > 0. De Sitter solutions, found in [194], including KK-sources then
suffer from the same lack of a controlled limit as discussed before.
NS5-sources, on the other hand, do introduce a new scaling behavior into V . The
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complete scalar potential, again broken down to it’s scaling behavior, is:

V (ρ, τ) =
AH

ρ3τ 2
+

&
p=0,2,4,5

Ap

ρp−3τ 4
− Asources

τ 3
+

ÃR6

ρτ
+

ANS5

ρ2τ 2
− ANSO5

ρ2τ 2
. (4.2.38)

We now proceed along similar lines as we did before and minimize the potential, first
with respect to τ :

0 = ∂τV = −2
AH

ρ3τ 3
−4

&
p=0,2,4,5

Ap

ρp−3τ 5
+3

Asources

τ 4
−2

ÃR6

ρτ 3
−2

ANS5

ρ2τ 3
+2

ANSO5

ρ2τ 3
, (4.2.39)

which can be solved by:

AH

ρ3τ 2
+

ÃR6

ρτ 2
+

ANS5

ρ2τ 2
− ANSO5

ρ2τ 2
= −2

&
p=0,2,4,5

Ap

ρp−3τ 4
+

3

2

Asources

τ 3
. (4.2.40)

Using this in the scalar potential (4.2.38) we find:

V (ρ, τ) = −
&

p=0,2,4,5

Ap

ρp−3τ 4
+

1

2

Asources

τ 3
. (4.2.41)

Again, we find that de Sitter solutions are only possible for Asources ∝ 2NO6 −ND6 −
ND6 > 0. This means that even the inclusion of a different kind of negative tension
source does not relax the condition on the O6-planes. Furthermore, it is easy to
check that we still require a massive compactification, if one only uses NS5-branes.
In principle, however, it seems to be possible to have a dS solution with vanishing
mass parameter AF0 in type IIA if we have ANSO5 > ANS5. This then would allow
for an M-theory uplift that is otherwise prohibited by the appearance of the Romans
mass. The curvature term again has to satisfy AR6 ∝ −R6 ≤ 0 since otherwise the
bound from above is obtained once more. For the massless case the relevant scalings
now come from the curvature term, the sources and the NSO5 contribution, giving
the relevant scalar potential:

V =
AR6

ρτ 2
− Asources

τ 3
− ANSO5

ρ2τ 2
, (4.2.42)

with a fixed number of O6-planes and NSO5-planes. The scaling limit yields the
following condition on the scale parameters:

cR6 − cρ − 2cτ = −3cτ = −2cρ − 2cτ . (4.2.43)
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This can be solved by:

cτ = 2cρ and cR6 = −cρ . (4.2.44)

Letting λ → ∞ and requiring cρ > 0 implies that the curvature goes to zero:

AR6 ∝ −R6 ∝ λcR6 = λ−cρ → 0 . (4.2.45)

However, the curvature is fixed for a given compactification manifold and thus cannot
become parametrically small. We conclude that a de Sitter solution with a small,
fixed amount of NSO5-planes is not possible.
Non-geometric Q- and R- fluxes are some more potential candidates for inclusion in
type IIA compactifications. These can lead to stable de Sitter solutions [198, 213,
214, 235–237]. The scaling behavior of these contributions goes like:

VQ =
AQ

ρ−1τ 2
and VR =

AR

ρ−3τ 2
. (4.2.46)

By duality there are also corresponding sources for these fluxes. The problem with
these contributions is that, due to their non-geometric nature, it is not clear if and
how α
 corrections can be handled in their presence. Thus, we choose to omit a
detailed discussion of their behavior.
In the case of a different class of compactification manifold, other than an SU(3)

structure manifold, it is possible to have non-trivial 1- and 5-cycles. This then
allows for the corresponding Dp-branes and Op-planes to appear in the model. The
scaling behavior of these sources goes like:

VDp/Dp =
ADp/Dp

ρ
6−p
2 τ 3

and VOp = − AOp

ρ
6−p
2 τ 3

. (4.2.47)

4.2.6 Isotropic Compactification of massive Type IIA

Up until this point our discussion has been fairly general. In this subsection, we
want to give an explicit example of a compactification in order to complement the
discussion. The isotropic compactification of massive type IIA on S3×S3/(Z2×Z2) is
potentially the simplest model we could choose. It has been extensively studied in [1,
43, 44, 49, 179, 194, 205, 212, 216, 232, 238–241] and admits dS critical points. This
model might even be able to admit stable de Sitter points if one includes anti-D6-
branes or KK-monopoles [49, 194]. Often this particular setup is referred to as
the STU model due to the fact that it has three complex moduli. This is because
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we identify the three 2-tori in the T 6/(Z2 × Z2) internal manifold. The inclusion of
metric fluxes, that we set to one, effectively changes the internal manifold to S3×S3.
Furthermore, we include H-flux as well as Fp-fluxes with p = 0, 2 because the 4- and
6-flux can be set to zero here via a shift of the moduli. The real part of the Kähler
modulus T encodes the overall size of the compactification manifold. The dilaton is
packaged together with the complex structure moduli into the two complex scalars
Z1 and Z2. Relating these moduli back to what we had thus far in this section we
find:

ρ = Re(T ) and τ 4 = Re(Z1)Re(Z2)
3 . (4.2.48)

In addition to the fluxes we also consider D6-branes in the model that can wrap two
different 3-cycles [49], labeled ND6,1 and ND6,2. These anti-branes spontaneously
break supersymmetry and we will use constrained multiplets in order to describe
their contribution using only the Kähler- and superpotential as was discussed in
chapter 2. The potentials we are going to use in this section are:

K =− log

�
(T + T̄ )3 − 1

2

XX̄

ND6,1(Z1 + Z̄1) +ND6,2(Z2 + Z̄2)



− log

�
2−4(Z1 + Z̄1)(Z2 + Z̄2)

3
�
,

W =− 3f2T
2 + if0T

3 + (ih− 3T )Z1 − 3(ih+ T )Z2 +X ,

(4.2.49)

from which we can derive the scalar potential V using the usual formula:

V = eK
�
DIWKIJ̄DJW − 3WW

�
X→0 ,X̄→0

, (4.2.50)

where we have to set the nilpotent chiral fields X and X̄ to zero after performing
the calculation since we are only interested in the purely bosonic scalar potential.
The resulting scalar potential has a number of re-scaling symmetries. One of those
will precisely match the re-scaling to a large number of O6-planes, which was the only
possibility for a stable de Sitter solution that we found in this section. Generally,
we can scale the moduli any way we desire if the scalar potential does not change
by more than an overall numeric factor. This does not change the eigenvalues of
the mass matrix or the fact that critical points are present. Although, it in general
changes the location of the critical points in moduli space. The most general re-
scaling, satisfying these conditions, is T → aT and f0 → bf0 which, in turn, fixes the
required scaling of all other moduli:

T → aT , Z1 → a2bZ1 , Z2 → a2bZ2 , X → a3bX , (4.2.51)
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where the same must hold for the complex conjugates as well. Since the real parts
of the moduli have to be and remain positive we restrict to a, b > 0. For the flux
parameter and number of O6-planes this leads to:

f0 → bf0 , f2 → abf2 , h → ah , ND6,1 → abND6,1 , ND6,2 → abND6,2 .

