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Snapshot of the interface deformation and the flow topology from a two-layer turbu-
lent flow simulation. Capillary waves can be seen at the interface between the two
immiscible layers. The fluid in the upper half of the channel has a viscosity that is 50
% lower than that of the fluid in the lower half of the channel. The near-wall turbu-
lence streaks are also made visible through a colormap that is based on the value of
the streamwise component of the velocity vector. The streaks near the top wall of the
channel are shorter and closer to each other compared to those near the bottom wall.
This increase of turbulence activity in the top layer compared to the bottom layer is
a direct effect of the viscosity mismatch between the two layers.



Abstract

In this thesis, the turbulent flow of two liquid layers inside a wall-bounded domain is
investigated by means of numerical simulation. The main interest of this work lies on
the interaction between the capillary waves that are generated at the interface between
the two liquid layers and the surrounding hydrodynamic turbulence. The flow field is
resolved by means of Direct Numerical Simulation (DNS) with resolution down to the
smallest flow scale (Kolmogorov scale). The interface deformation is captured using
a Phase-Field Method (PFM). The first case that is examined is that of a pressure-
driven flow of two liquids occupying the same volume inside a rectangular channel.
Two parametric studies are preformed in order to study, first the effects of the viscos-
ity contrast between the two fluid layers and second the effects of the surface tension
at the interface. The capillary wave regimes that emerge at the interface are analysed
by means of space-time spectral analysis and the results are compared to previous
theoretical and experimental predictions of the spectral slope across different scales.
Two-dimensional frequency-wavenumber spectra show that the waves propagate ac-
cording to the linear dispersion relation. One-dimensional frequency and wavenumber
spectra show that at larger wave scales, where turbulent forcing is not present, a scaling
indicating an equipartition of energy between wave modes (Rayeleigh-Jeans distribu-
tion) takes place. This observation is in agreement with the theoretical prediction for
the behaviour of the capillary wave spectrum at scales larger than the forcing scale. At
smaller scales, where turbulent forcing takes place, an early departure from the theo-
retically predicted inertial range slope to a steeper slope indicating a sharp decrease of
wave energy at the shorter waves scales occurs near the Kolmogorov-Hinze scale, which
expresses the local balance between inertial and surface tension forces. The second
case that is examined is that of the pressure-driven flow of a thin laminar layer over
a thick turbulent layer inside a rectangular channel. In this case, a single parametric
study is performed to study the effect of the viscosity ratio, which is increased up
to two orders of magnitude compared to the reference case with matched viscosities
between the layers. This dramatic increase in the viscosity of the thin layer is catalytic
to the shape and dynamics of the waves. In particular, instead of a set of waves of
different wavelengths that propagate according to the linear dispersion relation that
are observed in the matched viscosity case, the waves in the high viscosity cases are
regular and two-dimensional, while they are purely advected with the mean velocity
of the flow. Finally, a multiple resolution strategy is also presented, which allows for
a selective increase of the resolution level of the phase-field transport equation. This
approach is validated and tested with both a two-dimensional and a three-dimensional
flow configuration and is found to significantly increase the computation efficiency in
terms of time and memory usage.
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Introduction

Introduction

Waves at the interface between two fluids are a common occurrence in every day life.
These dynamic oscillations of the fluid-fluid interface are the result of the perturbation
of the initially undisturbed interface caused by an external force and of a restoring
force, which acts to restore the interface back to its equilibrium position. In nature,
waves can be generated by the perturbation of the interface by random oscillations of
the pressure field in the vicinity of the interface induced by the turbulent flow in the
bulk of one or both of the fluid phases, like in the case of wind wave generation at the
air-sea interface. Another example is that of waves generated due to the perturbations
of the interface induced by the oscillation of a solid body, such as the wave maker of
a wave tank during a laboratory experiment. In general, waves can be classified in
two categories depending on the nature of the restoring force. Capillary waves are
those waves for which the dominant restoring force is the surface tension force, while
gravity waves are those waves for which the dominant restoring force is gravity. When
the wind begins to blow above the surface of the ocean, short wave ripples of few
centimetres appear first. At these small scales the effect of surface tension is dominant
and that of gravity negligible. These are capillary waves. If the wind continuous to
blow, the waves grow longer until gravity forces become predominant. The effect of
surface tension is negligible compared to that of gravity for waves with lengths of the
order of one meter. Another case, where the effect of gravity can be negligible or even
absent regardless of the wave size is that of the waves forming at the interface between
two liquids, where unlike in the air-water case, the densities of the two fluids are very
similar. The most characteristic example of two such fluids is that of oil and water.
In such a setting, surface tension can act as the sole restoring force, in which case
the waves are pure capillary waves. The study of capillary waves generated at the
interface of a two-layer oil-water flow, due to forcing by hydrodynamic turbulence in
the bulk of the two layers, is the main focus of the present work.
Many applications of the petroleum industry are based on the two-phase flow of oil and
water. Oil and water are a particular case of liquid-liquid flow given that the density
mismatch between the two is rather low. In many practical instances, crude oil flows
together with water inside pipelines/channels, since water is not only used to lift up
crude oil from wells, but also directly injected into oil pipelines so to lubricate the flow
and favour the oil transportation [1, 2, 3, 4]. In this case, at high flow rates, the flow
becomes dispersed with droplets of oil forming inside the water layer and droplets of
water inside the oil layer. However, at lower flow rates the flow remains stratified and
the interface is characterized by the presence of capillary waves [5, 6, 7]. To optimise
the process of oil transportation pipelines must be designed to ensure large flowrates,
and at the same time limiting the friction losses and preventing the oil-water mixing
(which would require more intense process/separation operations). A fundamental un-
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derstanding of the interaction between capillary waves and hydrodynamic turbulence
is a critical milestone towards this goal.

The experimental work on stratified oil-water flow inside pipes and channels is vast and
old. However, most of these investigations are limited to the measurement of integral
flow properties, such as pressure gradient and flow rate, without a detailed time and
space description of the entire flow field and at the same time of the liquid-liquid
interface deformation [8]. Indeed, the development of optical methods that are able to
distinguish among the different phases and thus track the interface deformation, while
at the same time providing measurements of the three-dimensional velocity fields is a
formidable task. Despite these difficulties, significant progress has been made during
the years thanks to the advancement of experimental techniques and the carefully
designed experiments [9, 5]. On the other hand, the nonlinear interaction among short
capillary ripples of different lengths on a gas-liquid interface (typically air-water) has
been extensively studied experimentally [10, 11, 12, 13, 14]. However, in all of these
studies the waves are generated by means of mechanical forcing induced by wave
makers, in carefully controlled quiescent background flow environments, so to prevent
any hydrodynamic turbulence, either in the air or in the water side, from perturbing
the interface.

Numerical simulations offer an alternative path to study this type of problem. Many
different Computational Fluid Dynamics (CFD) techniques have been used in the
past, mainly in the context of petroleum engineering, to study stratified oil-water flow
[15, 16, 17, 18]. Most of these approaches are based on Reynolds Averaged Navier-
Stokes (RANS) or Large Eddy Simulation (LES), which are able to capture only the
mean or integral properties of the flow field, while lacking the resolution level re-
quired to fully characterize the two-phase flow system interactions at the interface
deformation scales, a shortcoming that is often bypassed via the use of empirical or
phenomenological models [19, 20, 21]. However, it is precisely the interaction at those
scales that determines the amount of momentum, mass and heat transfer between the
two phases. In addition, while the interaction among random waves of different scales
(so called wave-turbulence) has received a lot of attention it has been mostly studied
(similarly to the experimental works) in isolation from the effect of a surrounding tur-
bulent flow. In particular, a commonly employed approach to study wave-turbulence
is the use of potential flow theory, which neglects any effects of realistic dissipation
and/or forcing on the wave field. Indeed, wave-turbulence has been studied in the
past by means of simulations based on potential flow theory solvers [23] or expansions
of the hamiltonian of the free surface [22]. An exception to this is the study of Deike
et al. [24], which reports the solution of the fully-resolved Navier-Stokes equations
for two phases of air and water. However, even in this case the interface excitation
is assumed to be the result of narrow-band low frequency forcing in an initially qui-
escent surrounding flow configuration. Finally, preliminary fully-resolved simulations
of two-phase turbulent flow giving rise to interfacial waves have been performed in
a limited number of studies [25, 26, 27], which are all related to the air-water flow
scenario. Therefore, the interaction between hydrodynamic turbulence and waves is
a field that remains largely unexplored, especially so in liquid-liquid flows, where a
complete space-time description of the wave dynamics is still lacking in literature.

Direct Numerical Simulation (DNS) comes as an alternative tool to the experimental
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study and to potential flow theory based solvers. The numerical databases obtained
by means of DNS are oftentimes more complete than experimental data, since they
give access to space-time descriptions of the flow and wave fields. More importantly,
DNS with accurate description of both the turbulent flow field and the wave properties
is perhaps the only presently available tool for exploring the dynamics of the interac-
tion between waves and hydrodynamic turbulence, while considering realistic forcing
and dissipation conditions. However, performing DNS of multiphase or multicompo-
nent systems is extremely challenging. In particular, the physical mechanisms that
control the dynamic evolution of the flow are intriguing, since they are driven by the
interplay between inertial, capillary and viscous forces over multiple time and length
scales. From a numerical point of view, the dynamics of a deformable interface that
continuously changes shape must be captured/described. Thanks to the availability
of computational resources and the advancement of numerical methods during recent
years, the simulation of two-phase flows at moderate Reynolds numbers has become
feasible [28, 4, 29, 30]. In literature, different methods are available that can describe
the interface topology and the evolution of a multiphase flow system with a satisfying
level of accuracy [31]. These methods can be roughly divided into two categories: in-
terface tracking methods, such as the Front-Tracking (FT) method and the Immersed
Boundary Method (IBM), and interface capturing methods, such as the Volume Of
Fluid (VOF) method, the Level-Set (LS) method and the Phase-Field Method (PFM).
Each of these methods has its own strength/weakness points. In this work, the prob-
lem of wall-bounded turbulent flows of two immiscible liquid layers is explored using
a coupled DNS-PFM approach, in order to resolve the Navier-Stokes equations down
to the smallest flow scale and to capture the deformation of the interface.



Thesis outline

Thesis outline

• Chap. 1: Methodology
The theoretical framework of the Phase-Field Method (PFM) that is used to
capture the interface deformation is introduced. The coupling of the phase-
field transport equation to the governing equations of the fluid flow is described.
The solution procedure, based on the Direct Numerical Simulation (DNS) of the
Navier-Stokes equations, is presented together with the numerical scheme used
to discretize the equations in space and in time. A memory and time efficient
multiple resolution strategy for the selective increase of resolution of the phase-
field transport equation is also presented. The code implementation in terms
of parallelization strategies and techniques to obtain time and space resolved
interface statistics is discussed. Finally, the validation of the code via simulation
benchmarks is reported.

• Chap. 2: Capillary waves in two-layer oil-water channel flow
The problem of two-layer oil-water turbulent flow in a rectangular channel is
examined. Two parametric study are performed, the first based on the variation
of the viscosity of one fluid layer and the second based on the variation of surface
tension. The generated capillary wave regimes are studies by means of space-time
spectral analysis. The energy of the mean and fluctuating flow field is studied
by means of an energy-box analysis. The wave energy is studied by means of an
estimation of the total wave energy and an energy balance for the estimation of
the energy flux across the wave spectrum is proposed.

• Chap. 3: Channel flow of thick turbulent layer over thin laminar layer
The flow of a thick turbulent layer over a thin laminar layer in a channel at a
variable viscosity ratio is examined. The mean and the fluctuating flow field
modifications due to the change of viscosity are studied by means of space-time
averaged statistics. The interface deformation is studied by means of spectral
analysis.
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Methodology

Reproduced in part from:

M. Schenk, G. Giamagas, A. Roccon, F. Zonta & A. Soldati, (2023) Assessing grid size resolution

for reliable simulations of turbulent dispersed flows via phase-field method and dual-grid approach,

J. Fluids Eng. (in preparation)

In this chapter, the methodology employed for the simulation of the dynamics of tur-
bulent multiphase flow systems is presented. The simulations performed in this thesis
are based on an in-house code [32, 33, 29], in which Direct Numerical Simulation
(DNS) of turbulence is coupled with a Phase-Field Method (PFM), which is used to
account for the presence of more than one fluid phases. The code, which employs a
pseudo-spectral technique to solve the governing equations of the fluid motion, is writ-
ten in Fortran 2003 and is parallelised using a pure Message Passing Interface (MPI)
paradigm. This method guarantees accurate solutions, and the possibility of using
massively parallel solvers. High Performance Computing (HPC) with a large number
of processors (cores) can thus be utilized to complete simulations within reasonable
amounts of time. The following sections constitute a review of the main features of
the method. In particular, in Sect. 1.1 the main framework and equations of the PFM
that is used to capture the deformation of the interface between different fluids are in-
troduced, while in Sect. 1.2 the governing equations of the flow hydrodynamics, as well
as their coupling to the PFM equations is presented. After dimensionless equations
are obtained in Sec. 1.3, the discretization of the equations and the solution procedure
are presented in Sect. 1.4. In Sect. 1.5 the key elements of the multiple grid reso-
lution strategy, which has been developed in order to increase the time and memory
performance of the method are presented. Sect. 1.6 discusses the key features of the
code implementation in terms of parallelization strategy and the techniques employed
for the reconstruction of the interface during the simulation run time. Finally, in the
last section, Sect. 1.7, two benchmarks for the validation of the code are reported,
namely a two-layer pressure-driven laminar flow of fluids with different thermophysical
properties and the deformation of a single droplet subjected in a shear laminar flow.
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1.1 Interface capturing via phase-field method

The Phase-Field Method (PFM) belongs to the family of interface capturing methods,
other members of this family being the Volume of Fluid (VoF) [34] and the Level
Set (LS) method [35]. In contrast to interface tracking methods, such as the Front
Tracking (FT) method [36], which track explicitly the interface deformation using
Lagrangian point markers, interface capturing methods define the interface implicitly
via a marker (color) function representing the local concentration of each phase in the
domain. This approach is purely Eulerian, which makes this class of methods more
efficient in terms of algorithm parallelization and scalability. The marker function in
the PFM is called phase-field, φ. For the case of two-phase flow, φ takes constant values
in the bulk of the two phases and undergoes a continuous transition across a transition
layer of finite thickness between the phases. The PFM was initially developed by Cahn
and Hillard [37, 38, 39] to study the spontaneous separation of two immiscible fluid
phases, a process known as ”spinodal decomposition” and it was later generalized
for the study of incompressible multiphase flow systems by introducing an advection
term and therefore coupling the phase-field to the flow field [40, 41]. The modified
Cahn-Hillard equation after the addition of the advection term, used to describe the
transport of the phase-field, is expressed as:

∂φ

∂t
+ u · ∇φ = Mφ∇2µφ (1.1)

where u = (u, v, w) is the velocity vector. Mφ is the mobility (Onsager) coefficient
and µφ is the chemical potential. The chemical potential is obtained as the variational
derivative of a Ginzburg-Landau free-energy functional, F [φ,∇φ][42, 41].

µφ =
δF [φ,∇φ]

δφ
(1.2)

For a system of two immiscible fluids (e.g. oil and water) the free energy functional
can be expressed as the sum of two contributions, the first representing the bulk free
energy, f0, which is associated to the tendency of the fluids to separate in pure phases,
and the mixing free energy, fi, which is the energy stored in the transition layer.

F [φ,∇φ] =

�
Ω

(f0(φ) + fi(∇φ))dΩ (1.3)

where Ω stands for the domain considered.
The two contributions can be expressed as functions of the phase-field, φ, as follows:

f0(φ) =
α

4

�
φ−

"
β

α

�2�
φ+

"
β

α

�2

(1.4)

fi(∇φ) =
κ

2
|∇φ|2 (1.5)

with the two parameters α and β being both constant and depending on the thermo-
dynamic properties of the bulk phases. Eq. 1.4 is a double-well potential function with
its two minima at φ = ±!

β/α, as shown in Fig. 1.1a. Eq. 1.5 shows that the mixing
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term is proportional to the gradient of the phase, φ and therefore it is maximum at
the interface and zero in the bulk of the phases, as shown in Fig. 1.1b. The positive
constant κ determines the magnitude of surface tension.

-0.2

-0.1

0

0.1

−!
β/α 0 +

!
β/α

f0

φ

−!
β/α

0

+
!
β/α

-1 0 1

fi

s

F
lu
id

1

In
te
rf
ac
e

F
lu
id

2
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Figure 1.1 – In panel (a) the bulk free energy, f0 is shown as a function of φ. The two minima are

located at φ = ±
�

β/α corresponding to the bulk concentrations of the two phases. In panel (b)
the mixing free energy, term fi is shown as a function of the interface normal coordinate s. The
equilibrium profile of the phase-field is also shown with a black dashed line. The interface between
the two fluids, which is identified as the φ = 0 iso-contour, is located at s = 0 and is shown with
a black dotted line.

The chemical potential can thus be expressed as a function of the phase-field by taking
the variational derivative of the free energy functional, F [φ,∇φ].

µφ =
δF [φ,∇φ]

δφ
= αφ3 − βφ− κ∇2φ. (1.6)

Thermodynamic equilibrium is established when the chemical potential is constant
throughout the whole domain or ∇µφ = 0. The corresponding equilibrium profile of
the phase-field for a flat interface is then determined as:

φ =

"
β

α
tanh

�
s√
2ξ

�
(1.7)

where ξ =
!
κ/β is a measure of the thickness of the transition layer and s is a

coordinate normal to the interface. The equilibrium profile shows that the phase-field
is constant in the bulk of the phases (s → ±∞) and undergoes a smooth transition
according to a hyperbolic tangent profile across the transition layer.
Finally, the surface tension, σ for the two-fluid system is obtained based on the integral
of the free energy functional across the transition layer [42, 41, 43].

σ =
βκ

α

� +∞

−∞

F [φ,∇φ]ds (1.8)

where upon using the equilibrium profile described by Eq. 1.7 , the integration yields:

σ =
2
√
2

3

βκ

αξ
(1.9)
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The main advantage of the PFM is the accurate description of the interface topol-
ogy and curvature without relying on specific advection schemes to reconstruct the
interface shape after each computational step [44]. In addition, the method can im-
plicitly handle arbitrary topological changes of the interface shape, such as breakup
and coalescence phenomena. The main disadvantages of the method are coarsening,
shrinkage and misrepresentation of thermo-physical properties. Coarsening is asso-
ciated with the continuous interface assumption, since thanks to the finite-thickness
transition layer between the different phases, all topological changes taking place at
a scale smaller than the transition layer thickness are not completely captured. In
addition, phenomena like molecular diffusion that naturally take place at scales of the
order of O(10−8m) are introduced into a larger scale. In the case of multiphase tur-
bulent flow simulations, the smallest resolved scale is close to the smallest flow scale,
which is of the order of the Kolmogorov scale, O(10−4m) [45]. Therefore, the smooth
transition of the thermo-physical properties and surface tension forces across the inter-
face layer should ideally occur at a sharp interface limit with respect to the flow scales.
Note that this is mainly a drawback of using the PFM in the context of multiphase
turbulent flow simulations, where the limited available computational resources need
to be focused on the resolution of the flow scales ranging from the integral scale of the
problem down to the Kolmogorov scale. Shrinkage is associated to mass leakages be-
tween the different phases due to the deviation of the phase-field from the equilibrium
profile followed by numerical diffusion of one phase into the other in order to restore
the profile [47, 48]. Misrepresentation of thermophysical properties is another effect of
the deviation of the phase-field from its equilibrium profile, since the properties of each
fluid are dependent on the local concentration of the phase-field, fluctuations of the
phase-field are also propagated to the local values of the thermophysical properties.
Despite these drawbacks, the method has shown convergence to the sharp interface
limit for problems involving turbulent multiphase flow, mixing, nucleation, enhanced
heat transport, and liquid-vapor phase separation [46]. In the present formulation of
the method, mass conservation can be enforced in two ways, by a straight-forward
increase of the grid resolution and thus the reduction of the transition layer thickness
and/or by applying special techniques that correct the equilibrium profile across the
transition layer during the course of the simulation [49, 50]. More generally, shrinkage
can also be alleviated with the adoption of different bulk free energy functionals, such
as the one proposed by Van der Waals [51], which goes to infinity moving further
from the value of the bulk concentrations of the two phases. This approach however,
introduces discontinuities that can lead to less stable numerical schemes. A multiple
resolution strategy to improve the performance of the DNS-PFM scheme by selectively
increasing the grid resolution of the phase-field transport equation is presented in Sec.
1.5.

1.2 Hydrodynamics

Solving the phase-field transport equation, the temporal and spatial behaviour of the
phase-field, φ is determined. However, the Cahn-Hilliard equation is coupled to the
flow field, u through the advection term and therefore the solution of the phase-field
implies an a-priori knowledge of the flow velocity. Therefore the governing equations of
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the incompressible fluid flow, which are the continuity and the Navier-Stokes equations
need to be solved in advance. Note that the validity of the continuity equation for the
flow field can also be demonstrated in the case of a two-phase fluid system [52]. These
equations are expressed as follows:

∇ · u = 0 (1.10)

ρ (φ)

�
∂u

∂t
+ u · ∇u

�
= −∇p+∇ · �µ (φ)

�∇u+∇uT
��

+ ρ (φ)g +∇ · (τcκ) (1.11)

where u = (u, v, w) is the velocity vector and ∇p is the pressure gradient. g is the
accelaration due to gravity. µ (φ) and ρ (φ) are the dynamic viscosity and the density
distribution inside the domain, respectively. An one-fluid approach is adopted here,
where the Navier-Stokes equations are solved over the whole domain, which includes
both fluid phases [29]. In this way, the boundary conditions at the interface between
the two fluids, namely the continuity of the shear stress, as well as the jump condition
for the normal stress due to the action of surface tension, are implicitly satisfied. The
latter is achieved via the introduction of an additional term at the right hand side of Eq.
1.11, accounting for capillary forces at the interface between the two fluids. Note that
this term further couples the Navier-Stokes equations to the Cahn-Hilliard equation.
τc = |∇φ|2 −∇φ⊗∇φ is the Korteweg tensor, which accounts for the interface shape
and curvature [53] and the positive constant κ defines the magnitude of surface tension.
The density and the viscosity are defined as linear functions of the phase-field. Hence,
they are constant in the bulk of the two phases and undergo a smooth transition
following the hyperbolic tangent phase-field profile across the transition layer between
the phases. The following ratios between the bulk properties of the two fluids, µ1, ρ1
and µ2, ρ2, can be defined:

ρr =
ρ1
ρ2

, µr =
µ1

µ2
(1.12)

The viscosity and density profiles as functions of the phase-field and the above ratios
are then given by:

ρ(φ) = ρ2

�
1 +

ρr − 1

2

�
φ!
β/α

+ 1

��
(1.13)

µ(φ) = µ2

�
1 +

µr − 1

2

�
φ!
β/α

+ 1

��
(1.14)

A typical viscosity profile as function of the interface-normal coordinate, s is sketched
in Fig. 1.2 for two different values of the viscosity ratio.

