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ABSTRACT

The purpose of this dissertation is to apply and develop new forcing techniques to obtain mod-
els where several cardinal characteristics are pairwise different as well as force many (even
more, continuum many) different values of cardinal characteristics that are parametrized by
reals. In particular, we look at cardinal characteristics associated with strong measure zero,
Yorioka ideals, and localization and anti-localization cardinals.

This thesis consists of three main parts, each representing a significant advancement in its
respective topic. The first part introduces the property “F-linked” of subsets of posets for a
given free filter F' on the natural numbers, and defines the properties “-F-linked” and “6-F-
Knaster” for posets in a natural way. We show that §-F-Knaster posets preserve strong types
of unbounded families and of maximal almost disjoint families.

This type of posets led to developing a general technique to construct #-Fr-Knaster posets
(where Fr is the Frechet ideal) via matrix iterations of <§-ultrafilter-linked posets (restricted to
some level of the matrix). This technique allows to prove consistency results about Cichori’s
diagram (without using large cardinals) and to prove the consistency of the fact that, for each
Yorioka ideal, the four cardinal characteristics associated with it are pairwise different. Another
application is to show that three strongly compact cardinals are enough to force that Cichori’s
diagram can be separated into 10 different values.

The second part is dedicated to showing that certain types of tree forcings, including Sacks
forcing, increase the covering of the strong measure zero ideal SA. As a consequence, in
Sacks model, such covering number is equal to the size of the continuum, which indicates
that this covering number is consistently larger than any other classical cardinal characteristics
of the continuum. Even more, Sacks forcing can be used to force that non(SN) < cov(SN) <
cof(SN), which is the first consistency result where more than two cardinal characteristics asso-
ciated with SN are pairwise different. On the other hand, we prove a result providing bounds
for cof(SN), which generalizes Yorioka’s characterization of SN ([Yor(02]). This is applied to
prove that add(SN) = cov(SN) < non(SN) < cof(SN) is consistent with ZFC (via a matrix
iteration forcing construction).

In the last part, we combine creature forcing approaches from [KS12] and [FGKS17] to
show that, under CH, there is a proper w“-bounding poset with Xj-cc that forces continuum
many pairwise different cardinal characteristics, parametrized by reals, for each one of the
following six types: uniformity and covering numbers of Yorioka ideals as well as both kinds of
localization and anti-localization cardinals, respectively. This answers several open questions
from [KM21].
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INTRODUCTION

Set theory, as a field of mathematics, had its beginnings with the work of Georg Cantor, who is
considered the founder of set theory by many and one of the most original minds in the history
of mathematics. He made the awesome discovery that the linear continuum, that is, the real
line, is not countable, meaning that its points cannot be enumerated by the natural numbers.
This opened the path to the investigation of the different sizes of infinity.

Cantor introduced the notion cardinality: two sets A and B have the same size if if they are
bijectable, i.e., the elements of A can be put in a one-to-one correspondence with the elements
of B. Thus, 8y < ¢ where Ry denotes the size of the set natural numbers and ¢, the size of
the continuum, is the size of the set of real numbers. In 1878, he also conjectured the famous
Continuum Hypothesis (CH), which asserts that every infinite set of real numbers is either
countable, i.e., it has the same cardinality as R, or has the same cardinality as ¢, which is the
most famous problem of set theory. This hypothesis can also be restated as ¢ = X; where N; is
the cardinal following X, in the well-ordering of cardinal numbers.

The rise of logic and the formalization of mathematics, considering that modern mathemat-
ics can be formalized in the formal system ZFC (Zermelo-Fraenkel set theory with the axiom of
choice), led Kurt Godel [G5d40] to prove in 1938 that CH cannot be refuted in ZFC (assuming
the consistency of ZFC, that is), which also means that CH is consistent with ZFC. In formal
terms, whenever ¢ is a mathematical statement (in the language of ZFC),”¢ is consistent with
ZFC” means that no contradiction arises when ¢ is added to the axioms of ZFC (assuming
there is no contradiction in ZFC). In 1966, Paul Cohen [Coh66] was awarded the Fields medal
for showing that CH cannot be proved in ZFC. For this, he creating the method of forcing. So
the negation of CH is consistent with ZFC; and so we can conclude that CH cannot be proved
nor refuted (in ZFC). Immediately following the introduction of forcing, Solovay proved that
it is consistent with ZFC that there are as many cardinals as desired between ®; and «.

Both Godel’s and Cohen’s methods have been refined and expanded ever since, and today
they are at the core of set theoretic research. They are the main tools to prove that certain
statements are consistent with (or even independent from) ZFC.

One recurring application has been independence proofs about the so-called cardinal char-
acteristics of the continuum (see Section 1.3). These cardinals describe important properties of
the combinatorial structure of the reals, with some properties reflecting ideas from measure
theory, algebra, general topology and combinatorics. Typically, cardinal characteristics of the
continuum lie between X; and c.

For instance, whenever 7 is a (nontrivial) ideal of subsets of R which contains all single-

vii
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tons,” the cardinal characteristics associated with T are defined as follows:
add(Z), the additivity of Z, is the least size of a subfamily of Z whose union is not in 7.
cov(Z), the covering of Z, is the least size of a subfamily of Z whose union covers the reals.
non(Z), the uniformity of Z, is the least size of a set of reals which is not in Z.

cof(Z), the cofinality of Z, is the least size of a subfamily 7 C 7 such that each member of
7 is a subset of some member of 7.

cov(Z) cof(T)
e X >
non(Z) IR|

Figure 1: Diagram of the cardinal characteristics associated with Z. And arrow ¢ — 1 means
that (provably in ZFC) ¢ <.

Figure 1 shows the “trivial” inequalities between the cardinal characteristics associated with
Z. Often, connections between combinatorial properties of the real line correspond to relations
between the corresponding cardinal characteristics. The best known example is Cichori’s dia-
gram (Figure 2) which illustrates the cardinals associated with N, the ideal of Lebesgue null
sets, and with M, the ideal of meager (or first category) subsets of R, as well as the num-
bers b and ? (the unbounding number and the dominating number, or equivalently, the ad-
ditivity number and covering number of the o-ideal generated by the compact sets of irra-
tionals, see Theorem 1.3.6), and the cardinal numbers ¥; and ¢ := 2. For example, the in-
equality add(N) < add(M) means that, if  is a cardinal and any union of at most x-many
null sets is null, then any union of at most xk-many meager sets is meager. ZFC also proves
add(M) = min{b, cov(M)} and cof(M) = max{d,non(N)}, so at most 10 different values can
appear in this diagram.

add V)  add(M)  cov(M)  non(N)

Figure 2: Cichort’s diagram. An arrow r — 1 means that (provably in ZFC) ¢ < v, and the
dashed arrows indicate that add(M) = min{b, cov(M)} and cof(M) = max{d, non(N)}.

’Thatis, Z is a family of subsets of R which is closed under finite unions, any subset of a member of 7 is also in
7, it contains all the finite subsets of Rand R ¢ Z.

viii
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An important theme in combinatorics of the reals is to understand the relationship between
cardinal characteristics of the continuum. For instance, when ¢ and v is a pair of such cardi-
nals, the aim is to know whether, e.g., r < vy is provable in ZFC (which indicated a connection
between the combinatorial concepts they represent), or whether both ) < r and ¢ < y are con-
sistent with ZFC (which makes it less likely to find such a connection). In the case of Cichori’s
diagram, it has been proved that the diagram is complete in the sense that no other inequalities
(consistent with the diagram) can be proved in ZFC (see [B]95] for a complete survey about
this diagram and its completeness). Recently, Kellner, Goldstern and Shelah [GKS19], using
four strongly compact cardinals, proved the consistency of Cichori’s diagram divided into 10
different values, situation known as Cichori’s maximum. Later on, it was shown in [GKMS19]
that no large cardinals are needed for Cichori’s maximum.

Another well researched notion in combinatorics of the reals is the ideal of strong measure
zero set SN (see Subsection 1.2.2), which has been receiving a lot of attention since it was dis-
covered that the Borel conjecture, which states that every strong measure zero set is countable,
cannot be proven nor refuted in ZFC: CH (the continuum hypothesis) implies that it is false
and, on the other hand, R. Laver [Lav76] proved its consistency with ZFC using forcing. The
cardinal characteristics associated with SA/ became interesting objects of research, in particular
when related to the cardinals in Cichori’s diagram. Some of the earliest results are due to Miller
[Mil81], who proved that cov(M) < non(SN) < non(N') and add(M) = min{b, non(SN)}, by
Carlson [Car93], who proved that add(N) < add(SN), and by Cichon (see [Ser89, Cor. 3.3]),
who proved cof(SN) < 2°. Later, Yorioka [Yor02] gave a very useful characterization of SN/
in terms of o-ideals 7y parametrized by increasing functions f € w“, which are known as
Yorioka ideals (see details in Definition 1.2.7). Concretely, SN" = (\{Z; : f € w* increasing} and
Ty C N. This led to rediscover and greatly improve a result of Seredyriski [Ser89] to get that no
inequality between cof(SN) and 2% can be proven in ZFC.

Further research on Yorioka ideals has been continued by Kamo and Osuga [KO08], who
proved that add(Z;) < b and ? < cof(Zy). Afterwards, in [CM19, Cor. 3.13, & 3.21], joint with
Mejia, we proved that cov(Z;) < non(M) and cov(M) < non(Zy) and add(N) < add(Zy)
and cof(Zy) < cof(N) (this was first mentioned by Osuga [Osu08] without proofs). Figure 3
summarizes relations between the cardinal characteristics associated with the Yorioka ideals
and those in Cichoni’s diagram (for more details, see [Osu06; KO08; Osu08; CM19]).

cov(N) cov(Zia) cov(Zs) supcov non(M) cof(M) supcof  cof(N) c
° ° ° — >e ——— ; ° ° °
! cof(Zy)
I
!
add(Ziq) b : s cof(Ziq)
I
2dd(Zy) .
I
I
N ————> —
add(N) minadd add(M) cov(M) minnon non(Zy)non(Ziq) non(N)

Figure 3: Cichori’s diagram with the cardinal characteristics associated with the Yorioka ideals.
Here, minadd is the minimum over add(Zy) for increasing f : w — w; the cardinals supcov,
minnon and supcof are defined likewise.

X
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Both the covering and uniformity of Yorioka ideals are closely related to the definable car-
dinals 9}¢, 615 and b;}%f, 02Le parametrized by functions b with domain w, and h € w* (see
Definition 1.3.7). The flrst two cardinal characteristics are usually referred to as localization
cardinals, while the later two as anti-localization cardinals. Figure 4 summarizes the provable in-
equalities among covering and uniformity of Yorioka ideals, localization, and anti-localization

/TN
AN /

ch

Lc
a,d 0

a,d

DZPdC — non(Zy) —> DII;‘,:L
Figure 4: Diagram of inequalities for a block 7 = (d, h, g, b, f, a) (see details in Chapter 4).

The localization and anti-localization cardinals have appeared in many contexts. The fol-
lowing are well-known characterizations (see e.g. [B]95, Ch. 2]):

* (Bartoszynski [Bar84]) add(N) = b[S, and cof(N) = o9 when h diverges to infinity
here w is interpreted as the constant sequence w), and

(
e (Bartoszynski [Bar87], Miller [Mil82]) non(M) = bZL,fL and cov(M) = DfJL,g when h >* 1
(for the definition of <* see Section 1.1).

In general, when b(n) is infinite for infinitely many n, the localization and anti-localization
cardinals coincide with other well-known cardinal characteristics (see [CM19 Sec. 3]), so the
interesting case is when 0 < h(n) < |b(n)| < w for all (but finitely many) n.> Miller [Mil81]
proved non(SN) = mm{baLC : b € w’} when h >* 1, which can be dualized to cof(M) =
sup({o} U {baLC b € w’}) (see [CM19, Thm. 3.23]).* On the other hand, due to Bartoszynski
and Shelah [BS92] (see also [BJ95, Sec. 2.6]), b{;‘}l < non(€) and cov(€) < 0{;‘,{0 whenever

| w(gginb)(w = 0 and where & is the o-ideal generated by the measure zero closed sub-
sets of 2, furthermore the localization cardinals (and some of its variations) play an important
role for characterizing non(€) and cov(€).

Figure 5 illustrates the provable inequalities among localization (when h diverges to in-
finity), anti-localization cardinals (when % converges to 0), and the cardinals in Cichori’s
diagram (see [CM19] for a summary). In addition, as hinted in [GS93] and proved in [KM21

Lemma 2.3]:if 3 _ b(n)) converges then cov(N) < baLC and DaLC <non(N);andif > _ —)

diverges then cov(N) < 23L¢ and baLC < non(N).
The aim of this dissertat1on is to apply and develop new forcing techniques to obtain mod-
els where several cardinal characteristics are pairwise different, in particular those that we

3Other trivial instances also appear in this case as well: if h does not diverge to infinity then DIgfh = cand blgfh is
finite (Goldstern and Shelah [GS93]); and if the quotient bé;’) does not converge to 0 then b"‘LC is finite and og}; =
(see [CM19, Sec. 3].

“However, it is consistent that cof(M) < add(SN) (see [GJS93]), so we cannot dualize add(M) =

min{b, non(SN')} to prove cof(M) = max{d, cov(SN)}.
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Figure 5: The ZFC provable inequalities among (non-trivial) localization, anti-localization car-
dinals and the cardinals in Cichoni’s diagram.

discussed up to this point. In addition, we aim to force many (even more, continuum many)
different values of cardinal characteristics that are parametrised by reals, in particular local-
ization and anti-localization cardinals, and cardinal characteristics associated with Z;. This
naturally leads to the following main problems.

Main Problem A. Produce models by forcing where the four cardinal characteristics associated with
an ideal T are pairwise different. Particular emphasis will be given to N', M, SN and Z;.

Note that, for an ideal Z, there can be at most two cases for Main Problem A, namely
(Al)z add(Z) < cov(Z) < non(Z) < cof(Z), and
(A2)7 add(Z) < non(Z) < cov(Z) < cof(Z).

Main Problem B. Is it consistent with ZFC that ¢-many cardinal characteristics of the form cov(Zy)
are pairwise different? The same question is asked for cardinals of the type non(Zy), cof(Zy) and
add(Zy), and for localization and anti-localization cardinals.

Some instances of both problems are known to be consistent, for example, concerning Main
Problem A, Cichofi’s maximum yields (A1), and (A2) ,,, but the former is known from [Mej13]
and the latter is part of this thesis, which was solved before Cichori’s maximum without large
cardinals [GKMS19]. Joint with Mejia, we solved some instances of (Al)If in [CM19]; and
(A2), is solved recently in [Bre19b]. See more details in the following sections, also concerning
Main Problem B.

To attack these problems, we apply and improve the following forcing techniques: finite
support (FS) iterations (like matrix iterations) [BS89; BF11; Mej13; GMS16; CM19; Mej19], crea-
ture forcing [Kel08; KS12; FGKS17; GK21] and countable support (CS) iterations. In the follow-
ing sections, we address and describe the specific problems that are tackled and solved in this
thesis.

The main results of this thesis were obtained in joint work with J. Brendle, L. Klausner
and D. Mejia, and I. Rivera-Madrid and are contained in the papers [Car21; CMR21; BCM21;
CKM21].

Ultrafilter-extendable matrix iterations

The main results of this section will be developed throughout Chapter 2, which corresponds to
the publication [BCM?21] (joint with J. Brendle and D. Mejia).

Miller [Mil81] proved that I, the standard o-centered poset that adds an eventually dif-
ferent real (see Subsection 1.5.5), does not add dominating reals. Later, Mejia [Mej19] intro-
duced the notion of Frechet-linkedness (abbreviated Fr-linkedness) inspired by Miller’s proof. He
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showed that E and random forcing are o-Fr-linked, and that no o-Fr-linked poset adds domi-
nating reals. Moreover, it was proved that such posets preserve a certain type of mad (maximal
almost disjoint) families (like those added by Hechler’s poset I, for adding a mad family of
size k, see Subsection 1.5.3).

Frechet-linkedness is a notion of subsets of posets: given a poset P and Q C PP, Q is Frechet-
linked (in ) if, for any countable sequence (p, : n < w) of members of @, there is some ¢ € P
forcing that p,, is in the generic filter for infinitely many n. Given a cardinal 1, a poset is p-Fr-
linked if it is the union of yi-many Fr-linked subsets. A Knaster-type notion can be defined in
the natural way: a poset PP is 6-Fr-Knaster if any subset of IP of size ¢ contains a Fr-linked subset
of the same size. It is clear that any p-Fr-linked poset is p"-Fr-Knaster and, for regular ¢, any
0-Fr-Knaster poset satisfies the #-Knaster property (see Remark 2.1.3).

The notion of Fr-Knaster appears implicitly in several places. For example, using finitely
additive measures along FS (finite support) iterations, Shelah [She00] constructed an N;-Fr-
Knaster poset to force cov(N') with countable cofinality, while Kellner, Shelah and Tanasie
[KST19] used the same technique to construct a §-Fr-Knaster poset that forces

N; <add(N) < b =0 < cov(N) < non(M) < cov(M) = c. (¥1)

Using the analog of this technique for ultrafilters, Goldstern, Shelah and Mejia [GMS16] con-
structed a 6-Fr-Knaster poset that forces

N; < add(NV) < cov(N) < b =6 < non(M) < cov(M) =c. (F2)

These two results state the both possible ways to separate the cardinal invariants in the left side
of Cichori’s diagram (Figure 2).

The main challenge in both results is to force b = 6 while iterating restrictions of IE to small
models (for (%)), or similar restrictions of random forcing and of a variation of I (for (% 1)).
In fact, from both arguments, it can be inferred that #-Fr-Knaster posets preserve a strong type
of unbounded families (see Theorem 2.2.2).

Since p-Fr-linked posets preserve the mad family added by Hy for 1 < 6, it is natural to ask:

Question C. If 6 is a reqular uncountable cardinal, does any 6-Fr-Knaster poset preserve the mad
family added by Hy?

Such a mad family falls into the category of what we call -strong-Md a.d. family (see Defini-
tion 2.2.3 and Lemma 2.2.5), which are also preserved by p-Fr-linked posets for u <  according
to [Mej19]. Moreover, it was proved in [FFMM18; Mej19] that a large class of FS iterations pre-
serve the mad family added by IHy for 6 regular, which is used to prove that a = b can be
forced (where a is the minimal size of an infinite mad family, see Definition 1.3.5(2)) in various
models where Cichori’s diagram is divided into several values. In fact, this class is contained
in the class of FS iterations of p-Fr-linked posets with ;¢ < 6, but since any such iteration yields
a 0-Fr-Knaster poset (see [Mej19, Sect. 5]), the previous argument is nicely generalized with a
positive answer to Question C. Even more, this will imply that it can be forced, in addition,
that a = 0 in both (%) and (%>).

Theorem D (Theorem 2.2.6). If 6 is a reqular uncountable cardinal then any 6-Fr-Knaster poset
preserves all the §-strong-Md (a.d.) families from the ground model.

Corollary. In both (%) and (%) it can be forced, in addition, that a = b.

xii



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

Using four strongly compact cardinals, Goldstern, Kellner and Shelah [GKS19] applied
Boolean ultrapowers (see [KTT18]) to the poset that forces (%) to prove the consistency of

Ny <add(WNV) < cov(N) < b <non(M) < cov(M) <9 <non(N) < cof(N) < ¢ (3)

With the same method, in [KST19] Boolean ultrapowers of the poset that forces (%) guarantee
the consistency of

N; < add(WNV) < b < cov(N) < non(M) < cov(M) < non(N) <9 < cof(N) < c. (4)

These results are examples of Cichori’s diagram divided into 10 different values (the maximum
possible).

In this work, we are also interested to get strengthenings or variations of (% 1), (%2), (%3)
and (%) with respect to ZFC alone or with weaker large cardinal assumptions. The following
result strengthens (%>).

Theorem E (Theorem 2.4.1). If 6y < 61 < 03 < pu < v are uncountable reqular cardinals and X is a
cardinal such that \<92 = ), then there is a ccc poset that forces (see Figiire 6)

add(N) =6y < cov(N)=6; <b=a=060; <non(M) = p
<coviM)=v <d=nonN)=c= A\

cov(N) non(M) cof(M) cof(N) .
SE .
0 K : A
b 0
bo 0 »
Nl ® é _ 4 -
add(N) add(M) cov(M) non(N)

Figure 6: Seven values in Cichori’s diagram with the left side separated.

The method to prove Theorem E is a modification of the method in [GMS16] to prove (%),
which is reviewed as follows. To force b = 03 < non(M) = p < cov(M) = ¢ = A, the
idea is to perform a FS iteration of Suslin ccc posets restricted to small models, this to guaran-
tee that each cardinal invariant of the left gets its desired value. Though classical techniques
from [JS90; Bre91] can be used, the main issue is to guarantee that b does not get larger than
desired. The reason is that restrictions of IE are used (to increase non(M)) along the iteration,
and such restrictions may add dominating reals by a result of Pawlikowski [Paw92]. Hence,
chains of ultrafilters on w are used to guarantee that no dominating reals are added, even more,
to guarantee that the iteration is #5-Fr-Knaster. To achieve this, the following is required.

(P1) 292 > ), so that at most ;-sequences of ultrafilters are enough (by [EK65]).
(P2) 6% < yforany 6 < p.

(P3) The chains of ultrafilters and the iteration are constructed simultaneously by recursion.
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Now, to prove Theorem E we need to additionally separate cov(M) and d, which lie on the
right side of Cichoni’s diagram, while separating all the left side. Mejia [Mej13] has shown that
Blass’s and Shelah’s [BS89] method of matrix iterations works to separate several cardinals on
the left and right side simultaneously, which we use to produce a method of matrix iterations
with matrices of ultrafilters to extend the method from [GMS16]. Concretely, we introduce the
concept of <r-uf-extendable matrix iteration (see Definition 2.3.1) and prove the following result.

Theorem F (Theorem 2.3.3). If k is an uncountable reqular cardinal then every <r-uf-extendable
matrix iteration is k-Fr-Knaster.

In order to define this type of matrix iterations, we required to generalize the notion of
Fr-linked as follows. When F' is a free filter on w, P is a poset and Q C P, we say that @ is
F-linked if, for any sequence (p, : n < w) of members of @, there is some ¢ € P forcing that
{n < w: p, € G}is F-positive (note that this is the same as Fr-linked when F is the Frechet
filter). In the natural way, the notions p-F-linked and 0-F-Knaster are defined for posets. We also
say that Q C P is uf-linked if @) is F-linked for every free filter F' (equivalently, for every non-
principal ultrafilter); say that IP is p-uf-linked if it is the union of <p-many uf-linked subsets;
and P is -uf-Knaster if every subset of IP of size 6 contains a uf-linked subset of the same size.”

A curious fact proved in [Mej19, Lemma 5.5] (see Lemma 2.1.2) is that, for ccc posets, the
notions Fr-linked and uf-linked are equivalent, which means that the notions above are not
generalizations in the context of ccc. However, the notion p-uf-linked (for p < 6) is implicitly
used to construct the chains of ultrafilters in [GMS16], and it is also necessary to construct
matrices of ultrafilters along an uf-extendable matrix iteration. For short, a <s-uf extendable
matrix iteration produces a FS iteration (P,, Q. : a < 7) (at the top of the matrix) of k-cc posets
where each iterand Q, is jo-uf-linked with respect to a complete subposet of IP,, (lying below in
the matrix) for some p, < x (but not necessarily p,-uf-linked with respect to IP,,).

The most surprising fact about our method is that it does not rely on conditions like (P1)-
(P3), e.g., the matrix iteration can be defined before considering any matrix of ultrafilters, and
no restriction on the amount of matrices of ultrafilters is required. For each quite uniform
countable A-system (p, : n < w) we can construct a matrix of ultrafilters along the matrix
iteration and a condition ¢ forcing that {n < w : p, € G} is infinite, which will be enough to
guarantee that the construction is x-Fr-Knaster.

The following constellation can also be proved by our method.

Theorem G (Theorem 2.4.2). If §y < 61 < p < v are uncountable regular cardinals and X is a
cardinal such that X< = ), then there is a ccc poset that forces (see Figuire 7)

add(WV) =6y <b=a=10; <cov(N)=non(M) =pu
<cov(M)=non(N)=v<d=c= A\

Theorem G shows (without using large cardinals) the consistency of (A2),,. The statement
(A1), is also forced, though its consistency was already proved in [Mej13]. On the other hand,
Brendle [Bre19b] introduced a new forcing method called shattered iterations to prove the con-
sistency of X; < cov(M) = non(N) < non(M) = cov(N). This led to get the consistency of
(A2) . The consistency of (A1), is still open.

Joint with Mejia [CM19], we produced a ccc poset, via a matrix iteration, that forces
add(Zy) < cov(Zy) < non(Zy) < cof(Zy) for any f above some fixed f*, which solves (AD)z,
but not for all f at the same time. Now, thanks to Theorem G, we can prove the consistency of
add(Zy) < cov(Zy) <non(Zy) < cof(Zy) for any f, i.e., (Al)z, forall f.

°In general, these notions are not equivalent to “y-F-linked (resp. 6-F-Knaster) for every free filter F on w”.
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cov(N) non(/\/_l)_ | _ci)f(‘/\/l) cof(N) o
1 ‘i' A
b 0
%o 0 B
Mue add(N) add%/\/_l)_ T _C(_)v(/\/l) non(N)

Figure 7: Separation of the cardinals associated with M and V.

Theorem H (Corollary 2.4.5). There is a ccc poset that forces add(Z;) < cov(Zf) < non(Zy) <
cof(Zy) for any increasing f € w®.

The consistency of (A2) : for some f is still known.
Finally, Boolean ultrapowers can be applied to the poset constructed for Theorem E to
weaken the large cardinal hypothesis of (%3).

Theorem I (Theorem 2.4.6). Assuming three strongly compact cardinals, there is a ccc poset that
forces

N; < add(N) < cov(N) < b < non(M) < cov(M) <0 <non(N) < cof(N) < c.

Result (#3) requires further hypotheses, for example, GCH is assumed in the ground
model, the cardinals on the left side of Cichori’s diagram cannot be successors of cardinals
of countable cofinality, and the value for b should be a successor. These assumptions can be
omitted for Theorem I except of GCH that can be weakened substantially.

Theorem E was a new result in the sense that no large cardinals are used to prove it, and
it is another example of Cichori’s diagram divided into 7 values without using large cardinals.
See more examples in [FFMM18; Mej19] for 7 values.

The consistency of (%3) and (%) was proved in [GKMS19] without using large cardinals.
Although Theorem E, G, H and I are covered by this new result, our methods are different,
and in particular Theorem E may be useful as a starting point for further separation results for
Cichori’s diagram. A more detailed discussion is provided in Section 2.5.

Cardinal characteristics associated with the strong measure zero ideal

The main results of this section will be developed throughout Chapter 3, which corresponds to
the publications [CMR21] (joint with D. Mejia and I. Rivera-Madrid) and [Car21].

The consistency results about the cardinal characteristics of SA have been studied since it
was discovered that the Borel conjecture is independent of ZFC. In this direction, Goldstern,
Judah, and Shelah [G]S93] used a countable support (CS) iteration of proper forcings to prove
the consistency of cof(M) < add(SN), and with finite support (FS) iterations of ccc forcings
Pawlikowski [Paw90] constructed a model where cov(SN) < add(M). Afterwards, Yorioka
[Yor02] proved the consistency of cof(SN) > ¢, while cof(SN) < ¢ follows from CH.

We know that add(N) < add(SN) < non(N) and cov(M) < non(SN) < non(N), how-
ever, due to the consistency results above, no other inequality between add(SN'), non(SA') and
another cardinal in Cichori’s diagram can be proved. On the other hand, unsolved problems
about cov(SN) and cof(SN) still remain.
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Question J.  (a) Is there a classical cardinal characteristics of the continuum (different from ¢ and
cof(SN)) that is an upper bound of cov(SN')? In particular, is cov(SN) < cof(N)?

(b) Is there a classical cardinal characteristics of the continuum (different from the obvious ones,
cov(N) and cov(M)) that is a lower bound of cof(SN')? In particular, is add(M) < cof(SN)?
Is cof(N') < cof(SN)?

In this work, we answer Question J(a) in the negative, that is, we show that cov(SN) is
consistently larger than cof(N') and even larger than any classical cardinal invariant of the
continuum (like the almost disjointness number a, the independence number i and the ultrafilter
number u, which are maximal among classical cardinal invariants of the continuum that could
be below ¢, see Definition 1.3.5). The answer is a direct consequence of the following theorem.

Theorem K (Theorem 3.1.13). In Sacks model, cov(SN) = Ra.

As a consequence of Theorem K, we partially answer (A2)s,,, more precisely, we get the
first consistency result where more than two cardinal characteristics associated with S\ are
pairwise different. Concretely,

Theorem L (Theorem 3.1.14). Assume CH and that ) is an infinite cardinal such that \*t = \. Then,
there is a cofinality preserving poset that forces

cof(N) =a=u=i=add(SN) = non(SN) = X; < cov(SN) = ¢ = Ry and cof(SN') = A

For this proof, we first add A\-many w;-Cohen reals and, afterwards, perform a CS iteration
of Sacks forcing of length Ny to force cov(SN') = Ry. This later is possible thanks to Theorem K.
In terms of ideals, this implies that SN* C s° where s = {X C 2¥ : ¥p € $3¢ < p([g] N
X = 0)} is the Marczewski’s ideal (originally defined in [Mar35]) and $ denotes Sacks forcing, so
cov(s?) < cov(SN).® We also use Yorioka’s characterization of cof(SA') ([Yor02], Theorem N
in this work).

To continue this line of research, we get another result where more than two cardinal char-
acteristics associated with SA are pairwise different. This partially solves (A1)s,,. Concretely,

Theorem M (Theorem 3.2.18). Let k < X be reqular uncountable cardinals where k<% = 1, A<* = \
and let A1, Ao be cardinals such that X < M\ = )\kfo, and N < Ay = )\é\. Then there is a cofinality
preserving poset that forces

add(SN) = cov(SN) = k < non(SN) = X < cof(SN) = dgand ¢ = )\

Note that we did not specify which of A; and \; is larger, both variants are possible.

There are two key concepts in the proof of Theorem M. First is the dominating number of
(S*, <), denoted by 23, where < is interpreted pointwise and (S, <g) is a directed preorder (see
Example 1.3.10), and the second are Yorioka ideals.

Yorioka ideals play an important role in the following characterization of cof(SN'), namely:

Theorem N ([Yor02, Thm. 3.9]). Ifadd(Zs) = cof(Z;) = A for all increasing f € w*, i.e, minadd =
supcof, then cof(SN') = 0y (the dominating number of \*, see Definition 1.3.12) .

To prove Theorem N, Yorioka constructed a dominating family (f, : a < A) in w* along
with a matrix (A2 : a, B < ) of subsets of the Cantor space 2“ satisfying the following proper-
ties:

®Also non(SN) < non(s°), but non(s°) = ¢ because [2“]<° C s°.

Xvi



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

Va, 5 < A (Ag C 2% is a dense G5 set and Al ¢ Zs.);

Vo, 3,8 < A(B < B — AS C AB)y;

Va < AVA € Ty, 38 < A(A C A5); and

Va <AVB €Ty, (>0, A\ B#2).

<o
This gives a Tukey equivalent between (SN, C) and (\, <), which implies cof(SA') = 2, (for
Tukey equivalence, see Definition 1.3.15 and Theorem 1.3.16).

In this work, we introduce the notion of A-dominating system (see Definition 3.2.7), which
lets us then refine Theorem N by providing bounds to cof(SN') with hypotheses weaker than
minadd = supcof. We use this notion to study the relationship between 93 and the cofinality of

SN.

Theorem O (Theorem 3.2.9 and 3.2.13). If there is some A\-dominating system on a directed preorder
(S, <g) then

1. SN is Tukey below (S*, <).

2. If k < X < minnon and (S, <g) = (k x \, <), then (M, <) is Tukey below SN, in particular
0)\ < cof(SN) and add(SN) < A

This theorem implies Theorem N because a A-dominating system on A\ can be obtained
when A = minadd = supcof, see details in Corollary 3.2.15. On the other hand, we can force in
Theorem M that there is a A-dominating system on (x x A, <) while add(Zy) < cof(Zy) for all
f.

To prove Theorem M we will perform a forcing matrix iteration to add a A\-dominating
system on (x x A, <). Concretely, we go through the following steps:

(P1) We will force ¢ = A and 97, , = 9, = A2 by adding A2-many A-Cohen reals and \;-many
w-Cohen reals (in that order).

(P2) In this generic extension, we construct a ccc forcing matrix iteration of height A and length
Ak (ordinal product). Along the matrix iteration, we construct a dominating family (f, :
v < A) along with a A\-dominating system on (x x A, <). Theorem O implies that the
matrix iteration forces cof(SN') = \y. For the construction, we use restricted localization
forcing.

(P3) The constructed matrix iteration forces cov(M) = cof(N) = X and add(N) = non(M) =
k, s0 k < add(SN) and non(SN) = X\ because add(N) < add(SN) and cov(M) <
non(SN) < non(N). On the other hand, since the matrix iteration results in a ccc FS
finite support iteration of length with cofinality , cov(SN) < k.

The main point of using a matix iteration is to produce the A-dominating system in the
generic extension. Although this could be achieved by a regular ccc FS iteration, many technical
issues that would appear are avoided when constructing the iteration with a matrix structure
instead.
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A new result from the Creature World

The main results of this subsection will be developed throughout Chapter 4, which corresponds
to the publication [CKM21] (joint with L. Klausner and D. Mejia).

Klausner and Mejia [KM21] used a CS (countable support) product of limsup creature-like
forcings to prove that, consistently, uncountably many uniformity numbers of Yorioka ideals
and uncountably many anti-localization numbers d3%¢ are pairwise different. Our research is a
continuation of this work and solves several instances from Main Problem B. To achieve this,
we propose and prove the following result.

Theorem P. Assume CH. Then there is an Ra-cc w*-bounding proper poset which forces that there are
continuum many pairwise different cardinal characteristics of each one of the following six types: blbj‘;L,
D%ﬁu bg,LhC, D;Lhc, non(Zy) and cof(Zy).

In the direction of this research topic, Goldstern and Shelah [GS93] used a CS product of
limsup tree posets to force that X;-many cardinals of the type 055 are pairwise different, answer-
ing a question of Blass [Bla93]. Here “limsup” trees refers to trees like in Sacks’ and Miller’s
perfect trees posets, where splitting can be delayed from any node. This result was improved
by Kellner [Kel08] who showed that, consistently, continuum-many cardinals of the type O{ﬁl
are pairwise different. Later, Kellner and Shelah [KS09] included ng;f in this line of research:
they introduced a CS product-like liminf forcing construction with decisive creatures with halo-
ing to force that there are N;-many pairwise different cardinals of each of the types DII;% and
b,?%f, which was improved in [KS12] to continuum-many using the same forcing technique, but
in7cluding creatures that determine the parameters b and h generically. Here “liminf” means
that splitting becomes recurrent from some point, like trees in Laver’s poset. We remark here
that the construction of the suitable decisive creatures in these latter two references is very
complex, which makes it rather difficult to understand the intuition behind the main forcing
construction.

Concerning Yorioka ideals, Kamo and Osuga [KO14] discovered connections between these
ideals and anti-localization cardinals, concretely, cov(Zy) lies between two cardinals of the form
b2k¢ (and dually, non(Zy) lies between two cardinals of the form 23L°). This is their starting
pc;int to force, via a FS (finite support) iteration of ccc posets, infinitel}} many pairwise different
cardinal characteristics of each of the types cov(Zy) and b}fjf, and even continuum many under
the existence of a weakly inaccessible cardinal.

These techniques inspired Brendle and the Mejia [BM14] to force, via FS iterations of ccc
posets, infinitely many pairwise different cardinal characteristics of the type b{;jl, even con-
tinuum many under the existence of a weakly inaccessible cardinal.” Much later, joint with
Mejia [CM19], we combined the methods of [KO14] and [BM14] to force infinitely many pair-
wise different cardinal characteristics of each of the types cov(Zy), bthC and bl%%, even con-
tinuum many under the existence of a weakly inaccessible cardinal. In this framework, it is
not possible to force continuum-many different cardinals of these three types without using
a weakly inaccessible: usually FS iterations of ccc posets are constructed with a length of un-
countable cofinality, and this cofinality is forced between non(M) and cov(M); on the other
hand, all these cardinal characteristics are below non(M) (see Figure 3 and 5), so if continuum-
many different cardinals are forced, then the cofinality of the length of the iteration must be
weakly inaccessible (and so it is forced non(M) = ¢ weakly inaccessible).

"The original motivation in [BM14] was to force infinitely many pairwise different cardinal characteristics asso-
ciated with Rothberger gaps in F,, ideals on w, but these turned out to be connected with the localization cardinals
of the form b;5,.
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Very recently, Klausner and Mejia [KM21] refined Kamo’s and Osuga’s connections be-
tween Yorioka ideals and anti-localization cardinals (see e.g. Lemma 4.2.1) to prove that, con-
sistently, there are X;-many cardinal characteristics of each of the types non(Zy), ngjf and DIE%
This leaves open the question on whether there could be continuum-many different cardinals
of each of the forms non(Z;) and D;Lhc, and also of the form cov(Z;) and b%% without using
inaccessible cardinals (see [KM21, Questions C and E]). We answer all these questions in the
positive, even more, as we claim in Theorem Q, we construct a single model where there are
continuum-many different cardinals for each of the six types discussed.

We mainly work with a creature forcing construction as in [GK21] mixed with liminf crea-
tures for parameters as in [KS12]. We review the evolution of these techniques for motivation.
To force continuum many 055 and b2k, Kellner and Shelah [KS12] proposed a mixed-limit
creature forcing construction (i.e. one that mixes limsup and liminf creatures) that takes care of
the continuum many parameters ((be, h¢) : £ < p) while forcing ¢ = 1 and (pairwise different)
values for b;’;‘;‘z& = D%; he (although liminf is only used in their applications). Two very impor-
tant features of liminf creatures that come from [KS09] are halving and decisiveness: halving,
along with the more common notion of bigness (in the context of creatures), is essential to prove
properness and continuous reading, while, decisiveness is used to prove that the construction
indeed increases bg;‘;lg to the desired value. As mentioned earlier, the construction of deci-
sive creatures is quite elaborated, making it hard to keep track of the intuition connecting the

construction to what is to be forced.

A bit later, A. Fischer, Goldstern, Kellner and Shelah [FGKS17] considerably simplified the
mixed-limit creature forcing framework by allowing subatomic creatures in the construction of
liminf atomic creatures, ensuring decisiveness (implicitly, because the notion is not directly
used) and a very intuitive construction of the creatures. This framework was used to force
a constellation in Cichori’s diagram where five cardinal characteristics on the right side are
pairwise different, namely cov(N) = 2 = Xy, non(M), non(N), cof(N') and ¢ (see Theorem 4.9.1
and Figure 4.3).

Goldstern and Klausner [GK21] improved [FGKS17] to force the same constellation of Ci-
chori’s diagram plus N;-many different localization cardinals of the form 935 . They managed to
separate the components of the creatures and present the forcing construction as a CS product
of one (large) liminf part to increase non(M), one large limsup part to increase the continuum
(similar to a CS product of Sacks posets, original from [FGKS17]), and several single limsup
posets to increase non(\), cof(NV) and the localization cardinals.®

In this work we combine the methods of [GK21] with a liminf creature forcing as in [KS12]
for parameters, and construct a large creature forcing to prove Theorem P. This construction is
not a CS product in the strict sense, but it looks like one.

The first component, called the pr-part, is a large liminf creature forcing, similar to the liminf
part of the forcing in [GK21], that adds blocks of parameters.” A block is a finite sequence
v ={(d,h,g,b, f,a) of increasing functions satisfying the requirements in Definition 4.2.4, whose
important feature is that it satisfies the diagram of inequalities in Figure 4 (see Lemma 4.2.5).

With the notion of block we can restate Theorem P more precisely.

81n fact, the subatomic creatures corresponding to non(M) in [FGKS17; GK21] come from those defined in [KS09;
KS12] to increase by (which we use in the current paper to add parameters); and the atomic creatures correspond-
ing to non(\) actually increases some anti-localization cardinal 9} (that lies below non(/\')). We use an equivalent
formulation of these atomic creatures in our framework.

9Al’chough this can be done with limsup forcing, it may not (easily) ensure a property called “separated support”

(from [KS09; KS12]), which we require to separate the continuum many cardinal characteristics.

Xix
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Theorem Q. Assume CH. Let 1 = p™0 be an infinite cardinal, SP* a set of size ju and, for i € SP*, let
ki = K50 be a cardinal. Then there is a proper w*-bounding Ro-cc poset Q which forces, for all i € SP*,

D c=p,
(I) blocks 7€ = {di, b, gi, bie, fi¢, al) and 72" = (h!, b2, g2t b3l f2l qdly,

Z

(Il ble == COV(If}c) paL ok =l¢ dle gle = K (the upper part of Figure 4), and

blc hlc dlc dlc

(IV) 02, o = non(Zya) = 05, .\ = r; (the lower part of Figure 4).

To prove this theorem, we use the pr-part to add the blocks in (II) (while forcing (I)), and we

attach to the pr-part one (large) liminf creature forcing to increase bblc ple for all 4, and several

individual limsup creature forcings to increase Daalchal Although the pr-part can be isolated,
the other components depend on the p0551b111t1es determined by the pr-part. The subatomic
creatures used for these other components are the same ones used in [KM21] to manipulate
02%;3 (which also works for bLC in the liminf context).!’

To force d-¢ ale dle < k; and d¢ ot < ki, we use similar arguments as in the cited works on

creature forcmg we force that the set of slaloms that can be continuously read only using a

fixed set of indices of size x; is a witness of the cardinal characteristic. This is derived from a

property we call (a;, d;)-bounding over {i} U S U S2!, which is presented in Lemma 4.8.12.
Since our forcing construction is still quite complex, we need to motivate and explain more

detailed features while building its different components. This is taken care of throughout
Chapter 4.

o prove Theorem Q we expected to add only one block 7 = (d;, hs, gi, bi, fi, a;) for each i € SP*, and force that
all cardinals in Figure 4 corresponding to 7; equal x;, by using (besides the pr-part) one large liminf creature con-
struction to increase b&f 4, for all i (i.e. without limsup forcings). However, we could not find the right construction
of the parameters that allows this.

XX
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1
PRELIMINARIES

Mathematicians who are not set theorists generally consider “null” as senior to “meagre”, that
is, as a more important case; set theorists inversely, as set-theoretically Cohen reals are much

more manageable than random reals . . .
— Saharon Shelah

The main purpose of this chapter is to give an overview of some important definitions and
results that will be used in this thesis.

