
Fehlertolerante GALS-Architektur
auf Basis von Pausable Clocking

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Wolfgang Dür
Matrikelnummer 1526990

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr-techn. Andreas Steininger

Wien, 26. Jänner 2022
Wolfgang Dür Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Fault-Tolerant GALS Architecture
based on Pausable Clocking

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Wolfgang Dür
Registration Number 1526990

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr-techn. Andreas Steininger

Vienna, 26th January, 2022
Wolfgang Dür Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Wolfgang Dür

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. Jänner 2022
Wolfgang Dür

v

Danksagung

Ich möchte meinem Betreuer Professor Andreas Steininger für die tolle Betreuung und
Unterstützung bei sämtlichen Fragen bedanken. Weiters haben auch Florian Huemer,
Jürgen Maier sowie Robert Najvirt mich tatkräftig unterstützt. Sei es durch bereitstellen
von Libraries oder konstruktiven Diskussionen. Zu guter Letzt möchte ich mich bei meiner
Familie und all jenen, welche mich nach ihren Möglichkeiten unterstützt haben und hier
nicht namentlich genannt wurden und dazu beigetragen haben, diese Arbeit möglich zu
machen, bedanken.

vii

Acknowledgements

I want to thank my advisor Professor Andreas Steininger for his great advisory and
always having an open ear when I had questions or problems. Furthermore Florian
Huemer, Jürgen Maier and Robert Najvirt also helped a lot through providing libraries
but also through inspiring discussions. Last but not least I want to thank my family and
all the people not mentioned specifically that supported me in their best possible way to
make this possible.

ix

Kurzfassung

Zwei wesentliche Herausforderungen bei der Entwicklung moderner Systems-on-Chips(SoCs)
sind die Taktverteilung und die Zuverlässigkeit eines Systems.
Bei der Taktverteilung geht es nicht nur darum, alle Module mit einem Takt zu versorgen,
sondern auch mit dem für ihre Funktionalität notwendigen. Dies führt zu sogenannten
GALS Systemen, welche auf lokaler Ebene synchron arbeiten, wegen den unterschiedlichen
Taktdomänen aber asynchron kommunizieren. Für die asynchrone Kommunikation stehen
wertsichere Methoden zur Verfügung, bei denen der Takt vorübergehend angehalten wird.
Dies hat den Vorteil, dass die Latenz im Vergleich zu zeitsicheren Methoden, welche mit
Synchronizern arbeiten, wesentlich verkürzt wird.
Das zweite Problem ist die Zuverlässigkeit eines Systems, denn diese garantiert die
Kontinuität des Dienstes auch im Fehlerfalle einer Komponente und ist für viele sicher-
heitskritischen Anwendungen wie Flugzeugen, Kernkraftwerken oder selbstfahrenden
Autos erforderlich. In solchen Anwendungen darf es keinen einzelnen Ausfallspunkt geben
der dazu führt, dass das gesamte System ausfällt. Eine Klasse von Systemen, die einen
einzigen Fehler tolerieren können, sind die dreifachen modularen Redundanzsysteme
(TMR). Hier führen drei Replikate die gleichen Aufgaben aus und nach erfolgreichem
Abschluss wird über die Ergebnisse abgestimmt. Damit ein Fehler andere Replikas nicht
beeinträchtigt läuft jegliche Kommunikation, welche über eine Replika hinaus geht, über
gewisse Abstimmungsmechanismen. Eine fehlerhafte Replika kann so überstimmt werden.

Das Ziel dieser Arbeit ist es nun einen Bus auf Basis pausierbarer Takte zu entwerfen.
Bei dieser neuen Architektur handelt es sich um einen sogenannten Mehrkanalbus, der
asynchronen Kommunikationsmustern folgt und auch selbst vollständig asynchron ist.
Der Ansatz mehrere Kanäle anstatt nur einen einfachen Bus zu haben, ermöglicht
mehrere gleichzeitige Transaktionen anstelle von nur einer, ohne dass dabei derselbe
Flächenaufwand wie für Punkt-zu-Punkt-Verbindungen erforderlich ist.
In einem zweiten Schritt wird dieser neue Mehrkanalbus so erweitert, dass er keinen
einzelnen Ausfallspunkt hat und Teil eines Systems mit gemischter Kritikalität sein
kann, wo sowohl TMR-Nachrichten, als auch gewöhnliche Nachrichten, denselben Bus
zur Kommunikation verwenden.
Es konnte gezeigt werden, dass der neu entwickelte Mehrkanalbus hinsichtlich der Latenz
zwar schlechter abschneidet als bekannte und einfachere Konzepte, die Stärke des neu
konzipierten Mehrkanalbusses jedoch neben des möglichen Durchsatz im Verhältnis zur
benötigten Fläche auch in der Fehlertoleranz liegt.

xi

Abstract

Two major challenges in the development of modern Systems-on-Chips(SoCs) are the
global clock distribution and the reliability of the system.
Clock distribution is not only about providing all modules with a clock, but also with
the one necessary for their functionality. This leads to so called GALS systems, which
operate synchronously at the local level but due to the different clock domains they use
asynchronous methods to communicate with each other. For asynchronous communication,
value safe methods are available in which the clock is temporarily stopped. This has
the advantage that the latency is significantly reduced compared to time safe methods,
which work with synchronizers.
The second problem is the reliability of a system, because this guarantees the continuity
of service even in the event of a component failure and is required for many safety-
critical applications such as aircraft, nuclear power plants, or self-driving cars. In such
applications, there must not be a single point of failure that results in the entire system
failing. One class of systems that can tolerate a single component failure are the triple
modular redundant (TMR) systems. Here, three replicas perform the same tasks and,
upon successful completion, the results are voted on. To ensure that an error does not
affect other replicas, all communication that goes beyond one replica runs through certain
voting mechanisms. A faulty replica can thus be outvoted.

The goal of this work is now to design a bus based on pausable clocks. This new
architecture is a so called multi channel bus, which follows asynchronous communication
patterns and is also fully asynchronous itself. The approach of having multiple channels
instead of just a single bus allows for multiple simultaneous transactions instead of just
one, without requiring the same area overhead as point-to-point connections.
In a second step this new multi channel bus is extended in a way such that it does not
have a single point of failure and can be part of a mixed criticality system where both,
TMR messages and best effort messages use the same bus for communication.

It was shown that while the newly designed multi channel bus performs worse than known,
simpler concepts in terms of latency, the strength of the newly designed multichannel
bus is the possible throughput relative to the required area, as well as its fault tolerance.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Aims and Contribution . 2
1.2 Methodological Approach . 3
1.3 Tools . 4
1.4 Outline . 5

2 Related Work 7
2.1 Analysis of different GALS concepts 7
2.2 Concept of NoCs described on Argo 19
2.3 Multi-point interconnects for GALS architectures 21

3 Multi Channel Bus 27
3.1 General problem description . 28
3.2 Channel selection . 30
3.3 Channel access . 33
3.4 Data reception and addressing . 36
3.5 Data transaction . 43

4 Fault tolerant bus architecture for TMR usage 47
4.1 Mixed criticality system . 47
4.2 TMR system . 49

5 TMR fault handling 65
5.1 Transient bit flips . 66
5.2 Replica too slow . 72
5.3 Simultaneous write . 72
5.4 Permanent faults . 73

xv

6 Performance analysis 81
6.1 Setup and Definitions . 81
6.2 MOGLI . 82
6.3 Multi channel bus . 84
6.4 Multi channel TMR bus . 95
6.5 Area . 99

7 Conclusion & Future Work 101
7.1 Conclusion . 101
7.2 Future Work . 102

List of Figures 103

List of Tables 107

Bibliography 109

Appendix 113
Simulation results . 113

CHAPTER 1
Introduction

On modern systems-on-chip (SoCs) global clock distribution is challenging. The chips
have become so complex that it is extremely difficult to distribute a single global clock
all over the architecture with an acceptable skew for the system to run with a clock rate
that is in the GHz area. Furthermore these systems often require more than one clock
domain because some of the modules are fulfilling specific tasks where special clock rates
are necessary. A consequence of these requirements is that there are a lot of modules each
running synchronously with its frequency but the communication between the modules
has to follow asynchronous principles. Those systems are called globally asynchronous
locally synchronous (GALS) systems. A first systematic approach to the GALS system
design was described by Chaprio [Cha84] in 1984. Although in nowadays designs his
assumptions are almost infeasible still all current work is founded on his work.
The challenge here is to find suitable communication ways between the modules to avoid
metastability issues when sampling data from the sender’s clock domain with the receiver
clock. There one of the most straight forward methods is to insert synchronizers between
the different clock domains [Gin03]. Since the synchronizer consists of two or more
cascaded flip flops, latency is introduced and nevertheless there is still a non-zero risk for
metastability. Therefore other approaches are interesting. An interesting but power and
area consuming approach is to use asynchronous FIFOs [Gre95, SF01].
A quite different approach for secure communication is to use so called pausible clocks
[Cha84, YD96, BC97, SM00, MVF00, MTMR02, KPWK03, MCS04, DGS04]. These
clocks can be stopped at the receiver side during communication such that all data is
transferred correctly.

Besides the need for different clock rates, many applications like airplanes, spacecrafts,
nuclear power plants or self driving cars require the integrated circuits to be dependable.
One attribute of a dependable system is reliability. Reliability guarantees the continuity
of service even in case a fault occurred. One simple technique, for allowing and masking
away one fault at a time, is to use a triple modular redundant (TMR) system [LV62]. In

1

1. Introduction

this approach three replicas of the same system fulfill the same task and then when all
are finished, the result is voted on. When now a fault occurs in one of the replicas, the
two other ones are still working properly and they outvote the faulty replica.

1.1 Aims and Contribution
The aim of this thesis is to present a novel bus architecture, that addresses both problems
stated above. The new architecture shall not only be able to handle simple data
transactions between clock domains but also voted messages when being used in a TMR
system. To achieve this in a first step Villiger’s MOGLI bus [Vil05], that is based on
pausable clocking, is extended by introducing channels. Over each channel an output
port can send data to those input ports it selected by address. With introducing channels
the latency can be reduced as multiple transactions can happen simultaneously but
without introducing too much area overhead as it might be the case with point-to-point
connections. There is a control unit that regulates the channel access. When one output
port wants to send something, it sends a request and when there is a free channel the
requesting port is assigned to the free channel and can send its data. The number of
channels can be adapted depending on the usage scenario in order to find an optimal
trade-off between efficient channel usage and minimal blocking through waiting times in
relation to the average latency of a data transmission.
The following problems need to be solved for the multi channel bus:

• Reliable channel arbitration
Here the challenge is to find a method ensuring that every port that requests
the bus finally gets a channel assigned. Furthermore there should be no idling
channel when there is an open bus request in order to avoid increasing the latency
unnecessarily long.

• Minimum channel blocking time
Villiger split up the acknowledge signal into two different acknowledge signals to
distinguish whether the data was taken or not. Therefore the bus is occupied
unnecessarily when the receiving port is not ready yet. It has to be analyzed
how time consuming this is and if there are methods that avoid unnecessary bus
occupation and do not consume too much area.

• Possibility of multicast
The big issue that needs to be handled correctly when allowing multicasts is what
is done when not all ports were able to receive the data yet. Here some mechanisms
need to be implemented. Furthermore it might happen that multiple ports want to
send data to the same input port concurrently. This should not be a problem when
the module has own input ports for each channel. However it must be possible that
multiple ports of a module can receive data concurrently.

2

1.2. Methodological Approach

In a second step the above multi channel bus is used to interconnect a TMR GALS system.
Each locally synchronous module is triplicated and therefore also the communication
channels including the ports must be tripled. To accept a received message it needs to be
received from at least two different sender replicas. Therefore the multicast only needs
to wait for two of three receivers to accept the data.

For the TMR capable multi channel bus the following problems need to be solved:

• Synchronization
Unlike in a TMR system, where all replicas are using the same clock source,
here each has its own local clock (This is actually a key feature of the proposed
architecture, as it removes the single point of failure usually formed by the clock
in a globally synchronous TMR architecture). Thus the phase shift between the
replicas is not constant and predefined. As a consequence when receiving two
correct messages, the replicas still have to wait for an adequate time as the last
replica may just be late.

• Mixed criticality
The bus system should be able to cope with best effort messages as well as with
TMR messages. However those two types need to be distinguishable and it is
important, that TMR messages are prioritized as they are more relevant to the
overall system.

• No single point of failure
Last but not least it is crucial for TMR messages that there is no point in the
path, where a fault can lead to a failure of the overall system. Each fault must
be confined to the replica within which it first occurred. Thus for communication
between replicas, always voters are necessary and thus only TMR messages.

The scientific contribution of this thesis lies in an extension of the existing concepts and
frameworks that enables attaining the envisioned goal and, to that end, overcomes the
problems listed above. To the best of the author’s knowledge, no respective solution has
been published so far.

1.2 Methodological Approach
The expected results were achieved in the following steps. These occurred in iterations,
as after a design is simulated, different optimization possibilities might be considered and
compared against each other in order to analyze their advantages and disadvantages.

Literature study: In a first step the existing approaches were studied. This helps to
understand the problem better and also points out the benefits and drawbacks of the
different approaches that currently exist.

3

1. Introduction

Implementation of selected approach: In a second step the most promising ap-
proach was then implemented in hardware for two reasons. Reason one was to have a
starting point for the new design and reason two was to have a reference for comparison
at a later point.

Design new approach: Here first the channels were introduced and then in a second
step the goal was to adapt the multi channel solution for TMR use.

Simulation, Analysis and Comparison: The new approach was simulated exhaus-
tively after being designed. As a baseline Villigers MOGLI [Vil05] was used. In addition
to fault-resilience, throughput and latency, an interesting analysis is the behavior of the
area in the different approaches.

Optimization: A final step then was to optimize the new approach after analyzing
the simulation and understanding its behavior as well as advantages and disadvantages.

1.3 Tools
The chosen methodology requires to use multiple tools that are described in more detail
in the following.

1.3.1 Workcraft
As the whole multi channel bus ought to be asynchronous, special design techniques have
to be used. A great tool for designing asynchronous finite state machines is Workcraft
[PSM07]. Workcraft is designed to develop interpreted graph models. For this work state
transition graphs were designed, that then were verified and synthesized. For this thesis
the Complex gate (Petrify) synthesis has been chosen among the various methods that
Workcraft supports.

1.3.2 VHDL
Very High Speed Integrated Circuit Hardware Description Language (VHDL) [VHD19]
is a hardware description language which allows to describe digital system in text based
manner. VHDL is a description language and not a programming language. Thus not
everything that can be described is synthesizable.

1.3.3 ModelSim
For simulating the system, that was programmed with VHDL, ModelSim [Cora] was
used. ModelSim allows the user to simulate various hardware description languages such
as VHDL, Verilog and system C. It supports not only prelayout but also postlayout
simulations.

4

1.4. Outline

1.4 Outline
This thesis is structured as follows:

Chapter 2 gives a short overview of the related work. It includes various different GALS
communication concepts as well as simple clock domain crossings.

In chapter 3 the already mentioned new bus architecture and its different components are
presented in detail. It is then analyzed how a transaction looks like. This includes not
only the different phases of a transaction but also the whole communication mechanism.
The latter is shown in a flow chart for better illustration.

With this new bus then a mixed criticality system is presented in chapter 4. The focus
of this chapter is mainly the TMR communication, as the best effort transactions were
already discussed in the previous chapter. As the different ports had to be adapted to be
able to handle TMR messages, the modified ports are also discussed in detail.

An analysis of all possible faults that have an influence on the bus or the TMR communi-
cation is then presented in chapter 5. The analysis distinguishes between transient bit
flips and permanent faults. Beside the signals that cross the replica borders, also other
interesting signals have been analyzed.

Different properties like the throughput, latency and area of the multi channel bus are
then analyzed in chapter 6 and also compared to the MOGLI bus by Villiger [Vil05] that
is used as a baseline. It is furthermore analyzed how much a faulty replica can influence
the duration of a TMR transaction. Furthermore lower bounds for the timeout of the
voters are presented, to keep the additional transaction duration as minimal as possible.

Chapter 7, which concludes this work, contains a conclusion of the work and a short
overview on future work.

5

CHAPTER 2
Related Work

In the literature two different types of GALS systems are distinguished. On so called
networks on chip (NoCs) [JT+03, BDM02, BDM01, DT01, KJS+02], a network with
routers connects the locally synchronous islands with each other, whereas on a conventional
GALS system the islands that communicate are connected directly which each other. In
both cases the most challenging part in GALS systems is the handling of the clock domain
crossing. Therefore asynchronous concepts have to be considered for communication,
which always includes some kind of handshaking mechanism.

2.1 Analysis of different GALS concepts

There are mainly two big different concepts currently used for data transfers between
locally synchronous islands. On the one side these are approaches with synchronizers
like bundled data and asynchronous FIFOs. These have a non zero probability for
metastability and are therefore not error free. On the other side there is an alternative
approach which allows error free operation by halting the clock if necessary for an error
free transmission.

2.1.1 Synchronizers

As already mentioned above with synchronizers there always exists a non zero probability
for metastability. This probability can be reduced through adding more stages to the
synchronizer. However, each synchronization stage increases the latency. In some settings
a single stage synchronizer is still sufficient and is therefore preferred due to its low latency.
Therefore the following two cases have been analyzed with a one stage synchronizer.

7

2. Related Work

Figure 2.1: Bundled data based communication with a one stage synchronizer (from
[Gin03])

Bundled data

For this concept (shown in Figure 2.1), the bundled data communication protocol is used
between the two locally synchronous modules. In order to guarantee that the data is
valid when it is read at the receiver, the acknowledge and the request signals have to be
synchronized. For synchronization flip flop cascades are used. The more flip flops are
cascaded the higher is the mean time between failure, that is defined in Equation 2.1.
The mean time between failure depends on how often a metastable state occurs (fraction)
and how long it takes to resolve(exponential part). For the number of metastability
occurrences the data sending rate λdat, the sampling frequency fclk and the technology
depending parameter T0 are responsible. The resolution on the other side depends on
the available resolution time tr and the technology depending τc.

MTBF = 1
λdatfclkT0

exp
tr
τc (2.1)

Since a one stage synchronizer consists of two cascaded flip flops the average data
throughput is 1

1.5(TA+TB) where TA and TB are the clock periods of the two communicating
systems.

Asynchronous FIFO (General Approach)

An asynchronous FIFO is a buffer that is accessed by two different clock domains. The
schematics of such a FIFO is shown in Figure 2.2. The heart of the asynchronous FIFO
is a dual port buffer. This allows reading and writing operations simultaneously. In order
to only read valid data and not overwrite data which has not been read yet, the current
write respective read address have to be transmitted to the other clock domain, where

8

2.1. Analysis of different GALS concepts

an empty, respectively full-flag is generated. This can be done via Gray encoding of the
address. Since in Gray code only one bit changes when a binary number is incremented by
one, no acknowledge or request signal is needed. Each bit can be synchronized separately
without generating intermediate values. For calculating the empty respective full flag, the
remote and local address are compared with each other. Although the remote address
may already be outdated when calculating the flags, the system is still safe. For the
empty flag this holds because it may state empty although the sender might have written
something new to the FIFO. The same argumentation can be used for the full. There
again it might state full although the reader has already read an element from the FIFO.
The advantage of this concept is, that a higher throughput compared to the bundled data
synchronizer approach can be reached. Let’s assume that the writer is faster than the
reader. Then in the beginning the reader waits an average of 1.5TR where TR is the clock
period of the reader’s clock until it starts reading. If now a lot of data is transmitted,
the FIFO will be full at some point and the reader can read one entry each cycle. If the
reader is faster than the writer the throughput depends on the writer , since the writer
can without delay write one entry every cycle.

Figure 2.2: Structure of an asynchronous FIFO (from [Kil07])

A recently made internal analysis of Najvirt and Steininger [NS20] has shown that in
general synchronization FIFOs are overdesigned most of the time. They were able to
show that for a clock ratio larger than two a FIFO depth of two is sufficient whereas
relatively equal clocks also do not require a greater depth than four if a synchronizer
delay of one cycle is assumed.

9

2. Related Work

Asynchronous FIFO (Pipeline approach by Huemer et al.)

Instead of exchanging the Gray encoded read and write pointers in this approach the idea
is to just transmit pointer increment information across the timing domain boundaries in
form of read tokens. The transmitter exchanges the increment information over a Muller
pipeline [Sut89] with the same depth as the FIFO. For calculating the full and empty
signal Huemer et al. introduced in [HS20] a so called desynchronizer and resynchronizer,
also shown in Figure 2.3. They both sample the current state of the Muller pipeline. As
there might be active transitions during sampling, metastable states might be sampled.
Therefore synchronizers are introduced and depending on the flip-flop stages the number
of states that are sampled needs to be adapted. This is necessary because when there are
n flip-flop stages it takes up to n cycles until the pattern is analyzed. The Desynchronizer
checks if the pattern is constant. As long as it is constant meaning that there is no
alternating state pattern read, there is space left in the FIFO as with every write a token
is generated through a toggle flip-flop. The Resynchronizer on the other side checks for
an alternating pattern and also if there are still single tokens in the pipeline that are not
detected by the alternating pattern detector.

Figure 2.3: Structure of an bisynchronous FIFO with with Muller pipeline (from [HS20])

2.1.2 Pausable Clocking
The idea here is to pause or stretch the local module’s clock to guarantee that the
communication signals never violate the setup and hold time constraints. A pausable
clock like the one shown in Figure 2.4 is generated via a timing loop (which is a ring
oscillator) and a switching loop. The timing loop is responsible for the pulse width. The
pulse width is generated through delaying the clock signal, which is done in D. This
delay is mostly achieved by sending the clock signal through an inverter chain. Clock
signals generated this way are not as precise as the ones generated by a crystal quartz.
The switching loop is to stop the clock at a pause request. Therefore every high pulse
and every pause request has to request for a grant signal at the mutual exclusive element
M . Only one of them gets it and therefore the clock is paused when the pause requests

10

2.1. Analysis of different GALS concepts

gets its grant. Despite M can become metastable, when both requests arrive at the same
time. However when a low-threshold metastabilitiy filter [SMC80] is added at its output,
the operation is value safe. When now the switching and the timing loop are ready for
a transition, the Muller gate C1 forwards this transition to its output and a new clock
edge is generated.