(4.2.52)
The effective re-scalings of the scalar- and superpotential that result from this are:

W → a3bW and V → a−5b−2V . (4.2.53)

Evidently, this scaling freedom does have an effect on the physics of the model, by
changing the cosmological constant. However, the existence of critical points is not
effected. This allows us to set some fluxes to 1 and thus fixing the symmetry. After
finding a minimum one can once more employ the scaling symmetry to fix the values
of the fluxes to appropriate numbers.
The model with standard ingredients, discussed in section 4.2.4, has no scaling of
0-flux and curvature. Relating this to the above discussion we have b = 0. Then, we
easily find that a = NO6 and we can recover the familiar situation from the formulas
we have in this section:

vol6 ∼ Re(T )3 ∝ N3
O6 ,

e−φ ∼
4
$
Re(Z1)Re(Z2)3√

vol6
∝

$
NO6 .

(4.2.54)

4.2.7 Explicit Solutions to the isotropic Compactification

Before we come to presenting explicit solutions to the rather simple model we are
interested in, we need to mention that even here it can be very complicated to find
a solution or even map out the part of parameter space where these solutions are
possible. However, if we add anti-D6-branes, it becomes possible to find analytic
solutions to the minimization problem. In order to do so, we first use the scaling
symmetry of the scalar potential to fix |f0| = 1 = |f2|. The remaining parameters
are the H-flux, represented by h and the numbers of anti-branes: ND6,1 and ND6,2. It
is then possible to solve the axionic derivatives, ∂Im(T )V = ∂Im(Z1)V = ∂Im(Z2)V = 0

and so on, in terms of the corresponding axions, Im(T ), Im(Z1) and Im(Z2). The
rest of the equations, ∂Re(T )V = ∂Re(Z1)V = ∂Re(Z2)V = 0 are more difficult to evalu-
ate in terms of the moduli. Luckily, the remaining expressions with derivatives with
respect to Z1 and Z2 are linear in the number of anti-branes. Likewise, ∂Re(T )V = 0

is quadratic in the flux parameter h and thus we can solve the expressions and obtain
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two sets of solutions. The solution then depends on the values of the moduli Re(T ),
Re(Z1) and Re(Z2).
There are some additional criteria that need to be met in order to find a sensible
solution. First, we are interested in solutions with Vmin > 0 and we require that we
have positive numbers of anti-D6-branes. For stable extrema we also need to have all
eigenvalues of the mass matrix positive. Disregarding quantization conditions, two
regions emerge from our search that allow such points. They are depicted in figure
4.2. The smaller, green, region even allows for stable solutions if the non-isotropic
directions are included, considering a total of 14 real moduli. In principle, we should

Figure 4.2. Two regions where stable de Sitter solutions are in principle possible. The
larger region, in yellow, allows only for such solutions if the non-isotropic directions are
fixed while the smaller, green, is tachyon free even after opening up the non-isotropic
directions.

now be able to use the scaling freedom of the model in order to change the values of
the fluxes. Due to the fact that we have NO6 = 1 in this setup we are unfortunately
restricted in doing so. In particular, we cannot re-scale to solution sufficiently in or-
der to arrive at a trustworthy regime of ρ = Re(T ) � 1 and τ 4Re(Z1)Re(Z2)

3 � 1.
Thus, we are not able to find de Sitter solutions that can be trusted in this simple
model.
Since we have analytic control over the solutions we can check what the O(1) num-
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bers, appearing in front of the scaling behavior, are in our solutions. We find
that:

vol6 = c1N
3
O6 with 8 · 10−8 � c1 � 0.24 ,

e−φ = c2
$

NO6 with 4 · 10−5 � c2 � 0.12 .
(4.2.55)

These small parameters make it even harder to obtain a solution with a small number
of O6-planes. Since we are restricted to one single O6-plane we are unable to use the
current model to build a trustworthy de Sitter solution. The numbers above should
give a reasonable estimate of the number of O-planes required in related models in
order to find such dS points.

4.2.8 Scaling Limits of de Sitter - Interim Summary

In this part we have investigated simple type IIA flux compactifications regarding the
possibility of constructing controlled de Sitter solutions. Inspired by the anti-de Sitter
solutions of [42], where a large F4-flux limit allows for solutions with large internal
volume and small coupling, we investigate similar models for scaling behaviors that
could lead to a similar behavior for dS. We find that the only limit is the one of a
large number of O6-planes. Even considering more exotic contributions, like KK and
NS sources does not improve the situation. The main problem is that the number of
orientifold planes is limited by the geometry of the chosen compactification manifold.
In the simple example we consider here this fixes the number of O6-planes to be 1.
While more complicated internal manifolds can certainly exist such models have not
been explicitly investigated thus far and are likely hard, if not practically impossible,
to find, given the tools currently available. We furthermore looked into a concrete
example and find that our theoretical conclusions are practically realized. Due to
the good control of the model we are able to give an estimate of the order of O6-
planes one would require and find that we would at least require one or two orders
of magnitude more orientifold planes than currently available models admit in order
to arrive at stable de Sitter solutions. Of course, conclusions drawn from one class
of models cannot be transferred one-to-one to others but we believe that the rough
estimate still holds.

4.3 de Sitter Extrema

In this section we will show that it is relatively easy to find de Sitter extrema from
classical type II flux compactifications. This is exactly the setup that the conjecture
(4.1.1) should hold in. These points violate the original conjecture but the refined
version (4.1.2) still holds due to the condition on the Hessian. The contents discussed
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in the following are based on [1].
We are going to find numerical de Sitter points by looking explicitly at the scalar
potentials of the models described in the previous section, as was first done in [43,
44] and later extended upon by us in [1]. Note that the mere existence of critical
de Sitter points is still not necessarily an objection to the original dS swampland
conjecture. If the solutions found numerically cannot satisfy certain requirements
in order to be consistent with string theory they should not be considered. These
include tadpole cancellation, flux quantization and the requirement that string loop
corrections should be negligible.

4.3.1 Potential Issues

Before we come to presenting our results we discuss some potential problems and
required consistency conditions that string compactifications should satisfy.

First, we need to identify the relevant moduli. For SU(3) compactifications
it is problematic to correctly isolate the lightest fields in the theory [242, 243]. This
essentially disallows us from studying the low energy effective theory. Luckily, a
consistent truncation exists [244] for compactifications on group manifolds. One can
then expand in left-invariant forms and the 4d theory will lift consistently to 10d.
The orientifold projection, which we include in the models we investigate here, should
not change this expansion. It is still not guaranteed that the scalars are the lightest
fields, or even below the KK-scale [245] but, since we found a solution in 4d that
lifts to solutions in 10d, this is no issue. Furthermore, giving more evidence for the
validity of this procedure, some of the 4d dS extrema can be explicitly lifted to 10d

[216].

Another concern are integrated equations of motion for intersecting sources.
This can be an issue since it is not possible to solve the equations of motion for in-
tersecting sources. Due to this, one usually restricts to smearing the sources. A
priori this should not be allowed as, for example, O-planes are localized objects and
thus cannot be smeared. For initial discussions on this topic see [230, 246–250].
Rather recently, however, it has been argued that this is no issue as the smearing
should give the effective result in the low energy theory. First order localizations
of this problem were performed in [231, 251–253] and it seems that the smearing is
an appropriate approximation. Still, in the case of only parallel sources the solution
can be obtained by including simple warp factors and no no-go theorems exist when
restricting to such setups [221]. However, it is not clear if geometries exist that allow
for such situations. Our setups here all include intersecting sources such that we
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rely on the recent investigations regarding first-order localization and the smearing
argument.