1.1 Some notation
Most of our notation is quite standard and compatible with that of classical textbooks on Set
Theory (see e.g. [Jec03; Kun11]).

Set w'™ := {d € w¥ : d(0) = 0 and d is increasing}. For any set 4, id4 denotes the identity
function on A. Denote id := id,,. If z is an ordered pair, 2y and z; denote the first and second
component of z respectively. For sets X and Y, Y denotes the set of functions from X into Y.
Given a cardinal number «, [X]|<" denotes the set of all subset of X of size < x. Likewise, we
define [X]=F and [X]".

Given a formula ¢, V>°n ¢ means that all but finitely many natural numbers satisfy ¢; 3°°n ¢
means that infinitely many natural numbers satisfy ¢.

For z,y : w — On, we write

o r <*yif V>°n (z(n) < y(n)), which is read x is dominated by y. Likewise, z <* y is defined.
o 1z #* yif Vn(z(n) # y(n)), which is read x is eventually different to y.
o <y if Vk < wv®n(x(nk) < y(n)).

When b = (b(n) : n € w) is a sequence of non-empty sets and h : w — w, denote

[Io:= ] v(n). SO 1) = [ B(n)]="™, and seq_,(b) == (] [ b(0).

n<w n<w n<wi<n

For each o € seq_,,(b) define

[s] :=[s]p = {w € [[b:s Ca}.

and for each o € (seq_(b))” define
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* [0]loo == [0lp0o ={z € [[b:F®n <w(o(n) C x)}.

* ht, € w* by ht,(7) := |o(7)] (see Figure 1.1).

Figure 1.1: The function ht,, represent the length of each value of ¢, for o in (seq_,(b))~.

As a topological space, [ | b is endowed with the product topology, where each b(n) has the
discrete topology. Standard cases are:

e The Cantor space 2¥, when b(n) = 2 for all n, and
e The Baire space w*, when b(n) = w for all n.

The standard basis for the topology on [[ b consists of all the sets of the form [s] ([s] is a
clopen set, that is, open and closed) for s € seq_,,(b). Therefore [ ] b is a zero dimensional space
(recall that space is zero dimensional if it has a basis that consists of clopen sets). Even more, [] b
is a perfect space when 3°°n(|b(n)| > 2), and [] b is a compact space for any b € w®.

Operations and relations between functions from w into the ordinals are interpreted point-
wise. For example, if b and c are such functions, b - ¢ denotes the pairwise ordinal product of
both functions, and b < ¢ indicates that b(n) < ¢(n) for any n < w. Also, constant objects may
be interpreted as constant functions with domain w, for instance, the w in S(w, ) is understood
as the constant function w.

Given a non-empty set A we say that /' C P(A) is a filter on A if it fulfills the following:

e AcFand0 ¢ F,
* XNY € Fforany X,Y € F,and
e forany X,Y € F,ifY C Xand Y € F'then X € F.

Let F' be a filter on w and let Fr := {z C w : |w \ x| < Ny} be the Frechet filter. Say that F' is free
if Fr C F. A set z C w is F-positive if it intersects every member of F'. Denote by F* the family
of F-positive sets. Note that z € Fr' iff z is an infinite subset of w.

Let X be a nonempty set. A setZ C P(X) is called an ideal if fulfills:

(i) if A, B €7, then AUB €T,

(i) if BeZand A C B, then A € Z, and
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(iii) [X]<“ CZand X ¢ T.

An ideal 7 is called a o-ideal if it is closed under countable unions.

We review the following notation about trees. Say that 7' C w<“ is a tree if ( ) € T and
Vt € TVs C t(s € T). Denote by Lv,(T") := T N w" the n-th level of T' and, for any s € T, let
Tl .= {t € T: s Ctort C t}, which is also a tree. Denote by [T] =: {z € w* : Vn < w(z|n €
T)} the set of infinite branches of T'.

Let ' C w<“ be a tree. Say that s € T is a splitting node of T if s~ (i), s~ (j) € T for some
i # j. Denote by spl(T) the set of splitting nodes of 7. For n < w, let spl,, (T) be the set of
s € spl(T") such that there are exactly n-many splitting nodes strictly below s. Given another
tree T" C w¥, write T" C,, T when T” C T and there is some m < w such that all the elements
of spl,,(T') have length < m and 7" Nw™ = T'Nw™. Note that 77 C,,+1 T implies 7" C,, T, and
that the relation C,, is transitive.

1.2 Reals and ideals

1.2.1 Polish spaces and Lebesgue measure
Definition 1.2.1. Let (X, 7) be a topological space. We say that (X, 7) is a Polish space if it is
completely metrizable and separable.

Classical examples of Polish spaces are the real line R with the usual topology, [[ b when
|b(n)| < N for all n < w, in particular the Cantor space 2* and the Baire space w“. In practice,
an uncountable Polish space is thought as space of reals. For instance, 2* is homeomorphic to
the Cantor ternary set, and the Baire space w* is homeomorphic to the space of the irrational
numbers. From now on, we refer as reals to the members of any uncountable Polish space.

For a topological space X, we say that A C P(X) is a o-algebra if

(i) X € A,
(ii) if A€ Athen X \ A € A, and

(iii) if A, € Aforalln € w, then |, . A, € A.

necw

Let B(X) be the smallest o-algebra containing all open subsets of X, which is called the o-
algebra of the Borel subsets of X.

Say that A C X is nowhere dense (nwd) if int(A) = 0, and A is meager if it is the countable
union of nwd sets. Let M(X) be the o-ideal of meager subsets of X. When the space is clear
from the context, we just write M to denote the ideal.

Given a o-algebra A on P(X), say that ;1 : A — [0, +00] is a measure if it fulfills the following
properties:

(@ (@) =0
®) 1(Upew An) = >0, 1(Ap) for any pairwise disjoint family {4, : n <w} C A

We say that N C X is p-null if there is a B € A such that N C B and p(B) = 0. Denote by
N (X, A, j1) the o-ideal of p-null subsets of X. When the space and the measure are clear from
the context, we just write N. We say that y is a probability measurable if it is a measure such
that (X)) = 1. A measure p is o-finite if X = J, o, An where each A, has finite measure. A
measure y is continuous if p({z}) =0 forall z € X.

Let us conclude this subsection by introducing the Lebesgue measure on [[ b when b : w —
(w+ 1) ~ {0}. To do this first define, for n < w, the probability measure p,, on the power set of
n:
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(i) when n < w, i, is the measure such that, for k < n, 1, ({k}) = 1, and
(i) when n = w, p,, is the measure such that, for & < n, u,({k}) = ﬁ

Denote by Lb;, the product measure of (i) : n < w), so Lby is a continuous probability
measure on the Borel o-algabra of [ | b. To be more precise, Lb, = [[,, ., tt(n) : B(I1b) — [0,1]is
the unique measure on B([] b) such that, for any s € seq,,(b), Lby([b]) = [T; |5 Lbs(i) ({s(2)}).

On the other hand, denote by Lb the Lebesgue measure on R. Note that, for any open
interval I, Lb([) is the length of I.

1.2.2 The o-ideal of strong measure zero sets
Definition 1.2.2. A set X C R has strong measure zero if, for every sequence (€, )nc., of positive
reals, there are open intervals (I,)c., such that Lb(I,,) < e, and A C |, ¢, In-

From the definition, it can be easily proved that each strong measure zero set has measure
zero and they from a o-ideal. Even more, no perfect set cannot have strong measure zero (see
Corollary 1.2.9). This implies that the notions of measure zero and strong measure zero never
coincide.

Definition 1.2.2 can be naturally generalized to any arbitrary metric space, simply using
balls instead of intervals. For this, consider the following notation:

For a metric space (X, d), o € X and € > 0, the open ball around z of radius ¢ is the subset

B.(z9) :={x € X : d(xo,z) <€}

of X. Therefore, the notion of strong measure zero can be generalized to metric space in the
following way.

Definition 1.2.3. Let A C X. Say that A has strong measure zero with respect to d if for each
sequence (g,,)n<,, Of positive reals there is some sequence (z,),<. of elements of X such that
X C U, <u, Be, (zn). Denote by SN'((X, d)) the family of all subsets of X with strong measure
zero. We omit d when understood and simply write SA/(X). We also write SA when the space
X is understood.

The concept of strong measure zero, in general, may depend on the metric, but it is inde-
pendent of the metric for locally compact Polish spaces.

Lemma 1.2.4. Let X be a locally compact Polish space, and let do and dy be two compatible metrics'.
Then for every A C X, A € SN (X, dy) ifonly and if A € SN (X, dy).

An analogous of Definition 1.2.2 applies to [[b when b : w — w ~ {0}, however, one uses
basic clopen sets instead of intervals. Working in [] b has the advantage that Definition 1.2.2
can be expressed in a “purely combinatorial” way, so looking ahead to Section 3.1 we use the
following simple characterization of strong measure zero in [[ b for combinatorial purposes,
which is possible thanks to Lemma 1.2.4.

Lemma 1.2.5. Let b : w — w ~ {0}, let A C [[b. Then A € SN(]]b) iff for every f € w* there is
some o € (seq_,(b))” with ht, = f such that A C |J,;_[o(i)].

We conclude this subsection with the following practical characterization of SNV ([]b).

Lemma 1.2.6. Let b : w — w ~ {0}, X C [[band let D C w* be a dominating family. Then
X € SN(I1D) iff for every f € D there is some o € (seq,,(b))* with ht, = f such that X C [0]ec.

This means that they generate the same topology of the Polish space.

4
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1.2.3 Yorioka ideals
Yorioka ideals are defined as follows.

Definition 1.2.7 (Yorioka [Yor02] ). For f € w* define
Z;:={X C2¥:30 € (25¥)¥(X C [0]e and ht, > f)}.

Any family of the form Z; with f increasing is called a Yorioka ideal. When f is increasing
SN(2¥)CI; CN.

Lemma 1.2.8 (Yorioka [Yor02]). When f is increasing Ly is a o-ideal . Even more, SN'(2*) = ({Zy :
f increasing}.

The next lemma implies that no perfect set can have strong measure zero.

Corollary 1.2.9 ([Yor02, Lemma 3.7]). Let A be a perfect subset of 2*. Then there some increasing
f € w* suchthat A ¢ Zy.

1.3 Cardinal characteristics

In this section, we present some classical cardinal characteristic that are relevant for the main
results of this thesis. For more details and the proofs of all the results of this section, see [B]95;
Bla10; CM19; KM21].

1.3.1 Some classical cardinal characteristics
Definition 1.3.1. Let Z be an ideal on P(X) containing all the finite subsets of X. Define the
cardinal characteristics associated with T by:

1. add(Z) :=min{|J|: J CZand JJ ¢ L} the additivity of Z;

2. cov(Z) :=min{|J|: J CZand |JJ = X} the covering of Z;

3. non(Z) ;== min{|A| : AC X and A ¢ T} the uniformity of Z;

4. cof(Z) := min{|J| : J C T is cofinalin (Z, C)} the cofinality of .

For our applications, we are interested in the cardinal characteristics associated with M, N,
Zs, and SN for an uncountable Polish space. The following outcomes state that these cardinals
of M and N do not depend on the chosen uncountable Polish space.

Theorem 1.3.2. Let X,Y be perfect Polish spaces.

(a) ([Kec95, Subsect. 8.F]) B(X)/M(X) and B(Y)/M(Y') are isomorphic complete Boolean alge-
bras.

(b) ([Kec95, Subsect. 15.D]) If ¥ : B(X)/M(X) — B(Y)/M(Y) is an isomorphism, then there
exists a Borel isomorphism f : Y — X such that V([A]) = [f~[A]] for any A € B(X).

As an immediately consequence we get.

Corollary 1.3.3. If X, Y are perfect Polish spaces then there exists a Borel isomorphism f : Y — X
such that, for A C X, A € M(X) iff f~1[A] € M(Y).

Theorem 1.3.4 ([Kec95, Thm. 17.41]). Let X be a Polish space and 1 : B(X) — [0, 1] a continuous
probability measure. Then, there exists a Borel isomorphism f : X — [0,1] such that u(f~1[A]) =
Lb(A) for any € B([0, 1]).
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Let us notice that [[b when b : w — w ~\ {0} can be related to the interval [0, 1] through the
one-to-one continuous function Fj, : [[b — [0, 1] defined by

z(n)

Bl@)= 2 105

n<w

Let us also notice that, when b £* 1, instead of using strongly measure zero sets in [] b, we may
consider strongly measure zero sets in [0, 1], that is, this map preserves sets between SN (][] b)
and SN([0,1]) via images and pre-images. Therefore, the value of the cardinal characteristics
associated with SA/ do not depend on the space [ [ b, neither on [0, 1] and R.

We will be interested in the cardinal characteristics defined below:

Definition 1.3.5. (1) A family of functions F' C w* is called bounded if it is eventually domi-
nated by a single function, i.e thereisa g € w* such that f <* gforall f € F. Otherwise I
is unbounded. The (un)bounding number b, is defined as the least size of an unbounded fam-
ily. On the other hand, a family D is dominating if every g € w* is eventually dominated
by a member of D. The dominating number 9 is defined as the least size of a dominating
family.

(2) A family A C [w]™ is said to be almost disjoint, abbreviated a.d., if the intersection of
any two different members of A is finite. An almost disjoint family is called a maximal
almost disjoint family, abbreviated mad family, if it is maximal under inclusion among a.d.
families. The almost disjointness number a is defined as the least size of an infinite mad
family.

(3) A family ' C [w]™ is called a filter base if it is closed under intersections. The ultrafilter
number u is defined as the least size of a filter base that generates a non-principal ultrafilter
onw.

(4) A family 7 C P(w) is an independent family (over w) if for every pair A, B of disjoint finite
subsets of F the set [).A N (w\ U B) is infinite. The independence number i is defined as the

minimum size of a maximal independent family of subsets of w

Denote by K the o-ideal generated by the compact subsets of the irrationals. Below we give
the relationship between these cardinals. Proofs can be found in the cited references.

Theorem 1.3.6. (i) [BHHO04] cof(M) <i.
(ii) [Blal0] b < a,u.
(iii) [Bla10] add(K) = non(K) = b, and cov(K) = cof(K) = .

1.3.2 Localization and anti-localization cardinals
Let 2 and ¢ be functions with domain w. Denote:

(i) x €* piff V*n (2(n) € ¢(n)), which is read ¢ localises = (see Figure 1.2);

(i) z €™ ¢ iff 3°n(z(n) ¢ ¢(n)). The expression x ¢ ¢ is read ¢ anti-localises x (see
Figure 1.2).
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Figure 1.2: On the left side we have that z(n) € ¢(n) for any n > m. On the right side we have
that z(n) ¢ ¢(n) for any n > m.

Definition 1.3.7. Let b = (b(n) : n < w) be a sequence of non-empty sets and let h € w*
Define the cardinals numbers bb » 1%% (called localization cardinals) and bg, ¢ and oaLC (called
anti-localization cardinals) as follows:

o _mm{yD\ DCS(b,h), Vee[[bIpeD(@e go}
by, = F|: FCT]b ~30 € S, h)VxeF(xe*cp)},

baLc

alc
0y h

min
m1n{|F| F CS(b,h), VweHbElgoEF(mE 4,0)}
mln{|D\ DCHb Vo € S(b,h) 3z € D (x ¢°°g0)}.

1.3.3 Relational systems and Tukey-order

Many of the classical cardinal characteristics can be expressed by relational systems, and in-
equalities between these cardinals are induced by the Tukey-Galois order between the corre-
sponding relational systems. These notions where defined by Vojtas [V0j93].

Definition 1.3.8. A relational system is a triple R = (X, Y, C) where X and Y are non-empty sets
and C is a relation.” For z € X and y € Y, x C y is often read y C-dominates .

(1) A family F' C X is R-bounded if there is a member of Y that C-dominates every member
of F, otherwise we say that the set is R-unbounded.

(2) Dually, D C Y is R-dominating if every member of X is C-dominated by some member
of D.

These notions allow to define the following cardinal characteristics:

b(R) := min{|F| : F C X is R-unbounded}
9(R) := min{|D| : D C Y is R-dominating}.

The relational system R := (Y, X, 71) where y 7 z iff ~(z C y), which is referred to as
the dual of R.. It is clear that any /' C X is R-undounded iff it is RL-domintaing, and D CY
is R-dominating iff it is R*-unbounded, so b(R+) = ?(R) and ?(R*) = b(R). In addition,
(RYH*t =R.

2Al’chough the relation C is only relevant when restricted to X x Y/, there is no need to demand it to be contained
in X x Y. See Example 1.3.10(2).
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Remark 1.3.9. The cardinal invariants b(R) and 9(R) may not always exit. More concretely,
b(R) does not exist iff 9(R) = 1. Dually, ?(R) does not exist iff b(R) = 1.

Many classical cardinal characteristics can be expressed through relational systems.

Example 1.3.10. (1) A preorder is pair (S, <) where S # @ and < is a relation on S that
satisfies reflexivity and transitivity. A directed preorder is a preorder (S, <) that satisfies
Vz,y € S3z € S(xr < zand y < z). As arelational system, S = (5,5 <).

(2) For any ideal 7 on X:
(i) Cz:=(X,Z,€),50 b(Cz) =non(Z) and 9(Cz) = cov(Z).
(ii) Z :=(Z,C) is directed, b(Z) = add(Z) and ?(Z) = cof(Z).
Example 1.3.11. Let b = (b(n) : n < w) be a sequence of non-empty sets and let h € w®.

(1) Denote Lc(b,h) = ([[b,S(b,h),€*), which is a relational system. Note that b};‘}L =
b(Lc(b, h)) and DbLjL =0(Lc(b, h)).

(2) Denote aLc(b,h) := (S(b,h),[][b, #°°), which is a relational system. Note that ba};f =
b(aLc(b, b)) and 03¢ = v(aLe(b, h)).

Definition 1.3.12. Let x and )\ be non-zero cardinals, and let (S, <g) be a directed preorder

(1) Consider the relational system Dy :=(S*, 5%, <) where = < y iff Va < A(z(a) <g y(a)).
Define b} := b(D%) and 03 := 2(D3).

(2) Denote b}, := b(D?,
iff a < « andﬁgﬁ’

yand 2}, := (D2, ) where A x r is ordered by («, 3) < (/, B')

(3) Assume that )\ is infinite. Consider the relational system D3(<*) := (S*, S*, <*) where
x <* yiff 38 < Wa € [B, ) (z(a) < y(a)). Set b3(<*) := b(D3(<*)) and 03(<*) =
o(Dg(<%).

(4) When k is infinite, define b, := b%(<*) and d,; := 0%(<*) (a particular case of D(<*) with
S = A = k). These are the well known unbounding number of x* and dominating number
of k" respectively. The classical unbounded and dominating numbers are b := b, and
0 := 0, respectively.

We define the product of relational systems, which will be used to characterize ), , in
Lemma 3.2.5.

Definition 1.3.13. Let R := (X,Y,C) and R’ := (X', Y’,C’) be two relational systems. Set
RoR = (X x X' 'Y xY' Cg), where (z,2') Cg (v, )1ffx Cz'andyC'y.

Fact 1.3.14 ([Blal0, Thm 4.11]). b(R ® R’/) = min{b(R), b(R/)} and max{d(R),?(R))} < 3R ®
R') <?R)-d(R)

The Tukey order is a useful notion to determine relations between cardinal characteristics.

Definition 1.3.15 ([Blal0, Def. 4.8]). Let R = (X,Y,C) and R’ := (X', Y’ , ') be relational

systems. We say that R is Tukey below R/, denoted by R <1 R/, if there are maps ¥; : X — X'

and U5 : Y’ — Y such that, forany z € X and ¢/ € Y/, if Uy(z) C’ ¢/ then = T Uy(y'). Here, we

say that the pair (¥, Uy) witnesses R <1 R’. Say that R and R’ are Tukey equivalent, denoted by
gT R’, ifR =T R and R’ =T R.



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Theorem 1.3.16 ([Bla10, Thm. 4.9]). Assume R <1 R’ and that this is witnessed by (¥, U3).
(1) If D C Y is R'-dominating then Vo[ D] is R-dominating.
(2) (R)* =7 Rt is witnessed by (¥o, ¥1).
(3) If C C X is R-unbounded then V,[C| is R/-unbounded.

In particular, b(R’) < b(R) and 9(R) < d(R/).

1.4 Overview of forcing
This section aims to give a review of some definitions and results known in the folklore of
forcing theory. For basic knowledge about forcing see e.g. [Jec03; Kun11].

In this thesis, by forcing notion we mean a preorder (IP, <). Elements of IP are called condi-
tions. If p, ¢ € IP we interpret ¢ < p as q is stronger than p.

The conditions p, g € P are compatible in IP, denoted by p|| g, if there is an € PP such that
r <pand r < q. Otherwise, they are incompatible in IP, denoted by p L q.

The P-name G usually denotes the canonical name of the P-generic set.

Definition 1.4.1. Let M be a transitive model of ZFC (or of a finite fragment of it). Given two
posets P € M and Q (not necessarily in M), say that IP is a complete subposet of Q with respect to
M, denoted by P < Q, if P is a subposet of Q and every maximal antichain in P that belongs
to M is also a maximal antichain in Q. Also define P < Q by P <y, Q where V is the universe.

In this case, if N is another transitive model of ZFC such that N O M and Q € N, then
P <,,Q implies that, whenever G is Q-generic over N, GNP is P-generic over M and M [GNP] C
N|[G] (see Figure 1.3). When P € M it is clear that P <, IP.

N

Q o N|[G]

M’T"M[GHP]

Figure 1.3: Generic extensions of pairs of posets when P <,/ Q.

Definition 1.4.2. Let IP be a forcing notion and let v be an infinite cardinal.
(1) Forn < w, B C P is n-linked if, for every F' C B of size < n,dp € PVq € F(p < q).
(2) C C P is centered if it is n-linked for every n < w.

(3) P is v-linked if P = |
o-linked.

P, where each P, is 2-linked. When v = w, we say that P is

a<v

(4) P is v-centered if P = |
o-centered.

w<p Po Where each P, is centered. When k = w, we say that PP is

(5) P has the v-chain condition (v-cc) if every antichain in P has size < v. When v = Xy, this
property is known as the countable chain contidion (ccc).

(6) P has the v-Knaster if for every subset A C P of size v there exists a linked @ € [A]".
When v = Xy, this property is known as the Knaster property.

9
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(7) P has precaliber v if for every subset A C P of size v there exists @ € [A]” such that Q) is
centered.

The next notion of Suslin ccc forcing is due to Judah and Shelah [IS88]. The main reason for
working with this type of order is to have nice definability, so many of its features are absolute
when these are relativized to models of ZFC.

Definition 1.4.3. A poset § is called a Suslin ccc forcing notion if it is ccc and there is a Polish
space X such that

(i $CX,
(ii) <¢ € X x X is ©! and
(iii) 1s € X x X is ¥1.

Given a model M of a large enough fragment of ZFC, if the parameters of the poset $ are
in M, then $ is coded in M and we denote its interpretation by $*, as usual for analytic sets.
For instance, the statements “p € $”, “p <g ¢” and “p Lg¢” are absolute for transitive models
of ZFC. Note that § itself is a X}-set because € §$ iff z < z. In the following Section 1.5 we
introduce some examples of Suslin ccc forcing notions

1.5 Some forcing notions

All the forcing notions we introduce in this section are Suslin ccc forcings that we use through-
out this work. For any sets I, J and any infinite cardinal « denote by Fn.(I,.J) the poset
of partial functions from I to J with domain of size <r, ordered by O. When s = w, this is
well-known as Fn(I, J), that is, the poset of finite partial functions from I to J.

1.5.1 Cohen forcing

Cohen forcing is C := Fn(w, 2), but it can be any atomless countable poset by Lemma 1.5.1. It is
known that C is ccc, even more, it is o-centered. For a nonempty set X, denote by Cx the poset
that adds a family of Cohen reals indexed by the set X. Concretely, Cx = Fn(X x w,2).

Lemma 1.5.1. Any atomless countable forcing notion is forcing equivalent to Fn(w, 2).

Lemma 1.5.2. Let ¢ be a limit ordinal and let Ps = (P, Qa>a<5 be a FS iteration where each Q, is
forced by P, to be non-trivial. Then, Fn(4,2) < Ps.

As a consequence we get,

Corollary 1.5.3. If Ps is as in Lemma 1.5.2 with ¢ is limit and o < §, then IPs forces that there is some
Cohen real over V]G N P,].

1.5.2 Random forcing
Random forcing is the poset B := {T' C 2<% : T'is a tree and Lby([T]) > 0}, and it is ordered by
C.

For (s,m) € 2<% x w set
B(S,m) = {T eB: [T] C [8] and 2‘5| . Lb2([T]) >1-— 2—10—m}'
Note that, for fixed m < w, Jsco<w B(s,m) is dense in B. It is clear that that B is o-linked.

Definition 1.5.4. A forcing notion P is called w*-bounding iff for any P-name f for a member
ofwYand p € Pthereisag<pinPandag € w” NV suchthatqlF f <g.

10
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It is known that B is w“-bounding.
Lemma 1.5.5. (i) B does not add unbounded reals. So B does not add Cohen reals.

(ii) No o-centered poset adds random reals. So C does not add random reals.

Proof. 1t follows from the fact that Cohen reals are unbounded over V, and that any o-centered
poset is Cn-good (see Example 1.7.9(3)). O

1.5.3 Hechler forcing adding a mad family
For aset Z, let H be the Hechler forcing for adding an a.d. family (indexed by Z) (see [Hec72; BF11]).
Define Hy := {p: F, x n, — 2: F, € [Z]<®0 and n,, < w} (demand n, = 0 iff F,, = ), ordered
by ¢ <piff p C gand [¢  [{1}] N (F, x {i})| < 1 foreveryi € [n,, n,).
This poset has precaliber R, and the a.d. family it adds is maximal when Z is uncountable.
The following observations are due to Brendle and Fischer [BF11].

Remark 1.5.6. (1) Forany Z C Z’, Hz <Hy/; and both H; and H are isomorphic whenever
|Z| = |Z'|. The forcing Hy, is forcing equivalent to C when Z is countable and non-empty.

(2) Let H,, be a FS iteration of the quotients H,1/H, for @ < w;. Since these quotients are
countable, I, is equivalent to the FS support iteration of length w; of C, which is C, .

1.5.4 Localization forcing

Localization forcing is the poset LOC := {¢ € S(w,id) : Im < wV¥i < w(|p(i)] < m)} ordered
by ¢ < @ iff (i) C ¢(i) for every i < w. Recall that this poset is o-linked and that it adds
an slalom ¢* in S(w,id,,) which localizes the ground model reals in w*, that is, z €* ¢* for any
r € w NV. LOC also adds a domating real, that is, f < f,« for all f € w* NV where

fior (i) := sup(¢*(i)).

1.5.5 Eventually different real forcing
The following poset is a generalization of the standard ccc poset that adds an eventually differ-
ent real (see e.g. [KO14; CM19]).

Fixb:w — w+ 1~ {0} and h € w* such that lim;_, % = 0 (when b(i) = w, interpret %
as 0). Define the (b, h)-ED (eventually different real) forcing E' as the poset whose conditions are
of the form p = (s, ) such that, for some m :=m, < w,

(i) s €seq.,(b), p € S(b,m-h), and
(i) m - h(i) < b(i) for every i > |s|,
ordered by (¢,7) < (s,p) iff s Ct, Vi < w(p(i) C (i) and t(i) ¢ ¢(i) forall i € [t| \ |s|.

Put E!(s,m) := {(t,¢) € B! : t = sand my; ,) < m} for s € seq_,,(b) and m < w. E} adds
an real e € []b such that, e € ¢ for any ¢ € S(b, k) in the ground model. Denote E;, := [},
E := E,, Ey(s,m) := ELl(s,m), and E(s,m) := E,(s,m). In particular, when h >* 1, E adds
an r € []b which is eventually different from the ground model reals, that is, r #* z for all

zeVnllb.
h
b

Lemma 1.5.7 ([CM19, Corollary 2.23]). Let b : w — w + 1~ {0} and h € w* such that % goes to
0. Then, IE)’I} is o-linked. Even more, if b >* w, then ]E{j is o-centered.

1.5.6 Hechler forcing

Hechler forcing is the poset D = {(s, f) : s € w<¥, f € w¥ and s C f} ordered by (¢, g) < (s, f) if
s Ctand f < g. Recall that D is o-centered and it adds a real d in w* which is dominating over
the ground model reals in w*, which means that f <* d for any Vf € V Nw“. Even more, D adds
Cohen reals.

11
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1.5.7 Tree forcings
Definition 1.5.8. Let b : w — w \ {0}. We say that a poset T is a b-tree forcing notion if it satisfies
the following properties

(T1) T is a non-empty set of trees contained in seq_,,(b).

(T2) If T € T and s € T, then there is some splitting note ¢t € T" extending s.
(T3) For T, 7" € T,T" < T implies 7" C T.

(T4) f T € Tand s € T then TP € T and T < T

(T5) If T € T, n < wand {S; : t € Lv,(T)} € T such that S; < T for all t € Lv,,(T), then
S = UteLvn(T) S;eT,S <Tand{S;:t e Lv,(T)} is a maximal antichain below S.

(Te) If (T}, : n < w) is a decreasing sequence in T and 7,1 <, T, foral n < w, then T' :=
Mhew In € Tand T < T, for all n < w.

When T is a b-tree forcing for some b we say that T is a bounded-tree forcing notion. Note that
(T1) and (T2) imply b £* 1. Denote by T}, the poset of all conditions satisfying (T1) and (T2),
ordered by C. It is clear that this is a b-tree forcing notion.

Example 1.5.9. 1. Recall Sacks forcing $ := Ty (where 2 represents the constant function with
value 2). It is clearly a 2-tree forcing notion.

2. Let PT} be the poset of conditions 7' € T}, such that, whenever s € spl(T), s (i) € T
for every i € b(|s|). Judah, Goldstern and Shelah [G]S93] defined this poset and showed
that, under CH, there is a CS iteration of such type of posets forcing add(SN') = X, (even
more, it forces that SNV = [R]=*1). In particular, these tree forcings are used to prove the
consistency of cof(M) < add(SN).

1.6 Coherent systems of FS iterations

This section is dedicated to introduce the general notion of a coherent system of FS iterations
due to Fischer, Friedman, Mejia and Montoya [FFMM18], which generalizes and improves
the matrix of iteration introduced by Blass and Shelah [BS89]. In our applications, we use a
particular case called simple matrix iterations. In this type of matrix iterations only restricted
generic reals are added, and preservation properties behave very nicely.

Definition 1.6.1 ([FEMM!18, Def. 3.2]). A coherent systems of FS iterations m consists of
(I) a partially ordered set I™ and an ordinal 7™;
(I) asystem of posets (P : i € I™,{ < «™) such that
i) P < IP;.ng whenever i < jin I™, and
(i) P, is the direct limit of <]P;n§ : & < n) for each limitn < 7™;

(IIT) a sequence ( . et eIME< '7rm> Where each Q?‘g is a P;-name for a poseet, Pl =
P+ Q% and P forces that Q% <QJ% whenever i < jin I™ and P <P

According to this notation, P is the trivial poset and P} = Q% On the other hand, by
Lemma 1.7.13, ]Pinz < ]P;“g foralli < jin /™ and & < ™.

12
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For j € I™ and n < ™ we denote by Vj, the P} —generlc extension. To be precise, when
G is P¥) -generic over V we denote V; ;, := V[G] and V ¢ =V[GNPH foralli < jin I"™ and
§<n.Clearly, V;¢e CVj,foralli <jin/[™and { <n < 7™

We say the coherent system m has the ccc if, additionality, IP7% forces that an% has the ccc
foreach i € I™ and ¢ < 7™. This implies that P has the ccc forall i € ™ and £ < 7™

Remark 1.6.2. When ™ is a well-ordered set, we say that m is a 2D-coherent system of FS
iterations. The idea of such a construction is to obtain a matrix (V;¢ : i € I, £ < ) of generic
extensions as illustrated in Figure 1.4

Vy £l 3 3
Vie Qe Vet Vir
V0@ e S A
Vot1,e Qa1 Va+1 41 Voti,7
Vg LL0® ettt odbE et e Ll o8
a, 5 B s
{ Ve Qae Vaet1 Voor
LAY SO P PP PRIPPR > PRSP RR NS
5 3 5 s
Vie Qie Vit Vi
L0 et - S . .o
gl gl ] 5T
\ Vo,e Qo.e Vo.e41 Vo
08+ N TR .Y

Figure 1.4: Matrix iteration with /™ = v + 1 where v is an ordinal.

For our applications, the following type of matrix iteration is the one we are going to deal
with throughout the whole text.

Definition 1.6.3 (Simple matrix iteration). A simple matrix iteration m is a matrix iteration, com-
posed additionally of a function A™ : 7™ — [™, that satisfies: for each £ < 7™, there is a
]Pgm(é) ¢g-hame an of a poset such that, for each i € 1™,

m { QR ifi > A™(E),
1 1 otherwise.

The upper index m is omitted when there is no risk of ambiguity. If £ < 7, denote by m [&
(horizontal restriction) the matrix iteration with I™I¢ = I and 7™/¢ = ¢ where the FS iterations
are the same as in (II) and (III) but restricted to £. On the other hand, for any J C I, denote by
m)|.J (vertical restriction) the matrix iteration with 7 m|J — Jand 7™/ = 7 where the FS iterations
for i € J are exactly as in (II) and (III).

Although I™ is an ordinal in all our applications, it is more practical to use it as a well
order in general because it eases the notation when dealing with m|.J in the case that J is a set
of ordinals but not an ordinal (as in the last part of the proof of Lemma 2.3.6).

13
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A simple matrix iteration is easily constructed by recursion on { < 7. When m|¢ is already
constructed, A(¢) and Qg are freely defined, which allows to extend the matrix to m [ (¢ + 1).
Limit steps are uniquely determined by taking direct limits. When Q¢ adds a real, it will be
generic over V) ¢ but not necessarily over V; ¢ for larger i, which is the reason we say that a
restricted generic real is added at step £. For instance, when Q¢ = DV2©):¢, the generic real added
at { is dominating over VA(@,&. Moreover, more restricted generic sets are allowed, for example,
when Qg = D¢ where N € VA(¢),¢ s a (small) transitive model of ZFC, the generic real added
at step ¢ is dominating over N¢ but not necessarily over Va ) e

Most of the time we deal with simple matrix iterations where I™ = v + 1 for some ordinal
v, unless we are reasoning with restrictions of such matrix iteration. In this case, if the simple
matrix iteration is composed by ccc posets and v has uncountable cofinality, then PP, ¢ is the
direct limit of the posets below it in the matrix. More generally:

Lemma 1.6.4 ([BF11], see also [Mej19, Cor. 2.6]). Let 6 be an uncountable reqular cardinal and let v
be an ordinal. Assume that m is a simple matrix iteration such that

(1) I™=v+1,cf(v) >0,

(2) v ¢ ranA, and

(3) foreach & < ™, P, ¢ forces that QA(&),& is B-cc.
Then, for any € <,

(a) P, is the direct limit of (Pn¢ : a < v), and

Viae then f is forced to be equal to
Vae.

(b) if B < O and f is a P, ¢-name of a function from [ into Ua<w

a P, ¢-name for some oo < v. In particular, the reals in V,, ¢ are precisely the reals in |,

1.7 Preservation properties
In this section, we discuss the effect of such coherent systems on cardinal characteristcs of the
form b(R) and 9(R)) for some relational system R. In the context of FS iterations, these cardinals
are dealt with by using a strong type of unbounded and dominating families.

First we define a very special type of dominating (and unbounded) families for relational
systems. They play an important role when forcing values to cardinal characteristics.

Definition 1.7.1. Let R = (X, Y, C) be a relational system and let 6 be a cardinal.
(1) For aset M,

(i) Anobjecty € Y is R-dominating over M if x C_ y forallx € X N M.

(ii) An objectx € X is R-unbounded over M if it R*-dominating over M, that s, x 7 y for
ally e YN M.

(2) A family D C Y is strongly 0-R-dominating if |D| > 0 and, forany z € X, [{y € D : z [/
y} <.

(3) A family F C X is strongly 0-R-unbounded if it strongly 6-R*-dominating, that is, |F'| > ¢
and, foranyy €Y, [{z € F: 2 C y}| <0.

Remark 1.7.2. Any strongly 0-R-dominating family is R-dominating. Likewise for unbounded
families.

14
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The next result shows the effect of this special type of dominating (and unbounded) families
on cardinal characteristics.

Lemma 1.7.3. Let R be a relational system and let 6 be regular.

IN

(i) If D C Y is a strongly -R-dominating family then it is | D|-R-dominating and o(R) < 6
Dl < b(R).

(i) If F C X is a strongly 0-R-unbounded family then it is |F'|-R-unbounded and b(R) < 0
|F| <3R).

IN

In the following we give the definition of a special type of dominating family, which is
extracted from the property CBO introduced in [GKS19, Def. 1.8].

Definition 1.7.4. Let R = (X, Y, C) be a relational system and let (S, <g) be a direted preorder.
Say that a subset D of Y is a strongly S-R-dominating family if D := {y; : i € S} and, for any
x € X, there is some i, € S such thatz C y; foralli > 4, in S.

Remark 1.7.5. The existence of a strongly S-R-dominating family is equivalent to R <1 S. So,
if such a family exists then b(S) < b(R) and ?(R) < 9(5).

The following two definitions are the central concepts for preservation of strongly un-
bounded families of the ground model.

Definition 1.7.6. Say that R = (X,Y,C) is a Polish relational system (Prs) if the following is
satisfied:

(i) X is a perfect Polish space,
(ii) Y is a non-empty analytic subspace of some Polish space Z and

(iii) = N(X x Z) = U,,«,, Cn Where (C,)n<. is some increasing sequence of closed subsets of
X x Z such that, forany n < wand forany y € Y, (C,)¥ = {z € X :  C, y} is closed
nowhere dense.

By (iii), (X, M(X), €) <t R. Therefore, b(R) < non(M) and cov(M) < d(R).

Definition 1.7.7 (Judah and Shelah [JS90]). Let R = (X, Y, C) be a Prs and let 6 be a cardinal. A

poset P is §-R-good if, for any P-name & for a member of Y/, there is a non-empty H C Y (in the

ground model) of size <6 such that, for any = € X, if z is R-unbounded over H then I z h.
Say that IP is R-good if it is 8;-R-good.

The definition above describes a property used to preserve strongly R-unbounded families,

which is respected by FS iterations. Concretely, when 6 is uncountable regular,

(1) any 6-R-good poset preserves all the strongly §-R-unbounded families from the ground
model and

(2) FSiterations of §-cc §-R-good posets produce §-R-good posets.

Hence, by Lemma 1.7.3, posets that are §-R-good work to preserve b(R) small and ?(R)
large. Clearly, #-R-good implies #’-R-good whenever § < #’, and any poset completely em-
bedded into a §-R-good poset is also #-R-good. Also note the trivial fact that any poset is
o(R)"-good.

As a first general example, every small poset is always good.

15
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Lemma 1.7.8 ([Mej13, Lemma 4]). If R is a Prs and 0 is an uncountable regular cardinal then any
poset of size <0 is §-R-good. In particular, Cohen forcing is R-good.

Now, we present the instances of Prs and their corresponding good posets that we use in
our applications.

Example 1.7.9. (1) Preserving non-meager sets: Consider the Polish relational system Ed :=
(WY, w*, #%). By [BJ95, Thm. 2.4.1 & Thm. 2.4.7], b(Ed) = non(M) and d(Ed) = cov(M).

(2) Preserving unbounded families: Let D be the relational system D := (w*,w*, <*), which
is Polish. Clearly b(D) = b and 9(D) = 0. Any p-Fr-linked poset is u-D-good (see
Theorem 2.2.1).

(3) Preserving null-covering families: Define Q,, := {a € [2<¥]<% : Lby(U,c,[s]) < 27"} (en-
dowed with the discrete topology) and put Q := [],_, ©, with the product topology,
which is a perfect Polish space. For every x € €2 denote N7 := (1, ,, U e (n)[s], which is
clearly a Borel null set in 2¢.

Define the Prs Cn := (Q2,2%,C) where x C z iff = ¢ N;. Recall that any null set in 2* is
a subset of N for some z € 2, so Cn =7 (N(2¥),2%, %). Hence, b(Cn) = cov(N) and
9(Cn) = non(N).

Any pi-centered poset is pT-Cn-good (see e.g. [Bre91]). In particular, o-centered posets
are Cn-good.

(4) Preserving union of null sets is not null: For each k < w letid* : w — w such that id* () = ¢*
8

foralli < wand H := {id*" : k& < w}. Let Lc* := (w*,S(w,H),€*) be the Polish
relational system where

S(w,H) :={¢:w— W] :3h e HVi < w(le(i)] < h(i))}.

As consequence of [B]95, Thm. 2.3.9], b(Lc*) = add(N) and ?(Lc*) = cof(N).

Any pu-centered poset is p-Le*-good (see [Bre91; JS90]) so, in particular, o-centered
posets are Lc*-good. Besides, Kamburelis [Kam89] showed that any Boolean algebra
with a strictly positive finitely additive measure is Lc*-good (in particular, subalgebras
of random forcing).

)

~

Preserving large continuum: Consider the Polish relational system Id := (w*,w®”,=). It is
clear that b(Id) = 2 and ?(Id) = c. Though this is a quite trivial Prs, we are interested in
the following simple facts:

(5.1) z € w¥ is Id-unbounded over M iff x ¢ M.

(5.2) If 6 > 2 then F' C w” is strongly #-Id-unbounded iff |F'| > 6.

(56.3) Any 6-cc poset is 0—Id-good.3

Concretely, we use (5.2) as a simple resource to justify why the continuum is increased
after Boolean ultrapowers of a ccc poset (Theorem 2.4.6).

The following results indicate that strongly unbounded families can be added with Cohen
reals, and the effect on b(R) and 9(R) by a FS iteration of good posets.

*The converse is true when # < ¢. On the other hand, any poset is ¢*-Id-good.
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Lemma 1.7.10. Let p be a cardinal with uncountable cofinality, R = (X,Y,C) a Prs and let (Py) o<,
be a <-increasing sequence of cf(y)-cc posets such that P, = limdirq<,Pq. If Po41 adds a Cohen real
o € X over VPo forany oo < p, then P, forces that {¢o : o < p} is a strongly p-R-unbounded family

of size p.

Theorem 1.7.11. Let 6 be an uncountable regular cardinal, R = (X,Y,C) a Prs, 7 > 0 an ordinal,
and let Pr = (Po,Qq : o < m) be a FS iteration such that, for each a < m, Qq is a Po-name of a
non-trivial 8-R-good 0-cc poset. Then, P forces that b(R) < 0 and |r| < d(R).