Figure 2.4: pausable clock (from [NS15])

For asynchronous communication different methods exists which are described in the
following:

Variations

Pausable clocking control PCC The pausable clocking control shown in Figure 2.5a
was developed in 1996 by Yun et al. [YD96] to transfer data between locally synchronous
modules. It comprises the generation of the stretchable clock as well as the processing
of the handshake. Two local clock cycles are at least required to transfer data and at
most one port per module can be active at a time. Since the high fan-ins and fan-outs
make the arbiter very large and impractical. its use is only limited to systems with
circular data flow. The data is always written to and read from a FIFO which is located
between two synchronous modules. When a request occurs the asynchronous finite state
machine (AFSM) activates R1 and when it gets its grant G1, SRρ it is activated in a way
such that no setup and hold time violations occur when the finite state machine (FSM)
synchronously samples it. The AFSM performs effectively a two-phase to four-phase
transformation. An illustration of a a read can also be seen in Figure 2.5b.

Asynchronous wrapper Bormann et al. In 1997 Bormann et al. [BC97] came up
with asynchronous wrappers. In contrast to the previously described PCC concept the
asynchronous wrapper is more flexible regarding data flow organization but on the other
hand it lacks proper arbitration between concurrent requests to the clock generator.
A data transfer is only possible every second clock cycle. This is because of the port
enabling logic. For a new data transfer to initiate the input/output signal has to transmit

11

2. Related Work

(a) PCC for bidirectional communication (b) PCC timing for one way communication

Figure 2.5: PCC (both pictures from [YD96])

a rising edge. Since the input/output signal is generated synchronously by the locally
synchronous module an extra cycle is needed to switch the input/output signal to low.

Figure 2.6: Asynchronous wrapper by Bormann (from [BC97])

Depending on the application ports may be active or passive. This means that they
initiate a request or just wait for a request to occur and then answer. Therefore for both
input and output port an active and a passive port specification was presented. In Figure
2.7 the asynchronous state machine for a passive input and an active output are shown.
There a # indicates a directed don’t care meaning that the signal may either remain at
0 or monotonically change from 0 to 1 or remain at 1. On the other hand ∼ means that
the signal remains at 1 or monotonically changes from 1 to 0 or remains at 0. In this
specification furthermore a late data-valid bundling convention is used which means that
the data is not guaranteed to be valid until after ReqI−. The data then is latched and
after AckI− occurs the data at the input may change at any time.

One big problem with the design of the ports is that no matter if they’re active or passive,
they immediately stretch the clock when being enabled. So there was also a so called

12

2.1. Analysis of different GALS concepts

(a) Passive input port
(both pictures from [BC97])

(b) Active output port

Figure 2.7: Extended-burst-mode circuit

Q-Port presented that allows active polling for requests. Furthermore this system is prone
to deadlocks. When for example two modules are communicating in both directions and
they both enable the output enable signal but not the input enable signal, then they are
both waiting for the input to become ready but since the clock is already paused on both
modules a deadlock occurs.

Asynchronous wrapper Muttersbach et al. Muttersbach et al. [MVF00] analyzed
the problems of the previously presented methods for communicating with pausable
clocks. They then came up with a new asynchronous wrapper model shown in Figure 2.8
and also with a new set of ports.

Figure 2.8: Asynchronous wrapper around a locally synchronous module (from [MVF00])

There are two types of port controllers used in Muttersbach’s asynchronous wrapper.
Those are the demand-ports (D-ports) and poll-ports (P-ports). They all get activated
by the locally-synchronous module and enter an asynchronous finite state machine. As
can be seen in Figure 2.9 the D-ports immediately send a request to the clock to be
stopped when being activated whereas the P-ports wait for the request to stop the clock
until the handshaking process is in a stage where stopping the clock is necessary in order
to prevent metastability. Furthermore the problem with at least one necessary recovery

13

2. Related Work

cycle to disable the enable signal and enable it again, like Bormann had, was solved by
enabling a new transition through transition signaling on the enable line.

(a) D-Input (b) P-Input

(c) D-Output (d) P-Output

Figure 2.9: All Port types presented by Muttersbach (pictures taken from [Mut01])

Figure 2.10 shows the data exchange circuit between two locally synchronous modules
and also the corresponding waveforms. There the output port is a demand port. So
clk1 is immediately halted after Den is set. The input port on the other side is a poll
port. It is only halted shortly for sampling. Although the clock is released by the P-port
towards the end of the transfer cycle, it is not known exactly when the next clock cycle
might appear when the module has multiple ports. The other ports might keep the clock
stretched for an unknown amount of time as they also might be in an active transmission.
Therefore it is necessary to latch the transmitted data vector between both modules.
The latching guarantees data correctness and decouples both modules from each other.
The Ap signal is used for latching because then it is sure that the input port already got
enabled and therefore is ready and that clk1 is paused during the transparency phase.

There still may occur deadlocks in this system when using demand ports due to the same
reason as in the Bormann approach.

Pausable Bisynchronous FIFO In 2.1.1 already an asynchronous FIFO has been
presented. There the read and write pointers are exchanged via synchronizers to reduce
the probability for metastability. Keller et al. presented in [KFK15] an asynchronous
FIFO where the read and write pointers are updated by a two phase increment protocol
with pausable clocks instead of synchronizers. They were able to keep the average latency

14

2.1. Analysis of different GALS concepts

(a) Data exchange channel between two locally synchronous
modules

(b) Corresponding waveform (Latch is
transparent in shaded area)

Figure 2.10: Data transfer mechanism (both pictures taken from [MVF00])

at a very low level of of around 1.34 clock cycles and additionally have a zero probability
for metastable upsets.

In Figure 2.11 the sequence necessary for synchronization of data through the FIFO is
indicated by letters. It furthermore is assumed that in the beginning the FIFO is empty
and all two-phase increment and acknowledge lines are free to use. Data is then written
on the rising edge of TX Clock to the FIFO address pointed to by the writer logic and
the valid signal is asserted (A). The write pointer logic now increments the write pointer
and toggles one of the pointer increment lines (B). On the receiver side the XOR gets
active as the latched value is different to the asserted value and requests a grant to safely
read the value from the TX Clock domain. For each increment line a separate mutex is
needed. The RX Clock only runs if all mutex give their grant to the clock. When the
increment line finally gets its grant the latch gets transparent. After the data is read by
the latch, the xor is deasserted by the data from the feedback loop and so is the request
(C). The new value is also transmitted to the read pointer logic in order to keep track of
the write pointer and set the valid signal at the output system (D).

So far only the TX domain does not know that the RX domain has already processed the
increment message. Therefore the RX domain also toggles the corresponding acknowledge
line (E) and this information then has to be synchronized on the TX side in the same
manner as on the RX side (F). Finally the write pointer logic receives the acknowledge
signal (G) and the increment line is free for future use.

The more increment and acknowledge lines are used the more pointer increments can be
transmitted within a single clock period. Experiments, though, have shown that three
increment acknowledge pairs in either direction already guarantee full throughput for a
sender receiver clock ratio between 1/2 and 2.

The FIFO is also adaptable to just have one module with a fixed reference such as a

15

2. Related Work

Figure 2.11: Pausable asynchronous FIFO with signal path for pointer increment high-
lighted (from [KFK15])

PLL and some synchronizers and the other module works with a pausable clock and the
shown mechanism. This would still allow low latency communication in one direction.

Compared to the previously shown pausable clock approaches which were prone to
deadlocks in multiport applications here no such deadlocks can occur as long as all
modules work properly.

Optimizations

Here some minor optimizations regarding the asynchronous wrapper of Muttersbach will
be presented. Muttersbach’s wrapper is so far the best model presented as it allows
multiple ports to communicate at the same time and also with minimal time effort.

Optimized pausable clock generator In [FKG09] Fan et al. presented a way to
widen the request acknowledge window (RAW). The RAW is the duration in each clock
cycle where port requests can be acknowledged immediately. For a clock generator like
the one shown in Figure 2.4 it holds that tRAW ≈ TCLK/2. This is because the clock

16

2.1. Analysis of different GALS concepts

signal requests for the grant directly after the inverter and if it gets the grant immediately
an eventually arriving pause request has to wait until the inverted clock gets low again,
which is in the worst case after TCLK/2 and since the low phase of the inverted clock is
TCLK/2 the RAW is also TCLK/2.

A way to widen the RAW is to let the clock not instantly request the grant. Instead the
delay line is split up into two parts as shown in Figure 2.13, which shows a simplified
version, that is comparable with Figure 2.4. The two parts are namely the programmable
delay line D0 followed by the fixed delay line D1 which are defined as listed below:

dD0 = TLClk/2 − (dD1 + dC−ELE + dNOT) (2.2)
dD1 = dAND + (d0

MUT EX + ΔdMUT EX) (2.3)

As Equation 2.2 and 2.3 show, the request of the clock is asserted at the last possible
time, such that the pulse width is not influenced. A possible additional delay due to the
time it takes the MUTEX element to resolve metastability is considered in ΔdMUT EX .
As a result the time window where a pause request gets an immediate grant is widened
to tRAW = TLCkl − dD1.

C
D0

M
D1

&

G1 G2

R1 R2

timing loop

switching loop

clk

(clock output)

(pause ack)

(pause request)

Figure 2.12: Simple optimized clock generator

The originally presented solution of Fan et al. [FKG09] is shown in Figure 2.13 and
outlines a solution for multiple ports and also a possibility to reset the clock. The
introduced delay of the programmable delay line D0 and the fixed delay line D1 are
defined as listed below:

17

2. Related Work

dD0 = TLClk/2 − (dD1 + dC−ELE + dNOR) (2.4)
dD1 = dAND0 + dAND1 + (d0

MUT EX + ΔdMUT EX) (2.5)

The programmable delay line and the LClkB are merged together with an AND gate.
Since in the MUTEX element metastability is resolved there needs to be added some
additional delay ΔdMUT EX to the delay line. The on-phase period of the resulting RClk
that requests the grant is then only the gate delays of the path from MUTEX, AND0,
C − ELE, NOR and AND1. Thus the probability of introducing a one cycle latency
in the receiver can be reduced dramatically since the request of the clock at the mutex
arrives as late as possible. The resulting tRAW of the optimized version is therefore
tRAW = TLCkl − dD1.

Figure 2.13: Optimized clock generator with two ports (from [FKG09])

Optimized Input Port Double latching The data transfer mechanism in 2.10 is
prone to synchronization failures caused by the local clock tree insertion delay on the
receiver side. As the clock tree insertion delay and the handshaking signals propagation
delay are independent from each other, a rising edge of the local clock can arrive at the
sampling FF at any time during the time where the latch of the input port is transparent
and thus might lead to metastability in the FF. In [FKG09] the double latch mechanism
shown in Figure 2.14 was presented. The idea here is to reduce the width of the critical

18

2.2. Concept of NoCs described on Argo

window to a minimum. Since the grant signals of the MUTEX enable the latches L1
and L2, only one latch is transparent at a time. The simultaneous occurrence of ReqRx

and RCLK may result in a random resolution time and therefore any rising edge of
LClkRxDly may fall in the on-phase of RClk and thus could lead to a conflict, as L2 is
transparent at that time. If the already optimized clock generator, as shown above, is
used, the duration of the safe window WS is TLCLK − dD1 when two latches are used. In
contrast, no matter how large the clock period is, it never exceeds TLCLKRx/2 when only
one latch is used. For clock periods way larger than dD1 the double latching method
makes nearly the entire clock period safe. It can be furthermore shown that for any clock
period, the width of the safe timing region is always approximately doubled with the
double latching mechanism compared to the single latch mechanism.

Figure 2.14: Double latching mechanism (from [FKG09])

Optimized Poll Input Port Controller Poll input ports only halt the local clock
during the handshaking process. Therefore the local clock is again released when the
request signal from the remote module is deasserted. This leads to the large and
unpredictable stretching on the input’s local clock. In [FKG09] Fan et al. presented an
optimized poll input port, where an additional transfer acknowledge signal is introduced.
After acknowledging the clock pause request, the request acknowledge signal is sent to the
transmitter and in parallel the transfer acknowledge signal is asserted. Subsequently the
local clock can resume immediately after these two events. For the transfer acknowledge
signal an additional latch is required that is enabled by the RClkGrant signal, in order
to synchronize the transfer acknowledge signal to the received data.

2.2 Concept of NoCs described on Argo
In [KSS+15] Kasapaki et al. presented a NoC approach called Argo that supports message
passing across virtual channels and uses statically scheduled time division multiplexing

19

2. Related Work

of the resources to ensure hard real-time properties. As illustrated in Figure 2.15b the
routers work totally asynchronous whereas the network interfaces are mesochronous to
each other.

Routers consist of three pipeline stages. One stage is for link traversal, the second one for
header processing and the third one is for crossbar traversal. This allows routers without
any circuitry for arbitration or buffering. The data is sent in in so called phits and every
handshaking cycle one phit is consumed on all inputs by the router. One packet consists
of three phits, each of them is a 32 bit data word along with three control bits. One phit
is the header phit containing the destination write address and the static route.

(a) Architecture of a argo processor node (both pictures
from [KSS+15])

(b) Timing organization of the Argo
NoC

Figure 2.15: Argo NoC

The network interface of each processor node is a clocked synchronous circuit that handles
the time division multiplexing. As the network interfaces are mesochronous to each other
a FIFO is used as interface between the router and the network interface. For the data
clock domain crossing between the processor node and its network interface the dual
ported scratchpad memory (SPM) is used. In this way, explicit clock domain crossing is
only needed for programming the DMA controllers.

20

2.3. Multi-point interconnects for GALS architectures

2.3 Multi-point interconnects for GALS architectures

In his PhD thesis [Vil05] Thomas Villiger presented three different multi-point interconnect
methods for GALS systems.

2.3.1 Modular GALS Interconnect (MOGLI)

MOGLI is a shared bus architecture, where the sender ports request the bus and after
getting the grant to access the bus, data is transmitted to the receiver port. In Figure
2.16 a block level diagram is shown. A central tree arbiter decides which port gets the bus
next and a central address decoder then decodes the address that is currently assigned
to the bus and generates a request signal for the corresponding receiver. In order to not
block the bus and produce deadlocks, a NAp signal is introduced. So no matter a port
is ready or not, the sender immediately gets a response from the receiver and therefore
frees the bus again for other transactions. If a NAp is received, the sender again requests
the bus in its next clock cycle. This is then done until an Ap signal is received.

Figure 2.16: Single channel MOGLI (from [Vil05])

Villiger also presented a second version, where he introduced a second channel for
responses. This is to reduce the time the bus is occupied by a transaction to a minimum,
as the bus is not blocked for the time a memory is read out or a simple status request
is taking place. However a second channel introduces latency, as now the response also
must request the bus over an arbiter and the clocks need to be paused again.

21

2. Related Work

Adapted ports for bus access

The ports from Muttersbach that are shown in Figure 2.9 do not support bus access
whereas the ports shown in Figure 2.17 that are presented by Villiger in [Vil05] do.
He extended the output ports from Muttersbach by a bus request and acknowledge
signal. The request signal goes to an arbiter and when the arbiter grants bus access the
acknowledge signal becomes active.
In order to avoid blocking the bus when the receiver is not yet ready to consume the
data, not only an Ap signal is there for the handshake but also a NAp signal. So for
example for the demand type input port a NAp is sent, when the clock has not been
halted yet when the request arrives.
The poll input port from Villiger differs significantly from the one from Muttersbach.
Instead of being only able to receive one data word and then being deactivated, it is
activated as long as the < Rdy > signal is active. This allows the port to receive multiple
data words, one after another, while being active.

(a) D-Input (b) P-Input

(c) D-Output (d) P-Output

Figure 2.17: Default ports for bus communication presented by Villiger (from [Vil05])

Burst mode transactions With the adapted output ports from above it is not possible
to send multiple data packages when the bus is granted. Instead the bus is released by

22

2.3. Multi-point interconnects for GALS architectures

the output port after each single data transaction. This introduces quite some overhead,
when a module wants to send multiple data packages over the bus with the same output
port. Therefore Villiger also introduced the modified output ports given in Figure 2.18,
that allow burst data transfers. The burst mode output ports do not release the bus
request as long as not all messages are sent. However between every message that is sent
a clock cycle is required to assign new data to the sender port. Thus every Tr

Ts
clock

cycle, where Tr is the clock period of the receiver module and Ts is the clock period of
the sender port, the sender can successfully transmit a data word. In the best case when
data is sent to a module with a faster clock frequency, every cycle a data word can be
sent.
According to Villiger the ports that support burst data transfers require a multiple of
the area of the ordinary output ports. The burst transfer capable demand port requires
even more than four times the area, whereas the corresponding poll port requires more
than twice the area. When it comes to the additional duration for a data transaction,
they both need roughly twice the time. However despite the higher transaction time
an overall speedup due to the arbitration that is only done once in a burst transaction.
The number m of burst transfers necessary to achieve a speed up compared to ordinary
transaction method is calculated in Equation 2.6 where tA is the delay introduced by
the arbitration and tB respectively tN are the transaction times for burst transfers and
normal data transfers.

m ≥ tA

tA − (tB − tN) (2.6)

(a) Burst D-Output Pipeline (b) Burst P-Output

Figure 2.18: Output ports for burst transactions (from [Vil05])

2.3.2 Self-timed Ring for GALS (STRING)
For ring based communication, all nodes are connected through a circular path where
every node decides on whether to consume the message or bypass it to the next node.
Figure 2.19 shows such a structure. Villiger developed special ring transceiver modules
that work fully asynchronously and consume the data depending on the address or

23

2. Related Work

forward it. When forwarding it needs to be taken care of on whether to send the own
output data, or the one currently stored in the transceiver.

Figure 2.19: Ring architecture Villiger (from [Vil05])

2.3.3 Switching Network for GALS (SWING)
The third approach that Villiger presented is a switching network that implements a NoC
architecture, where switches are responsible for setting up a direct connection between
sender and receiver. In an enhanced approach shown in Figure 2.21 he also presents a
switch element, that allows to not only set up one connection but even two, in case this
does not lead to a collision. Collisions occur when due to the static routing a route is
already blocked by another message.

24

2.3. Multi-point interconnects for GALS architectures

Figure 2.20: Switching Network Villiger (from [Vil05])

Figure 2.21: Switch crossbar element Villiger (from [Vil05])

25

CHAPTER 3
Multi Channel Bus

As outlined in the related work chapter 2 there are already approaches for point to
point connected systems like the one from Muttersbach [Mut01] and bus designs like the
ones from Villiger [Vil05]. In this chapter a novel architecture, shown in Figure 3.1, is
presented. The idea is to get the best out of both designs. This is done by improving the
bus architecture designed by Villiger by introducing so called channels.

Like in Villiger’s approach, when a module wants to initiate a transaction, one of its
output ports is enabled. After being enabled an ordering request is sent. This is because
multiple ports can be activated simultaneously and therefore some ordering process is
necessary. Since now more than one bus is available, this ordering mechanism is more
complex than just one tree arbiter like in Villiger’s MOGLI. The address of the output
port that is selected by the ordering process is stored in a pipeline from where a channel
that is currently idling, tries to get the address through a channel selection module. The
requests from the idling channels again have to be arbitrated, as multiple channels may
try to request an address simultaneously.

Through introducing multiple channels the throughput can be increased, while the
additional area and interconnect that is needed can be kept low. Each channel can
establish a point to point connection between an input port and an output port. Whenever
a module wants to send something, it first requests a channel. After a free channel is
assigned and a point to point connection is established correctly, data is transmitted.
Also burst mode transactions are possible, where more than one data word is sent per
bus access. Therefore simply burst mode supporting output ports like the one from
Villiger [Vil05] can be used instead of Villiger’s adapted output ports from Muttersbach.
Everything between the sender and receiver port works asynchronous. This also includes
the channel selection process which is fully asynchronous.

The difference to the two channel MOGLI [Vil05] presented by Villiger, is that there is
not one dedicated channel for request and one for response. Instead all channels can

27

3. Multi Channel Bus

input

output

input

input

input

channel
arbiter

channel
access

channelA

channelB

arbiter0,1,2,3 dataA dataB

port0

port1

port2

port3

module0

module1

module2

module0

module1

module2

output

output

output

port
arbiter pipeline

channel
selection

address
decoder

address
decoder

Figure 3.1: Block diagram of a multi channel bus with two channels and 3 modules and
one single pipeline

support both types of messages and therefore more than two channels are possible.

3.1 General problem description
The idea behind the above described approach is to provide a communication network for
a distributed system with n nodes and s services. Each node i ∈ [0, n] of the system may
provide or use data of some of those services. nis is the total number of services that
are provided at node i and nir is the amount of services that send something to node i.
In a first step for every service that may send something from node i a sender port ki,j

(j ∈ [0, nis]) is introduced and for every service where data can be received, a receiver
port pi,j (j ∈ [0, nir]) is introduced. So in total there are k = n

i=0
nis
j=0 ki,j sender

ports and p = n
i=0

nir
j=0 pi,j receiver ports. Albeit k and p are fixed by the underlying

algorithm, it might be that one port is able to handle multiple services, when they are in
a way interlocked that they can never occur concurrently. Thus the number of actually
implemented ports might be even less than calculated above.

The communication between the k sender ports and p receiver ports takes place over m
channels. Those m channels receive the information of which output port they are wiring
through next from one of the q pipelines, where 0 < q ≤ m holds. Those pipelines allow
hidden arbitration, which means that while a transaction is still in process, it is already

28

3.1. General problem description

evaluated which output port is allowed next to send data.

A very challenging problem is to determine m and q properly as the best trade off between
used area and latency may highly depend on the algorithm. Since one big advantage of
pausable GALS application is that the latency is kept as low as possible, this should
also be the case for the multi channel bus. However to achieve this, it is necessary that
there is one idling channel whenever a request occurs. Thus to keep the latency at its
minimum, m needs to be equal to the maximal number of service requests that might
be active simultaneously, which requires an in depth analysis of the algorithm. As this
might be difficult to analyze and furthermore the maximal number of active services at a
time might differ greatly from the average amount of active services it might be more
reasonable to choose m in a way such that it is somewhere between the average and the
maximal number of simultaneously active requests. Consequently all channels are well
utilized but the requesting sender ports do not need to wait disproportionately long until
they get assigned to a channel.