Due to our orbifold compactification, blow-up modes could pose a potential
problem for our models. The compactifications we consider are based on orbifolds
of group manifolds, or so-called twisted tori. Only considering standard abelian
orbifolds, we are limited to Z2 × Z2 orbifolds as for all other cases no-go theorems,
forbidding de Sitter critical points, exist [44]. For non-abelian orbifolds one can find
de Sitter critical points for Δ(12) which interestingly contains Z2×Z2 as a subgroup,
as discussed in [234]. Note however, that this study only contains a limited amount
of such orbifolds. On such compactifications, singularities can appear due to the
orbifolding. For some examples the impact of such divergences has been studied
[42, 206] and it was found that one can remove the singularities with blow-ups.
These then come with additional moduli but also allow additional fluxes on the
newly created cycles. It is possible, at least in these examples, to stabilize the new
moduli at a smaller scale. We are going to assume that similar mechanisms will
work out in the examples we consider here. Unfortunately, the new modes from the
blow-ups will not be left invariant forms and thus we no longer have a consistent
truncation if these modes become relevant.

The mass parameter m0 = F0 in type IIA plays an important role in com-
pactifications [254]. If present, it prevents the uplift to M-theory and it is not clear
if perturbative string theory can describe the situation and one might not be able
to define orientifold planes. These problems are not limited to solutions with posi-
tive vacuum energy but even supersymmetric AdS vacua [255]. On the other hand,
massive type IIA models cannot be strongly coupled in regions with weak spacetime
curvature [202], which is an interesting feature certainly worth investigating.
Fortunately, the mass parameter is not crucial in order to obtain dS extrema. This
can be seen by formally T-dualizing the type IIA theory with curvature and O6-
planes which yields a type IIB theory with O5 and O7-planes compactified on SU(2)

structure manifolds [215]. There, the dual of the mass parameter F0 is F1 which
can be present for manifolds with non-trivial 1- and 5-cycles. Explicit compactifica-
tions are known that have large volume and small coupling and even one explicit dS
point was found using such setups. In type IIB all know solutions require intersect-
ing sources, this time O5- and O7-planes, which means one relies once again on a
smeared approximation.

Finally, let us mention flux quantization as a condition that comes directly
from string theory and restricts the low-energy effective theory. When one searches
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numerically for solutions this condition is usually not imposed from the beginning
and we will follow this approach in our analysis as well. The solutions that are
obtained often are valid for a range of fluxes but not always.
For the NSNS-flux H3 the condition boils down to the requirement that the integral of
the flux over all cycles in integer holonomy has to return an integer. For the RR-fluxes
the flux quantization condition changes in the presence of H3. The correct framework
to investigate this issue would be H3-twisted K-theory [256, 257]. Luckily, for simply
connected 6d manifolds this theory is isomorphic to H3-twisted cohomology [258].
Thus far, this has only be done for SU(2) × SU(2) = S3 × S3 [234]. For our case
of SU(3) structure manifolds, where we expand everything in left-invariant forms,
it seems that the fluxes do not have to be in twisted cohomology and thus not
quantized. Nevertheless, the fluxes appear in the tadpole conditions and have to
cancel quantized charges. Then, they still have to be quantized in that sense.

4.3.2 Critical de Sitter Points

We now come to review de Sitter extrema that were found via numerical models
in type IIA compactifications on SU(3) structure manifolds including curvature,
fluxes and O6-planes. These models are similar to compactifications on T 6. The
scalar potential that should allow for the dS points comes from F− and D−terms
[106, 259] in supergravity. A detailed review of these constructions, tailored for our
purpose here, can be found in [234].
In 4d we have a scalar potential that depends on 7 moduli at most. Among them are
the axio-dilaton and the geometric scalars that appear when expanding the 3-form Ω

and the Kähler form J . Appearing in V we also have parameters that come from the
NSNS- and RR-fluxes and, furthermore, geometric fluxes from the SU(3) structure.
The latter ones incorporate the curvature of the manifold. One can attempt to find
critical points of this scalar potential using the moduli and parameters and some
further conditions such as the positivity of the potential in order to find dS points.
The earliest results were obtained in [43, 44], where 3 dS Extrema were found. In
[238] a study covering different internal manifolds found over 100 de Sitter extrema.
Then later in [1] we were able to extend this number by obtaining over 300 more
such points. In the following we will discuss all of these points and their importance
for the initial de Sitter swampland conjecture.
One immediate issue with the numerical method of finding these points, however,
is that all quantities, including the fluxes, are allowed to vary continuously. The
conclusions of this would be that flux quantization or the tadpole conditions, cannot
be satisfied. Fortunately, due to scaling freedoms in the models, this is not a fatal
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flaw. It is possible to re-scale moduli and fluxes while staying at a critical point and
thus the flux quantization and tadpole conditions can be satisfied. In the particularly
simple example of compactifications on S3 × S3/(Z2 × Z2) the parameter space has
been mapped out and one finds that it is possible to set all but one of the fluxes
equal to 1. Effectively, the scalar potential then depends on one parameter and it is
possible to attempt to find critical points. Indeed, dS critical points have been found
[216] for a certain range of the parameter. Furthermore, in [234] the flux quantization
conditions have been worked out. Unfortunately, this leads to a small volume and
strong coupling, which means that α
 and string loop corrections are significant and
one cannot trust these critical points.
We now move on to the different setups that were considered in [238] and, following
the initial de Sitter swampland conjecture, by us in [1]. The numerical search was
implemented using Mathematica and returned critical points with values for the
moduli and fluxes around 1. In natural units, this typically leads to a volume of
order O(10) − O(100) and an inverse string coupling of order O(10). These values
can be considered to be acceptable, at least for our principal considerations here.
The tadpole conditions are more troublesome with contributions of either sign of
order O(10). For positive tadpoles one can, in principle, add an arbitrary number
of D6-branes. On the other hand, for negative tadpoles, it would be necessary
to add O6-planes. It is, however, not possible to add a large number of those as
their number is fixed by the compactification to be of order one. A feature that
cannot be changed and was already discussed in the previous section. In fact, the
negative contributions to the tadpole from the O6-planes play an important role
in avoiding the Maldacena-Núñez no-go theorem [223]. Hence, we conclude that
proper dS critical points should have one or more negative tadpole of O(1). Still,
the points obtained in the numerical search are not doomed, as there is a scaling
symmetry, universal to all investigated examples, that can be used to adjust the
tadpole. Importantly, this re-scaling does not change any physical results that we
are interested in here. In practice, we have to scale the Kähler moduli by a constant
and the complex structure moduli by its inverse. Requiring that the scalar potential
changes at most by an overall multiplicative factor, which has no implications on
the critical points, fixes the scaling behavior of the fluxes. The relevant physical
quantities, like for example, the slow-roll parameter ', do not change at all. The
geometric fluxes, depending on the model, stay invariant while the mass parameter
and the tadpole change in a non-trivial manner. The models we consider have 4

different, left-invariant 3-forms that each come with their own tadpole condition.
Using the re-scaling one can change the largest, negative tadpole such that it can be
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satisfied by a single O6-plane. The rest of the tadpoles then can be accounted either
by a single O6 again or some number of D6-branes. After the re-scaling one has to
check the internal volume and string coupling in order to see which models still have
acceptable values for these two quantities. Here we found that there seems to be a
correlation between the volume and the mass parameter F0. All remaining models
have