Proof. See e.g. [CM19, Thm. 4.15] and [GMS16, Thm. 3.6]. O

For the remainder of this section, fix transitive models M C N of ZFC and a Prs R =
(X,Y,C) coded in M. The next results are related to preservation of R-unbounded reals along
simple matrix iterations.

Lemma 1.7.12 ([BF11, Lemma 11], see also [Mej15, Lemma 5.13]). Assume that IP € M is a poset.
Then, in N, P forces that every ¢ € X that is R-unbounded over M is R-unbounded over M*.

Lemma 1.7.13 ([BF11]). Assume that P . = <IP0,Q,Q07O¢ ra<m e Mand Py, = (IPlya,QLa :
a < m) € N are FS iterations such that, for any o < , if P o <pr P1,o then Py forces that
Qo@ </P0.a QLQ. Then Po. <pr Py o forany a < .

In addition, if 7 is limit, c € X* and, for any o < 7, Py, forces (in N) that c is R-unbounded over
MPo.e then Py  forces that c is R-unbounded over MPor,

Theorem 1.7.14 ([BF11], see also [Mej13, Thm. 10 & Cor. 1]). Let m be a simple matrix iteration,
and let R = (X,Y,C) be a Polish relational system coded in V. Assume that, for any o € I, there
is some &, < 7 such that P, 1 ¢, adds a real ¢, € X that is R-unbounded over V¢, . (Here, o + 1
denotes the immediate successor of cvin 1.) Then, for any o € I, P41 1 forces that ¢, is R-unbounded
over Vo r.

In addition, if m satisfies the hypothesis of Lermma 1.6.4 with v a cardinal of uncountable cofinality
and 0 = cf(v), and f : cf(v) — v is increasing and cofinal, then P, » forces that {¢f) : ¢ < cf(v)} is
a strongly cf(v)-R-unbounded family.
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2

CONSTELLATIONS OF CICHON’S
DIAGRAM VIA FILTER-LINKEDNESS

This chapter is based on the paper [BCM21]:
Filter-linkedness and its effect on preservation of cardinal characteristics

joint work with Jorg Brendle and Diego Mejia, published in the Annals of Pure and Applied
Logic, volumen 172, number 1, 2021.

Mejia [Mej19] introduced a new notion of posets, called p-Frechet-linked (denoted p-Fr-
linked) to prove that u-Fr-linked posets are ;1 "-D-good, which turns out to be useful to pre-
serve strongly p-D-unbounded families of w* from the ground model. He also proves that
those posets behave well to preserve certain type of mad families (like those added by Hy for
0 > p).

In this chapter, we generalize the notion of Fr-linked and show its use to preserve certain
type of unbounded families and mad families from the ground model. We introduce this notion
in Section 2.1 as well as its corresponding notions of linkedness and Knaster for posets. We also
present examples related to these notions. In Section 2.2, we show Theorem D and we show
how p-F-linkedness and the §-F-Knaster property behave in FS iterations and FS products. We
define the notion of <x-uf-extendable matrix iterations and prove Theorem F in Section 2.3. We
show applications of Theorem F in Section 2.4, concretely, we prove Theorem E, G, H, and I. In
Section 2.5, we discuss some open questions and recent updates related to this research.

2.1 Filter-linkedness

In this section, we introduce the notion of Filter-linkedness, and others related notions and
examples. The next definition plays a central role in this chapter.

Definition 2.1.1. Let IP be a poset, F' a free filter on w and let 1 be an infinite cardinal.

(1) If p = (p, : n < w) is a sequence in IP, denote by Wp(p) the P-name of {n < w : p, € G}.
When the forcing is understood from the context, we just write W (p).

(2) AsetQ C P is F-linked if, for any sequence p = (p, : n < w) in Q, there exists a ¢ € P that
forces W (p) € FT.
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(3) A set Q@ C P is ultrafilter-linked, abbreviated uf-linked, if () is D-linked for any non-
principal ultrafilter D on w.

(4) The poset P is p-F-linked if P =
subsets of IP.
When each P, is uf-linked, we say that P is p-uf-linked.
When 1 = Ry, we write o-F-linked and o-uf-linked.

a<p P, for some sequence (P, : a < p) of F-linked

(5) When & is an uncountable cardinal, say that P is <xk-F-linked if it is u-F-linked for some
infinite cardinal ;1 < k. Likewise, define <x-uf-linked.

(6) The poset PP is p-F-Knaster if any subset of IP of size ;1 contains an F-linked set of size (.

Say that IP is j-uf-Knaster if any subset of IP of size ;1 contains a uf-linked set of size p.!

When F' C F’ are free filters, it is clear that any F’-linked set is F-linked. In particular, a
set is uf-linked iff it is F-linked for every free filter . Though Fr-linked is the weakest, and
uf-linked is the strongest among these properties, they are equivalent for some posets.

Lemma 2.1.2 ([Mej19, Lemma 5.5]). Let IP be a poset.

(a) If F is a free filter on w generated by <p-many sets, then any subset of P is F-linked iff it is
Fr-linked.

(b) If P has p-cc then any subset of P is uf-linked iff it is Fr-linked.

Proof. It is enough to show that, if IP is a poset and F' is a free filter on w such that either F'is
generated by <p-many sets or P is p-cc, then any Fr-linked subset of P is F-linked. Towards
a contradiction, assume that Q C P is Fr-linked but not F-linked, so there are a countable
sequence (p, : n < w) in @, a maximal antichain A C P and a sequence (a, : € A) in F'
such that each » € A is incompatible with p,, for every n € a,. In any of the two cases of the
hypothesis, it can be concluded that there is some pseudo-intersection a € [w]™ of (a, : 7 € A).
Hence each r € A forces p,, € G for only finitely many n € a, which means that P forces the
same. However, since @ is Fr-linked, there is some ¢ € P that forces 3*°n € a(p, € G), a
contradiction. O

Remark 2.1.3. Let P be a poset and p an infinite cardinal.
(1) Any Fr-linked subset of PP cannot contain infinite antichains of P, that is, it is finite-cc.”

(2) Any p-Fr-linked poset is u-finite-cc (i.e., the union of <p-many finite-cc sets). The prop-
erty “finite-cc” is absolute for transitive models of ZFC. *

(3) Any p-Fr-linked poset is p-Fr-Knaster.

(4) By (1), if 6 is an infinite cardinal then any 6-Fr-Knaster poset is §-finite-cc-Knaster (that
is, any subset of the poset of size § contains a finite-cc set of size ). Also, any 6-finite-
cc-Knaster poset has the #-Knaster property because, by Erdés-Dushnik-Miller [DM41],
every finite-cc set of size ¢ contains a linked set of the same size.

'In general, this notion is stronger than “IP is ;i-D-Knaster for every non-principal ultrafilter D on w”. Likewise
for the notion of p-uf-linked.

?Say that Q C P is finite-cc if every antichain of P contained in @ is finite.

3Let P be a poset and @ C IP. Consider the tree To C Q<* defined by t € Tq iff {t(k) : k < |t|} is an antichain
of IP. Note that @ is finite-cc iff T(; does not have an infinite branch, which is an absolute property for transitive
models of ZFC.
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(5) It is clear that any singleton is uf-linked. Hence, any poset of size < is p-uf-linked. In
particular, Cohen forcing is o-uf-linked.

(6) Assume that IP is a p-cc poset. In view of Lemma 2.1.2, P is py-Fr-linked iff it is p-uf-linked.
In the same way, P is 6-Fr-Knaster iff it is #-uf-Knaster. Note that, for § < p, §-Fr-Knaster
implies §-Knaster (and hence p-cc) by (4).

(7) ¢

Now we look at instances of o-uf-linked posets. The following result indicates that random
forcing is o-uf-linked. To this end, we define the following: For a Boolean algebra BB, say that
p = B — [0,1] is a strictly positive finitely additive (s.p.f.a.) measure if it fulfills:

* p(lp) =1,
e ulaVva)=p(a)+ p(a) forall a,a’ € Bsuch thata A @’ = Op, and
* u(a) = 0iff a = Op.

Note that any Boolean algebra with a s.p.f.a. measure is ccc.

Lemma 2.1.4 ([Mej19, Lemma 3.29]). Any complete Boolean algebra that admits a strictly-positive
o-additive measure is o-uf-linked. In particular, any random algebra is o-uf-linked.

Proof. By Lemma 2.1.2 it suffices to prove that any such algebra is o-Fr-linked.
Let B be a complete Boolean algebra that admits a strictly positive o-additive measure p.

For m < w, defefine
1
B,, = B: > — b,
{a < ula) 2 m+ 1}

It is clear that B = J,,, ., Bin. To finish the proof, it is enough to show that B,, is Fr-linked.
Assume the contrary, so by Remark 2.1.3(7) there is a sequence (a, : n < w) in By, and a
maximal antichain (a}, : n < w) in B (where each pu(a},) > 0) such that for each n < w, al, A ay, =
Op for all but finitely many k£ < w. Next, construct an increasing function g : w — w such
that a;, A a;, = Op for all & > g(n). Find n* < w such that the measure of a* :=\/, _,.. a, is
strictly larger than 1 — #ﬂ’ which is possible because 15 = \/,,_, A,. Hence p(a* A a) > 0 for
any a € B,,, but this contradicts that ;(a* A a;) = 0 for all £ > g(n* — 1), which finishes the
proof. O

We finish this section by proving any poset of the form E} (see Subsection 1.5.5) is o-uf-
linked. This actually follows the idea of Miller’s proof that IE is D-good (see [Mil81], in fact, his
proof indicates that It is o-uf-linked). To see this, we use ultrafilter limits.

Definition 2.1.5. Let D be an ultrafilter on P(w), X a topological space. If 7z = (z,, : n < w) isa
sequence on X and x € X, we say that £ D-converges to x if, for every open neighborhood U of
z,{n <w:z, € U} € D. Here, we also say that x is a D-limit of z.

Note that there is at most one D-limit for Hausdorff spaces. In this case, we denote by
lim2 z,, the ultrafilter limit of Z. Existence can always be guaranteed from compactness.

Lemma 2.1.6. If X is a compact Hausdorff space and D is an ultrafilter on w, then any countable
sequence in X has a unique ultrafilter limit.

Proof. Towards a contradiction, assume that there is a sequence (z,, : n < w) on X without
D-limit. So, for any = € X, there is some open neighborhood U, of = such that a, := {n < w :
r, ¢ Uz} € D. By compactness, there is some finite /' C X such that | J,. U, = X. On the
other hand, (,cpa, € D, but(\,cpa, = {n <w:x, ¢ X} =0, a contradiction. O
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Note that, for any A’ € w*, S(b, 1’) is a compact subspace of P(w)* (with the product topol-
ogy where P(w) is the Cantor space) so, for any m < w, S(b, m - h) is a compact space.

Example 2.1.7. Recall from Subsection 1.2.1 that Lby denotes the Lebesgue measure on 2%.
(1) Givenareal § € (0,1) set
Bss:={T € B: Lby([T]) > d}

This set is a compact subspace of 22~ (with the Cantor-space topology). In particular, for
each (s,m) € 2<¥ x w, B(s,m) is a compact subspace (see Subsection 1.5.2). Therefore,
every sequence in B> ; has its D-limit in B> for every ultrafilter D on P(w). Even more,
if p = (pn : n < w) is a sequence in B>, then ¢ = lim,’? pn satisfies that, for any ¢ € 2<%,
teqiff {n<w:tep,}eD.

(2) Fix b, h as in Subsection 1.5.5. Let D be an ultrafilter on w, s € seq_,,(b) and let p = (p,, :
n < w), where p, = (s, ¢,), be a sequence in E/'(s,m). Then the sequence (¢, : n < w)
has its D-limit ¢ in S(b,m - h). Define the D-limit of p by lim? p,, := (s, ). Note that, for
any k <w, k€ p(i)iff {n <w:k € py(i)} € D.

Lemma 2.1.8. Let D be a non-principal ultrafilter on P(w) and b, h as in Subsection 1.5.5. If G is E}-

generic over V then, in V|G|, D can be extended to an ultrafilter D* on P(w) NV [G] such that, for any

(s,m) € seq.,(b) x w and any sequence p € E}(s,m) NV that has its D-limit in G, W ()|G] € D*.
In particular, B} is o-uf-linked.

This lemma is a direct consequence of the following claim in V.

Claim 2.1.9. Assume N < w, {(sr,my) : k < N} C seq_,(b) x w, {p* : k < N} such that each
P* = (P : 1 < w) is a sequence in By (s, my), gy is the D-limit of p* for each k < N, and q € ]! is
stronger than every qy. If a € D then g forces that a N (N, y W (p¥) # 0.

Proof. We can express the forcing conditions as py , = (Sk, Yk.n), @k = (Sk, Pr) Where each ¢y, is
the D-limit of (g, : 7 < w) in S(b, my - h). Assume that ¢ = (¢,7) < ¢ in E'. Wlog, by making
q' stronger, we can assume that m* - h(i) < b(i) for any i > |t| where m* := mgy + >, -y M-
Note that Uy, := {¢ € S(b,my - h) : Vi € [t| \ |sg|(t(i) ¢ ¢(4))} is an open neighborhood of
@ in S(b,my, - h), so {n < w : Vi € [t| N [s](t(i) ¢ rn(i))} € D. Hence a N(onin < w:
Vi € [t] ~\ |sk|(t(i) ¢ prn(t))} is non-empty. Choose an n in that set and put r := (¢, ') where
Y (i) == (i) UUg< y k0 (i). This is a condition in E because |¢/(i)| < m*-h(i) for every i < w,
and m* - h(i) < b(i) for i > |t|. Moreover, r is stronger than ¢’ and p,, ; for any k£ < N, so it
forces n € a N Nyoy W(H"). O

By Lemma 2.1.8, it is clear that if D is a non-principal ultrafilter on w and p is a countable
sequence in [E}'(s,m) then its D-limit forces that I (p) is infinite. However, the existence of an
ultrafilter-limit for a forcing notion does not suffice to guarantee a version of Lemma 2.1.8. The
following remark provides a concrete counter-example.

Remark 2.1.10. Let 0 < k < w, § := 1 — 2 % and let (I,, : n < w) be an interval partition of [k, w)
such that 3> _ 27!nl < 1. For each n < w define

n<w
pni={t €2 :if|t| > kand t(i) = 0 foralli < k, then t(i) = 0 foralli € I, N [t|.}

It can be shown that p,, € Bs>s and that ¢ := 2<% is the D-limit of p := (p, : n < w). As

Lb?([pn]) = 1 _2—k+2—k—\[n|, Lbz(Un<w [pn]) S 1 _2_k+2_k Zn<w 2_un| < 1’ SO [q] \Un<w [pn]
has positive measure. Hence, there is an r € B such that [r] N {J,,.,[pn] = 0, so r forces that

W (p) = 0.

22



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.2 Preservation of strongly unbounded families and of mad fami-
lies

Linkedness and Knaster notions associated with filters actually work to preserve strongly D-
unbounded families and certain type of mad families (see Definition 2.2.3). In [Mej19] it was
proved that p-Fr-linked posets satisfy stronger properties than these type of preservation, for
instance,

Theorem 2.2.1 ([Mej19, Thm. 3.30]). Any u-Fr-linked poset is 1" -D-good. In particular, it preserves
all the strongly k-D-unbounded families from the ground model for any regular x > pt.

Proof. Let P be a p-Fr-linked poset witnessed by (P, : i € I) with |I| < . Fix a P-name / for a
real in w*. For each i € I define h; : w — w + 1 by

hi(n) :=min{l < w :V¥p € Pi(p ¥ | < h(n))}.

We first show that h;(n) < w for all n < w. If not, for each [ < w choose a p; € P; such that
piIF 1 < h(n). Since p = (p; : | < w) is a sequence in P,, there is a condition ¢ € P such that
q IF“W (p) is infinite”. Therefore, ¢ forces that | < h(n) for infinitely many | < w, which is a
contradiction.

Put H := {h; : i € I}. Suppose that € w* is unbounded over H and p € P. There exists
ani € [ and a pp < pin P; so, for any n < w such that h;(n) < z(n), there is a p; < pg such
that p; IF h(n) < hi(n) < x(n). As there are infinitely many such n, we can conclude that
Iz £* . 0

The preservation of strongly unbounded families via Frechet-Knaster posets actually gen-
eralizes [GMS16, Main Lemma 4.6].

Theorem 2.2.2. If x is an uncountable reqular cardinal then any x-Fr-Knaster poset preserves all the
strongly k-D-unbounded families from the ground model.

Proof. Let P be a x-Fr-Knaster poset and let F' C w* be a strongly x-D-unbounded family in
the ground model. Towards a contradiction, assume that there is a IP-name h of a real in w®
and ap € Psuchthatp IF [{z € F : 2 <* h}| > k. Find F/ C F of size «, a family of
conditions {p, : © € F'} C P and a natural number m such that, for each x € F’, p, < p and
pe IF Vn > m(z(n) < h(n)). As P is x-Fr-Knaster, there is some F” C F’ of size  such that
{ps : @ € F"} is Fr-linked.

Note that there is a j > m such that the set {z(j) : x € F"'} is infinite. (otherwise F" would
be bounded, which contradicts that F is strongly x-D-unbounded). Choose {z,, : n < w} C F”
such that x,,(j) # 2,/ (j) whenever n # n’. For each n < w, put p,, := ps,. Asp = (pp : n < w)
is a sequence in a Fr-linked set, there is a condition ¢ € P such that ¢ II—“W(ﬁ) is infinite”.
Therefore, ¢ forces that 3°°n < w(x,(j) < h(j)), which is a contradiction. O

We now turn to preservation of mad families. The relational system defined below is in-
spired by [BF11].

Definition 2.2.3. Fix A C [w]™o.

(1) Let P C [[w]NorNO. Forz Cwand h:w x P — w, define x C* h by

¥¥n < wVF € P([n, h(n,F))~ | JF ¢ 2).
(2) Define the relational system Md(A) := ([w]"0, w*> [AJ=R0 ey,
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(3) If x is an infinite cardinal, say that A is a k-strong-Md family if A is strongly x-Md(A)-
unbounded. When « = X; we just say strong-Md family.

Denote Z(A) := {w C w : IF € [A]*Mo(w C* [JF)}. For y € [w] \ Z(A) we can define a
function h, : w x [A]*M — w such that, for every n < w and F C A finite, y N [n, hy(n, F)) ~
UF # 0. Hence, if € [w]™ and x iZ* h, then 2Ny is infinite. This actually proves the following
result.

Lemma 2.2.4 ([BF11, Lemma 3]). Let M be a transitive model of ZFC with A € M. If a* € [w]™ is
Md(A)-unbounded over M then |a* Ny| = Vg for any y € [w]N0 N M ~ Z(A).

Lemma 2.2.5. Let Z beaset, z* € Z and let A := (4 : z € Z) be the a.d. family added by Hy.
(a) [BF11, Lemma 4] H forces that a.- is Md(A[(Z ~ {z*}))-unbounded over Vz~1="},
(b) If Z is uncountable then Wy forces that A is a strong-Md a.d. family.

Proof. We show (b). Let h be a Hz-name of a function in w** [A]<%0 Note that the set

{C € [Z]" : h)(w x [A]C]N0) is an Ho-name}

is a club in [Z]} (here, A[C := {a, : z € C}), so choose some C' in this club set. Hence, by (a),

for any z* € Z \ C, Hy forces that a,- * h[(w x [A]C]<N0), which implies that a,- 7* h. O

Theorem 2.2.6. If x is an uncountable reqular cardinal then any x-Fr-Knaster poset preserves all the
rk-strong-Md families from the ground model.

Proof. Let P be a x-Fr-Knaster poset and let A be a x-strong-Md family. Assume, towards a
contradiction, that there is some p € P and some P-name h of a function in w**[A<" such
thatp IF [{a € A : a C* h}| > k. As in the proof of Theorem 2.2.2, find an A’ C A of size &,
{ps : a € A’} C P and an m < w such that, for each a € A’, p, < pand p, IF Vn > mVF €
[A]<Xo([n, h(n, F)) ~ U F ¢ a). We can also find an A” C A’ of size « such that {p, : a € A"} is
Fr-linked.

Claim 2.2.7. The set of k < w that satisfies AF € [A]<NoVI] > k3a € A"([k,1) ~ U F C a) is infinite.

Proof. Assume the contrary, that is, there is some ky < w such that, for every £k > k¢ and
F € [A]<M0 there is a g(k, F) < w such that [k, g(k, F)) ~ U F ¢ aforall a € A”. This defines a
function g € W XA that —*-dominates all the members of A" , but this contradicts that A is
strongly x-Md(A)-unbounded. This ends the proof of Claim 2.2.7. O

We continue the proof of Theorem 2.2.6. Choose a k > m and one F € [A]<™ as in
Claim 2.2.7. Hence, for each | > k there is some a; € A” such that [k,l) ~ JF C . Put
Pl = pg, and p := (p; : | > k), so there is a ¢ € P forcing that W (p) is infinite. Let G be
IP-generic over V with ¢ € G and work in V[G]. Denote h := h[G] and W := W (p)[G]. Note
that [k, h(k, F)) N |UF ¢ a, for any [ € . On the other hand, [k,l) ~ |JF C @ forany ! > k, in
particular, if [ € W is chosen above h(k, F) then [k, h(k,F)) ~ |UF C q;, a contradiction. This
ends the proof of Theorem 2.2.6. O

We conclude this section by presenting some results about FS iterations and FS products of
filter-linked and filter-Knaster posets. With the exception of the proof of Theorem 2.2.9, this
part was taken care of, with a more general notation, in [Me]19, Sect. 5].

Theorem 2.2.8. Let 6 be an uncountable reqular cardinal.
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(a) Any FS iteration of 6-Fr-Knaster posets is -Fr-Knaster.
(b) Any FS iteration of 6-uf-Knaster posets is §-uf-Knaster.

(c¢) If pis an infinite cardinal, then any FS iteration of length <(2*)" of u-Fr-linked posets is p-Fr-
linked.

Proof. See [Mej19, Rem. 5.11]. O

Theorem 2.2.9. Let Qo and Qi be posets. If Dy is a non-principal ultrafilter on w and Qo C Qo and
Q1 C Qq are Dy-linked subsets, then Qo x Q1 is Do-linked in Qo x Q. In particular,

(a) The product of two p-Dy-linked posets is j1-Do-linked.
(b) If 0 is reqular, then the product of two 6-Do-Knaster posets is 8- Dy-Knaster.
Similar statements hold for “uf-linked” and “uf-Knaster”.

To prove this theorem, we need the following result, which is a weaker version of [She00,
Claim 1.6].

Lemma 2.2.10. Let M C N be transitive models of ZFC. In M, assume that P is a poset, Dy is an
ultrafilter on w and, in N, assume that D is an ultrafilter that extends Dy. If G is IP-generic over N and
D{ € M|G] is an ultrafilter on P(w) N M|G] that extends Dy then, in N[G], D U Dy, can be extended
to an ultrafilter on P(w) N N[G].

Proof. Let D) € M be a P-name of D). Assume thata € D, b € M is a P-name of a member of
Dj,and p € P. Putb) := {n < w: plF n ¢ b}. It is clear that b, € M and that p IF b, N b = 0.
Hence, p IFw \ b € D!, which implies that w \ b), € Dy. Since Dy C Danda € D,a~ b, € D,
so there is an n € a \ b. Thus, in M, there is a ¢ < p that forces n € b, so g forces, in N, that
n€anb? ]

Proof of Theorem 2.2.9. Let ¢ = ((qon, q1,n) : 1 < w) be a sequence in Qp x Q1. Since both Qg
and @ are Dy-linked, for each e € {0, 1} there is some r. € Q. forcing WQE (g.) € D§ where
e = (¢eqn : n < w). Now assume that Gy is Qp-generic over V and G; is Q-generic over
V[Gy] such that (rg,r1) € Gop x G1. Let M := V and N := V[Gy]. In N, there is an ultrafilter
D D Dy U {Wq,(p)} and, in M[G], there is an ultrafilter D, O Dy U {Wq,(q)}. Thus, in N[G4],
D U D}, has the finite intersection property, so Wq,xq, (7) = Wa,(q) N Wq, (41) € Dy . O

Theorem 2.2.11. If « is an uncountable reqular cardinal, F is a free filter on w, and P is a FS product
of posets such that any finite subproduct is k-F-Knaster, then P is k-F-Knaster.” In particular, when F
is an ultrafilter, any FS product of k-F-Knaster posets is k-F-Knaster (likewise for “uf-Knaster”).

Proof. Let X be a cardinal and assume that P is the FS product of (Q, : @ < A) as in the
hypothesis. If (p; : ( < k) C P then, by the A-system Lemma, there is some K C x of size &
such that (dompy : ¢ € K) forms a A-system with root R*. Since [ ], g« Qo is k-F-Knaster, we
can find a K’ C K of size x such that {p;[R* : ( € K’} is F-linked.

Assume that (¢, : n < w) € K'. Hence, there is some ¢ € [] cp- Qo that forces {n <
w: pe, [R* € G} € F. As a matter of fact, ¢ forces that {n < w : p;, € G} € F*. To see
this, assume that a € F and r < ¢ in P. Note that V*°n < w(domr N domp;, = R*). On the

4Recall that P C M since P € M and M is transitive.
*In the terminology of [Mej19, Sect. 5], the notion “F-linked” is FS-productive.
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other hand, we can find some s < r[R*in [ .- Qo and an n € a such that s < p¢, [R* and
domr Ndomp,,, = R*. Thus

r' = s Url(domr \ R*) U pe, [(dompe, ~ R*)

is a condition in IP stronger than both r and p¢,, .
The latter statement is a consequence of Theorem 2.2.9. O

Theorem 2.2.12. Let p be an infinite cardinal, (Q; : i € I) a sequence of p-Fr-linked posets witnessed
by (Qi(C) : ¢ < ) for each i € I, and let IP be the FS product of (Q; : i € I). If

(i) |I| < 2* and
(i1) [lic, Qi(s(4)) is Fr-linked in [ [, Q; for any finitew C I and s : u — p,
then P is p-Fr-linked.®

Proof. By a result of Engelking and Kartowicz [EK65], there is a set H C pu! of size < p such
that any finite partial function from I to p is extended by some function in H.
For each h € H and n < w define

Qnn = {p € P: |domp| < nand Vi € domp(p(i) € Qi(h(i)))}.

It is clear that these sets cover PP, so it remains to show that each @, ,, is Fr-linked. Let p =
(pr © k < w) be a sequence in @}, ,. By the A-system lemma, we can find w C w infinite
such that (dompy, : £ € w) form a A-system with root R*. Hence, by (ii), there is some ¢ €
[Lcr- Q; forcing that {k € w : p;[R* € G} is infinite. Similar to the last part of the proof of
Theorem 2.2.11, it can be shown that ¢ forces w N W () is infinite. O

Before proceeding, a quick short remark on this lemma is in order: The reason the latter
proof cannot guarantee the analog result for “F-linked” for other filters F' in general is that,
when finding the A-system, it cannot be guaranteed that w € F. However, this can be done
when F is a Ramsey ultrafilter, so Theorem 2.2.12 is valid for Ramsey ultrafilters in the place of
Fr (even more, (ii) is redundant by Theorem 2.2.9).

2.3 Ultrafilter-extendable matrix iterations

This section is dedicated to prove Theorem F.

Definition 2.3.1. Let x be an uncountable cardinal. A <k-ultrafilter-extendable matrix iteration
(abbreviated <k-uf-extendable) is a simple matrix iteration m such that, for each { < 7™,
PR (¢ ¢ forces that Q?‘ is a <x-uf-linked poset.

As in Definition 1.6.3, we omit the upper index m when understood.

When I™ = v + 1 for some ordinal v, the FS iteration P, . = (P, ¢, Ql,,g : & <m)isnotaFS
iteration of <x-uf-linked posets in general.

Definition 2.3.2. Let x be uncountable regular. Given a <x-uf-extendable matrix iteration m,
we define 67" and (Q?‘(C )+ ¢ < 6g") for < ™ as follows. By Remark 2.1.3 (items (2)-(4)) it
can be proved by induction on ¢ < = that P, ¢ has the x-Knaster property for every a € I™.
Therefore, for each { < 7™, we can find a cardinal 0" < x (in the ground model) and a sequence
<Q?(C) 1 (< 08") of PR ¢) ¢ Mames such that P, ) - forces that (Q?‘(C) 1 ¢ < 0F") witnesses

that Q?‘ is <k-uf-linked. Again, upper indexes are omitted when understood.

®In the terminology of [Mej15, Sect. 5], if the notion “Fr-linked" is productive, then it is strongly productive.
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Theorem 2.3.3. Let x be an uncountable reqular cardinal and m a <rk-uf-extendable matrix iteration.
Then P » is k-uf-Knaster for any o € I™. In particular, it preserves any strongly k-D-unbounded
family and any r-strong-Md family from the ground model.

Throughout this section, wlog we may assume that /™ = 4™ is an ordinal (and again, we
may omit the upper index).

The following is a version of the preceding result where the preserved strongly unbounded
family is constructed within the matrix.

Theorem 2.3.4. Let < p be uncountable reqular cardinals and let m be a <k-uf-extendable matrix
iteration. Assume that

(i) Y™ > pand 7™ > p,
(i) for each a < p, A™(a) = o + 1 and Q™ = C, and
(iii) ¢q 15 the P41, 0+1-name of the Cohen real added by le
Then, for any v € [pu,y™), P,  forces that {¢, : o < p} forms a p-D-strongly unbounded family.

For the proof of both results, we need to work with special conditions of the matrix and
with A-systems.

Definition 2.3.5. Let x be a regular uncountable cardinal and let m be a <x-uf-extendable
matrix iteration. Let 8 < yand n < 7.

(1) Define ]PE n = P1™ as the set of conditions p € P, such that, for each £ € domp with

A§) < B,p(§)is a’ ]PA(g),g—name.
Define Py, = Pg as the set of conditions p € IP;r " such that, for each £ € domp with
A(€) < B, thereis a ¢ = () < 0¢ such that P ¢ ¢ forces that p(¢) € Q¢(().

Note that ]PE77 is a dense subset of IP3;, and IP; | is a dense subset of IPE’W.
(2) Foreachp e IPEU, a < fBand € <1, pl(a, &) is the condition in IPzg defined by

(i) dom(p[(e,&)) = domp N ¢, and
(ii) foreach ¢ € dom(p[(a,£)),

pl(o, €)(€) = { (&) HAE)<a,

1 otherwise.

Note that p[(a, &) € Py ¢ whenever p € ]P,’g,ﬂ7
(3) A uniform A-system in P}  is a sequence p = (p; : i € J) of conditions in P}, such that

(i) (domp; : i € J) forms a A-system with root R*, and

(ii) for each ¢ € R* there is a G < 0 such that P ¢) ¢ forces that p;(§) € Qg(qg ) for all
1€ J.

Note that IP;r . and p[(8, n) can be defined for simple matrix iterations.
The core of our main result is the following lemma.

Lemma 2.3.6. Let m be a <k-uf-extendable matrix iteration with sequences of names as in Defini-
tion 2.3.2 (without assuming that r is regular). If v € I™ and p = (p, : n < w) is a uniform A-system
in I}, then there is a q¢ € P, forcing that Wpu’ﬂ(ﬁ) is infinite. Moreover, if D is a non-principal
ultrafilter on w in the ground model then there is some q € P} that forces WIPM (p) € D*.
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Proof of Theorem 2.3.3. Let (p¢ : ( < k) be a sequence of conditions in P, . For each ¢ < « find
ap; € P, . stronger than p. By the A-system lemma and some easy combinatorial arguments,
we can find a K C « of size  such that {p} : ¢ € K} forms a uniform A-system in P},
Therefore, by Lemma 2.3.6, {p : ¢ € K'} is uf-linked. Hence, {p; : ¢ € K} is uf-linked. O

Proof of Theorem 2.3.4. First note that IP,, ,, results from a FS iteration of length 1 of Cohen forc-
ing and that, for each a < p, ¢, is forced to be a Cohen real over V, .. Even more, we
can assume that 6, = N, Qa (n) is a singleton (in the ground model, not just a name), and

“ = Unew Qa(n) Hence, P} , =P , = C,.

Towards a contradiction, assume that there is a P, ;-name h of a real in w* and a peEP,
such that p Ik, {a < p @ ¢y <F h}\ > p. Find K C p of size p, a family of conditions
{Pa : @ € K} C P} and a natural number m such that, for each a € K, a € domp,, po < p
and p,, IF Vn > m(éa(n) < h(n)). Wlog, also assume that [p()| > m for all « € K. By the A-
system lemma and some easy combinatorial arguments, we can find K’ C K of size u such that
{Po : a € K'} forms a uniform A-system in P} and there is some ¢ € w<* of length m’ > m
such that, for all « € K’, po(a) = t. Choose {a;,, : n < w} C K’ (one-to-one enumeration).
Define p/, identical to p,, with the sole difference that p/ () := pa,, (@) U {(m/,n)}. Note that
P = (p], : n < w) forms a countable uniform A-system. Therefore, by Lemma 2.3.6, there is a
condition ¢ € P, such that ¢ IF“WW(7) is infinite”, so ¢ forces that 3%°n < w(¢q, (M') = n <
h(m’)), which is a contradiction. O

We now focus on the proof of Lemma 2.3.6. We start with some preliminary results before
developing the proof.

Lemma 2.3.7. Let m be a simple matrix iteration, « < 3 < yand & <n < m. Then:
(a) Foranyp € P o ifa < pl(e,€)in IP;"g, then there is some p' < pin IF’E77 such that ¢ = p'[(a, €).
(b) If B is limit and 3 ¢ ranA™ then P} . = limdir,< P

Even more, similar statements hold for P , when m is a <r-uf-extendable matrix iteration.

Proof. To see (a), define p’ such that domp’ = domp U domg and p/() is determined by the
following cases: when ¢ € domp ~\ domyg, p/(€) := p(&); when € domg, put p'(§) = p(§) if
a < A(), otherwise p/ (&) := q(§).

Now we show (b) by induction on £. The case { = 0 and the limit step are immediate. For
the successor step, assume that P} Ge = hmd1ra<ﬁIPJr If B < A(§) then ]P+5 =P’ o * 1 for
any a < f, so the conclusion follows; if A(§) < then A(§) < B (because A(g) 75 B) and,
whenever p € IPﬁ ¢+1- by induction hypothesis p[(8,¢) € IP;C£ for some a € [A(§),3). On the

other hand, p(¢) is a P (¢) c-name of a condition in Qg, sop € IPQ IRt O
Lemma 2.3.8. Let P, = (P¢, Q¢ : € < ) be a FS iteration with w limit. Assume:
(i) p= (pn : n < w) is a sequence of conditions in P.

(ii) (D¢ : € < ) is a sequence such that each D¢ is a P¢-name of a non-principal ultrafilter on w that
contains De, for any § < &.

(iii) q € P,.
(iv) Forany & < m, q[€ forces that WIPE (pl€) € Dg.

Then q forces that | J¢ . D¢ U{Wp_(p)} can be extended to an ultrafilter.
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Proof. Letr < qin P, and b a P,-name of a member of Uger D¢. Wlog (by strengthening r if

necessary), we may assume that there is a { < 7 such thatr, ¢ € P¢ and bis (forced to be equal
to) a P¢-name of a member of D¢. By (iv), there are some r’ < rin Py and an n < w such that
" < pyl§and ' I-¢ n € b. Hence, ¢ := ' U p,[[¢, 7) forces in P thatn € bN Wp_(p). O

The last ingredient need for the proof of Lemma 2.3.6 is the next result.
Lemma 2.3.9. Let s be a simple matrix iteration with IS = {0, 1}. Assume:
(i) ™= 7°1is limit.
(i) p = (pn : n < w) is a sequence of conditions in IPIF.

(iii) (Dig:i<2,6< ) is a sequence such that each D ¢ is a P; ¢-name of a non-principal ultrafilter
on w that contains D;, ¢, for any iy < iand § < &.

(iv) Do is a Py -name of an ultrafilter containing Ug<r Do .
(v) g€ P,

(vi) Forany & < m, ql(1,§) forces that W]plé(ﬁ[(l,ﬁ)) € Dl,&’

(vii) q[(0, ) forces that WIPO,W (pl(0,7)) € ng.

Then, q forces that Dy . U Ug<r DigU {WIPM (p)} can be extended to an ultrafilter. Even more, 1p,
forces that Dy U Uger D1 ¢ can be extended to an ultrafilter.

Proof. We show that, for any Py ,-names & and b of members of Ug<r Dy ¢ and Dy ., respec-
tively, ¢ forces that a N bn me(p) # (. Letr < ¢qin IPLT. Wilog (by strengthening r if
necessary) we may assume that bisa Py,--name and that there is a { < 7 such that a is a
Py ¢-name, 7, q € IP;:£ and r forces that @ € D, ¢. Consider the Py c-name

56 ={n <w:pyl(0,¢) € G0,5 and p,,[(0, ) P /Py M ¢ b}
It is clear that I - bN V'VIPO’W (p(0,7)) N 66 = ) so, by (vii), r[(0, §) forces in P ¢ that
bo = We, (B1(0,€)) N by = {n < w: pal(0,€) € Gog and pal(0,7) Wp, e, n ¢ b} € Doge.
Hence 7 I ¢ by € Dl,é/ so by (vi) r forces that
anbo N We, (p(1,€)) € Dy

Find n < wand ' € IPI“£ stronger than both r and pj, [ (1,£) such that 7’ ¢ n € an bo.
This implies that r'[(0,€) IFoe n € bo, so there is a condition s < p, [(0,7) in IP(J{’ - such that

s1(0,6) < 7' 1(0,€) and s kg n € b. Now, if we put p’ := 7/ U p, [, ), then s < p/(0,7),
which implies by Lemma 2.3.7(a) that s = p”[(0, w) for some p” < p/ in ]PIW. Hence, since p” is
stronger than both s and p/, p” forces that n € aNband p, € Gy 5.

The “even more” statement follows by the particular case when ¢ and every p,, are the trivial
condition. Ol

We conclude this section with the proof of Lemma 2.3.6.
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Proof of Lemma 2.3.6. Recall that (in this section) I™ is an ordinal. Fix a uniform A-system p =
(Pn : n < w) with root R* of P} as in Definition 2.3.5(3) and an ultrafilter D on w (in the

ground model). By recursion on £ < 7w we construct D¢ := (Dy¢ : a < v) and (ga¢ : o < V)
such that, for any oo < v,

(a) Dy is a P, ¢-name of a non-principal ultrafilter on w,

(b) P, ¢ forces that D C Dy, ¢, € Dag for any ag < aand & < €,
(©) qag € IF';;§ with domain R* N¢,

(d) gael(@0,80) = gag.¢ forany ag < aand & < &, and

(€) dag IF W, (B1(,€)) € Do

After the construction, ¢ := g, » is the condition we are looking for.

Step £ = 0. As P is the trivial poset for any o < v, D, := D and g, := 1 work.

Successor step. Assume we have succeeded in our construction up to step &. For @ < A(¢) it
is clear that P, ¢ 11 ~ Py ¢, 80 Dy ¢ 1 mustbe Dy, ¢. To define gq ¢ 41 (forall o < v)and Dag) e41
we consider two cases. If £ ¢ R* put ¢a¢41 = o and DA( €),6+1 can be any Pa¢) ¢4-name
of an ultrafilter that contains DA(g ),¢ (so it also contains D, 41 forany a < A(§)); if € € R,
since QA@){ = Qg is a Pp(¢) c-name of a <x-uf-linked forcing witnessed by (Qg({) D¢ < ),
and p(§) = (pn(§) : n < w) can be seen as a P (¢) c-name of a sequence in Q¢((f), there is a
P A(¢),c-name ¢(§) of a member of Q¢ such that P ) ¢ forces that

q(§) IF “VVQ6 (p(€)) intersects any member of DA(&),{'-

Put ga g1 = ga,cU{(§, ¢(§))} when A(§) < a < v, otherwise ga ¢11 = ga,cU{(§, 1)}, and choose
Dag) 641 asaPp () ¢41-name of an ultrafilter that contains D ¢) ¢ and such that ga (¢ ¢4 forces

that W, (5(€)) € Dae) e41-
No matter the case, for any a < A(§), D A(¢),¢+1 18 forced to contain Da’§+1 and

o ,e+1 ”_oc,f-‘rl WIPQ7§+1 (ﬁ[(avé' + 1)) = WIPa,g (ﬁr(av f)))

so this condition forces that WlPa,s+1 (Pl(c, €+ 1)) € Dygia.

Now, by induction on o € [A(€), ], we define D, ¢, 1 as required. We have already dealt
with the case o = A(&). For the successor step, assume we have defined Da,f+1 accord-
ingly. By Lemma 2.2.10, we can choose a P41 ¢41-name Da—‘,—l ¢+1 of an ultrafilter that con-
tains D, fr1 U Da+1 ¢ For the limit step, let « be limit and assume we have already defined
<Da0,§+1 t o < a). By Lemma 2.2.10, for any oy < a, Py ¢4 forces that Dao £+ U D, ¢ has
the finite intersection property, hence D, ¢ U Uag<a DPao.¢+1 also has this property, i.e., it can be
extended to an ultrafilter. Let Da’£+1 be a P, ¢1-name of such an ultrafilter.

It remains to show that item (e) holds for (a, {+1) when A(§) < o < v. If £ € R* then qo 41
forces W]pa’&l (Pla,E+1)) = W]pa’g(ﬁ[(a, £))N WQ& (p(§)); else, if £ ¢ R* then g, ¢41 forces that

WIP@,§+1 (]5[(04,5 + 1)) - WPa,g (ﬁ[(a, 5)) and ’W]Pa,g (25[(047 6)) N W]Pa,g+1 (ﬁf(a,ﬁ + 1))| <1

(because (domp,, : n < w) forms a A-system and ¢ is not in its root). Hence, in any case it is
clear that g, ¢11 forces Wp_ ., (pl(a, € + 1)) € Do g1

Limit step. Let n < 7 be a limit ordinal and assume we have succeeded in our construction
for £ < n. For each o < v put qo 4y := U5 < daer which clearly satisfies (c) and (d). By recursion
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on o < v we define D,, wn satisfying (a), (b) and (e). When a = 0, by Lemma 2.3.8 applied to the
FS iteration IP = (P} 0.6 Qo £ €< m), qo,y forces that W]po . (PI(0,7m)) intersects any member of
Ug <n Do,g, so we can find a Py ;-name of an ultrafilter Doﬂ7 that contains this union and such
that g, forces W, (p[(0,71)) € Do . .

For the successor step, assume we have found D, ;. By Lemma 2.3.9 applied to (m|{a, a +
1})In, ga+1,y forces that Doy U U, Dat1,e U {Wp,.,, , (Dl(a + 1,7))} has the finite intersection
property, so we can find a P, ,-name Da_A'_Ln that satisfies (a), (b) and (e).