Another important decision is how many pipelines q are necessary and furthermore how
many channels should be assigned to one single pipeline. So in general here there are
three different methods:

• One single pipeline (q = 1)
In this case all channels get their data from one single pipeline and thus the output
ports may be assigned to one of the m channels. Using only one pipeline is clearly
saving area but might also introduce quite some additional latency especially when
the transaction durations are way less than the time it takes to acquire a channel.

• multiple pipelines (1 < q < m)
To reduce latency more pipelines are introduced. As now not all ports have access
to all channels anymore but only to a disjoint subset, the workload needs to be
balanced accordingly. This requires some analysis, as it needs to be known, which
ports are sending data more frequently than others or do burst transactions which
occupy the bus for quite some time. Pipelines that store requests from such ports
may feed data to multiple channels, as otherwise other requests need to wait quite
some time until they get assigned to a channel. In case one output port is very
active and needs to send time critical messages, it might be even possible to assign
one pipeline that feeds one channel with this port.

• One pipeline for each channel (q = m)
One pipeline for each channel is the maximal number of pipelines that is possible.
Although being the most area intense method it might not be the one where the
latency is at its minimum. This is because in case the workload is not balanced
well or can not be analyzed statically there might be one pipeline that is full and
its channel is also busy while all other pipelines are empty and their channels are
idling.

29

3. Multi Channel Bus

The scheme of a multi bus channel presented in Figure 3.2 is an example for the multiple
pipelines method where n < m. The analysis of the underlying algorithm might have
shown that sender0-sender4 rarely want to send something and thus they all share one
pipeline and as it might be the case that when one of the ports is active it occupies
the channel for quite some time, two channels are there for those five ports. sender5
and sender6 share one pipeline and one channel. Here it might be the case that both
channels do not occupy the channel very long when they request it or if they do, it is not
critical for the overall system, when one of the senders has to wait longer until it can
send its message. For sender7-sender9 holds the same as for sender0-sender4 although
those three senders might be more active and thus they got assigned two channels to
send their data over.

sender0

sender1

sender2

sender3

sender4

sender5

sender6

sender7

sender8

sender9

pipeline0

pipeline1

pipeline2

channel0

channel1

channel2

channel3

channel4

receiver0

receiver1

receiver2

receiver3

receiver4

receiver5

receiver6

Figure 3.2: Scheme of a multi bus channel where k = 10, p = 7, m = 5 and q = 3

3.2 Channel selection
The most challenging part, when extending the MOGLI approach to support multiple
channels, is the question how a free channel is selected and assigned to an output port
that is requesting a channel. Therefore the requests need to be sorted somehow and then
matched with one of the channels.

3.2.1 Single Pipeline
One way to achieve this is by queuing all requests in an asynchronous Muller pipeline
like the one presented in [Sut89]. Which sender address is stored next is determined by
an arbiter. On the output of the queue there is another arbiter that decides to which
channel the sender gets assigned. Figure 3.3a shows a schematic of this approach. Each

30

3.2. Channel selection

sender can be assigned to any of the available channels. However the single pipeline is a
bottleneck as outlined above because it requires all requests to be serialized before they
are assigned to parallel channels. So it is only applicable when the time spent for the
actual transaction is longer than the time it needs to traverse the queue.

3.2.2 Multiple Pipelines

To overcome this bottleneck, more pipelines can be introduced, going up to one pipeline
per channel. However now each sender port has only dedicated channels over which it
can communicate. In case there are as many pipelines as channels, there is even only
a unique channel over which it can communicate, thus the arbiter at the output of the
pipeline becomes obsolete. When using the multi pipeline approach it is important to
first analyze which senders send most frequently, in order to distribute them well over all
channels. A schematic of how this looks like is shown in Figure 3.3b.

Pipeline

Channel
Arbiter

Port
Arbiter

Channel
Arbiter

(a) Single Pipeline

Port
Arbiter Pipeline

PipelinePort
Arbiter

Channel
Arbiter

Port
Arbiter Pipeline Channel

Arbiter

(b) Multiple Pipelines

Figure 3.3: Channel selection mechanism

3.2.3 Channel selection block implementation

A complete implementation of a channel selection block with one pipeline is shown in
Figure 3.4. When a port wants to send data over a channel it first sends an ordering
request to the channel selection block. The requests are ordered with an arbiter, which
then handles the pipeline access. This is done by using the grant signals of the arbiter to
feed a 1-of-n asynchronous QDI pipeline [ZSG+13]. When there is space left, the grants
are forwarded into the pipeline and after the first stage received the data, the output
data of the first stage is used to indicate the output port adapter that the request was
successfully written into the pipeline. The acknowledge signal that is generated in the
last pipeline stage is also used as request signal for the output of the pipeline, as the
pipeline itself only needs an acknowledge signal for working properly.

Reading an entry from the pipeline is a bit more challenging than writing an entry to the
pipeline. The reason for this is that the channel arbiter only requests the port address

31

3. Multi Channel Bus

Channel
Arbiter

Channel
Arbiter

req0
grant0

req1
grant1

ack0

C

Pipeline

req0

grant0

req1

grant1

req2

grant2

Port
Arbiter

req
grant

Port
Arbiter

address0
address1
address2

Pipeline-Arbiter
Connector

channelreq

channelgrant

pipreq

pipack

C

C

≥1
ack1

C

C

C

≥1
ack2

C

C

C

≥1
ack3

C

C

C

Figure 3.4: Implementation of single pipeline with 3 stages and two entries

from the pipeline until a grant is received and does not take care of removing the entry
from the pipeline properly.

To overcome this issue a special pipeline-arbiter connector is introduced. An STG of
the connector is presented in Figure 3.5. An arbiter request is only granted, when the
pipeline indicates that it is not empty, by activating pipreq. After the channel helper
consumed the port address and thus removed the channel arbiter request signal, the
pipeline entry is consumed and removed by setting pipack and deasserted again after
pipreq becomes inactive.

The synthesis of the STG by Workcraft [PSM07] results in the Equations 3.1 and 3.2.

Figure 3.5: Pipeline-Arbiter connector STG

channelgrant = pipreq · pipack · channelreq + channelgrant · pipack (3.1)
pipack = channelgrant · channelreq + pipack · pipreq (3.2)

The timing diagram of Figure 3.9 shows how two addresses are read from the pipeline
successively. Although the channel arbiter requests the next port address while the

32

3.3. Channel access

request from the pipeline is still active, it does not get the grant until the next port
address is ready in the pipeline. The pipaddress is the address that is currently waiting in
the pipeline until it is read by a channel. When it is consumed by a channel it is stored
as channeladdress in the channel helper that got assigned to the address and the address
in the pipeline can be overwritten by the next request.

channelreq

channelgrant

channeladdress

pipreq

pipack

pipaddress

Figure 3.6: Timing diagram of the pipeline-arbiter connector

3.3 Channel access
To connect the output port, the channel selection module and the channel itself with
each other, two additional asynchronous finite state machines (AFSM) are needed. One
is needed as an adapter for the output port and the other one is needed for the channel.
Those AFSMs are then connected with each other like in Figure 3.7.

channel selection

output
port

0,1,2,3

port
adapter
0,1,2,3

busreq0,1,2,3

busack0,1,2,3

arbiterreq0,1,2,3 arbiterack0,1,2,3

channel
helper

A,B

datareqA,B dataackA,B, address

channel
access
switch

A,B

addressA,B

Rp0,1,2,3, Ap0,1,2,3, NAp0,1,2,3, data0,1,2,3

RpA,B, ApA,B, NApA,B, dataA,Bport_transparentreq0,1,2,3

port_transparentackA,B

port_transparentack0,1,2,3

port_transparentreqA,B

Figure 3.7: Block diagram of channel access with four output ports, two channels and
one pipeline

When an output port requests the bus, the channel helper sends an arbiter request and
after a channel finally gets assigned the port_transparent_req signal becomes active
and the output port is informed that it now can send data over a channel. The output
port does not need to know which channel it got assigned to.

33

3. Multi Channel Bus

3.3.1 Output port adapter
The output ports of Villiger are not designed for the way of channel selection described
above. Therefore the AFSM in Figure 3.8 is introduced. It consists mainly of three
different phases. The first phase is initiated after a bus request. The adapter then sends
a request to the arbiter until this one responds with an acknowledge signal. Now the
sender address is stored in the pipeline. In the second phase the adapter waits until a
channel acknowledges that data can be sent over it safely. After that acknowledge the
third phase is entered, where data is then really sent over the bus.

Figure 3.8: Output port adapter STG

The synthesis of the STG results in the Equations 3.3-3.6. The green label csc0 results
from a complete state coding (csc) confilct. A csc conflict arises when two semantically
different reachable states have the same encoding. The encoding is done with all signals
of the STG and thus in case two states have an identical encoding a new variable
must be introduced. In this case this variable is csc0 and it is representing a state
indicating whether currently the port can request a channel (csc0 = LOW) or the
channel already has been requested successfully but the port has not completed the
transaction (csc0 = HIGH).

csc0 =busreq · csc0 + arbiterack (3.3)
port_transparentack =csc0 · port_transparentack

+ port_transparentreq · csc0 · arbiterack (3.4)
arbiterreq =busreq · csc0 (3.5)

busack =port_transparentack (3.6)

A possible timing diagram where the three phases are marked can be seen in Figure 3.9.
Note that here no exact timing is provided.

3.3.2 Channel helper
The channel helper is responsible for providing the channel with new transactions. There-
fore whenever the channel is not occupied by some ongoing transaction, it requests
a new output port address from the channel selection module. After being assigned
a new address, the second phase is initiated. During this phase valid is active and

34

3.3. Channel access

Phase 1 Phase 2 Phase 3

outputbusreq

outputbusack

outputRp

outputAp

channelData

arbiterreq

arbiterack

port_transparentreq

port_transparentack

csc0

Figure 3.9: Timing diagram of output adapter with control signals from the output port

therefore the address is propagated to the switching module as shown in Figure 3.10b.
Over the switching module the sender port is also informed, that it can start its com-
munication with the receiver. This communication channel is then kept intact until
the port_transparent_ack signal is deactivated. Then valid is inactive and no port is
selected by the address anymore.

(a) Channel helper STG

pipeline_address0
pipeline_address1
pipeline_address2

address0
address1
address2MUX

1

0

dataack

0
0
0

valid

(b) Channel address activation

Figure 3.10: Channel helper

The synthesis of the STG shown in Figure 3.10a results in the Equations 3.7-3.10. Again
a csc conflict is resolved by an additional state variable csc0 that is initiated with zero
and is responsible for separating the phases. When csc0 is zero a new address has been
received but the corresponding port has not responded yet.

In the timing diagram of Figure 3.11 the address signals are also added to show how the
internal valid signal sets the address which then is propagated to the switching module.

35

3. Multi Channel Bus

csc0 = port_transparentack + csc0 · dataack (3.7)
datareq = valid · csc0 (3.8)

port_transparentreq = dataack · csc0 (3.9)
valid = dataack · csc0 + port_transparentack (3.10)

Channel transparent

datareq

dataack

addressintern

port_transparentreq

port_transparentack

valid

address One-hot encoded

csc0

Figure 3.11: Timing diagram of channel helper

3.3.3 Channel access switch
The channel access switch is responsible for mapping the output port selected by the
address to the channel. The address here works as a multiplexer select signal. Important
is that the channel switch not only maps the signals that are required for the asynchronous
bus communication but also the port_transparent signals that are used as communication
between the channel helpers and the port adapters. When no port is active, the channel’s
request and data lines are kept zero. The same holds for all Ap and NAp signals of the
ports that are currently not selected by the channel. Since there the other channels also
need to be able to write to, this is done via pull downs.

3.4 Data reception and addressing
Depending on the communication assumptions the receiver side needs to be adapted
accordingly compared to the MOGLI approach, with a central address decoder, presented
by Villiger.

3.4.1 Poll input port clock pausing problem
Xin Fan optimized the pausable clock generator in [FKG09] and presented an example
circuit (Figure 2.13) with two pause requests. Let’s assume now that Req0 comes from
a demand input port and that Req1 from a poll input port. As the demand port

36

3.4. Data reception and addressing

immediately halts the clock, Ack0 gets the grant. After delay D0, RClkGrant1 gets the
grant from the clock. When the demand port has not received anything so far, the clock
is still halted but because MUTEX1 already gave the grant to the clock, nothing can
be received at the poll port.

Since for the ports it only matters if the clock is halted or not and not whether they
halted the clock or someone else, one MUTEX element is enough. All pause requests
are ored to one single pause request reqpause. The ports then only check if the clock is
paused. Important here is that the request signal to the AND gate is delayed and that it
holds that Δ > OR + MUTEX. This is because it might be the case that the port that
paused the clock so far just deasserted the request signal but the ackpause is still active
when the new request reqi arrives. A glitch for acki might be the consequence, without
the delay elements.

MUTEX

≥1

≥1
req0

reqn

... ... reqpause

RClk
grantclk

&

&

...

ack0

ackn

ackpause
Δ

Δ

D1D0

& LClkB

L0

L1 LClk

reset

Figure 3.12: Adapted clock pausing mechanism

Due to the adaptation of the pausing request also the calculation for delay dD1 changes
as outlined in equation 3.12. The change compared to equation 2.5 is that the AND0
gate is not necessary in the new pausing mechanism and thus dD1 can be further reduced.

dD0 = TLClk/2 − (dD1 + dC−ELE + dNOR) (3.11)
dD1 = dAND + (d0

MUT EX + ΔMUT EX) (3.12)

37

3. Multi Channel Bus

3.4.2 Valid data identification
Muttersbach designed all his ports such that they can send respectively receive one data
word per port enable. The enabling of the ports works synchronously with the clock. To
avoid the extra cycle for the return to zero, which is necessary when the enable signal
follows a four phase protocol, the enable signal follows a two phase protocol instead.
Whenever it toggles its logical value it enables the port for another data word.

Since Villiger’s ports also work with this principle, when not considering the poll port
input that works slightly different, a circuit, that identifies whether data was already
received successfully or not, is presented in Figure 3.13. The idea is that while the data is
latched, an additional latch, functioning as edge detector, latches the Pen signal, which is
responsible for enabling the port. An XNOR gate then decides whether the current data
in the latches is valid or not. When the current Pen signal and the latched Pen signal
are identical, the data that is stored is correct, otherwise not. Since the clock is paused
during the time data is stored in the latch, no metastable valid is read. Furthermore
immediately after the port is enabled, the data is marked as not valid and therefore not
even an explicit reset for the valid signal is necessary.

=1
Pen

ack

valid

Figure 3.13: Data valid identification

3.4.3 Point to Point
For this approach the assumption is that, like in the design presented by Muttersbach,
there are always pairs of input and output ports that communicate exclusively with each
other over the bus. They communicate with no other ports. So even when there are
multiple channels and therefore multiple data transmissions going on simultaneously,
there occurs no conflict because never two ports want to write to the same port. This
allows the use of only one input for all channels and like in Figure 3.14, the request
signals of the channels are used as select signal for the multiplexer. The input port then
writes the data into a latch and also sets a valid flag in the way described above.

Per channel one global address decoder like in Villiger’s MOGLI approach can be used.
The downside however is, that even though the same service is accessed by multiple
modules, for every distinct module a unique input port is needed.

3.4.4 Concurrent receiving
To overcome this issue, there are basically two methods. The first one is, that the requests
of all channels are arbitrated whereas the second method is that every channel has its

38

3.4. Data reception and addressing

input0

req0

ack0

dataMUX

req0,0

ack0,0

data0

req1,0

ack1,0

data1

channel0

channel1
datavalid

clk

Figure 3.14: Channel multiplexing for point to point communication

own set of ports. The first method increases the latency, as all requests now have to be
arbitrated and the second method introduces quite some overhead but allows receiving
data really concurrently. To keep the latency respectively area overhead minimal, this
can also be only an option for input ports that may receive data from multiple ports at
the same time.

To process the data correctly the sender now also has to send its address or some other
information with the data package.The additional information is used, to store the data
package in the correct data entry. Depending on how the input works it might be ideal to
even send this address in a delay insensitive encoding like the one-hot encoding, because
then no additional delay has to be introduced, in order to make sure that no metastable
address is read.

Concurrent Demand type input port

As demand type input ports are only able to receive one data word each time they are
enabled and to not halt the module forever, it makes sense here to serialize the concurrent
requests with a MUTEX.

Figure 3.15 shows this approach. Depending on which channel gets the grant, a multiplexer
forwards the data of the corresponding channel and when no channel is selected, a
zerovector is assigned. It is important here, that no channel is selected as default, as
then it might happen, that the selected channel is switched in the middle of an ongoing
transaction. This happens when the arbitration takes so long, that the input port already
started with processing the request and the arbiter gave the grant to another channel
but not the one that is currently active. Important to note here is that the concurrent
demand input port needs no valid signal as the module anyway only resumes, after some
data has been received.

Concurrent Poll type Port Unlike the demand type input port from Villiger, the
poll type input port is not immediately deactivated after receiving a data word. This
allows the port to receive more than one data word, even within one clock cycle and

39

3. Multi Channel Bus

demand
input

Rp0,0

Ap0,0, NAp0,0

data0

Rp1,0

Ap1,0,NAp1,0

data1

channel0

channel1 MUX

Mutex

Rp0

Ap0

Ri Ai

data

grant0,0grant1,0

datalatched

Pen
zerovector

NAp0

Figure 3.15: Concurrent receiving with Mutex

store the data in a table entry. The table is built with latches and for every possible
sender/service one unique entry exists. This is important in order to not get problems
with concurrent writes to the same table address. Depending on the kind of data that is
transmitted it might be necessary for the system to not overwrite it until the module has
consumed it. On the other hand there might be data like for example a value from a
sensor that is read and sent repeatedly and thus no special handling is necessary in that
case.

Consumption check In case it is important that the receiving module really
processes the message that is sent, it needs to be taken care of during the receiving
process, that the table entry is only updated, when its valid flag is indicating that there
is currently no valid data stored and thus data can be written to the entry as previous
received data is already processed.

Figure 3.16: Write helper STG

To check this a special asynchronous write helper module is designed. Its STG is shown
in Figure 3.16 and results in the Equations 3.13-3.15. As demonstrated in the timing

40

3.4. Data reception and addressing

diagram 3.17, it only allows a write, when valid is not set at the beginning of a transaction.
When a second request Rp arrives while valid is active, a nack is sent immediately.

ack = valid · write (3.13)
nack = valid · write · Rp (3.14)
write = valid · Rp + write · Rp (3.15)

Pen

Rp

write

valid

ack

nack

Figure 3.17: Timing diagram of write process

The address sent with the data must be DI encoded when the concurrent receiving with
the latch table is implemented like in Figure 3.18. Otherwise it might happen, that in the
beginning of the receiving process another address is selected as in the end, because not
all address signals arrive simultaneously. Another work around is to delay the channels
Rp signal long enough so that the address signals are certainly correct.

When now a request Rp is detected by the poll port, the clock is halted and after the
clock is halted successfully the request is acknowledged with App. In case the poll port is
not even activated, the port responds with a NApp. Instead of directly sending the App

signal back to the receiver, it is now sent to write helperi and there works as Rpi. The
write helperi then sends depending on whether it was able to write the data to the latch
or not an acki or a nacki. Those signals are then routed back to the according channel
via the switch module. The acki is there directly wired to the corresponding Ap signal of
the channel whereas the nacki is ored with the NApp signal to form the NAp signal of
the channel.

Update value only When the table entry only contains data where no explicit
consumption is necessary, the whole write helper module can be omitted. Even the
valid signal is of no interest in that case. However important here might be that the
initial values of the latches lead to no problem within the algorithm. Figure 3.19 shows a
poll input port where all entries are just receiving uncritical update values. Again Ap
from the poll port is used to for storing the data. Since now no valid can be taken to
make sure that the data is already stored in the latch it might be necessary to delay the
acknowledge signal, that is sent to the sender port sufficiently enough, such that there
was enough time for the data to be stored correctly.

41

3. Multi Channel Bus

poll
input0,0

poll
input1,0

data0data

=1 valid0

data0latched

=1 valid1

data1latched

=1 valid2

data2latched

Pen

write
helper0

Switch

Rp0,0

NAp0,0

data0

Rp1,0

NAp1,0

data1

channel0

channel1

Ri0,0 Ai0,0

Ap0,0

Ri1,0 Ai1,0

Ap1,0

NApp

NApint

App

NApp

NApint

App

data1data

data0address

data1address

write0
Rp0
ack0
nack0

write
helper1

Rp1
ack1
nack1

write
helper2

Rp2
ack2
nack2

data0

data1

data2

write1

write2

≥1

≥1

store0,1,2

Figure 3.18: Concurrent receiving Villiger’s poll input port and write helper

However there might be also input ports with mixed table entries. Some where explicit
consumption is required and some where this is not necessary. In that case the Ap
from the input poll port is forwarded over the switch to then be immediately returned
(Rpi = acki) and the corresponding nacki is set to zero permanently.

3.4.5 Multicast

Another property that is interesting for some applications is the possibility of multicasts.
Therefore the central address decoder has to be removed and instead for each input port
the request and acknowledge signals can be accessed directly by the output port. A
transmission is completed on the sender side, when from all ports that should receive
the message either an acknowledge or a not acknowledge is received. At the sender’s
next clock cycle a new transaction is initiated and a channel is requested, to resend
the message to all ports that answered with a not acknowledge previously. This is then
repeated until no port is left that has not answered with an acknowledge.

A possible implementation is presented in Figure 3.20. First it is checked whether a Api

or a NApi is received and then it is checked if this matches with the request Rpi. In
case all ored acknowledge signals match with their corresponding request signal, Ap is
active. Ap is the acknowledge signal that is forwarded to the sender port to terminate
the transaction and is only active as long as there is at least one Api or NApi signal

42

3.5. Data transaction

poll
input0,0

poll
input1,0

data0data

data0latched

data1latched

data2latched

Switch

Rp0,0

NAp0,0

data0

Rp1,0

NAp1,0

data1

channel0

channel1

Ri0,0 Ai0,0Ap0,0

Ri1,0 Ai1,0Ap1,0

NApp

data1data

data0address

data1address

Ap0

Ap1

Ap2

data0

data1

data2

Pen

Δ

Δ

Figure 3.19: Concurrent receiving Villiger’s poll input port without valid signal

active. All Ap and NAp signals are latched when Rp of the sender port is active. This
is necessary because the module needs to assert the Rpi signals of those input ports,
that answered with a NAp signal again. The locally synchronous module checks the Ap
signal. When it is active the module knows that the transaction is over.