1.3 Dimensional analysis

All simulations in this work are performed considering a three-dimensional plane chan-
nel geometry, a two-dimensional view of which is shown in Fig. 1.3. The channel is
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Figure 1.2 – Viscosity profile across the two fluid phases separated by a flat interface as a function
of the interface normal coordinate s, for two different values of the viscosity ratio.

bounded by two parallel walls located at z = ±h, with h being the half height of the
channel. The channel half height is selected to be the characteristic length scale of the
problem. A characteristic velocity scale can be chosen depending on the flow scenario
at hand. For shear-driven flow (Couette flow) with either one or two channel walls
moving at a constant speed, the wall velocity, uw can be used as reference, while for
pressure-driven flow (Poiseuille flow) the friction velocity, uτ is commonly used, de-
fined as uτ =

!
τw/ρ2, with τw being the shear stress at the wall and ρ2 the density of

the reference fluid phase. The absolute value of the phase-field at the bulk of the two
phases can be used to non-dimensionalize the phase-field. The following dimensionless
quantities can then be introduced:

x− =
x

h
, u− =

u

uτ
, t− =

tuτ

h
, φ− =

φ!
β/α

(1.15)

where x = (x, y, z) is the position, u = (u, v, w) is the fluid velocity and t is time. The
minus superscript is used to denote dimensionless quantities.
The above scaling system is typically referred to as outer units system. Another system
that is commonly used in the context of wall-bounded turbulent flows is the inner or
wall units scaling system [54], where the kinematic viscosity of the reference fluid,
ν = µ2/ρ2 is used to obtain non-dimensional quantities as follows:

x+ =
uτx

ν
, u+ =

u

uτ
, t+ =

tu2
τ

ν
, φ+ =

φ!
β/α

(1.16)

Both of these systems are used throughout this work. All equations are solved in outer
units, while wall units are used to renormalize quantities that are associated with the
statistics of the turbulent flow fields.
The non-dimensional fluid viscosity and density are defined as:



1.3. Dimensional analysis 11

z

x

Lz = 2h

Lx = 8πh

u(z)

φ = −1 (Fluid 1)

φ = +1 (Fluid 2)

Figure 1.3 – Geometry of the channel used in the simulations. Two walls are present along the
z axis, wall-normal direction, the channel height is Lz = 2h. The channel is periodic along the x

and y directions (only x direction is shown here). The dimensions Lx and Ly are 2πh and 4πh.

ρ−(φ−) =
ρ(φ)

ρ2
= 1 +

ρr − 1

2

�
φ− + 1

�
(1.17)

µ−(φ−) =
µ(φ)

µ2
= 1 +

µr − 1

2

�
φ− + 1

�
(1.18)

The continuity equation and the Navier-Stokes equations are expressed in dimension-
less form as:

∇ · u− = 0 (1.19)

ρ−(φ−)

�
∂u−

∂t−
+ u− · ∇u−

�
= −∇p− +

1

Reτ
∇ ·



µ−(φ−)

�
∇u− +∇u−T

��
+

+
1

Fr2
ρ−(φ−)g− +

3√
8

Ch

We
∇ · �τc−� (1.20)

where the pressure is made dimensionless as p− = p/ρu2
τ . The following dimensionless

parameters appear in Eq. 1.20:

Reτ =
ρ2uτh

µ2
, F r =

uτ

gh
, We =

ρ2u
2
τh

σ
, Ch =

ξ

h
(1.21)

where g is the magnitude of the acceleration of gravity. These dimensionless parame-
ters are: the shear Reynolds number expressing the ratio between inertial and viscous
forces, the Froude number expressing the ratio between inertial and gravity forces, the
Weber number expressing the ratio between inertial and surface tension forces and
finally the Cahn number expressing the non-dimensional thickness of the transition
layer between the two phases.
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The Cahn-Hilliard equation in its dimensionless form is expressed as:

∂φ−

∂t−
+ u− · ∇φ− =

1

Pe
∇2(φ−3 − φ− − Ch2∇2φ−) (1.22)

where the two dimensionless parameters that appear in the equation are the Peclet
number, Pe = uτh/ (Mφβ), which controls the interface relaxation time and expresses
a ratio between the convective time scale and the diffusive time scale of the phase-field
and the Cahn number, Ch, defined before.
Finally, after the dimensionless treatment, the phase-field assumes the values φ− = ±1
in the bulk of the two phases and the equilibrium profile across the transition layer
can be expressed in dimensionless form as:

φ− = tanh

�
s−√
2Ch

�
(1.23)

In the following, the minus superscript will be dropped and dimensionless quantities
will be used without any superscript. In this way, the dimensionless equations are
summarized as:

∇ · u = 0 (1.24)

ρ(φ)

�
∂u

∂t
+ u · ∇u

�
= −∇p+

1

Reτ
∇ · �µ(φ) �∇u+∇uT

��
+

+
ρ(φ)

Fr2
g +

3√
8

Ch

We
∇ · (τc) (1.25)

ρ(φ) = 1 +
ρr − 1

2
(φ+ 1) (1.26)

µ(φ) = 1 +
µr − 1

2
(φ+ 1) (1.27)

∂φ

∂t
+ u · ∇φ =

1

Pe
∇2(φ3 − φ− Ch2∇2φ) (1.28)

The non-dimensional numbers, Reynolds, Weber and Froude determine the relative
balance of forces in the channel and consequently determine the dynamics of the
system. In particular, the Reynolds number controls the ratio between inertial and
viscous forces, the Weber number the ratio between inertial and surface tension forces
and the Froude number the ratio between inertial and gravity forces. The other two
non-dimensional numbers are numerical parameters that are used to achieve conver-
gence of the phase-field to the sharp interface limit. The Cahn number, which is the
measure of the non-dimensional transition layer thickness is set to the minimum possi-
ble value allowed by the available grid resolution. In general, at least three grid points
across the interface are necessary in order to accurately capture the gradients of the
phase-field and the other parameters. The Peclet number is set based on the Cahn
number according to the scaling Pe ∼ Ch−1 [55, 56].
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1.4 Numerical method

In this section, the solution procedure for the dimensionless system of the momentum
and the phase-field transport equations inside the channel (see Fig. 1.3) is presented.
The momentum equations are solved in the so-called velocity-vorticity formulation in
order to avoid the time-consuming step of solving a Poisson equation for the pressure
at every time-step [57, 58]. The Cahn-Hilliard equation is solved in its original form,
however a split of the Laplace operator is applied in order to improve the stability of
the numerical scheme [42, 59].
First, the Navier-Stokes equations are rewritten in a more compact form as:

∂u

∂t
= S+

1

Reτ
∇2u−∇p�, (1.29)

where the pressure term, p is split into a mean and a fluctuating part, p = p+ p�. The
mean pressure gradient, Π = ∇p, together with all the nonlinear terms are collected
in the single nonlinear term:

S = − u · ∇u− ρr − 1

2
(φ+ 1)

�
∂u

∂t
+ u · ∇u

�
−Π+ (1.30)

+
1

Reτ
∇ ·

�
µr − 1

2
(φ+ 1)

�∇u+∇uT
��

+
ρ(φ)

Fr2
g +

3√
8

Ch

We
∇ · τc

The same procedure is applied to the Cahn-Hilliard equations, however in this case the
term, ∇2φ is split into two parts, one of which is added to the nonlinear term. This
technique is employed for the sake of an increased stability of the numerical scheme by
integrating a part of the term explicitly and another implicitly (the time-integration
schemes are discussed in Sec. 1.4.1).

∂φ

∂t
= Sφ +

s

Pe
∇2φ− Ch2

Pe
∇4φ (1.31)

Sφ = −u · ∇φ+
1

Pe

�∇2φ3 − (s+ 1)∇2φ
�

(1.32)

where the splitting coefficient, s depends on the time discretization step, ∆t.

s =

"
4PeCh2

∆t
(1.33)

A transport equation for the vorticity, ω is obtained by taking the curl, ∇× of Eq.
1.29.

∂ω

∂t
= ∇× S+

1

Reτ
∇2

ω (1.34)

where the identity ∇ × ∇p� = 0 has been used to eliminate the fluctuating pressure
gradient term. A fourth-order equation for the velocity is obtained by taking the curl,
∇× of Eq. 1.34.
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∂
�∇2u

�
∂t

= ∇2S−∇(∇ · S) + 1

Reτ
∇4u (1.35)

Taking the wall-normal projections of Eq. 1.34 and 1.35, together with the continuity
equation, the definition of the wall-normal vorticity and the Cahn-Hilliard equation,
leads to a system of five equations with five unknowns, namely the three components of
the velocity field, u, v, w, the wall-normal vorticity, ω ·nz, where nz is the wall-normal
unit vector and the phase-field, φ.

������������
������������

∇ · u = 0

ω · nz = (∇× u) · nz

∂ω

∂t
· nz =

�
∇× S+

1

Reτ
∇2

ω

�
· nz

∂
�∇2u

�
∂t

· nz =

�
∇2S−∇(∇ · S) + 1

Reτ
∇4u

�
· nz

∂φ

∂t
= Sφ − s

Pe
∇2φ− Ch2

Pe
∇4φ

(1.36)

Once the velocity field is obtained, the fluctuating pressure p� can also be obtained by
solving the Poisson equation resulting from applying the divergence operator, ∇· on
the original Navier-Stokes equations, Eq. 1.29. Thanks to the divergence free velocity
fields the viscous term and the temporal term on the right hand side of Eq. 1.29 cancel
and the following Poisson equation is obtained:

∇2p� = ∇ · S (1.37)

1.4.1 Temporal discretization

An IMplicit EXplicit (IMEX) time integration scheme is employed in order to advance
the solution in time. In particular, the nonlinear terms of the momentum equations
and of the Cahn-Hilliard equation are integrated with an explicit Euler scheme during
the first integration step and with a two-step Adam-Bashforth scheme during all sub-
sequent steps. The linear terms of the momentum equations are integrated using an
implicit Crank-Nicolson scheme. The linear terms of the Cahn-Hilliard equation are
integrated with an implicit Euler scheme, which has a better performance at damping
unphysical high frequency oscillations that arise due to the steep gradients associated
with the phase-field [60, 42]. According to the above, the time-discretized equations
at the generic step n (current step) can be written as:
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���������������
���������������

∇ · un+1 = 0
ω

n+1 · nz = (∇× un+1) · nz

ω
n+1 − ω

n

∆t
· nz =

�
3∇× Sn −∇× Sn−1

2
+

1

Reτ

∇2
ω

n+1 +∇2
ω

n

2

�
· nz

∇2un+1 −∇2un

∆t
· nz =

�
3
�∇2Sn −∇(∇ · Sn)

�− �∇2Sn−1 −∇(∇ · Sn−1)
�

2

+
1

Reτ

∇4un+1 +∇4un

2

�
· nz

φn+1 − φn

∆t
=

3Sn
φ − Sn−1

φ

2
+

s

Pe
∇2φn+1 − Ch2

Pe
∇4φn+1

(1.38)

1.4.2 Spatial discretization

The numerical technique that is applied to approximate derivatives in space relies on
a spectral spatial discretization using Fourier transforms along the two homogeneous
directions of the channel, x and y and Chebyshev polynomials along the wall-normal
direction, z [61]. A uniform grid spacing is used in the two homogeneous directions,
while Chebyshev-Gauss-Lobatto collocation points are used in the wall-normal direc-
tion, leading to a finer grid spacing near the two channel walls at z = ±1 and coarser
grid near the channel centreline. The collocation points are defined as:

xi = (i− 1)
Lx

Nx − 1
, i = 1, . . . , Nx

yj = (j − 1)
Ly

Ny − 1
, j = 1, . . . , Ny (1.39)

zk = cos

�
k − 1

Nz − 1
π

�
, j = 1, . . . , Nz

with the number of grid points in each direction being: Nx (x - direction), Ny (y -
direction) and Nz (z - direction). An example of a Chebyshev-Gauss-Lobatto grid
points array, assuming a number of Nz = 45 points along the wall-normal direction, z
is shown in Fig. 1.4. The non-equidistant Chebyshev-Gauss-Lobatto points (shown in
red) along the wall-normal direction are the projections of equispaced points around
the unit circle (shown in black).
The generic signal, f(x, y, z, t) is approximated in modal space as a truncated series
of Fourier wavenumbers and Chebyshev polynomials.

f(x, y, z, t) =

Nx
2#

i=0

Ny

2#
j=−

Ny

2
+1

Nz−1#
k=0

f̂(kx,i, ky,j , k, t)Tk(z)e
ι(kx,ix+ky,jy) (1.40)

where ι2 = −1, is the imaginary unit. The wavenumbers kx,i, ky,j are defined as:
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Figure 1.4 – Graphical representation of the Chebyshev-Gauss-Lobatto quadrature. The Nz = 45
red points correspond to the grid points along the wall-normal direction of the channel between
the top wall at z = +1 and the bottom wall at z = −1.

kx,i =
2π(i− 1)

Lx
, i = 1, ..., Nx/2 + 1 (1.41)

ky,j =

��
��

2π(j − 1)

Ly
, j = 1, . . . ,

Ny

2 + 1

−2π(Ny − j + 1)

Ly
, j =

Ny

2 + 2, . . . , Ny

(1.42)

The Fourier amplitudes, f̂ are independent of the space coordinates, x and y and thus
the derivatives of the signal, f along the two homogeneous directions are computed
as:

∂f(x, y, z, t)

∂x
=

Nx
2#

i=0

Ny

2#
j=−

Ny

2
+1

Nz−1#
k=0

ιkx,if̂(kx,i, ky,j , k, t)Tk(z)e
ι(kx,ix+ky,jy) (1.43)

∂f(x, y, z, t)

∂y
=

Nx
2#

i=0

Ny

2#
j=−

Ny

2
+1

Nz−1#
k=0

ιky,j f̂(kx,i, ky,j , k, t)Tk(z)e
ι(kx,ix+ky,jy) (1.44)

The derivatives of the truncated Fourier series are computed analytically without
introducing an additional error. This is one of the main advantages of spectral methods
that leads to high accuracy [61]. Thanks to the orthogonality of Fourier modes the
solutions for the modes along the x and y directions are decoupled. In this way,
(Nx/2 + 1) × Ny independent subproblems along the wall-normal direction, z, for
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each wavenumber pair, kx,i, ky,j are obtained. The transformed signal f̂(kx,i, ky,j , z, t)
notation can then change so to represent the Chebyshev series expansion at a generic
wavenumber couple as:

f̂ = f̂i,j =

Nz−1#
k=0

f̂(kx,i, ky,j , k, t)Tk(z)e
ι(kx,ix+ky,jy) (1.45)

The discretized system of equations becomes:

��������������������������������������������
��������������������������������������������

ιkx,iû
n+1 + ιky,j v̂

n+1 +
∂ŵn+1

∂z
= 0

ω̂n+1
z = ιkx,iv̂

n+1 − ιky,j û
n+1

1

∆t

�
∂2ŵn+1

∂z2
− k2i,jŵ

n+1 − ∂2ŵn

∂z2
+ k2i,jŵ

n

�
=

=
3

2

�
−k2i,jŜz

n − ιkx,i
∂Ŝx

n

∂z
− ιky,j

∂Ŝy
n

∂z

�
−

− 1

2

�
−k2i,jŜz

n−1 − ιkx,i
∂Ŝx

n−1

∂z
− ιky,j

∂Ŝy
n−1

∂z

�
+

+
1

2Reτ

�
k4i,jŵ

n+1 +
∂4ŵn+1

∂z4
− 2k2i,j

∂2ŵn+1

∂z2

�
+

+
1

2Reτ

�
k4i,jŵ

n +
∂4ŵn

∂z4
− 2k2i,j

∂2ŵn

∂z2

�
ω̂n+1
z − ω̂n

z

∆t
=

3

2

�
ιkx,iŜy

n − ιky,jŜx
n
�
− 1

2

�
ιkx,iŜy

n−1 − ιky,jŜx
n−1

�
+

+
1

2Reτ

�
∂2ω̂n+1

z

∂z2
− k2i,jω̂

n+1
z +

∂2ω̂n
z

∂z2
− k2i,jω̂

n
z

�
φ̂n+1 − φ̂n

∆t
=

3Ŝφ
n − Ŝφ

n−1

2
+

s

Pe

�
∂2φ̂n+1

∂z2
− k2i,j φ̂

n+1

�
−

− Ch2

Pe

�
k4i,j φ̂

n+1 +
∂4φ̂n+1

∂z4
− 2k2i,j

∂2φ̂n+1

∂z2

�
(1.46)

with the coefficient k2i,j being the sum of the squares of the two wavenumbers, k2i,j =

k2x,i + k2y,j .

Next, all the terms from the current, n and the previous, n−1, time step are collected
in a historic term.
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�������
�������

Hn
i = ∆t

�
3Ŝn

i − Ŝi
n−1

2
+

1

2Reτ

∂2ûi
n

∂z2
+

�
1

∆t
− k2i,j

2Reτ

�
ûi

n

�
, i = x, y, z

Hn =
∂

∂z
(ιkx,iHx

n + ιky,jHy
n) + k2i,jHz

n

Hφ
n =

∆t

2

�
3Ŝφ

n − Ŝφ
n−1

�
+ φ̂n

(1.47)

After splitting knowns from unknowns the final system of equations becomes:��������������
��������������

ιkx,iû
n+1 + ιky,j v̂

n+1 +
∂ŵn+1

∂z
= 0

ω̂n+1
z = ιkx,iv̂

n+1 − ιky,j û
n+1�

∂2

∂z2
− β2

��
∂2

∂z2
− ki,j

2

�
ŵn+1 =

Hn

γ�
∂2

∂z2
− β2

�
ω̂n+1
z = − ιkx,iH

n
y − ιky,jH

n
x

γ�
∂2

∂z2
− β2

φ

��
∂2

∂z2
− β2

φ

�
φ̂n+1 =

Hn
φ

γφ

(1.48)

where the parameters γ, β and γφ, βφ are defined as:

γ =
∆t

2Reτ
, β2 =

1 + γk2i,j
γ

(1.49)

γφ =
Ch2∆t

Pe
, β2

φ =
s

2Ch2
+ k2i,j (1.50)

Chebyshev polynomials (and their derivatives) are defined recursively as:

Tn(z) = 2zTn−1(z)− Tn−2(z) (1.51)

This property together with the orthogonality of the Chebyshev modes is exploited by
the Chebyshev-Tau method [57], that is used to solve the (Nx/2+1)×Ny independent
uni-dimensional problems along the wall-normal direction. The derivatives along the
z-direction are approximated based on the amplitudes of neighbouring Chebyshev
modes, which results in a tridiagonal system that is solved via Gauss elimination.

1.4.3 Boundary conditions

The adoption of the Fourier discretization along the two homogeneous directions, x
and y implies that periodic boundary conditions are necessarily applied across these
two directions. In the close channel configuration the two walls at z = ±1 act as the
two solid boundaries, where no-slip and no-flux boundary conditions are applied to
the flow field.
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����
����

u(x, y, z = ±1) = [uw, vw, 0]

∂w

∂z

$$$$
z=±1

= 0

ωz(x, y, z = ±1) = 0

(1.52)

where uw, vw is the streamwise and the spanwise velocity of the wall, respectively.
The phase-field transport equation is fourth-order and therefore requires an additional
boundary condition to the no-flux of the phase-field at the two walls. This condition
is a no-flux condition imposed also on the chemical potential.���

���
∂φ

∂z

$$$$
z=±1

= 0

∂3φ

∂z3

$$$$
z=±1

= 0

(1.53)

1.5 Multiple resolution strategy

The key issue in the study of turbulent multiphase flows is the wide range of spatial
and temporal scales involved in the problem: from flow phenomena that occur at
scales ranging from the integral scale of the problem down to the Kolmogorov scale,
to interfacial phenomena that occur on a much wider range of scales, from the scale
of a wave or a drop down to the molecular scale of the interface. Typically, the
scale separation between flow and interfacial scales is about eight to nine orders of
magnitude, a situation which renders accurate simulations – taking into account all
flow and interfacial scales – extremely challenging to perform [62, 63, 29]. In addition,
the numerical description of an ever-moving and deforming interface requires numerical
methods able to capture its deformation and topological changes. When employing
interface capturing methods such as the PFM, it is desirable to solve the color/marker
function variable on a grid that is refined as much as possible. In this way, short
waves, small drops or ligaments can be accurately captured and topological changes
better described [64, 65, 29]. Clearly, there is a limit to the grid resolution one can
reasonably afford, even using cutting-edge HPC resources.
The challenge associated with the resolution of all the involved scales and the limita-
tion on the grid resolution one can reasonably afford has driven researchers towards
the development of different strategies. Two possible approaches can be envisioned to
increase the efficiency of the computational techniques so as to improve the descrip-
tion of multiphase flows: adaptive mesh refinements (AMR) or multiple resolution
approaches. Using AMR schemes [66, 67], the computational grid is locally refined
near the interface, where most of the marker function gradients are located and a
coarser grid resolution (thus reducing the computational cost) can be adopted far-
ther from the interface. This strategy has been applied to the most popular inter-
face capturing methods (using quadtree-, octree-based algorithms): Volume of Fluid
[68, 69, 70, 71], Level Set [72, 73, 74, 75, 76, 77, 78], Lattice-Boltzmann [79, 80] and
Phase-Field Method [81, 82]. Differently, using multi-resolution strategies, the flow
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field is resolved on a base grid, fine enough to capture the smallest flow scale (i.e.,
order of the Kolmogorov length-scale), while the marker function is solved on a more
refined grid so that smaller interfacial features can be described [83, 47, 84, 85]. Each
of these techniques has its own advantages and disadvantages. On one hand, while in
principle AMR schemes provide the most cost-effective strategy (as the grid is only
refined at the interface location), it is not straightforward to balance the load among
the different parallel tasks (the parallelization strategy used here is discussed in Sec.
1.6.1), since the load depends on the interface location and thus it is difficult to obtain
good scalability when a large number of tasks is used. In addition, AMR schemes, are
mainly suited for local methods (e.g., finite-difference, finite-volume schemes, finite-
element or Lattice-Boltzmann methods) and less applicable to global methods, like
spectral methods [86]. On the other hand, multiple resolution approaches are less
effective in reducing the computational cost, but are also less affected by scalability
issues (as the computational load per parallel process does not vary over time) and can
be applied to different numerical methods [83, 47, 84, 85]. These differences are also
reflected in the ease of implementation of these two techniques. Generally speaking,
AMR is of more difficult implementation, and external libraries [87, 77] are often used,
while the multiple resolution approach can be implemented in an easier manner, as
the solution schemes do not require extensive modifications.

In this section, a multiple resolution strategy for the DNS-PFM technique of mul-
tiphase turbulence, described in the previous sections, is presented. As the solu-
tion of the Navier-Stokes equations in refined grids is extremely time- and memory-
demanding, two different computational grids (dual-grid approach) are used: a base
grid for the flow field, which must be fine enough to solve for the flow field down to the
Kolmogorov scale and a refined grid for the phase-field variable. This allows for the
accurate description of the flow field and at the same time for an improvement of the
description of the small interfacial features (waves, drops, ligaments). The base refer-
ence grid (labelled BG) with Nx×Ny×Nz grid points is used to describe the flow-field
and has to be fine enough to resolve the smallest flow scale (order of the Kolmogorov
scale), while the finer grid (labelled FG) with MxNx×MyNy×MzNz grid points (with
Mi positive integer representing the refinement factor along the i-direction) is used
for the phase-field variable. To time advance the solution, a time-marching algorithm
is employed and at each time step, the following steps are executed:

i) The velocity field, un, is initialised on the base grid (BG); the phase-field, φn, is
initialised on the fine grid (FG); variables are transformed in the spectral space,

ûn and φ̂n.

ii) The surface tension term, which depends on the phase-field variable, is computed
on the fine grid (FG) and then spectrally interpolated onto the base grid (BG).

iii) The non-linear viscous and inertial terms, which also can depend on the phase-
field, are computed on the fine grid (FG) and then spectrally interpolated onto
the base grid (BG).

iv) Navier-Stokes equations are solved on the base grid (BG) to obtain the new
velocity-field, ûn+1.
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v) The new velocity-field, ûn+1, is spectrally projected onto the fine grid (FG).

vi) Finally, the Cahn-Hilliard equation is solved on the fine grid (FG) to obtain the

new value of the phase-field, φ̂n+1.

A flow-chart showing the different steps required to advance the solution in time is
shown in Fig. 1.5. The validation of the dual-grid approach is presented in Sec. 1.7.2.

Figure 1.5 – Flow chart of the steps required to time advance the solution from the current time
step, n, to the next time step, n+ 1, using the dual-grid approach.

