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Kurzfassung

Reinforcement learning (RL) Methoden lernen durch Interaktion mit einer Umwelt. Im
RL Paradigma wird also online gelernt. Online zu lernen ist jedoch für viele Anwendungen
in der echten Welt sehr unpraktikabel, da zumeist Ressourcen- oder Sicherheitseinschrän-
kungen bestehen. Im Gegensatz zu online RL ermöglicht es offline RL, das primäre
Thema dieser Arbeit, Entscheidungsstrategien aus vorher gesammelten Trainingsdaten
zu erlernen. Allerdings haben RL Algorithmen einige weitere wesentliche Limitationen,
darunter Datenineffizienz. Zwei vielversprechende Forschungsströme, die diese Limitation
behandeln, sind selbst-überwachte Methoden und Datenaugmentierung. Diese Methoden
wurden jedoch im online RL Kontext entwickelt und es ist daher noch nicht klar, ob
sich deren Vorteile auch auf offline RL transferieren lassen. Nichtsdestotrotz ist es nicht
immer ideal, Interaktion mit der Umwelt vollkommen zu eliminieren. Sowohl online RL
als auch offline RL haben individuelle Vorteile und Nachteile. Algorithmen, die beide
Ansätze vereinen, zum Beispiel durch offline pre-training und online fine-tuning, können
die Vorteile beider Welten nutzen. Daher braucht es RL Agenten, die fähig sind sowohl
online also auf offline in einer daten-effizienten Weise zu lernen.

In dieser Arbeit verbessern wir die Lernleistung von offline RL Algorithmen, indem wir
existierende selbst-überwachte RL Methoden, Datenaugmentierung und online fine-tuning
in den Lernprozess integrieren. Wir wählen drei selbst-überwachte online RL Architektu-
ren (Curl, SPR, SGI) und fünf beliebte Datenaugmentierungen aus und adaptieren sie für
den offline Kontext. Dann erweitern wir einen State-of-the-Art offline RL Algorithmus,
Conservative Q-Learning (CQL), mit diesen Methoden und vergleichen sie mit fünf
etablierten Baselines. Wir evaluieren alle Algorithmen sowohl auf diskreten als auch
kontinuierlichen Kontrollaufgaben unter Verwendung von offline Atari und Gym-MuJoCo
Datensätzen. Folglich wählen wir vier Atarispiele (Pong, Breakout, Seaquest, QBert) und
drei Gym-MuJoCo Aufgaben (Halfcheetah, Hopper, Walker-2d) für unsere Experimente
aus. Unsere Resultate zeigen, dass selbst-überwachte Methoden und Datenaugmentierung
Baseline Agenten übertreffen können und zu beachtlichen Verbesserungen der Lernfähig-
keit der offline RL Algorithmen auf Gym-MuJoCo führen können, aber nicht hilfreich
auf Atari sind. Außerdem untersuchen wir, wie sich offline pre-training gefolgt von online
fine-tuning auf die Lernfähigkeit des ausgewählten offline RL Algorithmus auswirkt.
Unsere Resultate zeigen weiters, dass Algorithmen, die sowohl offline als auch online
lernen, jenen Algorithmen, die nur online oder offline lernen, weitaus überlegen sein
können.
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Abstract

Reinforcement learning (RL) methods learn through interaction with an environment.
The RL paradigm is inherently designed to be performed in an online fashion. However,
for many applications in the real world, learning online is not always feasible due to
resource and/or safety constraints. Unlike online RL, offline RL, the main topic of this
thesis, allows the agent to learn policies from previously collected datasets. Current RL
algorithms have a number of other major limitations, among them data-inefficiency. Two
promising streams of research that address this limitation are self-supervised methods
and data augmentation. These methods were, however, developed for online RL, and it
is not yet clear if their benefits translate to the offline case. Moreover, it is not always
ideal to eliminate online environment interaction altogether. Both online RL and offline
RL have their individual advantages and disadvantages. Algorithms that combine both
approaches, e.g., via offline pre-training and online fine-tuning, can draw from the best
of both worlds. Consequently, there is a need for RL agents that can learn both online
and offline in a data-efficient way.

In this thesis, we improve the learning performance of offline RL algorithms by integrating
existing self-supervised methods, data augmentations and online fine-tuning into the
learning process. We select three established self-supervised online RL architectures (Curl,
SPR, SGI) and five prominent data augmentations and adapt them for the offline setting.
We then augment a state-of-the-art offline RL algorithm, Conservative Q-Learning (CQL),
with the selected methods and compare them against five established baselines. We
empirically evaluate all algorithms on both discrete and continuous control tasks using
offline Atari and Gym-MuJoCo datasets, respectively. To this end, we select four Atari
games (Pong, Breakout, Seaquest, QBert) and three Gym-MuJoCo tasks (Halfcheetah,
Hopper, Walker-2d) for our experiments. Our results show that self-supervised methods
and data augmentations can outperform the baseline agents and considerably improve the
learning performance of offline RL algorithms on Gym-MuJoCo but are not beneficial on
Atari. Furthermore, we investigate how offline pre-training followed by online fine-tuning
affects the learning performance of the selected offline RL algorithm. Our results further
demonstrate that hybrid algorithms that learn both offline and online can be far superior
to learning online or offline alone.
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CHAPTER 1
Introduction

In this section, we first introduce the motivation and the problem statement for this thesis.
Then we describe the aim of this work as well as the research questions we investigate.
Finally, we present the contributions that we make in this thesis and outline the contents
of the subsequent chapters.

1.1 Motivation & Problem statement
Reinforcement learning (RL) methods learn through interaction with an environment
[Sutton and Barto, 2018]. The trial-and-error learning paradigm they adhere to is
inherently designed to be performed in an online fashion. However, this can be problematic
for a number of reasons. For many applications in the real world, such as autonomous
driving, robotics, or healthcare, learning online is not always feasible due to resource
and/or safety constraints. Online RL initially relies on random exploration of the
environment at hand and can thus be unsafe or simply slow until it discovers high-
reward behaviour. Unlike online RL, offline RL, the main topic of this thesis, allows the
agent to learn policies from previously collected datasets (i.e., offline) that may contain
transitions originating from a mixture of policies [Levine et al., 2020]. This game-changing
modification of the learning paradigm has the potential to enable reinforcement learning
based applications in the real world for a variety of decision-making problems where
online interaction is not an option. The appeal of offline RL is further motivated by
a simple observation: the success of Machine learning (ML) in applications such as
Computer Vision, Natural language processing (NLP) or Speech Recognition, has been
mainly driven by large and diverse datasets [Deng et al., 2009; Rajpurkar et al., 2016;
Panayotov et al., 2015], not only by more advanced methods.

However, current reinforcement learning algorithms have a number of other major
limitations, among them data-inefficiency [Dulac-Arnold et al., 2021]. In fact, some of
the most sophisticated RL agents have to acquire hundreds of years’ worth of real-time

1



1. Introduction

experience, before they can perform their tasks [Vinyals et al., 2019; Berner et al., 2019].
Consequently, RL works particularly well for games or simulation-based environments,
due to the fact that environment interaction under those circumstances is relatively
inexpensive. Yet, in the real world, environment interaction may be costly and only
a limited number of samples can be obtained. Data efficiency can be particularly
problematic for offline RL methods, as the dataset is static, only a finite amount of
observations is available, and no further observations can be collected. Therefore, methods
have to be developed, that enable RL agents to leverage the available sets of previously
collected observations in an effective way. Different solutions were proposed in the online
RL context that aim to address data-inefficiency from different angles, among them are
self-supervised methods and data augmentation. Both strategies can be used to learn
more effective representations of the environment, allowing for more efficient learning
behaviour. These methods were, however, developed for online RL and it is not clear yet
if their benefits translate to the offline case. The appeal of self-supervised methods for
offline RL is further motivated by another observation: many of the recent significant
performance improvements in Computer Vision [Chen et al., 2020a; Grill et al., 2020;
Chen et al., 2020b], NLP [Devlin et al., 2019; Brown et al., 2020; He et al., 2021] and
Speech Recognition [Baevski et al., 2020] can be attributed to the ability to leverage
large datasets via self-supervised learning techniques.
It is, however, not always ideal or even desirable to eliminate online environment interac-
tion altogether. After all, the interaction of an agent with an environment is precisely
what makes RL such an interesting research direction for the development of intelligence.
In addition, online RL has led to some of the most spectacular achievements in the field
of Artificial intelligence (AI) and can arguably lead to emergence of complex behaviour
in complex environments [Silver et al., 2016; Berner et al., 2019; Vinyals et al., 2019].
However, both online RL and offline RL have their own individual advantages and
disadvantages (e.g., fast/slow initial learning progress, high/low potential for long-term
improvement) and thus, algorithms that unite both paradigms may be able to draw from
the best of both worlds. In NLP it is, for instance, common practice to pre-train language
models on large corpora of text and consequently fine-tune them for individual down-
stream tasks [Devlin et al., 2019]. Similarly, the "offline pre-training, online fine-tuning"
paradigm is well suited for RL, especially for real world applications with safety and/or
resource constraints. Current online and offline RL algorithms are, however, typically
only specialized for online RL or offline RL alone, but not for both. In the long term, if
we are to build increasingly intelligent RL agents they need to have the ability to flexibly
leverage information from a variety of sources, both offline data from a mixture of policies
and data obtained by online environment interaction alike. Therefore, there is a need for
hybrid RL algorithms that can learn both online and offline.

1.2 Aim of the work & Research questions
The goal of this thesis is to improve the learning performance of offline RL algorithms by
integrating existing self-supervised methods, data augmentations and online fine-tuning

2



1.3. Contributions

into the learning process.

In particular, we investigate the following research questions:

• What state-of-the-art self-supervised methods perform best in the offline RL context
on continuous control (Gym-MuJoCo) and discrete control tasks (Atari) in terms
of average return?

• What kinds of data augmentations perform best in the offline RL context on
continuous control (Gym-MuJoCo) and discrete control tasks (Atari) in terms of
average return?

• What are effective ways to combine offline pre-training with online fine-tuning to
benefit from both RL paradigms?

Self-supervised methods have been applied successfully in the online RL setting, as demon-
strated by systems such as Unreal [Jaderberg et al., 2017], Contrastive Unsupervised
Representations for RL (Curl) [Laskin et al., 2020b] and Self-predictive Representations
(SPR) [Schwarzer et al., 2021a]. Likewise, online RL agents equipped with data augmenta-
tion, such as RL with Augmented Data (RAD) [Laskin et al., 2020a] and Data-regularized
Q (DrQ) [Yarats et al., 2021b] lead to more data efficient learning. Data augmentation is
an established technique in Computer Vision and Speech recognition, but only recently
has its effectiveness for online RL been demonstrated. However, while the effectiveness of
self-supervised methods and data augmentation techniques has been explored in online
RL, it has not yet been studied in the offline RL context. Due to the lack of prior research,
it is not yet clear whether techniques that perform well online also work for offline RL. It
might be possible that different kinds of techniques work better online than offline or vice
versa, as a result of the differences in the paradigms. In this thesis, we aim to fill the gap.
Furthermore, only limited research exists on offline pre-training and online fine-tuning
[Nair et al., 2020; Lu et al., 2020]. Therefore, it remains to be understood what design
decisions work best for translating behaviour learned during offline pre-training to online
fine-tuning.

If offline RL agents are able to leverage the power of self-supervised learning, data
augmentation and online fine-tuning, this will result in much more capable RL agents.

1.3 Contributions
First, we provide a comprehensive overview of online RL, offline RL, self-supervised
learning in RL, data augmentation in RL and online fine-tuning for RL. Then, we conduct
a thorough analysis of existing state-of-the-art offline RL algorithms, self-supervised
learning techniques and data augmentations. In particular, we review the current
literature on offline RL and identify suitable base agents that can be extended with
self-supervised methods and data augmentations. In addition, we examine what self
supervised tasks and what data augmentations are suitable in the offline RL context.

3



1. Introduction

To this end, we use Conservative Q-learning (CQL) [Kumar et al., 2020] as our base
offline RL algorithm. We select three self-supervised architectures, namely Curl [Laskin
et al., 2020b], SPR [Schwarzer et al., 2021a] and a modified version of SGI [Schwarzer
et al., 2021b]. All self-supervised architectures we select have not been applied to offline
RL prior to this work. Moreover, we select five augmentations that worked best in
previous work with data augmentations in RL [Laskin et al., 2020a; Yarats et al., 2021b]:
random-cropping, random-shifting and random cutout for discrete control tasks, and
random amplitude scaling and Gaussian noise for continuous control tasks. As these
architectures were developed for online RL, we extend them for offline RL.

We also investigate how offline pre-training followed by online fine-tuning affects the
learning performance of CQL. CQL is a state-of-the-art offline RL algorithm, and was
thus specifically developed for the offline context. However, we show that with the
right design decisions, CQL is well suited for the "offline pre-training, online fine-tuning"
paradigm and can be far superior to online learning and offline learning alone.

We evaluate all selected algorithms on both discrete and continuous control tasks using
offline Atari and Gym-MuJoCo datasets provided by the offline RL benchmark suites RL
Unplugged [Gülçehre et al., 2020] and Datasets for Reinforcement Learning (D4RL) [Fu
et al., 2020], respectively. We select four Atari games (Pong, Breakout, Seaquest, QBert)
and three Gym-MuJoCo tasks (Halfcheetah, Hopper, Walker2d) for our experiments.
While Atari provides image-based inputs, Gym-MuJoCo emits state-based inputs. All
the self-supervised architectures we evaluate in this work were specifically developed for
image-based tasks. Therefore, we adjust them to state-based tasks accordingly.

On each Atari and Gym-MuJoCo task we compare our implementations against five
established baselines: a random policy, Behavioural Cloning (BC) [Pomerleau, 1988], CQL
without any extensions, online/offline Deep Q-Networks (DQN) [Mnih et al., 2015] on
Atari, and online/offline Soft Actor Critic (SAC) [Haarnoja et al., 2018] on Gym-MuJoCo.

All agents are evaluated based on average return, normalized scores (with respect to
random and expert agents), interval estimates of the normalized performance for the
mean, median and interquartile mean (IQM), and probability of improvement. Our
evaluation methodology is described in more detail in Section 3.

In summary, we make the following contributions in this thesis:

• We provide a comprehensive overview of the state-of-the-art in the research field of
offline RL.

• We evaluate the effectiveness of existing self-supervised methods and data aug-
mentation techniques for offline RL and show that they can lead to considerable
improvements on Gym-MuJoCo but are not beneficial on Atari.

• We demonstrate that the "offline pre-training, online-fine tuning" RL paradigm can
be far superior to online or offline RL individually and advocate for hybrid RL
algorithms that are designed to learn both offline and online.
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1.4. Structure of this thesis

1.4 Structure of this thesis
The rest of this thesis is structured as follows:

• In Chapter 2 we discuss the theoretical background of this thesis. In particular,
this includes a brief introduction to the online RL framework and a discussion of
offline RL, the main topic of this thesis. Furthermore, the current challenges of
both frameworks, as well as the approaches to address these challenges, namely
self-supervised learning, and data augmentation, are discussed.

• In Chapter 3 we describe our methodological approach for this thesis. This includes
our selection of offline RL algorithms, self-supervised methods, data augmentations,
offline datasets & benchmark tasks, as well as our rationale for the selection. In
addition, we examine our evaluation methodology as well as our software/hardware
setup.

• In Chapter 4 we discuss what experiments we conduct and how we conduct them.
This includes a detailed description of the hyperparameters and adjustments we
make to the learning algorithms.

• In Chapter 5 we present the results we obtained. This includes a detailed empirical
analysis and a discussion of the insights we gained from our experiments.

• Finally, in Chapter 6 we conclude this thesis.
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CHAPTER 2
Background

In this section, we discuss the theoretical background of the relevant topics for this
thesis. This section will serve as a theoretical basis for the practical part of this thesis.
First, the general reinforcement learning framework and its inherent challenges are
introduced. Then offline RL, the main topic of this thesis, and its advantages as well as
disadvantages that come with it, are reviewed. Finally, we discuss two approaches to
address the limitations of current offline RL methods: self-supervised learning and data
augmentation. Each approach is examined individually, first the general background
is explained, then we discuss how self-supervised learning and data augmentation are
applied in the RL context.

2.1 Online RL: learning by interaction

2.1.1 Overview
The reinforcement learning paradigm is based on learning by interaction, or learning
by trial-and-error, with an environment. Conceptually, RL is concerned with decision-
making, learning what to do in a particular situation to achieve a good outcome (i.e., to
receive the maximal reward) [Sutton and Barto, 2018, p. 2].
Figure 2.1 illustrates the RL framework and the key concepts graphically: an agent (e.g.,
a robot), interacts with an environment. The robot finds itself in a particular state st

within the environment and selects an action at. Then it transitions to a new state st+1
and receives a reward rt. Therefore, each interaction step can be summarized as an
experience tuple (st, at, st+1, rt) (that can optionally be stored to an experience replay
buffer, D), consisting of current state, current action, next state and reward obtained.
The reward can be positive or negative, high, or low depending on how beneficial it was
for the agent to perform that particular action at in the particular state st. The action is
selected according to the learned policy fi that maps states to probabilities of selecting
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2. Background

each possible action, at ≥ fi(at | st). The goal the agent pursues is to maximize its total
reward obtained. To achieve this, it has to learn how to select good actions in the states
it finds itself in, i.e., it has to adjust its policy fi. This interaction loop simply continues
until the agent learns the desired behaviour and is able to solve the target task or runs
out of compute budget. Therefore, we can say that the policy is learned in an online
fashion, giving rise to the term online RL. In practice, learning to solve a particular task
may require a large number of trials, one of the major limitations of online RL algorithms
[Dulac-Arnold et al., 2021]. This will be discussed in more detail in Section 2.1.3.

Figure 2.1: The online RL framework. Inspired by Levine et al. [2020].

This simple yet powerful framework has repeatedly proven to deliver remarkable results, in
particular for simulation-based environments (e.g., games). Some of the most prominent
achievements with RL at the centre are beating the human world champions in board
games (such as go, chess & shogi) [Silver et al., 2016, 2017, 2018; Schrittwieser et al., 2020]
and real-time combat arena video games like Dota and StarCraft II [Berner et al., 2019;
Vinyals et al., 2019]. However, applications of RL are not only limited to games. RL has
already been applied successfully to a variety of other applications, from optimizing data
centre energy consumption, to safely navigating balloons high up in the stratosphere, to
designing more efficient chip layouts as well as neural architectures [Lazic et al., 2018;
Bellemare et al., 2020; Mirhoseini et al., 2020; Zoph and Le, 2017; Pham et al., 2018].

Reinforcement learning is a subfield of machine learning. In ML, one historically differen-
tiates between supervised and unsupervised learning. The former is based on learning by
examples that are annotated by a knowledgeable (human) supervisor (e.g., image-label
pairs) [Sutton and Barto, 2018, p. 2]. Therefore, this paradigm provides a clear indication
of "correctness" of the predictions made by the learning algorithm via labels. The latter
paradigm, on the other hand, involves no supervision (i.e., no labels) throughout the
learning process. Rather, the learning occurs by means of observation or discovery of
hidden structures within the unlabelled data points [Sutton and Barto, 2018, p. 2]. The
RL paradigm, however, is different from both supervised and unsupervised learning.
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2.1. Online RL: learning by interaction

While in unsupervised learning, supervision is not involved at all, RL aims to maximize
the feedback reward signal obtained. While in supervised learning the labels give a clear
indication of right or wrong, the reward signal in RL only indicates whether a behaviour
in a particular situation is good or bad. [Sutton and Barto, 2018, p. 2]

2.1.2 Formal background
Mathematically, RL is formalized as a Markov decision process (MDP), the standard
framework for sequential decision-making problems [Sutton and Barto, 2018, p. 47]. The
MDP is defined as the tuple M = (S, A, T, r, “) with:

• the state space S, the set of all possible states s œ S
• the action space A, the set of all possible actions a œ A
• the conditional transition probability function T (st+1 | st, at)
• the reward function r(st, at) for state-action-pairs st and at

• the discount factor “

Both S and A can be discrete or continuous. Often, the initial state distribution d0(s0)
is also included in the MDP definition, M = (S, A, T, r, “, d0) . In some cases, the state
space is only partially observable, giving rise to the notion of the Partially Observable
Markov decision process (POMDP) [Sutton and Barto, 2018, p. 466]. Chess and Poker
are examples for an MDP and a POMDP, respectively. In general, the RL agent pursues
the goal of maximizing its total reward obtained. The total reward obtained, or sum of
all rewards, over a finite or infinite horizon H, is referred to as the return Gt:

Gt = rt + “rt+1 + “2rt+2 + ... + “Hrt+H =
Hÿ

k=t

“k≠tr(sk, ak) = rt + “Gt+1 (2.1)

In fact, Equation 2.1 shows the discounted return. The discount factor “ ensures that
immediate rewards are perceived as better than rewards received in the future [Sutton and
Barto, 2018, p. 55]. The rewards are obtained from the reward function, i.e., rt = r(st, at).
A sequence of states and actions is called a trajectory, · = (s0, a0, ..., sH , aH) and the
trajectory distribution is:

pfi(·) = d0(s0)
HŸ

t=0
fi(at | st)T (st+1 | st, at) (2.2)

The overall RL objective is thus given by (with t = 0):

J(fi) = E·≥pfi(·)

C
Hÿ

k=t

“k≠tr(sk, ak)
D

(2.3)

To achieve its goal, the agent has to learn a good policy fi. As mentioned in Section 2.1.1,
the policy fi maps states to probabilities of selecting each possible action, at ≥ fi(at | st)
[Sutton and Barto, 2018, p. 58]. It can either be learned directly via policy gradients
or indirectly via value functions. This is one of the most important distinctions in RL.
Algorithms that directly learn the policy are known as policy optimization methods.
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2. Background

Algorithms that learn the desired behaviour based on value functions are referred to
as value-based methods (with Q-learning [Watkins and Dayan, 1992] being the most
prominent one). The combination of both approaches is known as actor-critic methods.

Value-based methods. The value of a state or state-action pair determines how good
that state or performing a specific action in that state is in the long term [Sutton
and Barto, 2018, p. 58]. In contrast, the reward indicates what is beneficial in an
immediate sense. The concept of value functions is formalized by the Bellman equations
for state-values and state-action-values, Vfi(st) and Qfi(st, at), respectively. The state-
value function determines the value of a state st, when starting in st and following fi:

Vfi(st) = Efi[Gt | st]
= Efi[rt + “Gt+1 | st]
=

ÿ
aœA

fi(a | st)
ÿ
sÕœS

T (sÕ | st, a)[r(st, a) + “Efi[Gt+1 | sÕ]]

=
ÿ
aœA

fi(a | st)
ÿ
sÕœS

T (sÕ | st, a)[r(st, a) + “Vfi(sÕ)]

= Eat≥fi(at|st),st+1≥T (st+1|st,at)[rt + “Vfi(st+1)]

(2.4)

Likewise, the state-action-value function determines how good it is to perform a specific
action at in a specific state st if starting in st and following fi:

Qfi(st, at) = Efi[Gt | st, at]
= Efi[rt + “Gt+1 | st, at]
=

ÿ
sÕœS

T (sÕ | st, at)[r(st, at) + “Vfi(sÕ)]

= Est+1≥T (st+1|st,at)[rt + “Vfi(st+1)]

(2.5)

Consequently, the state-value function from Equation 2.4 can be expressed in terms of
the state-action value function as:

Vfi(st) = Eat≥fi(at|st)[Qfi(st, at)] (2.6)

Similarly, the state-action-value function from Equation 2.5 can be expressed as:

Qfi(st, at) = Est+1≥T (st+1|st,at),at+1≥fi(at+1|st+1)[rt + “Qfi(st+1, at+1)] (2.7)

The state and state-action-value function are learned through iterative updates of a value
table or function approximator. The most prominent method is known as Q-learning
[Watkins and Dayan, 1992] and employs the following update rule:

Q(st, at) Ω Q(st, at) + –[rt + “ max
a

Q(st+1, a) ≠ Q(st, at)] (2.8)

Where the learning rate – is a hyperparameter that regulates the magnitude of the
update step. The term in brackets in Equation 2.8 is known as the Bellman error,
E = rt + “ maxa Q(st+1, a) ≠ Q(st, at) [Sutton and Barto, 2018, p. 268]. We drop the
reference to fi as the current Q-estimates are recorded in the value table. The value of
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2.1. Online RL: learning by interaction

the state-action value function determines how good it is to perform a certain action in
a particular state. Therefore, it can be used to select the best action to perform, e.g.,
by taking the action with the highest Q-value, maxa Q(st, a). Consequently, learning
the Q-function is an indirect way of learning the policy. Well-known and established
examples of value-based methods are DQN (+ its variants) [Mnih et al., 2015; Van Hasselt
et al., 2016; Wang et al., 2016; Hessel et al., 2018], Hindsight Experience Replay (HER)
[Andrychowicz et al., 2017] and R2D2 [Kapturowski et al., 2018].

Policy optimization methods. The policy can also be learned directly via the policy
gradient without employing a value function [Sutton and Barto, 2018, p. 321]. In this
scenario, we assume a parametrized policy fi◊(at | st) with ◊, the parameters of the
selected function approximator (e.g., a neural network). Policy gradient methods then
perform Stochastic Gradient Descent (SGD) on a performance measure J(◊) to update
the parameters:

◊t+1 = ◊t + –ÒJ(◊) (2.9)

According to the policy gradient theorem [Sutton et al., 1999], the policy gradient ÒJ(◊)
is given by:

ÒJ(◊) = Efi

5Òfi◊(at | st)
fi◊(at | st)

Gt

6
= Efi[Ò log fi◊(at | st) Gt]

(2.10)

Equation 2.10 shows the policy gradient used in the classic REINFORCE algorithm
[Williams, 1992]. Prominent examples of policy gradient methods are Trust Region Policy
Optimization (TRPO) [Schulman et al., 2015] and Proximal Policy Optimization (PPO)
[Schulman et al., 2017].