3.5 Data transaction
Figure 3.21 shows a flow chart of a full data transaction. The fat black route marks a
possible path for the data path. However on the sender side multiple different paths are
available, depending on whether the input port is already ready to take data or not. For
simplicity the clock pause requests are left out in the flowchart as depending on the port
type, this request is at different positions. The green marked circuit is handling the bus
access and makes sure that only one port at a time can access a channel. The orange
marked connections are helpers for completing a transaction. Another simplification in
the chart is that all handshakes that are not marked with +− signals are working such
that when an acknowledge is received, the request signal returns to zero followed by the
acknowledge signal.

43

3. Multi Channel Bus

Rp0
Rp1
Rp2

Ap0
Ap1
Ap2

NAp0
NAp1
NAp2

≥1

≥1

≥1&

&

=1

=1

=1

Ap'

clk

Rp

Ap
output
port

Ri Ai

Pen

CD

busreq busack

≥1

Figure 3.20: Multicast Ap and Ap calculation for sender port with three possible receiver
ports

44

3.5. Data transaction

Toggle Pen

BusReq+ Store request
in Pipeline ArbiterReq

Read request
from Pipeline

DataReq

PortTransparentReq+Wait unil Channel is
ready

PortTransparentAck+

PortTransparentAck-

DataAck+

BusAck+

Rp

Wait until transaction
is finished

No

NAp

Yes
Port

Enabled?

Ap

Ap'

BusReq-

BusAck-

ArbiterReq+

DataReq

DataAck-

DataReq+

DataReq-

PortTransparentReq+

PortTransparentReq-

Output Port

Output Port
Adapter Channel

Selection

Channel
Access

Input Port

No

Yes
Write

Helper? write

Yes

No
Data

Valid?

ArbiterAck+ArbiterReq-

ArbiterAck-

≥1

≥1

≥1

Figure 3.21: Flow chart of data transaction

45

CHAPTER 4
Fault tolerant bus architecture for

TMR usage

Reliability is an important aspect in many modern applications, as a lot of systems
nowadays need to be able to continue working properly after an occurrence of a fault as
otherwise in the worst case human lifes are in danger. A way to make a system more
reliable and tolerant against faults is by replicating it multiple times and then vote in
order to get a correct result. In case two replicas are used, faults can only be detected,
but not corrected. To correct one fault, three replicas are necessary. Such systems are
called triple modular redundant (TMR) systems [LV62].

In this chapter a novel TMR capable bus architecture is presented that allows every node’s
replica to run with its own independent clock, as long as the phase shift between the
different replicas is within a predefined range. Thus it might be necessary to synchronize
the different replicas from time to time, which can be done without extra effort as it is
automatically done during a TMR transaction. The fault tolerant bus uses the multi
channel bus presented in chapter 3 as basis and allows to send TMR messages as well as
best effort messages.

4.1 Mixed criticality system
As already outlined the bus system shall be able to transmit TMR messages as well as
uncritical messages. However the critical messages should be prioritized. To achieve this,
a flag is introduced that indicates whether a message is a TMR message or not. In case
it is a TMR message it is arbitrated differently and prioritized higher than best effort
messages. To avoid failure propagation over different replicas, data transactions between
replicas always take place over voters. Consequently best effort messages can only be
sent within the same replica. Multicasts are not only possible for best effort messages

47

4. Fault tolerant bus architecture for TMR usage

but also TMR messages, as it is assumed that only one fault can occur. This means that
when one full replica is not working properly, this is only counted as one fault as one
failure might be propagated through the whole replica.

4.1.1 Data package
Due to the given requirements it is necessary to send additional information with the
data to the receiver. Due to the requirement that the overall system allows both best
effort messages within the replica and TMR messages that are propagated to all replicas,
the message must be marked with a flag that indicates the message type. This allows
the receiver to handle the message accordingly.

The second additional information that is added, is the sender’s address, that is also very
important for the receiver in order to know how to process the data, but also to store it
in the correct table entry. Depending on the implementation, this also means, that the
sender’s address is one-hot encoded in the data package.

is_tmr dataaddresss
Figure 4.1: TMR data package

4.1.2 Message prioritization
As TMR messages tend to be more critical than other messages and to not block the bus
unnecessarily long, because the requests might be arbitrated differently in each replica,
two pipelines are introduced. One for TMR messages and one for normal messages. Two
different approaches to prioritize TMR messages are shown in Figure 4.2. The problem
with approach 4.2a, where only one arbiter is used, is that it might happen that a normal
request is blocking the arbiter, because the normal pipeline is already full. So additional
normal messages with no prioritization need to be sent before the TMR message can be
forwarded to the TMR pipeline. To avoid this, a more area consuming circuit is presented
in the second approach presented in Figure 4.2b, where two different arbiters are used,
and depending on whether it is a TMR message or not the request signal is forwarded
to the corresponding arbiter. When now a channel is idling and requests an address, a
priority arbiter decides from which pipeline the address is taken. The grant signals of the
priority arbiter are then used as select signals for the multiplexer, that then multiplexes
the address that is forwarded to the channel helper module. The communication of the
pipelines with the priority arbiter works like in the single pipeline implementation (Figure
3.4).

A possible priority arbiter for this application is presented in Figure 4.3. The prioritization
in this approach is achieved through masking the request from the pipelines with the
request from the channel. For the request with normal priority, the channel request reqc

is delayed long enough such that reqp gets the grant, when both pipelines have stored

48

4.2. TMR system

Port
Arbiter Normal Pipeline

Channel
Arbiterreq0

req1

req2

req3

req0

req1&

&

&

&

is_tmr0

is_tmr1

is_tmr2

is_tmr3

Port
Arbiter

req0

req1

req2

req3

&

&

&

&

is_tmr0

is_tmr1

is_tmr2

is_tmr3

Priority Pipeline

MUX address

Priority
Arbiter

(a) separate arbiters

Normal Pipeline

Channel
Arbiter

req0

req1

is_tmrgranted

Priority Pipeline

Port
Arbiter

req0

req1

req2

req3

MUX address

DMUX Priority
Arbiter

(b) shared arbiter

Figure 4.2: Priority pipeline

requests. Once reqp or reqn is active, it holds the state until the request of the associated
pipeline is deasserted. Since the internal mutex element of the arbiter is in charge of
deciding which of the pipelines will get the grant to request the source, these mutex
grants m_grantp and m_grantn can be used as select signals for the mux that forwards
the address from the selected pipeline. The pipeline-arbiter connector module in this
approach is located right after the arbiter for the pipeline.

Arbiter

& reqp'

grantp

grantn

reqn'

reqc

grantc

Δ

reqn

reqp

Channel
Arbiter

reqs

grants

req0grant0

reqngrantn

...Pipeline-Arbiter
Connector

≥1
&

&
≥1

&

m_grantp m_grantn

Figure 4.3: Priority arbitration

4.2 TMR system
In a triple modular redundant (TMR) system there are three replicas of a module that
calculate the same and the result is then voted in order to eliminate one single failure.
For a GALS system this means that there are three replicas of the whole system. A
TMR variant of the system in Figure 3.1 is presented in Figure 4.4. All replicas have
their own multi channel bus and important on the input side is now, that each input
port must be capable of receiving data from all possible channels from all replicas. So in
this case where the bus consists of two channels, each input port must be able to receive
data from 6 unique channels.

49

4. Fault tolerant bus architecture for TMR usage

The system is able to cope with one fault. It might be the case that a module of one
replica is faulty. When being faulty, a module can request channels arbitrarily or pause
the clock infinitely long, which then can lead to other modules becoming faulty too.
Therefore it is important, that communication among different replicas only follows
voting mechanisms.

input

output

input

input

input

ordering
request

channel
access

arbiter0,1,2,3 data0 data1

module0

module1

module2

module0

module1

module2

output

output

output

ordering
request pipeline

channel
selection

input

output

input

input

input

ordering
request

channel
access

channel0

channel1

port0

port1

port2

port3

module0

module1

module2

module0

module1

module2

output

output

output

ordering
request pipeline

channel
selection

input

output

input

input

input

channel
arbiter

channel
access

module0

module1

module2

module0

module1

module2

output

output

output

port
arbiter pipeline

channel
selection

Figure 4.4: Schematic of GALS TMR

4.2.1 Clock
A very specific property of a GALS system is, that each node runs with its own self
generated clock. This has to be taken care of, when receiving data and voting it.
Furthermore also synchronization methods have to be considered, as it is important,
that the slowest replica does not fall too much behind and therefore becomes faulty and
introduces errors into the system. To overcome this, TMR messages are also used for
synchronization purposes.This is done by halting the clocks of the involved modules until
a majority of the replicas agree on a successful transaction.

50

4.2. TMR system

2of3
voter

3of4
voter

Δ

Figure 4.5: 3of4 voter for synchronization

4.2.2 3of4 voter
Since all nodes run with their own clock, it is challenging to tell whether a message is
just late or will never arrive. Thus a 3of4 voting mechanism like the one presented in
Figure 4.5 is necessary. After two replicas agree on a value it is waited for time Δ which
is the maximal phase shift that the slowest replica is allowed to be behind the other ones
in a failure free environment. If no value is received, it is assumed that the slowest one is
dead and the 3of4 voter indicates that the voting process is complete.

However the problem of this approach is that the time between single messages needs to
be at least Δ as otherwise glitches in the voted signal might occur. Therefore Lechner
presented a special circuit in [Lec14], that replaces the delay line with a watchdog timer.
When this timer runs in a timeout, the Muller gate is fed with the the signals from the
level based majority voter (LB voter). Important to note here is that this special voting
mechanism is only used for the request signals. The data is still voted with a level based
majority voter as in conventional TMR approaches.

The fen block is in charge of enabling the watchdog. This happens according to the truth
table presented in Table 4.1. Important is here also to enable the watchdog timer when
one request signal is high while all others are low and the output of the Muller element
is also high. This might be an early transition and it might be necessary to clear the
Muller element.

Lechner also presented a possible solution for the watchdog module in his thesis [Lec14].
A schematic of it is shown in Figure 4.7. After being enabled a ring oscillator is used as
clock for a linear feedback shift register (LFSR). after reaching a predefined value the
timeout is triggered. This then deactivates the ring oscillator and the LB voter value is

51

4. Fault tolerant bus architecture for TMR usage

Figure 4.6: GALS TMR voter designed by Lechner (from [Lec14])

rsv[1] rsv[2] rsv[3] rvr fen

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Table 4.1: Watchdog enable

52

4.2. TMR system

Figure 4.7: Watchdog module designed by Lechner (from [Lec14])

forwarded to the Muller gate inputs. In case the watchdog is disabled before the timeout,
the LFSR module is cleared and the ring oscillator is halted.

4.2.3 TMR transaction

The time a port occupies a channel should be kept to a minimum and furthermore it is
important to free the channel when a receiver is not yet ready for the data because oth-
erwise the system might deadlock due to data dependencies on the algorithm abstraction
level.

A very important task that TMR messages fulfill, is keeping the replicas synchronous to
each other. This is quite challenging when the different replicas involved in a transaction,
have to release the bus immediately in case the receiver is not ready and then request
the bus again. Therefore an approach is presented, where TMR messages block the bus
until the voter sends an acknowledge, indicating that the data was taken and the replica
has agreed on a value. This approach requires that there are at least as many channels
as concurrent TMR messages.

Figure 4.8 and 4.9 show the idea behind the synchronization. In the blue area each
replica works on its own. When a replica now reaches a point where a TMR message is
sent, it waits until a 3of4 voter (brown voter on the sender side) agrees on sending the
TMR message (orange area). This is to reduce the amount of time spent on the bus and
in case a node is faulty the bus is not taken unnecessarily.
When the voter allows sending the TMR message the bus is requested. This might take
different amounts of time, depending on how the serialization method looks like and
what other sender ports are doing and if one of them is requesting the channel selection
simultaneously.
After a channel is assigned to the sender port the actual transaction takes place. On the
receiver side a 3of4 voter (green voter) waits for the requests of the different replicas.
After voting successfully an acknowledge is forwarded to all senders. Those senders also
wait for those acknowledge signals with a 3of4 voter (green voter on the sender side).
This voter also is in charge of the second synchronization phase, as it waits until it gets

53

4. Fault tolerant bus architecture for TMR usage

a response from all three senders or runs in a timeout. After the voter approves that the
message was sent successfully the channel is finally freed.

TO TO
sync

Channel occupied

sync
Replica0
Replica1
Replica2

Figure 4.8: Timing diagram of TMR transaction

4.2.4 Sender side
When synchronization is important, only demand output ports make sense for the output
side. For the sake of completeness a poll output port is also presented in the following
section.

TMR supporting demand-type output port implementation

The heart of the TMR supporting demand-type output port is the demand-type output
port for the MOGLI bus architecture presented by Villiger.

In order to not unnecessarily block a channel although no other replica wants to send the
same TMR message, it is first waited for all replicas to be ready to send the message by
a 3of4 voter. This is done by checking if the data that is sent is a TMR message or not.
After the voter indicates that the others are now ready to transmit data too, the busreq

is sent to the output port adapter and after getting the busack, the data is asserted to
the bus until an acknowledge Ap is received.

After two replicas send an acknowledge signal for all requests, it is waited again via a
3of4 voter for the third one. When nothing is received it is assumed that the missing
replica is dead.

In order to keep the phase shift between the replicas at a minimum, it is possible to
introduce another synchronization stage where the Ap signals from the 3of4 voter of all
replicas are again fed into a 3of4 voter and the result is then used to inform the output
port that the transaction can be completed. Since in this approach the bus is kept until
the data is really received, it is not really necessary to sync again as the phase shift is
already below one clock period after the TMR transaction.

The red marked parts in 4.10 are optional and ensure that temporarily late modules do
not become faulty immediately but instead get a chance to make up time by not even
requesting the bus and sending the data. The diff module that is shown in detail in

54

4.2. TMR system

Output replicaA

3of4
voter

Output replicaB

3of4
voter

Output replicaC

3of4
voter

is_tmrA

is_tmrB

is_tmrC

Pen output
port

Pen output
port

Pen output
port

Input replicaA

3of4
voter

dataA

dataB

dataC

Rp

Ap

Rp

Ap

Rp

Ap

input
port

Ap

datavalid

Input replicaB

3of4
voter

input
port

Ap

datavalid

Input replicaC

3of4
voter

input
port

Ap

datavalid

channel selection

bus
access

busreq busack

channel selection

bus
access

busreq busack

channel selection

bus
access

busreq busack

3of4
voter

3of4
voter

3of4
voter

Figure 4.9: Voting mechanisms during a TMR transaction

Figure 4.10 is in charge of enabling the switches that then redirect the busreq and Rp
signal directly back to the busack and Ap signal. For the diff module two counter modules
from the DARTS implementation [FS11] are used. Only the GRo is needed to determine
whether the other replicas already finished sending or not. The depth of the remote
pipelines defines how many TMR transactions the slowest module is allowed to be behind.
For one message two Muller gates are needed. In order to be able to separate two TMR
messages internally a is_tmr_active flag is used that is enabled when the output port is
activated and the is_tmr flag from the message is active. It is then deactivated after the
port is inactive again. This is the case after Ap and Ri both are again zero. When both
the local and remote pipeline have a matching edge it is removed from both pipelines.
As the local replica always has to wait until at least a second one is ready to send, the
local pipeline depth can be kept very minimal. One Muller Gate is here enough. The
problem with this approach however is, that the slowest port might be activated while
the other two ports already received their acknowledge signals and are already releasing

55

4. Fault tolerant bus architecture for TMR usage

output
port

Ri Ai

3of4
voter

is_tmr_active0

is_tmr_active1

is_tmr_active2

SW

& output
port

adapter

busreq

busack

Rp

Ap

arbiterreq arbiterack

port_transparentreq

port_transparentack

multicast
Ap0

multicast
Ap1

multicast
Ap2

3of4
voter

Ap0

Ap1

Ap2Rp

Ap'

Pen
Ap0,0-n

NAp0,0-n

Ap1,0-n

NAp1,0-n

Ap2,0-n

NAp2,0-n

Rp

Rp

Rp0,0-n

Rp1,0-n

Rp2,0-n

diff

SW

Figure 4.10: Block diagram of a tmr sender port with optional transient failure suppression

the bus. Also the module that just received the data resumes and might already prepare
itself for the next data sent from the same port. In that case it might happen that one
table entry is filled with wrong data. However the transaction is aborted immediately
after the is_tmr_active is deactivated by the other two replicas.

TMR supporting poll-type output port implementation

In an application where synchronization is important, a poll port as sender is not really
practicable. For sake of completeness and because the only difference is the acknowledge
handling, it is presented here.

Unlike in the demand port the acknowledge signal is forwarded to the poll port when the
first replica acknowledge all requests. The idea behind this is, to eliminate the phase
shift that exists on the receiver side also on the sender side. After the 3of4 voter that
votes over the acknowledge signals confirms that the transaction was successful the bus

56

4.2. TMR system

Local Pipeline

C C C C

Diff ModuleRemote Pipeline

Pipeline compare Signal Generation

enable_switch

¬GRo

is_tmr_active_remote1is_tmr_active_remote2

Counter module 1 of 2

......

is_tmr_active_local

C

Figure 4.11: Diff module for enabling switches

is freed and the clock is enabled.

4.2.5 Receiver side
On the receiver side again two different scenarios are considered. The one is when only
one sender can send data to a receiver port and the other one is that multiple ports can
send data to one single receiver port.

One possible sender

For synchronization purposes it again makes sense, to use demand type input ports. Two
possible input ports are presented in the following section. One input port uses one
demand type input port per replica, whereas the second one only uses a single demand
type input port.

Seperate demand ports Figure 4.12 shows a block diagram of a demand type input
port for TMR messages, where data from only one sender can be received. Like in the
multi bus channel, the channel that is active, is wired to the demand input port. Unlike
in the multi channel bus approach here the Rp signal can not be directly forwarded to
the port. The reason for this is that adapted demand ports are used, which can only
be deactivated when no request has arrived yet. This functionality is necessary because
one module might be faulty and requesting the port all the time leading it to block the
module forever. Requests are only forwarded to the port, when at least two replicas are
requesting the port and the pause request of the demand port already has been granted.

The data is latched when the currently stored data is not valid while Api is active,
indicating that the demand port accepted the request. After the 3of4 voter successfully
voted and valid is active, the sender is informed, that the data has been consumed and
the receiver port has valid data to process. At this point it is important, that the demand
port is halted until Rp becomes inactive. However it might be the case that one Rp never

57

4. Fault tolerant bus architecture for TMR usage

becomes inactive as the sender replica is faulty and thus the inverted request signals from
the different sender replicas are fed into a 3of4 voter and the voted result is then used to
halt the abortable demand input port as long as under normal circumstances necessary.
Alternatives without this voter lead to possible states, where the receiver port already
resumed its clock while still more than one Rp signal is active. This happens for example,
when instead of the voted Rp signal the valid signal of the 3of4 voter is used that votes
the latched data and valid signals. In case the simple 3of4 voter with just one delay line
is used, the inputs and the output of the voter are inverted. This is necessary to keep
the request still active when all ports except of one already deasserted the request.

The red buffer pipelines in Figure 4.12 are in order to keep a replica that was too slow
once running and thus not let a transient failure become a permanent one.

MUX

channel0,0

demand
input

abortablechannel0,1

channel1,0

channel1,1

channel2,0

channel2,1

3of4
voter datavalidMUX

demand
input
TMR

valid1, data1

MUX
demand

input
TMR

valid2, data2

&

Ri0 Ai0

Rp
Rpi

&

Api

Ap

Rs0 As0

=1

valid0

data0

Pen

&

demand input TMR& ≥1 &

Ri1 Ai1 Pen

Ri2 Ai2 Pen

3of4
voter

Rp1

Rp2

Buffer Pipe

Buffer Pipe

Buffer Pipe

Figure 4.12: Separate demand type input ports for TMR messages with optional buffers
for late transitions

Abortable demand type input port In case an input port uses one demand
port per channel to receive data, the demand ports that received nothing need to be
deactivated in order to resume the clock of the module.

An STG of a demand type input port that allows to disable the port although nothing
has been received yet, is shown in Figure 4.13. The port can only be disabled by setting

58

4.2. TMR system

Rs, when the clock is halted but no request has been received yet. After getting the
grant signal As, the disable request can be deactivated again.

Figure 4.13: Demand type input port with abort functionality

The synthesis of the given STG leads to the Equations 4.1-4.4. Again an additional state
variable Z0 is necessary to generate a proper circuit. After a successful transaction the
port is disabled automatically until the enable signal Pen is toggled. Then the clock
is immediately halted by the Ri request and only released, after a message has been
received or the transaction has been aborted by the Rs request. An example of obtaining
a message successfully followed by aborting the receive process during the second enable
phase, is shown in Figure 4.14.

Ap = Rp · Ai + Ap · (Pen · Z0 + Pen · Z0) (4.1)
As = Rs · Z0 + As · Pen · Z0 (4.2)
Ri = Pen · Z0 + Pen · Z0 + As + Rs + Ap (4.3)
Z0 = Pen · Ap + Rs + Z0 · (Ap · As + Pen) (4.4)

Buffer Pipeline As outlined above buffer pipelines can be added to keep a replica
that missed one deadline running correctly. However the normal Muller pipeline has
to be adapted slightly like shown in Figure 4.15. While Rp and Ap can be directly
connected at the end of the pipeline, a grant that is going back to the sender module is
only given, when the sender module is still active (indicated by a high req signal) and

59

4. Fault tolerant bus architecture for TMR usage

Pen

Rp

Ap

Ri

Ai

Rs

As

Z0

Figure 4.14: Timing diagram of the abortable demand type input port

that the current active request is the only one in the pipeline (guaranteed by checking if
all internal request signals of the pipeline are also high). Otherwise the acknowledge Ap
is referring to a previous transition. The writing into the pipeline can be done without
acknowledge signal because due to the 3of4 voter there are no setup and hold violations,
as the overall system waits until a timeout is met and the slowest replica is considered as
dead.