1.6 Code implementation

The numerical algorithm presented in Sec. 1.4 for the solution of the equations pre-
sented in Sec. 1.3 has been implemented as an in-house code written in Fortran-2003
[32, 33, 29].

1.6.1 Parallelization strategy

The code is parallelised using the Message Passing Interface (MPI) paradigm. Within
this framework a single process is assigned to each core, which has its own memory that
is not directly accessible by other cores. Therefore, the interchange of data between
the different processes (or tasks) is based on communication through message passing
known as MPI comunication. MPI offers great scalability potential, since communi-
cation can take place across cores belonging to different nodes of a supercomputing
cluster. This is in contrast to shared memory parallelization models, such as the Open
Multi-Processing (OpenMP) model, which is based on a shared memory protocol and
therefore allows for a parallelization between cores that share the local memory of a
single node. The solution algorithm is executed simultaneously by a number of MPI
tasks (or ranks). The workload is divided between different tasks following a partition
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of the three-dimensional computational domain across two dimensions. In particular,
each rank initially holds a fraction of the total grid points along the y and z directions
and all the grid points along the x direction. However, the spectral method that is
used to resolve the equations implies that Fourier and Chebyshev transforms need to
be performed in order to transform the variables from the physical to the spectral
space and back. These transforms are global, which means that each rank needs to
have available in its memory every grid point across the direction along which the
transform is performed. This practically means that the domain partition model has
to be reoriented several times during each computational step, which can be achieved
via MPI communication between the ranks. A schematic representation of the steps
required to compute a three-dimensional transform is shown in Fig. 1.6.
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Figure 1.6 – From the right, the unknowns are in the physical space, u, φ, the FFT along the x

direction is computed first. Then, through MPI communications, the domain partition is reoriented
and the FFT along the y direction is performed. Last, the partition is again reoriented and the
Chebyshev transform along the z direction is computed. After these steps, the unknowns are now
in the wavenumber (or spectral) space, û, φ̂. The inverse transform can be computed following the
same steps but in the opposite direction.

Indicatively, a maximum number of 128× 64 ranks has been used for the purposes of
the simulations performed in this work. For the considered problem sizes, this results
in a time per time step for the computation that is of the order of 100ms.

1.6.2 Space-time resolved interface statistics

The simulation output is obtained by solving the Navier-Stokes equations and the
Cahn-Hilliard equation. In particular, at each time-step the three components of
the velocity field, u, v, w and the phase-field variable, φ are computed. In terms of
computer memory, each of the four fields is represented by one double precision numeric
value or 8 Bytes of memory for every grid point. Therefore, for the typical grid size
that is used in this work i.e. Nx = 1024, Ny = 256 and Nz = 513 grid points across
the x, y and z directions, respectively, a total memory of approximately 1 GByte for
each field or 4 GByte for all of the four fields for every time step is required. Storing
this amount of information can quickly become problematic in terms of hard disk
memory occupancy. Fortunately, obtaining averaged statistics of the turbulent flow
field requires only a limited number of fields saved over a large enough time window to
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guarantee the lack of any residual historic effects between consecutive fields. This is
due to the triple-averaging of the hydrodynamic fields in both x and y directions and
in time, which gives a quick convergence of the statistics using only a small number of
time frames. In contrast, obtaining time-resolved interface statistics, which is one of
the main objectives of this work, requires a much more frequent storage of the phase-
field variable, which contains information on the topology of the two fluids inside the
domain and therefore also on the interface position. However, not all the values of the
phase-field on every grid point are required in order to reconstruct the interface shape.
The interface is identified as the φ = 0 iso-contour and therefore solely the extraction
of this iso-contour suffices. The extraction of the interface, as well as the values of the
velocity interpolated on the interface, can take place during the simulation run-time.
Two techiques have been developed to serve this particular purpose and are presented
below.

Two-dimensional interface extraction - waves

The first technique to extract the interface signal is specifically tailored for the case
of a continuous interface separating two fluid layers. The interface in this case can de-
form, but the deformation is characterized by the presence of non-breaking waves with
relatively low amplitudes. The idea is that the interface signal remains single-valued
i.e. can be described by a single variable, the so called wave elevation, η(x, y, t) during
the whole simulation time. The wave elevation is defined as the vertical distance of the
interface from the mean interface level. Therefore, at each time instant, for each pair
of horizontal coordinates, x(i) and y(j) a wave elevation η(i, j) can be determined. In
this scenario, determining the interface position via the extraction of the φ = 0 iso-
contour is rather straight-forward. In particular, at each horizontal position x(i), y(j)
a uni-dimensional scan of the domain along the wall-normal coordinate, z(k) is per-
formed for every k so to find the position where φ(i, k, j) = 0. Since the phase-field
takes the values φ = ±1 in the bulk of the two phases and transitions between these
two values smoothly at the transition layer, the location at which φ(i, k, j) = 0 coin-
cides with the first change in sign of the product φ(i, k, j)∗φ(i, k+1, j). In the case of
single-valued interface deformation a single such transition must take places at each
x(i), y(j) position. The wave elevation, η(i, j) is then identified as the z(k) value at
which this transition occurs. Note that since each rank contains in physical space only
a part of the phase-field values along the y and z directions and all the values across the
x direction, additional MPI communication is required in order to communicate the
boundary values of φ between neighbouring ranks and make possible the computation
of the product φ(i, k, j)∗φ(i, k+1, j) at all k positions. This step implies an additional
overhead in terms of computation time, due to the MPI communications among the
different ranks. However, the total overhead is small (of the order of 1% of the overall
computation), and only for those steps for which the algorithm is executed, which typi-
cally corresponds to a few hundred steps. At the same time, the memory requirement of
this run-time extraction of the interface signal is dramatically reduced compared to the
alternative of storing the phase-field at such a high saving frequency. Indeed, instead
of saving the entire φ field with Nx ×Ny ×Nz = 1024× 513× 256 = 134, 479, 872 val-
ues, which amounts to 1GByte of memory, at each saving step, only the iso-countour,
φ = 0 with Nx × Ny = ×1024 × 256 = 262, 144 values, which amounts to 2MByte
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of memory, is saved. Finally, the three components of the velocity field u, v, w can
also be interpolated at the interface position providing additional information on the
instantaneuous interface velocity. This scanning algorithm has been implemented and
integrated to the main code framework as an individual subroutine. The algorithm
has been used to obtain the time resolution necessary to compute the frequency and
frequency-wavenumber spectra of capillary waves presented in Chap. 2 and 3 and the
animations of wave motion included in the supplementary material of Giamagas et al.
[88].

Figure 1.7 – Different polygon configurations emerging in the marching cubes algorithm trian-
gulation step. The bit values 0 and 1 can be seen on the vertices of the cube. The polygon
edges, shown in black, connect the midpoints of edges with different digits at their vertices. The
connected edges are colored in green contrary to the unconnected edges, which are colored in red.

Three-dimensional interface extraction - drops

The second technique is more general and deals with the extraction of an arbitrary
three-dimensional interface topology (breaking waves, droplets, ligaments, etc). In
this scenario, the extraction of the so-contour, φ = 0 cannot be based on a uni-
dimensional scan of the domain, since the number of transitions from one phase to
the other along any of the three dimensions can be larger than one and thus a more
sophisticated technique needs to be employed. For this purpose, a marching cubes
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algorithm [90] has been implemented and integrated to the main code framework as an
individual subroutine. The marching cubes is an algorithm for the three-dimensional
reconstruction of an iso-contour given the values of a scalar field (in this case the phase-
field, φ) on a rectilinear grid. The discretized scalar field is scanned considering eight
neighbouring points at each time, which form the vertices of a cuboid. In particular,
a bit (1 or 0) is assigned to each of the eight vertices of the cuboid. The value of each
bit is decided by comparing the scalar values of φ at the vertices of the cuboid to the
iso-value, φ = 0. If φ > 0 then the bit is set to one, else it is set to zero. This results in
a total of 28 = 256 possible cuboid combinations (or indexes), each with a unique set of
bit values at its vertices. Each index also corresponds to a unique polygon configuration
that can connects the edges of the cuboid so to represent the φ = 0 iso-countour. Only
the edges with different bits (zero and one) at their vertices are connected, while those
with the same bits (0 and 0 or 1 and 1) are not. The position of the vertices of
the polygons is determined by means of linear interpolation between the values of
φ at the vertices of the cuboid on each connected edge. An example of different
polygon configurations for different indexes, where the midpoints of the connected
edges have been considered as the polygon vertices for the shake of simplification, is
shown in Fig. 1.7. In this case too, the three components of the velocity field u,v,w
can be interpolated on the connected edges intersection points providing additional
information on the instantaneous velocity of the interface. Moreover, the normal
vectors to the interface, Bn = ∇φ

|∇φ| are computed by means of interpolating the gradient

of φ on every connected point. Finally, the total surface area of the interface is also
approximated by the sum of all the polygon areas. In this case too, the total overhead
due to the MPI communication associated with the exchange of vertex bit values
between ranks with shared cuboids, is of the order of 1% of the overall computation
and only for these steps for which the algorithm is applied, typically every few hundred
steps. The memory requirement is once again reduced dramatically and time-resolved
interface data can be stored easily. Despite the fact that a larger number of values
compared to the previous (Nx ×Ny) case represent the iso-contour depending on the
flow topology, the order of magnitude of the memory requirement is still only a few
MByte. The time evolution of the interfacial area and the animations of the thin
layer breakup in turbulence presented by Schenk et al. [91] have been obtained using
this technique.

1.7 Validation

The code is validated using two different benchmark configurations. The basic Navier-
Stokes and Cahn-Hillard equation solver has been validated using the test case of a
simple two-layer pressure-driven laminar channel flow configuration. The multiple
resolution strategy has been validated using the benchmark case of a single droplet
subjected in a shear laminar flow. The validation of the solution of only the Navier-
Stokes equations, using a shear-driven single-phase turbulent flow as a test case, is
also reported in Appendix A.
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1.7.1 Two-layer laminar channel flow

z = t

z = 0

z = H

z
x

µ2, ρ2

µ1, ρ1

Figure 1.8 – Two fluid layers flowing in parallel in a rectangular channel driven by the action of
a mean pressure gradient. The arrows indicate the flow direction.

The flow of two fluid layers of different thermophysical properties (fluid 1: µ1, ρ1 and
fluid 2: µ2, ρ2) in a rectangular channel (see Fig. 1.8), driven by a constant pressure
gradient, at low Reynolds number, can be described analytically [92]. The general
unsteady momentum balance equations considering the whole fluid volume writes:

ρ(
∂ui

∂t
+ uj

∂ui

∂xj
) = − ∂P

∂xi
+ µ

∂2ui

∂x2
j

(1.54)

from where, after expressing the balance for each individual fluid layer at steady state,
we obtain:

µ1
∂2u1

∂z2
=

∆P

∆x
(1.55)

µ2
∂2u2

∂z2
=

∆P

∆x
(1.56)

for the flow of fluid 1 : µ1, ρ1 and the flow of fluid 2 : µ2, ρ2, respectively

The boundary conditions applied are no-slip at the two solid walls of the channel,
located at z = 0 and z = H, and continuity of the velocity and the shear stress at the
interface between the two fluid layers, located at z = t. These conditions are expressed
as follows:

u1 (H) = 0, u2 (0) = 0, u1 (t) = u2 (t) , µ1
∂u1

∂z
(t) = µ2

∂u2

∂z
(t) (1.57)

Integrating the two equations, Eq. 1.55, 1.56 and applying the boundary conditions,
Eq. 1.57, we obtain the solution for the velocity profile at each layer:
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where k = t/H is the non-dimensional thickness of the bottom layer, µr = µ1/µ2 is
the ratio between the dynamic viscosities of the two fluids. Note that the solution
depends only on the dynamic viscosities of the fluids and not on the fluid density at a
given constant pressure gradient.
Taking as reference the properties of fluid 2: µ2, ρ2 and considering the half channel
height, h as characterstic length scale and the friction velocity, uτ of the single phase
Poiseuille flow of fluid 2 as characteristic velocity scale, while also assuming that
k = 0.5, we can non-dimensionalize the previous equations as follows:

u1 (z) = −Reτ
2µr

z2 +
Reτ
2µr

3 + µr

1 + µr
z +

2Reτ
µr

− Reτ
µr

3 + µr

1 + µr
(1.60)

u2 (z) = −Reτ
2

z2 +
Reτ
2

3 + µr

1 + µr
z (1.61)

where Reτ = ρ2uτh/µ2 is the Reynolds number, expressing the ratio between inertial
and viscous forces.
A more representative velocity scale for each layer can also be determined by consid-
ering the two-phase instead of the single-phase problem. In this case, the stress at the
two walls and on the interface can be calculated as:
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The friction velocities at the two walls of the two-phase flow can then be expressed in
the form of corrections to the friction velocity of the single-phase flow, due to the wall
shear stress and the density mismatch [93, 4].

uτ,1 = uτ

 
2ρr|τw,1|

|τw,1|+ |τw,2| (1.65)

uτ,2 = uτ

 
2|τw,2|

|τw,1|+ |τw,2| (1.66)

at the top wall and at the bottom wall, respectively, with ρr = ρ1/ρ2 being the ratio
between the fluid densities.

In a similar way, a semi-local Reynolds number in each of the two fluid layers can be
defined and expressed as a correction of the Reynolds number for the single-phase flow
as:

Reτ,1 =

√
ρrReτ

µr
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(1.67)



28

Reτ,2 = Reτ

 
1− k2 (1− µr)

1− k (1− µr)
(1.68)

Finally, note that while the above estimations of the shear-stresses for the two-phase
flow are exact, they are only valid within the assumption of a laminar flow regime. The
more general case of a turbulent flow regime is much more complex with momentum
transfer in directions perpendicular to the direction of the mean pressure gradient and
deformation of the interface. In such scenario, the stresses at the wall and at the
interface and therefore also the semi-local Reynolds numbers can only be numerically
approximated.
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Figure 1.9 – Comparison between analytically calculated and numerically computed mean velocity
profiles of a two-layer Poiseuille flow for two different values of the viscosity ratio, µr = 2.0 and
µr = 0.5, and two different values of the density ratio, ρr = 1.0 and ρr = 0.1.

The code has been validated against the analytical solution by performing simulations
of the two-layer Poiseuille flow at Reτ = 1, k = 0.5 and for two different viscosity
ratios, µr = 0.5 and µr = 2.0. The results are shown in Fig. 1.9. An excellent
agreement is observed between the numerical and analytical results for both cases of
the viscosity ratio. In order to also demonstrate the independency of the solution from
the density ratio, an additional simulation has been performed considering two fluids
with different densities. Indeed, the velocity profiles are identical for the same set of
parameters, but for two different values of the density ratio, ρr = 1.0 and ρr = 0.1.

1.7.2 Drop deformation in laminar shear flow

The multi-resolution strategy proposed in Sec. 1.5 is benchmarked for the case of a
single drop immersed in a laminar shear flow, as sketched in Fig. 1.10. A circular
drop of diameter d = 0.8h is placed at the centre of a plane channel, in which the
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Figure 1.10 – Sketch of the deformation of a drop in a shear flow. A circular drop of diameter d =
0.8h is initially located at the centre of the channel (blue circle). The domain is two-dimensional
with dimensions Lx × Lz = 2πh × 2h. Periodicity is applied along x, and the two walls move in
opposite directions with constant velocity ux = uw = ±1. The imposed shear deforms the drop
into an ellipsoid (a qualitative representation of its final shape is given by the dotted line). Drop
deformation is evaluated computing the deformation parameter D = (L − B)/(L + B), being L

and B the major and minor axes of the ellipsoid, respectively.

top and bottom walls move at constant velocity, uw, but in opposite directions. The
simulations performed consider a two-dimensional domain.

The initial condition for the flow field is a linear velocity profile for the streamwise
velocity, ux, along the wall-normal direction, z, while the wall-normal velocity is set to
zero. The phase-field, φ, is initialized so that the drop is located at the centre of the
channel. The computational domain has dimensions Lx ×Lz = 2πh× 2h along the x-
and z-directions, respectively. The Reynolds number – evaluated for this benchmark
using the wall velocity – is kept constant among all simulations, Rew = 0.1. The value
of the Cahn number, Ch = 0.02, is set so to have a minimum of 3 grid points across
the transition layer between the phases [94]. Accordingly, the Peclet number is set to
Pe = 1/Ch = 50. An overview of the simulation parameters is given in Tab. 1.1.

Code Refinement factor, Mi Grid NS Grid CH Ch Pe

G1 1x1 512x513 512x513 0.02 50
G2 2x2 256x257 512x513 0.02 50
G4 4x4 128x129 512x513 0.02 50

Table 1.1 – Summary of the simulation parameters for the benchmark of the drop deformation in
a two-dimensional shear flow. Three different simulations are run, by keeping the resolution of the
Cahn-Hilliard equation constant (Nx × Nz = 512 × 513 grid points, Grid CH), and reducing the
resolution of the Navier-Stokes equation (Grid NS). The refinement factors, Mi, are also reported.
Simulations are labelled based on the employed refinement factor: G1 indicates a refinement factor
of 1 (i.e., same grid); G2 indicates a refinement factor of 2 between the NS grid and the CH grid;
G4 indicates a refinement factor of 4.

Given the low value of the Reynolds number, the flow remains laminar and the veloc-
ity profile is linear. The resulting shape of the drop is determined by the competition
between viscous forces – which try to deform the drop – and surface tension forces –
which try to restore the original, circular shape (being the droplet two-dimensional).
The relative importance of viscous and surface tension forces (and thus drop deforma-
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Figure 1.11 – Behaviour of the deformation parameter D (see sketch) as a function of the Capillary
number, Ca, for a drop in a two-dimensional shear flow: comparison between the numerical results
(symbols) and analytical predictions (continuous black lines). Two different viscosity ratios are
considered: µr = 0.1 (panel a) and µr = 1.0 (panel b). The different symbols refer to the different
refinement factors employed: light blue squares (case G1), blue down-facing triangles (case G2),
upward-facing dark blue triangles (case G4).

tion) is controlled by the Capillary number.

Ca =
We

Rew

d

2h
(1.69)

In this benchmark, to compare the results with previous literature studies [95, 96, 97],
the Capillary number is defined based on the drop radius, hence the scaling factor d/2h
is introduced. Note that the Weber number, We expressing the ratio between inertial
and surface tension forces also appears in the above relation. Numerical simulations
are run considering two different values of the viscosity ratio, µr = 0.1 and µr = 1.0,
and three different values of the Capillary number: Ca = 0.062, Ca = 0.125 and
Ca = 0.1875. The drop and the carrier fluid have the same density (ρr = 1). Each
combination of Capillary number and viscosity ratio is analysed for different values of
the refinement factor (and thus different grid resolutions).
Indicating with L and B the major and minor axes of the drop (see the sketch in Fig.
1.10), the deformation parameter, D, can be computed as follows:

D =
L−B

L+B
(1.70)
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An analytical solution for the behaviour of D as a function of Ca was obtained by
Taylor [95, 96] for an unbounded flow, and later extended by Shapira & Haber [97] to
account for lateral confinement effects.

D =
16 + 19ηr
16 + 16ηr

Ca


1 + CSH

3.5

2

� d

4h

�3�
(1.71)

where CSH = 5.6996 is a numerical coefficient [97]. This equation is proven to be
accurate also for two-dimensional and three-dimensional drops at small Ca, i.e., in the
limit of small deformations [98, 99, 100].
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Figure 1.12 – Computational efficiency of the dual-grid approach: elapsed time (wall-clock) for
a time step (panel a) and memory usage (panel b). Results are normalized using case G1 as
reference, where the finest grid is used for all equations. Light blue bars refer to case G1 (same
grid), blue bars to case G2 (refinement factor equal to 2) and dark blue bars to case G4 (refinement
factor equal to 4).

The behaviour of the deformation parameter D as a function of the Capillary number,
Ca, is shown in Fig. 1.11. Panel a refers to the cases with drop-to-fluid viscosity ratio
µr = 0.1, while panel b refers to the cases with drop-to-fluid viscosity ratio µr = 1.
For all considered cases, we find a good agreement between the numerical simulations
(symbols, each referring to a specific grid resolution for φ), and the analytical solution,
with minor differences for the viscosity ratio µr = 0.1 (discrepancy between theoretical
and numerical results below 5%). In addition, we observe almost no difference between
the results obtained by the grid G1 (same grid for NS and CH), grid G2 (grid for CH
two times finer than grid for NS), and grid G4 (grid for CH four times finer than grid
for NS). This shows the consistency of the proposed implementation and suggests that,
when the flow field is resolved on a fine enough grid, the dual-grid approach gives a final
result that is identical to the result that could be obtained by a simulation performed
on the fine grid for both velocity and phase-field.
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It is therefore important now to evaluate the computational efficiency of the proposed
technique. To characterize the computational efficiency of the proposed approach we
measure the wall-clock time required for a single time step and the memory usage
using different refinement factors Mi. Results are shown in Fig. 1.12. The results
reported are associated to the same case run (Ca = 0.062) and are normalized using
simulation G1 as a reference, where the grid for both the Navier-Stokes and the Cahn-
Hilliard equations is the finest and thus the computational cost is the highest. The
same HPC-cluster and set-up were used, and the simulations were performed using
the same number of MPI tasks (64). Considering the results reported, we can see
that employing the dual-grid approach, it is possible to save up to 27% in wall-clock
time and memory usage for a refinement factor equal to 2 (i.e. CH is solved on a grid
that is two times finer than that used for NS, case G2), and up to 38% in time and
memory for a refinement factor of 4 (i.e. CH is solved on a grid that is four times
finer than the one used for NS, case G4), compared to the case in which the finest
grid is used for both CH and NS (case G1). Clearly, the efficiency should further
increase in three-dimensional scenarios, which have greater requirements in terms of
computational time and memory, making this strategy very appealing for simulations
of complex three-dimensional flows.
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Capillary waves in two-layer

oil-water channel flow

Reproduced in part from:
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oil-water turbulent flow, Journal of Fluid Mechanics, 960, A5.

The flow of two immiscible fluids is often encountered in the petroleum industry, where
crude oil and water – upon extraction from wells – are transported over very long
distances and finally separated in designated process plants. When oil and water flow
together inside horizontal pipelines and channels, different flow regimes are possible.
At low flow rates, the flow is stratified and the oil-water interface is smooth. At
moderate flow rates, the flow can still remain stratified, but the oil-water interface
is characterized by the presence of waves, which are initially long compared to the
pipe diameter/channel height, and become shorter as the flow rate is increased. At
even higher flow rates, waves might break and generate a dispersed flow in which
water drops form inside the oil layer and/or oil drops form inside the water layer
[5, 6]. Because of the inherent modelling complexity of the flow, literature in the
field of oil-water transportation inside pipes and channels is almost entirely based on
experimental investigations – focused mainly on the evaluation of flow regimes/global
flow properties, like pressure drop and flow rate [8] – and on single point measurements
of the interface deformation [14], but also on analytical investigations of flow stability
[101, 102].