For the limit step, let @ < v limit and assume we have defined Do for all ap < . By
Lemma 2.3.9 applied to (m|{ag,a})[n, qa., forces that Dy, , U U£<77 e U {W]pa n(‘[(a n))}
has the finite intersection property. Hence, g, forces that (J,,, QM UUg<y DoV {Wp, Ll
(a,1))} has the same property, so it can be extended to an ultrafilter D,, . O

2.4 Applications

In this section, we show applications of Theorem 2.3.3 to get new constellations of Cichor’s
diagram, concretely, we prove Theorem E, G, I and H.

Theorem 2.4.1. Let 0y < 01 < 03 < p < v be uncountable reqular cardinals and let X be a cardinal
such that v < X\ = \<%2. Then there is a ccc poset that forces

add(WV) =60y < cov(N) =6, <b=a=0; <non(M) = pu < cov(M) =v <d=
non(N)=c= A\

Proof. Denote Sy = LOC, $; = B and $2 = D. Fix a bijection ¢ = (g0,91,92) : A = 3 X A X A
and a function ¢ : v — v such that ¢(vd + a) = a for each § < pand o < v. For each p < vu
denote 1, := v+ Ap,and put R; == {n, +1+c:e <\, p <wvp, gole) = i} for each i < 3. Set
R:= RyU R U Ro.

The poset we want is Hy, * Cy * P where P is constructed in Vo := VHo2*Cx from a <6,-uf-
extendable matrix iteration m, with /™ = v + 1 and 7™ = v + vy, such that

(I) forany a < v, A™(a) =a+1and Qg(a) o =w<Y,

and the matrix iteration at each interval of the form [1,,7,+1) for p < vpu is defined as
follows. Assume that m|7n, has been constructed and that, for any : < 3and { € R; N1y, a
P A(¢),c-name N of a transitive model of ZFC of size <0; has already been defined.

Choose

(0) fori € {0,2}, an enumeration {:vf ¢ 1 ¢ < A}ofall the nice P, -names for all the members

of w?; fori =1, {if ¢ 1 ¢ < A} enumerates all the (nice) P,,,,-names for all the members
of Q (from Cn, see Example 1.7.9(3));

(1) fori < 3, an enumeration [, N R;]<% = {A? cTC<AL

FOI’f € [77;), 77P+1)r
(IT) if £ = 7, put A™(€) = t(p) + 1 and QP = EY2)¢;

. _ . . p .
(I) if & = n, + 1 + € for some ¢ < A, then there is some a < v such that Tyo(e).gn(e) 18 @

P,,,,-name, so we can choose

(II-1) a successor ordinal A™(§) such that sup. ¢ 4 A(y) < A(¢) and o < A(&) < v,

and

90(¢),92(¢)
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(III-2) a PA(¢),c-name Ng of a transitive model of ZFC of size <6 such that P 5 ¢) ¢ forces

go(e)
. . L .
that UVGAZO(E),Q@ N, € N¢ and Lo ()0 () € Ne.
. N,
Put Q?‘ = Sg(f(s).

According to Definition 2.3.1, the above settles the construction of m as a <#s-uf-extendable
matrix iteration. Set P := P, », which is ccc.

We need to show that P forces the statement of the theorem. Since this poset has size )}, it
forces ¢ < A. On the other hand, by Theorem 2.3.3, IP is a #3-uf-Knaster poset, so it preserves the
mad family previously added by Hp, and forces a < . Even more, for any regular cardinal
K € [02, \], P preserves the strongly x-D-unbounded family of size s previously added by C,.
In particular, P forces b < 6, and A <o.

Observe that P can be obtained by the FS iteration (P, ¢, Q,¢ : £ < 7) and that all its
iterands are y-Lc*-good and 6,-Cn-good. Therefore, by Theorem 1.7.11, P forces add(N) < 6,
cov(N) < 6y and A < non(N), in fact, P adds

(SU1) a strongly x-Lc*-unbounded family of size « for each regular x € [0y, A], and
(SU2) a strongly x-Cn-unbounded family of size « for each regular x € [0, A].

On the other hand, P adds p-cofinally many Cohen reals that form a strongly p-Ed-unbounded
family of size u, hence PP forces non(M) = b(Ed) < p.

To see that P forces 6y < add(N), 6; < cov(N) and #2 < b, we show that P adds the
corresponding strongly dominating families. In the ground model, order R by n <7’ iff n <7/,
A(n) < A(n') and thez*CA*]PA(n/),n' N77 C Nn’/ which is a partial order, even more, (R;, <) is <6;-
directed for any 7 < 3. To see this, if A C R; has size <6; then we can find some p < vy such
that A C 7),, so choose some ¢ < A such that A := Aﬁ(‘ Puté :=1n,+1+¢cwheree = g 1(i,,()
for some v chosen arbitrarily. Note that £ is an upper bound of the set A with respect to <.

In Voo, for § € Ry let ¢ be the P 5 (¢) ¢ 1-name of the Le*-dominating slalom over N,g added
l:?y QZ“ = LOCM; for & € Ry let .7'*5 be the Pz (¢) ¢41-name of the random real over Ne a.dded by
Q" = BMe¢; and for € € Ry, let d¢ be the P A(¢),¢+1-name of the dominating real over N¢ added
by Q = DMe. Define S := {¢¢ ¢ € Ro}, C:={i¢:£€Ri},and D := {Ci; 1€ € Ry}

We claim that P forces that S is a strongly 6p-Lc*-dominating family, C'is a strongly 6;-Cn-
dominating family, and D is a strongly #»-D-dominating family. We just show this fact for S
(the others can be proved similarly). Let & be a P-name for a real in w“. We can find a p < vu
such that i is a P, ;, ,-name, so there is some ¢ < v such that & = 9'587 ¢ Put { =1, + 1 + € where
1= g71(0,(,0), 50 Pg) ¢ forces that & € N. Fix any 8> € in Ry. Then & < 3, A(¢) < A(B)
and II—IPA(ﬁm Ng C Nﬁ, SO II—]pA(ﬁm T € Ng. Therefore, ¢ is forced to localize .

For each p < vu denote by ¢, the P(,,) ,,+1-name of the eventually different real over
Vi(p)+1n, added by Qt(p)ﬂmp. To show that non(M) > p and cov(M) < v, it is enough to
prove that IP forces that E := {¢, : p < vu} is a strongly y-Ed-dominating family. Consider the
partial order on vy defined by p <’ piff p < pand t(p) < t(p), which is actually <p-directed. To
see this, let A C vy of size of <u. Since A is bounded with respect to < (because cf(vu) = p), in
has an upper bound p € vu. Define a := sup,c4{t(n) + 1}, which is <v because v is a regular
cardinal. By the definition of ¢, there is some d € [p, vu) such that a = (d), hence § is an upper
bound of A with respect to <'.

Letz €V, Nw”. We can find o < v and p < vu such that z € V,, ,- By the definition of ¢,
there is some § € [p, vp) such that t(0) = o, so x € V) ;- Forany o>’ 4§, 6 < gand £(5) < t(o),
s0 & € Vi(p)41,,, which implies x #* e,.
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To finish the proof we conclude that, by Theorem 1.7.14, P forces cov(M) = 9(Ed) > v. In
fact, if ¢, denotes the Cohen real added by Qq+1,, for any o < v, it is clearly Ed-unbounded
over Vo o = Va,a+1,50 {cq : @ < v} is a strongly v-Ed-unbounded family. O

Theorem 2.4.2. Let 0y < 61 < p < v be uncountable regular cardinals and let \ be a cardinal such
that v < X\ = <% Then there is a ccc poset that forces MA _g, and

add(V) =60y <b=a=0; < cov(N) =non(M) = u < cov(M) =non(N) =v <
d=cof(M)=c= A

Proof. Fix a bijection ¢ = (g0,91,92) : A = 2 X v x X and a function ¢ : vy — v such that
t(vd + o) = o for each § < pand a < v. Denote 1, := v + Ap for each p < vp.

The desired poset is Hy, * Cy * P where P is constructed in Vp g = Vo #Cx from a <6;-uf-
extendable matrix iteration m.

Work in Vg o. Put I™ :=v + 1, 7™ := v + vy,

(I) forany a < v, A™(a) = a+1and le(a) o =w<Y,

and define the matrix iteration in the intervals of the form [1,,7,+1) as follows. Assume
that m |7, has been defined. For o < v choose

(0) an enumeration {Qg ol ¢ < A} of all the nice P, ,,-names for all the posets which

underlining set is a subset of 6 of size <fy and IFp, , ,“Qf ¢ is cec”; and

(1) an enumeration {Qf al ¢ < A} of all the nice P, ;,-names for all the o-centered sub-

posets of Hechler forcing of size <6;.
For & € [np, 1p+1),
(II) if & = n, put A(€) = t(p) + 1 and QF, = BYa©);
(Il) if ¢ =n,+ 1+ e forsome p < vpande < A\, put A(§) = gi(e) + 1 and QE“ = Qg(s).
This settles the construction, which is clearly a <6;-uf-extendable matrix iteration. ]

Remark 2.4.3. It is possible to additionally force MA 4, in Theorem 2.4.1 by slightly modifying
the construction of the matrix iteration. On the other hand, the matrix of Theorem 2.4.2 could
be modified to force the existence of a strongly-y-Lc¢*-dominating family and a strongly 6;-D-
dominating family.

For the reader convenience, before we prove Corollary 2.4.5 we summarize some results
about cardinal characteristic of 7 mentioned in the introduction.

Theorem 2.4.4. Let f € w* be a strictly increasing function. Then
(a) (Yorioka [Yor02]) cov(N) < cov(Zs) < cov(SN) and non(SN) < non(Zs) < non(N).
(b) (Kamo, see e.g. [CM19, Cor. 3.13]) add(N') < add(Zy) and cof(Zy) < cof(N).
(c) (Kamo and Osuga [KOO08]) add(Z;) < b and o < cof(Zy).
(d) (Osuga [Osu08], see also [CM19, Cor. 3.21]) cov(Z;) < non(M) and cov(M) < non(Zy).

Corollary 2.4.5. Let § < ;1 < v be uncountable regular cardinals and let X > v be a cardinal such
that A< = X\. Then, as in Figure 2.1, there is a ccc poset that forces add(Zy) = 0, cov(Zy) = p,
non(Zy) = v, and cof(Zy) = A for all increasing f € w® (in the extension).
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cov(N) cov(Zia) cov(Z;) supcov non(M) | cof(M) supcof  cof(N)

7 T
T 1 cof(Zy)

[ X

add(Iid) COf(Iid)
|
add(Z;) M\\
1%
N ;__T\\»
add(N) minadd add(M) | cov(M) minnon non(Zy) non(Ziq) non(N)

Figure 2.1: Separation of the cardinals associated with 7 for any f.

Proof. By application of Theorem 2.4.2 to § := 6y = 6, there is a ccc poset that forces add(N) =
b =6, cov(N) = non(M) = p, cov(M) = non(N) = v and 0 = cof(M) = ¢ = A. This poset is
as required by Theorem 2.4.4. O

We finally show that Cichori’s diagram can consistently be separated into 10 values, assum-
ing the consistency of three strongly compact cardinals. Though in [GKS19] the same result is
proved modulo four strongly compact cardinals and GCH, we avoid using GCH by tracking
the exact necessary hypothesis about the cardinals.

Theorem 2.4.6. Assume:
(D) kg < M < kg <A < kr < A3 < M < A5 < Ng < Ay < Ag < Agare cardinal numbers,
(ID) fori € [1,9] \ {6}, \; is regular,

(I) A\ = N, and

(1V) for j € {7,8,9}, k; is strongly compact and /\;”j =\

Then there is a ccc poset that forces

add(N) = A\ < cov(N) = Xg < b =X3 <non(M) = Ny < cov(M) = X5 <0 =
X6 <non(N) = A7 < cof(N) = Ag < c = .

see Figure 2.2.

This result is justified by application of Boolean ultrapowers to the poset constructed in the
proof of Theorem 2.4.1 in the same way as in [KTT18; GKS19; KST19]. We review this technique
as follows. Let « be a strongly compact cardinal and A > « regular such that’ A\* = . Consider
the Boolean completion BB, ) of the poset Fn, (A, ).

Lemma 2.4.7 ([KTT18; GKS19]). There is a k-complete ultrafilter U on B,, x such that its correspond-
ing elementary embedding j : V' — M satisfies:

(a) M is closed under sequences of length <k.

(b) j has critical point , cf(j(k)) = Aand X < j(k) < AT.

"Without assuming GCH.
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cov(N) non(M) cof(M) cof(N)
—-——T——-¢ o (
A2 A4 ' X | As
b 0 Ag
A1 As A5 A7
N & — — 1L —
! addNV) | addM) | coviM) | non(W)

Figure 2.2: Cichori’s maximum

(c) If|A| < k then j[A] = j(A).
(d) If 0 > r and either < X or 0% = 0, then max{\, 0} < j(0) < max{\,6}".
(e) If 0 > kand I is a <0-directed partial order then j[I] is cofinal in j(I).
(f) If cf(a) # K then jlo] is cofinal in j(a).
As a consequence,

Lemma 2.4.8 ([KTT18; GKS19], see also [GKMS20b, Thm. 1.13]). Additionally to the above, assume
that R = (X, Y, C) is an analytic relational system (i.e., X, Y and T are analytic in some Polish space),
6 is an uncountable reqular cardinal and P is a ccc poset. Then:

(a) j(P)is ccc (in 'V, not just in M).

(b) If P adds a strongly 0-R-unbounded family of size 6, then j(IP) adds a strongly cf(j(6))-R-
unbounded family of size cf(j(0)).

(c) If P adds a strongly 6-R-dominating family with witnessing directed set L in the ground model
such that |L| = N, then

(i) whenever § < k, j(IP) adds a strongly 6-R dominating family with witnessing directed set
of size |j(\')];

(i) whenever k < 0, j(IP) adds a strongly -R dominating family with witnessing directed set
of size \'.

In both cases, the witnessing directed set can be obtained in the ground model.

Proof. We include the proof for completeness. Property (a) follows from Lemma 2.4.7(a). To see
property (b), let {¢(c) : @ < 6} be a strongly §-R-unbounded family added by IP. Since P is ccc,
da < 0YB € o, 0)(IFp é(B) IZ 2) for any P-name 2 of a real in Y, thus

M |=3a < j(0)VB € [a, j(0))(IFjp) J(0)(B) & 2')

for any j(IP)-name z’ of a real in Y (note that every nice j(IP)-name of a real is in M). Since R is
analytic, the same statement holds in V. Therefore, if f : cf(j(6)) — j(0) is an increasing cofinal
function, then P forces that {j(¢)(f(§)) : & < cf(j(#))} is a strongly cf(j(#))-R-unbounded
family.
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We finally show (c). Assume that p € P forces that {a(l) : | € L} is a strongly 6-R-
dominating family. Hence

M = “j(p) Iy {j(a)(1) : 1 € j(L)} is a strongly j(0)-R-dominating family”.

If 0 < k then j(0) = 6 and j(L) is <f-directed (in M, but also in V) of size |j(\)]; else, if k < 6,
by Lemma 2.4.7(e) we have that j[L] is cofinal in j(L), so j(p) forces (in V) that {j(a)(j({)) : | €
L} is a strongly 6-R-dominating family. O

Proof of Theorem 2.4.6. Denote Ry := Id, R; := Lc*, Ry := Cn, R3 := D, and R4 := Ed. Let
IPs be the poset constructed in Theorem 2.4.1 applied to §; = A1 fori < 3, p = Ay, v = A5 and
A = Xg. Also let \g := Ny. Recall that IP4 adds

(Usl) astrongly x-R;-unbounded family of size  for i < 4 and each regular « € [A;, AgJ;
(Us2) astrongly \;-Ry-unbounded family of size \; fori € {4,5};

(Dg1) astrongly A\s-R4-dominating family with witnessing directed set of size A5 in the ground
model; and

(D¢2) a strongly A;-R;-dominating family with witnessing directed set of size Ag in the ground
model, for 1 < < 4.

Let j7 : V' — M7 be the elementary embedding obtained from B, ), as in the previous discus-
sion, and let P7 := j;(IPs). By Lemma 2.4.8, IP7 is ccc and it adds

(U71) astrongly x-R;-unbounded family of size « for ¢ < 4 and each regular x € [A;, Ag] \ {k7};
(U72) astrongly A\7-R;-unbounded family of size A7 for i < 3

(U73) astrongly \;-Ry-unbounded family of size \; fori € {4,5};

(D71) a strongly A\4-R4-dominating family with witnessing directed set of size \s;

(D72) a strongly A\3-Rs-dominating family with witnessing directed set of size A¢; and

(D73) astrongly A\;-R;-dominating family with witnessing directed set of size A7 for 1 <1 < 3.

This process is repeated a couple of times with xg and k9. Let js : V' — Mg be the elementary
embedding obtained from B, ), and set Pg := jg(IP7). This poset is ccc and it adds

(Ugl) a strongly x-R;-unbounded family of size x for i < 4 and each regular k € [\;, Ag]
{r7, K8}

(Ug2) astrongly A7-R;-unbounded family of size A7 for i < 3,

(Ug3) a strongly As-R;-unbounded family of size Ag for i < 2

(Ug4) astrongly \;-R4-unbounded family of size \; for i € {4,5};

(Dgl) astrongly A\4-R4-dominating family with witnessing directed set of size As;
(Dg2) astrongly A3-R3-dominating family with witnessing directed set of size Ag;
(Dg3) a strongly A2-Ro-dominating family with witnessing directed set of size A7; and

(Dg4) astrongly Ai-R;-dominating family with witnessing directed set of size As.
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Let jg : V' — Mj be the elementary embedding obtained from B,, ), and set Py := jy(IPg). This
set is ccc and it satisfies the previous (Ug1)—-(Ug4) and (Dg1)-(Dg4), with the exception that (Ug1)
does not hold for k = kg. In addition, Py adds a strongly Ag9-Ro-unbounded family of size \g,
so it forces A\g < ¢ (see Example 1.7.9(5)). On the other hand, |Pg| = |jo(js(j7(X6)))| = A9, so Py
forces ¢ < \g. By the properties listed above, Py is the desired poset. O

2.5 Discussion and problems

This last section includes a short discussion related to the main results of this chapter. In Theo-
rem 2.4.1 (Theorem E) we separated one additional value in the right side of Cichori’s diagram
with respect to the constellation proved in [GMS16] (see (% 2) in the introduction). We ask if we
could do the same to the constellation from [KST19], concretely,

Question R. Can it be forced, without using large cardinals, that
N; < add(WNV) < b < cov(N) < non(M) < cov(M) <non(N) =0 =¢?

If this is possible, the large cardinal hypothesis from the main result in [KST19] can be
reduced to three strongly compact cardinals.

The matrix iteration technique of this text seem not to be enough to deal with this problem
since, to give desired values to cov(N') and non(M) without increasing b too much, we need to
deal with restrictions of random forcing and IE simultaneously, so they cannot be included in
the same way in the matrix construction (a bit more in detail, only one could be the restriction to
VA(&& but the other must be other type of restriction). On the other hand, similar to [KST19],
dealing with ultrafilters may not be enough, so the matrix construction may include finitely
additive measures instead.

The reader may have noticed that we did not force a value of a in Theorem 2.4.6 after using
Boolean ultrapowers. The reason is that the Boolean ultrapowers from B, \ applied to a ccc
poset IP destroys all the mad families of size > « added by P in the same way as the ultrapower
from a measurable cardinal destroys them (see [She04; Bre02]). This leads us to ask whether
a value of a can be forced in Theorem 2.4.6, or even in the consistency results from [GKS19;
KST19].

By a slight modification, the poset constructed in Theorem 2.4.1 can force MA.,, (with
A1 = bp), and it is not hard to see that Pg from the proof of Theorem 2.4.6 also forces this.
Though we can guarantee that P9 forces MA .., it is unclear whether it forces MA_,,.

As mentioned in the introduction, [GKMS19] showed that Cichori’s diagram can consis-
tently be separated into 10 values without assuming large cardinals, concretely, for the in-
stances (%3) and (%) (see the introduction, in particular Question R is solved in the positive).
The dynamic of the proof is similar to the original [GKS19]: start with a ccc poset P that sepa-
rates the left hand side of Cichori’s diagram, e.g. (%) and (%), but instead of taking Boolean
ultrapowers, intersect P? with o-closed elementary submodels of H, (for some large enough
regular x) so that the resulting poset forces Cichori’s diagram separated into 10 values.

This new method still relies on a forcing that separates the left side of the diagram. Al-
though the poset from [GMS16] does this job, the new method is incompatible with conditions
(P1)-(P3) (see the section “Ultrafilter-extendable matrix iterations” in the Introduction), so a
modification of this forcing as in [GKS19] is necessary to get a poset compatible with the new
method. The same happens with the Boolean ultrapower method. On the other hand, the poset
we presented in Theorem 2.4.1 is already compatible with the new method, and less difficult to
construct in comparison with the forcing from [GMS16; GKS19].
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In relation with the previous discussion about MA, [GKMS20a] shows how to separate
other classical cardinal characteristics of the continuum (without using large cardinals), in ad-
dition to those in Cichori’s diagram. In particular, m (the smallest cardinal where MA fails) can
be forced to be any chosen regular value between ®; and (the intended) add(/N'). With respect
to the Boolean ultrapower method, in [GKMS20b] the forcing from Theorem 2.4.6 is modified
to force, in addition, that m can be any previously chosen regular value between ®; and xg.

Though we constructed a model of ZFC where (Al); for Z € {N,Z;} and (A2),, hold, we
still do not know how to construct a model for the following statements.

Question S. Are each one of the following statements consistent with ZFC?:
(a) (A1) .
(b) (A2)z, for any increasing f : w — w.

As mentioned in the Introduction, Brendle [Brel9b] constructed a ccc poset forcing Fig-
ure 2.3. However, tools to deal with add(M) and cof(M) in this situation are still unknown. In
this model non(Zy) < cov(Zy), but the values of add(Zy) and cof(Zy) are unclear.

cov(N) non(M) cof(M) cof(N)

|
|
add(N) addjv(./\/l ) cov(M) non(N)

Figure 2.3: The constellation of Cichori’s diagram forced in [Bre19b].
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3

MODELS WHERE MORE THAN TWO
CARDINAL INVARIANTS
ASSOCIATED WITH SN ARE
PAIRWISE DIFFERENT

The main results of this chapter are based on the papers “On cardinal characteristics associated
with the strong measure zero ideal” [Car21] and “The covering number of the strong measure
zero ideal can be above almost everything else” [CMR21]. The latter is joint with Ismael Rivera-
Madrid and Diego Mejia, and was accepted for publication in the Archive for Mathematical
Logic while the first paper was accepted for publication in Fundamenta Mathematicae.

In [G]S93], it was shown that a CS iteration of forcings PT; (Example 1.5.9) increases the
additivity of SN, and these iterands are particular cases of the tree forcing notions of Defini-
tion 1.5.8. In this chapter, we prove that any CS iterations of tree forcing notions, including
Sacks forcing, increases the covering of SA/ (Theorem 3.1.13). Since countable support itera-
tion is the universal method for constructing models with ¢ = R, our result indicates that we
force cov(SN) = Ny. We use this result to prove the consistency of add(SN) = non(SN) <
cov(SN) < cof(SN) (Theorem L).

On the other hand, based on an important characterization of the cofinality of SN by
Yorioka [Yor02] (Theorem N), we introduce the notion of A-dominating system (Definition 3.2.7),
which is used to generalize Yorioka’s characterization. This result provides bounds for the
cofinality of SN (see Theorem O, Theorem 3.2.9 and 3.2.13 ), and Yorioka’s characterization
turns out to be a consequence (Corollary 3.2.15). This is used to prove the consistency of
add(SN) = cov(SN) < non(SN) < cof(SN) (Theorem M).

This chapter is split into three sections: Section 3.1 is devoted to prove Theorem L. In Sub-
section 3.1.2 we present preservation results related to the dominating number of x* for « reg-
ular, this to ensure that the cofinality of SN can be manipulated as desired via Theorem N. We
prove Theorem L, moreover, we show that tree forcings, when iterated, increase the covering
of SN (Theorem 3.1.13 in Subsection 3.1.3).

Section 3.2 is dedicated to showing Theorem O and the consistency of add(SN) =
cov(SN) < non(SN) < cof(SN) (Theorem M). In Subsection 3.2.1 we obtain several results
about the dominating numbers 9(5) and 93. The notions of Z -directed system and A-dominating
system are introduced in Subsection 3.2.2, as well as the proof of Theorem O. In Subsection 3.2.3
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we prove Theorem M.
The last Section 3.3 is devoted to discussion and open problems.

3.1 The first model

The objective of this chapter is to prove Theorem L.
3.1.1 More characterizations of the dominating number

The following characterization of the dominating number is due to Blass [Bla10], which will be
useful to prove the main results of Section 3.1.

Definition 3.1.1. Denote by I the set of interval partitions of w.
e Forany I, J € [, write

I C Jiff V*°n3m(I, C J,), and I ¢ Jiff VnVm(L, 2 Jp).

* Define the relational systems D; := (I,I,C) and Dy := (I, I, %)

For each I € Twe define f; : w — w and I*? € T such that f(n) := min I,, and I*? := I5, U I3, 1.
For each increasing f € w“ define the increasing function f* : w — w such that f*(0) = 0 and
f*(n+1) = f(f*(n) + 1), and define I’ € I such that I} := [f*(n), f*(n + 1)).

Lemma 3.1.2. D =1 Dy =1 D,y. Even more, if D C w* is a dominating family of increasing
functions, then {I Fofe D} is Dy-dominating.

Proof. To see D; =1 D note that, for any I € T and f € w¥, if f € w" is increasing then
fr <* fimplies I C I7. Indeed, for n large enough, put m := f*(n),so f*(n) = m < fr(m) <
fim+1) < f(m+1) = f*(n+ 1), thatis, I,,, C I.

For Dy <1 D note that, forany I, J € I, I T J implies I ¥ J *2, Finally D <1 D, because,
for any increasing f € w” and I € I, I/ ¢ I implies f <* f;. To show this, notice that I/ t¢ T
is equivalent to say that (f;(n), fr(n + 1)) Nranf* # 0 for all but finitely many n. Split into
cases: if f = id,, then f* = id,, so (fr(n), fr(n + 1)) # 0 for n large enough. Hence, while
f(n+1)— f(n) =1, eventually f;(n+ 1) — fr(n) > 2, which guarantees f <* f;.

For the second case, assume f(mg) > mq for some my < w.! This implies that f(n) > n for
every n > my. To guarantee f <* f;,itis enough to show that |I,,Nranf| > 2 for infinitely many
n (recall that I,, N"ranf # ( for large enough n). If n € w is large enough, then there is some m <
wsuch that f;(n) < f*(m) < fr(n+1). On the other hand, since (f;(n+1), f;(n+2))Nranf* # (),
ff(im+1), f(f*(m)) € I, U I,1. This clearly implies that either I, or I,,;; intersects ranf in 2
or more points. O]

3.1.2 Preserving the dominating number d,,

In this subsection, we show a method to preserve 0, large for x regular. This is a natural
generalization of preservation methods by Judah and Shelah [JS90] and Brendle [Bre91]. Our
presentation is closer to [CM19, Sect. 4].

Lemma 3.1.3. Let x and X be infinite cardinals. If X > k<" then Fu.(\ X Kk, k) forces 0, > .

ISince f is increasing, f > id..
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Proof. Lety < Aand let {y, : @ < 7} be a set of Fn.,.(\ x k, K)-names of functions in x". Since
this poset is (k<*)*-cc, there is some S € [A\]<* such that each 7, is a Fn..(S x &, x)-name.
A genericity argument guarantees that Fn.,(x, ) adds an unbounded function in x" over the
ground model, so Fn.(\ X &, k) forces that the k-Cohen real at £ € A \ S is not dominated by
any . ]

Definition 3.1.4. Let  be an infinite cardinal. Say that a poset is x"-good if, for any IP-name of
a function in x", there is some h € " (in the ground model) such that, for any = € ", if v £* h
then |- 2 £* 4.

Lemma 3.1.5. Any k"-good poset forces that d,, > [0)|.

Proof. Assume that PP is a x"-good poset and that A = 0)/. Let v < ) and assume that {7, :
a < v} is a set of P-names of functions in «”. For each o < ~ there is some h, € k" satisfying
goodness for g,. Since v < A, there is some = € " such that = ﬁ* hq for any o < . Therefore,
by goodness, P forces that z £* . O

The following couple of lemmas illustrate simple examples of x"-good posets.
Lemma 3.1.6 (cf. [Mon17, Lemma 1.46]). If « is reqular then any poset of size < k is k"-good.

Proof. Let IP be a poset of size < k and assume that y is a P-name of a function in «". For each
p € P and £ < k it is clear that there is some h,(§) < k such that p ¥ y(§) # hyp(§). Since
IP| < k < by, there is some h € " such that h, <* h for any p € P.

It is not hard to see that z £* h implies IF = £* ¢. Fix p € P and 1 < k. Since z £* hy,
there is some ¢ > 7 such that h,(£) < z(§). On the other hand, there is some ¢ < p forcing

(&) = hp(), 50 q I (&) < x(8). -
Lemma 3.1.7. If « is regular then any k-cc poset is k"-good.

Proof. Let IP be a r-cc poset and let 7y be a P-name of a function in x".

Claim 3.1.8. If & is a IP-name of a member of  then there is some 3 € k such that |- & < (3.

Proof. Assume the contrary, that is, for any 3 < & there is some pg € P such that ps I- 8 < a.
Since P is x-cc and « is regular, there is some ¢ € P forcing [{# < x : pg € G}| = &, which
implies that ¢ I- £ < ¢, a contradiction. ]

For each £ < &k, apply the claim to find some h(&§) € « such that |- y(&) < h(€). It is clear
that |- ¢ < h, therefore, z £* h implies I- z £ y. O

Montoya [Mon17, Sect. 1.2.2] defines a canonical forcing E, that adds a function in "
eventually different from the ground model functions in x~, and she proves that I, is x"-good
whenever IE, forces that x is measurable.

We finish this section with the following iteration result.

Lemma 3.1.9. Assume that 0 is a limit ordinal and that (P¢ : £ < 0) is a <-increasing sequence of
rk"-good posets. Let P := limdirgsP¢. If cf(0) > r and P is cf(5)-cc then P is k"-good.

Proof. 1f  is a P-name of a function in ", then there is some a < ¢ such that 7 is a P,-name,
this because P is cf(d)-cc and cf(d) > k. Let h € k" be a function obtained from the goodness of
P, applied to y. It is clear that = £* h implies IFp = £ 3. O
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3.1.3 A model where add(SN) = non(SN) < add(SN) < cof(SN)

In this subsection, we show that tree forcings increase cov(SN). Also, we prove Theorem L.
First we start with the following result about b-tree forcings.

Lemma 3.1.10. Any b-tree forcing notion is proper and strongly w*-bounding.”
Proof. The standard argument works (see e.g. [GS93]). O
We now present the key lemma that will allow us to prove Theorem 3.1.13.

Lemma 3.1.11. Let T be a b-tree forcing notion and let D C w* be a dominating family of increasing
functions. If of € (seq.,, (b)) with ht,; = f* for each f € D then, for any T € T, there is some
S < T in T and some f € D such that [07] N [S] = 0. In particular, T forces that T ¢ ﬂfeD[af]oo
where T denotes generic real in || b added by T.

Proof. Fix T' € T. Define f; : w — w such that, for any ¢ € Lv,,(T), there is a splitting node
of length < fy(n) extending t. By recursion, define g(0) = 0 and g(n + 1) = fy(g(n)), which
clearly yields an increasing function. Set I := (I9)*2, that is, I,, = [g(2n), g(2(n + 1)) for each
n < w. Since D is dominating, by Lemma 3.1.2 there is some f € D such that I C I/. Forn < w,
choose some k,, (if exists) such that I}, C L’: . Note that there are only finitely many n < w for
which k,, does not exist.

Now we define 7T}, by recursion on n < w such that T = T for any t € Lv () (Th)-
Put Ty = T. For the successor step, if k, does not exist then we set T}, 1 := T),; else, when
k, exists, for each t € Lvgy,)(Tn) choose some t' € Ly, +1)(T) extending ¢ (recall that

f*(n) < g(2ky)) such that ¢’ is incompatible with 0’7{ 41 This is possible because there is a
splitting node of length < ¢(2k,, + 1) extending ¢ and ]a£+1| = f*(n+1) > g(2(k, +1)). Put
Thy1 := Uteva*(m(Tn) T, Note that for each t € Lv #+(n)(Tn), Tny1 contains a splitting node

of length < f*(n + 1) extending ¢. This indicates that (T}, : n < w) satisfies the conditions
of Definition 1.5.8(T6), so S := [),.,T» € T and S < T. Even more, any branch of S is

n<w
incompatible with ¢/ (k) for all but finitely many k < w, s0 [0/]o N [S] = 0. O
Corollary 3.1.12. SN C s°.
Proof. Apply Lemma 3.1.11 to T = S. O

The following theorem will be useful for the upcoming Theorem L.

Theorem 3.1.13. Assume CH. Then, any CS (countable support) iteration of length ws of bounded-tree
forcing notions forces cov(SN') = Na.

Proof. Assume that (P, : o < wy) results from such iteration and fix any dominating family D
of increasing functions in the ground model (by CH, |D| = ). Let D* := {f* : f € D}, which
is also a dominating family. Assume that {X¢ : { < w;} is a family of P-names of members of

SN (2¢). For each £ < wy and f € D, there is a P-name dg for a function in (2<%)% such that

P forces ht,; = f* and X¢ C [dg ]oo- Since P, has Rs-cc, there is some o < N; such that c'rg is
g

a IP,-name for each f € D and £ < wy. Let T be a P,-name of a bounded-tree forcing notion
such that P, 1 = P, * T.

Fix a P,-generic set G over V. Work in V[G]. Let b : w — w be a function such that
T := TF[G] is a b-tree forcing notion. Thanks to the maps F» and Fj, (see Subsection 1.3.1), since

A poset PP is strongly w®-bounding if for any p € P and any PP-name 4 of a function from w into the ground
model, there are a function f from w into the finite sets and some ¢ < p that forces ©(n) € f(n) forany n < w.
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D is still a dominating function in V[G] (because CS iterations of w“ forcing notions are w*-
bounding, see [Shel7; Gol93]) and fe D[Ug loo € SN(2¥) for each £ < wy, we can find some

pg € (seq, (b))~ with htpg = f* foreach f € D and ¢ < w; such that Fb_ng[ﬂfeD[ag]Oo} C

[pg]oo. By Lemma 3.1.11, T forces 7, ¢ nfeD[Pg]oo for each { < wy (here, 7, € []bis the generic
real added by T), so F; ' (Fy(7a)) ¢ e D[ag ]o (since 7, is a generic real, it can be shown by a

density argument that F},(7,) has a unique pre-image under F5).
Therefore, P,,, forces that F;, ' (Fy(7,)) ¢ Ugcw, Xe- O

Now we are ready to prove Theorem L.

Theorem 3.1.14. Assume CH and that X is an infinite cardinal such that ARt = X\ Then, there is
a proper w¥-bounding poset with Na-cc forcing cof(N) = a = u =1 = Ny, cov(SN) = Ny and
cof(SN) = \. In particular, it is consistent with ZFC that non(SN') < cov(SN) < cof(SN).

Proof. We show that Fn,, (A x wi,w;) followed by the CS iteration of $ of length Rj is the
desired poset. By CH, Fn., (A X wi,w;) has Ng-cc, and it is clear that it is <w;-closed, so it is
proper and preserves cofinalities (and it is obviously w*-bounding since it does not add new
reals). Even more, in the Fn,, (A x wy,w)-forcing extension, CH still holds, 2% = )\ and, by
Lemma 3.1.3,0,,, = A.

Now work in the Fn., (A X w;,w;)-extension. Let Q = (P,,$ : @ < ws) be the CS iteration
of Sacks forcing of length wy. It is known that Q forces cof(N) = a = u = i = N; and, by
Theorem 3.1.13, it forces cov(SN) = ¢ = Ny. In addition, since supcof < cof(N'), by Theorem N,
Q forces that cof(SN') = 0,

It remains to show that Q forces 9,,, = A. Since Q has Ng-cc and size Yy, it forces R — ),
On the other hand, for each a < wy, |P,| = Xy, so P, is w}*-good by Lemma 3.1.6. Hence, by
Lemma 3.1.9, Q is w{*-good and, by Lemma 3.1.5, Q forces A < d,,. O

Remark 3.1.15. In the proof above it can be shown in addition that the first wo-many w;-Cohen
reals form an unbounded family of w}" even after the iteration of Sacks forcing. Hence, the
final model satisfies b,,, = No.

Remark 3.1.16. Judah, Miller and Shelah [JMS92] have proved that, in Sacks model, add(s?) =
Ny and cov(s?) = ¢. So Corollary 3.1.12 also implies that cov(SN) = ¢ in this model.

3.2 The second model

The aim of this chapter is to prove Theorem M.

3.21 On dominating numbers

In this subsection, we present some results about the cardinal characteristics associated with
D3 and D3(<*) for an arbitrary directed preorder S.

Lemma 3.2.1. Let A be a non-zero cardinal. If S has no maximum then Xy < cf(b3) = b3 < cf(03) <
23 < |S|*. In particular (for X = 1), b(S) is regular and b(S) < cf(d(S)) < ().

Lemma 3.2.2. (i) b(S) = b3 <0(S) <03 <0(S)* <|S|*. Even more, S <1 D2.
(i) If A < b(S) then DY =1 S.

(iii) If A < N, then Dg =T Dg\’. In particular, Dg < Dg'.
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(iv) If X is infinite then DY(<*) <1 D3, s0 03(<*) < 03 and b(S) < by(<¥).

Proof. (i) Clearly 03 < 9(S)* < |S|* and b(S) < 0(S). It remains to prove that b(S) < b3 and
S <7 D% (which implies b3y < b(S) and 2(S) < 23). To see b(S) < b3, let B C S* with
|B| < b(S). For a < A, since |[{f(«) : f € B}| < |B| < b(S5), choose g(a) € S such that
f(a) <s g(a) forall f € B. Then g € S* and it bounds B.

We now prove that § <t Dg. Define ¥; : S — S* and Uy : S* — S as follows. For
f € S* put Uy(f) := f(0). On the other hand, for i € S define f; € S* by f;(a) := i for
each a < A, so put ¥;(7) := f;. Itis clear that Uy (i) < f implies i <g Wa(f).

(ii) By (i), it is enough to show that D <1 S. For f € S*, since f[\] < A < b(S), choose
W (f) in S such that f(a) <g ¥ (f) for each a < \. This defines ¥} : S* — S.
Finally, put Ws (i) := f; fori € S, where f; is asin (i). It remains to check that, if ¥} (f) <g ¢
then f < f; for f € S* and i € S. This is clear because, for a < ), fla) <s ¥|(f) <si=
fila).

(iii) Define ¥4 : SA — S* by W4(f) := fI\.
To define ¥; : S* — SV, for g € S* set g* € S* such that, for any a < X, g*() := g(a)

if « < A, and ¢g*(«) = 0 otherwise. Put ¥;(g) := g*. It is clear that ¥;(g) < f implies
9 < ¥5(f).

(iv) Obvious. O
Lemma 3.2.3. If \ is an infinite cardinal, then 03(<*) > A.

Proof. Let F' := {fr : £ < A} C S* and let K be a bijection from \ onto A x . Define f € S*
as follows: for any o < A we choose f(a) > fx(a), (@) (it exists because S has no maximum).
Foreach &, 8 < Asetagg:= K 1(£,), 50 K(agp)o =€ and f(ag ) > fe(agp). Then [{a < A :
fla) > fe(a)}f = A O

In the next theorem we give a characterization of 3.

Theorem 3.2.4. If \ is an infinite cardinal, then

0y = 0X(<7) - sup{le'y.
a< A

Proof. Clearly 03(<*) - supa<)\{b|§|} < 3 because D'Sa‘ < 93 and 03(<*) < 03 by Lemma 3.2.2
(iii) and (iv), respectively.

For a < A, choose D, C S <-dominating with |D,| = 0|SO‘|, and choose a <*-dominating
family D C S of size og(g*). For g € D, with o < A and h € D define the function f, ), € SA
by
9(B) fB<a

fon(B) == {h(ﬁ) i 8> a.

Since [{fyn : h € D A Ja < A(g € Da)}| < 0M(<*) - supacr {01} - X = 0X(<%) - suppoy {051}
by Lemma 3.2.3, it sufficies to prove that this family is <-dominating. To this end let f € S*.
Find h € D and a < A such that f(5) < h(p) for all 8 > «. Then, for 8 < « choose g,(3) € S
above f(f) and h(f), so there is some g € D, such that g, < g. Therefore, f;; dominates f
everywhere. O
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It is known that Dﬁ = 0, when X is regular, even more, this follows from Theorem 3.2.4
because 9§ = A when xk < X (by Lemma 3.2.2 (ii)). However, 03\ = Dé‘f()\) in general. More

details about 9} can be found in [Bre19a].

Lemma 3.2.5. D}, =1 D) ® D3. In particular, o), , = max{0},03}.

Proof. To define Wy : (k x \)* — k* x M for ' € (k x A\)* define fr € k* and gr € \* by setting
fr(a) := F(a)y and gr(a) := F(a);. Put Ui(F) := (fr,g9r). Now, define ¥y : k* x \} —
(kK x A)* as follows: for f € x* and g € A\ set Fy, € (k x A)* by Fr4(8) = (£(8),9(8)). Put
Uy (f,g) := Frg. Itis clear that if (fr,gr) <g (f,g) then F' <. Fjg4. Also, Fyg <pxn F

implies (f,9) <e (fr,9r)- .

3.2.2 A connection between SN and 03

In this subsection, we introduce the notion of A-dominating system on a direted preorder S; we
discuss the relationship between D3 and SN, and we prove Theorem O.

Definition 3.2.6. Let S be a directed preorder. Given an increasing function f € w“, we say
that a family A/ = <Af .1 € S) of subsets of 2¥ is an Zy-directed system on S if it satisfies:

() Vi € S(A! € 2¢is dense G5 and A! € ;);
(I) Vi,j € S(i <g j — Al € A]) and
(D) (A] :i € S) is cofinal in Z;.
Assume from now on that S is a directed partial order with a minimun 4.

Definition 3.2.7. If A is a cardinal and there is some dominating family { f, : @ < A} on w® such
that Afe = <A{ * i€ S)isanZy, -directed system and

va < A(() AL ¢11.).