Actor-critic methods. Another fundamental category of algorithms is known as actor-
critic methods, the combination of policy optimization and value-based methods [Sutton
and Barto, 2018, p. 331]. In Equation 2.10 Gt represents the return. To improve the
algorithm, by decreasing the variance of the policy gradient, we can additionally subtract
a baseline term b(st) [Sutton and Barto, 2018, p. 330]:

ÒJ(◊) = Efi[Ò log fi◊(at | st)(Gt ≠ b(st))] (2.11)

The baseline can be an estimation of the state-value function, V̂ (st) (e.g., a neural
network) and learned via SGD. Actor-critic methods learn both the policy and a value
function. The parametrized policy fi◊ represents the actor, while the additional learned
value function V̂ acts as the critic, hence the name. Prominent examples of actor-critic
methods are A3C/A2C [Mnih et al., 2016; Wang et al., 2017], Deep Deterministic Policy
Gradient (DDPG) [Lillicrap et al., 2016], SAC [Haarnoja et al., 2018] and Importance
Weighted Actor-Learner Architecture (IMPALA) [Espeholt et al., 2018].

On-policy vs. off-policy. A major distinction between different RL algorithms is
whether they learn on-policy or off-policy. In principle, RL algorithms aim to learn the
optimal behaviour in a given environment. To learn the optimal behaviour, however,
they have to explore the state/action space. But to explore the state/action space, they
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have to behave non-optimally. This dilemma is known as exploration versus exploitation
[Sutton and Barto, 2018, p. 103]. Now, on-policy methods, on the one hand, learn from
experience generated using the same policy that is being optimized. Therefore, in on-
policy algorithms, the policy is near-optimal to allow for exploration. Off-policy methods,
on the other hand, use two policies: a target policy (the one being learned) and a behaviour
policy (the one to generate experience) [Sutton and Barto, 2018, p. 103]. The separation
of experience generation and learning in off-policy methods has an important implication:
experience can be reused. Therefore, Figure 2.1 depicts an (optional) experience replay
buffer/memory D that stores experience tuples (st, at, st+1, rt). The replay buffer was
one of the major innovations of DQN [Mnih et al., 2015]. However, there are limitations
to how different the data-generating policy and the target policy can be. This will be
further discussed in Section 2.2. In practice, the behaviour policy is often a copy of the
target policy and periodically synced. In this work, we denote it as fi—. REINFORCE
and Q-learning are classic examples for on-policy and off-policy methods, respectively.
Model-free vs. model-based. Another fundamental distinction of RL algorithms is
whether they learn a model of the environment or not [Sutton and Barto, 2018, p. 159].
Like the policy or value functions, the dynamics T (st+1 | st, at) and/or the reward
function r(st, at) of the environment can be learned. The learned representations of
environment dynamics and reward function are referred to as the model. Algorithms
that learn such a model are model-based, while the ones that do not learn a model are
model-free. Value-based methods, policy optimization and actor-critic methods are in
general model-free. Learning a model can be useful, as it allows the agent to simulate
experience and learn the value function or policy without having to interact with the
actual environment. This is important as environment interaction can be costly in terms
of time or resources. Prominent examples of model-based methods are Dyna [Sutton,
1991], Monte Carlo Tree Search [Coulom, 2006], AlphaGo (+ its variants) [Silver et al.,
2016, 2017, 2018; Schrittwieser et al., 2020] and Dreamer [Hafner et al., 2019, 2021]
Deep reinforcement learning. In the classic RL setup the policy, value functions
and the model are represented by tables, but due to memory constraints this becomes
infeasible as the state and/or action space grows. Therefore, they have to be approximated.
Most modern RL algorithms use deep neural networks as their function approximators,
giving rise to the term Deep reinforcement learning (DRL) [Sutton and Barto, 2018,
p. 475]. For example, in the parametrized policy fi◊, ◊ refers to the neural network
weights learned by SGD. Similarly, the value functions and model components can be
parametrized by neural networks and learned via gradient descent, e.g., V◊(st), Q◊(st, at),
T◊(st | st, at) and r◊(st, at). For instance, the original formulation of DQN modifies
the classic Q-learning update rule in Equation 2.8 to obtain the following optimization
objective:

J(◊) = E(s,a,sÕ,r)≥D[(r + “ max
aÕ Q◊≠(sÕ, aÕ) ≠ Q◊(s, a)¸ ˚˙ ˝

Bellman error E(◊)

)2] (2.12)

where states, next states, actions, and rewards are sampled from the replay buffer D.
s, a, sÕ and aÕ refer to state, action, next state and next action, respectively (using
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primes instead of subscripts often simplifies the notation). Furthermore, ◊≠ denotes the
parameters of the target Q-network, a copy of the parameters of the current Q-network
and periodically synced [Mnih et al., 2015]. The parameters ◊ are optimized via SGD.

Online RL taxonomy. To summarize, Figure 2.2 gives a graphical overview of the
different categories of online RL algorithms.

Figure 2.2: The online RL taxonomy [Achiam, 2018].

2.1.3 Challenges & limitations of online RL
Although the RL framework has enjoyed great success, it has a variety of notable
limitations that constrain its applicability in real world applications. Dulac-Arnold
et al. [2021] identified a set of nine fundamental challenges that need to be overcome to
enable RL applications in the real world, among them are (1) learning offline from fixed,
previously collected experience originating from an external behaviour policy and (2)
learning from a limited amount of samples (i.e., in a data-efficient way) [Dulac-Arnold
et al., 2021; Dulac-Arnold et al., 2020]. We briefly addressed both challenges in Section
1.1 to motivate the topic of this work. In this section, we continue the discussion.

Online learning is arguably one of the core characteristics that make the RL framework
so appealing to many RL practitioners. After all, the agent-in-an-environment setup
resembles the human perspective, how we all experience our everyday lives. By many,
intelligence is considered as "an agent’s ability to achieve goals in a wide range of
environments" [Legg and Hutter, 2007]. This definition is well suited for RL. Silver et al.
[2021] even argue that every conceivable task can be formulated as an RL objective, thus
postulating RL as a viable path towards artificial general intelligence (AGI). So, why
would learning online be a problem for machines but not for humans? Typically, RL
agents have to solve a very specific task. Examples of real-world RL tasks are to steer
a car/truck/drone, to recommend products to a user, or to control a robotic arm in a
warehouse (many other examples are provided in Dulac-Arnold et al. [2020]). For humans,
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each task is embedded in a lifetime of experience (a lifetime of tasks) and as a consequence
a rich, implicit understanding of the environment (as studied by Dubey et al. [2018] in
the context of Atari). Thus, humans can quickly adapt to solve a variety of difficult
and diverse problems. In contrast, RL agents essentially learn to solve each individual
tasks from scratch by trial-and-error, without an analogous, implicit understanding of
how the world works. Therefore, they initially act randomly and might require a long
time to accomplish their task (or run out of compute budget), as we show in Chapter
5. However, many applications in the real-world, including the ones listed above, are
subject to resource, safety, time, and/or other constraints. Online learning may even be
dangerous. For example, an RL agent steering an autonomous vehicle, cannot just learn
to avoid car accidents by actually causing them. Similarly, the monetary loss caused by
an RL agent that recommends random products would not be tolerated for long or at all.
An RL agent controlling a robotic arm operating in a warehouse must not hurt its human
co-workers, and cannot learn this restriction by actually hurting them. Furthermore, it
might simply be overly cost or time-intensive to operate the RL agent, making online
learning in the real world less effective. This suggests that in the long term, online RL
alone might not in every case be the optimal approach to enable decision-making agents
in the real world.

One interesting stream of research to address this problem, known as Sim-to-Real, is
to learn the decision-policy in simulation and then transfer it to the real-world [Tan
et al., 2018; Peng et al., 2018; Chebotar et al., 2019]. The advantage of simulations is
that they allow for errors and cheap environment interaction. However, it is typically
costly to build a simulator. Also, if the task changes and the underlying simulation is
not sufficiently general to account for the differences, a new simulation might have to
be built. Furthermore, even though modern simulations are very realistic, a reality gap
might still be present in the simulator, which the RL agent could happily exploit [Jakobi
et al., 1995; Peng et al., 2018]. Hence, the agent’s ability to act in the real world is
effectively restricted by the quality of the simulation.

A more scalable alternative to deal with this limitation is to decouple environment
interaction and learning procedure to leverage large, diverse, and previously collected
datasets [Levine et al., 2020]. This is the fundamental idea of offline RL, the main topic
of this thesis. Offline RL and its advantages/disadvantages will be discussed in Section
2.2. Even though online RL has its weaknesses, it is a very powerful framework with
many attractive characteristics. Therefore, a combination of offline pre-training and
online fine-tuning may draw from the best of both worlds, as we show in Chapter 5.

Another major limitation of RL algorithms is their data-inefficiency. Even though RL has
achieved impressive results on board games, real-time video games, and dexterous robotic
manipulation of objects, the underlying algorithms sometimes require hundreds (and
even thousands) of years’ worth of real-time experience [Vinyals et al., 2019; Berner et al.,
2019; Akkaya et al., 2019]. This is intractable in the real-world due to the aforementioned
resource and time constraints. In fact, for most real world-applications it is only feasible
to obtain a tiny amount of experience through online interaction, even though it is often
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possible to collect large amounts of samples over time, e.g., from human demonstrations
or system logs. Therefore, it remains to be understood how to learn more efficiently from
fewer samples and environment interaction steps. Humans (and arguably other animals)
are, after all, able to learn complex skills from only a relatively small number of samples
[Lu et al., 2020]. A potential reason for this is that they acquire a rich understanding of
how the world they live in works over their lifetimes. Therefore, one approach towards
more data-efficient RL algorithms is to learn richer and more meaningful representations
of the environment, i.e., world knowledge. Two promising approaches to achieve this are
self-supervised learning and data augmentation [Jaderberg et al., 2017; Laskin et al.,
2020b; Schwarzer et al., 2021a; Yarats et al., 2021b; Laskin et al., 2020a]. We discuss
the general background and existing architectures in the RL context of self-supervised
learning and data augmentation in Sections 2.3 and 2.4, respectively.

2.2 Offline RL: learning from data
2.2.1 Overview
Offline RL, or batch RL as it is also called in the literature, has been studied for many
years. Yet, only recently, offline RL has started to receive wide-spread attention within the
reinforcement learning community. A detailed discussion of the field is provided by Levine
et al. [2020]. The fundamental difference to online RL is that in offline RL environment
interaction and learning procedure are decoupled. The policy is learned entirely from
previously collected experience, without any interaction with the environment [Levine
et al., 2020]. Similar to Figure 2.1 in Section 2.1, Figure 2.3 illustrates the offline RL
framework and the difference to online RL graphically. As before, the target policy,
behaviour policy, state, action, next state, reward, and experience buffer (or dataset)
are represented by fi, fi— , st, at, st+1, rt and D, respectively. Essentially, offline RL can be
separated into three individual phases: (1) generating the offline dataset, (2) learning the
policy from the offline dataset and (3) deploying the trained agent to the environment.

Figure 2.3: The offline RL framework. Inspired by Levine et al. [2020].
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The offline dataset can be generated using any kind of behaviour generating policy fi— , or
even a mixture of multiple different policies, that is/are typically unknown. For example,
the observed experience tuples could originate from expert demonstrations (e.g., by
humans), other (suboptimal) online RL agents, or simply random interactions with the
environment. Notably, offline RL has similarities with off-policy learning. In fact, in
off-policy RL, the behaviour policy fi— can also be any policy other than the current
target policy [Levine et al., 2020]. However, off-policy learning usually also involves
online interaction with the environment, while in offline RL the policy is learned entirely
offline. In principle, any off-policy algorithm could be used to learn a policy from the
static dataset, but this approach has its limitations. Also, the dataset has to be obtained
somehow in the first place. We discuss these shortcomings in Section 2.2.5. Once trained,
however, the agent can be deployed to the environment. Then the agent already has a
certain understanding of what it is supposed to do and does not act entirely at random, as
would be the case with online RL. Hence, it does not violate the constraints we discussed
in Section 2.1.3. The RL agent can even continue learning online to improve upon the
behaviour it acquired offline. This can be a very desirable approach, as we show in
Chapter 5.

Offline RL improves over the limitations of online RL we discussed in Section 2.1.3, and
thus is attractive for a variety of applications in the real world. The framework has
already been applied to learning robotic manipulation policies in a safe and efficient
way [Kalashnikov et al., 2018, 2021], goal-oriented dialogue [Jaques et al., 2020], and
recommending treatment policies in healthcare [Nie et al., 2020]. A more detailed overview
of existing offline RL applications and offline RL in general is given by Levine et al. [2020].
The possibilities for further real-world use-cases of offline RL are enormous, and due to
the recency of the field only a few areas have been explored yet.

In addition, the offline RL framework offers a number of practical advantages over
online RL from a software engineering point of view, as the static dataset is now simply
readily available. Setting up an efficient environment interaction loop can be a major
challenge in online RL. In practice, RL algorithms strongly benefit from distributed
model training over many machines, as a large number of environments can be simulated
this way [Espeholt et al., 2018; Liang et al., 2018; Hoffman et al., 2020]. However, such a
demanding setup is largely out of reach for most researchers in academia and industry.
In contrast, in offline RL, the dataset is readily available. Therefore, best practices from
supervised ML training can be applied more easily. As a result, offline RL poses lower
entry barriers in terms of compute or setup complexity.

Overall, offline RL has the potential to transform machines into powerful decision-making
agents in the real world [Levine et al., 2020]. Ultimately, the current success of ML
in a variety of practical domains can be largely attributed to their ability to leverage
large and diverse datasets. In comparison, RL has mainly been successful in simulation-
based environments. Of course, beating the best players in the world’s hardest strategy
games is an amazing achievement. Nevertheless, accomplishments of similar scale for
practical problems in the real world have not materialized until now. Therefore, a general
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data-driven approach for RL might enjoy similar success in the near future as ML has.

2.2.2 Formal background
In offline RL, we again assume the standard MDP formulation with M = (S, A, T, r, “),
but now no environment interaction is involved. Instead, the agent is provided with the
dataset (replay buffer) D consisting of experience tuples, D = {(s, a, sÕ, r)i} (with primes
instead of subscripts). The actions were selected according to one or multiple behaviour
policies used during experience generation, collectively denoted by fi— . The RL objective
does not change: maximize the reward obtained in the long run by learning policy fi.
However, now the observations are not emitted by the environment, but directly sampled
from the static dataset. Notably, this setup is very similar to the conventional supervised
learning setup, where D would be referred to as the training set [Levine et al., 2020]. But
in supervised ML, the dataset D would consist of a set of features X = {x1, x2, ..., xk}
and the corresponding labels y: D = {(X, y)i} (e.g., image-label pairs).

So, why is it problematic to use online RL algorithms with offline datasets? The
fundamental challenge is known as distributional shift: the policy/value function is trained
under one distribution, but is evaluated under a different distribution. Distributional
shift can occur at test and training time. At test time, state distribution shift can occur,
as the dataset might have different state visitation frequencies than are observed during
environment interaction. In particular, in out-of-distribution states, erroneous actions
might be produced. At training time, action distribution shift can occur, as the target
values in Equation 2.7 require evaluating the next action at+1. The selected action
might lie out-of-distribution of actions that the Q-function was trained on, and thus
the estimated Q-values might be erroneous. This is particularly problematic, as fi is
optimized to maximize the Q-values [Levine et al., 2020].
To address this problem, three broad strategies have been proposed: policy constraints,
uncertainty estimation and conservative value functions [Levine et al., 2020]. Policy
constraint methods, such as BCQ [Fujimoto et al., 2019] and AWAC [Nair et al., 2020]
constrain the deviation of the target policy fi◊ from the behaviour policy fi— represented
in the dataset. Uncertainty based methods, on the other hand, directly estimate their
uncertainty about state-action pairs and utilize their estimation to mitigate distributional
shift. Conservative methods regularize the value function directly to avoid overestimation
of out-of-distribution actions. Furthermore, model-based RL, as discussed in Section
2.1.2, can be adjusted for the offline scenario and used to address distributional shift
[Levine et al., 2020]. In this section, we will briefly introduce the different types of offline
RL methods and cover the algorithms used in our experiments. For a more in-depth
analysis of the individual categories, we refer to Levine et al. [2020].

Policy constraints. Policy constraint methods limit how much the target policy can
deviate from the behaviour policy. The constraints can be formulated as: (1) direct
policy constraints or (2) via a policy penalty [Levine et al., 2020].

Policy penalty methods incorporate the constraint into actor-critic methods by subtracting
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a penalty term D(fi(a | s) || fi—(a | s)) from the obtained reward or subtracting it directly
from the target Q-values as well as actor objective. For example, the resulting reward
function is then given by r̄(s, a) = r(s, a) ≠ –D(fi(a | s) || fi—(a | s)). Where – is a
hyperparameter and the Kullback-Leibler divergence (KL-divergence) is typically used for
D, with DKL(fi, fi—) = Efi[log fi(a | s) ≠ log fi—(a | s)][Levine et al., 2020]. However, fi— is
typically unknown and has to be approximated from samples in the dataset. Examples
of policy penalty algorithms are behaviour regularized actor critic (BRAC) [Wu et al.,
2019] and way off-policy learning (WOP) [Jaques et al., 2020].

Direct policy constraints, on the other hand, can be enforced either as (a) explicit f-
divergence constraints, (b) implicit f-divergence constraints, or as (c) integral probability
metric (IPM) constraints [Levine et al., 2020]. The KL-divergence is an f-divergence and
can be enforced explicitly or implicitly. Examples for implicit f-divergence constraints are
AWR [Peng et al., 2019] and AWAC [Nair et al., 2020]. IPM constraints instead can be
enforced by the maximum mean discrepancy (MMD) or the Wasserstein distance. One
example for this class of methods is BEAR [Kumar et al., 2019].

Uncertainty estimation. In contrast, uncertainty estimation methods estimate their
uncertainty of a state-action pair. The uncertainty estimation indicates when an action
is out-of-distribution and can be considered during updating the value function or
policy, i.e., by subtracting the uncertainty [Levine et al., 2020]. These methods require
learning an uncertainty set/distribution over possible action-value functions, PD(Qfi) and
a function to determine the uncertainty, Unc(PD(Qfi)). To represent PD(Qfi) confidence
bounds, bootstrap ensembles, or parametric distributions such as a Gaussian can be
used. Depending on the representation, the uncertainty function Unc can be expressed
differently, e.g., by taking the variance across the ensemble predictions [Levine et al.,
2020]. An example of an uncertainty estimation method is REM [Agarwal et al., 2020].

Conservative value functions. Conservative methods regularize the value function
directly to avoid overestimation of out-of-distribution actions [Levine et al., 2020]. A
prominent example of this category is CQL [Kumar et al., 2020]. We describe CQL in
more detail in Section 2.2.3, as we use the algorithm in our subsequent experiments.

Model-based learning. Finally, model-based methods, previously described in Section
2.1.2, can be an effective technique for offline RL. However, the learned model representa-
tion T◊(sÕ | s, a) also suffers from distributional shift [Levine et al., 2020]. To address the
distributional shift recent methods, MoREL [Kidambi et al., 2020] and MOPO [Yu et al.,
2020], employ uncertainty estimation to introduce pessimism into the learned model.
The idea is to train an ensemble of models to estimate their collective uncertainty about
transitions by taking the disagreement of the individual models in the ensemble into
account. When the ensemble is uncertain, the model is likely to be incorrect and the
policy should be prevented from learning from actions that cause incorrectness of the
model. Another more recent model-based offline RL method, Combo, instead relies on
conservative value function regularization [Yu et al., 2021].

To summarize, Table 2.1 gives an overview of the categories of offline RL algorithms.
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Authors Model Environment Category
[Wu et al., 2019] BRAC Gym-MuJoCo Policy contraint (direct)
[Jaques et al., 2020] WOP Open-domain dialogue Policy contraint (direct)
[Peng et al., 2019] AWR Gym-MuJoCo Policy contraint (penalty)
[Nair et al., 2020] AWAC Adroit, Gym-MuJoCo Policy contraint (penalty)
[Kumar et al., 2019] BEAR Gym-MuJoCo Policy contraint (penalty)
[Fujimoto et al., 2019] BCQ Gym-MuJoCo Policy contraint (penalty)
[Agarwal et al., 2020] REM Atari, Gym-MuJoCo Uncertainty estimation
[Wang et al., 2020] CRR DMControl Policy constraint
[Kumar et al., 2020] CQL Adroit, Atari, Franka Kitchen,

Gym-MuJoCo
Conservative value functions

[Kidambi et al., 2020] MoREL Gym-MuJoCo Model-based
[Yu et al., 2020] MOPO Gym-MuJoCo Model-based
[Yu et al., 2021] Combo Gym-MuJoCo, DMControl,

Sawyer door opening
Model-based

[Chen et al., 2021]ú DT Gym-MuJoCo, Atari -
[Janner et al., 2021] ú TT Gym-MuJoCo -
[Kostrikov et al., 2021]ú IQL Gym-MuJoCo -

Table 2.1: Offline RL architectures. Methods with ú were published during writing.

2.2.3 Conservative Q-learning (CQL)
CQL is a state-of-the-art algorithm for offline RL [Kumar et al., 2020]. In principle, CQL
modifies the Bellman error in Equation 2.12 by adding a penalty term:

Ẽ(◊) = –C(◊) + E(◊) (2.13)
where – represents a hyperparameter and C the penalty term. The assumption is that
the Bellman error will be high for out-of-distribution actions and therefore the penalty
term should decrease the impact such "false" high errors have on the gradient update,
i.e., push down overly high Q-values [Levine et al., 2020]. Kumar et al. [2020] choose the
penalty term to be:

C(◊) = Es≥D,a≥µ(a|s)[Q◊(s, a)] ≠ E(s,a)≥D[Q◊(s, a)] (2.14)
The first term in Equation 2.14 minimizes the Q-values of all state-action pairs with
actions coming from some distribution µ(a | s). The second term maximizes the Q-values
of all state-action tuples in the dataset D. The distribution µ(a | s) can be chosen
adversarially, e.g., to maximize the regularized penalty term C(◊) [Levine et al., 2020]:

µ = arg max
µ

Es≥D[Ea≥µ(a|s)[Q◊(s, a) + H(µ(· | s))]] (2.15)

where H is the entropy and is used as regularization term. This term pushes down overly
high q-values. Kumar et al. [2020] show that µ(a | s) Ã exp(Q(s, a)) and thus Equation
2.14 becomes: C(◊) = Es≥D[log

ÿ
a

exp Q◊(s, a)] ≠ E(s,a)≥D[Q◊(s, a)] (2.16)

The conservative penalty term C(◊) can easily be integrated into regular online RL
algorithms. Kumar et al. [2020] build their implementations of CQL on top of SAC and
QR-DQN [Dabney et al., 2018] for continuous and discrete control tasks, respectively.

19



2. Background

2.2.4 Online fine-tuning for offline RL
Another interesting research direction for offline RL are algorithms that combine offline
pre-training with online fine-tuning. In NLP it is common practice to first pre-train
language models on large corpora of text and consequently fine-tune them for individual
downstream tasks [Devlin et al., 2019]. However, naively fine-tuning offline RL algorithms
such as BRAC [Wu et al., 2019], BEAR [Kumar et al., 2019] or AWR [Peng et al.,
2019] does not work satisfactorily [Nair et al., 2020], as the performance drops heavily
once the agent transitions to online training. Therefore, Nair et al. [2020] proposed
an algorithm called AWAC (implicit policy constraint, mentioned in Section 2.2) that
adopts the pre-training, fine-tuning approach and delivers good performance under both
circumstances. Recently, Lu et al. [2021] conducted a large-scale study on learning robotic
skill with offline pre-training and online fine-tuning.

Both online RL and offline RL have their advantages and disadvantages. As we demon-
strate in Chapter 5, offline RL is typically characterized by fast initial learning progress
but low potential for long term improvement. This means that the learning curves of
offline RL agents flatten out once the dataset has been leveraged to extent. Online RL,
on the other hand, is characterized by slow initial learning, as the agents first has to
discover high-reward behaviour by randomly interacting with the environment. However,
it has, in contrast to offline RL, high potential for long term improvement, due to its
freedom to explore the environment and to selectively seek useful information. Therefore,
algorithms that unite both paradigms may be able to draw from the best of both worlds.

2.2.5 Challenges & limitations of offline RL
One apparent limitation of offline RL is that the dataset actually has to be obtained
somehow in the first place. But how problematic is this in practice? As was discussed
in Section 2.1.3 online learning can be impractical due to a variety of constraints, such
as time, cost, or safety constraints. This is especially true, as each time an agent is
trained, the online data collection has to be started anew. In contrast, in offline RL data
collection and learning is decoupled. Thus, the data has to be collected only once and
afterwards it can be used many times to learn policies offline. This, again, resembles
the supervised learning paradigm, where datasets, such as ImageNet [Deng et al., 2009],
LibriSpeech [Panayotov et al., 2015] or Penn Treebank [Marcus et al., 1993], also had to
be collected in the first place. But once collected, they can then be used many times by
hundreds of research labs around the globe to train algorithms that power AI applications
in the real world. This speaks to the necessity of publicly available datasets for RL that
can be used by the entire research community. For this purpose, two benchmarks were
proposed only recently that provide offline datasets for a variety of tasks: D4RL [Fu
et al., 2020] and RL Unplugged [Gülçehre et al., 2020]. We also use these benchmarks in
this work, as will be described in Chapter 3. Currently, they only provide datasets for
simulation-based environments (such as Atari games), but it can be expected that similar
datasets for real-world tasks are going to be released soon (one real-world benchmark has
recently been introduced by Lee et al. [2021]). In many domains, it is conceivably easier
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to collect data once, than to set up online environment interaction. For applications of
offline RL in recommender systems, data can be collected by logging user behaviour and
hence is relatively inexpensive. Similarly, for goal-oriented dialogue applications, user
interaction with human operators or automated systems can be collected. In robotics
and autonomous systems, it is possible to observe and store interactions of hundreds of
devices that operate simultaneously. Likewise, for autonomous vehicles data collection is
relatively easy compared to learning online. Hence, for many application areas, datasets
might already exist, or it should be possible to construct them.
The main advantage of the offline RL framework, namely learning from previously
collected datasets, can also be a major limitation. Exploration of the environment is a
critical component of online RL and one of the core ingredients that make it work [Sutton
and Barto, 2018, p. 3]. Exploring the environment means to visit parts of the state or
action space that the agent has not seen before. Exploring the environment often stands
in contrast with exploiting what the agent already knows about it (from prior experience)
to obtain high reward. This dilemma is known as the trade-off between exploration and
exploitation [Sutton and Barto, 2018, p. 3]. However, in offline RL the dataset is static
and thus exploration is not possible. Therefore, it might often be desirable to let the RL
agent continue to learn online to improve upon the behaviour it acquired during offline
training. This combination of offline pre-training and online fine-tuning effectively unites
the best of both worlds. The results of our experiments in Chapter 5 suggest that such
hybrid algorithms are a promising path for future RL research.
In offline RL, the dataset is finite and may be relatively small, compared to the amount of
experience that online RL agents require. In addition, data-inefficiency is a big concern in
RL, as discussed in Section 2.1.3. To address these limitations, the available observations
in the offline dataset have to be used as effectively as possible. Two promising approaches
to achieve this are self-supervised learning and data augmentation. They are used to learn
richer and more meaningful representations of the environment. In addition, they enable
the agent to experience a more diverse environment. This is important as the offline
dataset is static and might only contain a limited amount of samples. Therefore, more
diversity can be a critical resource. In this work, we aim to apply self-supervised methods
and data augmentation to offline RL in order to leverage the available observations in the
dataset as effectively as possible. We discuss the theoretical background of self-supervised
learning and data augmentation in the next two chapters.