More detailed experimental observations, aiming at characterizing the flow structure
and the interface deformation, have become possible in the last years, thanks to the de-
velopment of laser based diagnostic techniques like Planar Laser-Induced Fluorecence
(PLIF) and Particle Image/Tracking Velocimetry (PIV/PTV). In particular, PLIF
provides information on the scalar distribution of the two phases in the plane of the
laser light, while PIV/PTV can provide the corresponding instantaneous velocity dis-
tribution. These techniques are generally applied to cases in which the two fluids have
the same refractive index, RI [103, 104], in order to minimize the optical distortion
at the liquid-liquid interface. Similar techniques have also been applied to gas-liquid
systems, including horizontal stratified air-water flow in pipes [105, 106, 107], and
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even gas-liquid annular flow [108]. Very recently, a new simultaneous two-line (two-
color) technique, combining PLIF and PIV/PTV for non RI-matched fluids, has been
developed [109, 110], and is expected to contribute further to the research in the field.
Given the difficulties in obtaining accurate experimental results of interfacial flows,
time and space-resolved numerical simulations – although complex and computation-
ally expensive to perform – are a valuable tool to provide insightful measurements
of the entire flow field and to offer a corresponding precise characterization of the
liquid-liquid interface deformation. Compared to the case of gas-liquid flows, in which
the number of accurate simulations is rapidly increasing [111], the case of liquid-liquid
flows has gathered relatively less interest, which is however currently rising thanks to
the renewed interest in the water-lubricated oil pipelines [112, 113]. Previous works
[28, 4, 114] have employed pseudo-spectral Direct Numerical Simulation (DNS) of
turbulence, coupled with a Phase-Field Method (PFM) to study the dynamics of im-
miscible, stratified liquid-liquid flow inside plane channels. However, a detailed space-
time characterization of the liquid-liquid interface in such a configuration is not yet
available. This is exactly the subject of the present chapter. We consider two immis-
cible fluid layers that move, under the action of an imposed mean pressure gradient,
inside a plane channel. The two fluid layers have same thickness and same density.
Two sets of parametric studies are performed, the first varying the viscosity of one
fluid with respect to the other and the second varying the surface tension between
the fluids. We combine pseudo-spectral DNS of turbulence with PFM to track the
dynamics of the liquid/ liquid interface. Upon application of space and time-resolved
flow measurements, we are able to compute the spectral properties of the liquid-liquid
interface and discuss them in the context of the Wave Turbulence Theory (WTT)
[115, 116, 117, 118].
It is important to note that the waves that form in a stratified oil-water system are
extremely interesting also from a fundamental viewpoint: due to the similar density
of the two fluids, the influence of gravity is ruled-out and the entire evolution of
the interfacial waves is dominated by surface tension. This represents a convenient
numerical setup, which gives us the possibility to challenge current understanding of
capillary waves propagation [119, 120]. Obtaining similar results with larger density
difference fluids would otherwise require complex experimental measurements to be
performed in microgravity conditions [121].

2.1 Viscosity effects

The effects of the variation of the viscosity ratio between the two fluid layers on both
the flow and the interface dynamics are examined here.

2.1.1 Simulation setup

We consider two immiscible fluid layers flowing inside a rectangular channel under the
effect of a constant mean pressure gradient. The channel has dimensions Lx = 8πh,
Ly = 2πh and Lz = 2h, along the streamwise (x), spanwise (y) and wall-normal
(z) directions, respectively. The two layers have the same thickness – so that the
initially undeformed interface is located at a distance h both from the top and from
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the bottom wall – and same density, ρ1 = ρ2 = ρ, but different viscosity, µ1 �= µ2 (and
hence different kinematic viscosity, ν1 �= ν2). The interface between the two fluids has
a constant and uniform surface tension, σ. A sketch of the domain geometry, along
with an instantaneous visualization of the interface topology is provided in Fig. 2.1.
Two different cases characterized by the same value of the reference shear Reynolds
number, Reτ = 300, and Weber number, We = 1.0 are considered. The viscosity ratio
between the two fluids is µr = 1.00 for the first case, and µr = 0.25 for the second
case. The values of the physical parameters are chosen to mimic a situation in which a
light industrial oil (Exxon Mobil Solvesso 200 ND) with ρ = 980 kg/m3, µ2 = 3.85×
10−3 Pa s and σ = 0.044 N/m flows together with water inside a channel of height
2h = 6×10−2 m, at a reference shear velocity of uτ = 3.8×10−2 ms−1. Note that the
reduction of the viscosity in the upper layer leads to a corresponding increase of the
local Reynolds number, which can be estimated as Reτ,1 ≈ Reτ/µr. As a consequence,
the number of grid points Nx ×Ny ×Nz must increase for decreasing µr, in order to
maintain a suitable resolution. To ensure a correct representation of the interface
dynamics, all simulations are run for Ch = 0.02 and Pe = 3/Ch = 150 [41]. For both
simulations, the initial condition is taken from a preliminary simulation of a single-
phase flow at Reτ = 300, on top of which we properly define the initial distribution of
the phase-field, φ so that the liquid-liquid interface is at the beginning flat and located
at the channel center. The main simulation parameters are summarized in Tab. 2.1.

Simulation Reτ We Nx Nz Ny Lx Ly Lz

µr = 1.00 300 1.0 1024 513 256 8πh 2πh 2h
µr = 0.25 300 1.0 2048 513 1024 8πh 2πh 2h

Table 2.1 – Overview of the main simulation parameters at variable viscosity ratio.

Figure 2.1 – Sketch of the computational domain. Two immiscible fluid layers, with viscosity
µ1 (upper layer) and µ2 (lower layer) flow inside a plane channel under the action of an imposed
pressure gradient. The instantaneous liquid-liquid interface deformation is shown in white.
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2.1.2 Statistics of the turbulent flow field

We first look at the flow statistics for the different cases considered in this work. In
Fig. 2.2a, we show the mean streamwise velocity, �u(z)/uτ �, as a function of the wall-
normal coordinate. Results for the two-layers configuration at different viscosity ratio
(µr = 1.00 and µr = 0.25) are shown together with the reference single-phase (SP)
case. When the two layers have the same viscosity (µr = 1.00), the mean velocity
profile is only slightly modified by the presence of the liquid-liquid interface. However,
when the upper layer has a lower viscosity (µr = 0.25) the mean streamwise velocity
is consistently increased, and its shape much more modified. This reflects into an
overall flow rate increase of about 11% (see Tab. 2.2), which can be traced back to a
corresponding drag reduction (since our simulations are all run at the same pressure
gradient). Note that the location at which the streamwise velocity has a maximum
(represented by the dashed horizontal lines in Fig. 2.2a) is changed. In particular, for
µr = 0.25, the maximum is shifted upwards with respect to the channel center, and
indicates the tendency for the streamwise velocity profile to be skewed when the two
layers have different viscosity. This is also highlighted in the corresponding profiles
of the mean strain rate, �du/dz�, shown in Fig. 2.2b. In particular, in the inset of
Fig. 2.2b one can observe that the location of the zero crossing of the mean strain
rate is shifted upwards for the case µr = 0.25, while it occurs at the centerline for the
other two cases. Notice that this assymetry for the case µr = 0.25 leads to a purely
positive value of the mean strain rate close to the average interface position, z = 0.
The probability density function of the instantaneous strain rate, du/dz, computed
at the instantaneous interface position and normalized by its root mean square value,
�(du/dz)2�1/2, for each case, is shown in Fig. 2.3. In both cases, the probability density
functions are fitted very well by the Gaussian distribution, however with a different
mean value, namely α = 0 for the case µr = 1.00 and α = 0.4 for the case µr = 0.25.
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Figure 2.2 – Left: Mean streamwise velocity profiles, �u(z)/uτ �, as a function of the wall-normal
distance z/h, for the three different cases: µr = 1.00 (blue line), µr = 0.25 (green line), single-
phase flow (SP, black line). Also shown (horizontal dashed lines, zumax ) is the location at which
the mean streamwise velocity profiles have a maximum. Right: Mean strain rate profiles, �du/dz�,
as a function of the wall-normal distance z/h, for the three different cases. The inset shows a
close-up view of the mean strain rate profile in the region −0.5 < z/h < 0.5.

Considering the key role of the layer viscosity on the overall flow field, it is also
interesting to show the behaviour of the mean streamwise velocity profiles in wall
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Simulation Q1/QSP Q2/QSP Qt/QSP ∆Q%

Single-phase - - 1.0000 -
µr = 1.00 0.5035 0.5034 1.0069 0.69
µr = 0.25 0.5807 0.5316 1.1123 11.23

Table 2.2 – Mean flow rates for the different simulations. Q1, Q2 and Qt correspond to the mean
flow rates of the upper layer (oil), the lower layer (water) and the total mean flow rate over the
whole channel height respectively, while QSP is the mean flow rate of the reference single-phase
flow. The quantity ∆Q% stands for the percent increase in mean flow rate between the multiphase
and the single-phase flow simulations.
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Figure 2.3 – Probability density function of the normalized strain rate du/dz/�(du/dz)2�1/2 for
cases µr = 1.00 (blue line) and µr = 0.25 (green line). The Gaussian distributions with mean
values α = 0 , α = 0.4 and unit standard deviation are shown with a dashed and a dotted black
line respectively.

units. This can be done via a semi-local scaling [93, 4, 114], which makes use of the
local value of the friction velocity:

uτ,loc = uτ

 
2|τw,1|

|τw,1|+|τw,2| (2.1)

to rescale the different profiles, as shown in Fig. 2.4. Note that τw,1 and τw,2 are the
values of the shear stress at the two walls. The wall normal coordinate in wall units
reads as z+ = z(uτ,loc/ν). Panel a refers to the lower layer while panel b refers to the
upper layer. The classical law of the wall, u+ = z+ and u+ = (1/k) log(z+) + 5, with
k = 0.41 the von Kármán constant, is also shown by a dashed line for comparison
purposes. At the lower layer (Fig. 2.4a), all the velocity profiles follow the classical
law of the wall. This indicates that the presence of the interface induces only negligible
effects on the near-wall turbulence cycle. A similar situation is also observed at the
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upper layer (Fig. 2.4b), with all numerical results following fairly well – when rescaled
in local wall units – the law of the wall. Naturally, for µr = 0.25, the outer layer is
extended compared to µr = 1.00. The influence of the viscosity ratio on the near-
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Figure 2.4 – Mean streamwise velocity profiles at the lower layer (panel a) and at the upper layer
(panel b) rescaled in wall units using the local friction velocity at the corresponding wall. Also
shown (dashed line) is the classical law of the wall: u

+ = z+ and u
+ = (1/k) log(z+) + 5 (where

k = 0.41 is the von Kármán constant).

wall turbulence structure becomes rather apparent by looking at the fluctuations of
the streamwise velocity, u�, on x − y planes located near the top and bottom walls.
Results are presented in Fig. 2.5. In particular, panel a refers to a distance of z+ = 30
from the bottom wall, while panel b refers to a distance of z+ = 30 from the top wall.
We notice the presence of regions with higher (dark green) and lower (light green)
than mean streamwise velocity, called high- and low-speed streaks, respectively. It is
apparent that, as viscosity is decreased, turbulence structures become finer and their
distribution more complex.

2.1.3 Forcing of the liquid-liquid interface by turbulence

The liquid-liquid interface is naturally forced by turbulence over a broad range of
scales, from the larger ones, whose size is of order of the channel height, down to the
smaller dissipative scales. An example of the spatial distribution of the wall-normal
velocity w on two x-y parallel planes for the case µr = 0.25 is shown in Fig. 2.6. The
two planes are located at z/h = −0.3 (below the minimum wave trough, panel a), and
at z/h = 0.3 (above the maximum wave crest, panel b), so that statistics represent
the turbulence activity around the interface. Regions of positive and negative velocity
fluctuations, of different size and shape, populate the region near the interface. As
expected, the size of the structures in the upper layer, where viscosity is lower, is
smaller. A quantitative measure of such spatial distribution can be obtained by looking
at the power spectra of the vertical velocity fluctuations at the two parallel planes.
This is shown in Fig. 2.7. Panel a refers to the plane below the waves, while panel
b refers to the plane above the waves. Also shown in this figure (grey area) is the
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(a) Lower layer

(b) Upper layer

Figure 2.5 – Contour-maps of streamwise velocity fluctuations, u�, on wall–parallel x− y planes
located at z+ = 30 from the walls, for the case µr = 0.25. Panel (a): x− y plane near the bottom
wall. Panel (b): x− y plane near the top wall.

forcing range of scales, going from largest, energy-injection scales – indicated as k+LS

and corresponding to channel height 2h – downwards. We observe that, below the
interface (panel a), the forcing applied by turbulence does not change with µr, and
is consistent with literature results [122]. Above the interface, turbulence forcing at
large scales (around k+LS) does not change significantly as well, even when we decrease
µr. What changes is the forcing at small scales.

The dynamics of the interface separating the two fluid layers depends on the compe-
tition between two opposite effects: the destabilizing effect of shear and turbulence,
and the stabilizing effect of surface tension (we recall that gravity does not play a
role here because the two fluid layers have the same density). A simplified picture
of the generation of a capillary wave through the competition of inertial (turbulent)
and capillary (surface tension) forces at the interface is sketched in Fig. 2.8. Initially,
a vertical velocity fluctuation denoted as w, encounters the undeformed interface. A
pressure, p� proportional to ρw2 is exerted on the interface, due to inertia. Once the
interface deforms a capillary stress acting normal to the interface and being propor-
tional to the local curvature, κ and to the magnitude of surface tension, σ resists the
further deformation, thus stabillizing the wave profile. At this stage waves begin to
propagate in order for the interface to restore its original undisturbed position. The
influence of turbulence forcing on the wave dynamics will be discussed in more detail
in Sec. 2.1.5 and Sec. 2.1.6.
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(a) Lower layer

(b) Upper layer

Figure 2.6 – Contour-maps of wall-normal velocity fluctuations, w, on wall–parallel x− y planes
located near the interface, for the case µr = 0.25. Panel (a): x − y plane below the interface, in
the lower layer, at z/h = −0.3. Panel (b): x− y plane above the interface, in the upper layer, at
z/h = 0.3.

2.1.4 Characterization of the wave field

The outcome of the competition between inertial and capillary forces determines the
behaviour of the interface evolution, which is ultimately characterized by the propa-
gation of waves with different amplitudes and wavelengths. This is well represented
by the instantaneous interface shape shown in Fig. 2.1. We measure the root mean

square of the interface elevation, ση = η2(x, y, t)
1/2

, and the typical wave steepness,

σs =
��

1/S
�
S
||∇η||2(x, y, t)dxdy

�
, where η is the amplitude of the interface eleva-

tion and S is the surface area of the interface. Overbars indicate averaging in space
along the two homogeneous directions x and y, while angular brackets indicate av-
erage in time. After a transient in which waves grow starting from the initial flat
interface, ση and σs reach the statistically-steady value reported in Tab. 2.3. Also
listed in the same table is the value of the non-dimensional depth parameter d = kph,
where kp corresponds to the wavenumber of the most energetic wave (discussed be-
low). Reportedly, the wave propagation can be considered a linear process if σs 
 1
[123]. Since this condition is not met in the present case, nonlinear effects can be
significant. In addition, the influence of the fluid layer depth is negligible when d � 1
(deep water approximation). Even in this case, since the condition is not fulfilled, we
cannot a-priori exclude some influence of the top and bottom wall on the dynamics
of interfacial waves. From the results summarized in Tab. 2.3, we notice that the
reduction of µr (i.e. reduction of the viscosity of the upper layer) has a significant
effect on the interface elevation (ση reduces by ≈ 15%), but only a small effect on
the wave steepness (σs reduces by ≈ 5%). This reduction in wave height for the case
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Figure 2.7 – Streamwise wavenumber spectrum of the vertical velocity fluctuations, Eww, averaged
in time, computed on wall-parallel planes x− y below the interface (at z/h = −0.3, panel a) and
above the interface (at z/h = 0.3, panel b). Results for µr = 1.00 and µr = 0.25 are shown
together with the results obtained for the reference single-phase flow.

µr = 0.25 is presumably due to the increased strain rate exerted on the interface in
that case, as it was shown in section Sec. 2.1.2.

Simulation ση/h σs d uc/uτ

µr = 1.00 0.136 0.374 0.5 19.0
µr = 0.25 0.116 0.350 0.5 21.0

Table 2.3 – Overview of the wave field parameters for the variable viscosity ratio simulations.

2.1.5 Frequency spectra

To characteride the propagation of waves at the liquid-liquid interface, we look at the
frequency power spectrum of wave elevation, �Sη (f)�. Spectra are averaged in space,
over all points of the interface, and in time, over Ns = 14 independent realizations
sampled by the same probe. Results are shown in Fig. 2.9 for both µr = 1.00
and µr = 0.25. The frequency axis is normalized by the frequency fp at which the
peak of the spectra is observed (fp does not change by changing µr). The lower
boundary in the frequency range reported in the plot corresponds to the inverse of
the channel crossing time, tc = Lx/uc, where uc is the mean streamwise velocity
at the channel centre (i.e., the velocity at which the interface is advected by the
bulk fluid motion) for the case µr = 1.00. Note that uc (whose value is reported
in Tab. 2.3) is slightly higher for µr = 0.25, due to the viscosity reduction in the
upper layer. The upper boundary in the frequency range reported in the plot is the
frequency at which the interface elevation signal is sampled. Also shown in Fig. 2.9
are the theoretical predictions (solid and dashed lines) obtained in the context of
the Wave Turbulence Theory (WTT). In particular, assuming weak nonlinearities and
negligible dissipation, WTT predicts – for pure capillary waves – a steady state regime
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(a) Turbulent eddy

(b) Dynamic pressure pertubation

(c) Capillary stress response

Figure 2.8 – Wave generation by turbulence. Panel (a) : a turbulent eddy encounters the unde-
formed interface at t = 0. Panel (b): the interface deforms as a result of the dynamic pressure, p�.
Panel (c): capillary stress, τc resists the deformation.

in which energy is transferred from the injection scale down to the dissipation scale
[116, 124]. Far from the injection and the dissipation scales, an inertial regime with
scaling Sη (f) ∼ f−17/6 (dashed line) is predicted. This scaling has been previously
observed in experiments performed using a mechanical wave maker – characterized by
a narrow-band low-frequency forcing, and by a large scale separation between the low-
frequency forcing and the high frequency dissipation region [10] –, but also in numerical
simulations under similar conditions [24]. Note that, for two immiscible fluids of
same density, WTT predicts in the inertial regime the scaling Sη (f) ∼ f−8/3, and not
Sη (f) ∼ f−17/6, as a result of four-wave interactions instead of three-wave interactions
[11]. In our simulations, a wide inertial regime with scaling Sη (f) ∼ f−8/3, is not
clearly observed, for different reasons. First, as mentioned above, the influence of
nonlinearities and dissipation cannot be excluded a-priori. But also, and perhaps of
greater importance, in our system we do not have a clear scale separation between
the scale of energy injection (forcing) and the scale of energy dissipation. Energy is
injected at the interface by turbulent fluctuations over a broad range of scales, from
the larger ones – which scale with the channel height –, down to the smallest ones,
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which include also the smallest scales at which energy is dissipated. At low frequencies
(in the region f/fp < 7), and before the frequencies of energy injection, the spectrum
is compatible with the scaling Sη (f) ∼ f−1, which is expected in case of energy
equipartition among large scales [125, 126], and corresponds to a vanishing average
energy flux through scales. An experimental confirmation of this scaling has been
obtained only recently, via measurements in the absence of gravity [121]. Therefore, the
present numerical configuration seems to offer a convenient setting for the assessment
of important theoretical predictions.
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Figure 2.9 – Frequency power spectrum of wave elevation, �Sη (f)�, averaged in space and time
(over 14 independent realizations sampled by the same probe). Results are shown for µr = 1.00
(blue triangles) and µr = 0.25 (green bullets). The theoretical scalings proposed in literature for
the inertial range, f−8/3 (dashed line), and for the low frequency, large-scale, range, f−1 (solid
line), are also shown for comparison. The behaviour of the interface deformation in time, recorded
at a given location in space, is shown in the inset.

2.1.6 Wavenumber spectra

Wavenumber power spectra of wave elevation computed along the streamwise di-
rection, and averaged in space (only along the spanwise direction, y) and in time,
�Sη (kx)�, are shown in Fig. 2.10. As done for the frequency spectrum, we normalize
the wavenumber axis by the wavenumber kp at which the peak of the spectra is ob-
served (kp = 4π/Lx for both values of µr). In Fig. 2.10, the wavenumber axis ranges
between a lower boundary, which corresponds to the entire domain length, and an
upper boundary kN/kp (highlighted by a vertical dotted line), which corresponds to
the shortest wavelength that can be captured. From geometrical considerations, and
recalling that the extension of the transition layer between the two phases is 4Ch, this
wavelength is λN = 8Ch (corresponding to a completely bent interface), hence giving
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a wavenumber kN = π/(4Ch). Theoretical predictions, mostly derived in the context
of WTT (solid, dashed and dashed-dotted lines) are also shown in Fig. 2.10. For the
reasons already presented above (see the discussion about the frequency spectra), even
in this case we do not observe a wide inertial range with scaling Sη(k) ∼ k−4, as pre-
dicted by WTT. We recall here that, as already mentioned, capillary wave turbulence
between two immiscible fluids of same density is the result of four-waves – and not
three-waves – interactions, therefore leading to Sη(k) ∼ k−4 instead of Sη(k) ∼ k−15/4.
In addition, at high wavenumbers, we observe a steeper slope, which follows the scaling
k−6, as indicated by the dot-dashed line in Fig. 2.10. A similar scaling was reported in
previous experimental observations of wave dynamics at the free surface of a turbulent
open channel flow [127]. This sharp decay of the wavenumber spectrum was ascribed
by the authors to the non-negligible effects of wave nonlinearities and dissipation that
– even though neglected by the theory – can play a role in the propagation of small
scale waves in many cases of practical interest. The observed behaviour can be phys-
ically explained by looking at the dynamics of wave generation by turbulence. We
recall that the dynamics of waves is driven by the balance between destabilizing and
stabilizing forces. Waves are generated and sustained by vertical velocity fluctuations
w� [128, 27], while they are stabilized by surface tension.At the channel center, the
energy of velocity fluctuations is distributed among eddies of different sizes, from the
largest ones, with size of the order of the channel height, to the smallest ones, with
size of the order of the small dissipative scales. The larger eddies are also the most
energetic ones, and thus induce, upon impact on the interface, the larger deforma-
tion. On the other hand, surface tension forces act to restore the interface back to
its equilibrium position and, being proportional to the curvature of the interface, are
stronger for shorter waves. Therefore, assuming that the generation of a wave with
wavelength λ is triggered by a turbulent eddy of equal size, a critical Weber number

exists, Wecr = ρw�2λcr/σ, at which surface tension and inertial forces are balanced.
The critical wavelength, λcr, marks the threshold between longer waves that can grow
in amplitude due to the strong inertial forces, and shorter waves that do not grow
because of the overwhelming effect of the restoring surface tension forces and of the
increasing role of dissipation at large wavenumbers [14, 129, 24, 118]. This consider-
ation is similar to the one postulated by [130] and recalled by [131] to estimate the
maximum size of a drop/bubble that will not break in a given turbulent flow, i.e.

Dcr = 0.725 (ρ/σ)
−3/5 |�c|−2/5, with �c the turbulent kinetic energy dissipation. Using

this semi-empirical prediction, and applying it to the present case in which the char-
acteristic size is the wavelength and not the drop diameter, we obtain the following
estimate for the dimensionless critical wavelength:

λcr = 0.725We−3/5Re−2/5
τ |�c|−2/5 (2.2)

where the value of �c, which is evaluated at the channel center, is extracted from
literature data at the reference Reynolds number [122]. The critical wavenumber,

kcr = 2π/λcr is indicated in Fig. 2.10 by a vertical dotted line. Assuming w�2 � u2
τ , the

critical wavelength (sketched in Fig. 2.1) corresponds to Wecr � 0.71. According to
equation Eq. 2.2, the local increase of the Reynolds number in the upper layer for µr =
0.25 would lead to a slightly different critical wavelength. This difference is however
negligible, since the critical wavelength is evaluated based on the balance between
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Figure 2.10 – Streamwise wavenumber power spectra of wave elevation, �Sη (kx)�, averaged in
space (over the spanwise direction) and in time. Results are shown for µr = 1.00 (blue triangles)
and µr = 0.25 (green bullets). Theoretical scalings proposed in literature for the inertial range,
k
−4, for the low-wavenumber, large-scale range, k−1, and for the high-wavenumber regime, k−6 are

also shown for comparison. The three vertical dotted lines correspond to the large scales forcing ,
kLS , to the critical wavenumber, kcr, at which surface tension and inertial forces are balanced, and
to the numerical cut-off, kN , which identifies the highest wavenumber that can be captured. The
behaviour of the instantaneous interface deformation along the streamwise direction, monitored at
a given spanwise position, is shown in the inset.

inertia and surface tension, therefore implying that a change in We is much more
effective than a change in Reτ . Note indeed that the influence of Reτ on λcr is not only

explicit, via the term Re
−2/5
τ , but also implicit, via �c. Since �c decreases for increasing

Reτ , the two terms – Re
−2/5
τ and |�c|−2/5 – balance each other. The estimated critical

wavelength lies between the characteristic large scale and the dissipation scale. Indeed,
the tendency to depart from the theoretical prediction, k−4, and to follow the scaling
k−6, starts around kcr. Further investigations at different values of the flow parameters
would be required to fully confirm present predictions. We finally observe that at low
wavenumbers, and consistently with what was observed for the frequency spectra, the
numerical results show also a nice agreement with the prediction Sη(k) ∼ k−1 [126].
To the best of our knowledge, the coexistence of these two different scalings – one
for the small scales and one for the large scales – and the characterization of the
transition region from one scaling to the other, was never reported before in a single
experiment/simulation.