B<a

then we say that (A7 : o < \) is a A-dominating system on S. For each o < A and i € S we
denote A® := Af> and A? := Azf".

The matrix mentioned in the introduction is a A-dominating system on A, which was con-
structed by Yorioka [Yor02] under A = minadd = supcof. The following lemma is inspired by
Yorioka’s proof of Theorem N, reproved in Corollary 3.2.15.

Lemma 3.2.8. Let A be a uncountable cardinal. Assume cov(M) = 0 = X and that, for any increasing
function f € w*, there is some Ly-directed system on S. Then there is some \-dominating system on S.

Proof. Let (hy : @ < \) be a dominating family and fix an Z;-directed system A/ = <A{ cieS)
for all increasing f. By recursion on a@ < A we construct a dominating family (f, : & < A) that
guarantees that (A/e : a < \) is a \-dominating system.

Assume that (fs : § < a) has been constructed. We can get a transitive model M for ZFC
such that [M| < A = cov(M) and Ag) is coded in M for any 3 < «, i.e, Aﬁ) = [0P] o for some
of € M that witnesses A} € Tj,.

Recall that M < cov(M) implies that there is a Cohen real over M, hence it adds a perfect
set P of Cohen reals over M (see [B]J95, Lemma 3.3.2]). Since each AZ (B < «)is a dense Gy
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set coded in M, P C ) s<a Ag) . On the other hand, there is some g € w*“ such that P ¢ Z, by
Corollary 1.2.9.

Choose f, € w* increasing such that h, < fyand g < fo. ThenZ; C 7, and P ¢ Z;, . But
P CNpeq AP, hence Ns<a AP ¢ Ty

Clearly, (f, : @ < )\) is a dominating family and (Afe : @ < \) is a A-dominating system on
S. O

We now prove Theorem O(1).
Theorem 3.2.9. Assume that there is a \-dominating system on S. Then SN' <1 D3.

Proof. Fix a A- dominating system (A% : a < \). For X € SN define ¥{(X) := Gx € S

such that X € (1, A%, (), Which can be choosen Definition 3.2.6 (II). Let F € SA. Note that
Na<a Af(q) € SN because (., Af(,) € A%,y and Ag ) € Ty, Define Wy (F) := N, A,

We show that (¥, ¥s) witnesses SN < Dg. Assume that ¥ (X) < F. Then Gx(a) <
F(a) for all & < A, so by Definition 3.2.6(II), X € (. A%X(a) C Na<nr A%(a). O

As a consequence we get:

Corollary 3.2.10. If there is an A-dominating system on S then cof(SN') < vy and b(S) = b3 <
add(SN).

The rest of section is dedicated to prove Theorem O (2), which will be used in Subsec-
tion 3.2.3. To do this, we need the following lemma, which is inspired in the proof of [Yor(2,
Thm. 3.8].

Lemma 3.2.11. Let 0 < k < A be cardinals with \ infinite. Assume minnon > \ and that there is a \-
dominating system (Afe : oo < \)on k x ), A2 = Af‘; Then, for any f € A\, there are G € (k x A\)*
and {zf : o <\, B < Kk} C 2% such that

(i) Ya < )\({:z:g/ o/ <a,f<kK}C Ag(a)),
(i) Yoo < AVB < k(2F € Ny <a G(a) N AG b)) and
(iii) Va < A(f(a) < G(a)1).

Proof. We will recursively construct G(a) € £ x A and 2§ € 2*. Assume that we already have
G(a )and:nﬁ for any o/ < awand < k. Set Bg := AG o U{xg, c o < a,f < k}. Since
{xﬁ, ey < o, < Kk} has size <\, Bg € Iy, because Kk < )\ < non(Zy, ). By Definition 3.2.7
Moo Ao ¢ Iy, so there is some 25 € No<a 00 \ Bs. Note that {xg‘/ o <o, <K} ELy,.
Then there must be a G(«) € k x A such that {xﬁ o/ <o, <k} C Ay and fla) < G(a).
This construction satisfies the required conditions. O

Lemma 3.2.12. With the same assumptions as in Lemma 3.2.11 and with G € (k x \)* fulfilling its
conclusion, if « < Aand § < f(«) then ﬂ7</\ G(y) < AG s forall B < k.

Proof. By Lemma 3.2.11 (i) and (i), {25 : o < A, 8 < K} C (), é( ) and =3 ¢ Ag F(a)- Hence
xG ¢ Aj ; because § < f(a). O

Theorem 3.2.13. Assume 0 < x < X\ < minnon and that there is some A\-dominating system on k x \.
Then D} <1 SN.
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Proof. Fix a A-dominating system (A : a < \). When x = ), (Bg’a D, B < \) with Bg o =
AS , forms a A-dominating system on 1 x A. So the proof reduces to the case » < A. For
B € SN, choose some Fg € (k x A\)* such that B C Na<a A?,B(a)‘ Define U5 (B) := fg € \ by
() := Fp(a); for every a < A.

Now for f € A*, by Lemma 3.2.11 and 3.2.12 we can find some G € (k x A)* such that, for
each g € A and for each a < ), if g(a) < f(a) then

() A&, (a) £ A 4o forall § < .
a<A

Define Wy (f) :=,<x Agf(a).
We show that (¥, U3) witnesses D3 =<1 SN, i.e, if f £ fp then ¥ (f) Z B. Since f £ f5
we can choose @ < A such that f(a) > fp(a), so [\ x Acé,-(a) Z A% (o) Thus vi(f) =

MNa<n A% (a) € Bbecause B C Na<r A%y (a): O

Asa consequence, we get:

Corollary 3.2.14. With the same assumptions as in Theorem 3.2.13, cof(SN') > 0} and add(SN) <
b3 = cof(\).

Before ending this section we show that Theorem N is a consequence of the previous results.

Corollary 3.2.15 ([Yor02, Thm. 2.6]). Let X be an infinite cardinal. If minadd = supcof = X then
SN =1 D(M\).

Proof. Since minadd = supcof = A, for each f € w“ we can find an Z;-directed system on \. By
Lemma 3.2.8, there is a A-dominating system (A7 : a < \) on A. Since (Bg,a to, B < A) with
Bg o= Ag forms a A\-dominating system on 1 x A, Dﬁ =<1 SN by Theorem 3.2.13

On the other hand, since (A/e : o < )\) is a \-dominating system on ), by Theorem 3.2.9
SN =1 D}. O

3.2.3 A model where add(SN') = cov(SN) < non(SN) < cof(SN)

We begin this subsection by showing that a cofinal family in Z; is produced by a localizing
family and a dominating family.

Lemma 3.2.16 ([CM19, Thm. 3.12]). Let f € w* be an increasing function. Then there is some
definable function ¥/ : W' x S(w,id,) — Iy such that, if

(1) S C S(w,idy,) is a localizing family, i.e, for any = € w* there is some ¢ € S such that x €* ¢,
and

(2) D C w'™ is a dominating family,
then {V/(d,¢) : d € D and ¢ € S} is cofinal in Z;.
The same proof actually yields:

Lemma 3.2.17. Let M be a transitive model of ZFC with f € w“ N M increasing. If d € w' is
dominating over M and ¢ € S(w,id,,) is localizing over M N w®, then A C U/ (d, @) forall A € T;
coded in M.*

*L.e, A = [0]eo for some o € M witnessing A € Z;.
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Now, we are ready to prove Theorem M.

Theorem 3.2.18. Let k < \ be reqular uncountable cardinals where k<" = r and AN =\ and let
A1, Ag be cardinals such that A < Ay = \°, and \ < Ay = \}. Then there is a cofinality preserving
poset that forces

(I) add(N) =non(M) = k and cov(M) = cof(N) = \.
(I) add(SN) = cov(SN) = k < non(SN) = A < cof(SN) =0, =0}, = \o
(III) ¢ = A;.

Proof. Step 1. We start with Py := Fny(A2 x A\, A). Py is AT-cc and <A-closed, so it preserves
cofinalities, and PP forces 0y = 2* = \o.

Step 2. In VP, let Py := Fn (A2 x \, k). When x < \, Py forces 0} = 2* = Ay and 0y, = )y,
the latter preserved from Vo because IP is A-c.c (see Subsection 3.1.2); and if A\ = &, the same is
forced by step 1.

Step 3. In VPP Jet Py := Fn.,, (A1 X w,w), which forces ¢ = A\; and 2* = max{\;, \2}. In
particular, DQX y» = 0x = A2 by Lemma 3.2.5, which is preserved from VPoxP1 hecause Py is ccc.

Step 4. We work in Vg o := VPorP1xP2 We define the simple matrix iteration of height v := A
and length 7 := Ax where, at each interval of the form [Ap, A(p + 1)) for each p < &, is defined
as follows: For each & € [Ap, A(p + 1)), put A(¢) = £ + 1 and Q¢ := LOCY2©®:¢ when £ = A\p + ¢
for some (unique) p < k and € < .

SetP:=Py . and V¢ := Volf)o"’g. We first prove that P forces k < add(N') and cof(N) < A.
For each 0 < ¢ < Ak denote by ¢* € Va(e),e41 N S(w,1d) the generic slalom over V¢ ¢ added
by QA(E),E = QA,& = LOC"2®.¢. Hence Vi =k < add(N) is a consequence of the following,
which is a similar to one argument of the proof of Theorem 2.4.1:

In V) ), each family of reals of size <k is localizated by some 3 ()

Since {¢® : 0 < & < Ak} is a family of slaloms of size < A, by (&) and Lemma 1.6.4 any member
of V) xx Nw" is localizated by some ©¢. Hence Vaak [ cof(NV) < A

On the other hand P, as a finite support iteration of lenght Ax, adds x-cofinally many Cohen
reals that form a strongly x-Ed-unbounded family of size «, hence PP forces non(M) < «, and
by Theorem 1.7.14 (since Cohen reals are added by LOC), P forces cov(M) = d2(Ed) > A
Therefore, P forces k = add(N') = non(M) and cov(M) = cof(N') = A. In addition, P forces:

k < add(SN) : because add(N) < add(SN) ([Car93]);

cov(SN) < k : because the lenght of the FS iteration on the top of the matrix has cofinality
r and it is well known that such cofinality becomes an upper bound of cov(SN) (see e.g. [B]95,
Lemma 8.2.6]);

non(SN') = X : because cov(M) < non(SN) < non(N);

cof(SN) = Ay : Let f € V) \x N w* be an increasing function. Then, by Lemma 1.6.4 there
aresome ey < Aand py < rsuchthat f € V., ¢, with {y = Apy +¢ > 0.

For p < k and € < A define {¢(p, &) := A(ps +p) +¢ + €. Let <p;f,5 be the Pae,(p,6)).6(p)+17
name of the generic slalom over Va (¢, (,.6)),¢;(p,¢) and let dJ - be the PA(e,(0.6)), €5 (p6)+1-Name of
some increasing dominating real over Va(¢,(p.¢)).¢,(p.¢) added by Q¢ 1(pe) (see Figure 3.1). Set
A£75 = \Pf(d£7g, Sb£75).

(Al . p < rande < \) is an T-directed system on x x A. (W)
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Figure 3.1: Matrix iteration

Proof of (#). 1t is clear that (I) and (III) of Definition 3.2.6 follow by Lemma 3.2.17. To see (II)
of Definition 3.2.6, note that gbf;g is localizing over Va (¢, (p.¢)), ¢/ (p.¢) and d;ﬁ,e is dominating over

VA(éf(p7§))7§f(p7§), so A C Ag,g for any A € Z; coded in VA(gf(p,g)),gf(p,g) by Lemma 3.2.17. In
particular, A,];,’E, - A{;g if (p,¢’") < (p,e). This shows (#). O

We can choose a \-dominating system (A/ : v < ) on x x A\ by Lemma 3.2.8 because
cov(M) = o = \. Therefore, in V) )., cof(SN) < D)‘X \ = A2 by Theorem 3.2.9 (recall that the
values of ), and 9, do not change after A-cc forcing) and since minnon = \, cof(SN) > 0y =
A2 by Theorem 3.2.13. O

3.3 Discussions and problems

Our Lemma 3.1.11 can also be proved for Silver-like type of posets, or more generally, for lim-
sup creature type forcing notions obtained by finitary creating pairs as in Chapter 4. Therefore,
these type of posets can be included as iterands in Theorem 3.1.13. Moreover, it can be con-
cluded that SN is contained in the Marczewski-type ideal corresponding to Silver forcing.

Bartoszynski and Shelah [BS02, Thm. 3.3] proved that non(SN) can be increased by CS
products of Silver-like posets. In fact, the same argument applies to CS products of posets of
the form PT,, with b diverging to infinity. Concretely, assuming CH, if ™0 = , I is a set of size
kand {b; : i € I} C w¥ is a family of functions diverging to infinity, then the CS product of
PT,, with i € I forces d = X; (because it is w*-bounding) and non(SN) = ¢ = k.

A very natural question that comes from our main result is whether a version of Theo-
rem 3.1.13 for CS products can be proved. By methods like in [G593; KM21] it can be shown that
any CS product of bounded-tree forcing notions remains proper and strongly w“-bounding.
However, it is not obvious how the proof of Lemma 3.1.11 can be translated to show that such a
CS product increases cov(SN). This would generalize the consistency result of Theorem 3.1.13
in the sense that cov(SN) could be forced larger than Rs.

By well known methods and results from [Yor(02], the following open problem is the only
one remaining to settle that the diagram of inequalities in Figure 3.2 is complete.
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cov(SN) cof( SN

add(SN)

LY /

non(SN)

Figure 3.2: The arrows mean that < is provable in ZFC.

Question T. Is it consistent with ZFC that add(SN') < min{cov(SN'),non(SN)}?

In this chapter we provide the first two examples where 3 cardinals characteristics asso-
ciated with SN can be pairwise different. To go one step further, we propose the following
problem.

Question U. Is it consistent with ZFC that the four cardinal invariants associated with SN are pair-
wise different?

Any idea to solve Question T in the positive could be used to prove the consistency of
Question U. In Theorem 2.4.2, we constructed a ccc poset forcing

add(NV) = add(M) < cov(N) = non(M) < cov(M) = non(N) < cof(M) = cof(N).

In the same model, cov(SN) = cov(N) < non(SN') = non(N) because this model is obtained
by a FS iteration of length with cofinality ; (Where . is the desired value for non(M)), and it is
well known that such cofinality becomes an upper bound of cov(SN) (see e.g. [BJ95, Lemma
8.2.6]). However, tools to deal with add(SN') and cof(SN) in this situation are still unknown.
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4

FORCING WITH CREATURES

This chapter is based on the paper [CKM21]:

“Continuum many different things: localisation, anti-localisation and Yorioka ide-
als”

joint with Lukas Klausner and Diego Mejia.

4.1 Structure of the chapter

This chapter is devoted to showing Theorem O, which states that under CH there is an X»-
cc w*-bounding proper poset which forces that there are continuum many pairwise different
cardinal characteristics of each one of the following six types: bgfh, DIE‘;L, bgf;f, Dg’LhC, non(Zy) and
cof(Zy).

We show some connections between the cardinal characteristics associated with Yorioka
ideals, localization cardinals, and anti-localization cardinals, and then we present the notion
of block in Section 4.2. In Section 4.3, we build the frame where the forcing lives, define the
parameters of the forcing and present the rules they must obey to prove Theorem Q. Inspired
in [FGKS17], in Section 4.4 we define subatomic creatures, atomic creatures and compound creatures,
which are the building blocks of a condition in the forcing we want to construct. In Section 4.5
we present our forcing construction in detail and prove its basic properties. This construction
follows the presentation in [GK21] and it is divided into three components: the pr-part, the
lc-part and the al-part. As in [KS12], the atomic creatures of the lc-part and al-part depend
on the possibilities given on the pr-part. The necessary bigness properties of the subatomic
and compound creatures are developed in Section 4.6. These will be essential to prove main
features of the forcing like pure decision, continuous reading of names and rapid reading, and for
the proof of Theorem Q as well. In Section 4.7, we present continuous and rapid reading for
our forcing. We prove that continuous reading follows by pure decision, as well as properness
and w*-bounding (in fact, our forcing satisfies a variation of Baumgartner’s strong axiom A).
Rapid reading follows by continuous reading and the bigness results from Section 4.6. The
presentation of this section is very close to [GK21]. We prove Theorem Q in Section 4.8, and we
present further discussion and open problems in Section 4.9.
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4.2 Blocks of parameters and something else
The main purpose in this section is to introduce the notion of a block of parameters and to prove
the inequalities in Figure 4 (Lemma 4.2.5). They are consequence of connections Yorioka ideals,
localization and anti-localization cardinals that we present in this section.

The Tukey order between the relational systems in Example 1.3.11 and Cv(Zy) are key to
our definition of blocks.

Lemma 4.2.1 ([KM21, Lemma 2.4]). Let a,d € w* and let (I, : n < w) be an interval partition of w
such that |I,,| = d(n). Define g, q € w* by gqa(k) := |logya(n)| foreach k € I,,. Ifa >* 2, d >* 1,
f is an increasing function and g, 4 > f, then Cv(Zy) =<t aLc(a,d)*. In particular, cov(Zy) < bi{“dc
and DZ?&C < non(Zy).

The following is a variation of [KM21, Lemma 2.5] where we use a relational system for
localization instead of anti-localization.

Lemma 4.2.2. Let b, g, h € w* and let (J,, : n < w) be an interval partition of w such that |.J,| = g(n).
Define fygn € w* by fogn(k) := > ,-, h(£)[logy b(¢)] for each k € Jy,. If b >* 2, g >* 1, h >* 1,
f € w¥ is an increasing function and there is some 1 < m < w such that fy, , (k) < f(k™) for all but
finitely many k < w, and g(n)h(n) < b(n) for all but finitely many n < w, then Le(b, ) <1 Cv(Z;).
In particular, b,I;ﬁl < cov(Zy) and non(Zy) < D%’}l

Proof. It is enough to construct two functions F': S(b, h) — 2* and G: Zy — [] b such that, for
all S € S(b,h) and X € Iy, F(S) € X implies G(X) ¢* S.

For each n < w, fix a one-to-one function ¢,, : b(n) — 210820001,

Let S € S(b,h) and choose some S’ € S(b,h) such that S(n) C S'(n) # @ whenever
h(n) # 0. For each n, let S’(n) = {my; : j < h(n)}, and define F(S) as the concatenation of
{tn(m;j): 1 <w, j < h(n)}, where the indices (i, j) are ordered lexicographically.

To define G, let X € Iy, so choose ox € (2<“)% such that ht,, > fand X C [0x]s. The
hypothesis of the lemma implies that ht,, >* f; ;5. Consider the interval partition (I, : n <
w, £ < h(f)) of w, ordered lexicographically, such that |, ¢| = [log, b(n)]. Then I,, , C hty (k)
for all £ € J, and all but finitely many n (because fy, ;4(k) = Y _,-,, h(I)[logs b(¢)] < hty (k)),
so we can define -

H(n) = {t,  (ox(k)[Ine) : £ < h(n), k € Jyn, Ing Chtey(k), ox(k)[1ye € ran,}.

_1(

Clearly H(n) C b(n) and, eventually, |H(n)| < g(n)h(n) < b(n), so we can choose some
G(X)(n) € a(n) \ H(n). For the other finitely many n, choose any G(X)(n) € a(n).

Now assume S € S(b,h), X € Z; and F(S) € X; we will show that G(X)(n) ¢ S(n
for infinitely many n. Since F'(S) € X, there are infinitely many n such that ox(k,) C F(S
for some k,, € J,. For such a sufficiently large n, t,(m, j) = ox(kyn)[In; for all j < h(n), s
my,; € H(n), which implies G(X)(n) # my,_ ;. Thus G(X)(n) ¢ S(n). O

~— —

o

We also consider the following easy fact.
Lemma 4.2.3. Let a,b,d, h € w®. Then the following statements hold:
(a) aLc(a,d)t <7 Le(a, d); in particular, b2L¢ < oL and ble, < pake,
(b) Ifb <* aand d <* h, then Le(b, h) <t Le(a, d); in particular, bIJ,Cd < b{;% and aIb“jL < DIJ,Cd'

Using the hypotheses of Lemma 4.2.1-4.2.3, we are finally ready to define the notion of
a block of parameters. Properties (i)—(v) are chosen this way precisely to get the promised
Figure 4 as a consequence of the following lemmata.
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Definition 4.2.4. A sequence of increasing functions 7 = (d, h, g,b, f,a) in w* is a block (of
parameters) if it fulfills, for all n < w,

(i) if k € I, then k" € J,, where (I,, : n < w) and (J,, : n < w) are interval partitions of w
such that |I,,| = d(n) and |J,,| = g(n);

(ii) g(n)h(n) < b(n);

(ili) if k € Jp, then f(k) > 3=, h(j)[logy b(j)1;
(iv) if k € I,,, then f(k™) < |logy a(n)]; and

(v) b(n) < a(n) and d(n) < h(n).

Lemma 4.2.5. If 7 = (d, h,g,b, f,a) is a block, then b}% < by, < cov(Zy) < by < oL and
ble, <o2ke <non(Zy) < 0lS < dLC (cf. Figure 4).

Proof. 1t is enough to show that Le(a, d)* <t ale(a,d) <1 Cv(Z;)*+ <1 Le(b, h) <1 Le(a, d).
By Definition 4.2.4 (v) and Lemma 4.2.3, we have that Le(a, d)* = alc(a, d) and Le(b, h) =<7
Lc(a, d) and, by Definition 4.2.4 (ii)—(iii) and Lemma 4.2.2, Cv(Z;)* =<1 Lc(b, h) follows. To
show aLc(a,d) <1 Cv(Z;)* by application of Lemma 4.2.1, it remains to prove that g, 4 > f.
Fix m < w; forn > m,if k € I,,, then k" € Jp,, so f(k™) < f(k™) < |logya(n)] = gq,4(n). O

As mentioned in the introduction, we plan to use limsup forcing to increase the 9 cardi-
nals of (the relational systems determined by) a block, and lim inf forcing for the b cardinals
(specifically, to increase b}S). For the latter, we consider a variation of the relational system
Lc(b, h).

Definition 4.2.6. Let I := (I,, : n < w) be a sequence of pairwise disjoint non-empty finite sets
and let D := J, ., In.

(1) For two functions x and ¢ with domain D, we write

r €7 @iff v*¥n 3L € I,(x(L) € p({)).

(2) Letb = (b(¢) : ¢ € D) be a sequence of non-empty sets and let h: D — w. Let Lcz(b, h) :=
(ITb,S(b, h), €7) be a relational system, where we expand our notation [[b and S(b, h) to

IIo:=1]bew.  S@.n) = J]BEO1".

leD teD

(3) We define by := b(Lcz(b, b)) and 05" := d(Ley(b, h).

Lemma 4.2.7. With the notation from the previous definition, let b* := (b*(n) : n < w), b*(n) =
[Iscr, b(0), and define h* € w® by h*(n) = b*(n) — [Iser, (b(€) — h(£)). Then Le(b*,h*) =r
Lcj(b, h). In particular, bi‘gl < bbLﬁh* and 0{;57,1* < D,I;(;L’I.
Proof. Define F': [[b* — [[bby F(x) := (x(n)({) : £ € I, n < w),and G: S(b,h) — S(b*, h*)
by G(p) = ¢* where ¢*(n) = b*(n) \ [[se;, (b(€) \ ¢(¢)) (Which clearly has size <h*(n)). For
z € [[b* and ¢ € S(b,h), z(n) € ¢*(n)iff 3¢ € I,: z(n)(¢) € p(¥) for all n < w. Therefore,
F(z) € piffx € ¢™. O
In our forcing construction, we aim to increase cardinals of the form b{;‘;;j using lim inf
forcing.
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Observation 4.2.8. The slaloms we add in our forcing construction are not quite in S(b, h), but
they are modulo finite modifications. For b = (b(¢) : { € D) and h: D — w, define

S*(b,h) :={p: D — [w] ™0 {£€D: p(t) € b(l)or |p(f)| > h(£)} is finite}.

Our forcing will add slaloms in S*(b, k). If we replace S(b, h) with S*(b, h) in the relational
systems Lc(b, h) and aLc(b, h), then we obtain Tukey equivalent relational systems (and the
same localization and anti-localization cardinals); likewise for the relational system Lc(b, ).

4.3 The Frame and Parameters of the Forcing
In this section we present the frame in which the forcing lives and the parameters we need for
the forcing construction.

4.3.1 The frame
Our forcing construction has a support S*; for each a € S*, we add blocks or slaloms that

increase cardinals of the form by’ h’ and DaLC Concretely, we fix:

* aset of indices SP* (where pr stands for “parameter");

* pairwise disjoint families (S!° : i € SP*) and (52! : i € SP*) (where lc stands for “localiza-
tion", and al for “anti-localization") such that S%C N SPr = Sfl N SPr = S%C N S]‘“-‘1 = o for
1,7 € SP'; and

o 5" == Usefprcan S' where S* := U, g Sf for t € {lc,al}.

For each i € SP*, we intend to force several blocks 71¢ = (di, hi¢, gi¢ ble, fi¢ al¢) and 78! =

<h$1,hal, gt ,bal Zal, ?l> in fact, we add an w-sequence yZ = (yi(n) : n < w) that defines both
blocks. Definition 4.3.2 and Lemma 4.3.3 give details on how blocks are defined from reals.
For each i € S and each a € S, we add a slalom ¢, € S*(blc, h%) that localizes all

reals in [ bl “not depending on " (so bblc e is increased); and for each a € S we add a

slalom ¢, € S*(a?!, ha!) that anti-localizes all reals in [] a?!

not depending on " (so Dadlchdl is

increased). Details are presented in Lemma 4.8.2 and Lemma 4.8.4. Here, “not dependmg ona'"
means that continuous reading (which is discussed in detail in Section 4.7) takes place without
using the index a.

For the moment, we are not going to add additional assumptions, but when it comes to
actually prove Theorem Q, we will assume CH, |S*| = p = p® and S| = [S2!] = k; = £)°
for all : € SP*. With these conditions, the collection of slaloms {¢, : «a € Slc} is used to force
ki < bblc e and the collection of slaloms {¢, : a € S?} is used to force x; < b'< oo pal”

In any case, we are adding an w-sequence for each o« € S*. As in [GK21], we are going
to use different levels for each type t € {pr,Ic,al} of generic we add to make the construction
more intuitive and less complex. For S we use a lim sup creature forcing construction, while
for t € {pr,lc} we use liminf creature forcing. For this reason, the levels corresponding to pr
and lc are divided into sublevels.

Definition 4.3.1. The levels (or heights) of the forcing construction are defined as follows.

(1) pr-levels: A pr-level is a natural number n, i.e. the set of pr-levels is w. For each n < w,
we will determine some 0 < ' < w. Each pr-level n is divided into pr-sublevels ht}" :=
{(n,u) : uw < 5}, We refer to the set of pr-sublevels by ht™, i.e. ht?" := J __htE' =
{(n,u) : n <w, u <y }. We often identify (n,0) with n.

n<w
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(2) lc-levels: An Ic-level is LIS := (n,}) for some n < w. Each lc-level is divided into lc-
sublevels ht!° := I = {(L!°,v) : v < 1} for some natural number %. We refer to the set
of le-sublevels by ht'® := |, I = {(L,u) : n < w, v < ¢};}. We often identify L!¢ with
(Ly5,0)-

(3) al-levels: An al-level is a pair L& := (LI 1%) for n < w. We refer to the set of al-levels by
ht?! .= {L2': n < wl.

Define the set of heights by ht := ht"" U ht!® U ht*, ordered lexicographically, i.e.:

< (m,0) < (1) < (n,2) < ..o < (n, B —1) < (LF,0) < ... < (LX,0r —1) < LY
<(m+L0)<(n+1,1)<...<(n+1,050, —1) < (L¥,,0)<...

For n < w, let ht,, := ht?" U I U {L2!}. Also let
Ht := {(n,0): n < w}U{(LE,0): n <w}U{L} and Q := Ht ~ ht"".
Hence, our forcing poset will “live” on the set
DOM := (SP* x htP") U (5% x ht'®) U (5 x ht?!)

and we will add a generic real y,: ht® — w for each t € {pr,lc,al} and each a € S*. In
the following subsection, we will explain more about the nature and purpose of these generic
reals.

We also fix the sequence I* := (I} : n < w), which will be relevant to deal with the lim inf
construction increasing localization cardinals.

The numbers P* and * will be determined in Subsection 4.3.3 along with other many pa-
rameters we need to set for the forcing construction.

4.3.2 Parameters to build blocks
Our aim in this subsection is to define parameters following certain requirements to build the
generic blocks added by the forcing. Along with the many parameters determined in Subsec-
tion 4.3.3, we will fix a sequence of natural numbers (77 : L € ht™) and let T}y := [[; o0 17
for all n < w. For every i € SP", we add a generic real y; € [[; e 77, which gives us the real
y € [1,,<, Tr defined by y;(n) := (y;(L) : L € ht?").!
We aim to define blocks for every real y € [],,_,, T,;- For each t € T}¥, we will later define

functions

dp: I U{LY} = w,

he: IPU{LY} = w,

g {L LAY = w, (4.3.1)

be: IPU{LY} — w,

ag: {L LY} = w.
Given these functions, we will define blocks as follows:

Definition 4.3.2. Fory € [[,, T,y and t € {lc, al}, we make the followin definitions:

"The reason why 7 is decomposed as (T} : L € ht}") is due to the use of sublevels ht?" in the lim inf construc-
tion of the forcing.
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(1) dy: ht \ ht?" — w is defined as dy, := |, ., dy(n); the functions h,, b, : ht \ ht?" — w are
defined analogously.

(2) gy: Q — wis defined as g, := U, -, gy(n), and ay: Q — w is defined analogously.

(3) dy: w — wis defined by d (n) := dy(Ly,), and define g;, a; € w* analogously; in the case of
t = al, h?! and b?! are also defined analogously.

(4) bl hl°: w — w are defined by

yr vy -

bi(n) = [ by(0) and B () := by (n) — [] (by(£) = hy(£)) (cf. Lemma 4.2.7).
eIy eIy

(5) (Jyn:n <w) is the interval partition of w such that [.J; ,,| = g;(n).

(6) fy € w” is defined by

=Y hb(j)[logy bl,(j)] + k — min J} , for k € J} , (cf. Lemma 4.2.2).

i<n

(7) Ijzl/c = <d§f, hlc’gy ’blc yc7 y> and 72 (h;}l, hal,gy 7bal yC’ Zl)

(8) Moreover, define b, := b, [ht'° and h = h, [ht'.

In order to ensure that ¢ and 72! are blocks for each y € [],.., Ty, we will define the
functions in Equation 4.3.1 as well as new functions b} : {LI¢, L3} — wand h}: {LI° L3} — w
satisfying the requirements below for each n < w and t € T};; we will refer to the blocks added
fori € SP' by ¢ := 1,¢ and 72! := 72l
(fpl) de(LE) < hy(LY) for t € {Ic,al};

)max{n,l}

7

(p2) gu(L) > (S{di(L): L e, L< Lk}

4

(fp3) ge(L3) > (Z{ht(L) L LeQ L< L%l})maX{n’l}

(fpd) 1 - Llc <TIleers (1- Zf((ﬁ)))'

(fp5) hi(¢) < be(¢) for each ¢ € I};

(fp6) by (Ly5) = I1pers be(0) and Ry (Ly7) = bf (Lyf) — [Tgers (be(0) — he(0));

(fp7) bi (L) = be(Ly)) and i (L) = he(L});

(fp8) ge(Ly)hi (L) < bi (L3);

(fp9) logy ar(LE) > S {h;(L)[logy b (L)] : L€ Q, L < L} + g:(LY) for t € {lc,al};
(fp10) 2 < dy (L), 20¢(L¥) < dy (L") and 2%¢(L% W) < dy(L lc.,) forany ¢’ € T;.

Lemma 4.3.3. The requirements (fp1)—(fp10) imply that, for each y € [],, ., T, the sequences z/y and

—al LC,f Lc
vy are blocks. Moreover, bb’,h’ bblc Al
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Proof. For t € {lIc,al}, let (I}, : n < w) be the interval partition of w such that \I;Cn| = dlyc(n)
and \I;ln] = hij(n) We check that the requirements (i)—(v) of Definition 4.2.4 hold and that all
functions are increasing. Property (i) follows by (fp2) and (fp3). Property (ii) follows by (fp4)
and (fp8), noting that (fp4) implies the inequality in (fp8) when L2! is replaced by Li¢. Property
(iii) is obvious by the definition of f;, cf. Definition 4.3.2 (5)—(6). To check property (iv), note
that k € I} , implies k" € J; ,, by (i), so

Fo(k™) = hi(§)[logy b ()] + k™ — min J} ,
1<n

< hb(j)[logy b ()] + gh(n) < [logy aly(n)],

<n

where the last inequality follows from (fp9). To check property (v), it is clear from (fp9) that
?;(n))) > by (n); by (fpl) it is obvious that d;l(n) < hzl(n), and d;c(n) < h%f(n) follows by (using
prb

(- ’;éﬁ;) ) L) A
eIz 4

by (Lyf) b(n) — bs(n)
With the exception of f;, it is clear that all functions are increasing (also using (fp10)). To check
that f, is increasing, as well, it suffices to check that f;(k) < fy(k 4+ 1) when k = max J, .
Indeed,

=Y hy(i)Noga by(7)] +gy(n) = 1< Y hy (i) logy bl()] = fi(k +1).

i<n 1<n+1

(For the inequality, we use 29y (") < by (n + 1), which follows from (fp10).)
Finally, from (fp6) and Lemma 4.2.7 we obtain Lc(blyc, hlyc) =t Lep (b, hy), so bII;_;Zj

follows. O

<

bblc hlc

Recall that, for each t € {pr,lc,al}, we add a generic real ya ht' — w. Fix i € SP'; we have
already explained the nature of y;. For a € S, y, € S*(b, e Ty -) will be a generic slalom such

that x €%, y, for any real x € [[b . in the generic extensmn that does not depend on «, so

b(I;gjh;* is increased, and so is bbLlﬁ hlc
and its proof, setting ¢, (n) = bly‘; ( )~ nglﬁ (byz (€) \ ya(l)), we get that p, € S*(blc*’hi)

by the previous lemma. In more detail, as in Lemma 4.2.7

localizes all reals in [ | bg} not depending on a.

For o € S, we will have that y,(L) € [ay: (L)] for all but finitely many L € htal
Setting o (1) 1= ya (L), we will get that o, € S*(a *s hal ) and that z €* ¢, forany z € [] a
not depending on c.

(A formal description of these generic reals follows in Definition 4.5.23 and Lemma 4.5.25.)

<hys (L)

4.3.3 More parameters for our forcing construction
In addition to the functions in Equation 4.3.1 and the numbers (5, ¢ and T (for all n < w and
L € ht?"), our forcing construction requires several further parameters to ensure properties of
the forcing (like properness or continuous reading of names) and to force the desired values in
Theorem Q.

In this subsection, we list all the parameters and the conditions they must fulfill; the reader
may not clearly recognize the intuition and motivation at this point of the paper, however.
Although we will briefly state the reason for each condition on the parameters, we suggest
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it would be more helpful for the reader to go through this subsection quite quickly at first,
concentrate on the content that follows, and come back here any time the conditions on these
parameters are actually used. This will likely facilitate easier comprehension of our construc-
tion’s ideas.

Notation 4.3.4. We introduce the notation of all the parameters we will use for the forcing
construction. They all are integers larger than 2.

(I) n’, and nP for L € ht*" U Q; P stands for “possibilities” and B for “bigness". (n, will
be an upper bound for the number of possibilities below L of a modest condition in the
forcing, cf. Lemma 4.5.16; and n? will be a lower bound for the bigness satisfied by a
creature at level L, cf. Corollary 4.6.4, Lemma 4.6.2 and Lemma 4.6.5.)

(I1) " and ¢ forn < w.
(IIl) Ty for L € ht*". We also set T}; := [ [ cor T} with the lexicographic order <jey.
(IV) The functions in Equation 4.3.1.

(V) nf ,foreacht € T3, ¢ € I U{L2} and n < w. (This will be an upper bound for the
number of possibilities of a subatomic creature at (¢, ¢), cf. Fact 4.4.6.)

(VI) n7 for all L € Ht. (This will be an upper bound for the number of possibilities of a
creature at level L, cf. Fact 4.4.23.)

We further use the following terminology: Whenever W = (W, <y ) is a well-ordered set, we
write (for a € W)

(1) a* for the (immediate) successor of a in W, if it exists;
(2) a~ for the (immediate) predecessor of a in W, if it exists;
@) al:={xeW:z<wa};

(4) ot(W) for the order type of W.

(Note that ot(ht) = w.)
In addition, we use:

&) ty* == max., T, )" == min. T},
(6) /P := max I}.”

We also consider T;' x I with the lexicographic order, i.e. (¢,¢) < (', ') iff either ¢ <jex ¢’ oOr
t=t'and ¢ < /.

We present two lists below. The first one indicates the order in which the parameters are
defined and the second gives the conditions (pr1)—(pr14) on the parameters.

1. When we have ni (n,0)7 We define ¢}, as in (prl).

2. For L € ht}', given nlz ., we define larger n? < T} < n1<3 1+ (in this order), see (pr2)—(pr4).

3. When we get to level (L, 0), we define nfmo) as in (pr5) and choose nlz Lle a3 in (pr14) (which

is stronger than (pr4) when L is the predecessor of LI in ht).

“There is no need to explicitly define /=™ := min I;, since it clearly is (L2, 0) = LA,
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4. Afterwards, we define ¢}, as in (pr6) and define n}). as in (pr2).

5. For each t € T*, we define the parameters d; (L) < g;(L¥) < hy (L) < by(L2) < nf L+ For

(t, ) > (00 L2y in T x I¥, we define d; (£) < hy(€) < by(0) < nf’é, and get larger parameters
for (¢',¢') > (t,¢) in T} x I};. For (t,¢™), we additionally define a;(L%). See (fp1)—(fp10)
and (pr7)—(pr10).

6. Define n‘zlc as in (prl11).

7. At L¥, choose ni Lo S in (pr14) and define nf%l < dy(L) < hy(L2) < g (L) < by(L3) <
ar(L) < nf 1; for t € T, while getting larger parameters for larger t' € 7. See (fpl)-
(fp10), (pr2), (pr7)—(pr8) and (prl2).

S

8. Define 7w AS in (pr13).

9. Define n as in (prl14), and repeat this process.

P
<(n+1,0)
Conditions on the parameters

The following are the precise requirements of the parameters.

(n+1)»nPn n
(prl) o > 3(”+1)(2 = ’O)H), which allows us to get u"(I}) > 9t L0y 4 (Defini-

tion 4.4.8). (For modesty in the pr-part and non-trivial conditions, see Lemma 4.4.17

and 4.5.9.)
(pr2) n? > (nf L)"EL. (For bigness on liminf compounds creatures and rapid reading, see
Lemma 4.6.5 and 4.7.7.)

(n+1)nf )
(pr3) For L € htP', T} > (nP)"L 2 <09 \which will imply ||73], > 2"V "< (Defini-

tion 4.4.4). (For non-trivial conditions in the pr-part, see Lemma 4.4.17 and 4.5.9.)
(pr4) For L € ht}’, ni L+ > n1<3 1, - T . (For bigness on pr-compounds, see Lemma 4.6.5.)

(pr5) ”Egn,o) > Ty. (Upper bound of the number of possibilities of a pr-compound at n, see
Fact 4.4.23.)

2(n+1)» (n+1)~np

(pré) ot > g T+ , which will imply p*T7 (%) > 2 <l + 1 (Defini-
tion 4.4.8). (For modesty in the lim inf part and non-trivial conditions, cf. Lemma 4.4.16
and 4.5.10.)

P
n
<Ll¢ +1)

)-

P
o

(n+1)n
(pr7) For £ € I*, hy(£) > dy(£)4(0)2 -
inition 4.4.5). Likewise when ¢ = L;‘,Ll, but here replace n
conditions, see Lemma 4.4.16 and 4.5.10.)

n TLP
, which will imply || POSSS [, > 2" "<ss (Def-

P P o .
<pe by n_ La- (For non-trivial

(pr8) Fort € T;; and ¢ € I} U {L'}, n, > |[by(0)]="()| when ¢ € ht'*, and n?, > |[a;(£)]<®)|
when ¢ € ht*. This will imply ny’, > |POSS}| in Fact 4.4.6. (Also used for the (a, d)-
bounding type property in Lemma 4.8.12.)
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(pr9) Fort € T;; and ¢ € I}, if (¢,¢) is not the maximum of 7} x hty.,, then bt(é)mfvf < dy(l),
where (¢, ¢') is the successor of (¢,¢) in T, x I}, and

I nw,x [T n o Tt >t

velr very
mS, — 29 2}
bE” IT n)y if t = ¢mn,
el
<

Recall that ¢t~ denotes the predecessor of ¢ in 7. (For bigness on lc-compound creatures,
see Lemma 4.6.3 and 4.8.4.)

(prl0) For ¢t <jx t' in T}, flc < dy(L¥) and nf < ay (L™ o < dy(LY¥). (For big-
ness on lc-compounds and the (a,d) boundlng type property, see Corollary 4.6.4 and
Lemma 4.8.12.)

(prll) n? e = mtmx mx- (Upper bound of the number of possibilities of a lc-compound at Lk, see
Fact 4.4.23. )

(pr12) Fort <jex t'in T}, n Lal < dy(L¥) and n” <Lal “(n f L%rl—l) < dp(L¥). (For the (a, d)-bounding
type property, see Lemma 4.8.12. )

(pr13) nial Z ngnx’L%l‘

Fact 4.4.23)

(Upper bound of the number of possibilities of a subatom at L2, see

(prl4) For L € Ht, nf, > [[{n}, : L' < L, L' € Ht}. (To ensure that [poss(p, <L)| < nZ, for
any modest condition p and for rapid reading, see Lemma 4.5.16 and Theorem 4.7.8.)

Theorem 4.3.5. There is a set of parameters as in Notation 4.3.4 satisfying all the requirements (fp1)—
(fp10) and (pr1)—(pri4).

Proof. Based on the properties (prl)—(prl4), it is clear how to construct the parameters from
steps 1-9. However, steps 5 and 7 need further explanation, also to guarantee properties (fp1)-

(fp10).
Assume ¢t € T and that we have taken care of step 5 for all (¢o,4y) < ( LY in T x I*.

Choose d;(L) > n 7 such that, when ¢ > ¢, d; (L)) > n” <k a,- (L™ o as in (pr10).
Define hy(Ll) as in (pr7) (so (fp1) holds for t = lc) and define gt(Llc) as in (fp2). Since 1 —

Wbﬁ) < 1, we can find some b; (L) > hy(LL) such that 1 — gt(lLlf) <1l-3 ((Llc)) Define nlef
in (pr8).