C
req1

ack0

req2

ack2

ack1

C C
req

grant

Ap

Rp

&

data

Figure 4.15: Buffer pipeline for inputs of late replicas

Shared demand port As the demand port immediately halts the whole module and
only one single sender can send data to this port, it is possible to just use one single
demand type input port. This not only makes it obsolete to take care of aborting ports
that did not receive anything but also it is less area intense.

The request signals of the different replicas are fed into a 3of4 voter and this result is
then forwarded to the Rp input of the demand port. In case the simple 3of4 voter with

60

4.2. TMR system

just one delay line is used, the inputs and outputs of the voter are inverted. This is
necessary to keep the request still active when all ports except of one already deasserted
the request. The Ap signal of the port is then used as a condition, together with the valid
signal, to make the latches transparent and thus store the data in the latches. Eventually
the 3of4 voter agrees on a correct data word and the resulting valid signal is then used
to acknowledge the successful receiving of the data to the sender.

MUX

channel0,0

channel0,1

channel1,0

channel1,1

channel2,0

channel2,1

3of4
voter datavalidMUX demand

input

valid1, data1

MUX

valid2, data2

Ri Ai

Pen

=1

valid0

data0

&

data0

Rp0

Ap0

NAp0

data1

Rp1

Ap1

NAp1

data2

Rp2

Ap2

NAp2

0

3of4
voter

Rpi

Api

&

&

&

latching

&

latching

latching

&

Figure 4.16: Single demand type input port for TMR messages without buffer pipelines

Multiple possible senders

In case multiple senders might address the same input port, an input port is not only
needed for each replica but also for each possible channel. Since now multiple transactions
per replica can occur concurrently, the single input ports can not be merged to one shared
port per replica like in the single sender case above. Furthermore it needs to be known
in advance which ports might send something, as for everyone an unique entry exists in
a table like in Figure 4.17 where an input port is presented, that can obtain messages
from three unique senders. For each possible sender one voter is introduced that votes
on the three entries in the different tables. In order to not introduce additional delay
elements to make sure that the address is for sure valid, it is one-hot encoded, like in the
multi channel bus.

61

4. Fault tolerant bus architecture for TMR usage

Poll input TMR For the poll input TMR port the poll type port from Villiger is
used. This means that unlike the other ports, this one can receive data, as long as Pen is
enabled. To not provoke a NApp from the poll port, the channels Rp is only forwarded,
when Pen is enabled and to not receive a nack from the write helper, it is also checked
if the currently stored data is not valid at the beginning of a transaction. If one of those
conditions is not satisfied, the sender waits until they come true and blocks the channel
for the whole time. To guarantee proper functioning, the valid signal is active coming
out of the switch is active, when there is no correct address selected. Otherwise a invalid
TMR message might block all replicas.

Write helper TMR The write helper from the multi channel bus approach onle needs
to be slightly adapted. While the nack signal can be ignored, as it is avoided from the
beginning, the ack signal is only set, when the sync module gives the grant for sending it.
Important here is that here not the Pen signal can be used for identifying whether there
is a valid data word stored or not. Thus an additional store signal must be introduced
for each TMR table entry.

Buffer pipeline Depending on whether the poll input port is disabled at some points
or not, the buffer needs to be before the poll input port, directly at the end of the channel,
or included in the write helper TMR module. When the port is disabled, it needs to be
before the input port but this is problematic because of the ordering, as when disabled
too long, it might be the case that two messages to the same address were received at
different channels and thus the ordering can not be guaranteed. However when the port
is always enabled this can be easily solved by integrating the buffer pipeline into the
write helper TMR module as shown in Figure 4.17.

62

4.2. TMR system

poll
input
TMR

channel0,1

switch

write
helper
TMR
write

helper
TMR

data0,1valid0,1

data0,2valid0,2

channel1,0

channel1,1

switch

data1,0valid1,0
write

helper
TMR
write

helper
TMR
write

helper
TMR

data1,1valid1,1

data1,2valid1,2

channel2,0

channel2,1

switch

data2,0valid2,0
write

helper
TMR
write

helper
TMR
write

helper
TMR

data2,1valid2,1

data2,2valid2,2

3of4
voter

3of4
voter

3of4
voter

data0valid0

data1valid1

data2valid2

poll
input0,0

Rp0,0

NAp0,0

data0channel0,0

Ri0,0 Ai0,0

Ap0,0

App

0

&

≥1

Pen

poll input TMR

poll
input
TMR

poll
input
TMR

poll
input
TMR

poll
input
TMR

=1

valid0,0

data0,0

store

write
helper

writeRp

ack

data

&

write helper TMR

Rpp

valid

Buffer
Pipe

Figure 4.17: TMR receiver port with table and buffer pipeline within write helper TMR

63

CHAPTER 5
TMR fault handling

In the following the impacts of single faults in the newly designed TMR system presented
in chapter 4 are analyzed. As already redundancy is provided, the focus in this analysis
is the TMR bus communication, as faults within single replica modules can be masked
away by voters. Thus a special focus is laid on signals that connect the different replicas
with each other and the voting mechanisms. As visible in Figure 5.1, this holds for all
channel signals, as each sender has request and acknowledge lines for all replicas, and also
for the is_tmr flag, as those are also fed into each single replica. The affected signals
are listed by component in Table 5.1 and for all other signals, it holds that they are just
influencing the replica that they are located in. However in this analysis we will also
have a closer look at some of these, as some faults there might have a huge impact on
the replica and hence unnecessarily degrade MTBF through spare exhaustion.

An analysis like this could be done nicely through formal verification approaches like
Model checking. However, modeling the proposed architecture on the relatively low
abstraction level that is required for this type of analysis is a substantial effort that could
not be accommodated within the scope of this thesis. It is therefore left for future work.

Component Signal

Bus
Data Package (TMR, flag, Address, Data)
Rp
Ap (Nap is not involved in TMR messages)

Sender
is_tmr flag
is_tmr voter
Transaction complete voter

Receiver Data voter
Request voter (in case of demand type input)

Table 5.1: Components and affected signals

65

5. TMR fault handling

Output replicaA

3of4
voter

is_tmrA
TMR output

port

Input replicaA

3of4
voter

dataA

Rp

Ap
input
port

Ap

datavalid

channel selection

bus
access

busreq busack

3of4
voter

RpABC, ApABC, NApABC, DataABCis_tmrABC

channelreq channelack

data voter

is_tmr voter

trans. comp. voter

Figure 5.1: TMR replica with signals crossing replica border

5.1 Transient bit flips
The reason for transient bit flips are high energy particles like alpha particles, protons
or neutrons that come from cosmic rays or packaging materials and strike sensitive p-n
junctions of a transistor [ZCM+96, BSH75]. Such events that do not cause permanent
damage to the device, but change memory or register contents, are called single event
upsets or soft errors. Depending on where such a bit flip occurs it has different outcomes
for the overall system. We assume in the following that only a single data item is
corrupted per particle hit.

5.1.1 Faults on signals crossing the replica borders
In a first step those bit flip faults are analyzed in detail that can occur on signals involved
in the communication with other replicas. The different faults and their effects are also
listed in Table 5.2.

Data Although this might lead to a permanent failure of one replica when it happens
in a best effort message, it does not harm a TMR message as there are two other replicas
that provide the correct data in case of just one error.

TMR flag A bit flip in the TMR flag is already more critical as the following analysis
shows: First two cases have to be distinguished here. One is where the flag flips from
one to zero and the other one is where a best effort message suddenly becomes a TMR
message.

TMR to best effort When a TMR message becomes a best effort one, at most
one replica is fed with wrong data in case the best effort input port with that address
exists and is furthermore ready to receive data. In case no port with such an address
exists, the transaction is never completed and thus the channel is blocked forever if the
bit flip does not resolve. The TMR input ports of the other two replicas wait until the

66

5.1. Transient bit flips

data voter timeout is triggered and then accept the data. In case the data is sent to
a demand input port the malicious replica releases the request only after the request
voter on the receiver input also runs into a timeout. Afterwards the system continues
operating without errors. However when the bit flip resolves fast enough, no problem at
all occurs and no voter timeout is hit.
When there is a corresponding best effort input port with the same address, it might be
fed with wrong data. But this only happens, when the port is ready to receive data and
is part of the replica where the fault occurred. This is because input ports only accept
best effort messages from the replica they are operating in.

Best effort to TMR When a best effort message becomes a TMR message again
only one replica, namely the one where the bit flip was introduced, is affected and two
cases have to be distinguished. The first case is when no corresponding input port exists.
In that case neither an Ap nor a NAp is received to acknowledge the transaction. Thus
the sender module of the affected replica is halted forever and the same holds for the
channel that is occupied by that port. Furthermore the receiver module never receives
data and thus is also not working properly. The second case is when there exists a best
effort input port with the same address. Then the message can be delivered at some
point. However this leads to a lasting error when pipelines are used to keep a too slow
replica running, as the correct data is then always too late because the input was already
fed with the data from the previous transaction. In case no such pipeline is used, there
is only one transaction affected and thus the transient failure does not become lasting.

Address Here the effect of a bit flip highly depends on how the addressing is imple-
mented. Furthermore only messages to poll type input ports are affected, as there is no
address decoding for demand type input ports, as only one sender is allowed there.

One-hot encoded In case of a bit flip at the one hot encoding, the affected sender
never gets an acknowledge, as either two bits are active and thus no table entry is selected
or no bit at all is active which leads to the same result.

Enumeration In case all ports are just enumerated a single bit flip means that the
data may be sent to a wrong table entry. In case this entry does not exist the sender
module is again stuck forever in the worst case.

Hamming code Using encodings that allow to detect errors helps to get over the
problem with single bit flips. However the question arises whether this helps to reduce
the probability of failure or through the increased complexity it is even more likely that
a failure is introduced into the system.

Request signals A bit flip here might lead to a request to the wrong input port. But
since this request is only affecting one replica, it has no influence on the overall system.
The same holds in case that one active bit is flipped to zero.

67

5. TMR fault handling

However it might be the case that all three request signals of one replica are wrong. This
happens when there is some problem during the address conversion within the replica
itself. But even in this case, this has no influence, as still each receiver replica has two
correct request signals. Nevertheless this might lead to a replica that is stuck forever,
when there is no corresponding input receiver or all request lines are zero.

Again here in case of optional buffer pipelines the wrong request is stored into the receiver
pipeline and thus affecting the wrong input port even though it is not active at that time.

Acknowledge signals For the acknowledge signals especially bit flips to zero are
problematic, as a bit flip has no direct influence as all replicas wait at least for a second
acknowledge to continue.

However when an acknowledge signal flips to zero, the affected sender replica is holding
the request until either the transaction complete voter runs into a timeout or, in case a
demand type port is used, the request voter runs into a timeout. When all acknowledge
signals of one receiver replica are bit flipped the result is quite similar. The only difference
there is that all transaction complete voters run into a timeout.

is_tmr flag One single bit flip for the is_tmr flag has no effect on the overall system
and not even on the replica itself as this fault is outvoted by the other two replicas.
At most the is_tmr voter timeout is triggered and added to the transaction duration.
However because time is needed to resolve the flag voting, it might happen that the
voters on the receiver side need to wait a bit for the affected replica to deliver the data.

is_tmr voter A bit flip of the is_tmr voter only has an influence, if the output port
is enabled. In case the voter is active a transaction might be initiated although no other
replica is ready to do so either and thus the output port is holding the channel until
a second replica is ready and all voter timeouts are reached. In case the voter should
be indicating a TMR message due to its inputs and it is not active, two possibilities
exist. When the flip is short enough the transaction happens as usual while for the
other case, where the flip only resolves after the two other replicas already completed
their transaction, the affected replica is from then on one transaction behind if unless a
mechanism for too slow messages is built in. The overall transaction duration is then
increased, depending on the is_tmr voter and the data voter timeout.

Transaction complete voter The worst case that can happen here is shown in Figure
5.2: The output port completes the transaction too early, before any replica was able to
consume it. However this is no problem for the overall system, as there are two other
working replicas. The transaction duration is in this case increased by the data voter
timeout, as the faulty sender already assumed that the transaction is complete.

When a flip from one to zero occurs the affected sender port can never complete its
transaction and is thus blocked and blocking the channel it got assigned to. However,

68

5.1. Transient bit flips

the transaction duration for the other replicas is only increased in case the receiver port
was a demand type input port, as then the request voter runs into a timeout.

Data voter Bit flips here only have influence on one replica and even in case the valid
signal is affected by the bit flip, only one false acknowledge signal is sent to the replicas
and each replica has two correct ones to vote on. So this is no problem and may only
lead to wrong data on the replica where the glitch occurred, as it might not have saved
the data correctly yet, while the other two replicas might already have stored the data.

Figure 5.2: Bit flip in transaction complete voter

Request voter A bit flip for the request voter only has consequences, when the demand
type input port is ready to process a request signal, which is the case when the port
already halted the clock. When now a bit flip on the request voter occurs in that situation
it can lead to the problem, that the demand type port may already finish the transaction
process although no data was yet stored. Thus the affected (single) replica may then
continue working with invalid data and the transaction duration is increased by the data
and transaction complete timeouts.

5.1.2 Faults on signals that stay within one replica
In the following a few interesting bit flips and glitches of signals are analyzed that stay
within one replica but where a fault might have a huge impact of the overall system and
may lead to a erroneous replica and thus to a degraded mode of the overall TMR system.
Table 5.3 gives a short overview of the faults and their effects.

Pipeline A transient bit flip glitch in the grant signals of the port arbiter that feeds
the pipeline might introduce a wrong request address that is then propagated through

69

5. TMR fault handling

Fault Bl
oc

ke
d

po
rt

Bl
oc

ke
d

ch
an

ne
l

Bl
oc

ke
d

bu
s

Lo
ca

li
s_

tm
r

vo
te

r
tim

eo
ut

Lo
ca

lr
eq

ue
st

vo
te

r
tim

eo
ut

Lo
ca

ld
at

a
vo

te
r

tim
eo

ut

Lo
ca

lt
ra

ns
.

co
m

p.
vo

te
r

tim
eo

ut

R
em

ot
e

is
_

tm
r

vo
te

r
tim

eo
ut

R
em

ot
e

re
qu

es
t

vo
te

r
tim

eo
ut

R
em

ot
e

da
ta

vo
te

r
tim

eo
ut

R
em

ot
e

tr
an

s.
co

m
p.

vo
te

r
tim

eo
ut

W
ro

ng
po

rt

Pi
pe

lin
in

g
pr

ob
le

m
at

ic

Lo
ca

ld
at

a
w

ro
ng

Data
TMR flag zero, no corresp. input ✗ ✗ ✗ ✗ ✗ ✗

TMR flag zero, corresp. input ✗ ✗ ✗ ✗ ✗ ✗

TMR flag one, no corresp. input ✗ ✗

TMR flag one, corresp. input ✗ ✗ ✗

Address (one-hot encoding) ✗ ✗ ✗

Rp, zero, one line of one replica ✗ ✗ ✗

Rp, zero, all lines of one replica ✗ ✗ ✗ ✗

Rp, one, one line of one replica ✗ ✗ ✗ ✗

Ap, zero, one line of one replica ✗ ✗ ✗

Ap, zero, all lines of one replica ✗ ✗ ✗ ✗

Ap, one, one line of one replica
is_tmr flag, zero ✗ ✗ ✗ ✗

is_tmr flag, one
is_tmr voter, zero ✗ ✗ ✗

is_tmr voter, one
Trans. comp. voter, zero ✗ ✗ ✗ ✗

Trans. comp. voter, one ✗ ✗

Data voter, zero ✗ ✗ ✗

Data voter, one ✗

Request voter, zero ✗ ✗ ✗ ✗

Request voter, one ✗

Table 5.2: Bit flip effects

70

5.1. Transient bit flips

the whole pipeline and finally an output port is granted access to the bus that might
not even has requested bus access. In that case the channel is kept until this port really
wants to send something. However in that case already the new data word is stored in
the pipeline and after the successful transaction a channel is again blocked by this port.

It might also happen that within the pipeline bit flips occur. When the one bit that is
active flips, the pipeline continues functioning but the request is lost and the affected
port will never get a grant.
In case a second bit becomes active, there might be two active bits in the worst case that
then allows two output port to access the same channel. However it also might be the
case that the wrong active bit is way faster in the pipeline and thus the only one that
is propagated from some point on, as the acknowledge is already triggered. This then
leads to a port, that never gets a grant to access a channel. While another one blocks
one channel like before.

When a bit flip of the request signal on the output side of the pipeline is introduced, an
output address might be read, without being propagated to a channel. In that case, the
affected output port never gets assigned to a channel and waits forever to get the grant
to access the bus.

Channel grant In case a bit flip glitch from zero to one happens here to a grant line
where the request line has just become active but not given the grant to request the
source yet, one output port request that is the next to be served, is propagated to two
channels. The one that gets it through the regular way and the other one that got
it because of the bit flip. Given that the channel that gets assigned the output port
correctly receives the grant simultaneously, two channels try to send the same data to
the same receiver. As both channels are then freed again at the same time, this fault
stays transient. However when the correct grant is not given promptly, the output port
has already completed its transaction and thus the channel that was actually assigned is
blocked.

Port transparent request Since the port_transparent_ack signal stays active until
the transaction is completed and because the output is not forwarded onto the bus when
the address that is responsible for the switching is selecting another output port, no
acknowledge is received and thus the transaction is only completed, when a channel really
selects the port. Therefore this bit flip has no influence to the overall system.

Output port adapter arbiter request grant Here the problem occurs when one
output port adapter that is already requesting the arbiter gets a grant, that the data has
already been stored in the pipeline. As this does actually not hold, the data in this case
is never sent, as the port never gets access to a bus channel.

71

5. TMR fault handling

Fault Bl
oc

ke
d

po
rt

Bl
oc

ke
d

ch
an

ne
l

Bl
oc

ke
d

bu
s

A
dd

iti
on

al
w

ro
ng

m
es

sa
ge

M
es

sa
ge

re
qu

es
t

lo
st

Tw
o

se
nd

er
s

on
on

e
ch

an
ne

l

Port arbiter grant, glitch ✗

Pipeline address signal, zero ✗ ✗

Pipeline address signal, one ✗ ✗ ✗ ✗

Pipeline out req signal, glitch ✗ ✗

Channel grant, glitch ✗ ✗

Port transparent, glitch
Output port adapter arbiter request grant, glitch ✗

Table 5.3: Interesting bit flip and glitch faults, beside the replica border crossing signals

5.2 Replica too slow

A solution for this problem was already presented in the previous chapter and as seen
above although the pipelining solution helps to prevent a replica that is temporarily
too slow to become considered faulty, it may be the cause for other transient failures to
become permanent until the next reset. Thus the trade off has to be analyzed for the
specific application, to decide which property is more important.

5.3 Simultaneous write

Although the system has to be designed in a way such that there are no simultaneous
writes possible to the same address, these might nevertheless happen in a failure case.
When two output ports want to write to the same address of a demand input port
however, the multiplexer can only let one through so here despite two simultaneous
requests, only one is granted to write. For poll type input ports the situation is a bit
different, as there it depends on how the switches are implemented. In case that they
are implemented as the one shown in Figure 2.21 which was designed by Villiger also no
problem occurs, as there the MUTEX elements also take care that only one element at a
time can be written.

72

5.4. Permanent faults

5.4 Permanent faults
The errors analyzed before were all soft errors. However errors can also be permanent.
Those also need to be tolerated by the system. As the main interest is the new designed
mixed criticality bus, only faults are analyzed that have an influence on the communication.
When one module has internal errors and does not request the bus anymore there are
two other replicas of this module that still work properly.

5.4.1 Faults on signals crossing the replica borders
In a first step again the stuck at faults that can occur on signals that are used for the
communication with other replicas are analyzed in detail. All the affected signals are
listed in Table 5.1 and the possible faults and their behavior is listed in Table 5.4. As
the analysis shows, most stuck at faults lead to the same effects as the bit flip faults in
their worst case. The only difference then is, that through a reset, a bit flip fault can be
resolved while this does not hold for a stuck at fault.

Data package single bit stuck at faults Stuck at faults in the data package have
mainly the same influence as single bit flips. Thus the analysis from above also holds for
permanent faults and only affects those input ports that are selected by a request signal
of the channel that has the faulty wire. The only difference is that the fault may not
resolve during the ongoing transaction, as it might be the case for the bit flip faults.

Output port request signal stuck at zero When one of the request signals is stuck
at zero, it has no influence at all until one sender is trying to activate it. In that case
one input port receives only data from two replicas and thus the data voter has to run in
a timeout to complete the transaction on the receiver side. As Figure 5.3shows, also the
transaction complete voter runs in a timeout on the replica that introduced the fault. As
the receiver port is a demand type input port, the request voters on the replicas that
received a request from the malicious replica, also runs into a timeout.

Output port request signal stuck at one As already outlined in the previous
chapter, it is important that a receiver can continue working also in case that one request
signal flips to one. This also holds for signals that are stuck at one. Thus a request
is only forwarded to the receiver port when this port is ready to receive something, as
otherwise the input port might be blocked by a faulty request signal. However here it
might happen that a receiver that is ready, takes the data although it is not intended for
it, but has a corresponding table entry address and thus is able to store the data there.
Although the request is stuck at one, data is stored whenever the requested input is
ready to receive data and this data is only correct, when the sender is indeed requesting
the receiver.

Input acknowledge stuck at zero A receiver that is not responding is a huge problem
for a best effort message as this means that the replica might not work correctly and

73

5. TMR fault handling

Figure 5.3: Stuck at zero of a request signal

that this error will slowly propagate over that replica. However it has no influence on
TMR messages, as here a voter checks all acknowledgment signals and after receiving
acknowledgments from two replicas it is waited until the voter reaches its timeout and
the transaction is completed and thus only the receiver module of one replica is erroneous.
However, all transactions will run into the timeout, hence performance will be worst case.

In case only one acknowledge signal is stuck at zero, only one transaction complete voter
runs into a timeout and is then behind the other two replicas.