2.1.7 Frequency-wavenumber spectra

Combining the temporal and the spatial analysis of the wave field discussed above, we
can obtain the frequency-wavenumber spectra, Sη (f, kx), shown in Fig. 3.11, a quan-
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Figure 2.11 – Frequency-wavenumber spectra of wave elevation, Sη (f, kx), for µr = 1.00 (panel a)
and for µr = 0.25 (panel b). Dashed white line in both panels corresponds to the linear dispersion
relation (LDR) for capillary waves given by equation Eq. 2.4. The black crosses correspond to the
maxima of the numerical results, while the red cross indicates the critical scale, (fcr, kcr), beyond
which surface tension dominates over inertia.

tity that allows us to characterize the wave propagation process (dispersion relation
of waves). According to the classical wave theory [132], capillary wave propagation
occurs at velocities that do depend on the wavelength of each individual wave and
on the magnitude of surface tension. In addition, the liquid-liquid interface in our
experiments is also advected by the mean bulk velocity at the centre of the channel
and therefore the wave frequencies are doppler shifted. To isolate the wave velocity, a
shift η�(x, t) = η(x+ dxshift, t) is applied to the interface signal in the physical space,
where dxshift = uc/dfsamp and dfsamp is the frequency at which the interface eleva-
tion is sampled. By removing the doppler shift, the interface motion is characterized
only by the wave velocities, c(k) = ω(k)/k, where ω = 2πf is the angular frequency.
The theoretical dispersion relation for pure capillary waves in a finite-depth domain,
including also the nonlinear correction [133], yields:

ω2 (k) =
σ

ρ1 + ρ2
k3

�
1 +

�
ak

4

�2
�−1/4

tanh(kh), (2.3)

in which ση can be used instead of the wave amplitude a [12]. In the present case,
finite-depth and nonlinear corrections are found to play a minor role, and the linear
counterpart of the dispersion relation [132] is proven accurate.

ω2 (k) =
σ

ρ1 + ρ2
k3 (2.4)
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This is shown in Fig. 3.11, where the theoretical prediction given by equation Eq. 2.4
is plotted by a dashed line, and compared to the numerical results (contour-maps).
Local maxima of the numerical results are rendered by black crosses. Present findings
indicate that, regardless of the value of µr, spectral energy is focused around the
theoretical prediction, equation Eq. 2.4. In addition, the critical scale (red cross)
is localized near the point where the spectral energy starts decreasing sharply, in
agreement with the previous observations that the energy of waves drops significantly
at wavenumbers larger than the critical one, kcr.

2.1.8 Isotropy of the wave field

We here examine the isotropy of the wave based on the behaviour of the time-
averaged two dimensional wavenumber spectra, �Sη (kx, ky)�, shown in Fig. 2.12.
In this picture, the x axis represents the normalized wavenumbers in the stream-
wise direction, kx/kp, while the y axis represents the normalized wavenumbers in
the spanwise direction, ky/kp. The two dimensional spectra show that, for both
µr = 1.00 and µr = 0.25, wave energy is concentrated in a circular-like region of ra-
dius k =

!
(kx/kp)2 + (ky/kp)2 < 20, only slightly elongated along the kx axis. This

indeed indicates that wave propagation does not have a clear preferential direction.

(a) Matched Viscosity - µr = 1.0
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Figure 2.12 – Two dimensional wavenumber spectra of wave elevation, �Sη (kx, ky)�, averaged in
time, for µr = 1.00 (panel a) and µr = 0.25 (panel b). The black dashed line refers to circles of
radius equal to the Hinze-Kolmogorov critical length scale, kcr.

A discussion on the effects of the domain size, together with a discussion on the effects
of shrinkage and coarsening of the phase-field, for the simulations performed in this
work is included in Appendix B.

2.1.9 Time scales of the wave motion

In this section, we describe and quantify the time scales of wave motions, namely the
time scale of linear wave oscillations, τl = 1/ω; the time scale of the nonlinear interac-

tions among waves, τnl; and the dissipative time scale of waves, τdiss =
�
k2(ν1 + ν2)

�−1

[134]. Note that, beside being useful to characterize and parameterize the wave field,
this analysis serves also the purpose to establish the possibility of applying the WTT
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Figure 2.13 – Behaviour of the different time scales for waves motion as a function of the wavenum-
ber. The nonlinear interaction timescale, τnl, obtained from current simulations is shown by the
symbols (triangles for µr = 1.00 and circles for µr = 0.25). The solid black line refers to the
linear propagation time, τl, while the dot-dashed lines refer to the dissipation time, τdiss (eval-
uated as τdiss = [k2(ν1 + ν2)]−1, and particularized here for the two cases with µr = 1.00 and
µr = 0.25). The theoretical prediction for the nonlinear interaction timescale, τnl ∼ k

−3/4, is
shown by the black dashed line. The time scale corresponding to large-scale forcing, τLS = 2h/uτ ,
is also indicated on the y-axis of the figure. The vertical dotted lines, from left to right, indicate
the wavenumber associated with i) the large scale forcing, kLS , ii) the critical Kolmogorov-Hinze
scale, kcr, and iii) the numerical cut-off, kN .

– which is based on the assumption of the time scale separation, τl 
 τnl 
 τdiss
– to the present case. To estimate the nonlinear time scale, we follow the approach
suggested in previous literature studies ([132, 135, 136, 24]), and based on the eval-
uation of the broadening of the frequency-wavenumber spectrum (Fig. 3.11) around
the linear dispersion relation: τnl = 1/∆ω(k∗), with ∆ω(k∗) the spectrum width at
the given wavenumber k∗. In particular, ∆ω(k∗) is obtained based on the root mean
square value of a Gaussian fit used to approximate the behaviour of Sη(f, k

∗) [24].
Repeating this calculation for all k, we obtain τnl(k). The behaviour of the different
time scales is shown in Fig. 2.13. The assumption τl 
 τnl, between the linear (blue
solid line) and the nonlinear (circle symbols) time scales, is valid for moderate values
of k. The two time scales are of the same order of magnitude only for large scale
motions (k/kp < 3). In the inertial range, τnl follows the scaling τnl ∼ k−3/4 (dashed
line), as predicted by WTT for capillary waves. Regarding the dissipative time scale
(dot-dashed lines), we observe that it is in general larger than τnl, but it becomes
comparable around k/kp > 20 (i.e. about the Hinze-Kolmogorov scale). This is a
further indication that in the present case the theoretical power law scaling predicted
by WTT cannot be observed over a broad range of wavenumbers.
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2.1.10 Energetics of turbulence

In this section, the mean and turbulent kinetic energy budgets in the two-layer oil-
water flow configuration are analysed. The so-called energy-box analysis [137, 138]
is applied to obtain a decomposition of the different energy contributions in each of
the two fluid layers. This technique, which was originally developed for the study of
the global energy balance in a single-phase turbulent flow, is based on the space- and
time- averaging of the energy budget terms over the entire computational domain.
Consequently, the analysis does not account for energy fluxes through deformable
interfaces between different fluids and thus it is not a-priori suited for the description
of multiphase flow systems. However, in the case of multiphase flow systems, an
extension of the original approach that is able to account for the energy budget of
each individual fluid phase through phase-averaging can be applied [64, 139]. Within
this approach interfacial energy fluxes can also be accounted for. This approach has
also been adopted by Roccon et al. [114] for the study of the energy balance in a
lubricated two-layer channel flow configuration. The same approach will be used here,
since it provides a simple and meaningful visual characterization of the energy fluxes
in the fluid system.

Energy budget for single-phase flow

The first step towards the computation of the energy-box is to compute the energy
budget of the flow. For this purpose, it is necessary to first perform a standard
Reynolds decomposition of the flow field [140]. For a genericl field, f(x, y, z, t), the
Reynolds decomposition is expressed, as follows:

f(x, y, z, t) = �f(z, t)�+ f �(x, y, z, t) (2.5)

Angular brackets, �·�, indicate averaging in space, across the two homogeneous direc-
tions of the channel, x and y. �f(z, t)� is the mean and f �(x, y, z, t) is the fluctuating
part of the field f(x, y, z, t). Note that time- and space-averaging of the hydrody-
namic fields, is possible thanks to the ergodic theorem, according to which, under
conditions of homogeneity and/or stationarity, probability averages can be replaced
by time and/or space averages [141]. In this way, a mean (MKE) and a turbulent
kinetic energy (TKE) contribution to the total kinetic energy are defined, as follows:

MKE =
1

2
�ui��ui� (2.6)

TKE =
1

2
u�
iu

�
i (2.7)

with repeated indices implying summations over the three directions i = 1 (x), i = 2
(y) and i = 3 (z). A transport equation for the MKE can be obtained via multiplying
the Navier-Stokes equations by the mean velocity field and averaging in space and in
time [142].
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D[MKE]

Dt
= −[�ui��∂p

∂x
�]� �� 	

Πm

+

�
�u�

iu
�
j�
∂�ui�
∂xj

�
� �� 	

Pk

−
�
∂(�u�

iu
�
j��ui�)

∂xj

�
� �� 	

Tm

+

�
1

2Reτ

∂2�ui�2
∂x2

j

�
� �� 	

Dm

−
�

1

Reτ

∂�ui�
∂xj

∂�ui�
∂xj

�
� �� 	

�m

(2.8)

Each term in the above equation accounts for a different contribution to the energy
balance and can act either as a source, a sink or an internal transport term. The
internal transport terms have no net contribution to the MKE budget and act purely
as energy redistribution terms. In particular, the left hand side represents the material
rate of change of MKE, which is equal to zero when the flow is at steady state. The only
source term in the equation is Πm, which represents the power injected in the system
via the mean pressure gradient. The sink terms include Pk and �m, which represent
the production of TKE (at the expense of MKE) and the viscous dissipation by the
mean flow, respectively. The other two terms, namely Tm and Dm are redistribution
terms, which represent the work done by the Reynolds stresses, �u�

iu
�
j� and the viscous

diffusion of MKE, respectively. The transport equation for the TKE can be obtained
yvia multiplying the Navier-Stokes equations by the fluctuating velocity field and
averaging in space and time, as follows:

D[TKE]

Dt
= −

�
∂�p�u�

i�
∂xi

�
� �� 	

Πk

−
�
�u�

iu
�
j�
∂�ui�
∂xj

�
� �� 	

Pk

−
�
1

2

∂�u�
iu

�
iu

�
j�

∂xj

�
� �� 	

Tk

+

�
1

2Reτ

∂2�u�
iu

�
i�

∂x2
j

�
� �� 	

Dk

−
�

1

Reτ

∂u�
i

∂xj

∂u�
i

∂xj

�
� �� 	

�k

(2.9)

Similarly, the left hand side represents the material rate of change of TKE, which
at steady state is zero. The only source term in the equation is Pk, which is the
TKE production term and is the same as the one in the MKE balance, only here it
acts as a source rather than a sink term. The only sink term is �k, which represents
the turbulent viscous dissipation. All the rest of the terms, namely Πk, Tk and Dk

are redistribution terms, which represent pressure diffusion, turbulent diffusion and
viscous diffusion, respectively.
Thanks to the averaging across the x and y directions and in time, the dependence of
each term in Eq. 2.8 and 2.9 is a function of only the channel wall-normal direction,
z. Therefore, integrating each equation over the z direction we obtain the following
integral balance equations:

Pk +Πm + �m = 0 (2.10)
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−Pk + �k = 0 (2.11)

Note that only the source and sink terms ”survive” the integration, since the net
contribution of every redistribution term, over the whole domain, is zero. Adding
equations Eq. 2.10 and 2.11 by parts, we obtain the overall balance for the total
kinetic energy, which states that the entire power injected into the system via the
work of the pressure forces is ultimately dissipated by viscosity.

Πm + �m + �k = 0 (2.12)

Extension for two-phase flow

The same mathematical procedure to obtain transport equations for the MKE and
TKE can be formally applied in the case of a multiphase flow. In this case, analogous
energy balance equations are obtained, as follows:

D[MKE]

Dt
= Pk +Πm − Tm +Dm + �m + ψm (2.13)

D[TKE]

Dt
= −Pk +Πk + Tk +Dk + �k + ψk (2.14)

Notice that the presence of an interface inside the flow, results in the appearance of two
additional terms, ψm and ψk. The first of the two terms, ψm represents the work of
the surface tension forces on the mean flow, while the second, ψk the work exchanged
between the interface and the fluctuating velocity field via the surface tension forces
[143]. These terms originate from the product between the surface tension force term in
the Navier-Stokes equations and the mean and fluctuating velocity fields, respectively.

ψm = �ui� 3Ch√
8We

∂�τ cij�
∂xj

(2.15)

ψk = u�
i

3Ch√
8We

∂τ c �
ij

∂xj
(2.16)

Integrating along the wall-normal direction, z, integral balance equations are obtained
as for the single-phase case.

Pk +Πm + �m + ψm = 0 (2.17)

−Pk + �k + ψk = 0 (2.18)

In statistical steady state conditions, the average value of the interface area remains
constant, which means that the total work done by surface tension forces is zero [144].

ψm + ψk = 0 (2.19)
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Therefore, the resulting balance for the total kinetic energy is the same as the one for
the single-phase flow.

Πm + �m + �k = 0 (2.20)

Phase-averaged energy-box for tow-phase flow

The above procedure for obtaining balances for the two-phase flow may be mathemat-
ically correct, but, unlike in the single-phase flow scenario, it lacks a rigorous physical
meaning in the multiphase flow setting. The reason is that the space-averaging pro-
cedure does not account for the presence of the interface and therefore no distinction
is drawn between the energy contributions from each individual fluid phase. This is
indeed problematic and can even lead to erroneous results, in particular when the
two fluids have different thermophysical properties such as viscosity and density. The
best alternative to this approach is to take into account the multiphase nature of the
system via a phase discrimination procedure [64, 139]. This so-called phase-averaging
technique is presented in this section.

In order to derive the phase-averaged energy balance equations, the phase-field vari-
able, φ is used to define a local concentration, cl for each liquid.

c1 =
1 + φ

2
, c2 =

1− φ

2
(2.21)

where, in accordance with the notation used so far, the subscript l = 1 is used to
identify the water phase and the subscript l = 2 the oil phase. Multiplying the MKE
and TKE balances, Eq. 2.13 and 2.14 by the two local concentrations and averaging
along the x, y directions and in time we obtain energy balance equations for each
individual fluid layer.

D[MKE]l
Dt

= Pk,l +Πm,l − Tm,l +Dm,l + �m,l + ψm,l (2.22)

D[TKE]l
Dt

= −Pk,l +Πk,l + Tk,l +Dk,l + �k,l + ψk,l (2.23)

where the index l is used to denote phase-averaged quantities obtained via taking the
product of instantaneous quantities with the local concentration, cl and averaging in
space. The physical meaning of each term remains the same as in the single-phase
flow scenario, but each contribution now refers to a specific fluid layer. This means
that upon integrating along the z direction, the integral balance equations for each
layer must also contain the contributions of the turbulent and viscous redistribution
terms, T and D, since these contributions are now only evaluated in a portion of the
domain.

Pk,l +Πm,l + Tm,l +Dm,l + �m,l + ψm,l = 0 (2.24)
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−Pk,l +Πk,l + Tk,l +Dk,l + �k,l + ψk,l = 0 (2.25)

Summing the respective balances, the redistribution terms cancel out and we obtain
the global MKE/TKE integral energy balances for the two-fluid system.

Pk,1 + Pk,2� �� 	
Pk

+Πm,1 +Πm,2� �� 	
Πm

+ �m,1 + �m,2� �� 	
�m

+ψm,1 + ψm,2� �� 	
ψm

= 0 (2.26)

−Pk,1 − Pk,2� �� 	
−Pk

+ �k,1 + �k,2� �� 	
�k

+ψk,1 + ψk,2� �� 	
ψk

= 0 (2.27)

from where it becomes clear that adding the two last equations by parts again results
to the total energy balance given by Eq. 2.20.

Energy-box analysis of oil-water flow

In Fig. 2.14 the energy-box representation of the phase-averaged energy contributions
in the two fluid phases for both MKE and TKE is presented. The results correspond
to averages obtained with the flow fields at steady state. Fig. 2.14a corresponds to
the matched viscosity case, µr = 1.00 and Fig. 2.14b to the unmatched viscosity case,
µr = 0.25. The dashed box on the left represents the MKE, while the one on the right
the TKE contributions. Within each dashed box there is a box for each of the two
layers, water at the top and oil at the bottom. Arrows indicate the various energy
exchanges between the two layers. Green arrows represent the injected power, due to
the action of the mean pressure gradient. Red arrows represent the energy dissipation
by the mean and the fluctuating flow. The ciel arrows represent the TKE production.
The dark blue vertical arrows represent the energy redistribution between the two
layers. The redistribution terms of MKE are viscous diffusion and turbulent diffusion
and have been collected to a single term, Fm,l, for each phase. The redistribution
terms of TKE are viscous diffusion, turbulent diffusion and pressure diffusion and
have been collected in the term, Fk,l, for each phase. Finally, the additional dashed
box in the middle represents the energy of the interface. The orange arrows represent
the energy flux from the mean flow field to the fluctuating flow field via the interface.
All contributions are normalized based on the value of the injected power, Πm, in such
a way so that Πm = 100%.
In the matched viscosity case, the energy is distributed equally among the two layers,
while the mean work done by the redistribution terms is equal to zero. Indeed, this
is expected since the two fluid have the same thermophysical properties and occupy
domains with the same volume, while the capillary waves at the interface are symmetric
around the mean interface level. The interfacial term is a very small amount of the
total energy injected into the system, ψm = 1.38% and acts as a redistribution term
extracting energy from the mean flow and transferring it to the fluctuating flow [114].
The total energy balance expressed by Eq. 2.20 is respected within an error of the
order of 1%. In the unmatched viscosity case, more of the injected energy flows to
the top layer than to the bottom layer. This is due to the significantly higher mean
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velocity in the less viscous fluid as shown in Fig. 2.2a. The TKE production is also
higher in the top than it is in the bottom layer. Moreover, the energy dissipated by
the mean flow is higher in the bottom than in the top layer, while the opposite holds
for the energy dissipated by turbulence. Indeed, the high viscosity in the bottom
layer leads to higher energy losses, while thanks to the increase in turbulence activity
the low viscosity layer loses more energy by the fluctuating flow field. The energy
redistribution terms are responsible for small energy fluxes between the layers, while
their net contribution is very close to zero. Finally, the interfacial term, ψm = 1.63%
is of similar magnitude as in the matched viscosity case.

2.1.11 Energetics of waves

In this section, we examine the energy content of the capillary wave field at the interface
between the two layers. In particular, we look at the potential and kinetic energy of
the capillary waves. We then look at a way of obtaining the total energy, by means of
associating the total energy of the wave field to the power spectra of wave elevation via
the energy spectrum. For a known theoretically predicted dissipation rate at different
wave scales we can then estimate the dissipated power spectra and deduce the total
dissipated power by the wave field via an integration over all wave scales. Finally, a
method for obtaining the mean energy flux across wave scales based on the balance of
wave energy expressed in the wavenumber space is proposed.

Power spectra of wave elevation

Before proceeding to the analysis of the wave energy, it is here considered useful to in-
clude the definition of the power spectrum of wave elevation, Sη. The power spectrum
of wave elevation (also called averaged periodogram in oceanographic contexts [146])
is computed either in space or in time from the DFT (Discrete Fourier Transform) of
the discretized wave elevation signal, η(x, t), assuming a number of N discrete points,
as follows:

Sn
η =

1

N2
[|ηcn|2 + |ηcN−n|2] , n = 1, 2, ..., N/2− 1 (2.28)

S0
η =

1

N2
|ηc0|2 (2.29)

SN/2
η =

1

N2
|ηcN/2|2 (2.30)

where |ηcn| is the modulus of the DFT amplitudes. The sum of all the components of
the spectrum is equal to the variance of the wave elevation signal.

N/2#
n=0

Sn
η =

1

N

N−1#
j=0

|ηj |2 (2.31)

The range (bandwidth) of the spectrum in terms of wave frequencies (or wavenumbers)
is limited by the Nyquist sampling theorem [147], which determines the maximum
frequency (or wavenumber) to half the sampling frequency, fmax = 1

2dt (kmax = π
dx )

and the overall length of the signal, T (Lx), which determines the lowest frequency,
fmin = 1

T (kmin = 2π
Lx

).
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(a) Matched viscosity - µr = 1.00

Water (top)Water (top)

MKE TKE
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(b) Unmatched viscosity - µr = 0.25

Water (top)Water (top)

MKE TKE
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Figure 2.14 – Phase-averaged energy-box for the matched viscosity case, µr = 1.00 (a) and the
unmatched viscosity case, µr = 0.25 (b). The two dashed boxes contain the power contributions
to the MKE (left) and the TKE (right). Within each dashed box a rectangle represents each of
the two fluid layers, top layer (water) and bottom layer (oil). All contributions are expressed as
a percentage of the total power input, Πm, entering the system and here represented by green
arrows. The mean and fluctuating viscous dissipation, �m and �k, respectively, are represented by
red arrows. The TKE production terms, Pk, are represented by ciel arrows. Finally, the interfacial
contribution, ψm, is represented by orange arrows. The dark blue arrows linking the two layers
represent the energy fluxes between the two layers, due to viscous, Dm,Dk, turbulent Tm,Tk and
pressure, Πk, diffusion, gathered in a single net redistribution term, Fm,Fk.
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1

T
< f <

1

2dt
or

2π

Lx
< k <

π

dx
(2.32)

Capillary wave energy and wave energy spectrum

In the following, the wave energy is defined and related to the power spectra of wave
elevation. The potential wave energy per unit surface area, V for capillary waves
between two fluids with densities, ρ1 and ρ2 [132], is given by:

V =
1

4
σk2η2 (2.33)

while the kinetic wave energy per unit surface area, T for capillary waves is given by:

T =
1

4
(ρ1 + ρ2) k

−1η̇2 (2.34)

According to the linear wave theory [148], the speed of the wave oscillation, η̇ is related
to the angular wave frequency, ω via the formula, η̇ = ωη. Substituting from the linear
dispersion relation, Eq. 2.4, an equality is obtained between the two types of wave
energy.

T = V =
1

4
σk2η2 (2.35)

The total wave energy, E is the sum of the potential and the kinetic wave energy.
Therefore, the total wave energy per unit surface area and density for capillary waves
is given by:

E =
1

2

σ

ρ
k2η2 (2.36)

where, in this case ρ = ρ1 = ρ2.