Now assume that £ > LI in I} and that we have defined d;(¢y), h:({o), b:(£o) and nf 4, for
all /p < ¢in I, such that 1 — m < yersne, (1 -5 ((2))) Som? ', can be defined as in (pr9)

and we can pick di(0) > bt(ﬁ_)mfﬁ. Then define h:(¢) as in (pr7) and pick b:(¢) > h¢(¢) such

he (£ he(£
that1 — (LIC) < (1 - ﬁ(@)) Héoel;;mu (1 b:((é)))

When we get to £ = /™ and nf ¢mx has been defined, we can define ar(L¥) as in (fp9). Note
that (fp4) is guaranteed.

Step 7 is easier to explain: Choose nfal as in (pr2), dy (L) > nfal and, whenever ¢t > t'",
di (L2 > n<Lal (n f—,Lal +1) asin (prl2). Define hi(L2) as in (pr7), g:(Lfll) as in (fp3), by(L2) as
in (fp8), at(Lal) asin (f;)9), and nts L @S in (pr8).

Note that (pr2) implies (fp10). O

as
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4.4 Creatures upon creatures

Now that we have the frame and the parameters, we are ready to introduce the basic compo-
nents of the forcing, which we call subatomic creatures. Following the same idea as in [FGKS17;
GK21], subatomic creatures are used to build atomic creatures and compound creatures.

4.4.1 Subatomic and atomic creatures
The notion of subatomic creature was introduced in [FGKS17, Definition 2.1.1]. We only need
a weaker version thereof.

Definition 4.4.1. Let POSS is a finite non-empty set. A subatomic family living on POSS is a
tuple (K, || - [[kx) such that

(K1) K € P(POSS) \ {@} is nonempty, and

(K2) ||| =1 - |l is a function from K into [0, +00) called norm,
and satisfying, for any c € K,

(K3) if c C d then|c| < ||d|, and

(K4) if |c| = 1 then ||c|| = 0.

The elements of K are called subatomic creatures, or subatoms for short.
We call ¢ € K a trivial subatom if |c| = 1.
We just write K for the subatomic family (K, || - ||) when the norm is clear from the context.

Our forcing construction will use the following two types of subatomic families. The first
one will be used to add the blocks of parameters, while the second will be used to add the
generic slaloms.

Example 4.4.2. Fix the following subatomic families.

(1) Let T > 1 and m > 2 be natural numbers. Define the subatomic familly (P77, || - ||7) living
on T by:

i) P :=P(T){2};
(ii) For c € PZ, ||c[|7 := L log,,(|c]).
Note that ||c|| > ziff |c| > m™*
(2) Givenc > 1,1 > 1 and m > 2 in w, define the subatomic family (ST}, || - [|7) living on
POSSY) == [c]=! by
(i) 87y = P(POSSY)) \ {2};
(ii) forc € ST,
1
m._ 1 cov 4
lelleh = - logm(llcflc™" +1)
where ||c[|SOV ;= max{k < c: Vz € [|¥ Ty cc: 2z Cy}.

Note that ||c||S°V > k iff every x C ¢ of size <k is contained in some member of c¢. Hence
lel|™ > ziff |[c¢[|SOV > m™* — 1, 1i.e. every x C c of size <|m™* — 1] is contained in some
member of c.

Observation 4.4.3. For ¢ € S™, note that ||c[|S°V > 1iff Jc = c.

c,l’
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In our forcing construction we use creatures as in Example 4.4.2 at each level ¢ € ht. The
generic set of our forcing construction will choose one trivial subatom at each («,¢) € DOM,
which determines the value y,(¢) of the generic real at o. To determine y;(L) € T} fori € SP*
and L € htP", we use:

Definition 4.4.4. Fix L € ht"". Define the subatomic family (K, | - ||7) := (P T* , H |
on POSSy, :=T7 (see Example 4.4.2(1)), i.e.

() Kz := P(POSS.) ~ {@};

B
TE ) living

(ii) Forc € Ky, ||c||z == n%logng(]c\).
L L
The subatoms in K, are also called (sub)atomic creatures at L

For the generic slaloms, we use the following subatomic families.

Definition 4.4.5. Fix n < wand t € T};. Using Example 4.4.2(2):

< dt Z)

(1) For each ¢ € I} define the subatomic family (K%, || - [|}) := by (0),h1(0)’ I| - Hbt(ﬁ

POSS! := [b:(£)] =), i.e.
(i) K := P(POSS)) \ {2};
(ii) forc € K¢,

) living on

1
lell; = gy g lelESY +1)

where ||c[|g0V = HCHCOV =max{m < b({): Vo € ()]s 3y €c: z Cy}.

(2) For ¢ = L2 define the subatomic family (K&, || - ||}) := (s? o Z) hooy Il Hat (¢).h(0)) living on
POSS! := [a;(¢)]="("). Denote leflgoY = ||c||COV for c € K.

The subatoms in K}, are also called subatomic creatures at (t, ) (or just at £).
Our parameters bound the size of a subatom at (¢, /).

Fact4.4.6. Ifn < w, { € ht ~ ht*" and t € T then | POSS, | < ntZ

Proof. Immediate by (pr8). O

Recall that, for i € SP*and a € S, the generic y, will be in S* (bys By ), so for all but finitely
many n < w and for all £ € I}, y,(¢) C by« (€) = byx(n)(€) will have size <h,. (€) = hyz(n) ().
However, the value of y(n) € T is determined by the generic added at i. This indicates
that the information a forcing contains at (a, £) must also consider the possibilities of the value
of y¥(n), i.e. a subatom in K} for each possible ¢t € T;. A similar situation happens when

(a, £) € S x ht?l. This motivates the following notion of atomic creature.
Definition 4.4.7. Letn < wand ¢ € I} U {L2}.

(1) We say that x is an atomic creature at { if x = (x(t) : t € Px) where Px C T)* is non-empty,
and x(t) is a K}-subatom for any ¢ € Px.

Here P is called the set of pr-indices of x

(2) For such an atomic creature, define the norm ||x||min := min{||x(¢)||} : ¢ € Px}.

(3) Say that an atomic creature x at ¢ is trivial if z(t) is a trivial subatom for each ¢t € Px.

(4) We consider the following partial order of atomic creatures at ¢: y < x iff P, C Py and
y(t) Cx(t) forallt € Py.
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44.2 Compound creatures

We present a method from [FGKS17] (also used in [GK21]) to build compounds of (sub)atomic
creatures. This is essential for constructing the lim inf parts of our forcing. We define another
type of atomic creature, which uses the following “measure".

Definition 4.4.8 ([FGKS17, Definition 2.2.1]). For each m € w we define the “measure” ;™ on

the finite sets by
_ logs(l4))
 omA41

p"(A)

Definition 4.4.9 ([FGKS17, Definition 2.2.3]). Fix a non-empty finite set J. Suppose that K :=
(K : j € J) is a sequence of subatomic families.

(1) We say that x is a simple atomic creature along J if x = (x(j) : j € J) where each x(j) is a
Kj-subatom.

(2) For m < w, the m-norm of a simple atomic creature x along J is
x|l := max { min({|[x(j)]lk, : j € A}U{u"™(A)}) | ACJ},

i. e. it is the maximal r for which there is a set A C J such that y™(A) > r and [|x(j)|lk, >
for all j € A. We say that such an A witnesses the m-norm of x.

(3) For simple atomic creatures x and y along J, we write y <y x if y(j) C x(j) forall j €
J. This determines a partial order of simple atomic creatures along J. When there is no
confusion we just write y < x.

(4) We say that a simple atomic creature x along J is trivial if x(j) is a trivial subatom for each
jed.

We use these simple atomic creatures to construct compound creatures. We first start to
those corresponding to the forcing at SP". This is a variation of [FGKS17, Definition 2.5.1].

Definition 4.4.10. Say that c is a pr-compound creature at level n < w (illustrated on the left side
of Figure 4.1) if it is composed by

(1) acountable set domc C SP* (that could be empty) and a finite suppc C domc;

(2) a rectangle of subatomic creatures (c(i, L) : i € domc and L € htl") such that each c(i) :=
(c(i, L) : L € htP") with c(7, L) € K, is a simple atomic creature along htP";

(3) areal number d. > 0 that we often call halving parameter.
We also demand that suppc = @ implies d. = 0.
In addition, c satisfies

(4) Modesty: for any L € ht" there is at most one i € suppc such that c(i, L) has size >1,i.e. it
is a non-trivial subatom;

(5) if i € domc ~ suppc then |c(i, L)| = 1, i.e. c(i, L) is a trivial subatom;

(6) for i € suppc, the stacked norm of c(i), denoted by ||c()|%, is the n-norm from Defini-
tion 4.4.9(2), i.e. |c()|5y is the maximum real r for which there is a set A C ht}" with

p(A) = 2840 > 5 such that [|c(i, L), > r forall L € A.

Let ¢, ¢/ be pr-compounds at level n. Define ¢’ < c iff the following holds:
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(i) domc € domc’ and suppc’ N dome = suppc,
(i) c'(i,L) C c(i, L) for all i € dome and L € htP", and
(i) dor > de.

This determines a partial order of the pr-compound creatures at n.

By allowing empty domains, we can define the trivial pr-compound at n as 1,,.(n) with empty
domain (the halving parameter must be 0 by (3)). Note that ¢ < 1,,(n) for any pr-compound
creature c at n.

htP"

supp ¢ supp ¢

dome dome

Figure 4.1: The structure of compound creatures. On the left side we have a pr-compound
creature, the cells M denote subatomic creatures that may be non-trivial, while OJ denotes a
trivial subatomic creature. On the right side we have an lc-compound, the cells B denote atomic
creatures (of the form x = (x(t) : ¢t € Fx) as in Definition 4.4.7) that may be non-trivial, OJ
denotes a trivial atomic creature, and [J denotes a trivial subatomic creature.

Definition 4.4.11. The norm of a pr-compound c at level n, when sup ¢ # &, is defined by

| = logy (max{1, min{||c(4)||5} : ¢ € suppe} — dc})
pr.— )

P
n<(n,0)

In the case suppc = @ we stipulate®

le|lPr = 0 if domc # &,
" 1 n ifdomec=ga.

In particular, |1, (n) |5 = n.

Since we require atomic creatures as in Definition 4.4.7 to add the generic slaloms, the com-
pound creatures corresponding to the liminf part of the forcing adding slaloms has a more
complex structure.

Definition 4.4.12. For n < w, say that c is a lc-compound creature at level LI (illustrated on the
right side of Figure 4.1) if it is composed by

*The requirement ||cE’| = n when domc = @ is to allow the empty set as the trivial condition in the forcing.

64



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

(1) a countable set domc C S' (that could be empty) and a finite set suppc C domc;
(2) a sequence of pr-indices P := (Pe,o : o € suppe) where each P, , C T} is non-empty;
(3) asequence (c(a,l) : a € domc, £ € I}') where:

(i) for o € suppe, c(a, f) = (c(a,t,l) : t € Pc ) is an atomic creature at ¢,

(ii) for a € domc \ suppc, c(«, ¥) is a trivial subatom in Kzzjx ;

(4) and a non-negative real number d, called halving parameter.

We also demand that suppc = @ implies d. = 0.
In addition, c fulfills:

(5) Strong modesty: for any ¢ € I} there is at most one pair («,t) € suppc x T, such that
t € Py and c(o, t,¢) is non-trivial.

(6) For a € suppc and tg € Peq, c(a,ty) = (c(a,to, ) : ¢ € I}) is considered as an atom

along I, and its norm, denoted by |c(a, %)%, , is the n - T;*-norm from Definition 4.4.9,

i.e. ||lc(a,t9)]%, is the maximal r for which there is a set A C I} with :ﬁ%ﬂ > r such that
[e(a, to, O)||}> > r forall £ € A.

Given two lc-compound creatures ¢ and ¢’ at Lif, write ¢’ < c iff
(i) domc € domc’ and suppc’ N dome = suppc;
(ii) for all o € suppc, Per o C FPeo;
(i) (o, t, ) C c(a,t, L) for every o € suppe, £ € I and t € Po q;
(iv) ¢/(a,?) = c(a,?) for all @ € dome \ suppc; and
(V) der > de.

This determines a partial order of the lc-compound creatures at L. Items (ii) and (iii) mean
that ¢/(«, ¢) < c(a, £) as atomic creatures at ¢ (Definition 4.4.7) for any « € suppc’ and ¢ € I;;.

Denote by 13 (L) the lc-compound creature with empty domain (then dy (1) = 0 by (4)).
Clearly ¢ < 1).(LL) for any lc-compound creature c at L.

Definition 4.4.13. Let ¢ be a Ic-compound creature at level L. Define

HCHk _ logQ(maX{l,min{Hc(a,tO)Hz‘zk ta€suppe, tg € Peo} —dc})
! ning

when suppc # @. In the case suppc = @ we stipulate

chlc_ 0 if domc # @,
"1 n ifdomc=@.

It is clear that ||1). (L)l = n.
We list below some useful facts to calculate norms of compound creatures.

Lemma 4.4.14.
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(a) Ifx,e € R, e > 0and m > 2 in w then

log,,(max{l,z —e}) > log,,(max{1,z}) — elog,,(2).

(b) Let n < w and let c be an lc-compound creature at LY. For each o € suppc and t € P, assume
that Aay C I} witnesses ||c(a,t)|%,.. Let d < c be an le-compound creature at LIS with the same
domain, support, halving parameter and pr-indices, such that, for any o € suppc and t € P,
there is some By C Aq ¢ such that

(i) |Aat ~ Batl <n? <L and

(ii) forany { € Bq,, Hd(a,t,ﬁ)Hz > lc (a7t,€)H£ <L1C

Then ||d||y; > [le]l;f - 1
(c) The version of (b) for pr-compound creatures also holds.
Proof. We only show (b). For any o € suppc and t € Peq, |lc(a,t)]S, — p"In(Bay) <

nP
(o) =i (Ba) < opgly £ nyp by @ s0 T o) 2 (o0l - nP By
6 1ot 01 > etont, Ol E g > el )5, — s or amy € € B, 50 e

|| ( ,t)‘ stk fk Therefore

<Llc Llc

log, (max{1, min{||c(a, )|/, : a € suppe, to € Pea} — Llc —dc})

Il > P
"<Lg
P
n
1 <L 1
> lelly = %= = llelly =1,
<Ll
where the last inequality follows from (a). O

To make sense of the forcing we need to be able to construct, at least, subatoms, atoms and
compound creatures with large norm (and arbitrary domain with some support). At this point
we start using all the rules we presented in Subsection 4.3.3.

We need the following fact for the construction of compound creatures.

Lemma 4.4.15 ([FGKS17, Lemma 2.2.2]). Let k < m + 1 and (A; : ¢ < k) a sequence of finite
sets. Then there is a Squence (B; : i < k) of pairwise disjoint sets such that B; C A; and ™ (B;) >
p"(A;) — 1 forany i < k.

Lemma 4.4.16. Fix B C S' countable, F C B of size <n, and a sequence P = (P, : a € F) of
non-empty subsets of T,;. Further assume it is not the case that F is empty and B is not. Then there is
a le-compound creature c at L' with norm >n such that dome = B, suppc = F and P, = P.

Proof. This is obvious when F' = & (because in this case B = &), so we assume that ' # @. To
find ¢ we proceed as follows: First set d. = 0, suppc = F, domc = B, and F,, = F, for each
a € F. For a € suppc and t € P.,, we could set c(a, t,£) := POSS}, for each ¢ € I}, but this
c would not satisfy strong modesty (Definition 4.4.12(5)). To get c satisfying this, we need to
work a bit more.

Put A, = I foreacha € Fandt € Py, and let A = {A,; : a € F, t € P,}. Note that
|F| <nand |P,| < T}, s0|Al <n-T; By Lemma 4.4.15 choose a pairwise disjoint sequence
(Bat:a € F, t € Py)suchthat By C Aqy and u"'Tﬁ(Baﬂg) > " Tn(Ay) — 1foreacha € F

and t € P,. Soby (pr6), u"1n (Bay) > 2(n+1)

<Ll
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Finally define c as follows: for o € suppc and ¢t € P, we set c(a,t, () := POSSZ for each
¢ € Bay; c(a,t,0) is an arbitrary singleton in K/ for each ¢ € I} \ B,y; and ¢(a, ¢) is a trivial
subatom in KZ" for o« € domc . suppc and ¢ € ht}f. It is clear that c is a Ic-compound creature
at Li°,

. . +1)-n”
It remains to see that |[c[[!* > n. To this end, note that |c(a,t,¢)||} > 2" VLl for each
+1)-n®
{ € Ba, by (pr7), so |c(a,t)||L, > 2" VL for o € suppc and t € Pe,. Therefore, ||c|/}¢ >
n+ 1. O

A similar proof using (prl) and (pr3) gives us the existence of pr-compound creatures with
large norm.

Lemma 4.4.17. Fix B C S? countable and F C B of size <n, and assume it is not the case that F'is
empty and B is not. Then there is a pr-compound creature c at n with norm >n such that domc = B
and suppc = F.

To understand the compatibility between conditions in the forcing we need to look at the
compatibility between compound creatures.

Lemma 4.4.18. Let cq and c; be two Ic-compound creatures at level L}f such that

(i) Yo € domcyNdome; V4 € I} : co(a, £) = ci(a, £);*

(ii) whenever suppc; € suppei—; for all j < 2, [suppcg U suppei| < nand de, = de,;
(iii) whenever suppc; G suppey—j for some j < 2, de; < de,_;.

Then there is some Ic-compound creature e at L2 such that dome = domcy U domc;, suppe =

suppcy U suppey, e < ¢; for j < 2, and ||eH}f > min{||coH}f, ||c1|]17‘f} — .

n
pr

Proof. To find e we proceed as follows: we first define suppe := suppcy U suppc;, dome :=
domcp U dome;, de := max{de,, dc, }, and Pe o := P, o for o € suppe; and j < 2, which is fine
because ¢y and c; are the same in their common domain. For the same reason we may define
e(a,l) = cj(a,f) for j < 2, o € dome; and ¢ € I}, which is fine when one support contains
the other (in which case ||e||¢ € {||co|/'S, ||c1]/)} by (ii)), but otherwise e may not satisfy strong
modesty (Definition 4.4.12(5)). So we need to work more when no support is contained in the
other, as in (iii). Hence we are assuming |suppcy U suppci| < n and de, = de,.

Let A, C I, witness the norm ||c;(c, t)H;tk for j < 2,a € suppc;j and t € P, o (Which can
be chosen independent on j in the common support). Set A := {A,; : o € suppe, t € Peo}. It
is clear that | A| <n-T.

By applying Lemma 4.4.15 to the family A, we obtain a paiwise disjoint family B = {Bq; :
o € suppe, t € Pey}suchthat By C Ay and p 7o (B, ) > ' Tn(Ayy) — 1 for a € suppe and
tec Peo.

Finally we use B to define e as follows:

e Forj <2,a €suppc;andt € P, we set e(a, t,0) := cj(a,t,l) for each £ € B, ; e(a,t,l)
is a singleton contained in c;(, ¢, ¢) for each ¢ € I}, \ Bq .

* e(a,l) :=cj(a,!) for a € domc; \ suppc;jand £ € I,

*Considering the nature of c;(a, £) whenever « is in the support or not (a sequence of subatoms indexed with
some subset of T},, or a single trivial subatom, respectively), this condition (i) implies suppci_; N domc; C suppc;
for j < 2.
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It is clear that e is an lc-compound creature and e < c¢; for j < 2, so it remains to show that
el > minj<of[|c; [} — 1. Ttis clear that [le(a, t)[[%, > llcj(e, t)]fy — 1 for j < 2, a € suppc;
and t € P, . Hence

10g2(max{17min{”cj(aatO)Hz(t)k : ] < 27 o€ Suppcj, tO € Pe,a} —-1- de})

lelys > P
n<L}§
1
> m1£1{ch]H§} — —— (by Lemma 4.4.14(a)). O
i<
<Ll

In a similar (and simpler) way, we can prove the corresponding fact for pr-compound crea-
tures.

Lemma 4.4.19. For j < 2 let c; be a pr-compound creature at level n such that:

(i) Vi € domecy Ndome; VL € htP": ¢(4, L) = ¢1(4, L);

(ii) whenever suppc; ¢ suppei—; for all j < 2, [suppcg U suppes| < nand de, = de,;
(iii) whenever suppe; C suppcey—j for some j < 2, de; < de,_;;

(iv) suppci—; Ndome; C suppce; for j < 2.

Then there is some pr-compound creature e at n such that dome = domcyUdomc;, suppc = suppcoU
suppey, e < ¢; foreach j < 2, and |le||5" > min{||co||%, [lc1||n } — 1.

Observation 4.4.20. In Lemma 4.4.18 and 4.4.19 we get a concrete construction of e when
suppc; C suppci—; for some j < 2. We denote this e by cg A cy.

Notation 4.4.21. From now on, considering the norms of subatoms, atoms, and compound
creatures, we are just going to write |/c|| when there is no place for confusion. This will be

determined by the nature of c. For example, if c is a lc-compound creature at level L we

abbreviate |[c[| = [|c];, even [e(a, to)|| = [lc(a, to) | -

To conclude this section, we discuss about the set of possibilities of a compound creature.

Definition 4.4.22. Given a compound creature c we define its set of possibilities according to
the following cases.

(1) If cis a compound at n < w then possc := [[{c(i, L) : ¢ € dome, L € htP'}

(2) If cis a compound at L¥¥and f = (t, : a € suppe) € ] P, , then define

aEsuppce
c(t) := (c(aytn,?) : a € suppe, £ € ') U (c(a,l) : « € dome N\ suppe, £ € I7),
poss(c,t) := H{c(f)(a,ﬂ) :a€dome, L€ I}

The upper bound of the number of possibilities is estimated by the parameters of the forc-
ing.
Fact4.4.23. Let n < w.

(a) If cis a compound at n < w then |possc| < T¥ < n*(g 0"

n,

(b) If cis a compound at L€ and t € [] Pe o then |poss(c,t)| < n?

aEsuppc Ll
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(c) Ift € T}, then ]POSS a1 | < nLal

Proof. For (a) and (b), if ¢ has empty support then clearly the set of possibilities has only one
element, so we assume that ¢ has non-empty support.

The modesty of c is essential for this proof. For (a) we can find a function f: ht}’ — suppc
such that f(L) is the unique member of suppc such that c(f(L), L) is non-trivial in case it exists.
Hence, using (pr5),

[poss(c)| =

[T ctrw.n| < I[ 1i=7: <

Lenth” Lenth"

For (b) we can find a function f: I;; — suppc such that f(¢) is the unique member of suppc
such that c(f(£), s, () is non-trivial in case it exists. Hence, using Fact 4.4.6, (pr9) and (pr11),

t
poss(c, )| < [T le(£(0),tpw.0l < [T 1POSS | <[] nil,,.

el el el
H ntmx e mtmx gmx < nLlc
Lelx
Property (c) is clear by Fact 4.4.6 and (pr13). Ol

4.5 The forcing construction
This section is devoted to defining our forcing and to prove some of its basic properties. This
construction is based on [FGKS17; GK21].

4.5.1 The forcing
Our forcing is composed of three parts: the pr-part (also called pr-forcing), the Ic-part and the

al-part. As mentioned in many occasions, the pr-part is a lim inf construction adding the blocks

LCI

of parameters, the lc-part is also liminf and it increases b ., and the al-part is a lim sup

construction that increases DaLC e . While the pr-forcing is mdependent the lc-part and al-part

are not independent, i. e. they depend a lot on the pr-part.
We start describing the pr-part. This is similar to the liminf part of the forcings
from [FGKS17; GK21].

Definition 4.5.1. We define the pr-forcing $ as follows:

Conditions. A condition p € S consist of:

(1) a trunk length trnklg(p) € w,

(2) asequence (p(n) : n < w) where each p(n) is a pr-compound at level n,
(3) a countable set suppp C SP* (that could be empty),

and it satisfies

(4) domp(n) = suppp forall n < w,

(5) (suppp(n) : n < w) is non-decreasing,

(6) suppp = U,,,, suppp(n),

(7) suppp(n) = @ for all n < trnklg(p),
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(8) limy, oo 222 —  and
(9) limy, o0 (1) |7 = +o00.

< p(n)foralln < w.

Order. For p,q € S, ¢ < piff trnklg(q) > trnklg(p) and ¢(n) (
tl = 1, = (1,(n) : n < w) with

It is clear that this is a partial order on $ and tha
trnklg(1) := 0 is a maximum condition in $.°

Before describing the other components of our forcing construction, we need to fix some
terminology, particularly the definition of possibilities of the generic reals given by a condition
inS.

Notation 4.5.2. We fix the following terminology:
(1) For ¢ € ht, denote by n.(¢) the unique n < w such that ¢ € ht,,.

(2) Foreach a € S* (t € {lc,al}) there is a unique i € SP* such that a € S}, which we denote by
i*(a). For any o € SP" denote i*(a) := av.

(3) Aset B C S*isclosed if, for any a € B, i*(«) € B.
Definition 4.5.3. Fix a condition p € $ and ¢ € suppp.
(1) For each height ¢ € ht we let

poss(p(i), <f) H p(i, L) and poss(p, </) H poss(p(i), <f)

(2) For A C ht?" denote by possp(i, A) := [] p(i, L) the set of possibilities on A at i.
LeA

(3) Let (c,¢) € DOM ~ (SP" x htP") such that i*(«) € suppp. Denote

)= I pi) D).

Leht?”

pss(p, a, £) := possp(i”(a), h
*(£)

We now add the lc-part to the pr-forcing. For a condition, the atomic creatures at (o, ¢) €
Sle x I* must depend on the pr-part of the condition, concretely, on pss(ppr, o, £).

Definition 4.5.4. We define the forcing Q. as follows:

Conditions. A condition p = (ppr, pic) in Q. consist of:

1) ppe €5;

(2) atrunk length trnklg(p) = trnklg(pp:) € w;

(3) a countable set supppi. C S'° and suppp = suppppr U supppie € S* (which is closed by (8));
(4) piis a sequence py. := (p(LX) : n < w) such that

(i) p(L¥) is an lc-compound creature at level LI,
(ii) domp(L;7) = supppic,
(iii) (suppp(LL) : n < w) is non-decreasing,

*We allow conditions like 1 with larger trunk length.
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(iv) supppic = U, <, suppp(Lyf),
V) Pyrie)a = Pss(Ppr; @, L) for any a € suppp(LX);

and it satisfies:

(5) suppp(L) = @ and suppp,(n) = @ for all n < trnklg(p);

(6) limy,_o0 \SUsz(Llrf)l —0;

(7) Xim [[p(Ly5) |5 = oo.

(8) If o € suppp(LL°) then i*(a) € suppppe(n).

Order. For p, ¢ € Q). we say that g < piff trnklg(g) > trnklg(p), gpr < ppr and, for all n < w:
(i) if either n < trnklg(p) or n > trnklg(q) then ¢(L°) < p(LL),

(ii) if trnklg(p) < n < trnklg(q) then, for all & € suppp and ¢ € I: if a € suppp(n) then
q(a,f) C p(a, t,¢) where t is the unique member of pss(q, «, ¢); else, if & ¢ suppp(n) then

Q(a’ E) = p(oz, 6)

Itis routine to show that this defines a partial order on Q.. Moreover, 1 is a maximum condition
in Q). (considering 1;.(L) as in Definition 4.4.12).
We denote, for o € supppye,

trnklg(p, o) := min{n < w : a € suppp(L)}.

Property (8) is only relevant to force the (a;, d;)-bounding property in Subsection 4.8.2.
We now define the forcing with the al-part (first without the lc-part for simplicity).

Definition 4.5.5. We define the forcing Q, as follows:
Conditions. A condition p = (ppr, pa1) € Qa1 consists of:

(1) ppr €°5;

(2) atrunk length trnklg(p) = trnklg(ppr) € w;

(3) a countable set supppa € S such that suppp := suppppr U supppa is closed;

(4) each « € supppa) has a lim sup trunk length trnklg(p, a) > trnklg(p) in w;

(5) paris a sequence (p(«,?) : o € suppp, and £ € ht?!) such that, for o € suppp,; and ¢ € ht?!:

(i) if ¢ > trnklg(p, o) then p(«, ¢) = (p(e,t,¢) : t € pss(ppr, @, £)) is an atomic creature at
¢, and

oy . . ——y

(ii) if ¢ < trnklg(p, ) then p(a, ¢) is a trivial subatom in K" ;

and it satisfies:

(6) For all a € supppai,

lim sup ||p(c, £)||a1 = o0
leht

where

|lp(e, €)|lmin  (as in Definition 4.4.7) if £ > trnklg(p, «),

Ip(ex, £)lar := { o

Ip(e, 0)]], if £ < trnklg(p, a).
tmx
Note that, in the second case, ||p(a, £)||,"*" = 0 by (5)(ii).
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Order. For p, ¢ € Q, we say that ¢ < p iff trnklg(q) > trnklg(p), suppg 2 suppp, ¢pr < ppr and,
for all o € supppy; and ¢ € ht:

(i) trnklg(q, @) = max{trnklg(p, a), trnklg(q)};
(ii) if ¢ < trnklg(p, o) then q(a, £) = p(a, £);

(iii) if trnklg(p, @) < ¢ < trnklg(q, @) then ¢(o, ¢) C p(a,t,£) where t is the unique member of
pSS(‘]pra «, E);

(iv) if £ > trnklg(q, ) then g(a, ¢) < p(a, £) as atomic creatures at ¢ (Definition 4.4.7).

It is routine to check that this is a partial order on Q,;. Even more, 1 is a maximum condition
in Q, (by considering supp(1), = @).

We can finally put everything together and get our desired forcing.

Definition 4.5.6. Define the poset Q whose conditions are those p = (ppr, Pic, Pal) satisfying
(Pprs Pa1) € Qar and (ppr, pic) € Qie- The order is defined by ¢ < p iff (qpr, ¢a1) < (Ppr, Pa) and
(gprs @ic) < (Ppr,p1c)- This is a partial order with maximum condition 1. Figure 4.2 illustrates
the structure of a condition p € Q.

For each p € Q we define suppp := suppppr U supppic U supppay. This allows to define
restrictions of QQ for closed B C S5*:

(1) Qg :={p € Q: suppp C B}, with the same order as Q.

(2) For p € Q, p|B denotes the condition in Qp obtained from p, in the natural way, by re-
stricting the support (as well as the supports and domains of the pr and lc-compounds) to
B.°

It is not always the case that Qp is a complete subposet of Q (the halving parameters
are a problem for this), but in some cases this can be guaranteed. For example Q. = Qg»r,
Qic = Qgorygic and Qa1 = Qgprga1 are complete subposets of Q (see the general case in Corol-
lary 4.5.19).

4.5.2 Basic properties of the forcing
We present some basic properties and features of our forcing construction.

By the construction, the liminf part of any condition p € Q satisfies modesty, i.e. for any
¢ € ht ~ ht*! there is at most one o € suppp such that p(e, £) is not a trivial (sub)atom. Although
it is not necessary to demand modesty at £ € ht*!, we are going to use this property most of the
time. Just considering modest conditions at all levels gives us an equivalent forcing notion.

Definition 4.5.7. A condition p € Q is modest if for any ¢ € ht there is at most one o € suppp
such that p(«, £) is not a trivial (sub)atom.

Lemma 4.5.8. Given a condition p € Q there is some modest ¢ < p in Q with same support, trunk
lengths and with identical pr and lc-parts. In particular, the set of modest conditions is dense in Q.

Proof. Let p be a condition in Q. We only consider the case when suppp,; is non-empty, so we
can enumerate it by supppa =: {a, : m < w} where each member of suppp,; is enumerated
infinitely many times. Define ¢ with the same support, trunk lengths, and same pr and lc-parts
as p and, by recursion on m, we define g, up to some height ¢,,,. At step m = 0, according to

%So trnklg(p|B) = trnklg(p) even when B = @, and the halving parameter at some level becomes 0 when the
support of the compound at the same level is disjoint with B.
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Figure 4.2: The structure of a condition p € Q. The liminf compound creatures are as de-
scribed in Figure 4.1; the al-part with support suppp,) is a limsup construction and, like the
lc-compound creatures, M is an atomic creature that may be non-trivial, [J is a trivial atomic
creature, and [] denotes a trivial subatomic creature (i. e. a singleton).

Definition 4.5.5(6), there is some £y € ht* such that ||p(ag, £)|[a1 > 0, s0 set g(a, £o) := p(a, Lo),
and choose a trivial atom (or subatom) ¢(aj, #') < p(a;, ') for any j < wand ¢ < £ in ht*!, and
also when o # ag and ¢’ = 4.

At step m, we can find an ¢,, > /(,,_; in ht* such that lp(m, €m)||lar > m. So define

q(am, lm) = p(oum,lm) and choose a trivial atom g(a;,¢') < p(o;,¢') for any j < w and
U1 < 0" < £y, in ht”, and when a; # oy, and ¢ = £,,.
Hence the resulting g is as required. O

In the following results we show that we can construct conditions with arbitrary closed
support.

Lemma 4.5.9. For any countable set of indices B C SP* there is some p € Qp, with suppp = B.

Proof. If B = @ we have p = 1, so assume B # @. Enumerate BN SP" := {i; : j < w} (allowing
repetitions). To define the desired p, set the trunk length trnklg(p) := 0 and choose some non-
decreasing sequence (z, : n < w) of natural numbers such that z,, < n, lim, oz, = o0
and lim,, ;o %= = 0. Set suppp(n) := {i; : j < x,}. Then Definition 4.5.1(8) holds, that is,
lim;,—y00 M = 0. Let np := min{n < w: z,, > 0}. For each ny < n < w, by Lemma 4.4.17
there is a pr-compound p(n) at level n with norm >n, support suppp(n) and domain B. For
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n < ng, let p(n) be any pr-compound with empty support and domain B. Then p € $ and
suppp = U,,,, suppp(n) = B. O

Lemma 4.5.10. Let B be a closed countable subset of S* and py, € Qpr with support B N SP*. Then
there is some condition p with support B whose pr-part is pp,

Proof. We assume that B N S # & (otherwise there is no need to go through the “lc-part”
below). Find the condition p as follows:

Trunk lengths. Define the trunk lengths trnklg(p) = trnklg(p, o) := trnklg(pp,) for all o €
Bn S,

The pr-part. As required, we set the pr-part of p as the given py,.

The lc-part. It is important to ensure (8) of Definition 4.5.4, i. e. for any o € suppp(LL), i*(a) €
supppp: (n). First, define B¢ := {a € BN S : i*(a) € supppp:(n)}. Note that B C B)¢, | and
U< B = BN S

Fix ng := min{n < w : B # @} (clearly ny > trnklg(p)) and a bijection f: w \ ng —
(w \ ng) x w such that f(n) = (m,k) implies m < n. Enumerate BY := {8, : i < w}
(allowing repetitions) for n > ng, and define 7\ := 3 f(n)- S0, if f(n) = (m,k) then m < n and
yle e Ble C B¢, Note that BN S = {7l¢: n > ny}

As in the proof of Lemma 4.5.9, choose some non-decreasing Squence (z, : n < w) of
natural numbers such that z;,, < n, lim, o T, = oo and lim, - 7> = 0. Set suppp(LY) := @
for n < ng and suppp(LY¥) = {7k, ... 7;‘3"_1} for n > ng. It is clear that Definition 4.5.4 (6)
and (8) hold. Setting n; := min{n < w : =, > no}, by Lemma 4.4.16, for n > n, there is
some lc-compound p(L2!) at LI with norm >n, support suppp(LL), domp(L¥) = B N S' and
Pyieya = pss(ppr, @, L) for all @ € suppp(LL). For n < n; let p(LL) be any lc-compound
creature at L with empty support and domain B N S'. This determines the lc-part pj. of p.
The al-part. For n < wand o € BN S%, if n > trnklg(p) set p(a,t, L2) := POSS}, for all

t € pss(ppr, a, L), otherwise let p(a, L2!) be any trivial subatom in K

w1+ This determines the

al-part p, of p, and it is clear that (pyr, pic) € Qic.

Set p := (Ppr, Pic; Pa1)- To see that p € Q it remains to check Definition 4.5.5(6). By (pr7),
| POSS, || > n + 1, 50 ||p(e, L) |min > n + 1 for any o € BN S* and n > trnklg(p), that is,

p(a, LN ||ag > n + 1. Therefore, limsup ||p(, £)|la1 = oo. Hence the resulting p is indeed a
Leht
condition in Q with suppp = B. O

Corollary 4.5.11. For any closed countable set of indices B C S*, there is some p € Q such that
suppp = B. In particular, given any o € S*, there is some condition p such that suppp = {i*(«), a}.

We know look at the set of possibilities of the generic reals determined by a condition in Q.

Definition 4.5.12. Fix a condition p € Q. For any n < w and any function n extending a member
of posspy:(n) we denote, according to Definition 4.4.22:

(1) for o € suppp, N(a,n) := (n(i*(a),L) : L € htt"), which is in 7}; in general, we write
N(c, €) == n(a, n.(¢)) for any ¢ € ht;

) A(LS) := (A, n) : a € suppp(LyY));
(3) p(Ll,n) := p(L¥)(A(LL)).

For L € Ht define poss(p, <L) as the set of functions n with domain DOM N (suppp x L)
such that, for any n < L in w,
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(i) ISP x htp' € possppr(n),
(ii) n[S' x I* € possp(LI®, n) when LI < L,

(iii) when L2 < L, for a € supppa: if n > trnklg(p, @) then n(a, L2) € p(a,i(a,n), LY),
otherwise n(«a, L2!) is the unique member of p(a, L2).

When using possibilities 77 € poss(p, <L), we allow the following abuse of notation:
e for B C S*, n|p abbreviates n[B x ht;
e for A C Ht, n[A abbreviates n[S* x A.

As we expect, any 7 € poss(p, <L) denotes the set of possibilities of the generic on DOM N
(supp(p) x L.

Fact 4.5.13. Let L € Ht, p € Q and n € poss(p, <L). Then, for any (o, ¢) € DOM with o € suppp
and £ < L:

(a) ifa =1i¢€ SP thenn(i,l) € T};
() if a € suppp(Llrf*(Z)) then n(ca, £) C byian. (0)(€) has size <hpan, @) (L), else, if a € Sle
Suppp(Llnc* (Z)) then n(a, £) C btglx(@ (€) has size ghtfxm (0);

(c) if « € S* and ¢ > trnklg(p, ) then n(a,l) C Uir(a,n. (¢))(£) has size <hyion, o)) (€); else, if
¢ < trnklg(p, o) then n(a, ) C apmx (€) has size ghtfx(e) ().

For any 7 € poss(p, <L) we can define a condition p A 7 < p deciding the generic below L
to be 7. This condition is basically constructed by replacing creatures below L by the subatoms
determined by 7 (and increasing trunk lengths if required).

Definition 4.5.14. Let p € Q. We define for every L € Ht and n € poss(p, <L) a condition
q = p A n satisfying:
(i) suppg = suppp.

(ii) trnklg(q) := max{trnklg(p),n«(L)}, trnklg(q,«) := max{trnklg(p,a),n.(L)} for a €
Supppal-

(iii) Any (pr and lc) compound creature at a level > trnklg(g) has the same support, domain,
halving parameter and pr-indices as the compound in p at the same level.

(iv) For i € supppp: and £ € htP":
e when ¢ < Lsetq(i, ) := {n(i,0)};
e when ¢ > Lset q(i,!) := p(i, /).

(v) For (a, ¢) € DOM with « € suppg ~\ SP":

e when ¢ < trnklg(q) set ¢(«, ) := {n(a, 0)};

e when trnklg(q) < ¢ < trnklg(q, ) set g(«, £) := p(a, £) (if there is such an ¢ then we
must have trnklg(q, o) = trnklg(p, @));

e when trnklg(q,a) < ¢ < L set q(a,?) = {(q(a,t,0) : t € {f(a,n.(f))}) where
q(a, (e, na (L)), €) := {n(, £)} (note that pss(q, o, €) = {i)(cr, n(£))});
e when ¢ > max{L, trnklg(q, )} and t € pss(qpr, @, £) set q(c, t,¢) := p(a,t,L).
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From the definition above we get the following simple consequences.
Fact 4.5.15. Forp € Qand L € Ht:
(a) Ifn € poss(p, <L) then p A n € Q and it is stronger than p.
(b) {pAn<p|n e poss(p, <L)} is an antichain.
(c) Forany g < pandn' € poss(q, <L), there is a unique n € poss(p, <L) such that g A/’ < p An.
(d) {pAn<pl|n € poss(p,<L)} is a maximal antichain below p.

Proof. Property (a) is clear by Definition 4.5.14. For (b), note that two different 1,7’ €
poss(p, <L) determine incompatible p A n and p A 7/ (if n and 7 differ at some («, £) then the
trivial subatoms at this position are disjoint for both conditions).

For (c), it suffices to define 7 := 1/|suppp. Uniqueness follows by (b).

To check (d), let ¢ < p in Q, and choose some 1" € poss(q,<L). By (c), there is some
n € poss(p, <L) such that ¢ An' < p An, so ¢ is compatible with p A ) by (a). O

For our calculations, we use the parameter n”; to bound the number of possibilities of a
modest condition.

Lemma 4.5.16. Assume that p € Q is modest and L € Ht. Then |poss(p, <L)| < nf.

Proof. Since p is modest, for any ¢ € ht we can pick the unique point oy € suppp such that the
creature p(ay, ) is non-trivial in case it exists, otherwise let oy € suppp be anything such that
(g, €) € DOM. In what follows, when we write p(a, ¢, £) we ignore ¢ when ¢ < trnklg(p, «) (i.e.
it is interpreted as the trivial subatom p(c, £)). In the case L € ht?", using Fact 4.4.23, and (pr14),

posso.<D) < | TT U {n) x possp(LE, (L) x plargg. (o). L)
newnL| neposspp:(n)
< II > nhenfa= TI Ipossppe(n)ingni,
newnL| nepossppr(n) newnLl
< H nfmo)nilﬁniil = H{n% ' <L, L' eHt} <nf,.
newnL|

In the case L = LLC, we get

Iposs(p, <L)| = |poss(p, <n) x poss(ppr(n))| < H{nf, . L' <L, L' eHt} <nl,.

P

ool 18 checked similarly. O

The inequality |poss(p, <L&)| < n

We now look at several results about compatibility between conditions. We also get several
relevant consequences such as cases when Q|B < Q (complete embedabbility) and the ¢*-cc on

Q.

Lemma 4.5.17. Let B C S* be closed, p € Q. Assume that r € Qp, r < p|B and that, for any
compound creature in p, one of the following conditions hold:

(i) its support is contained in B, or
(ii) the compound in r at the same level has empty support, or

(iii) it has the same halving parameter as the compound in r at the same level.
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Then there is some g < p in Q with support supppUsuppq such that q| B < r. Even more, if trnklg(r) =
trnklg(p) and (i) or (ii) always hold then we can even get q| B = r.