2.3 Self-supervised Learning
2.3.1 Overview
In recent years, self-supervised learning (SSL) has played a key role in some of the most
impressive achievements throughout the field of Deep learning (DL) [Chen et al., 2020a;
Devlin et al., 2019; Baevski et al., 2020]. In NLP self-supervised learning is successfully
used to train large language models such as BERT [Devlin et al., 2019] (+ its variants
[Liu et al., 2019; He et al., 2021]) or GPT-3 [Brown et al., 2020]. Similarly, self-supervised
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learning is the driving force behind recent advances in computer vision and speech
recognition as demonstrated by systems such as SimCLR [Chen et al., 2020a,b], BYOL
[Grill et al., 2020] and wav2vec 2.0 [Baevski et al., 2020].

(a) SSL in NLP.

(b) SSL in Computer Vision.

Figure 2.4: An illustration of self-supervised learning tasks.

Self-supervised learning is similar to both supervised and unsupervised learning, but
yet decisively different. While supervised learning relies on the availability of labels
within the dataset, unsupervised learning does not use any labels, but rather aims to find
hidden structures within the unlabelled data points (as discussed in Section 2.1.1). Like
in unsupervised learning, self-supervised learning does not take advantage of a labelled
dataset. Rather, in self-supervised learning, the "labels" are generated artificially from the
available unlabelled data points. Hence, SSL constructs its own labels. Like supervised
learning, self-supervised learning then aims to predict the (artificially generated) labels
correctly. Intuitively, self-supervised learning is analogous to "learning to fill the blanks".

The self-supervised paradigm can be very convenient compared to supervised learning,
as it is often easily possible to obtain vast amounts of unlabelled data points, but in
contrast hard to obtain labelled ones. For example, in NLP large quantities of text can
simply be downloaded from the web. Language models then aim to predict the next
word from a set of previous words or masked out words from the surrounding context
words [Devlin et al., 2019]. In computer vision, self-supervised tasks include predicting
the angle of rotation of an image, predicting the colours of a black-and-white image, or
predicting a future frame from the current frame in a video [Jing and Tian, 2020]. In
practice, self-supervised tasks may come in different shapes and sizes, but the overarching
idea is simple: predict some part of a given input from another part. Figure 2.4 shows
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two illustrative self-supervised tasks.

The self-supervised learning paradigm has also shown to be an effective technique for
improving the learning performance of online RL agents, in particular for vision-based
environments [Jaderberg et al., 2017; Shelhamer et al., 2017; Laskin et al., 2020b;
Schwarzer et al., 2021a]. In RL, an agent interacts with the environment it finds itself in.
To interact more effectively, it is important to understand how the environment works,
i.e., to acquire some sort of world knowledge. For this purpose, self-supervised methods
in RL typically are concerned with predicting a particular part of the environment
from another part, e.g., the future state (or states) and/or reward from the current
state. This can be accomplished either directly in pixel space, but also in latent space
[Jaderberg et al., 2017; Oord et al., 2018]. In fact, this has similarities with learning the
dynamics of the environment in model-based RL, as discussed in Section 2.1.2. However,
in model-based RL the learned environment model is usually employed to update policy
or value-functions by simulating experience (a process known as planning) [Sutton and
Barto, 2018, p. 160]. This is not necessarily the case for self-supervised methods in RL.
Rather, they are used as auxiliary objectives in addition to the primary RL optimization
target. The objective of self-supervised methods in the context of RL is to learn useful
representations of the environment, that facilitate the interaction with it.

2.3.2 Self-supervised learning in RL
In RL, as in other domains, self-supervised learning can come in many shapes. In fact,
it might even serve different purposes. For example, while some methods aim for more
data-efficient learning [Laskin et al., 2020b; Schwarzer et al., 2021a], other architectures
employ self-supervision to guide exploration [Pathak et al., 2017; Burda et al., 2018;
Aytar et al., 2018; Pathak et al., 2019]. Table 2.2 gives a comprehensive, yet incomplete,
overview of RL architectures that employ self-supervised learning. Self-supervised RL is
an active area of research, and more advanced architectures are published on a continuous
basis. Therefore, Table 2.2 was periodically expanded during the writing of this work.

Usually, self-supervised tasks are formalized as auxiliary losses or auxiliary rewards.
Auxiliary losses define an additional loss function on the self-supervised task that is
optimized in addition to the RL objective. Similarly, auxiliary reward tasks formulate
additional self-supervised rewards that are added to the reward function.

Unreal. One of the first architectures to use self-supervised learning was Unsupervised
Reinforcement and Auxiliary Learning (Unreal) [Jaderberg et al., 2017], shown in Figure
2.5. We use this model to illustrate self-supervised learning in RL. Unreal is based on A3C
(an actor critic algorithm mentioned in Section 2.1.2) and uses two kinds of self-supervised
tasks: control tasks and reward prediction. The authors proposed two kinds of control
tasks, pixel control and feature control, but pixel control (maximizing the change in pixel
intensity of experienced states) proved to be most effective. Assuming a set of auxiliary
control tasks C, the RL objective becomes arg max◊ Efi[Gt] + q

cœC ⁄cEfic [G(c)
t ], where fi,

fic, ◊, G
(c)
t , and ⁄c denote the regular RL policy, the policy for control task c, the set of
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Authors Model Environment Description
[Jaderberg et al., 2017] Unreal Atari, 3D Mazes Control & reward tasks
[Shelhamer et al., 2017] - Atari Representation learning
[Mirowski et al., 2017] - 3D Mazes Depth prediction, loop closure

tasks
[Pathak et al., 2017] Curiosity VizDoom, Super Mario Exploration
[Burda et al., 2018] - Atari, Super Mario Exploration
[Pathak et al., 2019] Disagreement Atari, VizDoom, Mujoco Exploration
[Laskin et al., 2020b] Curl Atari, DMControl Representation learning via

contrastive learning
[Schwarzer et al., 2021a] SPR Atari Representation learning via

self-predictive representation
[Mazoure et al., 2020] DIM Ms.Pacman, Procgen Representation learning via In-

foMax
[Yarats et al., 2021a] Proto-RL DMControl Exploration via prototypical

representations
[Schwarzer et al., 2021b] SGI Atari Representation learning via

SPR and pre-training

Table 2.2: RL architectures that employ self-supervised methods.

parameters for fi and all fic’s, the return, and the weights for the individual control tasks
c œ C, respectively. The return for control task c is made up of the auxiliary rewards r

(c)
t ,

based on which a separate Q-function Q(c) is learned. The loss function for a control
task, denoted LQ(c) , is the regular DQN loss (Equation 2.12). Similarly, the auxiliary
reward prediction loss is denoted LRP . For this objective, the agent is tasked to predict
whether the next reward rt+k+1 is positive, negative, or zero given a sequence of states
st, st+1, ..., st+k (consecutive image frames). Therefore, multi-class cross-entropy loss over
the three classes is used for LRP . To summarize, the Unreal loss function is defined as:

LUnreal(◊) = LA3C + ⁄V RLV R +
ÿ

c

⁄cLQ(c) + ⁄RP LRP (2.17)

where LA3C and LV R (value function replay) refer to the A3C agent losses and ⁄V R, ⁄c, ⁄RP

are hyperparameters to weigh the individual loss terms. The Unreal architecture demon-
strates that self-supervised auxiliary tasks can simply augment RL agents and are
optimized jointly with the primary learning objective.

Curl. Another successful model architecture is Curl [Laskin et al., 2020b]. Curl is based
on contrastive learning (or contrastive predictive coding (CPC) [Oord et al., 2018]), a
self-supervised representation learning strategy. Contrastive learning organizes data
points into similar and dissimilar pairs to learn similar and dissimilar representations. In
fact, the strategy is widely applied in computer vision (SimCLR is an example). The
Curl architecture was applied to Atari games [Bellemare et al., 2013a] (100k environment
interaction steps, as proposed by [Kaiser et al., 2020]), as well as DeepMind Control
(DMControl) suite [Tassa et al., 2018] tasks and outperformed prior methods on most of
them in terms of data-efficiency.
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Figure 2.5: The Unreal architecture [Jaderberg et al., 2017].

Figure 2.6 depicts this architecture. The contrastive learning component in Curl is
framed as a dictionary look-up task with query q (or anchor) and keys K = {k0, k1, ...} (or
targets). One of the keys is a positive sample k+ and all other keys are negative samples
K \ {k+}. The goal of contrastive learning is that the anchor paired with positive keys
obtains a higher matching score than the anchor paired with negative keys. Formally,
this target can be expressed by the InfoNCE loss [Oord et al., 2018], corresponding to
the "Contrastive loss" box depicted in Figure 2.6:

Lq = log exp(qT Wk+)
exp(qT Wk+) + qn≠1

i=0 exp(qT Wki)
(2.18)

where the term qT Wk represents the bi-linear product with learned weight matrix W .

Figure 2.6: The Curl architecture [Laskin et al., 2020b].
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So, how do we obtain query and keys? They are constructed during environment
interaction from an input observation (or state) in Figure 2.6 denoted by o (e.g., an
image frame). While the raw query observation oq and positive key observation ok+ are
different random crops of the same input observation o, the negative key observations ok≠
are random crops of different observations (e.g., other frames in the same batch). Hence,
oq and ok+ are similar but oq and ok≠ dissimilar. Nevertheless, the contrastive loss is not
computed in pixel space but from latent representations thereof. Given an observation
oq and a neural network encoder f◊q with parameters ◊q, the query q is obtained by
encoding oq with f◊q . Similarly, to obtain k the key observations are encoded by f◊k

,
where ◊k is the exponential moving average (EMA) of they query encoder parameters ◊q:

◊k Ω m◊k + (1 ≠ m)◊q with m œ [0, 1] (2.19)

This approach to parameter sharing of query and key encoder is known as Momentum
contrast (MOCO) [He et al., 2020]. Then q, the latent representation of the query
observation, is fed into the RL agent. The assumption is that the latent representation
encodes the environment more effectively (e.g., in a more compressed form that removes
abstraction) and thus leads to more data efficient learning.
Curl simply extends two established RL algorithms SAC [Haarnoja et al., 2018] and
Rainbow DQN [Hessel et al., 2018], but any RL algorithm could be used. Hence, the
"Reinforcement learning" box in Figure 2.6 contains either of these algorithms. Again,
the self-supervised method simply augments the RL agent.

SPR. Another powerful self-supervised approach for RL is SPR [Schwarzer et al., 2021a].
Just as Curl, SPR aims to improve data-efficiency through self-supervised representation
learning. Instead of formulating a contrastive objective, SPR relies on next state prediction.
It achieves this by learning a transition model that predicts the future latent state
representations. Unlike in model-based RL, the transition model is not used to update the
policy or value functions, but simply to learn more effective environment representations.
The SPR architecture is depicted in Figure 2.7. Conceptually, SPR is similar to Curl
as it aims to learn an effective latent representation of the current state that can be
fed into the RL agent. In Figure 2.7, the current observation and latent representation
are denoted by st and zt, respectively (before o and q). For simplicity, we use the same
variables as depicted in the Figure 2.7.

In addition, SPR applies data augmentations to input states (st + aug), this will be
the topic of Section 2.4 and thus ignored for now. Overall, SPR consists of an online
encoder fo that transforms observed states st to their latent representations zt = fo(st)
and a target encoder fm that encodes future states to their latent representations,
z̃t+k = fm(st+k). The parameters of online and target encoders (neural networks) are
denoted ◊o and ◊m, respectively. As before, the encoder neural network parameters are
shared: ◊m is an EMA of the online encoder parameters and thus is not updated by
gradient descent. Furthermore, to predict the next K future latent states SPR employs
an action-conditioned transition model h. For each time step t + k, the transition model
takes the latent representation of a state and the action performed, zt+k and at+k, and
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Figure 2.7: The SPR architecture [Schwarzer et al., 2021a].

produces the next latent representation. This process is repeated until the prediction
depth K is reached. Thus, the transition model produces predictions of the future
latent states ẑt+1:t+K = h(ẑt+k, at+k) (with ẑt = zt = fo(st)). The actual next K future
states st+1:t+K are fed through the target encoder to obtain the latent representations
of the actual future states: z̃t+k = fm(st+k). The transition model h is a Convolutional
Neural Network (CNN) and the maximum prediction depth K is set to 5. Then, as
Figure 2.7 illustrates, the latent representations of predicted future states ẑt+k and latent
representations of actual future states z̃t+k are fed into additional online and target
projection heads, go and gm, to obtain the final latent online and target representations
ŷt+k and ỹt+k, respectively. Again, the projection heads are neural networks, and the
target projection parameters are an EMA of the online projection head. Finally, the
cosine similarities between final online and target representations is used as the prediction
loss:

LSP R(st:t+K , at:t+K) = ≠
Kÿ

k=1

A
ỹt+k

Îỹt+kÎ2

BT A
ŷt+k

Îŷt+kÎ2

B
(2.20)

Hence, the overall loss is given by LT otal = LRL + ⁄SP RLSP R, similar to Equation 2.17
with the SPR weight ⁄SP R. The regular RL loss is represented by LRL (e.g., Equation
2.12). In fact, the authors augment Data-efficient Rainbow DQN [van Hasselt et al.,
2019] with self-predictive representations, and the resulting architecture outperformed
prior methods on Atari games in terms of data-efficiency [Schwarzer et al., 2021a]. Most
importantly, the SPR loss also just augments the RL objective.

2.3.3 Outlook

Overall, these architectures demonstrate that self-supervised learning can be a powerful
extension to the RL framework. Yet, all discussed algorithms were developed for the
online setup. The rest of this thesis aims to adjust the proposed methods for offline RL.
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2.4 Data Augmentation

2.4.1 Overview
Data augmentation (DA) is an established technique that has shown to be effective
for many ML applications, in particular for images-based tasks [Perez and Wang, 2017;
Shorten and Khoshgoftaar, 2019]. The idea of data augmentation is to artificially increase
the amount of available training data by modifying existing training observations in some
meaningful way. The modified samples are then used as additional training samples.
This simple yet powerful technique has shown to mitigate overfitting, i.e., it strengthens
the algorithm’s ability to generalize to unseen data points [Shorten and Khoshgoftaar,
2019]. Thus, data augmentation is especially effective if the amount of training data
at one’s disposal is limited or the training data exhibits high class-imbalance (e.g., in
domains such as medicine & biology).

There are many ways to augment training observations. Examples are geometric transfor-
mations (such as rotating, resizing, flipping or cropping an image), colour transformations
(such as colour removal/filtering, colour jitter, colour scaling, or adding noise), random
erasing methods (such as cutout) and even combinations of the former [Shorten and
Khoshgoftaar, 2019]. Nevertheless, not every augmentation is suitable, or "safe" for
every task. For instance, in image classification while it is fine to flip an image of a dog
horizontally/vertically, the same augmentation might not be advantageous for digits ("9"
becomes "6" and vice versa) [Shorten and Khoshgoftaar, 2019]. Figure 2.8 illustrates the
concept of data augmentations and shows a few exemplary tasks.

Figure 2.8: An illustration of data augmentations. Figure from [Chen et al., 2020a]

Only recently, the RL community has started to embrace data augmentations techniques.
Their effectiveness has been primarily demonstrated in the context of improving that data
efficiency of online RL algorithms [Yarats et al., 2021b; Laskin et al., 2020a; Raileanu
et al., 2021; Hansen and Wang, 2021]. Individually, data augmentation based online RL
agents have even been shown to deliver better performance in terms of data-efficiency than
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RL agents augmented with self-supervised auxiliary tasks. However, the combination of
both approaches delivered the best performance, as demonstrated by SPR [Schwarzer
et al., 2021a].

As self-supervised auxiliary tasks, data augmentation techniques are useful for RL, as
they enable the agent to learn more meaningful representations of the environment. By
modifying observations, data augmentations allow the agent to experience a more diverse
environment. The consequence is a more data-efficient learning behaviour. We assume
that data augmentations will be particularly useful for offline RL, as in this scenario the
dataset is static and hence overfitting can be an issue.

2.4.2 Data augmentation in RL
Data augmentations are, as self-supervised methods, an extension to the general RL
framework. They can in principle be used with any kind of RL algorithm. Assuming the
standard MDP formulation, the only modification is that a given state s is fed through a
transformation function f(s, v) that applies the data augmentation before it is used to
update the policy/value function/model. Where v is some augmentation from the set
of all data augmentations, v œ V. In online RL, the data augmentations are typically
applied randomly to all samples across a batch (and consistently across a frame stack
for vision-based tasks). For offline RL, different strategies (e.g., augmenting the whole
dataset beforehand) are conceivable.

In RL, however, augmentation "safety" is even more critical compared to other tasks,
as agent-environment interaction is subject to certain semantics. For example, in a
2D Maze environment an agent may be able to move into every direction, i.e., A =
{up, down, left, right}. Now, if the observation is flipped horizontally, left becomes right
and right becomes left. Thus, the transformation alters the action semantics. Therefore,
when choosing data augmentations, these constraints have to be considered. In general,
data augmentations that do not change the environment behaviour (too severely) are
most desirable.

In Table 2.3, we summarize RL architectures that employ data augmentation to improve
the online learning performance. These architectures mostly differ in the kinds of
augmentations they use, but also in the way the augmentations are applied.

RAD. One such method is RAD [Laskin et al., 2020a]. Similar to the self-supervised
methods discussed in Section 2.3, RAD augments two established RL agents, SAC
(off-policy) and PPO (on-policy). During the learning process, the augmentations are
applied to either a batch sampled from the replay buffer (off-policy) or a recent trajectory
(on-policy). Overall, they evaluate ten different image-based data augmentations: random
crop, translate, window, greyscale, cutout, cutout-colour, flip, rotate, random convolution,
and colour-jitter. In addition, two state-based data augmentations are applied: random
amplitude scaling, which multiplies the state s with a uniform random variable (i.e.,
s ú U(–, —), where –, — are lower and upper bound, respectively), and Gaussian noise,
which adds a Gaussian random variable (i.e., s + N (0, 1)). Finally, the authors evaluate
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Authors Model Environment Description
[Laskin et al., 2020a] RAD DMControl, Procgen Crop, cutout, flips, rotate, etc.
[Yarats et al., 2021b] DrQ Atari, DMControl Cutout, flips, random shift, in-

tensity, etc.
[Raileanu et al., 2021] DrAC DMControl, Procgen Upper confidence bounds,

meta learning
[Hansen and Wang, 2021] SODA DMControl Soft data augmentation
[Schwarzer et al., 2021a] SPR Atari Self-predictive representations

+ data augmentation

Table 2.3: RL architectures that employ data augmentations.

the augmentations on DMControl [Tassa et al., 2018] as well as ProcGen bechmark tasks
[Cobbe et al., 2020]. Their results suggest that all augmentations improve performance,
but individually random cropping and cutout are the most effective tasks. Even though
the technique is very simple, RAD delivered excellent performance and outperformed
prior methods, such as Curl in terms of data efficiency [Laskin et al., 2020a]. Their results
suggest that data augmentation can be an effective tool for the offline RL scenario.

DrQ. Another recent architecture that uses data augmentations to improve the learning
performance of the underlying RL agent is DrQ [Yarats et al., 2021b]. The authors extend
the SAC agent and observe similar performance gains as RAD on DMControl [Tassa
et al., 2018]. In addition, the method was also applied to Atari games and obtained
state-of-the-art results in this domain by extending a DQN agent [Bellemare et al.,
2013a]. DrQ also employs a range of data augmentations (there is an overlap with RAD)
but primarily focuses on random shifting, as this augmentation proved successful in
preliminary experiments. In addition, the authors also proposed to augment the input
observations several times and to average the Q-values of the respective transformed inputs.
In particular, Yarats et al. [2021b] average the target Q-values over K augmentations and
the regular Q-values over M augmentations. In their work [K = 2, M = 2] worked best.

SPR. Furthermore, SPR also employed data augmentations in addition to self-supervised
auxiliary tasks [Schwarzer et al., 2021a]. In fact, SPR simply applies the same set of data
augmentations that was proposed for the DrQ architecture [Yarats et al., 2021b]. The
given observations are augmented before being used in the self-supervised objective and
RL objective, as shown in Figure 2.7. Overall, data augmentations significantly improved
the SPR agent’s performance on Atari benchmark tasks when compared to only using
the self-supervised methods. Hence, their results suggest that self-supervised methods
and data augmentation are largely orthogonal and complement each other effectively.

2.4.3 Outlook
The exemplary architectures presented in this section demonstrate that data augmentation,
just like self-supervised methods, is an effective technique for improving the learning
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performance of online RL agents. The online RL architectures also show that data
augmentations, as well as self-supervised methods, simply extend the RL framework. In
addition, both approaches complement each other. Nevertheless, the effectiveness of data
augmentation has not yet been investigated in the offline RL context. In offline RL, the
dataset is static and potentially limited in size or diversity. Data augmentation is well
suited for this setup, as it enables the agent to experience a more diverse environment
and thus may prevent overfitting.

2.5 Related work
Closest to this thesis is recent work known as Surprisingly Simple Self-Supervised offline
RL (S4RL) [Sinha et al., 2021]. S4RL was published during the writing of this thesis,
and also studies data augmentation in the context of offline RL. They show that data
augmentation in the style of DrQ can be an effective technique for offline RL. Similar to
our work, their underlying offline RL algorithm is CQL.

There are, however, many differences to our work. S4RL only uses data augmentations in
DrQ style, while we also study the effectiveness of a number of self-supervised architectures
for offline RL, as well as online fine-tuning for offline RL. Furthermore, Sinha et al. [2021]
only test their algorithm on state-based continuous control tasks, while we also evaluate
on image-based discrete control tasks. Thus, also the selected data augmentations differ.

2.6 Summary
In this chapter, we discussed the theoretical background for this thesis. First, we
introduced the general online RL framework in Section 2.1. In recent years, online RL
has led to impressive achievements, but it still has limitations. Real world applications
are usually subject to certain restrictions, such as safety, time, or resource constraints.
In particular, the online-interaction and trial-and-error setup makes it unsuitable for
many real-world use cases. In addition, current online RL algorithms are incredibly data
inefficient and thus often only work well for simulation-based environments that are not
subject to real-world constraints.

In Section 2.2, we reviewed the main subjects of this work, offline RL. Offline RL offers
an attractive alternative to the online framework, as it decouples environment interaction
and learning process. The offline RL framework is comparatively simple to apply in
practice and thus has a wide range of real-world application areas, from robotics to
healthcare. However, its main advantage is also a major limitation: the static, previously
collected dataset and no possibility for environment interaction. Therefore, the available
observations have to be leveraged as effectively as possible. Two methods to achieve this
are self-supervised learning and data augmentation. Both approaches have already been
applied to online RL but have not yet been studied in the offline RL context. Furthermore,
in many cases, it might be desirable to continue learning online after an initial offline
pre-training phase to combine the benefits of online RL and offline RL.
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We described self-supervised methods for RL in Section 2.3. The overall idea
of self-supervision is to predict some part of the input from another part. First, we
illustrated the general idea of self-supervised learning by a few exemplary tasks from
diverse domains. Then, self-supervised learning was discussed in the context of RL.
Lately, a variety of different self-supervised methods, such as contrastive learning or
self-predictive representations, has been proposed that serve different purposes. Our
discussion focuses on methods that aim to improve the data-inefficiency problem. Our
analysis of a few selected algorithms, namely Unreal [Jaderberg et al., 2017], Curl [Laskin
et al., 2020b] and SPR [Schwarzer et al., 2021a], has shown that self-supervised tasks
plug into the RL framework relatively seamlessly and require only minor adjustments
of the underlying algorithms. Most importantly, they significantly improve the learning
performance of RL agents in terms of data-efficiency on a multitude of diverse benchmark
tasks.

Similarly, in Section 2.4 we reviewed the literature on data augmentation for RL.
As with self-supervised tasks, the recent years have brought forth many architectures
that integrate data augmentation techniques into RL agents. Again, our analysis of
established architectures, RAD [Laskin et al., 2020a], DrQ [Yarats et al., 2021b] and
SPR [Schwarzer et al., 2021a], has shown that data augmentation is a powerful extension
to the RL framework. In offline RL, the agent is faced with a static dataset and data
augmentation techniques offer a way to construct more diverse experience to inhibit
overfitting. Consequently, data augmentation led to more data efficient learning behaviour
in online RL.

The rest of this thesis aims to apply self-supervised methods, data augmentations and
online fine-tuning to offline RL.
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CHAPTER 3
Methodology

In this section, we explain the methodological approach of this thesis. First, we outline
the general structure of our approach and the steps that we conduct. In addition, we
illustrate our implementation workflow. Then each of the steps is examined in more detail
individually. In particular, we describe the selection of offline RL agents, self-supervised
methods, and data augmentations used in this work. Furthermore, we examine our task
setup and evaluation procedure. This includes the selected offline datasets & benchmarks,
baseline architectures, as well as the specific target metrics we employ to compare our
agents.