The wave energy spectrum, Ek(k), can be associated to the power spectrum of wave
elevation, Sη(k) [145, 149], as follows:

Ek(k) =
1

2

σ

ρ
k2Sη(k) (2.37)

The total wave energy can then be obtained via the integration of the wave energy
spectrum over the entire bandwidth of the wave signal:

E =

� kmax

kmin

Ek(k)dk =

� kmax

kmin

1

2

σ

ρ
k2Sη(k)dk (2.38)

Dissipation power spectrum

Dissipation of wave energy can occur in several ways. The first way is through friction
with a solid boundary. In our case, as discussed above, the waves are not influenced
by the two walls at z = ±1 and their propagation is that of waves over infinite depth.
Therefore, considering also that the domain is unbounded along the x and y directions,
no dissipation of wave energy due to friction with solid boundaries occurs. The only
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other possible source of dissipation of wave energy is dissipation taking place at the
surface. In this case, the classical wave theory [132] predicts a scaling of the dissipation
rate with the wave scale.

Γ(k) = 2νk2 (2.39)

Note that this scaling applies only for the case of uncontaminated surface and is often
in contrast to what is found in experiments, where the presence of surfactants leads
to a surface that acts as an inextensible film with zero tangential velocity [150, 145].
The wave amplitude for linear waves then decays exponentially as:

η(t) = η0e
−Γt (2.40)

Eq. 2.39 shows that the dissipation rate is proportional to the square of the wavenum-
ber, which indicates that shorter waves decay much faster than longer waves. The
wave dissipation spectrum, Dη(k) can then be defined as:

Dη(k) = Ek(k)Γ(k) (2.41)

The dissipation spectra for the two cases of matched and unmatched viscosity are
shown in Fig. 2.15. For both cases, the dissipated power density increases as the
wavenumber increases in the low wavenumber range, plateaus in the intermediate
wavenumber range and then drops in the high wavenumber range. Note that based on
the above the scaling followed should be Dη(k) ∼ k4Sη(k). Indeed, Fig. 2.15 shows
that the slopes k3, k0 and k−2 are observed in the corresponding ranges of the k−1,
k−4 and k−6 of the wavenumber spectra.
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Figure 2.15 – Dissipation spectra, �Dη (kx)�, averaged in space (over the spanwise direction) and
in time. Results are shown for µr = 1.00 (blue triangles) and µr = 0.25 (green bullets).
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The total power dissipated by the waves can also be estimated by integrating the
dissipation spectra over the entire bandwidth:

D =

� kmax

kmin

Dη(k)dk =

� kmax

kmin

2νk2Ek(k)dk (2.42)

Energy flux across wave scales

Energy is injected into the waves due to forcing by the surrounding turbulent flow
field. Therefore, a broad-band forcing due to fluctuations of the hydrodynamic field
over multiple scales takes place. This is a scenario that is indeed much different to
the one assumed by WTT, where dissipation and forcing scales are clearly separated
and a constant energy flux occurs across the inertial range of the wave spectrum [115].
Similarly, in most experiments with capillary wave turbulence power is mechanically
injected into the waves at a narrow-band frequency corresponding to the oscillation
frequency of a wave maker [10, 12, 118]. It therefore becomes evident that since both
dissipation and forcing occur across multiple wave scales, the hypothesis of a constant
energy flux across different scales is questionable, since energy can be injected or
extracted from different parts of the wave spectrum in a non-uniform manner. The
energy balance in the wavenumber space, can be expressed as:

∂Ek

∂t
+

∂�(k)

∂k
= −Dη(k) + Ft(k) (2.43)

where the additional term of the forcing power spectrum due to turbulence, Ft(k)
has been added to the right hand side of the original balance proposed by Nazarenko
et al. [135]. The forcing term is associated to the energy provided to the waves by
the turbulent flow field. The kinetic energy per unit volume and unit density of the
vertical turbulent velocity fluctuations is given by:

Et =
1

2
w2 (2.44)

Therefore, assuming that the energy passed to the waves is proportional to the available
kinetic energy of the fluctuating flow field, the turbulent forcing power spectrum can
be expressed as:

Ft(k) ∼ 1

2
Eww(k) (2.45)

where Eww(k) is the power spectrum of the vertical velocity fluctuations in the vicinity
of the interface.

Finally, since the time derivative of the energy spectrum at statistical steady state is
equal to zero, the energy flux at a specific wavenumber k∗ can be obtained from the
integration of the wave energy balance, as follows:

�(k∗) =

� kmin

k∗

[Dη(k) + Ft(k)] dk (2.46)
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2.2 Surface tension effects

So far, the effect of the viscosity on the turbulent flow and interface deformation
properties has been examined. In particular, it was found that for moderate values
of the viscosity ratio, µr ∼ O(1) and for an interface that is equidistant from the
two channel walls, the wave dynamics are not strongly affected by viscous effects.
Overall, an unmatched viscosity between the two liquid layers leads to a reduction
of the wave amplitude, presumably due to the development of strain at the interface,
while wave spectra, both in time and in space, show that the wave interaction with
the surrounding turbulent flow, as well as the wave-wave interaction at moderate and
small wave scales are almost unaffected by the change of µr. Indeed, it was observed
that the wave dynamics at intermediate scales are mainly driven by the interaction
between capillary and inertial forces. In particular, the balance between these forces
at the critical length scale acts as a threshold between longer waves, which grow in
amplitude and shorter ones that do not. In this part of the study, we aim at observing
the effect of modifying this balance, by means of reducing surface tension through an
increase of the Weber number.

2.2.1 Simulation setup

We focus on the effect of the Weber number. More specifically, we perform simulations
at different Weber numbers, while keeping all other simulation parameters constant. In
particular, two additional simulations have been performed at twoWeber numbers that
are higher compared to the reference one, We = 1.0, namely We = 1.5 and We = 2.0.
The same reference Reynolds number Reτ = 300 and matched viscosity ratio µr = 1.00
have been used for all simulations. The simulation parameters are summarized in Tab.
2.4. Note that ∆+

x , ∆
+
y and ∆+

z are the streamwise, spanwise and wall-normal grid
spacings respectively, expressed in wall units. The selected resolution is adequate for
resolving the smallest turbulent flow scales and to guarantee an accurate depiction
of the interfacial layer. Considering that the rest of the parameters are fixed for all
simulations, the increase of the Weber number can be directly interpreted as a decrease
of the surface tension between the liquids.

Simulation Reτ µr ∆+
x ∆+

y ∆+
z

We = 1.0 300 1.00 7.37 7.37 1.84
We = 1.5 300 1.00 7.37 7.37 1.84
We = 2.0 300 1.00 7.37 7.37 1.84

Table 2.4 – Overview of the main simulation parameters at variable Weber number.

2.2.2 Interface statistics

In the left column of Fig. 2.16 we can see snapshots of the instantaneous interface
deformation over the x−y plane, obtained at steady state, for the three different cases.
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It is clear that as the Weber number increases, the deformation is enhanced and is
characterized by the presence of smaller scale structures. A quantitative description of
this effect can be obtained by means of estimating the curvature of the wave field. The
interface curvature is defined as κ = ∇·n, where n is a vector normal to the interface.
If the wave slope is small, ∇η << 1 then the interface curvature can be approximated

as κ ≈
�

∂2η
∂x2 + ∂2η

∂y2

�
. Maps of the absolute value of curvature, |κ|, corresponding to

the elevation snapsots in the left column of Fig. 2.16 are shown in the right column
of the same figure. Indeed, we observe that regions of high curvature become much
more pronounced as the Weber number increases, indicating rapid changes in wave
steepness.
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Figure 2.16 – Instantaneous interface elevation snapshots at t
+ = 4000 (left) and corresponding

absolute curvature maps (right) for the three cases: We=1.0, We=1.5 and We=2.0.

The values of the root mean square of the interface elevation, ση and the typical wave
steepness, σs for each case are summarized in Tab. 2.5. The percentage increase in ση

with respect to theWe = 1.0 case is 8% and 15.4% forWe = 1.5 andWe = 2.0, respec-
tively. The percentage increase in σs with respect to the We = 1.0 case is 28.3% and
56.7%, respectively. This large increase in wave steepness and the relatively smaller
increase in wave amplitude indicates that shorter waves grow in amplitude as the We-
ber number increases, which is also in agreement with the qualitative observation of
the wave field reported in Fig. 2.16.

A uni-dimensional representation of the instantaneous interface elevation signals across
the streamwise direction, x at a fixed spanwise position, y = Ly/2, is shown in Fig.
2.17 (top left). In Fig. 2.17 (bottom left) the time evolution of the interface elevation
at a fixed x, y position is also shown. In both cases, we can observe a noticeable yet
not too pronounced increase of the wave amplitude together with a significant increase
of the wave slope, as the Weber increases. Finally, the probability density function of
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Simulation ση/h σs
kcr

kp

We = 1.0 0.136 0.374 17.0
We = 1.5 0.147 0.480 21.7
We = 2.0 0.157 0.586 25.8

Table 2.5 – Overview of the wave field parameters for the variable Weber number simulations.

the interface elevation normalized by its standard deviation, ση, for all three cases is
shown in Fig. 2.17 (right). The distribution is Gaussian in every case, indicating that
the capillary waves are perfectly symmetric around the mean interface level, z = 0.

-1

 0

 1

 0  4  8  12  16  20  24

η
 (

x)
 /

 h

x / h

We=1.0
We=1.5
We=2.0

-1

 0

 1

 0  0.2  0.4  0.6  0.8  1

η
(t

) 
/ 

h

t / tc

We=1.0
We=1.5
We=2.0

10
-4

10
-3

10
-2

10
-1

10
0

-4 -2  0  2  4

P
D

F
 (

 η
 /

 σ
η
 )

η / σ
η

We=1.0
We=1.5
We=2.0

Gaussian

Figure 2.17 – Left (top): Interface elevation signal as a function of the streamwise direction, x at
a fixed instant in time. Left (bottom): Interface elevation signal as a function of time, t at a fixed
x, y position in space. Right: Probability density function of the interface elevation normalized by
the root mean square of the interface elevation for each case. The Gaussian distribution with zero
mean and unit standard deviation is also shown with a black dashed line.

The critical wavelength, λcr depends on the Weber number according to equation Eq.
2.2. Indeed, the critical wavelength should decrease as the Weber number increases,
since surface tension forces become weaker compared to inertial forces, which retain
their original magnitude. The values of the critical wavenumber, kcr, for each case
are summarized in Tab. 2.5. Wavenumber power spectra of wave elevation, �Sη (kx)�,
are shown Fig. 2.18 (left). The spectra seem to be unaffected at larger scales, beyond
the turbulent forcing range, where the k−1 scaling is always observed over the same
range of wavenumbers. On the other hand, the spectra inside the turbulent forcing
range vary with the increase of the Weber number. In order to better appreciate
this change, the compensated power spectra �k4xSη (kx)� are also shown in Fig. 2.18
(right), where the k−4 scaling appears as a horizontal line. Indeed, we observe that the
horizontal range of the spectra is extended as the Weber number increases following
the corresponding shift of the critical wavenumber to the right. This is in agreement
with the observation that the transition of the spectral slope occurs at the threshold
between longer waves that grow in amplitude, due to the predominance of inertial
forces and shorter waves that do not grow in amplitude, due to the predominance of
surface tension forces.
Frequency-wavenumber spectra of wave elevation, Sη (f, kx), for the three cases are
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Figure 2.18 – Left: Streamwise wavenumber power spectra of wave elevation for the three cases.
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4.

reported in Fig. 2.19. We observe that in every case the the maximum of the wave
energy is localized around the LDR for capillary waves. However, the increase of the
Weber number results in shorter, high-frequency waves becoming energetic.

2.3 Conclusions

We have reported computational results on the propagation of capillary waves trav-
elling at the interface between two immiscible liquid layers that flow inside a plane
channel. Simulations are based on a combined pseudo-spectral DNS-PFM method,
which gives us the possibility to describe the action of surface tension forces, and
therefore to track the dynamics of the two different liquid layers and of the separating
interface. The two liquid layers are driven by an imposed mean pressure gradient
and have the same thickness. Two parametric studies were performed, the first at a
variable viscosity ratio between the two liquid layers, so to study the effects of vis-
cosity and the second at a variable Weber number, so to study the effects of surface
tension. The focus of this work was primarily on the full space and time-resolved
spectrum of wave elevation and secondarily on the properties of the turbulent flow
field. The viscosity mismatch between the two liquids was found to have a small in-
fluence on the properties of the wave field for the examined range of viscosity ratio
i.e. down to µr = 0.25. Our results show that the frequency spectra exhibit only a
short inertial regime characterized by the scaling Sη(f) ∼ f−8/3, as predicted by the
Wave Turbulence Theory (WTT). The main reason for the short inertial regime is the
adopted computational setup, which is characterized by realistic flow conditions that
are different from the simplified assumptions set in the context of WTT (for exam-
ple the absence of a clear scale separation between energy injection and dissipation,
and the importance of wave nonlinearity, which is considered weak in the context
of the theory). At lower frequencies, and confirming recent theoretical and experi-
mental observations, we find a scaling Sη(f) ∼ f−1, compatible with the large-scale
energy equipartition assumption. Even the streamwise wavenumber spectrum – for
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Figure 2.19 – Frequency-wavenumber spectra of wave elevation, Sη (f, kx), for the three cases.
Dashed white line corresponds to the linear dispersion relation (LDR) for capillary waves. The
black crosses correspond to the maxima of the numerical results, while the red crosses indicate the
critical scale, (fcr, kcr), beyond which surface tension dominates over inertia.

the same reasons already mentioned above – does exhibit only a short inertial regime
with scaling Sη(k) ∼ k−4, as predicted by WTT. Interestingly, we find a much steeper
scaling, Sη(k) ∼ k−6, at wavenumbers beyond a critical scale kcr, which corresponds
to the characteristic wave size at which surface tension and inertial forces balance. At
low wavenumbers, the theoretical scaling Sη(k) ∼ k−1, consistent with the large-scale
energy equipartition assumption, is recovered. Finally, joint frequency-wavenumber
spectra have shown that the dispersion relation is in good agreement with the the-
oretical prediction, ω(k) ∼ k3/2. The energy budget of the flow was also analysed
based on the phase-averaged energy-box technique. The results showed that while the
distribution of the mean and turbulent energies is symmetric in the matched viscosity
case it becomes asymmetric in the unmatched viscosity case. In particular, the tur-
bulent kinetic energy production increases in the top layer with the lowered viscosity
and so does the energy dissipation by the fluctuating flow field. The opposite is true
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for the dissipation of energy by the mean field, which is higher at the bottom layer
with the high viscosity compared to the top. In both cases, the energy flux towards
the interface is small and amounts for approximately 2% of the energy injected into
the system due to the mean pressure gradient. The energy injected from the flow field
to the interface is passed to the waves. Capillary wave energy is of two types potential
and kinetic, the two being equal for the idealized linear wave case. The spectrum of
the total energy can thus be estimated. The dissipation power spectra have also been
computed, assuming the classical model for the wave amplitude dissipation rate. The
results show a scaling according to Dη(k) ∼ k4Sη(k). Finally, a modified wave energy
balance equation in the wavenumber space is proposed with the addition of an extra
term to account for the presence of forcing across multiple wave scales. The forcing
term is then associated to the turbulent spectra of the vertical velocity fluctuations
near the interface mean position. In contrast to the viscosity, the change of surface
tension via the modulation of the Weber number has a striking effect on the interface
dynamics. The root mean square of the interface elevation, as well as the wave steep-
ness and curvature, increase significantly with the increase of Weber number, which
given that all the rest of the parameters of the problem remain fixed is equivalent to
a decrease of surface tension. The Kolmogorov-Hinze scale, although not affected by
the change of viscosity (Reynolds number), it is affected significantly with the change
of Weber number, since it expresses the balance between surface tension and inertial
forces. The increase of the Weber number leads to a shift of kcr to smaller scales. The
results suggest that the transition between a mild and a steep decrease of wave energy
with the wavenumber follows the increase of the critical wavenumber, kcr.
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Channel flow of a thin laminar

layer over a thick turbulent layer

Reproduced in part from:

Giamagas, G., Zonta, F., Roccon, A. & Soldati A. (2023) Turbulence and Interface Waves in Strati-

fied Oil–Water Channel Flow at Large Viscosity Ratio. Flow Turbul. Combust.

Oil-water flows are observed in a number of energy applications and environmental
phenomena, from the transport of oil and water over long distances in pipelines [151,
152, 153] to the prevention and mitigation of pollution in oil spill accidents [154, 155].
An important feature of oil-water flows is the small density difference between the two
fluids. If, on one side, this density difference does not significantly alter the exchange
of momentum and energy in oil-water interactions, on the other side, it promotes
the occurrence of stratified configurations in which the oil – which is slightly lighter
– flows on top of water. This aspect has a huge impact on the resulting flow and
on its control and manipulation (to design efficient oil/water separators, or to devise
strategies to mitigate pollution from oil-spill risks). Indeed, the presence of a thin layer
of oil, characterized by a density similar to water, but by a much larger viscosity, can
largely modify the pressure drop required to drive the flow inside pipelines in industrial
applications [156], or can lead to strong modifications of the waves and turbulence
dynamics at the water surface in environmental/marine applications [157, 5, 6, 158].

For all these reasons, the oil-water stratified flow has gathered the attention of many
researchers. Several investigations have been performed employing different analytical,
experimental, and numerical techniques [156, 24, 159, 113, 101, 160], as well as tar-
geting different flow configurations, from pipe/channel flows to more environmental-
oriented setups. Experimental techniques often represent an important tool to in-
vestigate the physics of turbulent flows, but also to validate analytical or simplified
mathematical models. However, accurate experimental measurements, which usually
rely on optical techniques, are difficult to realize in oil/water flows because of the fluid
turbidity. It is therefore not surprising that, to obtain precise space- and time-resolved
data on the entire flow field and also on the dynamics of the oil/water interface, direct
numerical simulations are being used in this field more and more frequently in the last
years [161, 27, 113, 88]. Also in this case, accurate and reliable numerical methodolo-
gies capable of describing the interface position and deformation in time are required
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[162, 31, 29]. An additional difficulty arises when large oil-to-water viscosity ratios
are considered, since the resulting flow structure might be characterized by laminar-
turbulent patches and by a high degree of intermittency, depending on the local flow
characteristics and on the interface-flow interactions.

In this chapter, we use Direct Numerical Simulation (DNS) of the Navier-Stokes equa-
tions coupled with a Phase-Field Method (PFM) to investigate the channel flow of a
thin layer of oil flowing on top of a thick layer of water. In contrast with previous
works [163, 28, 4, 114], where the focus was mainly on elucidating the Drag-Reduction
(DR) mechanisms observed in lubricating channels (i.e. when a thin layer of small
viscosity fluid is used to lubricate the flow of a large viscosity fluid), here we move to
the opposite situation in which a thin layer of a much more viscous fluid (50 or 100
times more viscous) flows on top of a thick layer of water. This configuration aims at
mimicking oil-water flows in pipelines, as well as free-surface flows in which a thin oil
film, being very viscous, behaves as a boundary for the liquid flow beneath it. The
main goal of this work is to characterize the flow field as well as the structure and
properties of the capillary waves that are generated at the oil-water interface.

3.1 Simulation setup

The adopted setup consists of a flow configuration with two immiscible fluid layers
driven by an imposed mean pressure gradient along the horizontal direction (see Fig.
3.1). Channel dimensions are Lx×Ly ×Lz = 4πh× 2πh× 2h, with h the half-channel
height and x, y, z the streamwise, spanwise and wall-normal directions, respectively.
A thin oil layer, 0.15h thick, flows over a thick water layer, 1.85h thick. To mimic a
realistic oil-water configuration, we consider that the two layers have the same density
ρo = ρw = ρ, but different viscosity, µo and µw. For the validity of the matched
densities assumption we refer to the Appendix C. The deformable interface separating
the two fluid layers is characterized by a constant and uniform value of the surface
tension, σ.

We consider the benchmark case of a single-phase turbulent channel flow, and three
different cases of oil-water two-phase flow, each characterized by a different value of
the oil-to-water viscosity ratio µr = µo/µw. In particular, we consider the following
viscosity ratios: µr = 1, µr = 50 and µr = 100. All simulations are run at the given
reference value of the shear Reynolds number Reτ = 300 and Weber numberWe = 0.5.
For all cases, the domain is discretized usingNx×Ny×Nz = 512×256×513 grid points.
The Cahn number is set to Ch = 0.02, while the Péclet number is obtained according
to the scaling Pe = 3/Ch [56, 41]. An overview of the simulation parameters, together
with the resulting grid spacing is reported in Tab. 3.1. The initial condition for all
simulations is taken from a preliminary direct numerical simulation of a single-phase
turbulent channel flow at Reτ = 300, complemented by a proper definition of the initial
distribution of the order parameter φ so that the liquid-liquid interface is initially flat
and located at distance 0.15h from the top wall.
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Figure 3.1 – Sketch of the computational domain employed for the simulations. The channel has
dimensions Lx × Ly × Lz = 4πh × 2πh × 2h. The nominal thickness of the oil layer (located at
the top) is 0.15h while the nominal thickness of the water layer (located at the bottom) is 1.85h.
The close-up view shows the definition of the interface elevation η, i.e. the vertical distance from
the nominal position of the interface.

Simulation Reτ µr We Nx Ny Nz ∆+
x ∆+

y ∆+
z

SP 300 - - 512 256 513 7.37 7.37 1.84
MP1 300 1 0.5 512 256 513 7.37 7.37 1.84
MP2 300 50 0.5 512 256 513 7.37 7.37 1.84
MP3 300 100 0.5 512 256 513 7.37 7.37 1.84

Table 3.1 – Overview of the main simulation parameters for the reference single-phase (SP) flow
and for the oil-water flows characterized by different values of the viscosity ratio µr. The resulting
grid spacing in wall units is also reported.

3.2 Flow field characterization

In the following, we discuss the results obtained from the numerical simulations focus-
ing on the flow field and investigating the turbulence behaviour from both a qualitative
and quantitative viewpoint.

3.2.1 Qualitative description of the flow field

Fig. 3.2 shows the instantaneous distribution of turbulent kinetic energy, TKE =�
u�2 + v�2 + w�2

�
/2, on a y−z plane located at x = 0, for the different cases considered

in this study: single-phase (panel a), µr = 1 (panel b), µr = 50 (panel c) and µr = 100
(panel d). The instantaneous position of the interface (identified as the iso-level φ = 0)
is also shown by a white line. We notice that – compared to the reference single-phase
case – the presence of the interface, no matter the value of µr, induces an asymmetry
in the flow. In particular, by increasing µr, turbulence is progressively damped inside
the thin oil layer (located near the top wall). In addition, we note that by increasing
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µr turbulence is damped also in the thick water layer, near the bottom wall. This
behaviour can be explained by looking at the value of the local Reynolds number.
At the bottom wall, considering that the friction velocity is uτ,bot =

!
τw,bot/ρ, the

semi-local Reynolds number becomes [93, 4]:

Reτ,bot = Reτ

 
2 | τw,bot |

| τw,bot | + | τw,top | , (3.1)

from which we obtain: Reτ,bot = 364 (µr = 1), Reτ,bot = 255 (µr = 50) and Reτ,bot =
251 (µr = 100). As a consequence, turbulence becomes progressively attenuated near
the bottom wall. It is also interesting to observe that the turbulent intensity just
below the interface, in the water layer, is higher for µr = 50 and µr = 100 compared
to the case with µr = 1. This effect suggests that the interface behaves for the water
layer similarly to a solid boundary, whereas it behaves like a compliant surface for
µr = 1.