Input acknowledge signal stuck at one The acknowledge can not only be stuck at
zero but also stuck at one. However this has no big impact either as the sender does
release everything after the transaction complete voter acknowledges that the input ports
have received the message correctly. So in case one acknowledge signal is stuck at one,
this has no influence and all channels are free for the next transaction. Here it does not
matter if only one acknowledge signal is stuck or all acknowledge signals of one replica.

is_tmr flag stuck at fault A stuck at fault of one of the is_tmr flags has no effect
on the overall system and not even on the replica itself as the 3of4 voter can mask this
fault away.In case of a stuck at one fault, the transaction duration is not even influenced
whereas in case of a stuck at zero fault it is increased at least by the timeout voter.

is_tmr voter stuck at zero When the voter is stuck at zero, no TMR message can
be sent. In this case the output port is blocked and this might influence the complete
replica but should be no problem for the overall system.

74

5.4. Permanent faults

is_tmr voter stuck at one In case one is_tmr voter is stuck at one the output port
immediately requests the bus and thus the synchronization purpose of this voter is not
given. As the voters are replicated through providing each node replica an own voter,
only the node replica with the erroneous voter requests the bus earlier than the others
and is then blocking one channel longer than the other two ports.

Transaction complete voter stuck at zero A stuck at zero fault of the transaction
complete voter leads to the problem, that the output port never stops trying to send
the data, as it is waiting for a response. Thus this will block one channel of a replica
and may also lead to a broken replica, as the affected module can not continue working
properly. In case the receiver is a demand type input port, the request voter timeouts on
all replicas are reached as the broken replica continues requesting the port.

Transaction complete voter stuck at one On the other side a stuck at one fault
of the transaction complete voter will lead the output port to stop the transaction
immediately after it started, as it assumes that the receiver already got the data. Thus
the receivers have to work with the data from the other two replicas. Although the data
voter timeouts are reached, all replicas can continue and work properly.

Data voter stuck at fault This only has an influence on the replica itself, as this is
then erroneous. No additional delay is added, when the voter is stuck at one. However
when it is stuck at zero, the transaction complete voters run into a timeout as they only
receive an acknowledge from two replicas.

Request voter stuck at fault Either stuck at fault is very problematic for the replica,
as in both cases the pause request for the clock is never released and thus the module is
blocked forever. For a stuck at zero fault this furthermore means that nothing can be
received and thus the data voter never acknowledges correct data. This then leads to
transaction complete timeouts on all replicas.

5.4.2 Faults on signals that stay within one replica
In the following a few interesting stuck at faults of signals that stay within one replica
and their effects on the replica and overall system are analyzed. A overview of the faults
and their effects is given in Table 5.5. It can be seen that most of these faults lead at
least to a blocked channel and some even to a blocked bus.

Channel/Output port arbiter request stuck at one Failures that directly happen
in the bus logic, have the biggest impact as they not only might lead to one blocked
channel but to the whole bus being blocked. One case where this happens is when a
request that is already granted by the arbiter is not released. This can happen on the
output port arbiter as well as on the channel arbiter. In both cases this leads to the
bus being blocked. Not even the current transaction can be finished, as shown in Figure

75

5. TMR fault handling

Fault Bl
oc

ke
d

po
rt

Bl
oc

ke
d

ch
an

ne
l

Bl
oc

ke
d

bu
s

Lo
ca

li
s_

tm
r

vo
te

r
tim

eo
ut

Lo
ca

lr
eq

ue
st

vo
te

r
tim

eo
ut

Lo
ca

ld
at

a
vo

te
r

tim
eo

ut

Lo
ca

lt
ra

ns
.

co
m

p.
vo

te
r

tim
eo

ut

R
em

ot
e

is
_

tm
r

vo
te

r
tim

eo
ut

R
em

ot
e

re
qu

es
t

vo
te

r
tim

eo
ut

R
em

ot
e

da
ta

vo
te

r
tim

eo
ut

R
em

ot
e

tr
an

s.
co

m
p.

vo
te

r
tim

eo
ut

W
ro

ng
po

rt

Pi
pe

lin
in

g
pr

ob
le

m
at

ic

Lo
ca

ld
at

a
w

ro
ng

Data
TMR flag zero, no corresp. input ✗ ✗ ✗ ✗ ✗ ✗

TMR flag zero, corresp. input ✗ ✗ ✗ ✗ ✗ ✗

TMR flag one, no corresp. input ✗ ✗

TMR flag one, corresp. input ✗ ✗ ✗

Address (one-hot encoding) ✗ ✗ ✗

Rp, zero, one line of one replica ✗ ✗ ✗

Rp, zero, all lines of one replica ✗ ✗ ✗ ✗

Rp, one, one line of one replica ✗ ✗ ✗ ✗

Ap, zero, one line of one replica ✗ ✗ ✗

Ap, zero, all lines of one replica ✗ ✗ ✗ ✗

Ap, one, one line of one replica
is_tmr flag, zero ✗ ✗ ✗ ✗

is_tmr flag, one
is_tmr voter, zero ✗ ✗ ✗

is_tmr voter, one
Trans. comp. voter, zero ✗ ✗ ✗ ✗

Trans. comp. voter, one ✗ ✗

Data voter, zero ✗ ✗ ✗

Data voter, one ✗

Request voter, zero ✗ ✗ ✗

Request voter, one ✗

Table 5.4: Stuck at fault effects

76

5.4. Permanent faults

5.4. This is because the channel helper AFSM is stuck in this case and thus also the
port_transparent_req is never triggered. The impact of this failure on the overall TMR
system is however minimal, as this only blocks one replica and the other two work as
before and only the TMR messages may take longer as now always the timeouts are
reached in the is_tmr, data and transaction complete voter.

Figure 5.4: Channel request, with data_req signal stuck at one after being enabled once

Output port request Rp or acknowledge Ap stuck at one Unlike above where
all channels were blocked, when the Rp signal or the Ap of the output designed by
Villiger, that is within the TMR output port, is stuck at one, only one channel is blocked,
while the other ones can continue to work properly. To avoid propagating this failure
over the complete TMR system, the inputs must be able to handle such behavior. They
do it by not directly forwarding the request from the bus to the input. Instead it is
only forwarded, when the input port is ready to receive data and there is no valid data
yet stored at the address defined in the message. The latter requirement is responsible
for releasing the receiver port after a successful transaction. As Figure 5.5 shows, one
channel is indeed blocked forever, as the port_transparent_ack signal is never released
because the AFSM is stuck.

Sender port babbling idiot Here it highly depends on how the babbling idiot behaves.
Depending on whether the sender waits until the transaction is completed or not, the
storing on the receiver side is affected. In case it comes from a loose contact it might
toggle too fast for the storing mechanism to be completed until the request is removed.
While in a TMR poll type input port on the next request the data is tried to be written
again, in a TMR demand type input port, data is only written, when at least another

77

5. TMR fault handling

Figure 5.5: Data transmission, with request Rp stuck at one after being enabled once

port also wants to write. However when buffer pipelines are used, a babbling idiot might
fill them. Thus this is an error case where buffer pipelines are counterproductive.

Pipeline broken An acknowledge signal within the pipeline that is either stuck at
zero or at one, stops the propagation of output addresses throughout the pipeline and
has the same effect as when the channel request is stuck at one. As there is no output
address read from it, the channels are idling whereas the output ports do not get a grant
to their bus request. On the other hand, when there are bit flips within the pipeline,
there are different cases to distinguish. When one address bit is stuck at one, the same
as above holds, as no null phase can be introduced. However, when one address bit in a
stage is stuck at zero, this has no influence until the corresponding output is activated
and requests the bus. In that case the pipeline also stops working, because the broken
stage is stuck within the null phase.

Channel helper stuck at faults beside channel request stuck at one The biggest
influence when it comes to stuck at faults in the channel helper module, is a stuck at one
fault of the channel request as then the whole bus is blocked. However when one of the
other modules is stuck at one only one channel is blocked and depending on where the
stuck at fault is, also one sender port might not be released.

Output port/ Output port adapter stuck at faults beside output port arbiter
request stuck at one In case one of the two AFSMs is stuck at and this stuck at fault
is not the one requesting the arbiter, only one channel is blocked forever in the worst
case. In case the stuck at fault is before the output port arbiter request happens, not

78

5.4. Permanent faults

even a channel is requested and thus only the output port is blocked. As shown above
the TMR input ports can handle one replica that is permanently requesting and sending
data and thus these faults only lead to longer transaction times, as 3of4 voter timeouts
are reached.

Fault Bl
oc

ke
d

po
rt

Bl
oc

ke
d

ch
an

ne
l

Bl
oc

ke
d

bu
s

W
ro

ng
po

rt

Pi
pe

lin
in

g
pr

ob
le

m
at

ic

Channel arbiter stuck at one ✗ ✗ ✗

Port arbiter stuck at one ✗ ✗ ✗

Output port Rp stuck at one ✗ ✗

Output port Ap stuck at one ✗ ✗

Babbling idiot ✗ ✗

Pipeline Ack signal ✗ ✗ ✗

Pipeline address signal ✗ ✗ ✗

Channel helper AFSM ✗ ✗ ✗

Output port/port adapter AFSM ✗ ✗

Table 5.5: Interesting stuck at fault, beside the replica border crossing signals

5.4.3 Conclusion
The in-depth fault analysis has shown that all possible faults that may propagate over
the bus to other modules, stay within the replica where they occurred. This has been
achieved by analyzing possible bit flip and stuck at faults of all signals that are used for
communication between the replicas. This also includes the parts where these signals are
merged together but also where the signals are split apart and sent to different modules.
Furthermore merging signals is always done via voters and thus also faults for the voters
were analyzed. As there is no other way a fault can propagate to another replica, this
analysis can be considered complete.
However the replica where the fault occurred, might be working improperly until the
next system reset. This also holds for the transient faults, as many of them introduce
lasting errors to the system. Especially the best effort ones, while they have less influence
on TMR messages
Another outcome that the analysis has shown is, that the optional buffer pipelines, that
help a way too slow module to keep functioning, are worsening the things for many other
faults and tend to cause a lasting failure of the affected resource. While this can be
tolerated by the TMR architecture, it unnecessarily exhausts the available redundancy,

79

5. TMR fault handling

and thus degrades tolerance against further faults. So here it needs to be checked how
probable the different failure cases are and with that information it can be then decided
whether the buffer pipelines are a help or not for the specific use case.

80

CHAPTER 6
Performance analysis

The aim of this chapter is to compare the newly designed multi channel bus to the baseline
MOGLI as well as discussing different parameters and how to choose them depending on
the overall system. The results of this analysis are then verified via simulations.

6.1 Setup and Definitions
In the following the simulation setup and the definitions used for the performance analysis
are described in more detail.

6.1.1 Simulation setup

For verifying the different attributes of the newly designed bus and also for better
understanding and comparison, various simulations with ModelSim [Cora] have been
made. As the synthesis of a VHDL project with Quartus [Corb] is non deterministic,
which means that every synthesis comes up with a slightly different physical layout, it is
difficult to deeply analyze a system with a postlayout simulation. Thus only prelayout
simulations are presented in the following. For the gate delays the demo values shown in
Table 6.1 were used. Again here it is difficult to get correct delays, as multiple parameters
are responsible for the delay times, like number of transistors necessary, fan out etc..

6.1.2 Transaction duration definitions

The transaction duration is defined as the time it takes from the moment an output port
is enabled by Pen until the transaction is completed and the local clock resumes.

In general the transaction can be split into three phases:

81

6. Performance analysis

Gate Delay [ps]
NOT 10
AND 40
OR 30
XNOR 50
C 60
LATCH 60
MUTEX 100
MUX 400

Table 6.1: Gate delays for the prelayout simulation

Bus access In this first phase the time from the output port enable signal Pen
onward is measured until the output receives the grant signal to access the bus.

Data transfer During the second phase the actual communication between sender
and receiver takes place. The data transfer phase starts with the bus grant signal and
ends with the Ap signal going to zero.

Bus release After the acknowledge signal Ap becomes inactive, the output port
releases the bus and resumes the local clock. The third phase is completed when both
the bus grant signal BusGrant and the Ai signal are zero again.

Marking of Transitions

Durations that measure the time between two transitions have the structure δA◦,B◦,
where ◦ is either +(rising edge) or −(falling edge). However in case the Pen signal is
involved, no transition mark is there, as the direction of the transition does not matter
in this case.

6.2 MOGLI
In a first step Villiger’s MOGLI approach is analyzed as it serves as baseline for the multi
channel bus. For better comparison the dual channel MOGLI approach is used and only
the transaction duration from the initiator to the target is considered but not the time it
takes for calculating the response and then send it back over the response channel to the
initiator. Furthermore since the influence of additional channels is the main focus of this
analysis, it is considered that the MOGLI also works with the same ports as the multi
channel bus, which allows multi casting and thus no central address decoder is necessary.
The composition of the single phases for the MOGLI approach are outlined in equation
6.1-6.4.

82

6.2. MOGLI

δBusAccessM
=δP en,BusReq+ + δBusReq+,BusGrant+ (6.1)

δDataT ransMpout
=δBusGrant+,Rp+ + δRp+,Ap + + δAp +,Ri+ + δRi+,Ai+ + δAi+,Rp−

+ δRp−,Ap − (6.2)
δDataT ransMdout

= max(0, δP en,Ri+ + δRi+,Ai+ − δBusAccessM
) + δAi+BusGrant+,Rp+

+ δRp+,Ap + + δAp +,Rp− + δRp−,Ap − (6.3)
δBusReleaseM

= max(δAp −,Ri− + δRi−,Ai−, δAp −,BusReq− + δBusReq−,BusGrant−) (6.4)

The duration of δBusAccessM
highly depends on δBusReq+,BusGrant+ as this is the delay

arising from the arbiter and thus this can be arbitrarily long. However, as outlined in
[Vil05] it is at least δMUT EX + δARBIT ER · (log2 k − 1), where k is the number of output
ports that can request the bus.

Depending on the output port type, the local clock is halted immediately after the
port is enabled or only after Ap becomes active. In case of a demand output port
BusReq+ and Ri+ happen directly after the port is enabled. Thus only the slower
path needs to be considered. The actual clock pausing happens during the δRi+,Ai+
time frame. While in the original MOGLI this is in the best case just δMUT EX , it is
δΔ + δAND where δΔ > δOR + δMUT EX holds, in the adapted pausable clock mechanism,
that allow poll ports to work even when the clock is already halted for a longer time
by some other port. In the worst case the clock got its grant when Ri+ arrives at the
MUTEX. With the clock generator presented by Fan [FKG09] the worst caste time until
the clock is halted is dD1 = dAND0 + dAND1 + (d0

MUT EX + ΔdMUT EX) whereas for the
optimized clock generator from chapter 3, where only one MUTEX element is used, it is
δD1 = δAND + (δ0

MUT EX + δΔMUT EX).
In the following when comparing the multi channel approach to the MOGLI approach
it is always assumed, that the optimized clock generator as presented in Figure 3.12 is
used, although the transaction duration might increase by 2 · (δΔ − δMUT EX + δAND) +
(δOR + δAND) in the worst case when two poll ports communicate with each other. This
is because the special focus of this analyze is the effect of having more than one channel.
Furthermore the the multi channel bus also works with the clock generated of Fan
[FKG09], although the same issues with poll ports occur as in Villiger’s MOGLI [Vil05]
approach.

Two other durations that are variable are δRp+,Ap + and δRp−,Ap −. They highly depend
on what kind of input port is used and whether this one is ready to take data or not.
These durations are as defined in Equation 6.5-6.10. For Villiger’s poll type input port
it makes no difference for the response time whether the input was ready or not. Both
sequences look the same. For the demand type input port the situation looks quite
different as when the port is not yet ready only a MUTEX is traversed, whereas when
it is ready quite some combinational logic gets involved. Especially for δRp−,Ap−din

not
only a MUTEX is traversed while releasing the clock but also combinational logic.

83

6. Performance analysis

δRp+,Ap +pin
= δRp+,Ri+ + δRi+,Ai+ + δAi+,Ap + (6.5)

δRp−,Ap −pin
= δRp−,Ap − (6.6)

δRp+,Ap+din
= δRp+,RpInt+ + δRpInt+,Ap+ (6.7)

δRp−,Ap−din
= δRp−,RpInt− + δRpInt−,Ri− + δRi−,Ai− + δAi−,Ap− (6.8)

δRp+,NAp+din
= δMUT EX (6.9)

δRp−,NAp−din
= δMUT EX (6.10)

After a successful handshake the sender port releases both the bus and clock. For releasing
the bus it holds that δBusReq−,BusGrant− = δMUT EX + δARBIT ER · (log2 k − 1) and for
the clock it holds that δRi−,Ai− = δOR + δMUT EX + δAND.

6.3 Multi channel bus
When it comes to a single transaction the main difference between the multi channel bus
with no multicast and Villiger’s MOGLI is the bus access mechanism. Since the multi
channel bus has more than one channel the resulting logic to access one of the channels
is more complex and therefore introduces more delay as outlined below in Equation
6.11-6.14. In case multicast is possible additional combinational logic is required to
merge all Ap and Nap signals to one single acknowledge signal but therefore no address
decoding is needed as this is already done by the synchronous module.

δBusAccessMC
=δP en,BusReq+ + δBusReq+,ArbiterReq+

+ δArbiterReq+,ArbiterAck+ + δArbiterAck+,ArbiterReq−
+ δArbiterReq−,ArbiterAck− + δArbiterAck−,BusGrant+ (6.11)

δDataT ransMCpout
=δDataT ransMpout

+ δMUXRec
(6.12)

δDataT ransMCdout
=δDataT ransMdout

+ δMUXRec
(6.13)

δBusReleaseMC
= max(δAp −,Ri− + δRi−,Ai−, δAp −,BusReq− + δBusReq−,BusGrant−)

(6.14)

As Equation 6.13 and 6.12 show the a single data transaction itself takes the same amount
of time as in Villiger’s MOGLI approach. However when more than one channel is used
and data is sent to a demand type input port an additional delay δMUXRec

is added. This
delay is the time it takes to arbitrate which channel can access the demand type port,
followed by the traversing time of the multiplexer. When now the request is removed, it
again has to traverse the arbiter first and then only one multiplexer delay is considered
as the multiplexer is deactivated and thus setting all output signals to zero.

84

6.3. Multi channel bus

δMUXRec
=

2 · (δMUT EX + δARBIT ER) · (log2 m − 1) + 3 · δMUX , if receiver = din

and m > 1
0, otherwise

(6.15)
Like in the MOGLI approach δArbiterReq+,ArbiterAck+ results from the output arbiter, that
arbitrates all bus requests from the output channels and the time it takes to store the
arbiter grant signals into the first pipeline stage. The overall introduced delay for k
output ports is at least like in Equation 6.16, when there is a free space in the pipeline.

δArbiterReq+,ArbiterAck+ ≥ δMUT EX + δARBIT ER · (log2 k − 1)
+ 2 · δC−ELEM (6.16)

Depending on the number of pipeline stages l the delay resulting from the pipeline itself
is l · δC−ELEM . As the request is directly stored in the pipeline when there is a free space
the bus request can be removed from the arbiter and the output port starts waiting
until it can access the bus. Due to this decoupling the duration for δArbiterAck+,BusGrant+
(Equation 6.17) is the longer path of the two existing ones. The first one is the time it
takes the combinational logic to deassert the port arbiter request and the time it takes for
the deasserted request to propagate through the arbiter and the second path is the time
it takes the stored request in the pipeline to traverse the (l − 1) remaining stages, then be
requested by one of the channels and finally given the grant to access the bus. Here the
best case is assumed for the latter path when the channel helper is already requesting an
output address from the pipeline. Thus it is assumed that the channel arbiter is already
requesting the source and only the time it takes from granting the source and traversing
the arbiter is considered in δARBIT ERsourceAck

. Since the request is not just fed back at
the channel arbiter, there is no MUTEX in the last arbitration stage but instead also an
arbiter. Thus the delay inserted by a tree arbiter for m channels is δARBIT ER ·(log2 m)).
The delay that results from the pipeline-arbiter connector is considered with δpip,arb. The
output port adapter has to wait for both paths to complete until a grant for the bus is
given to the output port. To indicate this the variable adapterForkComp is introduced
which is activated after both ArbiterAck− and portTransparentReq+.

δArbiterAck+,BusGrant+ ≥ max(δArbiterAck+,ArbiterReq− + δMUT EX

+ δARBIT ER · (log2 k − 1) + 2 · δC−ELEM ,

(l − 1) · δC−ELEM + δOR + δpip,arb

+ δARBIT ERsourceAck
· log2 m + δdataAck+,dataReq−

+ δARBIT ER · log2 m + δdataAck−,portT ransparentReq+)
+ δadapterF orkComp+,BusGrant+ (6.17)

δpip,arb = δpipReq+,channelGrant+ + δchannelReq−,pipAck+

+ δpipAck+,channelGrant− (6.18)

85

6. Performance analysis

Another difference to the MOGLI approach is, that the δBusReq−,BusGrant− of the multi
channel approach is not traversing an arbiter as the BusGrant signal is generated by
combinational logic that does not include an arbiter.

6.3.1 MOGLI vs. Multi channel bus
In the following the MOGLI approach from Villiger and the new multi channel bus
are compared with each other. This is done by analyzing relevant metrics. For better
comparison, it is assumed, that the the multi channel bus only uses one pipeline, where
the requests from the k output ports are stored, and only one channel. In this case the
effect of hidden arbitration can be analyzed best.

Latency

One of the most important metrics is the latency. Thus the questions is, how much the
latency is increased due to the higher complexity of the multi channel approach.

The difference of the latency between the MOGLI and the multi channel bus is calculated
in Equation 6.26, based on partial results shown in Equation 6.19- 6.25.