Proof. Let ng > trnklg(r) be minimal such that, for any n > ny,
e if (i) and (ii) do not hold at level n then |supprp:(n) U suppppe(n)| < n,
e if (i) and (ii) do not hold at level LI then |suppr (L) U suppp(LL)| < n.

Note that, in case (i) or (ii) always hold, ny = trnklg(r). Choose some 7y € poss(r, <ng) and set
r’:=1r A, so trnklg(r’) = ng. Since r < p|B, we can find some 7; € poss(p, <ng) compatible
with 7 and set p’ := p A ;. Note that the hypothesis of the lemma still holds when p and r are
replaced by p’ and r’ respectively. Note that ' = r when ny = trnklg(r).

We define ¢ as follows.

Trunk lengths. trnklg(q) := no, trnklg(q, o) := trnklg(r’, ) if @ € suppr’,;, and trnklg(g, o) :=
trnklg(p', o) if o € suppp); \ B.

The pr-part. Fix n < w. Let ¢, be the compound creature at n that results from p,(n) by
restricting its domain to supppy, ~ B. Then, by Lemma 4.4.19, there is some pr-compound
creature gy, (n) at n such that

e domgy(n) = dome, U domrgr(n) = SUppppr U Supprpr,
® suppqp:(n) = suppc, U suppry, (n) = supppj,(n) U suppry,(n),
* g(n) < cpand gy (n) < 7p(n), and

* llgpr(n)[[7" = min{{|en [, [Irp: (n)[|"} — 1, even more

n}—1

(clear when c,, has non-empty support, otherwise (i) holds and ||gp: (1) [|n" = [, ()][7).

llgpr (n)II2" = min{]|pL, ()15, 750 (n)

In fact gpr(n) < ppr(n). This defines a condition ¢, € Qp, stronger than both pf,, and 7},|B.
Moreover, if (i) or (ii) hold at level n then g, (n) = ¢, A 7,(n) (see Observation 4.4.20).

The lc-part. Fix n < w. Produce c, o from r/(LI) by just reducing the pr-indices to Pe, o =
pss(qpr, o, L) for each a € suppr’(LY). Also define c,, 1 from p/ (L) by restricting its domain to
suppp|, \ B and reducing the pr-indices to Pe,, , .o = pss(qpr, ¢, L) for each o € suppp’ (L) B.
Hence, by Lemma 4.4.18, there is an lc-compound creature g (L) at L such that

o domqlC(Llrf) = domc,, o U domc,,; = supppic U supprie,
o suppqic(LL) = suppe,, o Usuppe,,1 = suppp|. (L) U suppr]. (L),

o q(L}f) < cp,0and q(L}f) < cp,1, and

lc
n

lqre (L) g = main llp (L) 1y 17 (L3l } = 1.

* (L) = min{fleno

|k, llcnall,s} — 1, even more

This clearly determines a condition (gpr; i) € Qi stronger than (pj,, pj.) and (r},,7,). More-
over, if (i) or (ii) hold at L!¢, we can set (L) := Cno/A\Cpi.

The al-part. Set suppg.; = suppp’,, Usuppt,. Define g(«, £) for (a, £) € suppga x ht* as follows:
when ¢ > trnklg(q, «),
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e if a € suppry, then
qla,l) == (r'(a,t,0) : t € pss(gpr, @, £)),

* and if o € suppp), \ B then

q(a,ﬁ) = <p'(oz,t,€) 1t e pSS(QPHO‘vg»;
when ¢ < trnklg(q, ) set (o, £) := 1'(e, ¢) if a € suppr,;, and q(e, ¢) := p/(a, £) if o € supppl;
B. This determines a condition (qpr, ga1) € Qa1 stronger than (py,,, p,;) and (1, 7))

It is clear that ¢ := (¢pr, Gic; ¢a1) € Q, ¢ < pand ¢|B <.
In the case when trnklg(r) = trnklg(p) and (i) or (ii) always hold, we get from the construc-
tion that ng = trnklg(r) = trnklg(p), v’ =, p' = p,and ¢|B =r. O

Observation 4.5.18. In the previous result, when trnklg(r) = trnklg(p) and (i) or (ii) always
hold, ¢ has a concrete construction. We denote this ¢ by p A r, which becomes a very useful
notation. Specially when B = SP": if p € Q and r < py,, in Q) with the same trunk length as p,
we can define the condition p A r (at any level LI the lc-compound of r has empty domain, so
(ii) is satisfied). In fact, p A 7 just results by shrinking the pr-indices of the atomic creatures at
the lc-part and al-part of p to those given by the possibilities on 7.

Corollary 4.5.19. Let B C S* be closed. If for t € {pr,lIc}, either S* C B or S*N B = @, then Qp is
a complete subforcing of Q. In particular, Qpy, Q\c and Qg are complete subforcings of Q.

We also derive the following criteria for compatibility of conditions.

Corollary 4.5.20. If p,r € Q are identical on the intersection A := suppp Nsuppr (that is p|A = r|A)
and they have the same halving parameters at the levels where the supports of both compound creatures
from both conditions are non-empty, then there is a condition q stronger than both p and r such that

suppg = suppp U suppr.

Proof. Let B := suppr. Clearly r € Qp and r < p|B because p|B = p|A = r|A. Since the
hypothesis of Lemma 4.5.17 holds, there is some ¢ < p in Q with suppg = suppp U suppr such
that ¢|B < r. But ¢ < ¢|B, so ¢ is as required. O

As a consequence, we can show that the generic real at any o € S* is always defined, i.e.
the set of conditions p with o € suppp is dense.

Corollary 4.5.21. Given p € Qand o € S*, there is some q < p such that suppq = supppU{i*(«), a}.

Proof. If a € suppp then we can just set ¢ := p, so assume that a ¢ suppp. In case i*(a) ¢ suppp,
by Corollary 4.5.11 find 7o € Q with support {i*(«), o}, even more, according to the proofs of
Lemma 4.4.16, 4.4.17,4.5.9 and 4.5.10, we can find ry such that all its subatoms are the largest
possible and with halving parameters equal to 0. So we can modify ry by setting the same
halving parameters as p at levels where the compounds of both conditions have non-empty
support, and the resulting  is still in Q with support {i*(«),a}. Since p and r have disjoint
support, we can find the desired ¢ by Corollary 4.5.20.

Assume otherwise that i*(«) € suppp, so let rp, := p[{i*(«)} and use Lemma 4.5.10 to find
some r € Q with support {i*(«), a} whose pr-part is rp,,. Again, the subatoms of r at («, ¢) for
¢ > trnklg(r) = trnklg(p) are the largest possible and halving parameters are 0 if a € S, so
in this case we can modify r by changing the halving parameters as before, and still obtain a
condition in Q with the same support. Since p and r are the same in suppp N suppr = {i*(a)},
we can find the desired ¢ by Corollary 4.5.20. O
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As a consequence of Corollary 4.5.20, we can calculate a chain condition for our forcing.
Lemma 4.5.22. The poset Q has the ¢*-cc. In particular, under CH, Q has the Ra-cc.

Proof. Let A = {p¢ : £ < ¢t} be a collection of conditions in Q. Note that the set of conditions
with all halving parameters in the rationals is dense, so we may assume that each p; satisfies
this property.

By the A-system lemma applied to A, we can find C' C ¢* of size ¢t such that {suppp : £ €
C'} forms a A-system with root D C S*. We can even shrink C' in such a way that:

(i) for n < w, there is some f" : D N SP* — 2 such that f;" coincides with the characteristic
function of supppe pr(n)ND in DNSP" for all £ € C (this implies that {supppe pr(n) : £ € C}
forms a A-system with root D' := (f5")~'[{1}], and that suppp¢ p(n) ~ DY C SP* . D
forall ¢ € C);

(ii) for n < w, there is some fI¢ : D N S'® — 2 such that I coincides with the characteristic
function of supppe (L) N D in DN S' for all € € C (this implies that {suppps (L) : € € C}
forms a A-system with root DX := (fI)~1[{1}], and that supppe (L) \. DI C S'° \ D for
all¢ € O);

(iii) the halving parameters at all levels are the same for all p; with { € C;
(iv) there is some r € Qp such that p¢|D = r forall £ € C.

By Corollary 4.5.20, p¢ and p,, are compatible for all £, € C. Therefore A is not an antichain.
O

We finally establish how the generic reals are defined from the generic set.

Definition 4.5.23. Let G be a Q-generic over the ground model V. Denote by y the Q-name of
{((a,£),2) : (ar,#) e DOM and 3p € G: « € suppp, trnklg(p) > ¢ and p(a, £) = {z}}.

For each t € {pr,al,lc} and each o € S* let ¢, be a Q-name of {(¢, 2) : ((o,€),2) € y}.
As in Subsection 4.3.2 and in view of Lemma 4.5.25, we define the following Q-names: For
i€ SP"and t € {lc, al}, use Definition 4.3.2 to define:

(1) y; is a Q-name of the member of [[,,_, T} defined by ¢ (n) := (y;(L) : L € ht}");
2) d; is a Q-name of dyr; hi, b;, g; and a; are defined likewise.
3) l}i_ is a Q-name of I')yi‘k, and h; is defined similarly.

t
'

(4) d!is a Q-name of dy.; gi, hi, b, f} and af are defined similarly.

(5) 17;t is a Q-name of ;.

(6) For a € Sk, po is a Q-name of a function with domain w such that ¢ (n) = b(n) <
Hie[;; (05 (£) \ Ya(0)).

(7) For a € S#, ¢, is a Q-name of a function with domain w such that ¢ (n) := yo (L2).
We remove the dots when these names are evaluated in any generic extension.

The following results show the type of reals added by Q.
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Fact4.5.24. If p € Q, L € Ht and ) € poss(p, <L) then p A n forces that i is a function extending .
Lemma 4.5.25. Assume that G is a Q-generic over V and fix i € SP*. Then Q forces that:
(a) v is a function with domain DOM.

(b) g is a function in [ cyeor T, thus g is in [[,, ., T,y and both 7' and v are blocks.

(c) For each o € Szlc, Yo IS in S*(l};,h;) (thus ¢ is a slalom in S*(l}?l,hf‘l) by the proof of
Lemma 4.2.7).
(d) Foreach o € S, ¢, is a slalom in S* (a2, ha').

10

Proof. (a): Clearly, Q forces that y is a function with domain contained in DOM. To show
equality it is enough to prove that, for any (a,f) € DOM, the set Do, := {p € Q : a €
suppp, trnklg(p) > ¢} is dense. If p € Q, by Corollary 4.5.21 there is some g < p in Q such that
a € suppgq. Choosing n > ¢ in w and 7 € poss(g, <n), we get ¢ A1 € D, 4 stronger than ¢.

(b): Let p € Q and L € ht"", and choose ¢ € D; 1, stronger than p. So poss(q, < trnklg(1)) only
contains one possibility n and, by Fact 4.5.13(a) and Fact 4.5.24, ¢ forces y;(L) = n(i,L) € T}.
The rest is clear by Lemma 4.3.3.

(c): It is enough to show that, for any p € Q, a € supppjc and ¢ € ht'®, p forces that 7, (¢) C
bymx(€) has size <hgmx(£) where n := n.(f), and even more, whenever ¢ > trnklg(p, o), p forces
that g, (¢) C l}i(é) has size Shi(ﬁ). Pick some n’ > ¢ and let n € poss(p, <n'). By Fact 4.5.13(b)
and 4.5.24, p An forces g (£) = n(a, £) C bymx({) of size <hymx(£) and, whenever ¢ > trnklg(p, ),
Yo () = n(a, £) C by(a,e)(£) has size <hg, ¢ (£). But note that p A7 forces 7(a, £) = y;(n), sopAn
forces the desired conclusion. By Fact 4.5.15(d) p forces the same.

(d): Similar to (c) we can show that, for any p € Q, o € supppic and ¢ € ht*, p forces that
Yo (l) C ammx(£) has size <hymx(¢) where n := n,(¢), and even more, whenever ¢ > trnklg(p, ),
p forces that g, (¢) C a;(¢) has size <h;(¢). O

4.6 Bigness
The notion of bigness is a tool in forcing with creatures that allows to homogenize the deci-
sions made by a condition or a creature, like deciding the name of an ordinal. This is not only
essential for proving that Q is proper, but also for the proof of the main theorem.

Bigness is described for subatomic creatures as follows.

Definition 4.6.1. Let € > 0 be a real number, B € w and let K be a subatomic family.

(1) A subatom c € K has (B, ¢)-bigness if for each function F': ¢ — B thereisad C cin K such
that F'|d is constant and ||d|| > ||| —e.

(2) We say that K has (B, )-bigness if each ¢ € K has (B, )-bigness.

One of the reasons we built the parameters as in Subsection 4.3.3 is to be able to calculate
the bigness of the subatomic creatures in our forcing.

Lemma 4.6.2. Let ¢/ € ht.

(a) If £ € ht™" then K, has (nP, 25 )-bigness.
g

(b) If¢ € ht'* Ut and t € Ty then Kj has (dy(¢) 1 ~)-bigness.

7 dg (£)

()
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Proof. To see (a), let ¢ € Ky and F: ¢ — nP. Find d C c with |d| > ‘LB ch that F'|d is
Ty

constant (in fact, d is the F'~[{k}] of largest size). Hence ||d||; = 5 lognB |d| > %(lognf 7‘%) =
Ty 4
(108, p o] — log, p nf) = [lll¥" = .
For (b), see [KM21, Lemma 3.10]. O

We also describe and calculate the bigness of a compound creature. Bigness here homoge-
nize functions with domain the set of possibilities of the compound, but note that possibilities
on the lc-compounds also depend on the pr-indices. Inspired in the proof of the main result
in [KS12] (where continuum many Db 5, and baLC are separated) we state our bigness results for
compound creatures, which are essential to separate the many cardinal characteristics in the
proof of the main theorem. We start with lc-compounds, here we use the lexicographic order
of Ty x I} presented in Subsection 4.3.3.

Lemma 4.6.3. Let n < w, ¢ a lc-compound creature at L%, t = seqt,o € suppe € HQESuppC P,

to € Ty, and let oy € I}. Assume M € w, f: poss(c,t) — M and Mmfolo < dté(%)' the latter
whenever (t(, £;) is the successor of (to,lo) in T); x I w.r.t. the lexicographic order. Then there is a
le-compound creature ¢’ < c with the same domain, halving parameter and same pr-indices such that,
forany o € suppe, £ € I and t € Pg -

(i) ift = tq and (ta,l) > (to,lo) then ||c'(a, ¢, 0)||} > ||c(a, t, 0)]| — %@);
(ii) otherwise ¢’ (v, t,f) = c(a, t, {);

(iii) flposs(c’,t) only depends on C = {(a,0) : (ta,l) < (to,lo)}, i.e.if n,n’ € poss(c’,t) coincide
in C then f(n) = f(n').

Proof. When (g, £y) is the maximum of T} x I}, we can set ¢/ := c. So assume that (o, £p) is not
the maximum of 7¢ x I*. Note that {7| dome-suppe © 1 € poss(c, )} has only one element, which

we denote by n—. Define F: ], n¢c (@ ta,l) — Meneceletad) guch that F(n)(n) =
f(no Um Un_). Note that H (a,0)eC lc(a, ta, b)] < mfolo by modesty, (pr9) and Fact 4.4.6, so

lranF'| < M Miouto < dy () by hypothesis. In this way, we just need to find ¢’ satisfying (i) and
(i) and such that I is constant on [ [, ¢z c(a,ta,l).

Consider the increasing enumeration {(¢;,¢}) : k < m} of all (¢,£) € Ty x I} larger than
(to, %) such that, for some o € suppc, t, = t and c(a, ¢, ¢) is non-trivial. By strong modesty,
such « is unique, so we denote by «j, the one corresponding to (¢}, ;). Moreover, the non-
trivial creatures in {c(o, ta,f) : (o, ?) ¢ C} are precisely {c(ay,t},¢,) : k < m}, hence F only
depends on {(ay,£}) : k < m}. So we can define a function F': [],_,. c(ox,t,(}) — ranF
that determines F'.

Define (c/(ay, t),¢}.) : k < m) by decreasing induction on k, in such a way that:

(k-i) < (ou,t), ;) C clag, ty, £), || (ag, t), 0] > |lc(a, ), )| — m and
k

(k-il) F'[T1p < clomr, th, 0h) X [T c/(ap, ty, ¢),) only depends on [ [,/ ;. c(ap, ty.r, €1).

At step k, by induction hypothesis, '], c(auwr, ty, €4)) X [Tjsp € (awr, )0, €),) only de-
pendson [[,, ., c(aw, )/, £},). So we can define Fj, : c(ay, t), ¢).) — (ranF)[Tw <k elew t0) such
that F (i) ((i : k' < k)) is the value of F’ calculated from (ijs : k' < k).

We claim that ‘(ranF)Hk’<k oty k’)‘ < dy (¢}): the case k = 0 is [ranF’| < dy ({y), which
is already checked; if k£ > 0 then, by (pr9),

S

s
‘(ranF)Hk’<k oyt ) < ]ranF| Ho—1%—1 < d%(%)m%fl»%q < dtk(g;),
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So we can apply Lemma 4.6.2(b) to find c'(ay,t,,¢,) < clag,t),?,.) in KZ;’Z such that

Fy I/ (o, t),, £),) is constant and Hc’(ak,t%,%)]\f} > ||c(ak,t§€,€;€)||2£“ - W. It is clear that
k k ) "k
both (k-i) and (k-ii) hold.
Define the other components of ¢’ identical to c. Therefore, ¢’ is as required. O

Corollary 4.6.4. Let n < w, ¢ be a lc-compound creature at Ly, t = (to : @ € suppe) € [[oesuppe Peo
and let f: poss(c,t) — nflc. Then there is an lc-compound creature ¢ < c with the same domain,
halving parameter and same pr-indices, such that, for any o € suppc, £ € I}, and t € P o:

(i) If t = to then ||/ (1, O} > lelent, Ot — 72

(ii) otherwise ¢’ (o, t,0) = c(a, t,£); and
(iii) fposs(c',t) is constant.
Proof. Let (to,ly) := min(T;; x I}¥). Since nB. < dy,(¢y) < by (lo) and bto(fo)mfw‘fo < dy ()
by (pr9), where (t),¢;) is the successor of (to, /o) in Tf x I}, we can obtain ¢! < c as in
Lemma 4.6.3, so f|poss(c!,?) depends only on {(c, {) : «a € suppc!, ¢, = to}, and note that
c!(t) and c(f) coincide in those coordinates. If this set is empty we are done, otherwise choose
ap € suppc such that t,, = tp and c(ao, to, {o) is non-trivial (if it exists, in which case it is unique
by modesty). Hence f[poss(ct,?) depends only on {(ag, ¢p)}, i.e. it can be reconstructed from
some function fy: c(ag, to, bo) — nﬁf. By (pr10) nﬁg < dy,(4p), so Lemma 4.6.2(b) implies that
there is some C,(ao,tg,go) < C(ao,to,éo) such that “C,(a07t07€0)‘|2 > ||C(Oéo,t0,€0)||2 — m
and fo[c/(aw, to, {o) is constant. If the other components of ¢’ are defined identical to those in
c!, then ¢’ is as required. O

A similar (and simpler) argument using Lemma 4.6.2(a), (pr2) and (pr4) allows us to calcu-
late the bigness of pr-compound creatures.

Lemma 4.6.5. Let c be a pr-compound at (n,0), Lo € ht2", M € wand let f: poss(c) — M such that
MIIRTL: Lehti'nLol} < nfo. Then there is a pr-compound ¢’ < c with the same domain and halving
parameter such that, for any i € suppc and L € ht}':

(i) if L > Lo then ||c'(i, L)|| > |lc(i, L)|| = 5

L

(ii) otherwise c'(i, L) = c(i, L);

(iii) for n € poss(c’), f(n) only depends on nlsuppc x Lol.
In particular, if Ly = (n,0) and M < nfo then flposs(c’) is constant.
Proof. We only check that, for L' > Lg in htP", MTHTE: LebtnLil} < n?, (the rest follows simi-

larly to the proof of Lemma 4.6.3). We proceed by induction on L. The case L’ = L holds from
the assumption; if L” is the successor of L" in htD" then

MINTE L) < (2 T5r < (ny, 500 < ),
where the first “<” holds by (pr4), and the second by (pr2). O
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4.7 Continuous and rapid reading

This section is dedicated to the continuous reading of names, whose proof gives us fundamen-
tal properties of Q like properness and w*-bounding. We also define a notion of rapid reading
of names.

Definition 4.7.1. Let B C S*, 7 a Q-name of a set in the ground model V, and let p € Q.

(1) For L € Ht, say that 7 is L-decided by p, if p A ) decides the values of 7 for each
n € poss(p, <L); in other words, there is some map 7" in the ground model with domain
poss(p, <L) such that p A n IF 7 = T(n) for all n € poss(p, <L).

(2) In (1), say that 7 is L-decided by p only using indices in B if the value T'(n) as in (1) only
depends on n|p for all n € poss(p, <L), i.e. if ’ € poss(p, <L) coincides with n in B x L]
then both p A and p A 1/ decide the same value of 7.

(3) We say that p essentially decides 7 (only using indices in B), if 7 is L-decided by p (only using
indices in B) for some L € Ht.

(4) Assume thatp IF 7: X — V where X € V. We say p continuously reads v (only using indices
in B) if p essentially decides each 7(z) (only using indices in B) for all z € X.

(5) Assume thatp IF7: Ht — V. We say that p rapidly reads r (only using indices in B) if, for each
L € Ht, L] is L-decided (only using indices in B).

(6) In the previous notions we can alternatively define deciding and reading without using in-
dices in B meaning only using indices in S* \. B.

One of the main results of this section is:

Theorem 4.7.2. The forcing Q is proper, w*-bounding and it has continuous reading of names, i.e. if X
be a countable set (in the ground model) and 7 is a Q-name of a function from X into the ground model,
then the set of conditions continuously reading r is dense.

The extensive proof of this theorem is presented in Subsection 4.7.2. Before then we discuss
some consequences and related properties, e. g. that for some 7 we actually get that the set of
conditions rapidly reading s is dense (Corollary 4.7.9). Preservation of cardinals also follows
under CH by Lemma 4.5.22.

Corollary 4.7.3. Under CH, Q preserves all cofinalities and cardinalities.

For p,q € Q, ¢ <* p usually denotes that any condition in Q stronger than ¢ is compatible
with p. This is equivalent to the fact that ¢ forces p inside the generic set. We write p =* ¢ when
p<*gandq <" p.

Lemma 4.7.4. Let p,q € Q, 7 a Q-name of a set in the ground model V, X € V and let 7 be a Q-name
of a function from X into V. If ¢ <* p and suppq C suppp then:

(a) If L € Ht and 7 is L-decided by p then it is also L-decided by q.
(b) If p continuously reads 1 then q continuously reads 7-.
(c) If X = Ht and p rapidly reads 1, then q rapidly reads 7.

The same results hold when adding “only (or without) using indices in B” for any B C S*.
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Proof. To see (a): Since 7 is L-decided by p, there is a map 7" as in Definition 4.7.1(1),i.e. pAn Ik
7 = T(n) for any n € poss(p, <L). Note that poss(q|suppp, <L) C poss(p, <L) because ¢ <* p
and suppp C suppq. If n € poss(q, <L) then 1’ := n|suppp € poss(p, <L), so g An <*p Anand it
follows that ¢ A n I- 7 = T(n).

(b) and (c) are immediate consequences of (a). O

A note about the previous lemma: [FGKS17, Lemma 5.1.3] and [GK21, Lemma 6.4] claim
that, whenever ¢ <* p and 7 is essentially decided by p, then it is so by p, without assuming
suppg C suppp. However, in our construction this is not true without further assuming suppg C
suppp. For example, let iy € SP" and let py € Q be the condition with suppp = {ip} and
trnklg(pg) = 0, where the subatom at L € ht™" is the full POSS;, and halving parameters are 0.
It is clear that every ¢ € Q is compatible with pg, i.e. 1 <* pg. Hence ¢ <* pg for any ¢ € Q,
but if iy ¢ suppg then we could easily construct some name 7 of a natural number that could
be essentially read by pg (e. g. (2,0)-decided) but not by gq.

Continuous reading allows to estimate the size of the continuum in any generic extension.

Lemma 4.7.5. In V, let B C S* and set  := max{Xo, |B|}"0. Then, in any Q-generic extension,
there are at most k many reals which are continuously read by some condition in the generic set and only
using indices in B. To be more precise, define the following Q-name of a subset of 2

R(B) := {(#,p) | 7 is a (nice) Q-name of a real in 2%, p € Q and
7 is continuously read by p only using indices in B}.

Then IF |R(B)| < &, i.e. if G is Q-generic over V then, in V[G), there are at most || many reals x € 2
such that there are p € G and a Q-name i € V such that x = 7[G] and V' =" p continuously reads 7
only using indices in B”.”

Proof. Let P be the set of countable partial functions from DOM N (B x ht) into Hy, (the collec-
tion of hereditarily finite sets). Note that |P| < k™ = x (equality when B # @). And let F be
the set of countable partial functions from P into 2. Hence |E| < |P|* < k and |E¥| < k.

Let G be Q-generic over V. In V[G], if z € R := R(B)[G] then we can choose some pair
(f,pz) € R(B) with p, € G, and define f* := (f* : n < w) € E¥ NV such that, in V, f2 is the
map that witnesses essential decision of 7, (n) by p, only using indices in B, more precisely, f
is a function with domain D := {n|p : n € poss(pg, <my(n))} for some my(n) € w such that,
for any n € poss(pz, <me(n)), p. An - 7(n) = f7(n;]B)-

In V[G], for any n < w there is a unique 7 € poss(ps, <mg(n)) such that p, A 7% € G, so
z(n) = 72[G](n) = f%(n%|p). This implies that x — f is a one-to-one map from R into E~ NV,
so |R| < |k|. In more detail, assume that z,y € Rand f* = fY. For n < w, D = D}, so n%|p
and 7| g must have the same domain. On the other hand p, A 1%, p, Ann € G, so % and 7}, are
compatible, hence 1’| s = ni| 5. Therefore z(n) = fX(n*|5) = fa(nnls) = y(n). O

As a direct consequence of Theorem 4.7.2:
Corollary 4.7.6. Let k := max{|S*|,No}*0. Then Q forces that ¢ < |k|.

4.7.1 Rapid reading

We show that some Q-names of reals allow rapid reading, meaning that (as a consequence of
Theorem 4.7.2) the set of conditions rapidly reading it is dense. We start with the following gen-
eral result that simplifies the proof of rapid reading, which also helps in the proof of continuous
reading of names (so Theorem 4.7.2 is not used in its proof).

"Note that x may be an ordinal in V'[G], but according to Corollary 4.7.3 it is still a cardinal if CH is assumed in
the ground model.
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Lemma 4.7.7. Let p € Q be a modest condition and Ly € w.® Assume that (A : L € Ht, L < Lg) is
a sequence of sets such that

(i) |AL| <nf;,
(ii) fOT’L < L'in Ht, T Lt A — Ap such that,foranyL <L <L"in Ht, T, = T LOTL" [/

If hr,: poss(p, <Lo) — Ar, then there is some ¢ < p in Q and, for each L < Lg in Ht, there is some
function hy,: poss(p, <L) — Ay, such that

(a) p and q have the same support, trunk lengths, halving parameters, and they are identical at levels
>Lo;

(b) below Ly, the norm of any subatomic creature from q decreases at most 1 w.r.t. the subatomic creature
in p at the same position;

(c) for L < Lg in Ht, if n € poss(p, <Lg) and n(a, ) € q(o, (e, ni(¢)), L)) for all o € suppp
and L < ¢ < Lo in ht (when o € SP* or ¢ < troklg(p, o) we abuse of the notation and set
q(a, (e, 14 (£)), £)) := q(ev, £)), then h,(nI L) = mry, L(hi, (1))

Proof. Fix a decreasing enumeration {L; : 1 < j < m} of Ht N Lo]. Set qo := p and hg := hy,,
and denote A; := A, and 7y := 7, 1, for j < k < m. By induction on j we construct
h; = hr,; and g; < gj—1 such that

(i) gj—1 and g¢; have the same support, trunk lengths, halving parameters, and they are iden-
tical except at L; (and their sublevels); however, in the case L; = (n,0) for some n < w,
they may also differ at levels ¢ € I U {L2} but only in that the set of pr-indices of the
atomic creatures in ¢; may be smaller than those in ¢;_; (at the same coordinates);

(ii) at L; the norm of each subatomic creature from ¢; decreases at most 1 w.r.t. the subatomic
creature in g;_; at the same position;

(iii) if n € poss(p,<L;—1) and n(c, €) € gqj(a, (o, ni(€)),£)) for all &« € suppp and L; <
¢ < L;_; (abusing of the notation when o € SP* or ¢ < trnklg(p, )), then h;j(n[L;}) =
mj-1,5(hr; i (1))-

By (i), notice that ¢; is identical to p at levels <L, and >Lj.

So assume 1 < j < m and that we have the desired h; and ¢; for i < j. We proceed by
cases on the height. When L; = L2 for some n < w, first assume that there is some Qj € suppp
such that p(«a;, L;) is non-trivial (which is unique). Recall that ¢;_1(cj, Lj) = p(ej, Lj). Fix
t € pss(ppr, @), Lj) and denote B := {1 € poss(p, <L;) : 7 (aj,n) = t}.

Consider the function F': p(aj,t,L;j) — A;5" such that F'(z) = F! maps 7 to the value
mi—1j(hj—1(n " x)), where n/ "z is the unique possibility € poss(p, <L;_1) extending n’ with
n(a, L;j) = z (all other values at L; are determined by modesty).

Since both B* and A; have size at most n”; = (Lemma 4.5.16), 14,5 < (nI:Lj)n]:Lj < np,
by (pr2). Then, by bigness (Lemma 4.6.2(b)), there is some subatom ¢;(«a;,t,L;) < p(aj,t, Lj)
such that [|gj(a;,t, L)z, = [Ip(ey,t, Ly)ll;, — 1 and F'lg;(ey,t, L;) is constant with value
ftt B! — Aj.

For ' € poss(p, <L;) we define h;(n') := fi(a;n)(n). We can define ¢; as in (i) such that
qj(aj, Lj) = (gj(ey,t, L) : t € pss(ppr, @, L)) and coinciding with ¢;_; (and p) at (¢, L;) with
o' # a;. Hence ¢; and h; are as required. Concretely, if n € poss(p, <L;—1) and n(a;, L;) €
qj(0, (e, n), Lj) then hj(nlLjl) = mj-1,5(hj-1(n)).

8Recall that we identify n € w with the level (n, 0).
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In the case when all creatures are trivial at L; we can just set ¢; := ¢;—1 and hj(n) :=
mj—1j(hj—1(n")) for n € poss(p, < L;), where n* is the unique possibility in poss(p, <L;_1)
extending 7.

Now consider the case L; = L. Enumerate poss(p, <L;) = {n, : k < m'}. By recursion,
we define a decreasing sequence (ci : k& < m’) of le-compounds, all with the same support,
halving parameter and pr-indices, where ¢y := p(L). Assume we have defined c;. Define
fr: poss(cy, tF) — A; where th .= ﬁ;(L}f) and fj(v) is the value of j_; j o hj_; evaluated in the
unique possibility in poss(p, <L;_1) obtained from 7, and v.

By Corollary 4.6.4 applied to fj, there is some ¢4 < ¢, as required, such that each subatom
in cj1 decreases its norm by at most ﬁ and f; has constant value h;(7},) on poss(cyi1,").

Ly
This defines %, and define ¢; such that qj(Lif) := ¢,y and identical to ¢;j_; at other levels. It is
routine to check that they are as required.

In the case L; = (n,0) construct (¢;)p:(n) as in the previous case (which is simpler because
the parameter ¢ is not required), but use bigness from Lemma 4.6.5. However, since (g;)pr(n)
may be different from (g;—1)pr(n) = ppr(n), we must also reduce the set of pr-indices of the
atoms of ¢j_; at levels ¢ € I} U {L¥} (as indicated in (i)). So define g;,x € Qp, identical to
(gj—1)pr except at L; where ¢; .. (n) is the constructed (¢;)pr(n), and set g; := gj—1 A gjpr- By
Observation 4.5.18, g; is as required.

We have defined h; for all j < m. Set ¢ := ¢p,—1, which is clearly as required. O

Theorem 4.7.8. Let 1 be a Q-name of a member of ], cy, n7. Assume that p € Q is modest and
continuously read . Then there is a ¢ < p with the same support, trunk lengths and halving parameters
as p, that rapidly reads 7.

Proof. For each L € Ht, set
h(L) := max{L' e Ht: L' < L, p L-decides 7|L'|} (*1)

Note that (h(L) : L € Ht) is non-decreasing, and continuous reading implies that & is an
unbounded function. For L' < L let &y, ;» be a Q-name of 7 [min{h(L), L'}]. Note that @, ;/ is
L-decided and that there are at most | [, _;, n7|-many possibilities for 3, 1.

Fix Ly € w. For all L < Lg in Ht define

Apyp = [[{ni : L' < min{h(Lo), L}, L' € Ht}

and v, 1,: poss(p, <Lo) — Ar, 1, such that p An Ik &1, 1, = Yry1,(n). By (prl4) and
Lemma 4.7.7 applied to these objects and to the projections 7 1/ : A, — Ar, 1 for L' <
L < Ly, find qr, < pand ¢, 1.: poss(p, <L) = Ar,. 1 for each L < L in Ht that satisfies:

(i) pand gqr, have the same support, trunk lengths, halving parameters, and they are identical
at levels > L;

(ii) below Lo, any subatomic creature from ¢z, decreases at most 1 w.r.t. the subatomic crea-
ture in p at the same position;

(iii) for L < Lo in Ht, if n € poss(p, <Lg) and n(a, ¢) € qr,(a, (e, n(€)),¢) for all a € suppp
and L < /¢ < Ly in ht (allowing abuse of notation), then p A n I &1, 1, = 1, (NI L]).

In (iii) we say that n[L| decides i1, 1, (= V1, 1(n[Ll)) modulo qr,[[L, Lo).

Note that, given Ly € w, there are only finitely many possibilities for ¢z, [Lo| (restriction
on ht) and ¢, 1, for L < Lg in Ht. Thus, by Konig’s Lemma, there is some ¢ < pin Q and a
sequence (v} : L € Ht) such that
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(x2) for all L € Ht, there is some Ly > L in w such that g1, and ¢ are identical below L and
Yoy =¥}, forall L' < L in Ht.

Here g is constructed in the natural way, and it is clear that any subatom of ¢ decreases its norm
by at most 1 w.r.t. the subatom in p at the same position, hence ¢ € Q. Note that ¢ has the same
support, trunk lengths, and halving parameters as p, and ¢ < p.

To complete the proof it remains to show that ¢ rapidly reads 7, that is, each ) € poss(¢, <L)
decides 7[L for all L € Ht. Fix L € Ht and choose an L' > L in Ht such that A(L') > L.
According to (x1), we get that 7[L is L'-decided. Choose Ly > L’ as in (x2) and recall (from
(iii)) that &, 1, is decided by 1, ;, modulo gz, [[L, Lo). Notice that L < h(L') < L' < Ly, so
min{h(Lg), L} = L. Therefore I i1, = [L| and, since h(L') > L, iy, 1 is already L’-decided
(by the original condition p). So we can decide i1, , modulo gr,, [[L, L) using ¢, 1.

On the other hand, ¢ and ¢, coincide below L’ and ¢/ 1, = ¢, = ¥}, so ¢ A n forces
7L =&, =] (n) for any n € poss(q, <L). O

As a direct consequence of Lemma 4.5.8, 4.7.4 and Theorem 4.7.2 we obtain:

Corollary 4.7.9. If 7 is as in Theorem 4.7.8 then the set of modest conditions rapidly reading 7 is dense
in Q.
A consequence of rapid reading is that Q does not add random reals.

Lemma 4.7.10. The forcing Q does not add random reals.
In particular, under CH, Q forces cov(N) = N;.

Proof. Let 7 be a Q-name for a real in 2 and p € Q. For k£ < w set n;, = |log, nfk o)J' and define
f:Ht — wby

sy | ring if L= (k,0),

(L) = { 0 otherwise.

By Corollary 4.7.9 there is some modest ¢ < p that rapidly reads f. Then 7|ny, is (k,0)-decided
by ¢, that is, 7*[ny is determined by 1 € poss(q, <k). We then denote by A the set of possible

values of 7*[n; determined by poss(g, <k), so |2"’;| < 2nk £ by Lemma 4.5.16. The sequence (A{ :
k < w) allows us to define N := {z € 2 : Vk < w: z[n; € A} ( m the ground model). It is

clear from the definition of N that Lb(N) = limy_, ‘QHJ < limg—y o0 = i = 0 (where Lb denotes

the Lebesgue measure) and ¢ I- 7 € N. O

4.7.2 The proof of continuous reading and more
In this subsection we prove Theorem 4.7.2 and present more features of the forcing, like fu-
sion. This is the only place of the paper where the halving parameters are really used. This
presentation is based on [GK21, Section 7].

Remember that the norm of an lc-compound ¢ with non-empty support is defined by

logy(max{1, min{||c(a, )|/, : o € suppe, tg € Pea} — de})

P
Merpte

1
el =

Set D := min{||c(a, t)||%%, : a € suppe, tg € Peq}. If we change d. to

De—de  De+de
2 - 2

then the norm of the resulting le-compound decreases by at most 1/n” .. We call this proce-

dure halving, which also applies to pr-compound creatures.

<Lle*
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Definition 4.7.11 ([FGKS17, Definition 5.2.2]). Given any pr or lc compound creature c we
define half(c), the half of c, to be the same creature as c, except that we replace each halving
parameter d. by the d., described above. In case suppc = 0 we set d, = d. = 0, i. e. half(c) = c.

In this way we can also halve conditions.

Definition 4.7.12. Given a condition ¢ € Q and m < w, we define r := half(q,m) to be the
same condition ¢, except that all compound creatures gy, (n) and q(Ll) for n > m are halved,
i.e. rpr(n) = half(gpe(n)) and r(LX) = half(q(L¥)).

We also have a procedure to unhalve conditions, illustrated in the following result.

Lemma 4.7.13. Let M € R, p € Qand N € w, N > trnklg(p) such that all compound creatures
at levels >N have norm >M. Assume that v < half(p, N) in Q such that truklg(r) = N and all
compound creatures at levels >N have norm >0. Then there is a condition ¢ < p and N* > N such
that

(i) q is identical to r except of the halving parameters of the compound creatures at heights in
[(N,0), (N, 0)),

(i) lape ()" = M forn > N,
(iii) ||q(L)[) > M for n > N*,
(iv) |lgpe(n)||n" > M — 1/n1<3(n70)f01’ all N <n < N*,

() ||q(LE)|le > M — 1/n1<3L15f0r allN <n < N*,
In addition g =* r, so by Lemma 4.7.4 r essentially decides some Q-name 7 of a ground model object iff
q does.

Proof. Choose N* > N such that |y (n)||h > M and ||r(LL)[ > M for n > N*. We set ¢ to
be identical to r except that, for all N < n < N*, we replace the halving parameters d,._(,) and
dy(ziey by dp,  (n) and d ey, respectively, that is, dg ) 1= dp,, (n) and dy(piey := djyp1c). It is clear
thatr < gand g <*r,soq ="r.

It is straightforward to see that ¢ < p and (i)—(iii) hold. We only show (v) (since (iv) is
similar). Assume N < n < N*. If suppq(L) = @ then ¢(L¥) = r(L¥) and p(L) has empty
support, too. But ||7(LI)|| > 0, so suppri. = &, which implies that suppp. = @ and ||¢(LL)|| =
(L)) = [p(LI)]| = n > M.

So, assuming suppq(L®) # @, it remains show that

logQ(min{Hq(a,to)Hng D (o to) € Qn} — dq(Llnc))

la(Zi)ls = 1z
Mepe
ST
Mepte

where Q,, = {(a,t) € suppq(L}) x T : t € pss(q, o, L)} (since ||r(L1)|| > 0, the term inside
the logarithm is already >1).

Recall that 0 < [|7(LY)[]! < [|g(L¥)||k. Fix any («,ty) € Q. Since ¢ and r only differ on the
halving parameter, we have

0 < logy(llg(ex, to) 10 — (i)
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which implies that

HQ(avtO)Hégk > dr(L‘,f) +1

2 dpaie(p(ric)) + 1
Dp(piey = dp(riey

=yl + 5 1
Since dy(py) = (i),
D Ly — d Llc
later to) 9 — gy > —25—2EE 11
for any (a,tg) € @p, hence
logy([la(av, to) |29y, — dy(riey) 1
o > p(I) ~ —
n n
<Ll 0) <Ll
Therefore,
1
la(Z)lls = o (L)l — —5
<Lk
1
2 M — P )
n<L1§
which proves (iv). O

Before engaging in the proof of continuous reading, as in [GK21, Section 7] we present some
orders that give us a variation of Baumgartner’s strong axiom A for our forcing Q, from which
properness, w“-bounding and continuous reading of names follow.

Definition 4.7.14. (1) Let N < w. Define the order <y on Q by ¢ <y p iff the following
properties hold:
(i) trnklg(q) = trnklg(p) < N,

(ii) ¢ <p,
(iii) at eachlevel <N (excluding ht*), the compound creature of both conditions have the
same support and halving parameter (although suppg could be larger than suppp),

(iv) trnklg(q,a) > N for a € suppgai ~ supppai,
(v) q(a, ) = p(e, ¢) for any (e, ) € DOM with a € suppp and ¢ < (N, 0).

Properties (i) and (ii) imply that trnklg(¢, ) = trnklg(p, «) for all & € supppa (by the
definition of the order of Q).

(2) Letn < w and let F C S? be finite. Define the order <p,ron Q by g <,  pif there is some
n’ > n such that

(1) q Sn’ b,
(ii) every compound creature at any level > (n’,0) has norm >n,

(iii) for each o € F Nsuppp there is some ¢ < (n’,0) in ht* such that ||p(a, £)|| > n.

(3) Say that a sequence p = (p, : n < w) of elements of Q is a fusion sequence if there is some
sequence F' = (F), : n < w) of finite subsets of S* such that
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(Fl) Fn g Fn+1/

(FZ) Pn+1 Sn,Fn DPn,
(F3) Un<w F, = Un<w Supp(pn)al.

Here we say that F witnesses the fusion sequence p.