3.2.2 Mean velocity profiles and flow rates

The change of the flow structure described above clearly results into a corresponding
change of the mean velocity profiles. Fig. 3.3a shows the mean streamwise velocity
profile, �u�, as a function of the wall-normal coordinate, z, for all cases considered
here. We observe that, compared to the single-phase case – for which the velocity
profile is symmetric – the introduction of the thin oil layer breaks the symmetry of
the velocity profile. While for µr = 1 the velocity profile is skewed towards the upper
part of the channel, for µr = 50 and µr = 100 it is skewed towards the bottom part.
The main reason for this different behaviour is, as anticipated above, the different
character of the liquid-liquid interface depending on the value of µr: while for µr = 1
the interface is compliant, and actively adapts to vertical momentum, for µr = 50
and µr = 100 the interface acts essentially as a wall, hence giving a velocity profile
with a maximum located roughly halfway between the interface and the bottom wall
(i.e. shifted towards the bottom wall compared to the channel centerline). Rescaling
the velocity profile by the actual value of the friction velocity at the bottom wall,
uτ,bot (as done to compute the semi-local Reynolds number in equation 3.1), it is
possible to evaluate the behaviour of the velocity field in wall units, and compare it
with the law of the wall: u = z+ and u = (1/k) log(z+) + 5 (where k = 0.41 is the
von Kármán constant [164]). The single-phase turbulent flow (black) shows a good
agreement with the law of the wall (represented by the dashed line). Even for the case
µr = 1 the results of the simulation follow fairly well the behaviour of the law of the
wall. The situation is slightly different for µr = 50 and µr = 100, for which we notice
a reduction of the flow velocity, in particular in the viscous sub-layer. This indicates
that the introduction of the thin oil layer in the top part of the channel induces
a general attenuation of turbulence, which reflects into a corresponding modulation
of the turbulence regeneration cycle even at the bottom wall. The flow rate of the
oil and the water layer, Qo and Qw, as well as the total flow rate, Qt, are shown –
normalized by the single-phase flow rate, QSP – in Tab. 3.2. As it can be observed, the
introduction of a thin liquid layer with the same viscosity of the thick layer (µr = 1)
leads to a significant increase in the total flow rate, which amounts to about 27%
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Figure 3.2 – Instantaneous distribution of turbulent kinetic energy, TKE =
�
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�
/2

on an y − z plane located at x = 0 for the different cases considered in this study: single-phase
(panel a), µr = 1 (panel b), µr = 50 (panel c), µr = 100 (panel d).
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Figure 3.3 – Panel a: wall-normal behaviour of the mean streamwise velocity �u� as a function
of z/h. The nominal interface position is shown with a dotted line, while the position of the
channel centerline is shown with a dash-dotted line. Panel b: wall-normal behaviour of the mean
streamwise velocity �u� in the water layer, rescaled based on the actual value of the friction
velocity at the bottom wall, uτ,bot. Also shown in panel b is the law of the wall: u

+ = z
+ and

u
+ = (1/k) log(z+) + 5 (where k = 0.41 is the von Kármán constant [164]). The different cases

are reported with different colors: single-phase (black), µr = 1 (blue), µr = 50 (violet), µr = 100
(green).

Simulation µr Qo/QSP Qw/QSP Qt/QSP ∆Q %

Single-phase - - - 1.0000 -
M1 1 0.0436 1.2261 1.2698 + 26.98 %
M2 50 0.0034 0.6872 0.6906 - 30.94 %
M3 100 0.0016 0.6601 0.6617 - 33.83 %

Table 3.2 – Flow rate measurement for the different simulations: Qo, Qw and Qt correspond to
the flow rates of the thin layer (oil), of the thick layer (water), and of the entire flow oil-water
flow, respectively, while QSP is the flow rate of the reference single-phase case. The quantity
∆Q represents the increase (in percentage) of the total flow rate between the two-phase and the
single-phase flow simulations.

compared to the single-phase case. In contrast, when the thin layer has a much larger
viscosity than the thick layer, i.e. µr = 50 and µr = 100, the flow rate is reduced by
about 30% and 34%, respectively. Given that the mean pressure gradient is constant
for all simulations, the modification of the flow rate can be associated with a reduction
of drag for the matched viscosity case [4] and an increase of drag for the other two
cases with a more viscous fluid in the thin layer.

3.2.3 Stress budget

To analyse in more detail the modifications produced by the introduction of a thin
viscous layer in the flow, we look at the stress behaviour as a function of the wall-
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normal coordinate z. The mean stress can be expressed as

τtot =
�µ(z)�
Reτ

∂�u�
∂z� �� 	

τv

− �u�w��� �� 	
τt

+
3√
8

Ch

We

�
∂φ

∂x

∂φ

∂z

�
� �� 	

τc

, (3.2)

indicating that the total stress τtot is the sum of three contributions: the viscous stress,
τv, the Reynolds or turbulent stress, τt, and the capillary stress, τc. The wall-normal
behaviour of the stresses averaged along the two homogeneous directions x and y and
in time is shown in Fig. 3.4. For all considered cases, the total stress – shown in Fig.
3.4a with a dashed line – is a linear function of z. The sum of the absolute values of
the stress evaluated at the two walls is constant and equal to 2 for all cases, since the
wall-shear stress balances the mean pressure gradient used to drive the flow, which
is kept constant and equal to ∇p = −1. In Fig. 3.4a, we also show the wall-normal
behaviour of the Reynolds stress, τt, for all cases (continuous line). Compared to
the single-phase case, for which τt is anti-symmetric about the channel centerline, the
introduction of thin layer near the top wall induces remarkable changes. For µr = 1,
there is a significant reduction of τt around the liquid-liquid interface and in the thin
layer, due to the blockage effect induced by the presence of the compliant liquid-liquid
interface [4]. By contrast, in the bottom part of the channel, we observe an opposite
behaviour, with τt much larger than the single-phase case, as a consequence of the
increased turbulence activity. For µr = 50 and µr = 100, τt is almost vanishing inside
the thin viscous layer, due to the large fluid viscosity, while it becomes larger below the
liquid-liquid interface, which in this case is perceived as a solid boundary by the flow,
hence actively contributing to the turbulence production (larger τt). On the other
hand, τt decreases near the bottom wall, because of the already observed turbulence
reduction there.
Considering now the capillary stress, shown in the inset of Fig. 3.4a, we observe that
is larger for µr = 1, and smaller for µr = 50 and µr = 100. Given that the flow in
the thin layer tends to be laminar, the liquid-liquid interface acts – via the capillary
stress – as an active barrier against momentum transport between the thick and the
thin layer.
The wall-normal behaviour of the viscous stress τv is shown in Fig. 3.4b. For µr = 1,
the viscous stress at the top wall is lower than the reference single-phase flow and
is characterized by a non-monotonic transition across the interface, while it decrease
towards zero below the interface, similarly to the single-phase case at the same distance
from the wall. At the bottom wall, the viscous stress is ∼ 50% higher, due to the
increase of the mean velocity gradient in that region (see Fig. 3.3a). For µr = 50
and µr = 100, the viscous stress is significantly higher at the top wall, because of the
high viscosity, and remains high over a much larger distance from the wall – down
to z/h ≈ 0.5. At the bottom wall the situation is reversed, and the viscous stress is
smaller than the single-phase case. In summary, the presence of the thin layer leads to
a sharp gradient in the mean velocity profile below the interface, which is associated
with an increased shear stress between the two fluid layers. This is true in particular
for µr = 50 and µr = 100, and is also the reason behind the increased production of
turbulent kinetic energy in that region, where turbulence intensity can be even higher
compared to the region near the bottom wall (see Fig. 3.2d). Therefore, when high
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Figure 3.4 – Panel a: wall-normal behaviour of the Reynolds stress (solid lines), total stress
(dashed lines) and capillary stress (inset) as a function of the wall-normal coordinate z/h. Panel
b: wall-normal behaviour of the viscous stress as a function of the wall-normal coordinate z/h.
The different cases are reported with different colors: single-phase (black), µr = 1 (blue), µr = 50
(violet), µr = 100 (green). The dotted line marks the mean interface level.

viscosity ratios are considered, the thick layer perceives the liquid-liquid interface as
an almost rigid boundary, which is a situation that is not observed for µr = 1.

3.3 Interface statistics

In this section, we present a space-time characterization of the interface that separates
the two liquid layers, for the different cases considered in this study.

3.3.1 Spatial characterization of the interface deformation

In Fig. 3.5 we show the instantaneous shape of the liquid-liquid interface for the three
different two-phase flow cases considered here: Fig. 3.5a refers to µr = 1, Fig. 3.5b
refers to µr = 50 and Fig. 3.5c refers to µr = 100. Together with a three dimensional
rendering of the liquid-liquid interface (left column), we also show – for each case
– a close-up view of the interface elevation η/h (as defined in Fig. 3.1) along the
streamwise direction x/h, and measured at spanwise location y = 0. At a first glance,
the interface shape, regardless of the value of µr, seems characterized by the presence of
waves. In our setting, in which the two fluid layers have the same density and the role
of gravity is ruled out, these waves are pure capillary waves in which the restoring force
is the surface tension. We notice also that the interface deformation shows remarkable
differences for the high viscosity ratio cases, µr = 50 and µr = 100, compared to the
matched viscosity case, µr = 1. In particular, instead of multiple different wavelengths
of moderate wave amplitudes observed for the matched viscosity case, the interface
deformation for the two cases at large viscosity ratio is characterized by a regular
wave pattern. This pattern is very pronounced at µr = 100, and is characterized
by a steep windward side (up to the crest), followed by a much less steep lee side
(down to the trough). The values of the root mean square elevation for each case are:!�η2� = 2.7 × 10−2 (µr = 1),

!�η2� = 3.6 × 10−2 (µr = 50),
!�η2� = 4.0 × 10−2
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Figure 3.5 – Three-dimensional rendering of the instantaneous interface deformation (left), and
corresponding profiles of the interface elevation η (right), measured as a function of the streamwise
direction x at a given y position. Each panel refers to a different case: µr = 1 (panel a), µr = 50
(panel b) and µr = 100 (panel c).

(µr = 100), and indicates that waves grow in amplitude as the viscosity ratio increases.
It is interesting to note that the shape of the interface elevation at large viscosity ratio
looks similar to the so-called ”bamboo wave” structure observed in oil-water core
annular flows in pipes [165, 152].

To quantify the influence of the viscosity ratio on the deformation of the liquid-liquid
interface, we look at the Probability Density Function (PDF) of the interface elevation
normalized by its root mean square value, for each case. Results are shown in Fig.
3.6. We can observe that, for µr = 1, the probability density is maximum near the
mean interface location �η� = 0, and it is negatively skewed due to the effect of wall
confinement (waves are larger towards the center of the channel than towards the wall).
Note indeed that the wall is located at a distance of 0.15h from the nominal interface
position, and therefore there is a vanishing probability of extreme events with positive
interface elevations compared to extreme events with negative interface elevations.
For the high viscosity ratio cases, the probability density function is bimodal, and the
major mode is positive. This suggest a larger presence of wave crests than troughs.
The bimodal distribution also indicates the persistence of wave crests and troughs
with specific amplitudes, corresponding to the two modes of the distribution.

Naturally, the interface deformation is two-dimensional, and waves propagate at the
interface along x and y. This is visualised in Fig. 3.7 for the three different cases: Fig.
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3.7a refers to µr = 1, Fig. 3.7b refers to µr = 50 and Fig. 3.7c refers to µr = 100.
Beside the three dimensional rendering of the liquid-liquid interface (left column) we
now show the contour maps of the entire interface elevation, η(x, y) (right column),
for the three different values of the viscosity ratio. Compared to the case µr = 1,
for which the interface deformation does not show a regular pattern, for the cases
µr = 50 and µr = 100 the interface deformation looks much more regular and quasi-
1D (along x), with only little perturbations along y. This is properly quantified in Fig.
3.8, by looking at the two-dimensional time-averaged wavenumber power spectra of
wave elevation Sη (kx, ky). This quantity represents the distribution of energy at the
different wavenumbers kx–ky. For µr = 1, the power spectrum appears isotropic, with
almost no sign of preferential distribution. On the other hand, for µr = 50 the energy
distribution is more focused along the streamwise direction, kx. This effect is even
more pronounced for µr = 100, where we can also observe the presence of spectral
peaks at certain discrete wavenumbers.

To compare more closely the structure of the interface deformation for the three dif-
ferent µr, we average the two-dimensional power spectra of wave elevation, Sη (kx, ky),
along the y direction, so to obtain the streamwise spectra of the interface elevation,
�Sη (kx)�. Results are shown in Fig. 3.9. We observe that, unlike the smooth dis-
tribution of energy as a function of the streamwise wavenumber kx at µr = 1, the
wave energy for the cases µr = 50 and µr = 100 is concentrated at specific discrete
wavenumbers. This suggests that the wave field is dominated by the presence of a
”parent” wave, on top of which other less energetic waves (having wavenumber that
is a multiple of that of the parent wave) can propagate. The peak wavenumber is
kx,peak = 1.5 for µr = 50 and µr = 100 (or, in terms of wavelength, λpeak = 4π/3) and
corresponds to the presence of N ≈ 3 waves inside a domain of length Lx = 4π. This is
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Figure 3.7 – Three-dimensional rendering of the instantaneous interface deformation η (left), and
corresponding two-dimensional contour maps of η (right). Each panel refers to a different case:
µr = 1 (panel a), µr = 50 (panel b) and µr = 100 (panel c)

in agreement with the patterns shown in Fig. 3.5b,c and 3.7b, c. This suggests a highly
anisotropic situation and agrees with the qualitative observation of waves developing
only across the streamwise direction and being self-similar across the channel span.

3.3.2 Temporal characterization of the interface deformation

So far, we examined the spatial behaviour interface waves. We now move to the time
characterization of waves. Note that, since the interface is advected at a mean velocity
(see Fig. 3.3a) wave frequencies are Doppler shifted to higher frequencies. The mean
advection velocities for the three cases are: �ui� ≈ 16.5 (µr = 1), �ui� ≈ 1.9 (µr = 50)
and �ui� ≈ 0.9 (µr = 100). Therefore, in order to isolate the wave frequencies, a
shift of the interface elevation signal is applied as η�(x, t) = η(x + dxshift, t), where
dxshift = �ui�/dfsamp and dfsamp is the frequency at which the interface elevation
is sampled [88]. Space-averaged frequency power spectra of wave elevation �Sη (ω)�
of the shifted wave signals for each case are reported in Fig. 3.10. The minimum
angular frequency on the x-axis (ωmin = 0.628) corresponds to the overall duration
of the recorded wave signal. We note even here a remarkable difference between the
case µr = 1 and the other two cases at higher viscosity ratio. In particular, while
for µr = 1 energy is evenly distributed over a broad range of frequencies – before it
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Figure 3.8 – Two-dimensional time-averaged wavenumber power spectra of the interface elevation,
Sη (kx, ky). Each panel refers to a different case: µr = 1 (panel a), µr = 50 (panel b), µr = 100
(panel c).

starts diminishing at higher frequencies – for µr = 50 and µr = 100 the energy is
concentrated over a narrow range in the low-frequency region of the spectrum, and it
vanishes rapidly as the frequency increases. This suggests that at large viscosity ratio
the waves oscillate so slowly that their oscillation is not even perceived, and waves
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seem rigidly advected by the flow.
We will now proceed to characterize the wave propagation based on two-dimensional
space-time spectral analysis. Note that in the case µr = 1 the interface is advected
with a mean advection velocity of �uµr=1

i � ≈ 16.5. The corresponding velocities for the

cases µr = 50 and µr = 100 are �uµr=50
i � ≈ 1.9 and �uµr=50

i � ≈ 0.9, respectively. This
means that the wave speed is doppler shifted and therefore a proper shift has to be
applied to the interface elevation data in order to obtain the dispersion relation. The
velocity of propagation or celerity of a wave with a known frequency and wavenumber
is defined as: c = ω/k. For waves of moderate and low wave steepness or linear waves
[123, 132] the linear dispersion relation (LDR) describes the frequency as a function
of the wavenumber and therefore predicts the wave celerity. The LDR for waves
propagating at the interface between two fluids of the same density, over a finite depth
d (in our case d = 0.15h) can be expressed in its non-dimensional form as follows:

ω2 =
k3

2We
tanh(0.15k) (3.3)

To obtain information on the wave propagation, based on our numerical results,
we resort to two-dimensional frequency-wavenumber power spectra of wave elevation
Sη (kx, ω), which are presented in Fig. 3.11. Note that the procedure, described above,
concerning the shift of the wave signal in an advection-free frame of reference has been
applied here prior to transforming the signals to the wavenumber-frequency space. In
Fig. 3.11a the results for case µr = 1 show that the maximum of the wave energy
(marked with black crosses) is localized near the prediction of the LDR (red dahsed
line). This indicates that the individual wavelengths, which are formed at the interface
between the two fluids, propagate at a velocity that can be well predicted by the linear
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wave theory. The situation is different for the two cases with high viscosity ratio. In
particular, for the case µr = 50 we observe a very narrow-band energy distribution
in terms of wave frequencies. The frequency range becomes even narrower for the
case µr = 100, where we see that the energy of all the discrete wavenumber modes, is
concentrated at the same low frequency, which indicates that all waves are traveling
at the same speed. Therefore, the higher wavenumber modes, which can be seen in
Fig. 3.9, are bound waves to the dominant wave mode and their wavenumber and
frequency do not satisfy the dispersion relation.

3.4 Conclusions

In this chapter, the DNS results from a stratified flow configuration, in which a thin
layer of oil flows on top of a thick layer of water were presented. Three different
values of the oil-to-water viscosity ratio, µr = 1, µr = 50 and µr = 100 are used, and
their influence on the turbulence modulation and on the dynamics of the liquid-liquid
interface is considered. Results show that, compared to the reference single-phase
turbulent flow, the introduction of a thin fluid layer, characterized by a viscosity equal
or larger than that of the thick layer, modifies the overall velocity profiles and the
turbulence behaviour. In particular, the mean flow rate increases significantly for
µr = 1 and decreases significantly for µr = 50 and µr = 100. This is associated to a
corresponding change of the drag coefficient. When the viscosity contrast between the
two fluids is large, the liquid-liquid interface is perceived as a solid boundary by the
thick water layer, leading to high shear stress and a local increase in turbulent kinetic
energy production around it. In addition, we also observe that the near-wall turbulent
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Figure 3.11 – Frequency-wavenumber power spectra of wave elevation for µr = 1 (panel a),
µr = 50 (panel b), µr = 100 (panel c). The dashed red line corresponds to the Linear Dispersion
Relation (LDR) for capillary waves while the black crosses correspond to the maxima of the
numerical results.

cycle at the bottom wall (at the bottom of the thick layer) is influenced as well by
the thin layer viscosity. In addition, the structure and the dynamics of the liquid-
liquid interface show remarkable changes by changing the viscosity ratio between the
two fluids. Specifically, we observe a transition from a regime characterized by the
presence of an almost isotropic wave field for the matched viscosity case µr = 1, to
a regime characterized by regular long waves with short crests and longer troughs
for high viscosity ratios. The wave structure in these latter cases seems to resemble
the so-called ”bamboo waves” observed in oil-water pipe flows. Finally, the temporal
analysis of the wave signals reveals that while for the matched viscosity case µr = 1
waves oscillate at different frequencies over a rather broad range of values, for high
viscosity ratios waves oscillate at a specific very low frequency, thus generating an
interface deformation that seems purely advected by the mean flow velocity. Indeed,
space-time analysis of the wave signals reveals that for the matched viscosity case
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waves propagate with celerities that can be well predicted by the linear dispersion
relation, while for the high viscosity ratio cases, waves are almost rigidly advected by
the mean flow velocity.



Conclusions and future

developments

Throughout this thesis numerical simulations of two-phase liquid-liquid flows in a plane
channel configuration have been performed using a coupled Direct Numerical Simula-
tion (DNS) - Phase-Field Method (PFM) technique. First, the case of capillary waves
forced by hydrodynamic turbulence in a two-layer oil-water channel flow configuration
was examined. Second, the flow of a thin laminar layer over a thick turbulent layer
in a channel was examined. Finally, a multiple resolution strategy for the improve-
ment of the performance of the DNS-PFM technique has been proposed and tested
and its ability to decrease the computational time and memory usage up to 40% was
demonstrated.
In Chap. 2, two sets of parametric studies have been performed. The first study was
performed at a variable viscosity ratio between the two fluid layers. It was found that
the wave dynamics are primarily depended on the interaction between inertial and
surface tension forces and not on viscous forces. The frequency and the wavenumber
spectra of wave elevation of the capillary waves in both cases showed the same scaling
laws for both viscosity ratio cases examined. Namely, at larger scales a scaling of
Sη(k) ∼ k−1, compatible with the large-scale energy equipartition assumption was
found. At smaller scales an initially mild slope which is close to the prediction of
the weak wave turbulence theory, Sη(k) ∼ k−4, is observed over a very short range
and transitions to a much steeper slope, Sη(k) ∼ k−6, with the transition ocurring
close to the Kolmogorov-Hinze scale, where inertial and surface tension forces are
balanced. The frequency-wavenumber spectra reveal that waves propagate according
to the prediction of the linear dispersion relation. The energy analysis reveals that
only a small part of the total injected power by the mean pressure gradient goes to
the waves. The second parametric study was performed at a variable Weber number.
Keeping the rest of the parameters fixed the increase of the Weber number is equivalent
to a decrease of the surface tension forces magnitude with respect to inertial forces.
Unlike, the viscosity, surface tension plays a crucial role on the behaviour of the liquid-
liquid interface. Both wave height and wave steepness increase substantially with the
increase of the Weber number. Reducing surface tension corresponds to a shift of
the critical Kolmogorov-Hinze scale to shorter wavelengths. The wavenumber spectra
show that the inertial regime is extended to higher wavenumbers, following this shift.
In Chap. 3, the flow of a thick turbulent layer over a thin laminar layer at variable
viscosity ratio was examined. A single parametric study has been performed based on
the viscosity ratio between the layers. The shift of the flow and interface statistics was
found to be dramatic when the viscosity ratio is increased by one order of magnitude.
When the two layers have the same viscsosity, waves of multiple wavelengths propagate
at the interface with a celerity that is closely predicted by the dispersion relation for
capillary waves. When the viscosity of the thin layer is increased, a nearly rigid
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monochromatic wave pattern is formed and is passively advected by the mean flow.
A major future development of this work is the study of turbulence-induced breaking of
waves in the liquid-liquid configuration. Indeed, the turbulence-induced wave breaking
is an unaddressed problem in scientific literature, despite the fact that dispersion of oil
and water can originate from such initially stratified configurations. The prediction of
a wavelength based critical Weber number, Wecr, in liquid/liquid flow configurations
could therefore be catalytic for the design of industrial flows. Based on our present
knowledge, a detailed database containing a space-time quantification of turbulence-
induced wave breaking has not been obtained neither from a numerical nor from an
experimental study. On the other hand, recent results from DNS of wave breaking
due to gravity [166, 167] show that the latest advancements in computer power in
combination with sophisticated numerical techniques, finally allow for the exploration
of such complex physical phenomena of multiphase turbulent flow. Indeed, exploiting
the recent development of the multiple resolution strategy, we performed preliminary
simulations to test the capacity of the method to tackle complex problems involving
phenomena of breakage and coalescence. In particular, the breakage of a thin fluid
layer by a surrounding turbulent flow was examined under variable resolution levels.
These results are presented in Appendix D.
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A
Single-phase shear-driven

turbulent flow

The flow field solver decoupled from the phase-field solution is benchmarked here for
the case of a single-phase plane turbulent Couette flow. Plane turbulent Couette flow
has been a topic of interest for many studies over the past [168, 169, 170], but also
more recent [171, 172, 173] years. Despite its simplicity, this type of shear-driven flow
configuration, with two parallel walls of a plane channel moving at different speeds
and no imposed pressure gradient, has been proven challenging to simulate. The main
reason for this is that unlike the case of plane Poiseuille flow, which has been readily
accessible to DNS [57], plane Couette flow is characterized by the onset of large-scale
structures, which are correlated across the streamwise direction of the channel. These
structures take the form of large-scale, counter-rotating pairs of weak vortexes/rollers
occupying the full height and width of the channel. For this reason, box sizes of at
least Lx > 19πh and Ly > 5πh, with h being the half-channel height, are needed to
accommodate at least one complete wavelength of the large-scale rollers across the
streamwise direction and a representative number of roller pairs across the spanwise
[168, 170].
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ū
+

z+

SP Couette Rew = 3000

Pirozzoli et al. (2014)

u = (1/k)lnz+ + 5

u = z+

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160

τ̄+
visc

τ̄+
Re

τ
+ i

z+

SP Couette Rew = 3000
Pirozzoli et al. (2014)

Figure A.1 – Mean velocity profile (left) and stress behaviour (right) from the simulation of the
single-phase Couette flow. Results are compared to those of Pirozzoli et al. [172].