3.1 Overview

3.1.1 Structure
The methodological approach of this thesis consists of the following steps:

1. Algorithm selection.
Drawing from the insights we obtained in Chapter 2, we first select the most
promising algorithms for our analysis. There are three major types of decisions
that we need to make:

a) What offline RL agents do we select?
b) What self-supervised methods/architectures do we select?
c) What data augmentations do we select?

In Section 3.2, we give detailed answers to these questions. In particular, we discuss
our choices and the rationales for them.
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2. Evaluation.
Next, the task selection and evaluation procedure have to be defined. Therefore, we
choose suitable datasets/environments/tasks to compare the architectures selected
in the previous step, baselines to compare them against as well as the respective
target metrics.

a) Offline datasets & Benchmarks: The offline datasets/environments/tasks
have to be suitable for comparing the performance of different architectures.
Therefore, we evaluate all methods on selected tasks from established open-
source benchmark suites D4RL [Fu et al., 2020] and RL Unplugged [Gülçehre
et al., 2020]. Both benchmarks consist of tasks that are characterized by
properties relevant for real-world applications. To provide a comprehensive
evaluation of our algorithms, we select both continuous as well as discrete
control tasks. In particular, in this work, we focus on Gym-MuJoCo robotics
tasks from D4RL and Atari games from RL Unplugged. We discuss our
selection in more detail in Section 3.3.1

b) Evaluation metrics: Appropriate evaluation metrics ensure a fair compari-
son of all architectures. We discuss our selection in Section 3.3.2.

c) Baselines: To compare the proposed architectures against prior methods,
established baselines (e.g., behavioural cloning, online/offline RL algorithms
without self-supervised methods and augmentations) have to be selected. We
discuss our selection of baselines in Section 3.3.3.

3. Implementation & setup.
In Section 3.4 we give an overview of the software stack used for our implementations
as well as our hardware setup.

3.1.2 Methodology Workflow
Before we explain our choices for the model components, we give a high-level overview of
how the individual pieces fit together. Figure 3.1 illustrates our approach and Algorithm
3.1 shows the (simplified) procedure using pseudocode.

The entry point is the offline dataset denoted by D that is provided by the respective
benchmark suite. The dataset stores previously collected experience tuples for a particular
target task (e.g., a specific Atari game or Gym-MuJoCo task). The experience might
originate from one or multiple behaviour policies fi— , as was discussed in Section 2.2.

At each time step a batch of experience tuples B = {(s, a, sÕ, r)} is sampled from the offline
dataset D, where s, a, sÕ, and r refer to state, action, next state and reward. The selected
data augmentations v œ V are applied to the states, where V represents the set of all
data augmentations. Augmentations are applied randomly across a batch, but by default
we apply the same augmentations consistently to s and sÕ. We discuss our augmentation
strategies in more detail in Section 4.4. Depending on the current experiment, data
augmentation is optional (e.g., if only self-supervised tasks are examined).
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Figure 3.1: Methodology

The batch of (augmented) experience tuples is then passed on to the RL agent. The RL
agent consists of the regular RL objective and a self-supervised objective. Depending
on the offline RL algorithm selection, the contents of the RL objective box in Figure 3.1
can take different forms (e.g., Equation 2.12 with 2.16). Similarly, the self-supervised
objective depends on the selected self-supervised method (e.g., Equations 2.18 or 2.20).
As with data augmentations, the self-supervised method is optional and depends on the
conducted experiment. Both the RL and self-supervised objective result in individual
losses that are optimized jointly via SGD to improve the policy fi.

All steps are repeated n times, where n is the number of update steps to perform. In our
experiments, 10 thousand update steps constitute one epoch (or episode). After each
episode (or every ith episode), the agent is evaluated within the actual environment based
on average return to measure its learning progress. If desired, the agent can continue
learning in the regular online fashion after an initial offline pre-training period.

3.2 Algorithm selection
In this section, we discuss the choice of algorithms we use in the subsequent experiments
and the rationale for our selection.

3.2.1 Offline RL agents
First, we have to select the base offline RL algorithm for our subsequent experiments.
The offline RL algorithm forms the basis of the agent and is extended with self-supervised
methods and data augmentations. In principle, any kind of existing offline RL algorithm
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Algorithm 3.1: Workflow of methodology
Input: RL agent, environment, D = {(s, a, sÕ, r)i}, set of augmentations V, SSL

objective, SSL weight ⁄, # of epochs, # of steps per epoch, eval freq
Initialize RL agent parameters ◊
Initialize SSL objective parameters „ (optional)
for epoch œ [0, ..., n_epochs] do

for step œ [0, ..., steps_per_epoch] do
L Ω 0
B ≥ D ; // Sample batch B = {(s, a, sÕ, r)} from D
if V ”= ÿ then

// Apply v œ V to current and next states s,sÕ in B
for v œ V do

s Ω v(s)
sÕ Ω v(sÕ)

end
end
// Compute RL loss, e.g., Equation 2.12 with 2.16
L Ω L + LRL(B; ◊)
if SSL objective then

// Compute SSL loss, e.g., Equations 2.18, 2.20
L Ω L + ⁄LSSL(B; „)

end
// Update ◊, „ w.r.t. L
◊ Ω ◊ + –Ò◊L
„ Ω „ + –Ò„L

end
if eval_freq % epoch == 0 then

Evaluate agent in environment
Compute performance metric m, report performance

end
end

could be used for this purpose, because as we have seen in the last chapter, self-supervised
learning and data augmentation plug into the RL framework relatively seamlessly. How-
ever, the selected algorithm should be as generally applicable as possible. Ideally, it
should work with both discrete and continuous action spaces. The Atari test bed and
Gym-MuJoco control tasks are examples for environments with discrete and continuous
action spaces, respectively. Another obvious important criterion is performance: the
algorithm should give state-of-the-art results and perform well across a wide range of tasks.
Furthermore, to avoid additional architectural overhead, it should be relatively simple to
implement. Hence, our decision is guided by three major criteria: (1) applicability to
continuous and discrete action spaces, (2) performance, and (3) simplicity.
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Algorithm Discrete control Continuous Performance Simplicity
AWAC 3 3 5 3

BCQ 3 3 5 3

BEAR 5 3 5 3

REM 3 3 5 3

CRR 5 3 3 3

CQL 3 3 3 3

MoREL 5 3 3 5

MOPO 5 3 3 5

Combo 5 3 3 5

Table 3.1: Decision table for base offline RL algorithm.

In Table 3.1 we assess potential target algorithms according to the established criteria.
For continuous control tasks (Gym-MuJoCo) the model-based method Combo has shown
to outperform other approaches in terms of overall performance [Yu et al., 2021]. For the
exact scores and a detailed analysis of the results, we refer to the original publications.
The next best performing algorithms on these tasks were CQL [Kumar et al., 2020] and
MOPO [Yu et al., 2020]. While Combo and MOPO are designed for continuous action
space, CQL also works for discrete ones. Furthermore, CQL has also shown to deliver
the best results for Atari benchmark games, outperforming REM [Agarwal et al., 2020].
In addition, CQL is relatively simple to implement, as it only requires minor adjustments
to existing Q-learning or actor-critic methods. We already described the mathematical
foundations of CQL in Section 2.2.3. Therefore, CQL is a robust choice, and we select it
as our base offline RL agent for our subsequent experiments.

3.2.2 Self-supervised methods
Next, the self-supervised methods to extend the offline RL agent with have to be selected.
We refer to Table 2.2 for a list of existing architectures. In principle, all self-supervised
methods work for both discrete and continuous action spaces. However, not every task
that works well for online RL, may also be suitable for the offline setup. For example, the
Unreal agent employs a pixel control task, which requires online interaction [Jaderberg
et al., 2017]. Similarly, tasks that aim to improve exploration, such as curiosity-based
methods or methods that rely on disagreement [Pathak et al., 2017; Burda et al., 2018;
Pathak et al., 2019], are better suited for online RL as in offline RL exploration is not
possible. Hence, our decision is again guided by three criteria: (1) offline applicability,
(2) performance, and (3) simplicity.

Curl [Laskin et al., 2020b], SPR [Schwarzer et al., 2021a], DIM [Mazoure et al., 2020],
and SGI [Schwarzer et al., 2021b] remain. SPR, DIM and SGI were either applied to
discrete or continuous control tasks, but not both. In contrast, Curl has been applied
to both categories. Therefore, the first architecture we select is Curl, as it has shown
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to deliver excellent performance for both Atari (discrete) and DMControl (continuous).
In addition, it is relatively simple to implement, as was discussed in Section 2.3. SPR
outperforms Curl on Atari games and is also relatively straightforward to implement.
Therefore, we also select SPR. Nevertheless, SPR has not been applied to continuous
control tasks and requires minor adjustments that we discuss in the next chapter. Most
importantly, both approaches are suitable for offline RL without major modifications.
The mathematical background of Curl and SPR was examined in Section 2.3.

Algorithm Applicable to Offline RL Performance Simplicity
Unreal 3 5 3

[Pathak et al., 2017] 5 5 3

[Burda et al., 2018] 5 5 3

[Pathak et al., 2019] 5 5 3

Curl 3 3 3

SPR 3 3 3

DIM 3 3 5

SGI 3 3 3

Table 3.2: Decision table for self-supervised methods.

Even though the underlying architecture of DIM is interesting, we discard this method,
because it has thus far only been applied to Procgen and Ms.Pacman. SGI is based on
the architecture of SPR, but instead relies on pre-training on massive amounts of data
for a single Atari game. This is out of reach for our experiments. While SGI had to
leverage a huge dataset, the performance improvements were of a similar magnitude.
Therefore, we also select SGI, but restrict the amount of data to pre-train on. Just as
SPR, SGI was developed for Atari and has not been applied to continuous control tasks.
Therefore, we adjust the algorithm accordingly for continuous control tasks. We discuss
our modifications to SGI in more detail in Section 4.

3.2.3 Data augmentations

Data augmentations typically work very well for image-based tasks, as images allow
for a variety of manipulations to the pixel space, as was discussed in Section 2.4. But
augmentations also can also be used with environments that emit state-based observations
(e.g., proprioceptive information from robot joints) as demonstrated by RAD. In Section
2.4, we showed that prior work has evaluated a variety of augmentations. For our
subsequent experiments with image-based tasks, we select the best-performing image-
based data augmentations from RAD [Laskin et al., 2020a] and DrQ [Yarats et al.,
2021b], namely random-cropping, random shifting and cutout. Likewise, for state-based
environments we select random amplitude scaling and Gaussian noise, as was proposed
by Laskin et al. [2020a].
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3.3 Evaluation
In this section, we describe how we evaluate our agents. This includes the actual tasks
they have to perform and specific metrics to compare them against.

3.3.1 Offline Datasets & Benchmarks
General. First, we have to select suitable tasks/offline datasets. As mentioned in
Section 2.2.5, two benchmarking frameworks for offline RL were introduced recently,
D4RL [Fu et al., 2020] and RL Unplugged [Gülçehre et al., 2020]. These frameworks define
benchmark tasks, provide the corresponding offline datasets, and facilitate the evaluation
of new architectures. D4RL provides datasets for seven different environments: Maze2D,
AntMaze, Gym-MuJoCo, Adroit [Rajeswaran et al., 2018], FrankaKitchen [Gupta et al.,
2020], Flow [Vinitsky et al., 2018], and CARLA (a simulator for autonomous driving)
[Dosovitskiy et al., 2017]. RL Unplugged in contrast includes DMControl [Tassa et al.,
2018], DMLocomotion, Atari [Bellemare et al., 2013a; Agarwal et al., 2020], and the Real-
World Reinforcement Learning Suite [Dulac-Arnold et al., 2020]. Of all ten environments,
only Carla (D4RL) and Atari (RL Unplugged) are image-based, i.e., the description of
the environment state is provided in pixel-values.
As Table 2.1 illustrates, 13 of the 15 listed offline RL algorithms evaluate on Gym-MuJoCo.
Recently, Atari has also emerged as an attractive benchmark for novel image-based offline
RL architectures [Agarwal et al., 2020; Kumar et al., 2020; Schwarzer et al., 2021b]. In
fact, Atari is one of the most established benchmarks for online RL agents Bellemare
et al. [2013b]; Machado et al. [2018b]. While the Gym-MuJoCo benchmark consists of
continuous control tasks, the Atari benchmark consists of discrete control tasks. Thus,
we identify Gym-MuJoCo and Atari as the most suitable benchmark tasks for this work.
Continuous control. We select the Gym-MuJoCo benchmark from D4RL as our first
target task. MuJoCo is a high-fidelity physics engine that is able to simulate a multitude
of environments [Todorov et al., 2012]. It is widely used throughout the field of RL,
which is why it was also included in D4RL. MuJoCo has been a commercial software and
required a licence for a long time. During the course of writing, however, the MuJoCo
simulator was acquired by DeepMind, open-sourced and is now free to use for any purpose.
Due to this overlap, we initially used the PyBullet simulator [Coumans and Bai, 2016],
an open-source alternative to MuJoCo, for our Gym experiments. When MuJoCo was
open-sourced, however, we switched to MuJoCo and repeated all experiments on the new
simulator. Therefore, all scores shown for continuous control tasks in Chapter 5 were
obtained using MuJoCo as the underlying physics engine. Consequently, in this work, we
use Gym-MuJoCo as the state-based benchmark.
Every Gym benchmark task dataset consists of 1 million transitions. Following the
original D4RL publication [Fu et al., 2020], we train each agent for 500K gradient steps
on Gym tasks, i.e., 0.5 ◊ the dataset size. In this benchmark, the RL agent has to learn
to walk with different robotic bodies/characters. We select the medium variants of the
three most popular benchmark tasks: Halfcheetah, Hopper, and Walker2d.
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(a) Halfcheetah (b) Hopper

(c) Walker2d

Figure 3.2: The Gym-MuJoCo tasks used in this work.

(a) Pong (b) Breakout (c) Seaquest (d) Qbert

Figure 3.3: The Atari tasks used in this work.

Discrete control. To understand how well the effectiveness of self-supervised methods
and data augmentations generalizes across domains, we also aim for the discrete-control
Atari benchmark. The original DQN architecture proposed to limit environment interac-
tion to 50 million frames for a single game, which corresponds to 38 days of real-time
experience [Mnih et al., 2015]. Similarly, prior work in offline RL also employs a dataset
consisting of 50 million transitions, which is equivalent to hundreds of gigabytes for a
single Atari game [Agarwal et al., 2020; Kumar et al., 2020; Schwarzer et al., 2021b].
Given our limited resources, using such a huge amount of data is infeasible for our work.

Recently Agarwal et al. [2020] and Kumar et al. [2020] proposed to evaluate offline RL
algorithms on 1%, 10%, 20% and 50% of the original dataset size. Using only 1% of
the dataset considerably reduces the data size. Under these circumstances, our selected
base-agent, CQL, has shown to deliver excellent results. We discussed, a similar setup in
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Section 2.3, that is commonly used to evaluate the performance of data-efficient online
RL architectures, such as Curl and SPR. These methods also evaluate on Atari games
but limit the number of environment interaction steps to 100K, which corresponds to
roughly two hours of real-time experience. This setup was proposed by Kaiser et al. [2020]
and is known as Atari100K. For the purpose of this work, restricting the dataset size is
ideal. Therefore, we adopt their setup and select offline Atari1M as the image-based
benchmark for this thesis. Using 1 million frames ensures a fair comparison with the
Gym tasks, which also consists of 1 million observations. Agarwal et al. [2020] and
Kumar et al. [2020] set the number of gradient steps for each game to 5◊ the number of
observations, i.e., 2.5 million steps. To ensure a fair comparison, we also set the number of
gradient steps to 2.5 million. In total, there are 60 different Atari games. Unfortunately,
a complete evaluation on all games is out of reach for this work. Therefore, we select
four Atari games that were evaluated in detail by Agarwal et al. [2020] and Kumar et al.
[2020], namely Pong, Breakout, Seaquest, and QBert.

Figure 3.2 and Figure 3.3 depict the Gym-MuJoCo and Atari tasks used in this work.

3.3.2 Metrics

Next, we introduce the evaluation metrics that we use to compare our architectures. Again,
this decision is guided by the choices made in prior work. Evaluation metrics determine
how well the agent is able to perform its task. In general, RL task success/performance is
primarily measured in terms of the average return obtained, as was discussed in Section
2.1. To standardize the comparison, D4RL proposes an evaluation scheme that normalizes
the obtained scores as follows:

normalized_score = 100 ú score ≠ random_score

expert_score ≠ random_score
(3.1)

All scores correspond to the average return over 100 episodes. Here score is the score
obtained by the agent to evaluate, random_score is the score obtained by a policy that
selects actions uniformly at random, and expert_score reflects the score obtained by
an expert policy. Hence, normalized_scores of 0 and 100 correspond to the average
returns over 100 episodes of a random policy and an expert policy, respectively [Fu et al.,
2020]. While for Gym-MuJoCo the expert policy is represented by an online SAC agent
[Haarnoja et al., 2018], for offline Atari1M it is an online DQN agent [Mnih et al., 2015].
Additionally, prior work typically reports the mean or median of the normalized scores
over four/five runs with different random seeds [Agarwal et al., 2020; Kumar et al., 2020].
We adopt the same evaluation procedure for this thesis with 3 random seeds due to
computational constraints.

Normalized scores and learning curves. In Chapter 5 we always report the mean
(± standard deviation) and normalized scores (in %) over all random seeds at the last
training step and at the midpoint of training. For Atari, the last step and mid-point
correspond to 2.5M steps and 1.25M steps, respectively. For Gym, they correspond to
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500K steps and 250K steps. To illustrate the learning progress graphically, we also show
the learning curves (raw scores at every time step) averaged across the seeds.

Interval estimates. However, due to the computational demand of RL training, it is
common to report results over only a small number of runs (3 random seeds in our case).
Thus, reproducibility and sound evaluation have become a major challenge in RL. To
this end, Agarwal et al. [2021] recently proposed a statistically more robust approach
to evaluate the performance of RL agents that accounts for the variability in reported
results. In particular, the authors argue for interval estimates via stratified bootstrap
confidence intervals (CI) [Efron, 1992] instead of point estimates, and the IQM instead
of the mean or median. The interval estimates are computed over N independent runs
(3 seeds) and M tasks (3 for Gym-MuJoCo, 4 for Atari) by re-sampling the runs with
replacement independently for each task. The IQM only considers the middle 50% of
the runs for computing the mean and provides a more robust estimate for the agent’s
performance. Thus, each sample uses NM/2 runs to compute the IQM.

Probability of improvement. In addition, Agarwal et al. [2021] propose to report the
probability of improvement of an algorithm X over another algorithm Y . The probability
of improvement is given by:

P (X > Y ) = 1
M

Mÿ
m=1

P (Xm > Ym) (3.2)

where M represents the number of tasks. P (Xm > Ym) is the probability that X
outperforms Y on a particular task m and is computed using the Mann-Whitney U-
statistic [Mann and Whitney, 1947], P (Xm > Ym) = 1

N2
qN

i=1
qN

j=1 S(xm,i, ym,j) with
S(x, y) = 1 if y < x, S(x, y) = 1

2 if y = x, and S(x, y) = 0 if y > x.

Therefore, in Chapter 5 we also report the interval estimate scores for IQM, mean and
median (with 50K bootstrap samples) and probability of improvement (2K bootstrap
samples) with a CI of 95%. The interval bounds are constructed using percentile bootstrap.
To simplify the adoption of this new evaluation procedure for RL, Agarwal et al. [2021]
released an open-source library called rliable1 that we use in this work.

3.3.3 Baselines
Furthermore, the performance of our offline RL agents extended with self-supervised
methods and data augmentations has to be compared against baseline methods to validate
our experiments. The most natural baseline we select is the pure CQL agent, without any
extensions. Hence, this choice allows for a comprehensive evaluation of the effectiveness
of the proposed modifications.

In addition, we also compare against the simplest baseline, BC [Pomerleau, 1988]. BC is
the standard baseline method for the offline setup, and most prior work compares against
it [Wu et al., 2019; Kumar et al., 2020; Yu et al., 2021].

1Available at https://github.com/google-research/rliable
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Furthermore, for Atari, we compare against online/offline DQN and a random policy and
against online/offline SAC and a random policy for Gym-MuJoCo tasks.

3.4 Implementation & Setup
Finally, we discuss the software and hardware setup for our subsequent experiments.

3.4.1 Software stack
We adhere to established software engineering guidelines for all our implementations
and aim for easy reproducibility. To that effect, the project repository for this thesis is
open-source and available on GitHub2.

All RL algorithms are implemented in Python using the popular DL-framework PyTorch
[Paszke et al., 2019b]. Our implementations are built on top of d3rlpy [Seno and Imai,
2021], a popular library for offline RL that provides high-quality implementations for a
variety of offline RL algorithms, amongst them CQL. To obtain the datasets, we leverage
the benchmarking frameworks D4RL3 and RL Unplugged4, as described in Section 3.3.1.
To facilitate the usage of Atari datasets provided by RL Unplugged, we take advantage of
an additional open-source library, d4rl-atari5 that wraps RL Unplugged and provides
a simple interface like D4RL. The library was created by the same author as d3rlpy.
Thus, d3rlpy provides an easy-to-use and C-optimized interface for dataset interaction
that we leverage as well.

During model training and evaluation all logs are written to TensorBoard6, an easy-to-use
browser-based visualization toolkit for tracking the learning progress of ML algorithms
[Abadi et al., 2016]. TensorBoard can be executed using a commandline tool and
visualized in the browser. Additionally, we also make use of Weights & Biases (wandb),
another web-based tool for experiment tracking [Biewald, 2020].

We list all other dependencies and the exact version numbers in Table 3.3.

3.4.2 Hardware setup
In general, RL is among the most resource-intensive areas of ML and state-of-the-art
RL algorithms often rely on excessive amounts of compute [Vinyals et al., 2019; Berner
et al., 2019]. This characteristic may inhibit the progress of the entire field, as it favours
teams or individuals with sufficient computing resources. Nevertheless, offline RL relaxes
this prerequisite a bit, as was discussed in Section 2.2.5.

2Available at: https://github.com/thomasschmied/offline_rl
3D4RL is available at: https://github.com/rail-berkeley/d4rl
4RL Unplugged is available at: https://github.com/deepmind/deepmind-research/tree/

master/rl_unplugged
5d4rl-atari is available at https://github.com/takuseno/d4rl-atari
6TensorBoard is open-source and available at: https://github.com/tensorflow/tensorboard
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Tool Version Description
Python [Van Rossum and Drake, 2009] 3.9.5 programming language
NumPy [Harris et al., 2020] 1.20.3 numerical computations
Pandas [McKinney et al., 2010] 1.2.4 post-processing of results
Seaborn [Waskom, 2021] 0.11.2 visualization of results
PyTorch [Paszke et al., 2019a] 1.8.1 neural network architectures

& automatic differentiation
OpenAI Gym [Brockman et al., 2016] 0.18.3 interface for Atari and Gym-

MuJoCo tasks
d3rlpy [Seno and Imai, 2021] 0.91 offline RL algorithms
tensorboardX 2.2 experiment tracking
wandb [Biewald, 2020] 0.12.4 experiment tracking
tqdm 4.61.0 progress bars
rliable [Agarwal et al., 2021] 1.0 reliable RL evaluation

Table 3.3: Tools used in this work.

For our subsequent experiments, we use a server equipped with four NVIDIA RTX 2080ti
kindly provided by our university. As our agents do not require large amounts of memory,
we always ran two experiments at a time on the same Graphics Processing Unit (GPU).

3.5 Summary
To summarize, we employ CQL [Kumar et al., 2020] as our base offline RL algorithm.
We use Curl [Laskin et al., 2020b], SPR [Schwarzer et al., 2021a] and a modified version
of SGI [Schwarzer et al., 2021b] as self-supervised methods. Moreover, following previous
work on data augmentations in RL [Laskin et al., 2020a; Yarats et al., 2021b], we select
random-cropping, random-shifting and random cutout as augmentations for discrete
control tasks, and random amplitude scaling and Gaussian noise as data augmentations
for continuous control tasks.

In the subsequent chapter, we evaluate our offline RL algorithms on both image-based
as well as state-based tasks using offline Atari and Gym-MuJoCo datasets provided
by RL Unplugged and D4RL, respectively. To this end, we select four Atari games
(Pong, Breakout, Seaquest, QBert) and three Gym-MuJoCo tasks (Halfcheetah, Hopper,
Walker-2d) for our experiments. Furthermore, we compare our implementations against
five estaablished baselines, namely CQL without any extensions, BC, a random policy,
online/offline DQN (Atari) and online/offline SAC (Gym-MuJoCo). All agents are
evaluated based on average return, normalized scores w.r.t. to random and expert
agents, interval estimates for IQM, mean and median, and probability of improvement as
introduced in Section 3.3.2.

An overview of our methodology workflow was given in Figure 3.1 and Algorithm 3.1.
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CHAPTER 4
Experiments

In this section we define what experiments we conduct in this work and how we conduct
them according to the methodology we established in the previous chapter. First, we
briefly introduce all the subsequent experiments. Then each experiment category is
described individually.

4.1 Overview & Experiment phases
To begin with, we give a general overview in chronological order of the experiments that we
conduct. We structure this chapter and the subsequent chapter in four experiment phases:
(1) Baselines, (2) Data augmentations, (3) Self-supervised methods, and (4) Online
fine-tuning for offline RL. All architectures are applied to the image-based benchmark,
Atari, as well as the state-based benchmark, Gym-MuJoCo, and trained for 2.5 million
and 500 thousand gradient steps, respectively. Depending on the task at hand, different
architectural choices are suitable. For example, while for an image-based task a CNN-
encoder might be required, a fully connected architecture might suffice for state-based
tasks. To ensure comparability of all methods, we retain the same choices for all tasks in
the same task category across all experiment categories. We discuss our choices in the
subsequent sections.