F 2
0 · vol6 ∼ O(1) − O(100) . (4.3.1)

Thus, for large internal volume one would need particularly small F0 flux. This,
however, cannot be since the quantization condition for F0 requires it to be an in-
teger. While F0 = 1 and a volume of order 100 can be acceptable one might not
be quite certain if it is safe to neglect α
 and string loop corrections. This problem
deserves further attention in order to reach a satisfying conclusion. As it stands we
have found models with vol6 ∼ O(100) and e−φ ∼ O(10), which are definitely in
tension with the original de Sitter swampland condition.
We would like to point out that the conclusion that no particularly large volume
seems to be possible might be a limitation of the numerical implementation of the
search. In the AdS vacua, based on CY-compactifications, found in [42], it is ana-
lytically known that solutions with large volume exist in a limit with large F4 flux,
as discussed in 4.2. Even though the same statements are not known for compact-
ifications with curvature, examples with flux limits do exist, again, for AdS. In dS
no flux limit has been identified thus far. Nevertheless, we also searched for anti-de
Sitter points in our setups using the same numerical methods as for de Sitter. The
solutions obtained in this way showed the same property that F 2

0 · vol6 is of order 1

to 100. Due to the analytical existence of solutions with large volume this hints that
there might be a limitation of the methods employed at work, rather than a physical
obstacle.

4.3.3 de Sitter Extrema - Interim Summary

In this section we discussed models where it is feasible to find de Sitter points that
do not rely on an uplifting procedure and are in that sense classical. Such setups are
the main target of the initial de Sitter swampland conjecture of [13]. We discussed
several obstacles and potential resolutions that these constructions face. Conditions
that need to be met include intersecting O-planes and the flux quantization and
tadpole conditions. For the first of these, recent progress [231, 252, 253] suggests that
a solution is possible and that intersecting sources pose no problem. The second issue
needs to be addressed in explicit examples. The numerical solutions from [1, 238] are
only on the verge of being acceptable. With satisfied flux quantization and tadpole
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conditions one is left with a volume that is at best around 100 in natural units.
At this level it is not quite clear that α
 and string loop corrections are negligible.
Still, we argue that the solutions that were obtained are at least in tension with
the de Sitter swampland conjecture and a refinement of it had to be the natural
conclusion.

4.4 A refined dS Conjecture

Due to the criticism from both, classical dS constructions [1, 260] and Standard
Model scalar potentials [45, 261–263], the initial de Sitter swampland conjecture [13],
presented in (4.1.1), needed to be improved [245, 264]. In [40] the refined conjecture
in (4.1.2) was presented which allows de Sitter extrema that are unstable and is no
longer in tension with the Standard Model. In [3] we presented an alternative that
has the advantage of condensing both conditions into one inequality and we support
the parameters in the condition by the de Sitter extrema that were discussed in the
previous section.

4.4.1 Single Expression Conjecture

When discussing the de Sitter conjecture we have an effective 4d theory in mind
with scalars φi that couple to gravity. The action for such a theory can be written
as:

S =

�
d4x

√
g4

�
M2

P

2
R4 − 1

2
Kij∂µφ

i∂µφj − V (φi)

�
, (4.4.1)

where R4 is the 4d Ricci scalar and the scalar potential V (φi) determines the dy-
namics of the scalars φi. In this section we will include the explicit factors of MP

when necessary due to a point that will be raised further down below. In order to
be precise, let us (re-) define some quantities we will be using in the following. The
gradient of the scalar potential is:

|∇V | =
$
Kij∂iV ∂jV , (4.4.2)

and for the condition on the smallest value of the Hessian we use:

min(∇i∇jV ) = smallest eigenvalue of (∇i∇jV ) . (4.4.3)
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For a positive value of the potential we define the first and second slow-roll parame-
ters3 to be:

' =
M2

P

2

|∇V |2
V 2

,

η = M2
P

min(∇i∇jV )

V
.

(4.4.4)

Finally, for constant fields, the mass matrix is:

M i
j = ∇i∇jV , (4.4.5)

and the eigenvalues are the masses of the scalars. If negative eigenvalues are present
we know that a tachyon is present and the extremum will be unstable. Likewise,
a zero value of an eigenvalue means that we have a flat direction that might be
problematic as well. The refined de Sitter conjecture (4.1.2), in terms of the quantities
defined here and including factors of MP , is:

|∇V | ≥ c

MP

V or min(∇i∇jV ) ≤ − c


M2
P

V , (4.4.6)

with our two order one parameters c and c
. In terms of the slow-roll parameters,
the refined de Sitter conjecture (4.1.2) reads:

√
2' ≥ c or η ≤ −c
 , (4.4.7)

for as long as the value of the potential at the extremum is positive. Disregarding,
for now, the motivation given in [40], the second part of the above expression is
easily motivated if one wants to allow unstable dS extrema. The logical “or” is a
strange sight in a physical expression and in [245] an attempt was made to propose
a singular expression that incorporates both quantities, ' and η, that reproduces the
same key features, namely disallowing stable de Sitter points while allowing unstable,
positive extrema. The problem of this proposal was that it was not formulated in
a covariant manner. We not only rectified this issue in [3], motivate the parameter
range of the parameters in the conjecture with data from [1] but also discussed the
non-trivial limit of MP → ∞ of the expression. This (formal) limit is a key point
in the swampland program as it corresponds to the decoupling of gravity from the
field theory. For the conjectures this means that they have to be trivially satisfied in
the decoupling limit as they should be valid in a regime where we have a consistent,

3Strictly speaking the slow-roll parameters we use here are the ones only valid for single field
slow-roll inflation, often denoted �V and ηV .
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effective theory of quantum gravity. For the refined conjecture (4.4.6) this is trivially
the case, in no small part due to the “or” appearing therein.
We, on the other hand, propose a single expression as an alternative to the refined
de Sitter conjecture that gives a simultaneous condition on ' and η. Formulated as
a conjecture:
Any consistent, low energy, effective quantum gravity theory, that can be written as
in (4.4.1), should satisfy the following condition whenever V > 0:�

MP
|∇V |
V

�q

− aM2
P

min(∇i∇jV )

V
≥ b , (4.4.8)

where the parameters are free but need to satisfy:

a, b > 0, a+ b = 1, and q > 2 . (4.4.9)

Written in terms of the slow-roll parameters this reads:

(2')
q
2 − aη ≥ b . (4.4.10)

We will motivate this conjecture, consisting of the inequality (4.4.8) and the bounds
on the parameters further down below.
Before we come to that, let us mention that the decoupling limit is trivially satisfied
by first dividing by M q

P . Then one recovers (|∇V |/V )q ≥ 0 which is always satisfied.
When going to an extremum one finds, due to the positivity of the parameters in the
conjecture, that (min(∇i∇jV )/V )|ext < 0 which means that only unstable de Sitter
points are allowed because we have at least one tachyon. Our conjecture thus has
the same basic features as the refined dS conjecture of [40] but there are differences
in the allowed values of ' and η. Both conjectures disallow small values of ' with
positive η but differ in certain regions of the (', η) parameter space. It is, however,
not the case that one conjecture is strictly stronger than the other. This differences,
depicted in figures 4.3 and 4.4, mean that the conjectures draw a different border of
the swampland in the landscape and potentially allow or disallow certain models. For
example, as we will discuss later on, single field slow-roll inflation is not impossible
in our conjecture.