δT ransactionM
=δBusAccessM

+ δDataT rans + δBusReleaseM
(6.19)

δT ransactionMC
=δBusAccessMC

+ δDataT rans + δBusReleaseMC
(6.20)

δT ransactionMC
− δT ransactionM

=δBusAccessMC
+ δBusReleaseMC

− δBusAccessM
− δBusReleaseM

(6.21)
δBusAccessM

=δP en,BusReq+

+ δMUT EX + δARBIT ER · (log2 k − 1) (6.22)
δBusAccessMC

=δP en,BusReq+ + δBusReq+,ArbiterReq+

+ δMUT EX + δARBIT ER · (log2 k − 1)
+ 2 · δC−ELEM + δArbiterAck+,ArbiterReq−
+ δMUT EX + δARBIT ER · (log2 k − 1) + 2 · δC−ELEM

+ δArbiterAck−,BusGrant+ (6.23)
δBusAccessMC

− δBusAccessM
=δBusReq+,ArbiterReq+ + δARBIT ER · (log2 k − 1)

+ δArbiterAck+,ArbiterReq− + δArbiterAck−,BusGrant+

+ 4 · δC−ELEM + δMUT EX (6.24)
δBusReleaseMC−δBusReleaseM

= max(δAp −,Ri− + δRi−,Ai−,

δAp −,BusReq− + δBusReq−,BusGrant−)
− max(δAp −,Ri− + δRi−,Ai−,

δAp −,BusReq− + δMUT EX + δARBIT ER · (log2 k − 1))
(6.25)

86

6.3. Multi channel bus

δT ransactionMC
− δT ransactionM

≥δBusReq+,ArbiterReq+

+ δArbiterAck+,ArbiterReq− + 4 · δC−ELEM

+ δadapterF orkComp+,BusGrant+

+ δBusReq−,BusGrant− (6.26)

In the best case the output arbiter path is the slower one in Equation 6.17, as despite
the additional write to the first pipeline stage, this path has to be traversed in the
MOGLI approach too. With large enough n this path also is the dominant one, when
it is assumed that only one channel is used and thus on the channel side no arbiter is
needed. Furthermore one pipeline stage needs less time than an arbiter stage, as it only
consists of one C element and an OR gate, while in the arbiter also a C and a MUTEX
element have to be traversed.

When analyzing δBusReleaseMC
− δBusReleaseM

the minimum is reached, when the first
term is minimal while the second is maximal. For large k the arbiter delay becomes
dominant in the δBusReleaseM

but for the δBusReleaseMC
delay it is not that easy to tell

which delay is dominant. However δRi−,Ai− always involves traversing a MUTEX element
while in the other path there are simpler gates to traverse. Thus it is assumed that the
latter one is the faster one.

As Equation 6.26 shows, the additional latency of the multi channel bus is in the best
case only the write to the first pipeline stage and the combinational delays that result
from the output port adapter. This timing analysis also shows that the output port
request arbiter is the limiting source when there are a lot of output ports. Thus splitting
the output ports into different groups and using one tree arbiter for each of this groups
helps increasing not only the throughput but also decreasing the latency.

Figures 6.1 and 6.2 show a data transaction between a demand type output port and a
poll type port input port that responds with a NAp. It also shows that the simulation
corresponds with Equation 6.26. While all delays from the output port adapter can
be directly taken from Figure 6.2, the delay for the C gate was assumed with 60 ps as
outlined in Table 6.1. Thus we have 40 + 120 + 160 + 190 + 4 · 60 = 750 which is exactly
the difference measured in Figure 6.1.

Equation 6.26 only gives a lower bound for the latency difference between the MOGLI and
the multi channel approach. However, when having a closer look it turns out, that the
latency difference increases with the number of channels (due to the channel arbitration
mechanism) and also when hardly any sender ports are used. When hardly any sender
ports are used, the advantage of hidden arbitration has not such a high impact. Figure 6.3
shows the latency difference between the multi channel bus and the MOGLI approach for
two different scenarios. The first one is where only 4 sender ports were used. This one is
assumed to be the worst case scenario regarding the latency difference, as a multi channel
port for less sender ports hardly make any sense regarding the area overhead needed for
the port arbitration and channel selection. Whereas the second one is considered the best
case scenario, where the latency difference between the MOGLI and multi channel bus is

87

6. Performance analysis

Figure 6.1: Latency difference between MOGLI and multi channel approach

Figure 6.2: Latency difference between MOGLI and multi channel approach

minimal. Therefore 5 arbiter stages where needed, which allows for a total of 32 sender
ports. The four diagrams also show all possible combinations of sender and receiver ports
and it can be seen that the latency is larger when the receiver is a poll port. This is
because there way more checks where necessary, as there exist multiple table entries and
thus an address check needs to be done. Furthermore the clock of the receiver is halted
during the transaction and not before, like it is the case for demand type input ports.
As the storing of the data also consumes some time the transactions where data is stored
(marked with ap) are longer. Another thing that can be seen is that there is hardly
any difference between a poll type sender and a demand type sender, when it comes to
timings. This is because the only difference between these two port types is the time
when the clock is stopped. While for demand type ports the clock is stopped immediately
after the port is enabled, for poll type ports it is only stopped after an acknowledge is
detected. Thus the poll type ports may need longer to get a grant, as the handshaking

88

6.3. Multi channel bus

(a) Worst case demand output (4 possible senders)(b) Best case demand output (32 possible senders)

(c) Worst case poll output (4 possible senders) (d) Best case poll output (32 possible senders)

Figure 6.3: Latency difference between MOGLI and multi channel approach

signal might arrive while the MUTEX element is blocked by the clock generator.

Throughput

When analyzing the throughput the time that can not be beaten in the multi channel
approach is δChannelT imeMC

defined in Equation 6.27, as this is the part of the transaction
where the channel is involved. Here also the time it takes to request an output port
that is ready for a transaction, is considered. To achieve this time, it needs to hold that
δChannelT imeMC

≥ δP repareT ransMC
. Note that as preparation time only the arbitration

process is considered as this is the point where the serialization takes place and it is
assumed that there is a port already waiting and thus already requesting the arbiter.
With higher k the arbitration time takes over and from some point on it will be the
dominant delay source and thus the main limitation for the throughput.

89

6. Performance analysis

δChannelT imeMC
=δdataReq+,dataAck+ + δdataAck+,dataReq− + δdataReq−,dataAck−

+ δdataAck−,portT ransparentReq+ + δportT ransparentReq+,BusGrant+

+ δDataT ransMC
+ δAp −,BusReq− + δBusReq−,BusGrant−

+ δBusGrant−,valid− + δvalid−,DataReq+ (6.27)
δP repareT ransMC

=δARBIT ER · (log2 k − 1) + δMUT EX + 2 · δC−ELEM

+ δArbiterAck+,ArbiterReq− + δMUT EX

+ δARBIT ER · (log2 k − 1) (6.28)

While in Villiger’s approach the whole arbitration process is affecting the throughput, in
the multi channel approach, the next output port is already arbitrated while there is an
ongoing transaction. Thus as long as the overhead necessary for the hidden arbitration
is not larger than the time gained through arbitrating the next port immediately after
the previous one, the new approach is better regarding the throughput i.e. as long as
Equation 6.29 holds, the throughput of the multi channel bus is better than the one of
MOGLI.

δT ransactionM
− δP en,BusReq+ > δChannelT imeMC

+ max(δP repareT ransMC
− δChannelT imeMC

, 0)
(6.29)

From Equation 6.29 directly follows Equation 6.30 and therefore it only needs to be
shown, that both δChannelT imeMC

and δP repareT ransMC
are not larger than δT ransactionM

−
δP en,BusReq+. δP en,BusReq+ is subtracted because it is assumed that there is always a
output port waiting to be arbitrated. This is also the case where the throughput is
maximal.

δT ransactionM
− δP en,BusReq+ > max(δP repareT ransMC

, δChannelT imeMC
) (6.30)

Thus two cases have to be analyzed. One where the δChannelT imeMC
is the dominant

duration and one where the δP repareT ransMC
is responsible for the throughput:

• Case 1: δChannelT imeMC
> δP repareT ransMC

Here the channel time is the longer duration. As there are at most as many channels
as output ports, it is clear that the channel arbiter is not larger than the output
port arbiter. However the last stage of the channel arbiter is just a MUTEX element
and not an arbiter like it is the case for the output port arbiter. Furthermore the
delays δdataReq+,dataAck+ and δdataReq−,dataAck− not only include the delays coming
from the tree arbiter. There also the delays for the pipeline-arbiter connector are

90

6.3. Multi channel bus

included. Thus the channel arbiter even needs to be smaller, in order for those two
delays to be not larger than the δBusReq+,BusGrant+ and δBusReq−,BusGrant− delay.

δT ransactionM
− δP en,BusReq+ > δChannelT imeMC

δBusReq+,BusGrant+ + δBusReleaseM
> δdataReq+,dataAck+ + δdataAck+,dataReq−
+ δdataReq−,dataAck− + δdataAck−,portT ransparentReq+

+ δadapterF orkComp+,BusGrant+

+ δAp −,BusReq− + δBusReq−,BusGrant−
+ δBusGrant−,valid− + δvalid−,DataReq+ (6.31)

Equation 6.31 only holds, when the output port arbiter is large enough to cover all
the delays that are inserted not only by the channel arbiter but also the channel
helper AFSM. However, when the output port arbiter becomes too dominant, which
is the case when there are a lot of output ports, the preparation time is larger than
the channel time.

• Case 2: δChannelT imeMC
≤ δP repareT ransMC

In case the preparation time exceeds the channel time, the output port arbiter must
be already relatively big compared to the channel arbiter. Thus also it is assumed
that the output port arbiter path is longer than the pipeline path but also longer
than the clock release path.

δT ransactionM
− δP en,BusReq+ > δP repareT ransMC

δDataT ransM
+ δBusReleaseM

> 2 · δC−ELEM

+ max(δArbiterAck+,ArbiterReq− + δMUT EX

+ δARBIT ER · (log2 k − 1),
(l − 1) · δC−ELEM + δOR) + δArbiterAck−,BusGrant+

δDataT ransM
+ δAp −,BusReq− > 2 · δC−ELEM + δArbiterAck+,ArbiterReq−

+ δArbiterAck−,BusGrant+ (6.32)

With these preconditions Equation 6.32 has to hold in order for the multi channel
bus approach to have a higher throughput than the MOGLI bus. Since a transaction
also includes various combinational circuits and thus delays, this should be no
problem even in case a NAp is received, as the output ports designed by Villiger
are already far more complex than the newly introduced output port adapter.

Number of channels

The above analysis also helps in finding a reasonable number of channels for the bus.
However it has to be noted that there for the arbitration always the worst case was
assumed, where the next request is only arbitrated when the previous one finished and the

91

6. Performance analysis

grant is deactivated again. So in general an even higher throughput might be achieved.
So the following numbers are just a lower bound for the number of channels to achieve
the best possible throughput.

• δChannelT imeMC
≤ δP repareT ransMC

:
In this case the preparation time exceeds the channel time and thus it makes no
sense to have more than one channel, as only one channel is busy at a time.

• δChannelT imeMC
> δP repareT ransMC

:
When the channel time is larger than the preparation time however more channels
can be added such that the maximal throughput can be reached. The maximal
throughput is when the port arbiter is always busy. Thus there has to be a free
channel every δP repareT ransMC

. This leads to Equation 6.33 for the lower bound
of channels for the multi channel bus where the prepare time is smaller than the
channel time. However it has to be noted here that the channel time also might
increase when more channels are used.

Nchannels ≥ δChannelT imeMC

δP repareT ransMC

(6.33)

Comparison with Simulation

For validation purposes above formulas for the throughput were checked with a simulation.
Two modules, where the demand type ports were communicating with each other, were
simulated. In order to avoid any influence on the clock of the other module, the input
ports were not ready and thus sending a NAp after δMUT EX . The results for different
port arbiter sizes are listed in Table 6.2 and presented graphically in Figure 6.4. While
the preparation time is identical for both approaches, the actual transaction time highly
differs between the two approaches. However the multi channel approach is able to beat
the MOGLI approach, even when it also is built with just one channel, when the number
of port arbiter stages is high and thus the preparation time becomes dominant and
exceeds the channel time. However when the number of channels is as large as defined in
Equation 6.33, the throughput can be maximized. The maximal possible throughput is
then only limited by the preparation time. To decrease the preparation time, an approach
with multiple pipelines is then necessary.
As the only parameter that is changed in this analysis is the output port adapter, the
difference between the preparation time and the MOGLI throughput stays constant.

Figure 6.5 shows that the possible throughput for a multi channel bus with one channel
and a port arbiter with 7 arbiter stages is indeed one transaction per 4430 ps. On the
other hand, the throughput can be increased per instruction to 3660 ps when a second
channel like in Figure 6.6 is used. However it is not possible to increase the throughput
with an additional channel any further as this is already the limiting preparation time.

92

6.3. Multi channel bus

Arbiter stages 1 2 3 7 8 9 10
δT hroughputM

3030 3490 3950 5790 6250 6710 7170
δChannelT imeMC

4430 4430 4430 4430 4430 4430 4430
δP repareT ransMC

900 1360 1820 3660 4120 4580 5040
single channel δT hroughputMC

4430 4430 4430 4430 4430 4580 5040
max possible δT hroughputMC

900 1360 1820 3660 4120 4580 5040
δChannelT imeMC

/δP repareT ransMC
4.922 3.257 2.434 1.210 1.075 0.967 0.879

Table 6.2: Demand type output ports communicating with demand type input ports and
receiving NAp

Figure 6.4: Throughput comparison with different port arbiter depths

6.3.2 Pipeline depth
An important property that has not been discussed yet, is how to choose the depth l of
the pipelines properly. The pipelines were introduced to allow hidden arbitration. This
means that during an ongoing transaction it is already evaluated which output port is
allowed to send next. However the deeper a pipeline is, the more latency is added to the
overall latency. Thus in the following different depths are discussed. As the pipeline that
is presented in 3.2.3 is based on a four phase handshake, only in every second stage a
new data word is stored.

• No pipeline (l = 0)
In case the pipeline is totally omitted, no hidden arbitration is possible, as the port
arbiter and channel arbiter have to communicate directly with each other in this
case.

93

6. Performance analysis

Figure 6.5: Throughput with 7 arbiter stages and one channel

Figure 6.6: Throughput with 7 arbiter stages and two channels

• One entry (l = 1)
When the pipeline consists of only one entry, hidden arbitration is already possible,
as the next output port can already be evaluated while the one that is stored in
the pipeline still waits for being assigned to a channel. However the one that is
arbitrated can not be stored in the pipeline until a channel has requested the output
address stored.

• More than one entry (l ≥ 3)

94

6.4. Multi channel TMR bus

With a pipeline depth of l = 3 already two elements can be stored, while a third
one is arbitrated. However a deeper pipeline only makes sense, when this has a
positive effect on the latency or throughput. One upper bound that can be defined
for the number of elements is the number of channels. In case there are as many
entries as channels, for every channel the next output port can be arbitrated while
the transaction is still going on. However this is also only applicable, as long as the
pipeline delay does not exceed the output port arbiter delay.

6.3.3 Multicast

Multicasts are an efficient way to send the same massage to various receivers and thus
lead to fewer bus requests, which leads to more time for other services to access the bus.
However the best case where a multi cast transaction is completed with acquiring the
bus only once is only possible, when all ports that are addressed in the multicast are
indeed ready to receive the data. In the worst case as many bus requests as with unicast
are necessary. However here the hardware has no influence, as this highly depends on the
algorithm. Thus the best way is to wait with initiating the multicast until it is ensured
by the algorithm that the receiver ports are really ready to receive the data.

6.4 Multi channel TMR bus

For the multi channel TMR bus the same timing constraints hold as for the multi channel
bus, as long as non critical messages are sent. For TMR messages the constraints defined
in Equation 6.34-6.37 hold. The big difference is the voting mechanisms that need to be
considered for TMR messages.

δBusAccessT MR
=δP en,V oteT MR + δV oteT MR,BusReq+ + δBusReq+,ArbiterReq+

+ δArbiterReq+,ArbiterAck+ + δArbiterAck+,ArbiterReq−
+ δArbiterReq−,ArbiterAck− + δArbiterAck−,BusGrant+ (6.34)

δDataT ransT MRpout
=δBusGrant+,Rp+ + δRp+,Ap+ + δAp+,Ri+ + δRi+,Ai+ + δAi+,Rp−

+ δRp−,Ap− (6.35)
δDataT ransT MRdout

= max(0, δP en,Ri+ + δRi+,Ai+ − δBusAccessM
) + δAi+BusGrant+,Rp+

+ δRp+,Ap+ + δAp+,Rp− + δRp−,Ap− (6.36)
δBusReleaseT MR

=δBusReleaseMC
(6.37)

Equation 6.38-6.41 show in detail the different timings for δRp+,Ap+ and δRp−,Ap− de-
pending on the input port type. The additional time needed due to the voting process is
hidden in the δvalid+,Ap+ signal.

95

6. Performance analysis

δRp+,Ap+pin
=δRp+,Ri+ + δRi+,Ai+ + δAi+,App+ + δApp+,write+

+ δwrite+,valid+ + δvalid+,Ap+ (6.38)
δRp−,Ap−pin

=δRp−,App− + δApp−,write− + δwrite−,Ap− (6.39)
δRp+,Ap+din

=δRp+,Rpi+ + δRpi+,Api+ + δApi+,valid+ (6.40)
δRp−,Ap−din

=δRp−,Ap− (6.41)

6.4.1 3of4 voter delays
Unlike synchronous TMR systems where all replicas are fed with the same clock or
with synchronized clocks that only have a fixed phase shift between each other, in an
asynchronous TMR system the phase shifts between the clock can increase over time.
Thus TMR messages are also used for synchronization and therefore a TMR transaction
might need more time than in a synchronous TMR system. However this difference
becomes very evident, when one replica is dead. In that case the asynchronous TMR
system may reduce its speed dramatically depending on the number of TMR transactions
that take place. This is because the voter does not know whether the third replica is
just late or dead and has to wait until it is clear that the third replica is slower than
the maximal allowed phase shift. Thus when choosing proper delays this must also be
considered as the system must be still able to meet deadlines in this degraded mode.
Lechner already defined a lower bound presented in Equation 6.42 for the timeout value
in his thesis [Lec14]. The variable pi denotes the time it takes the sender i until the next
transaction request to this port takes place. The delay Δ then has to be at least the
difference between the slowest and the fastest possible period that is possible between
two transactions.

Δ > max(pwc
i) − min(pbc

j), i = j (6.42)

In case that this resulting Δ is quite large due to the algorithm, it might be necessary
to introduce additional TMR messages to the system to reduce the necessary delay Δ
and thus keep the performance degradation in an acceptable area, when one replica fails,
which also improves synchrony among the replicas.

The minimal delay for the transaction complete voter is calculated quite similar. In case
the output port only sends data to one input port it is the same delay as for the data
voter on the input side. However in case multiple modules might be addressed by one
single output port, the worst case has to be considered. This results in Equation 6.43
where Rj is the set of all receiver ports addressed by output port sj and Δdatari

is the
time until the timeout is reached on the data voter of receiver ri.

Δtrans_compj = max(Δdatari
: ri ∈ Rj) (6.43)

96

6.4. Multi channel TMR bus

For the special 3of4 voter that is used to release the demand type input port after a
transaction, the release timeout is important. This has to be chosen long enough such
that also the slowest replica can finish its transaction. The receiver only completes a
transaction, when either all receivers have acknowledged the transaction or when at least
two have and the 3of4 voter runs in a timeout. As all the senders were synchronized
before accessing the bus, the difference of their timings only results from the time it
takes to request the bus and do the arbitration. However since the multi channel bus is
designed such that there have to be as many channels as possible simultaneous TMR
messages, this time will be rather small and highly depends on the arbitration time. In
Equation 6.44 the minimal delay for the request 3of4 voter for the demand input port
with k output ports and u simultaneous TMR messages is presented. Important here
is, that only the output port arbitration is considered, as the channel arbitration is the
same for all replicas. The only difference is the order in which the output port addresses
are written into the pipeline.

Δdinreq
> (u − 1) · (δARBIT ER · (log2 k − 1) + δMUT EX) (6.44)

However for this voter especially the deassertion is from interest. As here the question
is, how long should the voter wait until it is assumed that the requesting replica is not
working properly. This depends on the acknowledge voter, as it might be the case, that
one request signal is stuck at zero. In that case two replicas can finish their transaction
immediately. The replica with the fault however is still waiting for the acknowledge
voter to run in a timeout. However since the other two requests are deasserted, also
the internal request signal of the input port is deasserted and thus the faulty output
ports get stuck as never an acknowledge is generated by the voter. However when the
deassertion of the internal request signal of the receiver is delayed sufficiently this can be
avoided. This then leads to the release timeout Equation 6.45 where Sj is the set of all
sender ports addressing input port rj and Δtrans_compsi

is the time until the timeout is
reached on the transaction complete voter of sender si.

Δdinrelj
≥ max(Δtrans_compsi

: si ∈ Sj) (6.45)

6.4.2 Synchronization
As already outlined before, the TMR messages are also responsible for synchronizing
the different replicas with each other and the TMR voters are responsible for the actual
synchronization. Figure 6.7 show such a synchronization. The second fastest replica
starts the timer for the timeout and in this case the slowest replica of the sender and the
receiver are both fast enough (timeoutis_tmr = 10000 and timeoutData = 5000). However
due to the fact that the transaction is finished faster than it takes the slowest receiver
clock to finish the current clock period, it is still behind after the synchronization. But

97

6. Performance analysis

it is behind less than one clock cycle. So as long as the phase shift is in the allowed
range, after a TMR transaction the phase shift between the replica clocks is less than
the slowest replica’s clock period.

Figure 6.7: Replica synchronization with the help of a TMR message

6.4.3 Erroneous Replica
In case one replica fails, the best case transaction time of a TMR message is highly
affected and can lead to tremendous performance losses as there are 3 3of4 voters in the
overall system when data is sent to a poll type TMR port and even 4 when data is sent
to a demand type TMR port. However as outlined above, not all of these voters need
the same Δ to work properly but when one replica is dead and not responding, then all
these delays sum up and the additional transaction time needed is stated in Equation
6.46 and depending on the average phase shift, this might highly increase the transaction
duration.