The first set of experiments aims to apply the selected baseline methods, online/offline
DQN, online/offline SAC, CQL and BC to the benchmark tasks. On the one hand,
these preliminary experiments result in the baseline performance scores to compare the
other methods against. On the other hand, they serve as a general validation process
of our experiment setup. As CQL forms the basis of all subsequent architectures, it is
crucial that the implementation works as expected. Therefore, achieved performance
measures should be comparable to the ones in the original publications. The other three
experiment categories represent the core contributions of this thesis. They investigate
how self-supervised methods, data augmentations and online fine-tuning can improve
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the learning behaviour of offline RL agents. First, we evaluate our selection of data
augmentations with CQL. Then, CQL is extended with the selected self-supervised
architectures Curl, SPR and SGI. Finally, we investigate how CQL can be used effectively
with offline pre-training and online fine-tuning.

4.2 General
First, we describe hyperparameters and architectural choices that remain constant
throughout the different experiment phases.

4.2.1 Hyperparameters
General parameters. Table 4.1 gives an overview of all parameters that remain
constant for both continuous control tasks (Gym-MuJoCo) and discrete control tasks
(Atari). All datasets used in this work consist of 1 million samples, as was discussed in
Chapter 3. As Fu et al. [2020], on Gym-MuJoCo we train all our algorithms for 500
thousand gradient steps. On Atari, we train all algorithms for 2.5 million steps, the same
number of gradient steps as used by Agarwal et al. [2020] and Kumar et al. [2020]. Every
epoch lasts for 10 thousand steps. For Gym-MuJoCo tasks, we evaluate the current agent
on the actual environment after every epoch. For computational reasons, we evaluate
the agent after every second epoch on Atari games. Therefore, each learning curve in
Chapter 5 contains 50 and 125 data points for Gym-MuJoCo tasks and Atari games,
respectively. Furthermore, we run each experiment with three random seeds. The first
seed was set manually, the other two seeds were drawn at random from a discrete uniform
distribution with lower bound of 0 and upper bound of 5000. All results we report in
Chapter 5 are the aggregate scores over all seeds.

Training parameters. In all our experiments, we use a batch size of 256 for Gym-
MuJoCo tasks and 32 for Atari games, just as Kumar et al. [2020]. The batch size of
32 is considered standard and widely used for the Atari benchmark [Mnih et al., 2015;
Hessel et al., 2018; Agarwal et al., 2020]. However, this design decision might not be
optimal for offline RL, and increasing the batch size could speed up training considerably
by better taking advantage of the entire GPU. This issue was previously also discussed by
Agarwal et al. [2020] in the context of offline RL. Indeed, prior work has shown that for
online RL agents, increasing the batch size was beneficial on Atari [Stooke and Abbeel,
2018]. We note that during our experiments the GPU utilization for Atari was at 50%
top, and trial experiments with a higher batch size indeed showed significant speed-ups.
To ensure comparability, however, we stick with the standard batch size of 32.

Throughout most of our experiments we use a discount factor “ of 0.99, as used in
Equation 2.1 (if an experiment uses a different value, this is indicated in the respective
section). During evaluation, Gym-MuJoCo agents use an ‘ of 0 whereas Atari agents use
an ‘ of 0.001 for ‘-greedy exploration. For Atari this implies, that 0.1% of the time a
random action is performed to explore the environment, instead of the greedy optimal
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action. The dilemma of exploration vs. exploitation was discussed in section 2.2.5. In
addition, to reduce variance, each evaluation step consist of 5 evaluation trials for both
Atari and Gym-MuJoCo tasks. The reported return is the mean return over these 5
trials.

Atari pre-processing. For Atari games, the observations are provided in image-space
and require additional pre-processing steps. We perform the same pre-processing steps
as prior work in online RL and offline RL for Atari [Mnih et al., 2015; Hessel et al.,
2018; Agarwal et al., 2020; Kumar et al., 2020]. First, each frame is down-sampled to
a resolution of 84 ◊ 84 pixels. Each observation consists of 4 stacked frames. Stacking
frames is useful for the agent to understand temporal relations. To illustrate, in Breakout,
frame-stacking allows the agent to observe what direction the ball is moving in. By only
perceiving a single frame, however, this would be impossible to infer. Thus, each action is
also repeated 4 times. Furthermore, frames are grey-scaled and pixel-scaled. In addition,
all rewards obtained by the agent during training are clipped to the range [≠1, 1].

Parameter Continuous control Discrete control
Dataset size 1M 1M
Gradient steps 500K 2.5M
# steps per epoch 10K 10K
Evaluation frequency (in epochs) 1 2
Seeds 42, 2509, 3333 42, 2509, 3333
Batch size 256 32
Discount factor (“) 0.99 0.99
Evaluation (‘) 0.0 0.001
Evaluation trials 5 5
Observations down-sampling - 84 ◊ 84
Frames stacked - 4
Frame skip (Action repetitions) - 4
Grey-scaling - True
Pixel-scaling - True
Reward clipping - [≠1, 1]
(Online) replay memory size 1M 1M
(Online) min replay size for sampling 1K 20K
(Online) sampling scheme Uniform Uniform
(Online) update interval 1 1

Table 4.1: General hyperparameters for continuous control tasks (Gym-MuJoCo) and
discrete control tasks (Atari) that remain constant throughout all experiments.

Online training. For our online "expert" baselines (as described in Section 3.3.2) we
fix the replay memory size at 1 million observations. The training only starts once the
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replay memory is populated sufficiently. For Gym-MuJoCo tasks, we set the minimum
replay memory size to 1 thousand observations. Similarly, for Atari we set it to 20
thousand observations, just as Agarwal et al. [2020]. Observations are drawn according
to a uniform sampling scheme, i.e., we do not make use of more involved replay buffers
such as Prioritized Experience Replay to ensure a fair comparison [Schaul et al., 2016].
For Atari, it is, however, not obvious how "long" online agents should be trained. All
offline agents have access to 1M observations and perform 2.5M gradient steps. As
discussed, for online Atari, it is common practice to stack four consecutive frames to a
single observation and to set the update interval to four. To ensure a fair comparison with
online agents, we consider a few options. Fist, if the training lasts for 2.5M environment
steps, the online agent only observes 625K observations and performs the same number
of gradient steps. To collect the same number of observations as offline agents (1M),
the online agent requires 4M environment steps, but performs only 1M gradient steps.
Similarly, to perform the same number of gradient steps as offline agents (2.5M), the
online agent requires 10M environment steps. However, in this case it would also observe
2.5M observations, more than double the amount as the offline agent. Another alternative
is to set the update interval to 1. Then the agent performs 2.5M gradient steps and
collects 625K observations. To determine the best option, we conducted a short ablation
study, which we present in Appendix A.1. Overall, we decided to set the update interval
of online agents to 1. This choice gives the most balanced scores and simplifies our
experimental setup for offline pre-training and online fine-tuning.

4.2.2 Dataset statistics

According to Fu et al. [2020], the Gym-MuJoCo datasets used in this work were generated
by training an online SAC agent and collecting the first 1M observations. The Atari
datasets used in this work were extracted from the Atari collection released by RL
Unplugged [Gülçehre et al., 2020]. The Atari observations were generated by an online
DQN agent over 50 million transitions [Gülçehre et al., 2020]. The "medium" datasets
we use in this work contain 1 million transitions collected between 9 and 10 million1. In
Table 4.2, we show the aggregate statistics for all Gym-MuJoCo tasks as well as for all
Atari games. We note that all rewards in the Atari datasets provided by [Gülçehre et al.,
2020] are clipped to range [≠1, 1]. Thus, the aggregate statistics shown in Table 4.2 are
significantly lower than the raw scores observed in our experiments.

In Table 4.3, we list the shapes of input observations as well as the number of actions
available to the agent in each of the environments. For continuous control tasks, the input
is a one-dimensional input vector that describes the robot’s current state. In contrast, for
discrete control tasks, each observation consists of a stack of four 84 ◊ 84 image frames.
The number of actions varies between 3 and 18 across all environments.

1As provided by d4rl-atari: https://github.com/takuseno/d4rl-atari
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Dataset Mean ± Std Min Q25 Q50 Q75 Max
Gym-MuJoCo

halfcheetah-medium-v2 4765.45 ± 355.43 -309.77 4689.34 4802.45 4904.05 5303.83
hopper-medium-v2 1422.05 ± 379.03 315.87 1231.71 1464.30 1621.47 3218.04
walker2d-medium-v2 2849.94 ± 1094.48 -6.61 2073.12 3495.89 3693.40 4226.94

Atari
Breakout 42.67 ± 15.89 1.00 31.00 41.00 53.00 91.00
Pong 18.19 ± 1.87 10.00 17.00 18.00 20.00 21.00
Seaquest 42.9 ± 14.41 1.00 33.00 43.00 53.00 101.00
QBert 132.06 ± 74.04 0.00 72.00 126.00 176.00 510.00

Table 4.2: Datasets statistics for Gym-MuJoCo and Atari tasks.

Dataset Observation shapes Action shapes/# of actions
Gym-MuJoCo

halfcheetah-medium-v2 (17,) (6,)
hopper-medium-v2 (11,) (3,)
walker2d-medium-v2 (17) (6,)

Atari
Breakout (4, 84, 84) 4
Pong (4, 84, 84) 6
Seaquest (4, 84, 84) 18
QBert (4, 84, 84) 6

Table 4.3: Observation and action shapes for Gym-MuJoCo and Atari tasks.

4.2.3 Network architectures
In Figure 4.1, we show the neural network encoder backbones we employ in this work. The
graphs were generated with Netron2, an open-source tool for neural network visualization.
The encoder backbones take input observations and return latent representations of them,
that are further used by the policy, Q-function heads, and self-supervised methods.

Continuous control. For most of our Gym-MuJoCo experiments, we employ a stack
of three linear layers with hidden size 256 as our encoder backbone. The exception are
experiments with online/offline SAC, for which we use a stack of two linear layers with
the same hidden size, as was used by Fu et al. [2020]. The dimension of the input vector,
as well as the output dimension, depend on the particular environment (as listed in Table
4.3).

Discrete control. For Atari environments we use the standard CNN encoder backbone
as was used in prior work [Mnih et al., 2015; Hessel et al., 2018; Agarwal et al., 2020;

2Available at https://github.com/lutzroeder/netron
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Kumar et al., 2020]. This network architecture consists of a stack of three convolutional
layers followed by a linear output layer. The channel sizes, filter sizes and strides are set to
(32, 8◊8, 4), (64, 4◊4, 2), and (64, 3◊3, 1), for the three convolutional layers, respectively.
Finally, the hidden size in the linear output layer is set to 512. As for Gym-MuJoCo tasks,
the exact input and output shapes depend on the respective environment. The network
backbones shown in Figure 4.1 depict the default neural network encoder backbones.
For different algorithms the architectural choices might differ slightly, but this will be
discussed in the respective sections.

(a) Gym encoder (b) Atari encoder

Figure 4.1: The neural network encoder backbones for continuous and discrete control
tasks.

4.3 Baselines
Next, we describe our baseline experiments. This includes our experiments to acquire
"expert" and "random" scores with online/offline DQN, online/offline SAC, and a random
agent, as well as our experiments with CQL, and BC. These experiments are fundamental,
as they not only aim to obtain baseline scores, but also serve as a validation process for
the implemented source code. For our implementations many design decisions, including
the neural network architectures, hyperparameter choices, and pre-processing steps are
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kept constant, as listed in Section 4.2.1. There are, however, differences between different
algorithms. In this section, we discuss the parameter choices for our baseline experiments.

4.3.1 Online & offline SAC
For our online and offline experiments with SAC [Haarnoja et al., 2018], we use the
same hyperparameters as used by Fu et al. [2020] and Kumar et al. [2020]3. We list
all hyperparameters in Table 4.4. Notably, we also make use of automatic entropy
regularization (denoted as temperature) and the twin Q-function trick (# of critics). In
contrast to other algorithms, online/offline SAC only uses a stack of two linear layers in
the encoder instead of three layers.

Parameter Value
Optimizer Adam
Policy learning rate 3e≠4
Q-function learning rate 3e≠4
Temperature learning rate 3e≠4
Initial temperature 1.0
Target smoothing coefficient (·) 0.005
# of critics 2
# of hidden layers 2
Hidden units 256
Non-linearity ReLU

Table 4.4: SAC hyperparameters for continuous control tasks (Gym-MuJoCo).

4.3.2 Online & offline DQN
For our implementation of online and offline DQN, we use the same hyperparameters as
Agarwal et al. [2020], except for the learning rate, for which we use a slightly higher value.
Agarwal et al. [2020] use similar hyperparameters for online/offline DQN as Gülçehre
et al. [2020]. For the CNN encoder-backbone, we use the standard network architecture
shown in Figure 4.1.

4.3.3 Random agent
As described in Section 3.3.2 we also require the random_score for the score normal-
ization. Therefore, we use the random policy provided by d3rlpy and evaluate it on
all environments. For discrete control tasks, the random policy simply selects an action
uniformly at random from the action space, i.e., a ≥ U(0, num_actions). Similarly, for
continuous control tasks, the random policy selects n action values (Table 4.3), i.e., the
action is an n-dimensional vector. Each action value is drawn from a continuous uniform

3Both works are based on this implementation: https://github.com/vitchyr/rlkit
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Parameter Value
Optimizer Adam
Learning rate 6.25e≠5
Target network update interval 2000
(Online) Training ‘ 0.01
(Online) ‘-decay schedule 250K

Table 4.5: DQN hyperparameters for discrete control tasks (Atari).

distribution, a ≥ U(min, max), where min and max refer to the minimum and maximum
action for the respective environment (e.g., [≠1, 1]). Thus, this agent requires no training.
The action shapes/number of actions for each environment are shown in Table 4.3.

4.3.4 Behaviour cloning (BC)
For BC, we employ the standard hyperparameters and network architectures as listed in
Table 4.1 and Figure 4.1, respectively. All other hyperparameters are listed in Table 4.6.
The two major differences to other algorithms are the learning rate and that BC does
not employ discounting (“ = 1).

Parameter Value
Optimizer Adam
Learning rate 1e≠3
Discount factor (“) 1

Table 4.6: Behaviour Cloning hyperparameters for continuous control tasks (Gym-
MuJoCo) and discrete control tasks (Atari).

4.3.5 CQL
In Table 4.7, we list the hyperparameters we use for our CQL experiments. CQL forms the
basis of all subsequent experiments with self-supervised methods and data augmentations.
For continuous control tasks CQL is built on top of SAC [Haarnoja et al., 2018]. Similarly,
for discrete control tasks, CQL is built on top of QR-DQN, a distributional version
of DQN with quantile regression [Dabney et al., 2018]. Thus, CQL requires different
hyperparameter choices depending on the task at hand, as shown in Table 4.7.

For Atari games, we use the same hyperparameters as Kumar et al. [2020]. Also, for
Gym-MuJoCo tasks, we use the same hyperparameters as Kumar et al. [2020], except
for the conservative weight –. The conservative weight determines how strongly the
Q-function is penalized for overestimating state-action pairs. Kumar et al. [2020] propose
to keep – fixed for discrete control tasks. For continuous control tasks, however, they
introduced two versions, one with a fixed – and another version for which – is tuned
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automatically during the training process. In their experiments, the latter outperformed
the former slightly. However, in our preliminary experiments with CQL, we did not
see a big difference in performance, despite high additional computational cost for the
version with automatic tuning of –. Consequently, we discard the version with automatic
tuning in favour of the version with a fixed –. For Gym-MuJoCo we thus set – to 5.0, as
proposed by Kumar et al. [2020] for the small-data regime. For Atari games, – is set to
4.0 by default.

Parameter Continuous control Discrete control
Optimizer Adam Adam
Adam (‘) 1e≠8 0.01/32
Policy learning rate 3e≠5 -
Q-function learning rate 3e≠4 5e-5
Temperature learning rate 3e≠5 -
Fixed – True True
Initial – 5.0 4.0
Initial temperature 1.0 -
Target smoothing coefficient (·) 0.005 -
# of action samples 10 -
# of critics 2 1
Q-function type Mean Quantile regression
# of Q-heads - 200
Target network update interval - 2000

Table 4.7: CQL hyperparameters for continuous control tasks (Gym-MuJoCo) and
discrete control tasks (Atari).

4.4 Data augmentations
Next, we describe our experiments on continuous control tasks and discrete control tasks
with the augmentations amplitude scaling, Gaussian noise, random cropping, random
shifting and random cutout.

4.4.1 Discrete control: Atari
In Table 4.8, we show the parameters we use for our experiments with data augmentations
on the Atari benchmark. There are a few common parameters across all augmentations
that determine how the data augmentations are applied to the input observations.

Same augmentations. First of all, we have the option to apply either the same or
different augmentations (e.g., the same random crop or a different random crop) to current
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observations s and next observations sÕ. By default, we use the same augmentations for
the current and next observations, s and sÕ respectively (denoted "same" in Chapter 5).

Augmentation probability. Furthermore, we can apply augmentations with a certain
augmentation probability, paug. If augmentations are used, we always augment the input
observations by default (i.e., paug = 1.0) but we also experimented with different values
for the augmentation probability (e.g., paug = 0.5), as will be discussed in Chapter 5.

Multiple target augmentations. As described in Section 2.4.2, the Q-estimates can
be computed over K target augmentations as proposed by Yarats et al. [2021b] for the
DrQ architecture. In our implementation, we set K to 1 by default, which is equivalent
to the augmentation strategy employed by RAD [Laskin et al., 2020a]. However, we also
experimented with K = 2 target augmentations.

Augment conservative. As we use CQL as the base offline RL algorithm, we have to
decide whether the conservative loss should be computed from augmented observations
or the original observations. By default, we use the augmented observations for the
computation of the conservative loss.

Random crop. For the random crop augmentation, we first extract an 80 ◊ 80 crop
from the original input observation. Then we pad the resulting crop by two pixels using
replication of the input boundary to the original dimension of 84 ◊ 84. For Atari, each
input observation is a stack of four consecutive frames. Thus, in line with prior work, we
apply all augmentations consistently across the stack, but randomly across the batch
[Laskin et al., 2020a; Yarats et al., 2021b].

Random shift. Random shift composes the same two augmentation operations as
our version of random crop, but in reverse order. First, random shift pads the input
observation by 4 pixels by replicating the image boundary. Then a random crop of
dimension 84 ◊ 84 is performed. The same parameters are used by Yarats et al. [2021b].
Again, the augmentations are applied consistently across the stack but at random across
the batch.

Cutout. Finally, cutout constructs a randomly placed and randomly sized rectangle
of maximum dimension cutmin ◊ cutmax from the input image and sets all pixel values
within that rectangle to zero. Thus, applying cutout results in an image with a black
cut-out region (black = 0, white = 255 in pixel space).

4.4.2 Continuous control: Gym-MuJoCo
Next, we describe the data augmentations that we employ for our experiments on Gym-
MuJoCo. The respective parameters are listed in Table 4.9. We omit the common
parameters (paug, K target augmentations, etc.), as they remain constant and were
already described in the previous section.

Amplitude scale. For amplitude scaling, the new observation is constructed according
to snew = s ú U(scalemin, scalemax). By default, we choose 0.8 and 1.2 for scalemin and
scalemax, respectively. These are the same values as used by Laskin et al. [2020a].
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Parameter Random crop Random shift Cutout
Same augmentations (s, sÕ) True
Augmentation prob (paug) 1.0
K target augmentations 1
Augment conservative True
Crop size 80 84 -
Padding 2 4 -
Minimum cut (cutmin) - - 10
Maximum cut (cutmax) - - 30

Table 4.8: Data augmentations for discrete control tasks (Atari).

Gaussian noise. Similarly, for Gaussian noise the augmented observation is constructed
according to snew = s + N (µ, ‡), with µ = 0 and ‡ = 1, respectively. Again, we use the
same parameters as Laskin et al. [2020a]. We also experimented with different values for
‡, as will be presented in Chapter 5.

Parameter Amplitude scale Gaussian noise
Minimum scale (scalemin) 0.8 -
Maximum scale (scalemax) 1.2 -
Noise mean (µ) - 0
Noise std (‡) - 1

Table 4.9: Data augmentations for continuous control tasks (Gym-MuJoCo).

4.5 Self-supervised methods
In this section, we describe our experiments with the self-supervised methods Curl, SPR
and SGI.

4.5.1 Offline Curl
For our implementation of offline Curl, we keep the same parameters as for the base
CQL agent. Curl has a few additional hyperparameters that are listed in Table 4.10 for
continuous and discrete control tasks.

Augmentations. To compute the contrastive loss (Equation 2.18 in Section 2.3.2), Curl
requires to construct the queries and keys (q, and k) by encoding the augmented input
observations s. For Atari, we use random cropping as the contrastive augmentation, as
proposed by Laskin et al. [2020b]. In the original publication, Curl was only applied to
vision-based tasks. We extend our implementation of Curl to environments with state-
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based inputs (Gym-MuJoCo). To this end, we use amplitude scaling as the contrastive
augmentation for all Gym-MuJoCo tasks. Laskin et al. [2020b] proposed two ways of using
augmentations in Curl. Either augmentations are employed only for the computation of
the contrastive loss, or augmentations are applied globally to the observations that are
fed into the regular the RL objective. By default, Laskin et al. [2020b] used the latter
variant. We follow their methodology and use global augmentation variant by default
with amplitude scaling and random cropping for continuous control tasks and discrete
control tasks, respectively. We also experiment with different data augmentations (e.g.,
Gaussian noise instead of amplitude scaling), as we discuss in Section 5.3.

If the global augmentation variant is used, we can either apply different random aug-
mentations to the current observation s and next observations sÕ or apply the same
augmentations (e.g., the same random crops) to s and sÕ. By default, we always apply
the same augmentations to s and sÕ but we also experiment with the other variant.
Furthermore, as described in Section 2.4.2, we can compute the Q-estimates over K
target augmentations as used in DrQ [Yarats et al., 2021b]. In our implementation, we
set K to 1 by default.

Parameter Continuous control Discrete control
Contrastive augmentation Amplitude scale Random crop
Global augmentation Amplitude scale Random crop
Same augmentations (s, sÕ) True
Augmentation prob (paug) 1.0
K target augmentations 1
Encoder linear dim 256
Contrastive latent dim 256
EMA (m) 0.01
EMA update frequency 1
Renormalize False
Layer norm True
Batch norm False

Table 4.10: Offline Curl hyperparameters for continuous control tasks (Gym-MuJoCo)
and discrete control tasks (Atari).

Curl components. To encode the augmented observations, we use the standard encoder
backbones shown in Figure 4.1. For discrete control tasks, we reduce the dimension of the
last linear layer from 512 to 256 as in the original publication of Curl. As shown in Table
4.7, we employ two critic networks for the continuous control base CQL agent. Thus,
to ensure that both critic encoders are involved in the computation of the contrastive
loss, we encode the input observation with both encoder networks and average their
outputs. The latent dimension of the encoded queries and keys, and thus the bilinear
weight matrix W (Equation 2.18) are of dimension 256 for both discrete and continuous
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control tasks. As described in Section 2.3.2 and depicted in Figure 2.6, the queries are
constructed by the online encoder, while the keys are constructed by the momentum
encoder. The weights of the momentum encoder are the EMA (Equation 2.19) of the
online encoder (m = 0.01) and synced after every update step.

Normalization. Laskin et al. [2020b] employ LayerNorm [Ba et al., 2016] after the
last layer of the encoder. By default, we apply the same normalization. However, we
also experiment with a variant that replaces LayerNorm with BatchNorm [Ioffe and
Szegedy, 2015] and a variant that normalizes the outputs of the encoder to lie in range
[0, 1] (re-normalize) as done by Schrittwieser et al. [2020] and Schwarzer et al. [2021a].

4.5.2 Offline SPR
Next, we describe our architectural and hyperparameter choices for offline SPR. All
parameters are shown in Table 4.11. The overall architecture of SPR was examined in
Section 2.3.2 and is depicted in Figure 2.7. The underlying idea of SPR is to predict
future states in latent space via an explicit transition model, and to learn more effective
representations as a result.

Augmentations. SPR can be used both with and without data augmentations. By
default, Schwarzer et al. [2021a] employ random shifts as data augmentations, and
we adopt the same strategy. However, SPR was only applied for image-based tasks.
Therefore, we again extend our implementation of offline SPR to state-based tasks
(Gym-MuJoCo) and use amplitude scaling as the respective data augmentation.

SPR components. Just as Schwarzer et al. [2021a], we use a prediction depth of 5 for
the transition model and an SPR loss weight ⁄ of 2 for both discrete and continuous
tasks. For discrete control tasks, we employ the same convolutional transition model as
Schwarzer et al. [2021a] that obtains the 64 ◊ 7 ◊ 7 output from the last convolutional
encoder layer (Figure 4.1). It comprises two 64◊3◊3 layers with padding of 1, BatchNorm
after the first convolutional layer, and ReLU activations after each layer. The transition
model is action conditioned, and thus a one-hot vector that represents the action is
appended to each location in the input Schwarzer et al. [2021a]. The last linear layer
of the encoder backbone (with hidden dimension of 256) is used as the projection layer.
The projection layer receives the flattened output of the transition model (64 ◊ 7 ◊ 7 =
3136) and projects down to dimension of 256. Furthermore, the SPR prediction head
operates on the output of the projection layer and preserves the dimensions.

As SPR was only intended for pixel-based inputs, we extend the use of the transition
model to state-based environments. To encode the input observations, we again use the
same linear encoder as for other continuous control tasks. As mentioned in 4.5.1, we
employ two critic networks for continuous control tasks. Thus, to involve both networks
in the computation of the SPR loss, we encode the observations with both encoder
networks and average their predictions. Our linear transition model consists of a stack
of two linear layers each with hidden size 256, ReLU activations after each layer, and
BatchNorm after the first linear layer. The transition model is action conditioned, thus
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Parameter Continuous control Discrete control
Global augmentation Amplitude scale Random shift
Transition model type Linear Convolutional
Same augmentations (s, sÕ) True
Augmentation prob (paug) 1.0
SPR steps/depth 5
SPR loss weight (⁄) 2
Encoder linear dim 256
Projection dim 256
Prediction head dim 256
EMA (m) 1
EMA update frequency 1
Re-normalize True
Layer norm False
Batch norm False
Updates per step 1

Table 4.11: Offline SPR hyperparameters for continuous control tasks (Gym-MuJoCo)
and discrete control tasks (Atari).

we simply append the action to the encoded input. Finally, the projection and prediction
heads are two separate linear layers of the same dimension. Similar to Curl, SPR employs
separate momentum networks for the transition model and projection head for which the
parameters are the EMA (Equation 2.19) of the online transition model and projection
head, respectively. Schwarzer et al. [2021a] proposed to use m = 1 in case augmentations
are enabled and m = 0.01 if no augmentations are used. We adopt the same choice. The
parameters of the momentum networks are synced after every update step.