We now move on to motivate our conjecture (4.4.8) by an argument based
on the weak coupling regime similar to what was done in [40]. The idea is that
when going to large distances in field space, corresponding to weak coupling, one
is in a controlled regime of string theory. This is usually the case when the string
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1

|V’|
V0

- 1

V’’
V

Figure 4.3. The excluded regions of parameter space for both refined conjectures, (4.1.2)
and (4.4.8). The axis are (

√
2�, η), denoted in the graphs as (|V 
|/V, V 

/V ). The upper left

quadrant of the dashed lines is excluded for the refined conjecture of [40] and everything
up and left of the curved solid line is excluded for our refined conjecture. The differences
between the two conjectures are the approximately triangular shaped region near the cross
(shaded pink) which is allowed by our conjecture and the regions right of and below the
dashed lines up to the solid curved line (shaded light blue). Those are excluded by our
conjecture but allowed by the conjecture (4.1.2). The selected value of a = 1/5.7 in this
picture gives a good overview of the different regions. The choices c = c
 = 1 puts the
dashed lines at −1 and 1. For q we chose 4.

1

|V’|
V0

- 1

V’’
V

1

|V’|
V0

- 1

V’’
V

Figure 4.4. For different values of the parameter a the differences in allowed/excluded
regions change as some regions merge or disappear compared to 4.3. On the left we have
a = 1. Here the region below the curved line is only excluded by the conjecture (4.1.2).
On the right we have a = 1/2. There the conjectures agree for very small �. Again, the
other parameters are c = c
 = 1 and q = 4
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coupling is small, the dilaton is large and negative, α
 corrections are negligible and
the internal volume is large. When going to large distances in field space one also has
to consider the swampland distance conjecture [265] for the case of a non-zero scalar
potential [266, 267]. In short, the distance conjecture proposes that infinite towers
of light modes appear when going to large distances in moduli space. Since more
degrees of freedom enter the effective theory one can relate this to entropy. De Sitter
space has a finite amount of entropy given by the Gibbons-Hawking entropy [268].
In the weak coupling limit, we assume that the Bousso bound [269] is saturated. In
order to apply these tools for our purpose in a universe that undergoes accelerated
expansion we have to make sure that we remain within a semi-classical description.
Concretely, this boils down to the fact that the second slow-roll parameter η has to
be below −1, which corresponds to the second condition in (4.4.6). The goal of the
following derivation is to motivate the conjecture (4.4.8) and the parameter ranges
of a, b, and q.
Let us start the motivation of our conjecture by considering a single, canonically
normalized scalar field φ with scalar potential V in the low-energy effective theory.
As is argued in [40], the scalar potential takes the form:

V (φ) =
�
n(φ)edφ

�−k
, (4.4.11)

where both parameters d and k are positive. The function n(φ) counts the number
of towers that become light in the asymptotic regime. This means that n(φ) > 0

and ∂φn =: n
 > 0 as the number of contributing towers grows when going to large
distances in field space. Using this we can write:

V 


V
= −k

�
d+

n


n

�
, (4.4.12)

using n
 > 0 this leads to the first condition of (4.4.6):

|V 
|
V

≥ k · d =: c , (4.4.13)

where we now defined the familiar order one parameter c. Raising this to the power
of q we find: � |V 
|

V

�q

= kq

�
d+

n


n

�q

≥ kq

�
dq + q

n


n
dq−1

�
, (4.4.14)
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which holds since all terms in the power expansion are positive. This is true not only
for integers q > 2 but also more generally for real valued q since:

(x+ y)q − xq =

� x+y

x

dt qtq−1 ≥
� x+y

x

dt qxq−1 = qyxq−1 . (4.4.15)

In order to arrive at our conjecture (4.4.8) we also use the second derivative of the
scalar potential to compute:

V 



V
= k2d2 +

n


n
k

�
k + 1

n
+ 2kd

�
− k

n



n
. (4.4.16)

We then assume n ≥ 1 as in the asymptotic regime the number of towers that
become light grows and it is therefore reasonable to start with at least one tower.
Furthermore, we also consider n

 ≥ 0 as the number of towers that become relevant
should continue to grow the farther one goes in field space. Writing these conditions
as:

n ≥ 1 and n



n
≥ 0 , (4.4.17)

we deduce from the above expression that:

V 



V
≤ k2d2 +

n


n
k(k + 1 + 2kd) . (4.4.18)

Combining (4.4.14) and (4.4.18) we find:� |V 
|
V

�q

− a
V 



V
≥ kqdq − ak2d2 +

n


n

�
qkqdq−1 − ak(k + 1 + 2kd)

�
, (4.4.19)

where we assumed n
/n to be constant and introduced the parameters a and b

as:
a =

q(kd)q−1

k + 1 + 2kd
,

b = (kd)q
k + 1 + kd(2− q)

k + 1 + 2kd
.

(4.4.20)

With this we obtain our conjecture that was already given previously without moti-
vation in (4.4.8): � |V 
|

V

�q

− a
V 



V
≥ b . (4.4.21)
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If we require c to be of order one, as was already done in [13], we find that since
c = kd ∼ 1:

a =
q

k + 3
,

b = 1− q

k + 3
,

a+ b = 1 .

(4.4.22)

For consistency we also have to require:

q < k + 3 , (4.4.23)

because a and b have to be positive (see equation (4.4.20)). This certainly can hold
for q > 2 where we will allow real valued q as well.

4.4.2 Constraining Parameters with known Examples

Here, we will use solutions, like the ones discussed in the previous section, in order
to constrain the parameters a, b and q appearing in our conjecture (4.4.8). We
use points obtained from classical solutions as they have less intrinsic problems as
constructions relying on anti-Dp-brane uplifts. Still, we have the same requirements
as discussed in section 4.3.1. For a discussion about the construction and search for
such classical de Sitter points look there or in [43, 44, 238]. We use two types of
points, classical unstable de Sitter points that are extrema, found in [238] and later
extended by us in [1] and non-extrema with V > 0, obtained in [241]. The latter were
obtained from similar setups as our unstable dS points and they face the same issues
as well. We select several points from both data sets that have acceptable values for
the string coupling and internal volume in such a way that they limit the parameters
of the conjecture the most. This basically means that they allow as many models
in the landscape as possible from the data we have at our disposal. One interesting
thing to note is that the curve, given by the conjecture (4.4.8), always runs through
(
√
2', η) = (1, 1), meaning that points with

√
2' ≥ 1 and η ≤ 1 do not constrain

the parameters. The solutions we selected are given in table 4.1 and we illustrate
the situation in figure 4.5. We note that these points also conform with the refined
de Sitter conjecture (4.1.2), for reasonable values of c and c
. The deviation from 1

is typically done as there is no reason that forces them to strictly be equal to that
value.
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√
2'V ηV

√
2'V ηV

√
2'V ηV

3.738 · 10−10 −2.495 1.728 · 10−6 −3.927 0.950 −0.077

3.711 · 10−7 −3.663 1.894 · 10−6 −3.964 0.927 −0.151

1.479 · 10−6 −3.673 2.378 · 10−6 −3.973 0.875 −0.162

7.733 · 10−6 −3.727 1.129 · 10−6 −4.049 0.885 −0.318

4.487 · 10−6 −3.904 2.859 · 10−6 −4.049

2.712 · 10−6 −3.914 6.255 · 10−6 −4.145

8.251 · 10−7 −3.915 1.998 · 10−6 −4.186

1.105 · 10−6 −3.915 4.634 · 10−6 −4.187

9.719 · 10−7 −3.918 4.289 · 10−5 −4.211

1.248 · 10−6 −3.922 2.562 · 10−5 −4.297

Table 4.1. 20 data points of de Sitter extrema from [1, 238] in the left and middle column
and 4 points of classical non-extrema from [241] in the rightmost column.