Δtotal =Δis_tmr + Δdata + Δtrans_comp + δRp (6.46)

δRp =

ΔdinRp
, when receiver = δdin

0, otherwise
(6.47)

The results from Table 6.3 show the voter delays for a TMR transaction from a demand
type output port to a demand type input port, where the overall TMR system had an

98

6.5. Area

output port arbiter depth of 7 and 3 channels. The transaction time for the normal
operation mode was 7970 ps while it was 45590 ps for the case where one replica was
dead and all the signals of that replica were stuck at zero. This results in an additional
duration of 37620 ps, which also matches up with the total difference from table 6.3,
where only the voters were considered. The results from that table also show, that the
voter in the best case needed at least 200 ps whereas due to the timeout mechanism not
only the timeout delay was added in the worst case, but also additional routing delays.
Note that it was assumed that the replicas are synchronous to each other. Thus it has to
be considered, that those are the minimal transaction times for both cases and they might
even increase in case the fastest replica is tremendously faster than the second fastest
replica. Furthermore only the small request timeout was considered for the request voter.
This is because since one whole replica is dead, the transaction complete voters of both
replicas run into a timeout.

Operation mode Normal operation One dead replica
1. req. voted duration 1. req. voted duration diff.

is_tmr voter 0 200 200 0 10840 10840 10640
Rp voter 4910 5110 200 15550 16450 900 700
Data voter 5450 5650 200 16790 22630 5840 5640
Ap Voter active 6280 6480 200 23260 44100 20840 20640
Ap Voter deactive 7510 7710 200 45130 45330 200 0

1000 38620 37620

Table 6.3: Delays in ps added from voters when one Replica is dead (timeoutis_tmr =
10000, timeoutRp = 1, timeoutData = 5000, timeoutAp = 20000)

6.5 Area
Another important property to look at, is the area consumption. The focus here will be
the area consumption of the multi channel bus compared to the area consumed by the
MOGLI approach.

Due to the multiple channels a channel selection mechanism was necessary. This additional
complexity also needs to more area consumtption. The receiver ports were also adapted
to handle data from different channels and are more complex now. While this is adaption
is a MUTEX element for demand type inputs, it is one poll type port for every single
channel, when the input port is a poll type input. However all channels share one single
data table, where the received data is latched and stored. This is also the reason, why
not two senders are allowed to write data to the same table entry simultaneously.

While this means more area consumption for the multi channel bus compared with the
MOGLI approach, it is still possible to save area when comparing it to the point-to-point
approach. However this is quite difficult and only possible, when one port can handle

99

6. Performance analysis

multiple services, as it also has to be considered that Villiger’s bus capable ports [Vil05]
are already more complex than the ones from Muttersbach [Mut01].

100

CHAPTER 7
Conclusion & Future Work

7.1 Conclusion
In this thesis a new bus architecture for pausable GALS applications was proposed. The
main goal was to build a fault tolerant bus architecture with no single point of failure,
that is further able to handle phase shifts between the clocks of the different replicas
up to a certain degree. This is necessary as every module’s replica runs with its own
frequency as each has its own pausable clock.

In a first step Villiger’s MOGLI [Vil05] was used as a basis for the multi channel bus
that consists of multiple channels where each can handle one transaction. The multiple
channels allow it to work on multiple transactions simultaneously. However the arbitration
is kind of a bottleneck. With splitting up the arbitration and having multiple pipelines
that feed the channels, the pressure on this bottleneck can be reduced dramatically.

In a second step this design was then triplicated for being part of a mixed criticality
system, where TMR messages as well as best effort messages can be sent. While the best
effort messages can be only sent within the same replica, the TMR messages are used not
only for communication between the replicas but also for synchronization purposes. The
input and the output ports of Villiger [Vil05] had to be adapted for TMR usage. This
not only includes the voters needed to vote on the data but also releasing the ports after
a timeout is reached, in order to not block the whole system, when there is no response
from one replica.

In the last step the system then was analyzed regarding the fault tolerance and the
impact of different faults on the system. The analysis showed that in the worst case
only the replica where the fault was introduced, stopped working properly. There even
the complete bus might be blocked and thus requests might also be propagated to other
replicas. However their inputs are designed such that a single request can not block the
input forever. Furthermore a comparison between the MOGLI and the multi channel

101

7. Conclusion & Future Work

approach regarding the latency and throughput has been done. This has shown that the
overhead of the multi channel bus lead to a higher latency. However with the hidden
arbitration the throughput can be increased. Especially for systems with many output
ports the throughput is increased quite noticeably, as when introducing multiple pipelines,
ports can be arbitrated simultaneously and multiple transactions can go on side by side
on the different channels.

7.2 Future Work
While many problems could be solved in the current work, there is still room for
improvements. Especially when it comes to performance.

Channel selection In the channel selection module the most critical and time con-
suming part is the arbitration. In this thesis all the analyses have been done with tree
arbiters. This means that conventional arbiters with two inputs are structured in a tree
formation such that in the end the overall arbiter can handle more than two input ports.
The question here is, if the arbitration can be done in a more efficient way. For these
arbiters also area is less critical than latency they introduce.

Output port At the moment for the output ports the ones from Villiger are used and
adapter is added. In the future the adapter and the output from Villiger can be merged
together to one new output port. This might help to decrease the latency as well as
space used.

Formal verification As outlined in chapter 5 the formal verification of the TMR
system was not within the scope of this thesis but is left for further work.

Test on hardware It has not been a goal for this thesis, but one of the next steps is
to actually build the architecture and test the performance on hardware to compare the
results with the analysis and simulations.

102

List of Figures

2.1 Bundled data based communication with a one stage synchronizer (from
[Gin03]) . 8

2.2 Structure of an asynchronous FIFO (from [Kil07]) 9
2.3 Structure of an bisynchronous FIFO with with Muller pipeline (from [HS20]) 10
2.4 pausable clock (from [NS15]) . 11
2.5 PCC (both pictures from [YD96]) . 12
2.6 Asynchronous wrapper by Bormann (from [BC97]) 12
2.7 Extended-burst-mode circuit . 13
2.8 Asynchronous wrapper around a locally synchronous module (from [MVF00]) 13
2.9 All Port types presented by Muttersbach (pictures taken from [Mut01]) . 14
2.10 Data transfer mechanism (both pictures taken from [MVF00]) 15
2.11 Pausable asynchronous FIFO with signal path for pointer increment high-

lighted (from [KFK15]) . 16
2.12 Simple optimized clock generator . 17
2.13 Optimized clock generator with two ports (from [FKG09]) 18
2.14 Double latching mechanism (from [FKG09]) 19
2.15 Argo NoC . 20
2.16 Single channel MOGLI (from [Vil05]) . 21
2.17 Default ports for bus communication presented by Villiger (from [Vil05]) . 22
2.18 Output ports for burst transactions (from [Vil05]) 23
2.19 Ring architecture Villiger (from [Vil05]) 24
2.20 Switching Network Villiger (from [Vil05]) 25
2.21 Switch crossbar element Villiger (from [Vil05]) 25

3.1 Block diagram of a multi channel bus with two channels and 3 modules and
one single pipeline . 28

3.2 Scheme of a multi bus channel where k = 10, p = 7, m = 5 and q = 3 . . . 30
3.3 Channel selection mechanism . 31
3.4 Implementation of single pipeline with 3 stages and two entries 32
3.5 Pipeline-Arbiter connector STG . 32
3.6 Timing diagram of the pipeline-arbiter connector 33
3.7 Block diagram of channel access with four output ports, two channels and

one pipeline . 33

103

3.8 Output port adapter STG . 34
3.9 Timing diagram of output adapter with control signals from the output port 35
3.10 Channel helper . 35
3.11 Timing diagram of channel helper . 36
3.12 Adapted clock pausing mechanism . 37
3.13 Data valid identification . 38
3.14 Channel multiplexing for point to point communication 39
3.15 Concurrent receiving with Mutex . 40
3.16 Write helper STG . 40
3.17 Timing diagram of write process . 41
3.18 Concurrent receiving Villiger’s poll input port and write helper 42
3.19 Concurrent receiving Villiger’s poll input port without valid signal 43
3.20 Multicast Ap and Ap calculation for sender port with three possible receiver

ports . 44
3.21 Flow chart of data transaction . 45

4.1 TMR data package . 48
4.2 Priority pipeline . 49
4.3 Priority arbitration . 49
4.4 Schematic of GALS TMR . 50
4.5 3of4 voter for synchronization . 51
4.6 GALS TMR voter designed by Lechner (from [Lec14]) 52
4.7 Watchdog module designed by Lechner (from [Lec14]) 53
4.8 Timing diagram of TMR transaction . 54
4.9 Voting mechanisms during a TMR transaction 55
4.10 Block diagram of a tmr sender port with optional transient failure suppression 56
4.11 Diff module for enabling switches . 57
4.12 Separate demand type input ports for TMR messages with optional buffers

for late transitions . 58
4.13 Demand type input port with abort functionality 59
4.14 Timing diagram of the abortable demand type input port 60
4.15 Buffer pipeline for inputs of late replicas 60
4.16 Single demand type input port for TMR messages without buffer pipelines 61
4.17 TMR receiver port with table and buffer pipeline within write helper TMR 63

5.1 TMR replica with signals crossing replica border 66
5.2 Bit flip in transaction complete voter . 69
5.3 Stuck at zero of a request signal . 74
5.4 Channel request, with data_req signal stuck at one after being enabled once 77
5.5 Data transmission, with request Rp stuck at one after being enabled once 78

6.1 Latency difference between MOGLI and multi channel approach 88
6.2 Latency difference between MOGLI and multi channel approach 88
6.3 Latency difference between MOGLI and multi channel approach 89

104

6.4 Throughput comparison with different port arbiter depths 93
6.5 Throughput with 7 arbiter stages and one channel 94
6.6 Throughput with 7 arbiter stages and two channels 94
6.7 Replica synchronization with the help of a TMR message 98

1 Normal data transmission . 113
2 Bit flip in data word . 114
3 Bit flip from one to zero in TMR flag and no corresponding input port of non

TMR message . 114
4 Bit flip of TMR flag from zero to one, whit no receiver addressable 115
5 Bit flip in address of data word sent to a poll input port 115
6 Bit flip of one request signal to zero . 116
7 Bit flip of all request signals of one replica 116
8 Bit flip of one request signal to one . 117
9 Bit flip of one acknowledge signal to zero 117
10 Bit flip of all acknowledge signals of one replica to zero 118
11 Bit flip of TMR flag to zero . 118
12 Bit flip in TMR voter . 119
13 Bit flip to zero in transaction complete voter that is not resolved 119
14 Bit flip glitch with in transaction complete voter before data is acknowledged 120
15 Bit flip glitch of 5 ns at the rp voter . 120
16 Stuck at zero of an acknowledge signal . 121
17 Stuck at one of an acknowledge signal . 121
18 Stuck at zero of a request signal . 122
19 Stuck at zero of all request signals of one replica 122
20 Stuck at one of a request signal . 123
21 Stuck at one of all request signals of one replica 123
22 Stuck at zero fault of one is_tmr signal 124
23 Stuck at zero fault of data voter . 124
24 Stuck at one fault of data voter . 125
25 Stuck at zero fault of request voter at demand input port 125
26 Stuck at one fault of request voter at demand input port 126

105

List of Tables

4.1 Watchdog enable . 52

5.1 Components and affected signals . 65
5.2 Bit flip effects . 70
5.3 Interesting bit flip and glitch faults, beside the replica border crossing signals 72
5.4 Stuck at fault effects . 76
5.5 Interesting stuck at fault, beside the replica border crossing signals 79

6.1 Gate delays for the prelayout simulation 82
6.2 Demand type output ports communicating with demand type input ports and

receiving NAp . 93
6.3 Delays in ps added from voters when one Replica is dead (timeoutis_tmr =

10000, timeoutRp = 1, timeoutData = 5000, timeoutAp = 20000) 99

107

Bibliography

[BC97] David S Bormann and Peter YK Cheung. Asynchronous wrapper for het-
erogeneous systems. In Proceedings International Conference on Computer
Design VLSI in Computers and Processors, pages 307–314. IEEE, 1997.

[BDM01] Luca Benini and Giovanni De Micheli. Powering networks on chips: energy-
efficient and reliable interconnect design for socs. In Proceedings of the 14th
international symposium on Systems synthesis, pages 33–38, 2001.

[BDM02] Luca Benini and Giovanni De Micheli. Networks on chip: A new paradigm
for systems on chip design. In Proceedings 2002 Design, Automation and
Test in Europe Conference and Exhibition, pages 418–419. IEEE, 2002.

[BSH75] Daniel Binder, Edward C Smith, and AB Holman. Satellite anomalies from
galactic cosmic rays. IEEE Transactions on Nuclear Science, 22(6):2675–2680,
1975.

[Cha84] Daniel M Chapiro. Globally-asynchronous locally-synchronous systems.
Technical report, Stanford Univ CA Dept of Computer Science, 1984.

[Cora] Intel Corporation. Modelsim. https://www.intel.com/
content/www/us/en/software/programmable/quartus-prime/
model-sim.html. Accessed: 2021-11-10.

[Corb] Intel Corporation. Quartus prime. https://www.intel.de/content/
www/de/de/software/programmable/quartus-prime/overview.
html. Accessed: 2021-11-10.

[DGS04] Rostislav Dobkin, Ran Ginosar, and Christos P Sotiriou. Data synchroniza-
tion issues in gals socs. In 10th International Symposium on Asynchronous
Circuits and Systems, 2004. Proceedings., pages 170–179. IEEE, 2004.

[DT01] William J Dally and Brian Towles. Route packets, not wires: on-chip inte-
connection networks. In Proceedings of the 38th annual Design Automation
Conference, pages 684–689, 2001.

109

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.de/content/www/de/de/software/programmable/quartus-prime/overview.html
https://www.intel.de/content/www/de/de/software/programmable/quartus-prime/overview.html
https://www.intel.de/content/www/de/de/software/programmable/quartus-prime/overview.html

[FKG09] Xin Fan, Miloš Krstić, and Eckhard Grass. Analysis and optimization of
pausible clocking based gals design. In 2009 IEEE International Conference
on Computer Design, pages 358–365. IEEE, 2009.

[FS11] Gottfried Fuchs and Andreas Steininger. Vlsi implementation of a distributed
algorithm for fault-tolerant clock generation. Journal of Electrical and
Computer Engineering, 2011, 2011.

[Gin03] Ran Ginosar. Fourteen ways to fool your synchronizer. In Ninth International
Symposium on Asynchronous Circuits and Systems, 2003. Proceedings., pages
89–96. IEEE, 2003.

[Gre95] Mark R Greenstreet. Implementing a stari chip. In Proceedings of ICCD’95
International Conference on Computer Design. VLSI in Computers and
Processors, pages 38–43. IEEE, 1995.

[HS20] Florian Huemer and Andreas Steininger. Timing domain crossing using muller
pipelines. In 2020 26th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 44–53. IEEE, 2020.

[JT+03] Axel Jantsch, Hannu Tenhunen, et al. Networks on chip, volume 396. Springer,
2003.

[KFK15] Ben Keller, Matthew Fojtik, and Brucek Khailany. A pausible bisynchronous
fifo for gals systems. In 2015 21st IEEE International Symposium on Asyn-
chronous Circuits and Systems, pages 1–8. IEEE, 2015.

[Kil07] Steve Kilts. Advanced FPGA design: architecture, implementation, and
optimization. John Wiley & Sons, 2007.

[KJS+02] Shashi Kumar, Axel Jantsch, J-P Soininen, Martti Forsell, Mikael Millberg,
Johny Oberg, Kari Tiensyrja, and Ahmed Hemani. A network on chip
architecture and design methodology. In Proceedings IEEE Computer Society
Annual Symposium on VLSI. New Paradigms for VLSI Systems Design.
ISVLSI 2002, pages 117–124. IEEE, 2002.

[KPWK03] Joep Kessels, Ad Peeters, Paul Wielage, and Suk-Jin Kim. Clock synchro-
nization through handshake signalling. Microprocessors and Microsystems,
27(9):447–460, 2003.

[KSS+15] Evangelia Kasapaki, Martin Schoeberl, Rasmus Bo Sørensen, Christoph
Müller, Kees Goossens, and Jens Sparsø. Argo: A real-time network-on-chip
architecture with an efficient gals implementation. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 24(2):479–492, 2015.

[Lec14] Jakob Lechner. Building robust GALS circuits; fault-tolerant and variation-
aware design. Techniques for reliable circuit operation. PhD thesis, TU Wien,
2014.

110

[LV62] Robert E Lyons and Wouter Vanderkulk. The use of triple-modular re-
dundancy to improve computer reliability. IBM journal of research and
development, 6(2):200–209, 1962.

[MCS04] Joycee Mekie, Supratik Chakraborty, and Dinesh K Sharma. Evaluation of
pausible clocking for interfacing high speed ip cores in gals framework. In
17th International Conference on VLSI Design. Proceedings., pages 559–564.
IEEE, 2004.

[MTMR02] Simon Moore, George Taylor, Robert Mullins, and Peter Robinson. Point to
point gals interconnect. In Proceedings Eighth International Symposium on
Asynchronous Circuits and Systems, pages 69–75. IEEE, 2002.

[Mut01] Jens Muttersbach. Globally-Asynchronous Architectures for VLSI Systems.
University of Cologne, 2001.

[MVF00] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner. Practical design
of globally-asynchronous locally-synchronous systems. In Proceedings Sixth
International Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC 2000)(Cat. No. PR00586), pages 52–59. IEEE, 2000.

[NS15] Robert Najvirt and Andreas Steininger. How to synchronize a pausible clock
to a reference. In 2015 21st IEEE International Symposium on Asynchronous
Circuits and Systems, pages 9–16. IEEE, 2015.

[NS20] Robert Najvirt and Andreas Steininger. Performance limits in clock domain
crossing: Choosing synchronization fifo parameters, Internal work, TU Wien,
2020.

[PSM07] Ivan Poliakov, Danil Sokolov, and Andrey Mokhov. Workcraft: a static
data flow structure editing, visualisation and analysis tool. In International
Conference on Application and Theory of Petri Nets, pages 505–514. Springer,
2007.

[SF01] Ivan Sutherland and Scott Fairbanks. Gasp: A minimal fifo control. In
Proceedings Seventh International Symposium on Asynchronous Circuits and
Systems. ASYNC 2001, pages 46–53. IEEE, 2001.

[SM00] Allen E Sjogren and Chris J Myers. Interfacing synchronous and asynchronous
modules within a high-speed pipeline. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(5):573–583, 2000.

[SMC80] Charles L Seitz, C Mead, and L Conway. System timing. Introduction to
VLSI systems, pages 218–262, 1980.

[Sut89] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–
738, 1989.

111

[VHD19] Ieee standard for vhdl language reference manual. IEEE Std 1076-2019,
pages 1–673, 2019.

[Vil05] Thomas Villiger. Multi-point interconnects for globally-asynchronous locally-
synchronous systems, volume 157. ETH Zurich, 2005.

[YD96] Kenneth Y Yun and Ryan P Donohue. Pausible clocking: A first step
toward heterogeneous systems. In Proceedings International Conference on
Computer Design. VLSI in Computers and Processors, pages 118–123. IEEE,
1996.

[ZCM+96] James F Ziegler, Huntington W Curtis, Hans P Muhlfeld, Charles J Montrose,
B Chin, Michael Nicewicz, CA Russell, Wen Y Wang, Leo B Freeman,
P Hosier, et al. Ibm experiments in soft fails in computer electronics (1978–
1994). IBM journal of research and development, 40(1):3–18, 1996.

[ZSG+13] Guangda Zhang, Wei Song, Jim D Garside, Javier Navaridas, and Zhiying
Wang. Transient fault tolerant qdi interconnects using redundant check code.
In 2013 Euromicro Conference on Digital System Design, pages 3–10. IEEE,
2013.

112

Appendix

Simulation results
In the following, the simulation results of the most important failure cases are presented.
Despite the address fault all transactions were done from a demand output port to a
demand input port. Where the demand input port initiates the transaction after 4 clock
cycles and the receiver is ready to receive the data after 12 clock cycles. The sender
clocks have a period of 2, 2.4 and 2.8 ns whereas the receiver clocks have a clock period
of 2.2, 2.6 and 3 ns.
The voter timeouts for the simulation were:
timeoutis_tmr = 10000ps
timeoutRp = 20000ps
timeoutDatad

= 5000ps
timeoutDatap = 15000ps
timeoutAp = 20000ps
Furthermore all faults were introduced in replica zero and no optional buffer pipelines
where used.

Figure 1: Normal data transmission

113

Figure 2: Bit flip in data word

Figure 3: Bit flip from one to zero in TMR flag and no corresponding input port of non
TMR message

114

Figure 4: Bit flip of TMR flag from zero to one, whit no receiver addressable

Figure 5: Bit flip in address of data word sent to a poll input port

115

Figure 6: Bit flip of one request signal to zero

Figure 7: Bit flip of all request signals of one replica

116

Figure 8: Bit flip of one request signal to one

Figure 9: Bit flip of one acknowledge signal to zero

117

Figure 10: Bit flip of all acknowledge signals of one replica to zero

Figure 11: Bit flip of TMR flag to zero

118

Figure 12: Bit flip in TMR voter

Figure 13: Bit flip to zero in transaction complete voter that is not resolved

119

Figure 14: Bit flip glitch with in transaction complete voter before data is acknowledged

Figure 15: Bit flip glitch of 5 ns at the rp voter

120

Figure 16: Stuck at zero of an acknowledge signal

Figure 17: Stuck at one of an acknowledge signal

121

Figure 18: Stuck at zero of a request signal

Figure 19: Stuck at zero of all request signals of one replica

122

Figure 20: Stuck at one of a request signal

Figure 21: Stuck at one of all request signals of one replica

123

Figure 22: Stuck at zero fault of one is_tmr signal

Figure 23: Stuck at zero fault of data voter

124

Figure 24: Stuck at one fault of data voter

Figure 25: Stuck at zero fault of request voter at demand input port

125

Figure 26: Stuck at one fault of request voter at demand input port

126

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aims and Contribution
	Methodological Approach
	Tools
	Outline

	Related Work
	Analysis of different GALS concepts
	Concept of NoCs described on Argo
	Multi-point interconnects for GALS architectures

	Multi Channel Bus
	General problem description
	Channel selection
	Channel access
	Data reception and addressing
	Data transaction

	Fault tolerant bus architecture for TMR usage
	Mixed criticality system
	TMR system

	TMR fault handling
	Transient bit flips
	Replica too slow
	Simultaneous write
	Permanent faults

	Performance analysis
	Setup and Definitions
	MOGLI
	Multi channel bus
	Multi channel TMR bus
	Area

	Conclusion & Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Appendix
	Simulation results