Itis easy to check that <,, r is a preorder on Q.? Also, wheneverng < nand Fy C F, ¢ <nFD
implies ¢ <,,,.r, p; and whenever trnklg(p) < ng, ¢ <,, p implies ¢ <,, p. These properties of
the preorders <,, i, along with fusion (Lemma 4.7.15) and pure decision (Lemma 4.7.16) is what
defines our variation of the strong axiom A.

We can always construct a fusion condition from a fusion sequence.

Lemma 4.7.15. If (p, : n < w) is a fusion sequence witnessed by ' = (F,, : n < w) then there is a
condition q € Q satisfying suppq = |U,, ., Supppn and q < p, pn foralln < w.

Proof. For each n let h(n) be like n’ in Definition 4.7.14 (2) for pp+1 <p.F, Pn. Choose an in-
creasing sequence (n; : j < w) of natural numbers with ny = 0 such that (h(n;) : j < w) is
strictly increasing. Set trnklg(q) := trnklg(po), suppq := U, suppp, and, for a € suppgai,
trnklg(q, ) := trnklg(py,, @) for some j such that o € suppp,; (this value does not depend on
the chosen j).

Fix j < w and define ¢ at heights ¢ € ht,, for h(n;—1) < m < h(n;) as follows (with
h(n-1) = 0). Set suppgy(m) = supp(pn;)p:(m), suppq(LL) := SUpPPPy, (LX), dgor(m)
d(pnj)pr(m), dy(ricy = dpn]- (Lly, and q(a,€) = pp,(a,f) for all a € supppy,,. Note that all these
objects are the same when j is replaced by any ;' > j. In the case a € suppq . suppp,,, set
q(a, 0) :== Pn, (a,f) when a € Supppn,, (this value does not depend on the chosen j’).

Routine calculations give ¢ € Q and ¢ <, jFn; Pr; forall j <w. If n < njthen p,; <, F, Pn,
SO q Sn,Fn Pn- [

The following lemma concludes our variation of strong axiom A.

Lemma 4.7.16 (Pure decision). Assume that 7 is a Q-name for a ground model object, p € Qsg,,
No € wand My > 1is a real such that any compound creature of p at any level >Ny has norm >My+1
(so trnklg(p) < Ny). Then there is some q € Q such that

(1) q <n, p,
(ii) q essentially decides T,
(iii) any compound creature of q at any level >Ny has norm > M.
In particular, for any n < w and finite ' C supppa, there is some q <,, p p in Q essentially deciding 7.

Proof. This proof consist of three parts:

Part 1: Halving, the single step.

Suppose that we are given p € Q, N € wand M € R such that N > trnklg(p) and any
compound creature of p at any level >N has norm >M + 1. We show how to construct a
condition r := r(p, N, M) € Q satifying;:

(H]-) r SN b,

(H2) any compound creature of r at any level >N has norm >, and

° Although the order <y is transitive, reflexivity fails for conditions with trunk length larger than N.
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(H3) if n € poss(r, <N) and if there is an s < r A7 such that s essentially decides 7, trnklg(s) =
(N, 0) and the compound creatures of s at any level >N have norm >0, then » A7 already
essentially decides 7.

To see this, first enumerate poss(p, <N) as n',...,n™. Set ¢° := p. By induction on m we
construct conditions ¢, ¢*, ..., ™, ¢™ such that, for each j < m:

(1) ¢! is derived from ¢ by replacing the creature at any (a,£) € DOM N (suppp x (N,0)])
by the trivial creature {n/™!(a, £)}.

(2) ¢ <@t
(3) trnklg(¢’*!) = trnklg(¢’™!) = N.

@) [l ()2 > M +1— 4+ forn > N.

<(n,0)
®) [l L) > M + 1 — F forn > N.
<Ll

(6) One of the following two cases holds:

* ¢/*! essentially decides 7
o ¢/t! = half(¢/*!, N).

Note that ¢! is just p A n!, but ¢* may have support larger than suppp, so we can not write
¢ AntLin (1). The definition of ¢! is correct because trnklg(¢’) = N, so ¢’(a, /) is trivial for
(o, ) in DOM x (suppg’ x (N,0)]) with a ¢ suppp. The condition ¢/ is easy to get: if there
is some ¢/ ! essentially deciding 7 and satisfying (2)—(5) we just choose it, otherwise we set
@t = half(¢’*!, N) (which clearly satisfies (2)-(6)). We will always give priority to choosing
an essentially deciding ¢/*! over halving ¢/ ™.

Set r as follows: In DOM N (suppp x (N,0)]), r is identical to p; otherwise r is identical to
q"™. In more detail:

® suppr := suppq”;

e trnklg(r) = trnklg(p), trnklg(r, @) := trnklg(p, o) for any o € supppa,y, and trnklg(r, ) :=
trnklg(gm, o) for any a € suppra; \ supppai (so it is >N);

e for (o,f) € DOM with ¢ < N:

- if @ € suppp then r(a, ¢) := p(a, £),
- if @ € suppr \ suppp then r(a, £) := ¢"™(«, {);

e for (o,¢) € DOM with a € supprand ¢ > N, r(«a, ) := ¢"(a, £);

e the supports and halving parameters of compound creatures in r coincide with p at levels
<N, and with ¢ at levels > N.

It is clear by the construction that r satisfies (H1) and (H2). To see (H2) note that, for n >
N, |r(L)] = |lgm(LE)| > M +1 — 2~ > M, the last equality because m < n’,,_ by

nt <Lle
<rle
Lemma 4.5.16.
So it remains to prove (H3). Let € poss(r,<N) and s as in (H3). Note that 1 extends
some 7/ € poss(p,<N),s0s < rAn < ¢ < §. It suffices to show that ¢/ was constructed
using the “decision” case. Assume towards a contradiction that “halving" was used. Then s is
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stronger than half(¢/, N'), so we can use Lemma 4.7.13 and unhalve s to get some s’ < ¢/, with
[spe(n)[[0" > M + 1 — —f— and [|s'(L;¢) ;¢ > M +1 — —/— forn > N, such that s =* s. By

<(n,0) oLl
Lemma 4.7.4, we could have used the “decision” case after all by setting ¢’ := s/, which is a
contradiction.

Part 2: Iterating the single step.

Given p, Ny and M as in the lemma’s statement, we inductively construct conditions p;
and natural numbers N; for j < w, considering we start with Ny. Define py := 7(p, No, Mo).
Given p; and N;, define p;;1 and N, as follows:

* Choose N;;1 > N; such that

= 1()pe(n)|IR > Mo+ j + 2 for n > Njyq,

— |Ipj (L)' > My + j + 2 forn > Ny,

— for all m,i < j there is some ¢ € ht* with (N;,0) < £ < (Nj41,0) such that
lpj(am, )| > Mo + j + 1, where supp,;(p;) := {a;,i : i <w}.

e Setpjt1 :=r(pj, Njy1, Mo+ j+1).

Thus (p; : j < w) is a fusion Squence, which converges to a condition ¢ € Q constructed as
in the proof of Lemma 4.7.15 (with n; = j, h(n;) = Nj and F,, = {«aj; : j,i < n}). By the
construction, [|g:(n)||h > My + j and ||g(LL)||'¢ > My + j for n > N;. On the other hand
SUpp, g = Uj<w SUPPa1Pj = {Qm,i : M, i < w} so, for any m,i < w, if j := max{m, i} then there
is an ¢ € ht* with (N;,0) < £ < (Nj11,0) such that ||[g(cum.i, O)|| = [|p;j(ami, €)|| > Mo +j + 1.
This guarantees p; 1 <y, p; and p;j+1 <; r, p; as well as properties (i) and (iii) of the lemma.

It remains to show essential decision for g. The following property will be crucial for this
proof.

(*1) If j < w, n € poss(q, <N;), r < q A n essentially decides 7, trnklg(r) = Nj, ||rp:(n)[|h > 0
and |7 (LL)||'* > 0 for all n > N;, then g A 7 already essentially decides 7.

Let j,nand r be asin (x1). Thenr < gAn < p;j A for some 1’ € poss(p;, <N;) by Fact 4.5.15(c),
hence by (H3) p; A 7’ already essentially decides 7, and so does ¢ A ) by Lemma 4.7 4.

Part 3: Bigness, thinning out.

We use Lemma 4.7.7 to homogenize on whether ¢ A7 essentially decides 7 or not. For L € w
and L < Lyin Ht set Ay, 1, := 2 and hp, 1, : poss(q, <Lo) — 2 such that hr, 1,(n) = 1if g A7
essentially decides 7. Let By, r, be the set of n € poss(q, <Lg) such that hr, 1,(n) = 1. By
Lemma 4.7.7 applied to these objects and to the identity functions 7y, : Ar, . — Apr, 1/ for
L' < L < Ly in Ht, find ¢1,, < g and, for L < Ly in Ht, a function hz, ,: poss(q, <L) — 2 that
satisfies:

(i) qr, and ¢ have the same support, trunk lengths, halving parameters, and they are identical
at any level >Ly;

(ii) below Ly, any subatomic creature from ¢y, decreases at most 1 w.r.t. the subatomic crea-
ture in ¢ at the same position;

(iii) for L < Lo in Ht, if n € poss(q, <Lo) and n(a, ) € qr, (o, (c, n«(€)),¥) for all o € suppg
and L < /¢ < Ly (allowing abuse of notation), then hr, 1.(n[L]) = hr.1,(n)-
Set By, := {n € poss(q, <L) : hr,r(n) =1} for L < Ly in Ht. Hence (iii) says that, for 7 as in
there, n[L| € By, 1, iff ¢ A  essentially decides 7.
Given L < Ly and n € poss(q, <L), if ¢ A 1 essentially decides 7 and 7' € poss(q, <Ly)
extends 7, then ¢ A 1’ essentially decides 7, too. Therefore, by (iii):
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(x2) If L € Ht, n € poss(¢, <L) and ¢ A n) essentially decides 7 thenn € By, 1, forany Ly > L
in w.

The converse holds (in some sense) as follows.
(x3) Forj <wand Lo € w,if Lo > N; and n € Br, n, then g A 7 essentially decides 7.

To see this, find a condition r identical to gy, at levels in [N}, Ly), and identical to ¢ A n at
the remaining levels. Any n' € poss(r,<Lg) C poss(q, <Lo) is in By, 1, by (iii), so ¢ A o/
essentially decides 7, and so does r A 7. Hence r essentially decides 7. Also ||rp(n)|/h > 0 and
(L) > 0 for all n > N; (because My — 1 > 0), so by (1) g A n essentially decides 7.

Note that ¢ essentially decides 7 iff, for some L € Ht, ¢ A 7 essentially decides 7 for all
n € poss(q, <L). So, by (x3), it suffices to prove that, for all n € poss(q, <Np), there is some
Ly > Ny inw such thatn € B, n,-

As in Theorem 4.7.8, since for fixed Ly € w there are only finitely many possibilities for
41, Lod and By, 1 for L < Lo in Ht, by Konig’s Lemma there is some ¢* < g and some sequence
(B} : L € Ht, L > Ny) such that, for any L > Ny in Ht, there is some Ly > L in w such that
q* is identical to ¢ below N and identical to ¢y, at levels in [Ny, L], and B}, = By, 1 for all
Ny < L' < Lin Ht.

Fix n € poss(q, <Np). Find any r < ¢* An deciding 7. Without loss of generality, for some m,
trnklg(r) = Ny, |[7(n)||5" > Land ||r(L)||)¢ > 1 for all n > Ny,. Let 1/’ be the unique possibility
in poss(r, <Np,) restricted to supp(q), which ensures 1’ € poss(¢, <Np,) and r < g A n’. So by
(x1), ¢ A )’ already essentially decides 7.

Pick some Ly > N,, in w such that ¢* and ¢, are identical below N,, and B} = By, , for
all Ng < L < N, in Ht. According to (x2), ' € Br,,n,, = By, , 5010 =1'[Nol € By, = Bre.No
because 1/ (o, £) € ¢*(a, (a,ns(£)),€) = qr, (o0, (e, ns(£)), £) for all « € suppg and £ € [Ny, Nyy,)
in ht. O

We can finally prove Theorem 4.7.2 using pure decision. This theorem is reformulated as
follows.

Theorem 4.7.17. Let 1 be a Q-name of a function from w into the ground model.

(a) Forany p € Q there is some fusion sequence (p, : n < w) such that py < p and each p,, essentially
decides 1(n).

(b) The set of conditions continuously reading 7 is dense in Q.
(c) Qis w*-bounding,
(d) Qs proper.

Proof. (a): By induction on n < w, we want to find a sequence F' = (F, : n < w) of finite subsets
of S* such that

(1) Fn g Fn—l—l;
(ii) Pn+1 Sn,Fn DPns
(111) UTL<UJ FTL = Un<w Supp(pn)al

(iv) pn essentially decides r(n).
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Find any py < p in Q deciding 7(0). Now assume that p, have been constructed and set
sUpp(Pm)al = {@m,; : j < w} for all m < n. Next, define F,, := {a;; : i,j < n}. By appli-
cation of Lemma 4.7.16, we can find p,+1 <, F, pn essentially deciding r(n + 1).
(b),(c): Given p € Q, by (a) choose a fusion sequence (p,, : n < w) such that py < p and each p,
essentially decides 7(n). Next, by Lemma 4.7.15, there is a ¢ € Qg, satisfying suppg = U,,, Fn
and q <,, g, p, for all n < w. This implies that ¢ < p and ¢ continuously read 7.

In addition, if 7 is a name of a function in w* then, since poss(q, <L) is finite for all L € Ht,
we can find some f € w* (in the ground model) such that ¢ IF 7(n) < f(n). This shows (c).

(d): Let x be large enough regular cardinal, p € Q, and N < H, countable that contains (as
elements) p and all the parameters of the forcing Q. Let (A4, : n € w) enumerate all maximal
antichains in Q that belong to IV, and choose a Q-name 7,, € N of the element of A4,, chosen by
the generic. As in (a), we can construct a fusion sequence (p,, : n < w) such that p,, € N and p,
essentially decides 7,, (however, the whole sequence may not be in V). For each n < w, as in
the argument for (c) we can find a finite set £,, € N, E,, C A, such that p, |- 7, € E,,. Hence
g+, € EpN GCA,NNNG (where G is the Q-name of the generic set). O

n<w

4.8 The proof of the main theorem

In this section we prove Theorem Q. There the assumptions are CH, |SP*| = p = ™0 infinite,
and r; = £)° < puis an infinite cardinal for all i € SP'. In accordance to our forcing construction:

Assumption 4.8.1. We consider the following assumptions,

(1) CH.

(2) |SP*| = p = p0 is infinite.

(3) For eachi € SP*, k; := |SI| = |S2!| is infinite and k; = #}° < p.

Note that (2) and (3) imply that |S*| = p.

We present several results that, together, prove Theorem Q. We do not need to assume
all (1)—(3) of Assumption 4.8.1 in all of them, so we present each one of these results with the
necessary hypothesis. This means that we will not use Assumption 4.8.1 all the time.

First of all, recall from Theorem 4.7.2 that Q is proper and w*“-bounding and, under CH, Q
has the Ny-cc by Lemma 4.5.22, so it preserves all cofinalities and cardinalities. On the other
hand, under CH, Q forces cov(N') = N; by Lemma 4.7.10.

According to Lemma 4.5.25(b), at each i € SP* we add a real generic y; € [[,, ., T,y and the
sequences 7 and 72! are the generic blocks added at i € SP*. This proves (II) of Theorem Q.

In the rest of the section, we will prove the remaining parts of Theorem Q, i.e. under As-

sumption 4.8.1, Q forces, for all i € SP¥,

D ec=pn,
(11T blbjg e = = cov(Zpe) = ba{f e = DLI‘;': e = Fis and
Iv) Daalchﬂ =non(Z 'l_al) 0, -51 bt = Ky

In order to prove (III) and (IV) by Lemma 4.2.5 it suffices to show that Q forces, for all

1€ SP, K < bll;lﬁ e DaLChal, and ol DL;’I st < k;. In Subsection 4.8.1 we prove that the x; are

lower bounds by using the generlc slaloms
In Subsection 4.8.2, we force (I) and ?'¢ it

lc dlc ’

DLC

i o < k;, basically by forcing that the reals in

dlc )
R({i} U Sl° U 821 (see Lemma 4.7.5) give ‘Witnesses of both cardinals. A feature of the forcing
called separated support is essential in the proofs.
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4.8.1 Forcing the lower bounds
We start with the anti-localization cardinals. Recall from Corollary 4.5.19 that, whenever a €
5%, Qg+ {a} is a complete subforcing of Q.

Lemma 4.8.2. Let i € S, a € S and let 7 be a Qg+ {ay-name for a real in []
IF 7 € pq.

a?(n). Then

n<w z

Proof. Fix p € Q, wlog a € suppp. It is enough to show that, for any ny < w, there are n > nyg
and some ¢ < p that forces 7(n) € ¢ (n).

Pick n > ng such that ||p(c, L2})||.1 > 1. Denote £,, := L¥. So we choose ty € pss(p, @, £,,)
such that Hp(a,to,ﬁn)ﬂzi > 1. Pick n € poss(p, <n + 1) such that 7(a,n) = to. Then, there
are some k and p’ < p A n that forces 7(n) = k. We define ¢ being identical to p’ except

n (a,?y,), where ¢(a,,) = {w} for some w € p(a,to,¥y,) that contains k£ (which exists by
Observation 4.4.3 because Hp(a,to,én)Hz‘i > 1). Itisclear thatq € Q, ¢ < pand ¢ IF 7(n) € w =

ya(Lal) Pa(n). O

As an immediate consequence, we get:

Corollary 4.8.3. Assume CH. Then Q forces |S2!| < Daal et forall i € SPT.

Proof. Let (7 : ¢ < k) be a sequence of Q-names of members of [] a2 with x < [S?!| a cardinal.
If k < Ny it is clear that Q forces that, for some slalom ¢ € S(a2! hal) e € pforall ¢ < &
(because 027 i is uncountable whenever lim,,_, Zgng = 0). So assume that x is uncountable.

For each ( < k, we can assume wlog that 7 is a nice-name, i. e. each 7¢(n) is determined
by a maximal antichain A¢,, € Q. Then B := [J{supp(q) : ¢ € A¢pn, ( < K, n < w} has size
< k < |S¥| because @ is Na-cc, so we can pick some o € S¥ \ B.

It is clear that ¢ is a Qg+ o)-name for all ¢ < k. Therefore, by Lemma 4.8.2, I 7 €% ¢,
which finishes the proof. ]

For the previous results we could, alternatively, use continuous reading. Namely, in
Lemma 4.8.2, if instead of assuming that 7 is a Qg {o}-Nname we assume that p € Q contin-
uously read  without using the index ¢, then we can show that there is some ¢ < p forcing
7 €% ¢q. This is actually the approach we must use to increase the localization cardinals be-
cause we cannot say that Qg- (4} is a complete subforcing of Q whenever a € S*.

Lemma 4.8.4. Let ¢ € SP*, ap € Sl!c, 7 a Q-name for a real in || i);, and let py € Q. Assume that, for
alln < w, 7(n) = (#(€) : £ € I}') is L¥-decided by py without using the index oy. Then there is some
q < po forcing 7 €%, Yay-
Proof. Fix a modest p < pg in Q with ag € suppp. Pick ng < w such that ag € suppp(LlC) and
[p(LI) ||l > 2 forall n > ng. We construct ¢ identical to p except on the lim inf part above L) , so
we shall construct ¢(L¢) by induction on n > ng. Fix n > ng. Assume that we have constructed
q up to <Li. Since 7(n) is L2-decided by p without using the index oy, there is a function
F™: poss(p, <L) — bz‘%,x(L}ff) (see (fp6)) that calculates 7(n) and such that F™(n) = F" (1)
whenever n|suppp {ao} = 7 lsuppp~{ao} FOT each n € poss(p, <L) denote 17 := 7(LI°) = (td :
a € suppp(LLY)) (so ta = 7(a,n)) and t! := t4,. Also define By possp(Li¢,n) — b (L) such
that F}'(z) is F" evaluated on the unique member of poss(p, <Lal) constructed from nand .

Enumerate poss(p, <L£§) as 1o, . ..,Mm—1. By induction on £ < m we construct compound
liminf creatures d;, < di_1 < p(Lif) and ¢y € I; when k > 0, such that the creatures have the
same domain, halving parameters and same pr-indices, and

1

i1 (e t, 0)f > [l t, Ol —
di(?)
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for each valid (o, t, £), except at (a, t1*, lk11) where dg11 (v, t4%, lk41) is a singleton. Set dg :=
p(LL). Assume we have constructed dj. Choose #;,1 € I ~ {{;s : 0 < k' < k} such that

k - —
||dk(a0,t’,f,€k+1)||22+l > 1 (this is possible because ||d||!¢ > 1). Denote #* := #, t¥ .= ¥ and
Fy = Fp . Let fi: possp(L, ny) — bk (Cr+1) where f7}(Z) is the £j11-th coordinate of F}!(Z).
According to Lemma 4.6.3 and (pr9), there is a compound creature dj, < d;, with same domain,
halving parameter and same pr-indices, such that f;*[poss(d},,#*) only depends on

Chryr = {(,€) € (suppp(Ly5)) x L+ (th,0) < (¢, lrs1)}-

But recall that 7(n) does not depend on «, and that dj (o, £x+1) is not trivial, so p(a, lx+1)
is trivial for all & # «g by strong modesty, thus the decision of 7(n) does not depend on
level ¢;41. Therefore, f;' does not depend on (ag, fx+1), so [} [poss(d%,t_k) only depends on
Cii = {(a,0) € (suppp(LX)) x I : (t5,0) < (t¥,4;.1)}. Considering this, we can redefine
dj,(ao, tF, lp1) := di(ao, 5, £ria)

Define Hy, := {fI(%) : ¥ € poss(d},#*)}. Then |Hy| < H(a,ﬁ)eC;+1 |l (a, 5, 0)] < dyr (Cry1)

by (pr9). Since ||}, (e, tf,&ﬁ_l)”z“ > 1, we have Hdk(ao,tf,fkﬂ)uzi‘:’tﬁ > dy (11), so there
is some Wy, € dj(ag,ta™, k1) such that Hy C Wj. Define dy; identical to dj, except at
(g, t" . y1) where we set dg 1 (ag, 05, by ) == {W3}.

Define ¢(LY) := d,,. According to the construction each subatom of ¢(L!) loses at most

T:%Lllnc < 1 of the norm of the subatom of p(L) at the same coordinate, except at (ap, t¥, (1 1)
for k < m where we get singletons. Hence, by Lemma 4.4.14(b), |lq(L)||¢ > ||p(L)||c — 1.
We now prove that p A n IF 3¢ € I*: 7(€) € 5o, (¢) for all n € poss(q, <L) (although ¢
has not been fully defined, we can talk about poss(q, <L?!) because q is already defined <L2).
Each 7 € poss(q, <L) depends on some 7, € poss(p, <L) and z € possq(L)(#"), and by the
construction of Wy, we know that p A n - 7(€r41) = f7(T) € Hi € Wi = Yoo (it1)-
This finishes the construction, and it is clear that ¢ is in Q and that it is as required. O

Just as in Corollary 4.8.3, this implies:

Corollary 4.8.5. Assume CH. Then, for all i € SP*, Q forces |S¥| < blb“fi*_ < b{;_‘; e
Proof. This proof is a variation of the proof of Corollary 4.8.3. Let s < |S5)°| be a cardinal and let
(f¢ + ¢ < k) be a sequence of name of members of [[b;". If & < Vg it is clear that Q forces that,
for some slalom ¢ € S(b;", h; ), 7¢ €. ¢ for all ¢ < k. So assume that « is uncountable.

For each ¢ < k define a Q-name 7'"’< of a function with domain Ht such that Q forces

(D) = { (fe(0): eI}y ifL= ;b;,
0 otherwise,
and, by Corollary 4.7.9, pick a maximal antichain A; C Q such that every condition in A,
rapidly reads 7. Then B := (J., UpEAC supp(p) has size < k < |Sk|, so we can pick some
a € Sk B.
It is enough to show that, for any ¢ < xand py € A¢, po I 7¢ €}, Ya. If p < po then, by
Lemma 4.7.4 p rapidly reads 7 without using the index «, so by Lemma 4.8.4 there is some
q < p forcing 7¢ €7, Ya- O
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4.8.2 Forcing the upper bounds
To calculate the upper bounds we need a property, denominated separated support in [KS09;
KS12], that basically says that the set of conditions p € Q,, satisfying that (f(i,n) : i €
suppp(n)) is a one-to-one sequence for all n < w and 1 € poss(p, <n + 1) is dense. This is
the main reason why we constructed the pr-part as a lim inf forcing.

Motivated by [KS12, Lemma 2.8], we start proving a version of separated support for pr-
compound creatures.

Lemma 4.8.6. Let c be a pr-compound creature at level n and iy € suppc. Then there is some pr-
compound d < ¢ with the same domain and halving parameter such that ||d||;" > ||c||b

for i # ig in suppc and L € ht", if d(i, L) is non-trivial then d (i, L) N d(ip, L) = 2.

Proof. Set dq := d, suppd := suppc, domd := domc and, for each i € domc and L € ht}’,

d(i, L) = c(i, L) ~ c(ip, L) if i # ip, and c(i, L) is non-trivial,

b= c(ip, L) otherwise.

In the first case c(ig, L) is a singleton by modesty, so ||d(i, L)|| > ||c(i, L)|| — . It is clear from
nL

the definition above that d works. O

Corollary 4.8.7. Let c be a pr-compound creature at level n. Then there is some pr-compound d < c

with the same domain and halving parameter such that ||d||5" > ||c||5" — 2322l and, for any i € suppe,

< 0)
and L € W', if d(i, L) is non trivial then d(i, L) N d(i', L) = & for all 7/ € suppe {i}.
This motivates the following notion.
Definition 4.8.8. We fix the following terminology.

(1) A pr-compound c at level n has separated support if, for any i € suppc, and L € ht}", if c(4, L)
is non trivial then c¢(i, L) N c(i’, L) = @ for all i’ € suppc \ {i}.

(2) A condition p € Q has separated support if it satisfies, for any n < w:

@) if ”ppr(n)H = 0 then suppppr(n) =o;
(ii) ppr(n) has separated support;
(iii) if o € supppa and p(a, LY) is non-trivial then i*(a) € suppppr (n).

Note that property (iii) for a € supppi. already holds by property (8) of Definition 4.5.4
(Ic-part of the forcing). This property of the lc-part has not been used so far.

We then can easily obtain conditions in Q,,, with separated support.

Lemma 4.8.9. Let p € S. Then there is some q < p in S with the same support and halving parameters,
satisfying separated support.

Proof. Fix ng > trnklg(p) such that, for all n > ng, ||p(n)|| > 2 and |suppp(n)| < n (fine by
Definition 4.5.1 (8)—(9)). Extend the trunk length to ng, in detail, choose 7 € poss(p, <ng) and
setp* =pAn.

We define ¢ by cases: for n < ng, define g(n) := p*(n); for n > ng, by Corollary 4.8.7
there exists some pr-compound creature ¢(n) at level n with the same domain, support and

halving parameter as p*(n) such that q( ) < p*(n) satisfies separated support and ||¢(n)||h" >

O e Ol "1

Finally, define q:={q(n):n<w), ?Nhlch satisfies the requirements. O
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Lemma 4.8.10. If p € Q then there is some modest q¢ < p with the same support and halving parameters,
satisfying separated support.

Proof. By Lemma 4.8.9, there is some s < py,; in $ with the same support and halving param-
eters, satisfying separated support. Let ng := trnklg(s) and let 7’ be the only possibility in
poss(s, <ng), choose some 7 € poss(p, <ng) extending " and set r := (p A n) A s (see Observa-
tion 4.5.18).

It is clear that conditions (i) and (ii) of Definition 4.8.8 hold, so we strengthen r to also get
(iii). We only need to modify the al-part, so we define ¢’ identical to r at the pr-part and lc-part,
with the same trunk lengths, and define ¢’ at any a € suppr,) as follows: we can find some
ne > troklg(r, @) such that i*(a) € supprp(na), so define ¢'(a, L) := r(a, L&) for any n > n,,
and pick any trivial ¢'(a, L) < r(a, 1) for any n < n,.

Finally, by Lemma 4.5.8 find a modest ¢ < ¢’ with same support and trunk lengths as ¢’ and
with the same pr-part and lc-part as . This resulting ¢ works. O

One direct consequence of separated support is that we can calculate the size of the contin-
uum in Theorem Q.

Lemma 4.8.11. Under CH, if | S*| = |SP*| = u = p®0 is infinite then Q forces ¢ = p1."°

Proof. By Corollary 4.7.6, Q forces ¢ < p. On the other hand, Lemma 4.8.10 implies that, in any
generic extension, (y; : i € SP') is a one-to-one sequence of reals, so Q forces = |SP"| <¢. [

We use separated support to prove that Q is (a;, d;)-bounding over {i} QS%C US?I, which means
that Q forces that any real in [] d; is localized by some slalom in S(a;,d;) N R({i} U Si¢ U S¥)
(see notation in Lemma 4.7.5).

Lemma 4.8.12. Fix i € SP" and let 7 be a Q-name of a function in [[; . a;(L). Then, for any p € Q,

there are some q < p in Q and some Q-name ¢ of a slalom in S(a;, d;) such that
(i) qlF7€* oy,
(ii) forn € w, p(LY) is L-decided by q only using {i} U Si, and

(iii) (L) is n + 1-decided by q only using {i} U S2.

Proof. Fix i € SP* and set E, = {i} U S# and E}. := {i} U S, Assume that 7 is a Q-name
for an element of [][; . ai(L) and let p be a condition of Q. Wlog we can assume that i ¢
supppp: (trnklg(p)), p rapidly reads 7' (by Theorem 4.7.8) and that it is modest with separated
support (by Lemma 4.8.10), where 7 is a Q-name of a function with domain Ht such that

S [ #(L) fLeQ,
(L) = { 0 otherwise.

We set ¢,y == ppr, suppgq := suppp and define ¢ to be identical to p below Ny := trnklg(q) =
trnklg(p). For L < (Ny,0) in 2 let (L) be the canonical name of & (so it is L-decided without
using any index at all). So we construct ¢ (L) and ¢ at level L by inductionon L € Q, L > Nj.
Fix L > Ny in © and assume we have defined ¢ below L. Split into two cases:

Case 1: L = L!°. Let {n;, : k < m,} enumerate poss(q, <L!®). For each k < m,, set

* S i={a € suppp(LiS) : (e, n) <iex Mk(i;n)},

19 Actually we do not need to assume |SP"| = |S*|. By a method similar to the proof of Lemma 4.8.6 we can force
c above |SP"| and |Sf| for any i € SP" and t € {lc,al}, which implies ¢ > |S*|.
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* Enpi={ac suppp(L}f) s (o, n) = n(i,n)}.

According to separated support (and using Definition 4.5.4 (8)), E,, x = suppp(L€) N Sk =: E,,.
On the other hand, by rapid reading, we can define Fy: p(Li, nx) — az, (m)(LLC) such that
F.(Z) is the value of 7(LI) decided by p A 1/, where 7/’ is the unique possibility in poss(p, <L2!)
determined by 7, and 7.

By induction on & < m,, we construct a decreasing sequence of lc-compound creatures
(dy, : k < my,) stronger than p(LX) with the same domain, halving parameters, and pr-indices,
and a Q-name $,, ;. of a subset of a;(L!) as follows.

At step k let d := dy_; where d_; := p(L). By (prl0) and Lemma 4.6.3 applied to
(MK (4, n), £;), there is a compound creature d;, < d with same domain, halving parameter
and same pr-indices, such that Fy [poss(dy, 7x(L¥)) depends on (S, U E,) x I;;. Denote by
Fi: H(a,e)e(sn,kuEn)xl;; dip (o, (o, ), 0) = ag, .0y (LiS) the corresponding function that gives
the same values as F},.

We now define a Q-name ,, ;, such that, for any ¢’ € Q with trnklg(¢’) > nand {i} U E,, C
suppq’: if ¢'(i, L) = {nx (i, L)} for all L € ht?" and ¢'(«, £) = {v(c, €)} C 0k (av, (v, £), £) for all
a € Eyand l € I}, then

¢ IF 4 =< Fr(uU (v(a,0) : (a,l) € B, x I)) | u € H di(, Mk, n), £) o7
(a,0)eSE xIx

otherwise ¢’ forces §,,, = @. Clearly, Q forces §,,;, C a;(LX) and that |80k < mfk (i) if
7k (2, n) is not minimal in 7};, otherwise |3, x| < 1. Itis also clear that, for any ¢; € Q containing
{i}UE, inits support, 3, x is L3-decided by ¢; (and in particular by p) only using {i}UE,, C Ej.

Set q(L) := 9,,-1. Due to the applications of Lemma 4.6.3, all subatoms in q(L)

i
n C
decreases at least :BL% < 1 on norm with respect of p(Ll°), so we can conclude that

Ll
llg(LI)[k > |[p(L)[]lc — 1. Define H(Ll) as a Q—name of Ug<pm,, Sn.k- Note that Q forces that
|p(L)| < n]:LLE : myﬁg:(n),’é;{,x < dy;(n)(Llrf) = d;(L¥) by (pr10) and Lemma 4.5.16. Moreover,
$(LL°) is L2l-decided by p only using {i} U E,,.

We prove that, for all n € poss(g, <L) (which we can use because ¢ has been defined
<L), p A - (L) € ¢(L). Bach i € poss(q, <L) depends on some 7, € poss(p, <L) and
z € possq(LLS, ik (L)), so p A Ik #(LI) = Fy(z) = F[(Z((Snhx U E,) x I%), which implies that
p Al 7(LYC) € §, 1. Hence p A I 7(LY) € p(LI°).

Case 2: L = L. First consider the case when all atomic creatures of p at level L2 are triv-
ial, so 7(L&) is L2-decided by rapid reading. We define ¢ identical to p at this level. Let
F: poss(q, <L) — aumx(L2) such that p A IF #(L2) = F(n). Notice that [ranF| < ”1<3Lgl <
dpmn (L2). So define (L) as a Q-name of a;(L2) NranF, which is forced to have size <d;(L2)).
It is clear that ¢ A 1 - #(L2) = F(n) € ¢(L2) for all n € poss(q, <L¥). It is clear that ¢(L) is
Ll¢-decided only using {i}.

Now, consider the case when p contains some non-trivial atomic creature at L?Ll, which
means by modesty that there is a unique a,, € suppp such that p(ay,, L2!) is non-trivial. For
n € poss(p, <L) we can define F,: p(an, i(an,n), L2) — aﬁ(m)(L?}) such that F;(s) is the
value of 7(L2!) forced by p restricted to the unique member of poss(p, <n -+ 1) obtained from 7
and s (which is possible by rapid reading). Set i), := i*(«,), which is in supppp:(n) by Defini-
tion 4.8.8 (2) (iii).

To find ¢(L&) and (L), we break into two subcases:
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Subcase 2.1: ¢ = 4,,. So o, € S?l. We define ¢ identical to p at level L?}. Also define gb(L%l) as a
Q-name such that, for any ¢’ € Q with trnklg(q¢’) > n and 4, o, € suppq’: if ¢/ (i, htl") = {t} C
q(i,ht?") and ¢/ (i, L) = {v} C p(an, t, LY) then

¢ I @(Ly) = {Fy(v) : n € poss(q, <Ly), ij(an, n) = t};
otherwise ¢’ forces ¢(L2!) = @. Note that ¢(L¥) is n + 1-decided by p only using {i,a} C Ea.
It is easy to see that p A 7/ IF“7(L2) € H(L2) and |p(L)| < nP, . < d;(L¥)" for all ' €
poss(q,<n + 1).

Subcase 2.2: i # i,,. Fix t € pss(p, a,, L2). Enumerate {1 € posS(Qa Lal) (zn, n) =t} = {77,'5f :
k < m'}. By induction we construct subatomic creatures ¢! , < --- < c1 < c0 = p(an, t, LY),
so given c}, define ¢}, ; as follows: When 7)(i,n) <iex 1, since a;;, n)(L N <n? A )Lal < dt(Lal)

<L

by (pr8) and (prl2), we can apply Lemma 4.6.2(b) to ¢!, and F), to get c!. 41 < ck such that
Fy [ckJrl is constant with value jj € a;; n)(Lal) and ||c] 4| > HckH (Lal) Set st := {ji}.
In the case 7)(i, 1) >1ex t, set ¢, = ¢}, and s}, = F [ck] so |sh| < nt L by (pr8). Note that

the case 7(i, n) = t cannot happen because p satisfies separated support.
To define g at level L2, set g(ay,,t, L) = ¢! , for all t € pss(q,a, L), and g(e, Lal) =

p(a, L) for all a # o, in supppa;. By construction, ||q(ay, L2)|| > [|p(an, L2)|| — dtmj(LZlﬂ) >

lp(cn, L2Y)|| — 1. Define ¢(L2!) as a Q-name such that, for all ¢ € Q; with trnklg(¢’) > n and
i € suppq’: if ¢'(7, htP") = {to} C q(i, htP") then

¢ - (L) = U{Sk t € pss(p, an, L), k< mb, fl(i,n) = to};

otherwise ¢’ forces (L) = @. In the first case, ¢ forces |p(L&)| < n1<3 L ( ~ L +1) <

dio (L) = d;(L2) by (pr12) (in the case that ty = ™, replace n ~ L by 0). Therefore Q forces
that |@(L)| < d;(L2). Moreover, ¢(L2)) is Ll¢-decided by p only using {i}.

We show that p A 7/ IF (L&) € (L) for all 1/ € poss(q, <n + 1). Each 7/ € poss(q, <n + 1)
depends on some 7%, € poss(p, <L) and s € q(an, t, L2) where t = 7/ (an,n) = A (ay,n). Let
tg := ﬁk(z,n) If to <lex tthenp Am I+ T"(Lal) =F t( ) = Jk S Sk - gO(Lal) else, if ¢ <lex to, We
then have that p A n I- 7#(L2) € Ey [ct] = st C So(Lal)

This finishes the construction of ¢ and ¢. It is clear that they are as required. O

As an immediate consequence, we conclude:

Corollary 4.8.13. Under CH, for t € {lc, al} and any i € SP, if k = max{|S}|, Ro}0 then Q forces

DLEdt < k. In the case t = al we also have d-¢ ot nt < K.

Proof. Let E, := {i} U S!. By Lemma 4.7.5, |R(E};)| < k. So it is enough to show that, for any Q-
name 7 of a real in [[ ! and any p € Q, there is some (nice) Q-name ¢ of a member of S(a!, d;)
and some ¢ < p contmuously reading ¢ only using E; such that ¢ I 7 €* .

Define a Q-name 7/ of a member of [ [, ., a;(L) by

gioe [ i(n) ifL =L,
(L) = { 0 otherwise.

By Lemma 4.8.12, there is a ¢ < p and a Q-name ¢’ of a slalom in S(a;, di) satisfying (i)—(iii)
(where ¢(L) with t’ € {Ic,al} \ {t} can be taken as the canonical name of {0}). Let >(n) be a
(nice) name of ¢/(LI) for each n < w. It is clear that ¢ IF“ € S(alc, djl) and 7 €* ¢" and that ¢
continouosly read ¢ only using E.

The additional claim when t = al follows by Lemma 4.2.3 (2) because II- d?l <* h?l. O
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Using Assumption 4.8.1, the proof of Theorem Q is concluded by Corollary 4.8.3, 4.8.5
and 4.8.13.

4.9 Discussions

The forcing construction developed in Section 4.4-4.7 can be easily generalized as in the pre-
sentation in [FGKS17], in the sense that we can replace the subatomic families K7, and K@ by
any arbitrary subatomic family (even allowing different subatomic families at any (¢, L) and
(o, t,0)). However, we decided to proceed with the current particular construction to ease
the presentation, particularly in relation with the parameters of the forcing. In the general-
ized framework, to make sense of results like the existence of conditions with arbitrary sup-
port (Corollary 4.5.11), continuous reading of names (Theorem 4.7.2) and rapid reading (The-
orem 4.7.8), we would need a more complicated setting of the parameters, which we think
would obscure the presentation. Our forcing construction can be adapted to different situa-
tions, and we believe it would be simpler to modify the current construction to other contexts
than presenting an utterly obscure abstract construction.

This forcing construction, as well as those in [GS593; KO14; KS09; KS12; FGKS17; GK21], sat-
isfy enough rapid reading to guarantee that random reals are never added (see Lemma 4.7.10).
It would be interesting to discover how to modify these constructions to allow a part adding
random reals, while ensuring rapid reading outside the random-part and force the same results
with larger values of cov(N).

Concerning Cichoni’s diagram, our construction forces cov(N) = 0 = X and the other car-
dinals equal to the continuum because, as indicated in “Creature forcing” in the Introduction,
the cardinal b} is below non(€) (under some conditions meet by our parameters), and non(&)
is below non(M) and non(N).

Recall:

Theorem 4.9.1 ([FGKS17]). Under CH, if A\i < A3 < Agand Ay < A3 are infinite cardinals such
that \Y° = X, for i € {1,2,3,4}, then there is some proper w*-bounding poset with Ro-cc forcing
cov(N) = o = Ny, non(M) = cof(M) = A1, non(N) = Ay, cof(N) = A3 and ¢ = Ay (see
Figure 4.3).

cov(N) non(M) M cof(M) cof(N)
_____ * Y
: A3 A4
N; b 0
| A
Nlc t —————

add(N) add(M) cov(M) non(N)

Figure 4.3: The constellation of Cichort’s diagram forced in [FGKS17; GK21].

The construction in [GK21] forces the same and, in addition, forces X; many different lo-
calization cardinals 2§ (with parameters in the ground model). It looks like the methods
of [GK21] to force the constellation in Figure 4.3 and the forcing construction in this paper
can be combined to force the same constellation along with min{\;, A2 }-many different cardi-
nals of each one of the six types discussed in this work. A bit of more work would be needed
to force the constellation of Figure 4.3 along with min{\;, A2 }-many different cardinals of the
type b{;‘;l, A1-many of each type b;};f and cov(Zy), Ad2-many of each type fo;f and non(Zy), and
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A3-many of type 255 . This is quite optimal because (under certain conditions) bbL‘;L < non(¢&),
b3 < non(M), 93¢ < non(N) and v, < cof(N) (as discussed in “Creature forcing” in the
Introduction).

This work solves many open questions from [KM21], but the questions about additivities
and cofinalities of Yorioka ideals remain open.

Question 4.9.2. s it consistent with ZFC that there are two different cardinals of the form add(Zy)?
We ask the same for cof(Zy).

Forcing two different additivities or cofinalities would indicate a method to separate in-
finitely (and even continuum) many of them. Although the method of this paper could be used
for the cofinalities, it does not work for the additivities because add(Z;) < b ([KOO08], see Fig-
ure 3). For the same reason, continuum many different additivities of Yorioka ideals implies
that b = ¢ is weakly inaccessible.
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