★ ★
★
★

1

|V’|
V

-1

V’’
V

Figure 4.5. In this figure we present the way how known solutions, listed in table 4.1, con-
strain the parameters of the conjecture (4.4.8). The red dots are the de Sitter extrema while
the red stars give the saddle points. We adjusted the parameters such that the conjecture
agrees with the known solutions which is in agreement with the general expected values
allowed for these parameters. For the lines symbolizing the typical de Sitter conjecture
c = c
 = 1 was used again.
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The data points constrain the parameters in (4.4.8) in the following way:

• The points that have ' ∼ 0 give:

a ≥ 1

1− η
which leads to a ≥ 0.286 . (4.4.24)

• b is then given by a+ b = 1 to b ≤ 0.714.

• With these values the point (', η) = (0.875,−0.162), extracted from table 4.1,
provides an upper bound of q ≤ 3.03.

Note, however, that the bound for q is a conservative value, where we assumed that
the bound of a is saturated. If we choose a higher value of a then q can likewise be
a higher number.
As a final remark we want to mention some more points that were obtained in the
literature. They are not more constraining than what is presented here but are
generally of the same order which gives some weight to our discussion.
In similar type IIA setups as discussed here the authors of [44] mention de Sitter
points with η ( −3.7 and η ( −2.5.
In type IIB solutions found in [215] obtained a value of η ( −3.1. This is a nice hint
at the universality of these bounds.
Lastly, there is an interesting analytical upper bound on η that was derived in [239]
for specific constructions in 4d, N = 1 supergravities that are parametrically close to
Minkowski solutions. The bound is η ≤ −4/3 which would be a bit more constraining
than our explicit examples. It is, unfortunately, not clear to us if this bound can be
reached via an explicit and consistent string construction.

4.4.3 A Note on cosmological Implications

Since the refined de Sitter conjecture gives constraints on the two slow-roll parame-
ters ' and η, as evident from (4.4.10), it is natural to consider potential implications
for the theory of inflation. In inflationary models one does not sit at an extremum
but instead on a flat slope. Nevertheless, the conjecture should hold in general, not
only for specific points. Hence, we can restrict the space of allowed inflationary the-
ories if we take the conditions of (4.4.10) serious.
First off, our conjecture favors models with η ≤ 0 which implies that single field
models that have a positive scalar potential should have a concave form of the po-
tential. This is even more interesting as such potentials have recently been found to
be favored by experimental data as well [9].
In particular, single field inflation models are only allowed by our conjecture if they
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have parameters that satisfy a ( 1 and b � 1, which is possible. A setup that has
' ≤ −η ( b � 1 is favored by current observations [9] and satisfies our conjecture for
all q. For q ( 2 even convex potentials are allowed and thus our conjecture (4.4.8)
does allow single field slow-roll models as opposed to the original refined conjecture
(4.1.2) of [40] where more complicated setups, in order to safe inflationary models,
were required [270, 271].
As an alternative to inflation models, works on the de Sitter swampland conjecture,
often advertise so-called quintessence [272]. Such models have a potential with a very
flat runaway direction. The simplest example that is often used for this potential
is:

V (φ) = V0e
−λφ , (4.4.25)

where λ > 0 is some parameter. Note that this potential is convex, which is not
favored by our conjecture. The current experimental bound on the parameter in
(4.4.25) is λ ≤ 0.6 [272] which, as we will show, is not in agreement with our conjec-
ture. Our condition in equation (4.4.8), with the quintessence potential in (4.4.25),
leads to:

λq − aλ2 − b ≥ 0 , (4.4.26)

which is saturated for λ = 1, independent of the parameters a, b and q and only values
of λ ≥ 1 are allowed. Since experimentally λ ≤ 0.6 such simple quintessence models
are thus excluded by our conjecture. Quintessence models in general, however, are
not completely excluded. If one still wants e−λφ with λ ≥ 0 exponentially, either due
to the Dine-Seiberg argument [273], because of the upper bound obtained in [274]
or the exponential decay discussed around equation (4.4.11) [40], one can make the
proposal for the scalar potential:

V (φ) =
V0

2
(1− tanh(λφ)) = V0

e−λφ

eλφ + e−λφ
. (4.4.27)

Here, importantly, V0 > 0 and λ > 0. The form of the potential is depicted in
figure 4.6. This potential has a very flat slope for negative values of φ, below about
φ = −5. There, the potential is concave and quintessence seems possible with good
slow-roll parameters. We can check the first and second slow-roll parameters by
computing:

|V 
|
V

= 2λ
eλφ

eλφ + e−λφ
,

V 



V
= 4λ2eλφ

eλφ − e−λφ

(eλφ + e−λφ)2
.

(4.4.28)
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Figure 4.6. The improved quintessence potential from equation (4.4.27) with V0 = 1 and
λ = 1/2.

In the limit where we let φ → −∞, we get:

|V 
|
V

∼ 2λe−2λ|φ| ,

V 



V
∼ 4λ2e−2λ|φ| ,

(4.4.29)

which means that the slow-roll parameters ' and η are exponentially suppressed in
this limit. The ratio of the pressure and energy density of dark energy w is given to
be [272]:

w + 1 =
2

3
' , (4.4.30)

in this regime and since ' basically vanishes we obtain w = −1 to very high precision,
as is required by observations.
What is left is to verify that this potential also works with our refined conjecture
(4.4.8), for which we have to find suitable and allowed parameters b (or a) and q.
As the condition is saturated for e−φ we can fix λ = 1/2 such that we get back the
critical expression from V ∼ e−2λφ to which (4.4.27) converges for φ → +∞. For
the limit of φ → −∞, the η part of the conjecture dominates and we can use this to
fix:

b =
1

2

�
4λ2e2λφ0

�
=

1

2
e−10 , (4.4.31)

where we have used φ0 = −10 as a somewhat arbitrary cutoff related to the time
in the past when quintessence started. The scalar potential is concave from −∞
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Figure 4.7. The conjecture (4.4.8) checked for the scalar potential (4.4.27) with λ = 1/2,
b = e−10/2 and q = 3.

until the origin and thus there is no issue satisfying the conjecture for that region.
However, it needs to hold for any part of the range of φ and starting from φ = 0 the
potential is convex. Due to ' < 1 we cannot have q too big. As it turns out q = 3 is
acceptable. The situation with these parameters is shown in figure 4.7.
As a word of caution we would like to mention that the potential we used for
quintessence here (4.4.27) is purpose built in order to illustrate how our refined
de Sitter conjecture (4.4.8) can accommodate quintessence. Whether such a model
can realistically arise in string cosmology needs to be investigated.
Finally we note that both, slow-roll inflation and quintessence models, compatible
with our conjecture need to have parameters a ( 1, b � 1.