Normalization. As mentioned in Section 4.5.1, Schwarzer et al. [2021a] proposed to
re-normalize the outputs of the encoder and the outputs of the transition model to lie
in range [0, 1]. By default, we use the same normalization strategy. However, we also
experiment with LayerNorm and BatchNorm, similar to our experiments with Curl.

Update steps. Finally, Schwarzer et al. [2021a] use two update steps per batch. However,
to ensure a fair comparison, we stick with using only a single update step per batch, as
this would double the number of gradient steps. The results for our experiments are
described in Chapter 5.

4.5.3 Offline SGI

In this section, we describe our experiment setup for SGI [Schwarzer et al., 2021b]. SGI
is based on SPR, thus we retain the same parameter choices as shown in Table 4.11. This
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includes the data augmentation strategy, SPR components and normalization strategy.
Due to computational constraints, we could only conduct experiments on Gym-MuJoCo.

Training phases. SGI is trained in two phases [Schwarzer et al., 2021b]. First, the
representation is pre-trained in a self-supervised, reward-free manner. Then, the pre-
trained representation is used for online fine-tuning. In contrast, we use the pre-trained
representation for offline RL. For Gym-MuJoCo, we pre-train for five times the number
of offline gradient steps, i.e., 2.5M steps. Schwarzer et al. [2021b], pre-trained the
representations on larger datasets (6M). To ensure a fair comparison with other algorithms,
however, we pre-train on the same dataset as used during offline RL (1M).

Three SSL objectives. SGI consists of three self-supervised components: SPR, Goal-
conditioned RL (GCRL) and Inverse modelling (IM) [Schwarzer et al., 2021b]. During
pre-training, only the three self-supervised objectives are employed, while during fine-
tuning the RL and SPR objectives are optimized together. The experiments by Schwarzer
et al. [2021b] showed that most of the performance gains stem from SPR and IM (Table
2 in the original publication). Therefore, for simplicity, we do not employ GCRL in
this work. The goal of IM is to predict the action at from two consecutive observations
st and st+1. In fact, SGI integrates IM into SPR by predicting at+k from the latent
projections/predictions ŷt+k and ỹt+k (as used in Equation 2.20 and Figure 2.7). The IM
consists of two linear layers (hidden size 256) and a ReLU activation in between.

Learning rates. Schwarzer et al. [2021b] found it essential to reduce the learning rates
of the encoder and SPR transition model by a factor of 100 and the learning rates of
other pre-trained weights by a factor of 3. For Gym-MuJoCo we found it useful to only
reduce the learning rate of encoder and transition-model by a factor of 3 instead of 100,
due to the dynamics of actor and critic in CQL.

Parameter Continuous control
Pre-training steps 2.5M
Fine-tuning steps 500K
Global augmentation Amplitude scale
Inverse model type Linear
Goal-conditioned RL False
SPR steps/depth 5
SPR loss weight (⁄SP R) 2
Inverse modelling weight (⁄IM ) 1
EMA (m) 0.01
EMA update frequency 1
Lr reduction factor (encoder, transition model) 3
Lr reduction factor (other pre-trained weights) 3

Table 4.12: Offline SGI hyperparameters for continuous control tasks (Gym-MuJoCo).
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4.6 Online fine-tuning for offline RL
Finally, we describe our experiments with offline pre-training and online fine-tuning.
We list the respective hyperparameter choices in Table 4.13. For both Gym-MuJoCo
and Atari, we first pre-train offline for 30% of the total number of gradient steps. This
corresponds to 150K and 750K gradient steps, respectively. Afterwards, the agents switch
to online training for 350K and 1.75M gradient steps. We choose this proportion, as our
experiments in Section 5.1 show, that after roughly 30% of the total number of gradient
steps, CQL achieves a level of performance that is similar to its final performance.

By default, we turn off the conservative loss after the offline RL phase, set the conservative
weight – to zero and initialize a fresh replay buffer. The new observations gathered during
online training come from the same policy as the one being trained, and the optimization
does not suffer from action distributional shift. However, the sudden change of the loss
function may change the learning dynamics. Thus, we also experiment with variants
that do not turn off the conservative loss abruptly, but only gradually over time. In
particular, we experiment with halving or decaying the conservative weight after n epochs
or gradient steps, respectively. Also, we experiment with a variant that turns off the
conservative loss n epochs into the online training and another variant that automatically
tunes the conservative weight – of CQL as proposed by Kumar et al. [2020].

We keep all other CQL parameters for offline pre-training (e.g., learning rates, network
architectures, evaluation ‘) and online fine-tuning (e.g., exploration, update start epoch,
etc.) constant, as presented in the previous sections (Tables 4.1, 4.7).

Parameter Continuous control Discrete control
Total gradient steps 500K 2.5M
Offline gradient steps 150K 750K
Online gradient steps 350K 1.75M

Default online RL parameters
Use conservative loss False False
Conservative weight – 0.0 0.0
Buffer init size 0 0

Alternative online RL parameters
Use conservative loss True True
Conservative weight – 5.0 4.0
Half – every (in epochs) 5 5
Decay – every (in steps) 1000 1000
– decay 0.99 0.99
Zero – after (in epochs) 5 5

Table 4.13: Hyperparameters for offline pre-training and online fine-tuning for continu-
ous control tasks (Gym-MuJoCo) and discrete control tasks (Atari).
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CHAPTER 5
Results

In this chapter, we present the results we obtained in our experiments. This includes a
detailed empirical analysis and a discussion of the insights we gained.

5.1 Baselines
First, we present the results we obtained with our selected baseline algorithms on
continuous and discrete control tasks.

5.1.1 Continuous control: Gym-MuJoCo
Learning curves. Figure 5.1 shows the learning curves for online/offline SAC, BC and
CQL on continuous control tasks. Each curve represents the mean performance across
the three seeds. The shaded area around the curve indicates the standard deviation
across the three seeds.

We make a few interesting observations. First of all, we observe that the offline RL
algorithm CQL (blue curve) outperforms all other baseline agents, including online SAC,
on all three Gym-MuJoCo tasks. In contrast to online SAC, CQL achieves its final
performance relatively quickly. After about 150K steps, the learning curve of CQL
flattens out, indicating that the agent has leveraged all the information available in the
dataset to extent. As environment interaction is not possible, CQL is not able to collect
new information that could get rid of uncertainty and can therefore not improve further.

Online SAC, in comparison, requires much longer until it reaches its final performance
in our experiments. The main reason for the slower initial learning progress is that, as
an online RL algorithm, SAC initially performs actions at random. Consequently, the
agent first has to discover high-reward behaviours by accident, and thus it takes much
longer until the first learning progress materializes in the performance curve. The initial
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random behaviour of online SAC is also reflected in the high standard deviation across
the three seeds, as indicated by the shaded red area in Figure 5.1. In contrast to CQL,
however, the learning curve of online SAC points upwards towards the end of training
and does not flatten out. If trained for longer, the performance of online SAC would
arguably continue to improve. For CQL this would likely not be the case.

(a) Halfcheetah (b) Hopper

(c) Walker2d

Figure 5.1: Learning curves for baseline agents on continuous control tasks, Halfcheetah,
Hopper and Walker2d. CQL (blue) outperforms other baselines on all three tasks.

On the one hand, Offline RL is characterized by fast initial learning progress, but limited
capacity for long-term improvement. Online RL, on the other hand, results in slow initial
learning progress, but substantial capacity for long-term improvement. These contrary
characteristics of online and offline RL suggest that combining offline with online training
can be a promising research direction. It should be advantageous to start learning offline
and to continue with online training once the offline dataset has been leveraged. For
example, if we consider the learning curves for Walker2d in Figure 5.1, the agent could
learn offline for 150K steps and then continue to learn online for the remaining 350K steps.
Composing the red and blue curve would theoretically result in much better performance.
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This initial observation further motivates the experiments we present in Section 5.4.

In contrast to online SAC, the offline version of SAC does not exhibit a similar learning
progress over time. This is expected, as SAC is an online RL algorithm that relies on
online interaction with the environment and thus is not able to learn effectively from a
static dataset. The reason for the poor performance of offline SAC is action distributional
shift in the critic, which was explained in Section 2.2.2. CQL, in contrast, mitigates
the impact of action distributional shift by integrating the conservative penalty term
(Section 2.2.3). This reflects the necessity for dedicated offline RL algorithms.

Finally, we observe that BC (in green) exhibits an almost horizontal learning curve. This
behaviour is also expected, as BC simply imitates the behaviour available in the dataset.

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 Mean
Final step (500K)

Offline SAC 46.3 -0.4 -0.1 15.3
BC 98.0 89.0 79.9 89.0
CQL 120.7 140.2 99.2 120.0

Midpoint (250K)
Offline SAC 9.8 -0.5 -0.4 3.0
BC 110.8 124.9 191.2 142.3
CQL 132.7 184.7 244.3 187.3

Table 5.1: Normalized scores for baseline agents on continuous control tasks (in %).

Raw and normalized scores. In Table 5.1 we show the normalized scores (in %)
at the final time step (500K) and at the midpoint of training (250K) of all baselines
across the three Gym-MuJoCo tasks. Furthermore, we show the raw scores (mean ±
standard deviation) of all experiments in Table A.2 in Appendix A.2. Machado et al.
[2018a] advocate for reporting the RL agent’s performance at multiple points in time
during training to ensure a more robust comparison of architectures. This evaluation
method was proposed in the context of Atari, but we think it is useful for RL in general.
Therefore, we always additionally show the raw and normalized performance of all agents
at the midpoint of training. The scores are normalized according to Equation 3.1, where
the scores achieved by the random policy and online SAC represent the random and
expert scores, respectively. Thus, the normalized scores for the random policy and online
SAC correspond to 0% and 100% on all tasks, and we omit their scores.

We note that the offline algorithms, CQL and BC, achieve on average 120% and 89% of
the performance of the online SAC agent at the final step (500K). The offline version
of SAC, however, performs poorly and is comparable to the random policy on two of
the tasks, achieving only 15% of the performance of its online complement. Offline SAC
only shows signs of learning for the Halfcheetah task. The scores at the midpoint of
training, again, reflect the characteristics of offline and online RL established before, with
CQL achieving 187.3% of the performance of the expert online algorithm. Similarly, BC
achieves 142.3% of the expert’s performance after 250K training steps.
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To understand the impact of the conservative weight – on the learning performance of
CQL, we conduct an ablation study with variable values for –. We present the results of
these experiments in Section A.2.2 in Appendix A.2.

5.1.2 Discrete control: Atari
Next, we describe the results for our baseline experiments on the discrete control envi-
ronments, Pong, Breakout, Seaquest and QBert.

(a) Pong (b) Breakout

(c) Seaquest (d) QBert

Figure 5.2: Learning curves for baseline agents on discrete control tasks, Pong, Breakout,
Seaquest and QBert.

Learning curves. Figure 5.2 shows the learning curves for BC, CQL and online/offline
DQN. Again, we observe fast initial learning progress of CQL (in blue) but a flattening of
the learning curve as the training advances. In fact, on the game Pong, the performance
of CQL even degrades towards the end of training. We did not observe this behaviour on
Gym-MuJoCo environments. It is important to note that the learning curves for CQL
shown in Table 5.2 were produced with – = 4.0 for the conservative weight. We also
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experimented with other values for –, similar to our experiments with variable – on
Gym-MuJoCo. We present the respective results for our ablation study in Section A.2.4
in Appendix A.2.

In contrast to the offline agent CQL, the online RL agent DQN again exhibits opposite
characteristics: slower initial learning progress but continuous improvement throughout
the course of training (except for QBert). This further motivates the necessity for agents
that can learn both offline and online to combine the benefits of both paradigms.

The offline version of DQN performs poorly overall, but exhibits a somewhat stable
learning progress on Seaquest. However, also on Seaquest the performance of offline DQN
degrades towards the end of training, due to the impact of action distributional shift on
the learned Q-function (as discussed in Section 2.2.2). Furthermore, BC also performs
poorly on Pong and Seaquest, but does better on Breakout and QBert.

Raw and normalized scores. Again, we show the normalized scores and raw scores
for all algorithms at the last step (2.5M) and at the midpoint of training (1.25M) in
Table 5.2 and Table A.4 in Appendix A.2, respectively. Now, the online DQN agent
represents the expert performance (100%) and we omit its scores.

Overall, CQL attains 139% the performance of online DQN at the final time step as
shown in Table 5.2. However, the performance varies strongly between the four Atari
games, and the percentual advantage of CQL stems mainly from high scores on QBert.
On QBert, CQL achieves a score three times higher than that of online DQN. In contrast,
for Seaquest it only performs half as well as the expert agent. Possibly, because Seaquest
is considered harder than other games and requires longer term planning (e.g., returning
to the surface before running out of oxygen) [Bellemare et al., 2013a]. The other offline
algorithm, BC, achieves 37% of the expert’s performance at the final time step.

Agent Breakout Pong QBert Seaquest Mean
Final step (2.5M)

Offline DQN 3.2 3.6 5.4 42.2 13.6
BC 49.8 -2.3 101.2 -0.2 37.1
CQL 130.7 73.6 297.5 54.2 139.0

Midpoint (1.25M)
Offline DQN 3.1 16.8 2.0 783.7 201.4
BC 95.1 -2.6 111.0 97.8 75.3
CQL 129.8 96.7 461.6 134.8 205.8

Table 5.2: Normalized scores for baseline agents on discrete control tasks (in %).

However, if we consider the performance after only half the number of time steps (1.25M)
the impression may be different. Under these circumstances, CQL achieves 205.8% of
the performance of online DQN. Again, most of the percentual advantage stems from the
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good performance on QBert (461.6%), but after 1.25M training steps CQL also performs
better than the expert agent on Seaquest.

At the midpoint of training, the offline version of DQN also attains higher scores on
average than its online counterpart, even though it performs poorly on three of the four
games. Interestingly, offline DQN does, however, achieve the highest score observed so far
on Seaquest. Over 1.25M steps BC achieves 75.3% the expert algorithm’s performance.

5.2 Data augmentation

In this section, we present the results for our experiments with data augmentations.

5.2.1 Continuous control: Gym-MuJoCo

(a) Halfcheetah (b) Hopper

(c) Walker2d

Figure 5.3: Learning curves for CQL with amplitude scaling (Amp) on continuous
control tasks.
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In Tables A.6 and A.7 in Appendix A.3 we show the raw and normalized scores for
our experiments with data augmentations for a number of different configurations on
continuous control tasks. As noted by Agarwal et al. [2021], the score tables can become
quite overwhelming for a large number of experiments. Therefore, we focus our analysis
on the figures for learning curves, interval estimates and probabilities of improvement.
Amplitude scale. In Figure 5.3 we show the learning curves for augmented CQL with
amplitude scaling (Amp) in comparison to the base CQL agent. We ran experiments with
different configurations for the parameters discussed in Section 4.4 (same augmentations
for current & next observations, probability of augmentation paug, conservative weight
–). Overall, we observe that most learning curves exhibit a similar learning progress.
However, some configurations tend to be beneficial whereas others seem to be detrimental
to the learning progress. For example, on Halfcheetah the blue (paug = 0.5, – = 2.5,
same) and yellow (– = 2.5, same) learning curves clearly dominate the red CQL learning
curve. On the same task, however, the green (– = 2.5), grey (paug=0.5) and brown curve
(default) are clearly worse than the base algorithm. On Walker2d the configurations with
– = 2.5 lead to more noisy learning curves, whereas all other parameters do not have
much impact on the stability of the learning curves.

(a) Interval estimates

(b) Probability of improvement

Figure 5.4: Interval estimates of normalized scores and probability of improvement for
CQL with amplitude scaling (Amp) on continuous control tasks.

In terms of mean normalized performance (Table A.7), the variant with – = 2.5 and
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same augmentations for s and sÕ reaches the highest score observed so far, 123.1% of
the performance of the expert algorithm. This configuration outperforms the base CQL
agent by 3.1%. These results are interesting, as CQL with – = 2.5 performed much worse
than the default variant with – = 5.0, as we demonstrate in our ablation study in Section
A.2.2 in Appendix A.2. The reason for this is that data augmentation acts as a form of
regularization, and thus the conservative weight can be set to a lower value.

In Figure 5.4, we show the interval estimates and probabilities of improvement over
base CQL for all variants of CQL with amplitude scaling. The graphical representation
gives a clearer picture than the score tables (A.6, A.7). If we consider the IQM we
observe that most configurations are clearly worse than the default CQL agent, except
the configuration with – = 2.5 and same augmentations. In fact, this configuration has a
probability of improving over the default CQL agent of 85% given the observed scores.

(a) Halfcheetah (b) Hopper

(c) Walker2d

Figure 5.5: Learning curves for CQL with Gaussian noise (GN) on continuous control
tasks.

Gaussian noise. Next, in Figure 5.5 we show the learning curves of all augmented CQL
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agents with Gaussian noise. Overall, we observe a similar behaviour as for agents with
amplitude scaling. On some tasks, the learning curves of augmented agents are clearly
above the learning curve of the base CQL agent, while for others they are clearly below.
In particular, we observed poor learning performance with standard deviation ‡ = 1.0
(default) for the Gaussian noise (green, brown, pink, and purple curves). ‡ = 1.0 leads to
a noisy training progress and lower overall scores. This indicates that the generated noise
is too extreme for the underlying task. Therefore, we also experimented with ‡ = 0.01
and observed better learning progress with this setting. In particular, we observed that
‡ = 0.01 in combination with – = 2.5 and same augmentations for s and sÕ works
best, similar to the results with amplitude scaling. This configuration achieves a mean
normalized score of 121.8% the performance of the expert, outperforming CQL by 1.8%.

In Figure 5.6 we show the interval estimates and probabilities of improvement over base
CQL. Considering the IQM, the performance ranking remains the same as for the mean.
The configuration with – = 2.5 and same augmentations performs better than base CQL
and has a mean probability of improvement of roughly 78% given the observed scores.
All other configurations, in contrast, perform way worse than the base CQL agent.

(a) Interval estimates

(b) Probability of improvement

Figure 5.6: Interval estimates of normalized scores and probability of improvement for
CQL with Gaussian noise (GN) on continuous control tasks.

Summary. In our experiments, we saw that data augmentations can lead to improve-
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ments (2-3%) in performance on continuous control Gym-MuJoCo tasks. However,
extensive hyperparameter tuning may be necessary. If not tuned properly, the augmen-
tations are more likely to be detrimental to the learning progress. This suggests that
they might not be useful in every situation. For our experiments, however, we found that
applying data augmentations with – = 2.5 and using the same augmentation for current
observations s and next observations sÕ performed best. Data augmentations implicitly
regularize the value function, and thus we found it useful to reduce the conservative
weight in return by half from – = 5.0 to – = 2.5.

5.2.2 Discrete control: Atari

In Tables A.8 and A.9 in Appendix A.3 we show the raw and normalized scores for all our
experiments with data augmentations on Atari games. We again run a number of different
configurations for each of the selected augmentations: random crop, random shift and
cutout. As the learning curve figures become quite convoluted for many configurations,
we only show a selection of learning curves in Figure A.6 in Appendix A.3. Also, the result
tables and learning curves become quite overwhelming for a high number of configurations,
and thus we primarily analyse our experiments based on the interval estimates in Figure
5.7. In Figure 5.7, we observe that all augmented variants of CQL are clearly worse than
the base CQL agent in terms of mean normalized performance. If we consider the IQM
instead of the mean, we notice that the confidence intervals overlap widely. The score
tables and learning curves (Tables A.8, A.9, Figure A.6) also tell a similar story. Thus,
in our experiments on discrete control Atari games, data augmentations did not improve
the offline RL agent’s learning performance. If anything, they rather hurt the agent’s
ability to learn high-reward behaviour. Why is this the case?

Figure 5.7: Interval estimates for CQL with data augmentations on Atari.
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Effect of data augmentation. In Figure 5.7 we show the aggregate scores over all
four Atari games for all configurations with data augmentations. We do observe that
augmentations affect the agent’s learning performance differently on different games. For
example, most augmented variants outperform the base agent on the Atari games Pong
and Breakout, often by more than ten percentage points, as shown in Table A.9. However,
all augmented variants are much worse on Seaquest and QBert. Pong and Breakout
are relatively simple games: the agent only has to control a small pedal (up/down in
Pong, left/right in Breakout) to hit a ball. Seaquest and QBert are comparatively much
more complex. For example, in Seaquest, the agent controls a submarine, has to shoot
enemies (multiple other submarines & sharks) and rescue divers from the water. Now,
the data augmentation cutout would cut out a region from the current observation. If an
enemy is not visible, the agent cannot perceive it. Thus, the performance might suffer.
In contrast, for Pong and Breakout, data augmentations do not severely alter the game
semantics. There is only one major object in both games and even if it would be covered
by a cut-out region, it remains easy to guess the position.

Atari100K. Another potential reason for the poor performance of data augmentations
in our experiments is that the RL architectures with data augmentations were originally
applied to a low-data regime. Yarats et al. [2021b] developed their architecture, DrQ
for Atari100K. Atari100K only allows for 100K gradient steps and is one of the most
prominent benchmarks for data-efficient RL, as was discussed in Section 3.3.1. In this
work, on the other hand, we train for 2.5M gradient steps, which is in line with prior
work on Atari in offline RL. Thus, it is possible that the performance gains of data
augmentations really only help in the beginning of training, but the benefits degrade if
training for more steps. If we consider the scores after 100K steps, we do indeed observe
substantial improvements over base CQL in some cases. However, as we study the
impact of data augmentations on offline RL agents, we do not investigate the Atari100K
benchmark further. In our Atari experiments, data augmentations are thus not beneficial.

5.3 Self-supervised methods
Next, we describe our experiments with the self-supervised architectures Curl, SPR and
SGI.

5.3.1 Continuous control: Gym-MuJoCo
First, we present our experiments on Gym-MuJoCo.

Curl. In Tables A.10 and A.11 in Appendix A.4 we show the raw and normalized
scores for all our experiments with the self-supervised architecture Curl. Again, we
conduct a number of experiments with different configurations. In particular, we run
experiments with different normalization variants (BN=BatchNorm, LN=LayerNorm)
and augmentation strategies, as described in 4.5.1, as well as experiments with a lower
value for the conservative weight – that are motivated by the previous section.
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(a) Halfcheetah (b) Hopper

(c) Walker2d

Figure 5.8: Learning curves for CQL + Curl on continuous control tasks.

In Figure 5.8 we show the learning curves for a selection of Curl agents. For visibility, we
omit the curves of the five worst performing configurations. Overall, the learning curves
exhibit a similar behaviour as the learning curves with data augmentations. In general,
this does make sense, as all agents share the same base CQL algorithm. On Halfcheetah,
we observe two curves (blue and yellow, the variants without augmentation, with – = 2.5,
and with BN/LN) that are clearly above the red CQL curve. The learning curves on
the Hopper environment are, again, quite noisy. On Walker2d we also observe a similar
pattern, namely that the variants with – = 2.5 lead to noisier learning curves and slower
initial learning progress, compared to variants with – = 5.0.

If we consider the mean normalized scores, we see that the variant without global
augmentation (in which augmentations are only applied for the computation of the
contrastive loss, as discussed in Section 4.5.1), with – = 2.5 and BatchNorm achieves the
highest scores observed so far, 128.8% the performance of the expert agent. However, this
score should be treated with caution, as the learning curves for this configuration exhibit
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high variance. Nevertheless, this result is interesting, as in the original publication,
the variants with global augmentation performed better. Also, the original publication
employed LayerNorm instead of BatchNorm at the respective places. Laskin et al. [2020b]
developed the Curl architecture on vision-based environments, but we adjusted and
applied it to a state-based environment. Due to different environment dynamics, different
choices might be appropriate.

(a) Interval estimates

(b) Probability of improvement

Figure 5.9: Interval estimates of normalized scores and probability of improvement for
CQL + Curl on continuous control tasks.

In addition, we show the interval estimates and probabilities of improvement over CQL
in Figure 5.9. If we consider the IQM, the Curl variant [– = 2.5, BN] also outperforms
the base CQL agent. For other configurations (e.g., [– = 2.5, BN] or [Amp, – = 2.5,
same]) the confidence intervals clearly overlap with the CQL interval. Furthermore, the
best variant [– = 2.5, BN] has a probability of improvement over the base CQL agent of
92.6%, given the scores we observed. Interestingly, other variants also have a probability
of improvement of 60%, even though their overall scores are worse. This, however, is due
to the wide confidence intervals these configurations exhibit.

SPR. In Tables A.12 and A.13 we show the raw and normalized scores for all variants of
SPR on Gym-MuJoCo. In Figures 5.10 and 5.11 we show the learning curves, interval
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estimates and probabilities of improvement graphically. For visibility, we again omit the
five worst configurations from the learning curve plots.

(a) Halfcheetah (b) Hopper

(c) Walker2d

Figure 5.10: Learning curves for CQL + SPR on continuous control tasks.

In Figure 5.10, we observe that on Halfcheetah all SPR configurations perform at least
as good or better than base CQL (red curve). However, on Hopper and Walker2d, the
outcome is not as clear. As previously, the variants with – = 2.5 perform particularly
well on Halfcheetah, but lead to slow learning progress on Walker2d. Overall, the three
SPR variants [Re-norm], [Amp, – = 2.5, same, Re-norm] and [Amp, – = 2.5, same, BN]
outperform base CQL achieving a mean normalized score of 122%, 123%, and 124.6%,
respectively, as shown in Table A.13.

Finally, in Figure 5.11 we observe that the IQMs of [Amp, – = 2.5, same, Re-norm] and
[Amp, – = 2.5, same, BN] are clearly higher than that of base CQL, even though their
intervals overlap. Also, for other configurations the intervals overlap strongly with base
CQL, despite being worse overall. The variants [Amp, – = 2.5, same, Re-norm] and
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[Amp, – = 2.5, same, BN] have probabilities of improvement over CQL of 70.4% and
92.5%, respectively.

(a) Interval estimates

(b) Probability of improvement

Figure 5.11: Interval estimates of normalized scores and probability of improvement
for CQL + SPR on continuous control tasks.