A plane Couette flow has been preformed to examine the agreement of the solution of
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the Navier-Stokes equations in a single-flow configuration to existing literature results.
In this setup, the two-channel walls move in parallel, but in opposite directions, with
non-dimensional velocities, uw = +1, at the top wall and uw = −1, at the bottom wall.
A Reynolds number of Rew = 3000 has been selected considering the wall velocity as a
reference and the half-channel height as a characteristic length scale. This results to a
corresponding shear Reynolds number of Reτ ≈ 171 [172]. The simulation parameters
used are summarized in table A.1.

Simulation Rew Nx Nz Ny Lx Ly Lz ∆+
x ∆+

y ∆+
z

SP − Couette 3000 2048 513 512 16πh 4πh 2h 4.2 4.2 1.0

Table A.1 – Overview of the main simulation parameters used for the simulation of the single-
phase Couette flow.

In Fig. A.1 (left) the mean velocity profile is shown, while in Fig. A.1 (right) the
viscous and Reynolds stress profiles are shown. Note that the box size used is smaller
the one prescribed in literature [168, 170], however both the mean and the fluctuating
flow field properties, agree almost perfectly with those of Pirozzoli et al. [172], which
were obtained for the same Reynolds number Rew = 3000, but with a channel of
dimensions, Lx = 18πh, Ly = 8πh, Lz = 2h. The channel width accommodates three
pairs of counter-rotating vortexes, as it can be observed by looking at the patterns of
the high and low streamwise velocity regions at the vertical crossplane shown in Fig.
A.2a and at the high and low speed streak structures at the horizontal centerplane
shown in Fig. A.2b.
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Figure A.2 – (a) Instanteneous map of the steamwise velocity, u over the cross-section of the
channel. (b) Instantenous map of the steamwise velocity, u over the horizontal centerplane z/h = 1.



B
Coarsening, shrinkage and

domain size effects

The accuracy of the simulation results in terms of the applied grid resolution and the
adequacy of the selected domain size is examined here. First, we examine the presence
of shrinkage of the phase-field for the resolution that was used for all simulations i.e.
a Cahn number of Ch = 0.02. As it was discussed in Sec. 1.1, shrinkage is one
of the main drawbacks of the PFM and high resolutions or special techniques are
required to prevent shrinkage from taking place in problems involving breakage and
coalescence of droplets in turbulence. Here, we examine the level of shrinkage in the
simulations with non-breaking capillary waves presented in Chap. 2. The problem of
shrinkage is directly associated with spurious mass transfer from one phase into the
other. Therefore, in order to quantify the mass conservation of each phase, we monitor
the evolution of the mass of one of the two phases (oil) during the simulation. In Fig.
B.1, we show the results for the different cases. The percentage change of the mass of
oil with respect to its initial mass, M0 is reported as a function of the simulation time
expressed in wall-units, t+. It is clear that for all simulations the mass is conserved.
Therefore, for the simulations of non-breaking capillary waves, where the interface
remains continuous without undergoing arbitrary topological modulations the phase-
field equilibrium profile is retained acqurately throughout the whole simulation time.
This also implies that the variation of the thermophysical properties across the thin
transition layer between the two phases are well captured, while surface tension forces
are also well represented.

(a) Viscocity ratio simulations
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Figure B.1 – Mass conservation for the different two-layer flow simulations. Left: simulations at
variable viscosity ratio, right: simulations at variable Weber number.

The effect of the domain size is examined next. Indeed, the use of a finite domain size
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restricts the maximum wavelength that can be captured by the simulations. To check
the adequacy of the selected domain size i.e. Lx = 8πh and Ly = 2πh, a simulation
with a domain of double the size, i.e. Lx = 16πh and Ly = 4πh, was performed.
In addition, in order to check for effects of coarsening, due to the finiteness of the
interfacial layer thickness, we performed an additional simulation with a transition
layer of half the thickness (double the resolution) i.e. a Cahn number of Ch = 0.01.
The multiple resolution strategy presented in Sec. 1.5 was used so to maintain the
same resolution level for the Navier Stokes equations, while adopting a finer grid for
the solution of the Cahn-Hilliard equation. The simulation with Reτ = 300, µr = 1.00
and We = 1.0 was selected as the reference. The parameters for the the two validation
simulations, together with those of the reference simulation, are summarized in Tab.
B.1. Note that the grid size that is reported in Tab. B.1 for the simulation with
Ch = 0.01 corresponds to the grid that is used for the phase-field transport equation,
while the grid used for the momentum equation is the same as the one used for the
reference simulation.
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Figure B.2 – Streamwise wavenumber power spectra of wave elevation, �Sη (kx)�, averaged in space
(over the spanwise direction) and in time. Blue triangles correspond to the reference simulation
(SCH2), black triangles to the simulation with double the domain size (LCH2) and red triangles
to the simulation with Ch = 0.01 (SCH1).

The resulting wavenumber power spectra of wave elevation, �Sη (kx)� from the two
validation simulations, together with the one from the reference simulation are shown
in Fig. B.2. The domain size does not have any influence on the wave spectra be-
sides the addition of a lower wavenumber (bigger wavelength), which is half (double)
compared to the lowest wavenumber in simulation SCH2. The two spectra from the
simulations LCH2 and SCH2 completely overlap in the rest of the wavenumber range.
The results from the simulation SCH1 are also in very good agreement with those of
the simulation SCH2. An increase of the wave energies of the smaller scale waves can
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Simulation Ch Lx Ly Nx Ny Nz ∆+
x ∆+

y ∆+
z

SCH2 0.02 8π 2π 1024 256 513 7.37 7.37 1.84
LCH2 0.02 16π 4π 2048 1024 513 7.37 3.68 1.84
SCH1 0.01 8π 2π 2048 512 1025 7.37 7.37 1.84

Table B.1 – Overview of the main simulation parameters for the reference simulation (SCH2), the
simulation with double the domain size (LCH2) and the simulation with Ch=0.01 (SCH1). The
number of grid points and the corresponding grid spacings in wall units are also reported.

be notices, which is indeed to be expected since smaller scale dynamics are captured
better with a transition layer that is thinner. Note that the transition from the slope
k−4 to the slope k−6 tends to become more distinct and even gets closer to the critical
wavenumber kcr in simulation SCH1. In conclusion, the lack of shrinkage effects, the
absence of a finite domain size influence and the small amount of coarsening effects
suggest that the setup used for the simulations of Chap. 2 is adequate to capture
accurately the dynamics of non-breaking waves in turbulence.



C
Validity of the matched

densities assumption

To test the validity of the assumption of matched fluid densities that was used to
describe the two-phase stratified oil-water flow, a simulation with a non-unitary density
ratio was performed. In particular, the density ratio in this simulation was set to the
realistic value of the density ratio between oil and water, namely ρr = 0.9. Therefore,
buoyancy forces are aslo anticipated to influence the dynamics of the flow to a certain
degree. Fig. C.1a shows the mean streamwise velocity profiles obtained in the case
with ρr = 1.0 and µr = 100 (green line) compared to the new case with ρr = 0.9 and
µr = 100 (violet points).
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Figure C.1 – Panel a shows the wall-normal behaviour of the mean streamwise velocity �u�, while
panel b shows the behaviour of the total stress, the Reynolds stress, and the capillary stress (inset).
Results that refer to the case with µr = 100 and ρr = 1.0 are reported using green lines, while those
referring to the case with µr = 100 and ρr = 0.9 are reported using purple points. Only a subset
of the available points is reported in the latter case so to increase the clarity of the comparison.

We can observe that the mean streamwise velocity profiles perfectly overlap. Fig.
C.1b shows the behaviour of the total stress, the Reynolds stress, and the capillary
stress (inset) along the wall-normal direction for the two cases. Also in this case there
is almost a perfect overlap for every curve. Finally, the Probability Density Function
(PDF) of the interface elevation η is shown in Fig. C.2. A very small increase in
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the probability of negative rare events can be observed for the case with ρr = 0.9
compared to the case with ρr = 1.0.



D
Breakage of a thin liquid layer in

turbulence

Reproduced in part from:

M. Schenk, G. Giamagas, A. Roccon, F. Zonta & A. Soldati, (2023) Assessing grid size resolution

for reliable simulations of turbulent dispersed flows via phase-field method and dual-grid approach,

J. Fluids Eng. (in preparation)

Turbulent flows laden with drops are commonly encountered in a number of natural
and industrial processes. Examples include the formation of raindrops in the atmo-
sphere [174], wave breaking at the ocean surface [175, 176], the atomization and spray
generation in fuel injection and combustion [177, 178, 179], the transmission of respira-
tory diseases [180, 181, 182] and many other flow instances [183, 184]. As an extension
of our present work, we are aiming at studying the problem of turbulence-induced
wave breaking at the interface between two liquids with properties similar to those of
oil and water. This is a problem that is relevant in a series of industrial applications,
in which upon varying the flow conditions dispersion of one fluid phase into the other
in the form of droplets may occur and therefore it needs to be predicted and controlled
[5, 6, 7].

The applicability of the multiple resolution strategy (dual-grid approach) proposed
in Sec. 1.5 to a more computationally intensive and scientifically relevant case is
considered here, by studying the breakage of a liquid layer in turbulence [185, 177, 186].
A thin liquid layer of thickness 0.15h is initially located at the center of a pressure-
driven turbulent channel, as sketched in Fig. D.1. At the two walls, no-slip and no-flux
boundary conditions are enforced for the velocity field and for the phase-field variable
and its second derivative, while periodicity is implicitly applied along x and y for all
variables. The initial condition for the flow field is taken from a preliminary DNS of a
single-phase fully developed turbulent channel flow at Reτ = 150, complemented by a
proper definition of the initial distribution of the phase φ, so that a thin liquid layer
(thickness 0.15h) is placed at the channel centerline. The liquid layer and the carrier
fluid have the same density (ρr = 1) and viscosity (µr = 1), while the value of the
Weber number is set to We = 3.

We perform three different simulations (see table D.1) considering a computational
domain having dimensions Lx × Ly × Lz = 2πh × πh × 2h along the streamwise (x),
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Figure D.1 – Sketch of the simulation setup used to simulate the breakage of a liquid layer in a
turbulent channel flow. A thin liquid layer, thickness 0.15h, is initially placed at the center of a
three-dimensional turbulent channel (the initial shape and location of the layer are represented in
blue). The domain is three-dimensional, with dimensions Lx × Ly × Lz = 2πh× πh× 2h.

Code Refinement, Mi Grid NS Grid CH Ch Pe

G1 1× 1× 1 256× 128× 513 256× 128× 513 0.020 50
G2 2× 2× 2 256× 128× 513 512× 256× 1025 0.010 100
G4* 4× 4× 3 256× 128× 513 1024× 512× 1537 0.0075 150

Table D.1 – Parameters for the simulations of the liquid layer breakage in a turbulent channel
flow. By keeping fixed the resolution of the Navier-Stokes equation, the grid resolution used for
the Cahn-Hilliard equation is increased. Simulations are labeled based on the employed refinement
factor: case G1 (unitary refinement factor, same grid for NS and CH); case G2 (refinement factor
equal to 2 in each direction); case G4∗ (refinement factor of 4 along x and y directions, and 3
along z).

spanwise (y) and wall-normal direction (z), respectively. For all three simulations,
the flow field is solved onto a computational grid consisting of Nx × Ny × Nz =
256 × 128 × 513 points, which guarantees a resolution of the flow field down to the
Kolmogorov scale. The Cahn-Hilliard equation is discretized on progressively refined
grids. In particular, we employNx×Ny×Nz = 256×128×513 forG1 (refinement factor
of 1 in each direction, Mi = 1), Nx ×Ny ×Nz = 512× 256× 1025 for G2 (refinement
factor of 2 in each direction, Mi = 2), and Nx ×Ny ×Nz = 1024× 512× 1537 for G4∗

(refinement factor of 4 along x and y, Mx = My = 4, and of 3 along z, Mz = 3). This
corresponds to a Cahn number (and a corresponding Peclet number, Pe = 1/Ch)
Ch = 0.02 (Pe = 50) for G1, Ch = 0.01 (Pe = 100) for G2 and Ch = 0.0075
(Pe = 150) for G4∗, so to guarantee that the transition layer between the two phases
is represented by at least 3 grid points for all cases. We recall that the computational
grid is uniform along x and y, whereas it is non-uniform across z (see section Sec.
1.4.2). An overview of the simulation parameters is given in Tab. (D.1), while the
principal concept of the dual-grid approach is visualized in Fig. D.2.

The turbulent flow exerts shear forces on the thin liquid layer and leads to its fragmen-
tation in drops of different sizes (atomization process). To characterize this transient
dynamics, we consider behaviour of the normalized interfacial area A(t)/A0 (defined
as the area separating the two liquid phases, with A0 its initial value). The resulting
behaviour is shown in Fig. D.3, for the three different simulations. Note that the in-
terface reconstruction and the computation of the transient evolution of the interfacial
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Figure D.2 – Panel a shows a three-dimensional rendering of liquid drops in turbulence: drops are
visualized by the iso-countour φ = 0 of the phase-field. The contour shows the turbulent kinetic
energy, TKE=(u�2 + v

�2 +w
�2)/2, in a mid-plane of the channel (z = 0). Panel b shows a close-up

view of the rendering where the iso-level φ = 0 is explicitly highlighted. In panel c-e, we show
the effect of increasing the grid resolution (and thus the adoption of smaller the Cahn numbers)
on the interface representation in the context of the phase-field method for different values of
the refinement factor (panel c - M = 1; panel d - M = 2; panel d - M = 4). In particular, a
colored band identifies the region in which the phase-field method undergoes a transition between
the values φ = ±0.9. Clearly, increasing the grid resolution – thus decreasing the Cahn number,
this band narrows around the dot-dashed line (φ = 0) since the characteristic width of the thin
transition layer is about � 4.1Ch. For computational reasons, this layer has to be discretized with
at least 3 grid points (using a pseudo-spectral method).

area in this high temporal resolution is possible thanks to the marching cubes algo-
rithm described in section Sec. 1.6.2. All three simulations give qualitatively similar
results. Starting from the flat and straight initial condition, the thin liquid layer is
first stretched and deformed by the flow. This induces the initial increase of the value
of the interfacial area A(t), with the maximum of A(t) at about t+ � 30. After this
point, the thin liquid layer is stretched to the degree that it begins to break forming
ligaments and drops (primary breakup). This induces a sharp decrease in the interface
area A(t). Later in time, when previously generated drops break up into smaller drops,
the overall interfacial area increases again (at about t+ � 400). Finally, a statistically
steady state is reached (t+ > 2000, white area), during which breakup and coalescence
of drops occur simultaneously, and dynamically balance each other. During this phase
the interfacial area fluctuates around a constant mean value.

We can observe that the grid resolution employed for the solution of the Cahn-Hilliard
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equation, and thus the value of the Cahn number that can be adopted, has an influence
on the dynamics. In particular, from a vis-a-vis comparison between the profiles
obtained for G1, G2 and G4∗, we notice that the smaller is Ch, the larger the increase
of area during the initial transient, and also the larger the increase of the area at steady-
state. Indeed, thanks to the higher resolution (and the resulting smaller Cahn number
that can be employed), higher deformations and finer/smaller drops and structures
can be better described. It is also worth noticing that for the case G4∗ (Ch=0.0075),
the thickness of the thin transition layer, which in wall units can be estimated as
4.1ChReτ is only slightly larger than the Kolmogorov length-scale evaluated at the
channel centre, where most of the drops migrate (η+k = 3.45 for the Reynolds number
here considered).

Figure D.3 – Evolution of total interfacial area A(t+), normalized by the initial area A0. Results
from the three simulations G1, G2 and G4∗ are shown using different colors, from light to dark
blue. The grey area represents the initial transient, after which a statistically steady condition is
reached.

The behaviour of the interfacial area described above reflects into a corresponding
evolution of the number of drops, N(t+), shown in Fig. D.4. In particular, we notice
an increase in the number of drops by decreasing the Cahn number. This is due to
the fact that a finer grid allows for the description of smaller drops with respect to
a coarser grid. In addition, N(t+) fluctuates remarkably, in particular after the end
of the initial transient atomization (shaded area) and the statistically steady state
is reached. These fluctuations of N(t+) can be traced back to the drop dynamics,
which is characterized by the simultaneous occurrence of breakage and coalescence
events (hence strongly modifying the number of drops present in the domain). Indeed,
the number of drops is the result of the ultimate competition between breakage events
(which increase the number of drops) and coalescence events (which reduce the number
of drops). Following this idea, we can write a population balance equation for the
number of drops in the channel [187, 188, 65, 189]:

dN(t+)

dt+
= Ṅb(t

+)− Ṅc(t
+), (D.1)
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Figure D.4 – Time behaviour of the number of drops, N(t+), for the three simulations considered
here, (G1, G2 and G4∗). The shaded area indicates the extension of the initial transient, after
which a steady-state condition is reached (t+ > 2000). Qualitative pictures (panels b-d), show a
snapshot of the drops near the channel center, at the end of the simulation (t+ = 4500).

where Ṅb(t
+) and Ṅc(t

+) are the drops breakup and coalescence rates, which can be
estimated by counting the number of breakup and coalescence events over a given
time interval ∆t+. From the above equation, we can appreciate how the competition
between two events determines the number of drops present in the channel. Likewise,
the fluctuations of these two rates influence the time behaviour of the number of drops
present in the channel. In addition, it must be also pointed out that the number of
breakup and coalescence events (and thus the rates) depends on the number of drops
N(t+) present at a certain time instant, in such a way that larger dN(t∗)/dt+ are
expected for larger N(t+) [94, 30].
A quantity of fundamental importance in the study of mass/momentum and heat
exchanges in a drop-laden turbulent flow is the drop size distribution (DSD). The
DSD provides a measure of the number of drops as a function of their characteristic
size. As in the present case drops can undergo large deformations and obtain shapes
of arbitrary morphology. In order to obtain a standard drop size clasification measure,
we consider the equivalent diameter as the characteristic size of each drop, defined as:

d+eq =

�
6V +

i

π

� 1

3

, (D.2)

where V +
i is the dimensionless volume of the i-th drop expressed in wall-units. Com-

pared to the overall number of drops presented above, the DSD provides a more
insightful picture of the topology of the dispersed phase, as it evaluates more precisely
the number of drops for each characteristic size. For instance, for a fixed volume frac-
tion, a large number of small drops identify a larger surface-to-volume ratio, hence
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maximizing the transport processes across their surface. A wide range of different
drop diameters is expected as a consequence of coalescence (drop-drop interaction)
and breakage (drop-turbulence interaction) events. In particular, the breakage of a
drop is the result of the action of shear forces and turbulent fluctuations, which by
stretching and elongating the drop can lead to its breakage once surface tension forces
are not strong enough to restore the drop shape. By opposite, a coalescence event
is observed when two drops come close to each other, and the small liquid film that
separates the drops drains thus leading to the formation of a coalescence bridge.

Figure D.5 – Drop size distribution (DSD) in log-log scale, for the three simulations G1 (light
blue line and symbols), G2 (blue line and symbols) and G4∗ (dark blue line and symbols). The
theoretical scalings, d

−3/2 and d
−10/3, for the coalesce-dominated and the breakage-dominated

regimes are also reported with a dashed and dotted line, respectively. The Kolmogorov-Hinze
scale, d+H , is indicated with a vertical dashed line. The inset shows the DSD in log-linear scale.

Considering the breakage, from a balance between stabilizing actions (surface ten-
sion forces) and destabilizing actions (shear forces and turbulent fluctuations), the
maximum size of a drop that can be transported by turbulence without breaking, the
Kolmogorov-Hinze diameter [190, 131], can be computed. For a turbulent channel flow
configuration, the Kolmogorov-Hinze scale can be computed as follows [191, 192, 94]:

d+H = 0.725

�
We

Reτ

�−3/5

|�c|−2/5 , (D.3)

where �c is the turbulent dissipation at the centre of the channel, where deformable
drops migrate. The Kolmogorov-Hinze scale is not an exact threshold and should be
taken more as a reference scale about which the dynamics of drops change behaviour
(from surface tension to the inertia-dominated regime). Results of the DSD obtained
by present simulations are shown in Fig. D.5. In particular, we compare the DSDs
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– which are computed once the steady-state condition is attained (t+ > 2000) – for
the three different grid resolutions employed in this study. The value of the reference
Kolmogorov-Hinze diameter, d+H , is explicitly indicated by the vertical dashed line.
Also shown in Fig. D.5 are the theoretical behaviours proposed in the literature
[193, 194, 195, 29]· In particular, Garrett et al. 200 proposed a power-law scaling for
drops smaller than the Kolmogorov-Hinze scale (coalescence-dominated regime),

P (d+) ∝ d+
−3/2

, (D.4)

and a power-law scaling with a different exponent for drops larger than the Kolmogorov-
Hinze scale (breakage-dominated regime):

P (d+) ∝ d+
−10/3

. (D.5)

Results are shown in Fig. D.5. We note that regardless of the grid resolution, all DSDs
present a similar behaviour, characterized by a transition between the two theoretical
scalings occurring around the Kolmogorov-Hinze diameter, d+H . The main effect of
using a finer grid (in particular G4∗) is the presence of a larger number of smaller
drops (with diameter equal to � 6 wall units), given the better representation obtained
for these drops.

±15%

±15%

Figure D.6 – Cumulative distribution function (CDF) of the equivalent drop diameter, measured
based on the DSD distribution of Fig. D.5. The ratio between the CDF measured for the different
simulations, i.e. CDF(G1)/CDF(G4∗) and CDF(G2)/CDF(G4∗) is shown in the inset. The grey
area in the picture indicates drops diameter in the range 0.85d+H < d

+
eq < 1.15d+h .

The preservation of the smaller drops with the grid refinement can also be qualitatively
assessed by looking at the insets of Fig. D.4, which show the distribution of drops
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at the channel centre for the different cases (G1, G2, G4∗), at the time instant
(t+ = 4500). The capability of finer grids (G4∗, Fig. D.4b) to capture small scales
dynamics (see for example the formation of thin liquid bridges/ligaments) is clearly
visible. We finally note that, based on current results, a simulation with Ch = 0.01
seems to nicely capture the drops dynamics at a reasonable computational cost, hence
representing a convenient solution for most of the computations. The latter is also
confirmed by looking at the cumulative distribution function (CDF) of the equivalent
drop diameter, shown in Fig. D.6. The CDF is obtained by a progressive integration
of the DSD starting from the smallest and reaching to the largest equivalent diameter.
The range between ±15% of the Kolmogorov-Hinze scale is highlighted by the grey
area. The results show that the two curves corresponding to simulations G2 with
Ch = 0.01 and G4∗ with Ch = 0.0075 nearly overlap for diameters larger than the
Kolmogorov-Hinze scale, indicating that the large drop dynamics are captured very
well even at Ch = 0.01. The two curves diverge in the range of the smaller droplets,
which is expected given that the thinner transition layer enables a more accurate
representation of phenomena occuring at the smallest scales. Therefore, the large
drop dynamics, which are significant in most engineering applications can be resolved
with a satisfying level of accuracy while using a moderate resolution level, which is
attainable at a reduced computational cost using the dual-grid approach.
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