4.4.4 Refined de Sitter Conjecture - Interim Summary

In this subsection we discussed an alternative to the refined de Sitter conjecture
(4.1.2) of [40]. Our condition (4.4.8), first presented in [3], has the advantage of
giving a single expression that incorporates the same basic features as the original
refined conjecture. Both conjectures allow positive extrema and forbid stable de Sit-
ter minima. Nevertheless, the conjectures differ in certain regions and allow different
kinds of models. For example, our condition does allow certain single field slow-roll
inflation models but gives restrictions on quintessence. The constructions that are
favored by our conjecture also are currently prime candidates according to cosmo-
logical observations [9]. Interestingly, cosmological models allowed by our conjecture
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seem to prefer a ( 1 and b � 1. We also attempted to motivate our parameters
a, b and q by known classical de Sitter constructions from [1, 238]. This lead to a
lower bound a ≥ 0.286 and an upper bound of q ≤ 3.03 if one saturates the bound
on a.
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Chapter 5

Summary and Outlook

In the present thesis we investigated several aspects about constructing de Sitter
spaces in low-energy effective theories (supergravities) originating from string theory
[1–8].
In chapter 2 we focused on Dp-branes and their description in 4d, N = 1 supergravity.
For this we utilized constrained multiplets [15–18], mainly the nilpotent chiral field
X. After reviewing non-linear supergravity [19, 20, 58–62] in general we proceeded
to give the correct description of supersymmetry breaking branes. In the case of in-
tersecting D6-branes, we cleaned up a long-standing misconception about the correct
description of the situation in 4d supergravity. Previously, it was claimed that this
situation can be described using the standard D-term of supergravity [28–31]. We
showed, however, that this cannot be the case, as a setup with linear and non-linear
supersymmetry necessarily leads to a non-linear description. In section 2.3, we used
the same basic concepts in order to give the complete description of the uplifting
anti-D3-brane at the bottom of a warped throat in the KKL(MM)T model [14, 33].
We showed [4, 32] how all terms can be included using constrained superfields and
used the so-called new D-term [55, 65, 66] in order to incorporate the sign flip that
is present for the Chern-Simons part of the action. Using the new D-term we wrote
this behavior in terms of a holomorphic gauge kinetic function where, ordinarily, it
would seem that we require an anti-holomorphic one, which would clash with su-
persymmetry. In the end, we were able to write down the complete action of the
the D3-brane at the bottom of a warped throat in the KKLT setup, including all
world-volume fields.
The two applications that were discussed here highlight the power and utility of the
formulation of non-linear supergravity using constrained multiplets. It stands to rea-
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son that the formalism can be applied to many more situations. Some possibilities
would be the description of other non-supersymmetric objects, such as NS-sources.
In principle, the methods discussed in section 2.2, are applicable to any source, if
one knows the correct scalar potential contribution. Nevertheless, working out the
details requires great care. A different kind of extension would be to include all fields
for a given situation. We showed this only for the anti-D3-brane in the KKLT back-
ground. For other situations this has not been done thus far but would be equally
interesting. The case of intersecting D6-branes in type IIA would be a worthwhile
first example due to its relevance for both cosmological and Standard Model like
scenarios [97–100].
Chapter 3 introduced new ways to construct de Sitter vacua, along the lines of the
familiar KKLT construction [5–7, 34]. All of these model rely on an uplifting anti-
brane and thus are usually not considered as classical constructions in the sense of
the de Sitter swampland conjecture. We extended the KKLT formalism to type IIA
in section 3.2 where we found that the construction relies on non-perturbative cor-
rections in all moduli directions. We claimed that these indeed can appear [166] for
all moduli. For the direction of the volume modulus we argued that such corrections
are motivated by M-theory triality [167–169]. Explicitly, these corrections can be
sourced by worldsheet instantons [171, 172]. With this, it is relatively easy to con-
struct models similar to the original KKLT proposal. Using the non-perturbative
corrections and extending the setup to the Kallosh-Linde racetrack double exponent
[35], we introduced the mass-production mechanism of de Sitter vacua in section 3.3.
By first constructing a Minkowski progenitor solution one can guarantee that, at least
for the racetrack superpotential, a stable de Sitter space can be constructed without
any tachyonic directions, if the Minkowski space has no flat directions. An additional
nice feature of this procedure is that one performs a downshift from Minkowski to
anti-de Sitter before introducing the uplift to de Sitter. This means that the uplift
does not have to be incredibly small in order to match the cosmological constant
and disentangles the SUSY breaking scale from the scale of the cosmological con-
stant. We tested the mass production procedure for various models with different
internal geometry and confirmed that it is easy to produce stable de Sitter minima
in each case, both in type IIA and IIB. Extending the range of this construction tool
even further, we investigated models based on M-theory compactifications in section
3.4. The models are based on compactifications on the generalized, twisted 7-torus
[36–39] and we found that in certain cases it is possible to forego non-perturbative
corrections in some moduli directions. This is an interesting feature since such cor-
rections are traditionally tedious to deal with. Including conjectured but not yet
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confirmed S-fluxes it is even possible to find a model that has no non-perturbative
corrections at all. If confirmed, this would be a KKLT like construction that does not
require such corrections in order to find a stable AdS point. We also considered the
relation of the M-theory inspired models to type II compactifications and found that
they generally can be translated to either type IIA or IIB if one excludes particularly
exotic contributions.
Having a way to consistently and easily build de Sitter models is a great opportunity
for string phenomenology. The methods we presented here are accessible and allow
for a wide variety of parameters. That means one can attempt to construct models
that match desired physical observations, like the current expansion of our universe
or the measured parameters from inflation. If it is possible to find a sufficiently long
and flat slope for a period of inflation in our models here, it would certainly be a
great success. Other than that, there are many open questions regarding the details
of our setup and its relation to full string theory. Investigating whether or not the
conjectured S-fluxes can explicitly appear in type IIB string theory and its compact-
ifications would be a worthwhile effort.
Finally, in chapter 4 we discussed matters regarding the swampland program [10–12],
focusing on the conjectures that restrict de Sitter constructions [3, 13, 40, 41]. In
section 4.2 we reviewed simple, classical type IIA compactifications regarding the
principle possibility for controlled de Sitter vacua. Inspired by the AdS solutions of
[42], we looked at different scaling limits where we might obtain parametrically large
volume and small coupling. The result of this investigation is that, even considering
some more non-standard ingredients [43, 44, 209–218], like KK- and NSO-sources,
the only possible limit that allows for controlled vacua is the one of a large amount
of O6-planes. This is particularly troublesome since the number of orientifold planes
in a compactification is fixed by the geometry of the internal manifold. In typi-
cal, known examples this number is restricted to be of order one. We confirmed
these findings with an explicit example and found that the proportionality constants
between the number of O6-planes and the behavior of the volume of the compact-
ification manifold and the coupling do not favor such a limit as well. While these
constants were found in a particular setup, they still should give an idea of what
kinds of manifolds we need to look for regarding the number of O6-planes if we hope
to find de Sitter solutions.
In section 4.3 we gave several counter examples to the original de Sitter conjecture
[1] that also disallowed unstable de Sitter extrema. We performed a numerical search
in type IIA compactifications and found many new such points, in addition to high-
lighting known ones from [43, 44], that explicitly violate the original conjecture that
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was formulated only giving a constraint on the first derivative on the scalar potential.
Several features of the considered models were reviewed and we showed that they
can be in controlled regions. Together with other criticisms this lead to a necessary
refinement of the conjecture [40] where a second condition on the Hessian of the mass
matrix was added, thus allowing for unstable dS extrema.
Our own refined de Sitter swampland conjecture [3] was presented in section 4.4.
Motivated by a simple effective action of a scalar field we combined conditions on
the first and second derivative of the scalar potential into one inequality. This, al-
ternative, refined de Sitter conjecture differs from the one given in [40] in physical
ways but paints the same basic picture, stable de Sitter points are prohibited. The
differences manifest in cosmological applications. Our conjecture allows for slow-roll
inflation and favors concave potentials, a feature that aligns well with current cosmo-
logical observations [9]. Interestingly, the most simple quintessence models are not
allowed by our version of the conjecture and a more complicated setup is required
there as well.
The question if de Sitter vacua from string theory are principally impossible deserves
certainly more attention. The way to proceed is twofold. The conjectures are mo-
tivated by known examples but are not mathematically proven from string theory.
Thus, if one finds an explicit solution that is in a controlled regime, satisfies quan-
tization conditions and so on, the de Sitter swampland conjectures would need to
be abandoned. The two ways are thus either proofing the conjecture, or at least,
supplying more evidence or constructing an explicit solution. Both ways are worth
pursuing and in the process it is clear that we will learn many things about the
merits and limitations of string theory. The end result is not yet clear.