SGI. In Tables A.14 and A.15 in Appendix A.4, we show the raw and normalized
scores at the final step and at the midpoint of training for our experiments with SGI on
Gym-MuJoCo. In Figure 5.12 we show the learning curves for the five best variants on
Halfcheetah, Hopper and Walker2d. On the Halfcheetah task, the learning curves for all
variants of SGI already start at a higher level of performance compared to base CQL
(red curve). The reason for this is that SGI pre-trains the encoder representations in a
reward-free manner, as we discussed in Section 4.5.3. On Halfcheetah, the pre-trained
representation facilitate the agent’s interaction with the environment. Similarly, on the
Hopper task the pre-trained representations lead to faster initial learning progress, even
though the effect is not as noticeable as on Halfcheetah. SGI outperforms the base CQL
agent by up to 6.2 percentage points at the final time step, as we show in Table A.15.
All configurations with – = 2.5 outperform the base CQL agent. Also, one configuration
with – = 5.0 achieves as higher mean normalized score as base CQL.
In Figure 5.13 we show the interval estimates and probabilities of improvements for
SGI. In terms of the mean normalized score, the intervals of the best four configurations
overlap with the interval of base CQL. However, this is not the case for the IQM and
median (except for the last configuration). The four best configurations have high mean
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(a) Halfcheetah (b) Hopper

(c) Walker2d

Figure 5.12: Learning curves for CQL + SGI on continuous control tasks.

probabilities of improvement over the base CQL agent (up to 89%). Overall, these
results highlight the effectiveness of reward-free pre-training of encoder representations.
Compared to SPR, the final scores of architectures with SGI are higher, and we observe
more consistent improvements across different configurations.

5.3.2 Discrete control: Atari
Next, we describe our experiments with self-supervised architectures on Atari games. To
this end, we show the raw and normalized scores for all configurations with self-supervised
architectures in Tables A.16 and A.17 in Appendix A.4.

In Figures A.7 and A.8 in Appendix A.4, we depict the learning curves for Curl and SPR,
respectively. Overall, we observe a similar learning behaviour as with data augmentations
on Atari games. The overall scores of all self-supervised architectures are clearly worse
than the base CQL agent. Even though this is, again, not true for all Atari games. In
terms of IQM, most variants do not differ much from the base CQL agent, as shown in
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(a) Interval estimates

(b) Probability of improvement

Figure 5.13: Interval estimates of normalized scores and probability of improvement
for CQL + SGI on continuous control tasks.

Figure 5.14. Curl and SPR were also developed for the Atari100K benchmark. Therefore,
we again hypothesize that self-supervised methods benefit the agents in the beginning of
training, but do not help if they are trained for more steps. If we consider their scores
after 100K steps, we do indeed observe substantial improvements over the base agent,
especially for Curl. For the benchmark we consider in this work, however, we conclude
that they do not benefit the learning performance of the selected offline RL agent.

Figure 5.14: Interval estimates for CQL with self-supervised tasks on Atari.
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5.4 Online fine-tuning for Offline RL
Finally, we present our experiments with offline pre-training and online fine-tuning of
CQL on Gym-MuJoCo and Atari.

5.4.1 Continuous control: Gym-MuJoCo
In Figure 5.15 and Figure 5.16 we show the learning curves, interval estimates and
probabilities of improvement for all variants of CQL with offline pre-training and online
fine-tuning (denoted "Off-on" in the figures) on Gym-MuJoCo. Furthermore, in Tables
A.18 and A.19 in Appendix A.6 we show the raw and normalized performance scores.

(a) Halfcheetah (b) Hopper

(c) Walker2d

Figure 5.15: Learning curves for CQL with online fine-tuning on continuous control
tasks.

Learning curves. In Figure 5.15 the dashed line indicates the shift from offline RL to
online RL at 150K steps. The blue and red learning curves represent the regular offline
and online agents, CQL and SAC. We observe that the variants with offline pre-training
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and online fine-tuning outperform the base agents by a large margin. On Halfcheetah
the difference in performance is particularly apparent. On this task, the transition from
offline training to online training is smooth, and all variants improve quickly. The best
agent achieves 191.5% of the performance of the expert online agent and outperforms
all other agents in this thesis. On Hopper and Walker2d the transition from offline to
online training is not as smooth. For both tasks, we observe a big drop in performance
at the inflection point, in particular for the variant that turns off the conservative loss
immediately (Off-on). In contrast, for the variants that preserve/half/decay –, the
drop in performance is not as severe. In particular, on the Hopper task, these methods
eliminate this drop altogether. The variant with automatic tuning of – prevents the
immediate drop in performance, but then leads to higher variance. Furthermore, the
variant that preserves – = 5.0 throughout the training process achieves the lowest score
on Halfcheetah but performs well on the other two tasks.

In aggregate, the best variant (Off-on) achieves 191.5% the performance of the expert
agent. Compared with the 120% of base CQL, these scores represent a large improvement.
However, the variant also exhibits a large drop in performance at the inflection point. In
practice, this could be problematic for many reasons. Therefore, methods that prevent this
behaviour, e.g., by slowly decaying the conservative loss over time, might be preferable.

(a) Interval estimates

(b) Probability of improvement

Figure 5.16: Interval estimates of normalized scores and probability of improvement
for CQL with online fine-tuning on continuous control tasks.

Interval estimates. Figure 5.16 illustrates the performance gains graphically. The four
best variants significantly outperform the base agents and have a 100% chance of actually
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being better given the observed scores. Overall, these results suggest that RL algorithms
that combine offline and online RL can be far superior to offline or online agents alone.

5.4.2 Discrete control: Atari
Finally, we present our results with offline pre-training and online fine-tuning on Atari.
The raw and normalized scores for our experiments are available in Tables A.20 and A.21
in Appendix A.6.

(a) Pong (b) Breakout

(c) Seaquest (d) QBert

Figure 5.17: Learning curves for CQL with online fine-tuning on discrete control tasks.

Learning curves. In Figure 5.17 we show the learning curves for all agents. Again,
the dashed line represents the shift from offline RL to online RL, now after 750K steps.
The blue and brown curves represent the regular CQL and online DQN agents. Overall,
we do observe considerable improvements over the base agents. Again, the variant that
turns off the conservative loss abruptly obtains the highest score observed so far, 193.4%
of the expert’s performance at the last step (i.e., 93.4% improvement over DQN and
54% improvement over CQL). Other variants achieve similarly high scores. However,
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the learning curves reveal that the improvements are not distributed equally across the
four games. On Pong, we observe a quite severe drop in performance at the inflection
point from offline to online training. Only the variant that preserves – = 4.0 throughout
training avoids this drop. The variants that only decay/half/zero the conservative weight
over time do, however, not prevent the drop in performance. Nevertheless, all agents
recover from the performance drop on Pong. We observe similar behaviour on Breakout,
but unlike on Pong, the agents do not recover and deliver poor performance after 2.5M
steps. This suggests that naively manipulating the conservative loss during online fine-
tuning is not enough in every situation, and dedicated algorithms need to be developed.
In contrast, on Seaquest, all agents that turn off/decay/half/zero the conservative weight
deliver a level of performance that is far superior to learning online or offline alone.
Similarly, these agents perform well on QBert and outperform base CQL and online SAC.

Interval estimates. In addition, we show the interval estimates and probabilities of
improvement in Figure 5.18. The intervals estimates confirm that all hybrid agents (except
the versions with – = 4.0 and decay_every = 1000) outperform their counterparts. Even
though the CIs for some variants are wide, they do not overlap with the intervals of base
CQL or online DQN. This holds for both the mean IQM interval estimates. However, the
probabilities of improvement over base CQL are comparatively low (around 70%). The
reason for this are the poor performance scores on the game Breakout. On Breakout, the
scores of all individual runs are worse than the ones of CQL. Therefore, this is reflected
in the relatively low probabilities of improvement (as computed in Equation 3.2).

(a) Interval estimates

(b) Probability of improvement

Figure 5.18: Interval estimates of normalized scores and probability of improvement
for CQL with online fine-tuning on discrete control tasks.
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5.5 Discussion
Offline RL vs. online RL. Our baseline experiments in Section 5.1 highlighted
the opposite characteristics of offline RL and online RL. Offline RL, on the one hand,
is characterized by fast initial learning progress but limited potential for long-term
improvement. Initially, offline RL agents, such as CQL, learn faster, as experience is
readily available in the dataset. Once they have leveraged all the available information
in the dataset, they cannot continue to improve, as there is no possibility to collect
further experience. It is, however, important to note that the performance of offline RL
agents heavily depends on the quality of the dataset [Schweighofer et al., 2021]. In this
work, we did not address this limitation. Online RL, on the other hand, is characterized
by slow initial learning progress but substantial potential for long-term improvement.
Online RL agents, such as DQN or SAC, first need to discover high-reward behaviour by
random interaction and thus the slower initial learning progress. However, environment
interaction gives them the opportunity to discover the best possible behaviour over time.
If we continued to run our experiments for longer, the performance of online RL agents
would arguably continue to improve, whereas for offline agents this would likely not
be the case. These opposite characteristics of offline RL and online RL motivated the
experiments we presented in Section 5.4.

Self-supervision and data augmentation for offline RL. Our experiments in Sec-
tions 5.2 and 5.3 suggest that self-supervised methods and data augmentations can
improve the learning performance of offline RL agents. On Gym-MuJoCo, they improved
the agent’s final performance by up to 9 percentage points. Overall, on Gym-MuJoCo
we found it useful to decrease the conservative weight – to half the initial value (– = 2.5)
when data augmentations and self-supervised methods are employed. This characteristic
is interesting, as our experiments in Section A.2.2 using CQL with the same parameter set-
ting performed poorly. We made another interesting observation with the self-supervised
architecture SGI. SGI employs reward-free pre-training of encoder representations. These
pre-trained representations facilitate the interaction with the environment. In our experi-
ments with SGI in Section 5.3.1, we observed very fast initial learning progress on the
Halfcheetah and Hopper tasks.

In contrast, on Atari, none of our experiments with data augmentations or self-supervised
methods resulted in performance improvements. Instead, they rather hurt the agent’s
ability to learn high-reward behaviour over 2.5M gradient steps. In online RL, however,
the self-supervised methods and data augmentations we employ did indeed improve the
learning performance. Prior work in online RL with the same architectures evaluated their
performance in the low-data regime and only allowed for 100K observations. In contrast,
the offline datasets we used contain 1M observations, and we trained for 2.5M gradient
steps. Therefore, we hypothesized that these methods help if training for a small number
of steps, but are not beneficial if training for longer. Indeed, if we consider the performance
after 100K gradient steps, we did observe performance improvements. For offline RL,
however, the Atari100K benchmark is not optimal, as under these circumstances simple
methods, such as BC, can be far superior to more sophisticated offline RL agents.
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Overall, our results with self-supervised methods and data augmentations are mixed.
Even though, we did observe substantial performance improvements on Gym-MuJoCo,
the agents required extensive hyperparameter tuning. Nevertheless, our results on Gym-
MuJoCo suggest that self-supervised methods and data augmentations can improve the
learning performance of offline RL agents. Ultimately, self-supervised methods and data
augmentations enable RL agents to acquire a better understanding of the environment,
i.e., world knowledge. We believe that a deep understanding of how the environment
works will be necessary for intelligent agents in the real world. Therefore, we believe that
both approaches are a promising direction for future research in the field of offline RL.

Offline pre-training, online fine-tuning. Hybrid RL algorithms combine the benefits
of offline RL and online RL by offline pre-training and online fine-tuning, as we have
demonstrated in our experiments in Section 5.4. In our experiments, CQL with online
fine-tuning was far superior to its offline and online counterparts, outperforming the base
CQL agent on Gym-MuJoCo and Atari by 71.5 and 51.4 percentage points, respectively.
However, our approach has limitations. Most importantly, the large performance drops at
the inflection point from offline to online training that we observed in some environments.
For real world applications, this would be problematic. To prevent these drops, we
experimented with methods that turn off the conservative weight – smoothly over time.
This naive approach works to some degree, but does not consistently eliminate performance
drops across all environments. Simply turning off or decaying the conservative weight over
time might, thus, not suffice in all situations, in particular if the agent would alternate
between online RL and offline RL.

Future RL algorithms. In summary, our experiments suggest that future RL agents
need to have the ability to learn from experiences that originate from a variety of sources,
offline datasets and online environment interaction alike, in a data-efficient way. In
addition, future RL agents need to acquire a rich understanding of how the world they
operate in works and how it changes over time (e.g., via self-supervised learning methods).
Such agents would empower several sophisticated RL strategies that are attractive for
real-world applications. One notable example for such a strategy are RL agents that
learn continuously throughout their lifetimes. This approach is known as open-ended/life-
long/continual RL. Another closely related strategy is multi-task RL, which departs from
learning only a single task at a time and instead aims to learn many tasks at once. Both
approaches would strongly benefit from agents that can learn from all kinds of experience
sources alike. In this thesis, we did not address open-ended RL and multi-task RL. In the
long term, however, we should build RL agents that learn over an extended period of time
in a sufficiently complex and open-ended environment (e.g., in the real world). Under
these circumstances, RL agents may develop increasingly complex/intelligent behaviours.
Overall, we believe that all these methods will be essential ingredients for general-purpose
AI, and we look forward to exploring them in the near future.
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CHAPTER 6
Conclusion

In this chapter, we conclude this thesis. First, we summarize the work we conducted.
Then, we highlight the contributions we make in this thesis.

6.1 Summary
In Chapter 2, we provided a comprehensive overview of the theoretical background for
this thesis. This included a literature review on online RL and offline RL. We also
discussed the individual strengths and weaknesses of both paradigms. In addition, we
reviewed the state-of-the-art literature on self-supervised learning and data augmentation
in RL.

In Chapter 3, we described our methodological approach for this thesis (algorithm
selection, dataset selection, evaluation methodology, software, hardware, etc.). Overall,
we selected a state-of-the-art offline RL algorithm, CQL, as our base agent for all
experiments. We then selected three self-supervised RL architectures (Curl, SPR, SGI)
and five data augmentations (random crop, random shift, cutout, amplitude scale,
Gaussian noise) and adjusted them for offline RL. Furthermore, we experimented with
CQL for offline pre-training and online fine-tuning. We evaluated all algorithms on
four Atari games (Pong, Breakout, QBert, Seaquest) and three Gym-MuJoCo tasks
(Halfcheetah, Hopper, Walker2d). All Atari games have a discrete action space and
provide image-based observations. In contrast, all Gym-MuJoCo tasks have a continuous
action space and emit state-based observations.

In Chapter 4, we detailed what experiments we conducted and how we conducted them.
This includes a detailed description of the hyperparameters and adjustments we made to
the learning algorithms.

Finally, in Chapter 5 we presented the results that we obtained during our experiments.
Our results showed that self-supervised methods and data augmentations can outperform
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the baseline agents and considerably improved the learning performance of offline RL
algorithms on Gym-MuJoCo, but were not beneficial on Atari. Furthermore, we demon-
strated that with the right design decisions, CQL with offline pre-training and online
fine-tuning and can be far superior to online learning and offline learning alone. Overall,
our results suggest that there is a need for hybrid RL algorithms that can learn both
offline and online in a data-efficient way.

6.2 Contributions
To conclude, we make the following contributions in this thesis:

• We provide a comprehensive overview of the state-of-the-art in the research field of
offline RL.

• We evaluate the effectiveness of existing self-supervised methods and data aug-
mentation techniques for offline RL and show that they can lead to considerable
improvements on Gym-MuJoCo but are not beneficial on Atari.

• We demonstrate that the "offline pre-training, online-fine tuning" RL paradigm can
be far superior to online or offline RL individually and advocate for hybrid RL
algorithms that are designed to learn both offline and online.
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APPENDIX A
Full results

A.1 Online training
For Atari, it is not obvious how "long" online agents should be trained. To ensure a fair
comparison with online agents, we consider a few options:

(1) environment steps = 2.5M, update interval = 4

(2) environment steps = 2.5M, update interval = 1

(3) environment steps = 4M, update interval = 4

Option (1) results in 625K observations & gradient steps. Option (2) results in 625K
observations, 2.5M gradient steps. Option (3) results in 1M observations & gradient
steps. We show the learning curves and normalized scores for all three options in Figure
A.1 and Table A.1.

Agent Breakout Pong QBert Seaquest
Final step (2.5M)

Online DQN 221.6 ± 29.0 11.0 ± 7.3 2458.3 ± 1358.4 1008.0 ± 358.6
Online DQN, u_i=1 128.2 ± 63.6 20.9 ± 0.1 4416.7 ± 227.8 901.3 ± 778.2
Online DQN, online_steps=4M 279.3 ± 45.4 20.5 ± 0.4 3258.3 ± 302.4 3068.0 ± 1452.3

Midpoint (1.25M)
Online DQN 73.1 ± 6.9 -6.1 ± 6.5 747.5 ± 53.8 318.7 ± 123.8
Online DQN, u_i=1 122.3 ± 13.3 18.8 ± 1.8 2523.3 ± 828.7 182.7 ± 70.5
Online DQN, online_steps=4M 218.7 ± 63.4 16.4 ± 2.8 1058.3 ± 763.6 1448.0 ± 751.8

Table A.1: Raw scores for online training ablation.
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(a) Pong (b) Breakout

(c) Seaquest (d) QBert

Figure A.1: Learning curves for online ablation.

At the final step, we observe that variant (2) achieves the highest scores on Pong and
QBert. In contrast, variant (3) scores best on Breakout and Seaquest. The same holds
for the performance at the midpoint of training. Both variants are solid choices. For our
subsequent experiments, we select variant (2) with update interval of 1 and the same
number of gradient steps/environment steps as all offline RL agents. Variant (2) results
in the most balanced scores across all environments. In addition, this decision simplifies
the comparison of our agents in Section 5.4.
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A.2 Baselines
In this section, we list the full results for our experiments with baselines. The results for
continuous control tasks (Gym-MuJoCo) are listed in Tables A.2 and A.3. The results
for discrete control tasks (Atari) are listed in Tables A.4 and A.5.

A.2.1 Continuous control: Gym-MuJoCo

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2
Final step (500K)

Random -290.08 11.13 -1.66
Online SAC 4994.6 ± 2393.9 1825.0 ± 1173.1 3861.4 ± 386.5
Offline SAC 2154.1 ± 1731.5 4.3 ± 0.1 -4.6 ± 2.5
BC 4888.0 ± 61.7 1625.2 ± 108.7 3086.2 ± 442.6
CQL 6088.3 ± 22.7 2553.9 ± 202.4 3829.8 ± 70.2

Midpoint (250K)
Random -290.08 11.13 -1.66
Online SAC 4410.1 ± 2267.3 1429.3 ± 1093.5 1605.4 ± 514.5
Offline SAC 172.3 ± 325.4 4.3 ± 0.1 -7.5 ± 2.3
BC 4915.9 ± 51.9 1781.9 ± 179.2 3070.7 ± 248.3
CQL 5948.1 ± 112.8 2630.9 ± 241.4 3924.8 ± 35.5

(a) Raw scores
Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 Mean

Final step (500K)
Offline SAC 46.3 -0.4 -0.1 15.3
BC 98.0 89.0 79.9 89.0
CQL 120.7 140.2 99.2 120.0

Midpoint (250K)
Offline SAC 9.8 -0.5 -0.4 3.0
BC 110.8 124.9 191.2 142.3
CQL 132.7 184.7 244.3 187.3

(b) Normalized scores

Table A.2: Raw and normalized scores for baseline agents on continuous control tasks.
(a) Shows the mean ± standard deviation across the three random seeds, (b) shows the
normalized scores in %.
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A.2.2 CQL: Influence of – on Gym-MuJoCo

In this section, we present a preliminary ablation study on Gym-MuJoCo tasks to
investigate the influence of the conservative weight parameter – on the learning perfor-
mance of CQL. – determines how strongly the algorithm is penalized for overestimating
the Q-values. A high value for – thus means strong penalization. We run CQL with
– œ {2.5, 5, 7.5}.

(a) Halfcheetah (b) Hopper

(c) Walker2d

Figure A.2: Learning curves for CQL with variable – on continuous control tasks.

Learning curves and scores. The learning curves and raw/normalized scores at the
final step for these experiments are shown in Figure A.2 and Table A.3, respectively. We
note that the default value for – is 5.0 and all CQL curves/scores shown in Section 5.1
were obtained with this value. Overall, we observe that CQL with the default value of
5.0 for – performs best, achieving an average normalized score of 120% of the online SAC
agent. In contrast, CQL with – = 2.5 and – = 7.5 only achieve 115% of the performance.
The performance of the variants differs between the 3 tasks, however. The variant with
small conservative weight (– = 2.5) performs particularly well on the Halfcheetah task
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(green curve dominates red and blue curves) but performs poorly on the Walker2d task
(high standard deviation, slow learning progress). This variant also exhibits the highest
overall standard deviation of the scores across the three seeds. The contrary is true for
the variant with – = 7.5, which performs poorly on Halfcheetah, but well on Walker2d.

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2
Final step (500K)

CQL, – = 2.5 6557.4 ± 103.8 2439.2 ± 372.6 3185.1 ± 293.0
CQL, – = 5.0 6088.3 ± 22.7 2553.9 ± 202.4 3829.8 ± 70.2
CQL, – = 7.5 5883.6 ± 59.1 2375.8 ± 344.2 3860.0 ± 36.0

(a) Raw scores
Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 Mean

Final step (500K)
CQL, – = 2.5 129.6 133.9 82.5 115.3
CQL, – = 5.0 120.7 140.2 99.2 120.0
CQL, – = 7.5 116.8 130.4 100.0 115.7

(b) Normalized scores

Table A.3: Raw and normalized scores for CQL with variable – on continuous control
tasks.

(a) Interval estimates

(b) Probability of improvement

Figure A.3: Interval estimates of normalized scores and probability of improvement for
CQL with variable – on continuous control tasks.
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Interval estimates. However, we do observe high standard deviations across the three
seeds. In Figure A.3 we additionally show the interval estimates for median, IQM and
mean, as well as the probability of improvement of – = 5.0 over the other variants. We
observe in Figure A.3 that the overall performance ranking remains the same for the
median, IQM and the mean: the variant with – = 5.0 performs best. Nevertheless, the
intervals overlap strongly. The second graphic shows the probability of improvement of
– = 5.0 over – = 2.5 and – = 7.5. Indeed, we observe that – = 5.0 only has a probability
of improvement over – = 2.5 of roughly 52%, with a very large confidence interval. The
probability of improvement over – = 7.5 is a bit larger (66%) but also exhibits a large
confidence interval.

A.2.3 Discrete control: Atari

Agent Breakout Pong QBert Seaquest
Final step (2.5M)

Random 0.8 -20 155 60
Offline DQN 4.9 ± 3.6 -18.5 ± 4.3 385.0 ± 96.6 414.7 ± 306.0
Online DQN 128.2 ± 63.6 20.9 ± 0.1 4416.7 ± 227.8 901.3 ± 778.2
BC 64.2 ± 12.1 -20.9 ± 0.1 4468.3 ± 7479.6 58.7 ± 101.6
CQL 167.3 ± 50.5 10.1 ± 4.9 12835.0 ± 1061.0 516.0 ± 132.2

Midpoint (1.25M)
Random 0.8 -20 155 60
Offline DQN 4.5 ± 3.7 -13.5 ± 3.9 203.3 ± 75.2 1021.3 ± 382.2
Online DQN 122.3 ± 13.3 18.8 ± 1.8 2523.3 ± 828.7 182.7 ± 70.5
BC 116.4 ± 36.6 -21.0 ± 0.0 2783.3 ± 4561.1 180.0 ± 4.0
CQL 158.6 ± 44.5 17.5 ± 0.6 11088.3 ± 986.1 225.3 ± 29.5

(a) Raw scores

Agent Breakout Pong QBert Seaquest Mean
Final step (2.5M)

Offline DQN 3.2 3.6 5.4 42.2 13.6
BC 49.8 -2.3 101.2 -0.2 37.1
CQL 130.7 73.6 297.5 54.2 139.0

Midpoint (1.25M)
Offline DQN 3.1 16.8 2.0 783.7 201.4
BC 95.1 -2.6 111.0 97.8 75.3
CQL 129.8 96.7 461.6 134.8 205.8

(b) Normalized scores

Table A.4: Raw and normalized scores for baseline agents on discrete control tasks.
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A.2. Baselines

A.2.4 CQL: Influence of – on Atari

(a) Pong (b) Breakout

(c) Seaquest (d) QBert

Figure A.4: Learning curves for CQL with variable – agents on discrete control tasks.

Learning curves and scores. Again, we present a short ablation study on the influence
of the conservative weight – on Atari games. We run CQL with – œ {1.0, 2.0, 4.0, 8.0}
to see what value works best. The learning curves and raw/normalized scores of these
experiments are shown in Figure A.4 and Table A.5. Overall, the scores differ strongly
by game. On Pong – = 1.0 performs best as the performance remains stable towards
the end of training, while for all other variants the performance deteriorates towards
the end of the training process. On Breakout, QBert and Breakout, – = 8.0 clearly
outperforms all other variants. On Seaquest – = 2.0 obtains the highest score. However,
overall, we observe that – = 4.0 and – = 8.0 deliver the best performance and the most
stable learning curves across all games. Furthermore, on Seaquest we observe interesting
behaviour for the CQL variant with – = 1.0. Initially, the agent learns to play the game
very well and improves until about 1.5M steps. However, afterwards, the performance
quickly deteriorates. We previously observed such an "arc-shaped" learning curve in
Figure 5.2 for offline DQN on Seaquest (even though with worse overall performance).
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This performance curve indicates that the conservative regularization with – = 1.0
was too small and led to strong over-estimation of the action-values. Thus, the quick
deterioration of the agent’s performance. In summary, the CQL variant with – = 8.0
outperforms all other variants in terms of mean normalized score, achieving 142.1% of
the expert agent’s performance (online DQN). In contrast, – = 1.0 and – = 2.0 still
outperform the online expert but showed clear signs of overestimation.