Unraveling the true nature of our universe is an ongoing and daunting task. How-
ever, it is full of excitement and wonder. With the onset of precision cosmology
experiments we can hope to come closer to a true and fundamental understanding
of nature. The author hopes that his work has made a contribution to these efforts,
however small it may be.
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Appendix A

Some more Details

A.1 Modular Properties of the anti-D3-brane Action

A.1.1 Modular Invariance of the Goldstino and the Fermions

The anti-D3-brane has to be invariant under moduli transformations. For the Gold-
stino and fermion sector the transformations under SL(2,Z) are:

τ → aτ + b

cτ + d
,

G3 → G3

cτ + d
,

(A.1.1)

where the a, b, c and d are integer numbers and G3 is the background 3-flux. For
invariance, the fermions need to transform as well, in the following way:

PLλ → e−iδPLλ

PLχ
i → e−iδPLχ

i ,
(A.1.2)

with the phase:

e−2iδ =

�
cτ̄ + d

cτ + d

� 1
2

. (A.1.3)

To compensate for the transformation of G3, the nilpotent multiplet X, likewise, has
to change in the following way:

X → X

cτ + d
, (A.1.4)
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in order such that the superpotential remains constant. This, in turn, implies that
the coupling of X to the axio-dilaton:

XX̄

τ − τ̄
, (A.1.5)

has to be invariant. This fixes the coupling of the two because if the superpotential
changes in the following way:

W → W

cτ + d
, (A.1.6)

then we have to change the Kähler potential by a Kähler transformation:

K → K + log |cτ + d|2 , (A.1.7)

which in turn ensures that the supergravity theory is modular invariant. Since we
can only transform the first term in the Kähler potential (2.3.83) the remaining ones
all have to be modular invariant individually which fixes the remaining couplings.
With an analogous argument we find that

δi̄
Y iȲ ̄

τ − τ̄
, (A.1.8)

is modular invariant if the multiplets Y i transform exactly like the X:

Y i → Y i

cτ + d
. (A.1.9)

The remaining terms of the Kähler and superpotential then already have the correct
behavior under modular transformations.

A.1.2 Self-Duality of the Vector

We still have to discuss the properties of the U(1) vector. When coupled to the axio-
dilaton its gauge group will be enhanced to SL(2,Z) [275], which is just the modular
group we are discussing here. As opposed to the other contributions, discussed in
the previous subsection, the action of the vector will not be invariant. The behavior
was calculated in [275] and it was found that a specific symmetry is present for the
U(1) sector, called self-duality. It exchanges the electric with the magnetic field
strength and the coupling goes to its inverse. We need to verify that this holds for
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our description in terms of multiplets. For this we let:

PLΛα ↔ PLΛ
D
α ,

f̂D3 ↔
�
f̂D3

�−1

,
(A.1.10)

with PLΛ
D
α the dual of PLΛα. Self-duality is an on-shell property which allows us to

consider any action that reduces the

SV = −1

4

�
f̂D3Λ̄PLΛ

�
F
, (A.1.11)

after imposing the on-shell conditions. For the discussion here, it is useful to not
consider constrained multiplets (in particular PLΛα) but rather impose the constraint
explicitly in form of a Lagrange multiplier:

S̃V = −1

4

�
f̂D3Λ̄PLΛ

�
F
+

1

2

�
Φ̄PLΛX

�
F
+

�
i

2
Λ̄DPLΛ

�
F

. (A.1.12)

Here PLΛα is a chiral multiplet, explicitly not constrained under (2.1.32), and PLΦα

is the chiral Lagrange multiplier multiplet that reinstates the constraint. We now go
on and write the dual chiral multiplet PLΛ

D
α using Σ and an operator Dα, that can

be thought of as a superspace derivative [276]:

Dα : (w, c) →
�
w +

1

2
, c− 3

2

�
. (A.1.13)

Using this, we write:
PLΛ

D
α = Σ (DαU) , (A.1.14)

where U is a vector multiplet with vanishing weights: (0, 0). This allows us to
write �

iΛ̄DPLΛ
�
F
= [iΣ (DαUPLΛα)]F

= + [iDαUPLΛα − iDαUPRΛα]D

= − [iUDαPLΛα − iUDαPRΛα]D ,

(A.1.15)

where boundary terms were neglected. If we vary this F -term action with respect to
U we find:

δU : DαPLΛα = DαPRΛα . (A.1.16)

This is just the supersymmetric version of the Bianchi identity which in turn suggests
that PLΛα is the field strength of a vector multiplet via: V : PLΛα = Σ(DαV ).
Plugging these results into the Lagrange multiplier action (A.1.12) gives back the
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correct on-shell expression of equation (A.1.11). If we, however, instead vary the
other fields:

δPLΦα : PLΛα = 0 ,

δPLf̂D3PLΛα = iPLΛ
D
α − PLΦαX ,

(A.1.17)

and use that X is nilpotent, we find, by multiplying the second line with X that:

PLΛ
D
αX = 0 . (A.1.18)

Thus, we have removed the fermion from the dual multiplet PLΛ
D
α . Using these

conditions for the action (A.1.12), we find the following on-shell action:

S̃V = −1

4

�
f̂−1

D3
Λ̄DPLΛ

D
�
F
, (A.1.19)

and so we have shown the self dual property of the U(1) sector. As a last remark we
notice that, due to the nilpotency of X, the gauge kinetic function satisfies:�

f̂D3(f̄)
�−1

= f̂D3(f̄
−1) , (A.1.20)

which can be proven by using the definition of the generalized gauge kinetic function
(2.3.72). For our choice of f(τ) = −iτ , this sends τ → −1/τ . Furthermore, τ → τ+1

is a trivial symmetry of the action and thus we have the complete SL(2,Z) group
realized.
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