Agent Breakout Pong QBert Seaquest
Final step (2.5M)

CQL, – = 1.0 25.7 ± 6.9 18.1 ± 1.9 9893.3 ± 2697.0 429.3 ± 99.6
CQL, – = 2.0 177.5 ± 60.1 12.8 ± 6.5 10651.7 ± 1149.9 682.7 ± 160.8
CQL, – = 4.0 167.3 ± 50.5 10.1 ± 4.9 12835.0 ± 1061.0 516.0 ± 132.2
CQL, – = 8.0 186.1 ± 43.4 13.7 ± 6.2 13466.7 ± 1517.1 297.3 ± 102.3

(a) Raw scores

Agent Breakout Pong QBert Seaquest Mean
Final step (2.5M)

CQL, – = 1.0 19.6 93.2 228.5 43.9 96.3
CQL, – = 2.0 138.7 80.1 246.3 74.0 134.8
CQL, – = 4.0 130.7 73.6 297.5 54.2 139.0
CQL, – = 8.0 145.4 82.2 312.4 28.2 142.1

(b) Normalized scores

Table A.5: Raw and normalized scores for CQL with variable – on discrete control
tasks.

Interval estimates. In addition, we also show the visual representations of the interval
estimates and the probability of improvement in Figure A.5. If we consider the median
and IQM instead of the mean normalized score, then – = 2.0 should be considered the
best variant. However, the confidence intervals are very wide and overlap strongly. If we
consider the probability of improvement of – = 2.0 over the other variants, we see that it
exhibits a 50% chance of improving over – = 4.0 and – = 8.0. Thus, given our data, we
cannot say that one variant is clearly better than all other variants. Therefore, we select
the CQL variant with – = 4.0 for all our subsequent experiments, as it is the default
configuration in the original publication. – = 4.0 was also used for the curves/scores in
Figure 5.2 and Table 5.2 in Section 5.1.
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(a) Interval estimates

(b) Probability of improvement

Figure A.5: Interval estimates and probabilities of improvement for CQL with variable
– on continuous control tasks.
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A.3 Data augmentations
In this section, we list the full results for our experiments with data augmentations. The
results for continuous control tasks (Gym-MuJoCo) are listed in Tables A.6 and A.7. The
results for discrete control tasks (Atari) are listed in Tables A.8 and A.9 and Figure A.6.

A.3.1 Continuous control: Gym-MuJoCo

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2
Final step (500K)

CQL 6088.3 ± 22.7 2553.9 ± 202.4 3829.8 ± 70.2
Amp 5733.1 ± 82.5 2332.0 ± 356.2 3850.4 ± 36.4
Amp, same 5962.3 ± 41.0 2500.8 ± 221.7 3900.5 ± 59.1
Amp, – = 2.5 5858.0 ± 38.9 2136.9 ± 131.0 3809.4 ± 256.8
Amp, – = 2.5, same 6335.3 ± 28.5 2563.5 ± 81.4 3983.3 ± 96.7
Amp, min=0.5, max=1.5, – = 2.5, same 5983.1 ± 32.7 2399.5 ± 217.6 4023.8 ± 66.6
Amp, paug = 0.5 5689.4 ± 50.0 2122.9 ± 263.2 3849.1 ± 29.9
Amp, paug = 0.5, same 6026.9 ± 69.0 2216.5 ± 167.8 3703.0 ± 309.6
Amp, paug = 0.5, – = 2.5, same 6471.7 ± 42.6 2333.9 ± 518.6 3331.1 ± 429.1
GN 5668.8 ± 74.8 828.9 ± 815.2 3849.8 ± 21.6
GN, ‡ = 0.01 5947.9 ± 24.9 2262.3 ± 147.9 3920.2 ± 83.7
GN, same 5689.1 ± 27.4 515.6 ± 135.1 3948.5 ± 47.7
GN, ‡ = 0.01, same 5964.5 ± 38.3 2447.7 ± 305.3 3868.4 ± 82.5
GN, ‡ = 0.01, – = 2.5 6292.6 ± 90.8 1700.7 ± 268.3 3476.8 ± 444.9
GN, ‡ = 0.01, – = 2.5, same 6365.9 ± 19.0 2602.4 ± 236.4 3727.7 ± 543.3
GN, paug = 0.5 5696.9 ± 144.9 377.4 ± 66.0 3876.2 ± 56.5
GN, paug = 0.5, same 5702.2 ± 68.6 1215.7 ± 1206.9 3843.1 ± 219.0
GN, ‡ = 0.01, paug = 0.5, – = 2.5, same 6382.0 ± 21.4 2474.6 ± 501.8 3629.8 ± 309.4

Midpoint (250K)
CQL 5948.1 ± 112.8 2630.9 ± 241.4 3924.8 ± 35.5
Amp 5580.3 ± 38.9 2700.0 ± 368.5 3822.7 ± 97.5
Amp, same 5958.0 ± 21.5 2526.3 ± 468.3 3836.5 ± 76.6
Amp, – = 2.5 5671.4 ± 54.0 2159.6 ± 745.5 2916.6 ± 658.3
Amp, – = 2.5, same 6233.0 ± 116.3 1564.3 ± 357.2 3004.4 ± 76.5
Amp, min=0.5, max=1.5, – = 2.5, same 5897.0 ± 40.8 2105.9 ± 1124.4 3858.8 ± 136.4
Amp, paug = 0.5 5535.0 ± 19.2 2401.4 ± 284.3 3640.1 ± 486.9
Amp, paug = 0.5, same 5976.1 ± 79.6 2760.3 ± 377.8 3796.1 ± 117.0
Amp, paug = 0.5, – = 2.5, same 6329.4 ± 32.6 2196.4 ± 252.1 3164.9 ± 578.8
GN 5252.2 ± 358.9 327.0 ± 24.2 3511.4 ± 416.6
GN, ‡ = 0.01 5875.1 ± 4.8 2314.5 ± 805.2 3754.2 ± 280.8
GN, same 5442.5 ± 97.8 342.0 ± 38.2 2580.2 ± 1158.7
GN, ‡ = 0.01, same 5908.7 ± 16.9 1647.8 ± 683.6 3727.8 ± 264.9
GN, ‡ = 0.01, – = 2.5 6164.1 ± 65.9 1490.5 ± 1216.7 1854.7 ± 1598.0
GN, ‡ = 0.01, – = 2.5, same 6162.6 ± 109.1 1490.3 ± 1114.1 2671.6 ± 893.5
GN, paug = 0.5 4687.0 ± 701.9 372.8 ± 38.2 3675.3 ± 238.0
GN, paug = 0.5, same 5446.3 ± 151.9 344.4 ± 18.9 3248.3 ± 503.3
GN, ‡ = 0.01, paug = 0.5, – = 2.5, same 6235.5 ± 16.8 2458.8 ± 317.1 2777.7 ± 208.3

Table A.6: Raw scores for augmented agents on continuous control tasks.
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Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 Mean
Final step (500K)

CQL 120.7 140.2 99.2 120.0
Amp 114.0 128.0 99.7 113.9
Amp, same 118.3 137.3 101.0 118.9
Amp, – = 2.5 116.3 117.2 98.7 110.7
Amp, – = 2.5, same 125.4 140.7 103.2 123.1
Amp, min=0.5, max=1.5, – = 2.5, same 118.7 131.7 104.2 118.2
Amp, paug = 0.5 113.1 116.4 99.7 109.8
Amp, paug = 0.5, same 119.5 121.6 95.9 112.3
Amp, paug = 0.5, – = 2.5, same 128.0 128.1 86.3 114.1
GN 112.8 45.1 99.7 85.8
GN, ‡ = 0.01 118.0 124.1 101.5 114.6
GN, same 113.1 27.8 102.3 81.1
GN, ‡ = 0.01, same 118.4 134.3 100.2 117.6
GN, ‡ = 0.01, – = 2.5 124.6 93.1 90.0 102.6
GN, ‡ = 0.01, – = 2.5, same 125.9 142.9 96.5 121.8
GN, paug = 0.5 113.3 20.2 100.4 78.0
GN, paug = 0.5, same 113.4 66.4 99.5 93.1
GN, ‡ = 0.01, paug = 0.5, – = 2.5, same 126.3 135.8 94.0 118.7

Midpoint (250K)
CQL 132.7 184.7 244.3 187.3
Amp 124.9 189.6 238.0 184.2
Amp, same 132.9 177.4 238.8 183.0
Amp, – = 2.5 126.8 151.5 181.6 153.3
Amp, – = 2.5, same 138.8 109.5 187.0 145.1
Amp, min=0.5, max=1.5, – = 2.5, same 131.6 147.7 240.2 173.2
Amp, paug = 0.5 123.9 168.5 226.6 173.0
Amp, paug = 0.5, same 133.3 193.9 236.3 187.8
Amp, paug = 0.5, – = 2.5, same 140.8 154.1 197.0 164.0
GN 117.9 22.3 218.6 119.6
GN, ‡ = 0.01 131.2 162.4 233.7 175.8
GN, same 122.0 23.3 160.7 102.0
GN, ‡ = 0.01, same 131.9 115.4 232.1 159.8
GN, ‡ = 0.01, – = 2.5 137.3 104.3 115.5 119.0
GN, ‡ = 0.01, – = 2.5, same 137.3 104.3 166.3 136.0
GN, paug = 0.5 105.9 25.5 228.8 120.1
GN, paug = 0.5, same 122.0 23.5 202.2 115.9
GN, ‡ = 0.01, paug = 0.5, – = 2.5, same 138.8 172.6 172.9 161.5

Table A.7: Normalized scores for augmented agents on continuous control tasks.
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A.3.2 Discrete control: Atari

Agent Breakout Pong QBert Seaquest
Final step (2.5M)

CQL 167.3 ± 50.5 10.1 ± 4.9 12835.0 ± 1061.0 516.0 ± 132.2
Crop 150.3 ± 62.9 12.4 ± 4.7 10260.0 ± 1890.2 180.0 ± 156.5
Crop, same, no_c_aug 84.1 ± 28.5 15.4 ± 2.1 9373.3 ± 2305.1 450.7 ± 168.9
Crop, kaug = 2, same, no_c_aug 166.9 ± 59.8 14.1 ± 4.2 12100.0 ± 688.9 392.0 ± 140.3
Crop, – = 2.0, same 167.7 ± 33.5 13.9 ± 3.8 10381.7 ± 2314.0 430.7 ± 52.2
Crop, – = 2.0, kaug = 2, same, no_c_aug 204.9 ± 55.0 10.7 ± 7.8 9415.0 ± 3975.1 353.3 ± 100.0
Crop, – = 8.0, same 170.6 ± 49.0 9.7 ± 8.6 10408.3 ± 2293.6 192.0 ± 69.4
Crop, paug = 0.5 232.4 ± 28.4 12.4 ± 6.0 11421.7 ± 1063.0 221.3 ± 81.7
Crop, paug = 0.5, same 140.9 ± 9.8 15.9 ± 7.2 12000.0 ± 339.1 316.0 ± 181.6
Crop, paug = 0.5, kaug = 2, same, no_c_aug 196.8 ± 25.9 16.8 ± 2.8 11138.3 ± 887.3 342.7 ± 91.8
Crop, paug = 0.5, – = 2.0, kaug = 2, same, no_c_aug 166.0 ± 86.3 16.5 ± 5.0 10971.7 ± 1296.8 389.3 ± 6.1
Shift 145.7 ± 50.7 11.5 ± 4.7 11485.0 ± 506.9 161.3 ± 32.3
Shift, same 144.5 ± 93.9 16.6 ± 6.6 8616.7 ± 3366.4 198.7 ± 54.0
Shift, kaug = 2, same 183.3 ± 40.1 9.7 ± 5.6 10106.7 ± 1539.9 206.7 ± 30.3
Shift, – = 2.0, kaug = 2, same 116.9 ± 31.6 18.9 ± 0.5 8181.7 ± 5426.1 260.0 ± 46.1
Shift, paug = 0.5 177.6 ± 63.7 10.2 ± 8.5 8673.3 ± 4063.0 230.7 ± 40.3
Shift, paug = 0.5, same 191.3 ± 52.3 16.3 ± 6.3 8860.0 ± 3169.7 205.3 ± 92.7
Cut 239.6 ± 34.2 14.6 ± 4.8 9208.3 ± 2280.9 285.3 ± 135.4
Cut, same 146.1 ± 65.7 12.2 ± 6.9 11075.0 ± 1864.5 205.3 ± 77.7
Cut, paug = 0.5 163.1 ± 44.0 15.2 ± 3.2 11770.0 ± 30.4 298.7 ± 140.1
Cut, paug = 0.5, same 168.6 ± 4.9 15.3 ± 3.6 10440.0 ± 1676.0 305.3 ± 104.1

Midpoint (1.25M)
CQL 158.6 ± 44.5 17.5 ± 0.6 11088.3 ± 986.1 225.3 ± 29.5
Crop 174.9 ± 47.2 15.0 ± 5.0 11191.7 ± 876.9 202.7 ± 194.6
Crop, same, no_c_aug 164.0 ± 50.2 14.6 ± 3.3 8978.3 ± 2326.2 306.7 ± 112.5
Crop, kaug = 2, same, no_c_aug 138.7 ± 45.6 15.5 ± 2.9 7816.7 ± 1547.6 225.3 ± 40.5
Crop, – = 2.0, same 119.7 ± 54.6 18.7 ± 0.9 6563.3 ± 3231.8 320.0 ± 62.9
Crop, – = 2.0, kaug = 2, same, no_c_aug 208.8 ± 68.9 17.5 ± 3.4 10965.0 ± 867.5 253.3 ± 67.2
Crop, – = 8.0, same 182.1 ± 82.8 15.5 ± 7.8 10260.0 ± 1264.4 136.0 ± 14.4
Crop, paug = 0.5 146.7 ± 73.1 19.3 ± 1.2 11243.3 ± 908.2 246.7 ± 34.0
Crop, paug = 0.5, same 203.7 ± 79.1 19.7 ± 0.8 9253.3 ± 3935.9 228.0 ± 44.5
Crop, paug = 0.5, kaug = 2, same, no_c_aug 220.8 ± 5.8 18.7 ± 1.6 9600.0 ± 4112.3 216.0 ± 24.3
Crop, paug = 0.5, – = 2.0, kaug = 2, same, no_c_aug 78.9 ± 47.8 18.1 ± 1.1 7985.0 ± 4462.6 309.3 ± 173.0
Shift 87.3 ± 16.0 13.5 ± 8.5 8850.0 ± 2415.8 141.3 ± 20.1
Shift, same 174.6 ± 70.8 8.1 ± 18.3 8196.7 ± 2917.7 181.3 ± 90.0
Shift, kaug = 2, same 139.3 ± 50.5 15.8 ± 4.5 8516.7 ± 1123.7 180.0 ± 55.6
Shift, – = 2.0, kaug = 2, same 86.9 ± 40.3 18.1 ± 4.4 5598.3 ± 2795.8 270.7 ± 62.3
Shift, paug = 0.5 172.5 ± 54.4 18.7 ± 1.5 11690.0 ± 1586.8 160.0 ± 10.6
Shift, paug = 0.5, same 149.1 ± 79.2 15.5 ± 5.3 6930.0 ± 1542.0 146.7 ± 26.6
Cut 222.9 ± 54.0 17.1 ± 1.9 8975.0 ± 1550.5 268.0 ± 142.0
Cut, same 149.9 ± 92.4 16.8 ± 1.8 10321.7 ± 3500.0 216.0 ± 80.3
Cut, paug = 0.5 136.5 ± 57.7 16.3 ± 3.0 11780.0 ± 26.5 288.0 ± 161.1
Cut, paug = 0.5, same 122.9 ± 21.8 16.4 ± 2.1 9170.0 ± 2666.3 284.0 ± 69.7

Table A.8: Raw scores for augmented CQL on discrete control tasks.
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Agent Breakout Pong QBert Seaquest Mean
Final step (2.5M)

CQL 130.7 73.6 297.5 54.2 139.0
Crop 117.3 79.2 237.1 14.3 112.0
Crop, same, no_c_aug 65.4 86.5 216.3 46.4 103.6
Crop, kaug = 2, same, no_c_aug 130.4 83.4 280.3 39.5 133.4
Crop, – = 2.0, same 131.0 82.7 240.0 44.1 124.4
Crop, – = 2.0, kaug = 2, same, no_c_aug 160.2 75.1 217.3 34.9 121.9
Crop, – = 8.0, same 133.3 72.5 240.6 15.7 115.5
Crop, paug = 0.5 181.8 79.2 264.4 19.2 136.1
Crop, paug = 0.5, same 109.9 87.6 277.9 30.4 126.5
Crop, paug = 0.5, kaug = 2, same, no_c_aug 153.8 89.9 257.7 33.6 133.8
Crop, paug = 0.5, – = 2.0, kaug = 2, same, no_c_aug 129.7 89.1 253.8 39.1 127.9
Shift 113.7 76.9 265.9 12.0 117.1
Shift, same 112.8 89.4 198.6 16.5 104.3
Shift, kaug = 2, same 143.3 72.6 233.5 17.4 116.7
Shift, – = 2.0, kaug = 2, same 91.1 95.1 188.3 23.8 99.6
Shift, paug = 0.5 138.8 73.8 199.9 20.3 108.2
Shift, paug = 0.5, same 149.5 88.6 204.3 17.3 114.9
Cut 187.4 84.5 212.4 26.8 127.8
Cut, same 114.1 78.7 256.2 17.3 116.6
Cut, paug = 0.5 127.4 86.0 272.5 28.4 128.6
Cut, paug = 0.5, same 131.7 86.3 241.3 29.2 122.1

Midpoint (1.25M)
CQL 129.8 96.7 461.6 134.8 205.8
Crop 143.3 90.2 466.0 116.3 204.0
Crop, same, no_c_aug 134.3 89.2 372.6 201.1 199.3
Crop, kaug = 2, same, no_c_aug 113.4 91.4 323.5 134.8 165.8
Crop, – = 2.0, same 97.9 99.8 270.6 212.0 170.1
Crop, – = 2.0, kaug = 2, same, no_c_aug 171.1 96.6 456.4 157.6 220.4
Crop, – = 8.0, same 149.2 91.6 426.7 62.0 182.3
Crop, paug = 0.5 120.0 101.4 468.2 152.2 210.4
Crop, paug = 0.5, same 166.9 102.4 384.2 137.0 197.6
Crop, paug = 0.5, kaug = 2, same, no_c_aug 181.0 99.7 398.8 127.2 201.7
Crop, paug = 0.5, – = 2.0, kaug = 2, same, no_c_aug 64.2 98.1 330.6 203.3 174.1
Shift 71.1 86.3 367.1 66.3 147.7
Shift, same 143.0 72.3 339.5 98.9 163.5
Shift, kaug = 2, same 113.9 92.3 353.1 97.8 164.3
Shift, – = 2.0, kaug = 2, same 70.8 98.3 229.8 171.7 142.7
Shift, paug = 0.5 141.3 99.8 487.1 81.5 202.4
Shift, paug = 0.5, same 122.1 91.4 286.1 70.7 142.5
Cut 182.8 95.5 372.4 169.6 205.1
Cut, same 122.7 94.8 429.3 127.2 193.5
Cut, paug = 0.5 111.7 93.5 490.9 185.9 220.5
Cut, paug = 0.5, same 100.5 93.8 380.6 182.6 189.4

Table A.9: Normalized scores for augmented CQL on discrete control tasks.
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(a) Pong (b) Breakout

(c) Seaquest (d) QBert

Figure A.6: Learning curves for augmented CQL with discrete control tasks.
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A.4 Self-supervised tasks
In this section, we list the full results for our experiments with data augmentations. The
results for continuous control tasks (Gym-MuJoCo) are listed in Tables A.10, A.11, A.12
and A.13. The results for discrete control tasks (Atari) are listed in Tables A.16 and
A.17 and Figure A.7 as well as A.8.

A.4.1 Continuous control: Gym-MuJoCo

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2
Final step (500K)

CQL 6088.3 ± 22.7 2553.9 ± 202.4 3829.8 ± 70.2
CURL, LN 6088.6 ± 12.0 2210.0 ± 58.2 3898.4 ± 48.8
CURL, BN 6075.6 ± 41.6 2273.8 ± 98.8 3900.5 ± 58.6
CURL, – = 2.5, BN 6463.8 ± 70.5 2753.6 ± 278.8 4146.8 ± 52.5
CURL, – = 2.5, LN 6465.7 ± 63.7 2303.9 ± 273.6 3408.4 ± 1123.7
CURL, Amp, same 5882.2 ± 58.7 2400.9 ± 464.0 3818.2 ± 111.7
CURL, Amp, same, BN 5956.0 ± 101.6 2292.5 ± 252.5 3870.1 ± 6.3
CURL, Amp, same, LN 5922.9 ± 32.7 2455.6 ± 106.8 3879.7 ± 42.6
CURL, Amp, – = 2.5, same 6160.6 ± 90.3 2188.7 ± 1304.4 3727.3 ± 434.3
CURL, Amp, – = 2.5, same, BN 6184.2 ± 67.0 2256.5 ± 245.5 3651.6 ± 461.7
CURL, Amp, – = 2.5, same, LN 6291.5 ± 67.0 2411.4 ± 668.3 3132.6 ± 713.6
CURL, GN, ‡ = 0.01, – = 2.5, same 6163.2 ± 35.2 1139.7 ± 1377.0 3174.7 ± 1298.6
CURL, GN, ‡ = 0.01, – = 2.5, same, LN 6328.8 ± 60.1 2111.5 ± 263.4 3702.6 ± 252.7

Midpoint (250K)
CQL 5948.1 ± 112.8 2630.9 ± 241.4 3924.8 ± 35.5
CURL, LN 5959.5 ± 70.1 2318.1 ± 334.9 3913.1 ± 97.7
CURL, BN 5934.9 ± 86.6 2561.6 ± 342.6 3864.8 ± 76.7
CURL, – = 2.5, BN 6157.9 ± 136.5 2542.9 ± 229.6 2593.8 ± 1424.2
CURL, – = 2.5, LN 6294.3 ± 63.7 2827.9 ± 175.8 2665.4 ± 783.9
CURL, Amp, same 5771.0 ± 26.8 2521.8 ± 371.1 3555.8 ± 334.1
CURL, Amp, same, BN 5788.6 ± 82.8 2481.4 ± 297.7 3849.8 ± 177.4
CURL, Amp, same, LN 5941.7 ± 178.5 2594.5 ± 417.2 3877.2 ± 90.8
CURL, Amp, – = 2.5, same 6009.8 ± 34.5 1245.5 ± 522.9 2569.2 ± 1829.2
CURL, Amp, – = 2.5, same, BN 5958.0 ± 56.0 2668.3 ± 181.4 3819.4 ± 139.6
CURL, Amp, – = 2.5, same, LN 6135.0 ± 73.0 2803.1 ± 390.9 3194.2 ± 683.6
CURL, GN, ‡ = 0.01, – = 2.5, same 5968.8 ± 55.6 881.4 ± 855.3 1224.4 ± 1335.0
CURL, GN, ‡ = 0.01, – = 2.5, same, LN 6136.4 ± 127.1 2030.8 ± 1399.6 2369.4 ± 1046.5

Table A.10: Raw scores for CQL + Curl on continuous control tasks.

A.4.2 Discrete control: Atari
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A. Full results

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 Mean
Final step (500K)

CQL 120.7 140.2 99.2 120.0
CURL, LN 120.7 121.2 101.0 114.3
CURL, BN 120.5 124.7 101.0 115.4
CURL, – = 2.5, BN 127.8 151.2 107.4 128.8
CURL, – = 2.5, LN 127.8 126.4 88.3 114.2
CURL, Amp, same 116.8 131.8 98.9 115.8
CURL, Amp, same, BN 118.2 125.8 100.2 114.7
CURL, Amp, same, LN 117.6 134.8 100.5 117.6
CURL, Amp, – = 2.5, same 122.1 120.1 96.5 112.9
CURL, Amp, – = 2.5, same, BN 122.5 123.8 94.6 113.6
CURL, Amp, – = 2.5, same, LN 124.5 132.3 81.1 112.7
CURL, GN, ‡ = 0.01, – = 2.5, same 122.1 62.2 82.2 88.9
CURL, GN, ‡ = 0.01, – = 2.5, same, LN 125.2 115.8 95.9 112.3

Midpoint (250K)
CQL 132.7 184.7 244.3 187.3
CURL, LN 133.0 162.7 243.6 179.7
CURL, BN 132.4 179.8 240.6 184.3
CURL, – = 2.5, BN 137.2 178.5 161.5 159.1
CURL, – = 2.5, LN 140.1 198.6 166.0 168.2
CURL, Amp, same 129.0 177.0 221.4 175.8
CURL, Amp, same, BN 129.3 174.2 239.7 181.1
CURL, Amp, same, LN 132.6 182.2 241.4 185.4
CURL, Amp, – = 2.5, same 134.0 87.0 160.0 127.0
CURL, Amp, – = 2.5, same, BN 132.9 187.4 237.8 186.0
CURL, Amp, – = 2.5, same, LN 136.7 196.9 198.9 177.5
CURL, GN, ‡ = 0.01, – = 2.5, same 133.2 61.4 76.3 90.3
CURL, GN, ‡ = 0.01, – = 2.5, same, LN 136.7 142.4 147.5 142.2

Table A.11: Normalized scores for CQL + Curl on continuous control tasks.
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A.4. Self-supervised tasks

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2
Final step (500K)

CQL 6088.3 ± 22.7 2553.9 ± 202.4 3829.8 ± 70.2
SPR, BN 6027.0 ± 46.1 2524.9 ± 226.8 3903.0 ± 23.7
SPR, LN 6112.9 ± 56.8 2442.0 ± 347.7 3909.3 ± 25.8
SPR, Re-norm 6138.5 ± 129.2 2616.2 ± 459.0 3884.4 ± 40.5
SPR, – = 2.5, BN 6529.5 ± 66.2 2394.3 ± 262.8 3152.6 ± 538.8
SPR, – = 2.5, Re-norm 6489.7 ± 90.5 2444.6 ± 497.8 2950.3 ± 784.5
SPR, Amp, same, BN 5930.6 ± 28.9 2202.2 ± 210.0 3702.1 ± 279.0
SPR, Amp, same, LN 5943.7 ± 19.3 2525.1 ± 216.5 3939.0 ± 35.4
SPR, Amp, same, Re-norm 5997.2 ± 32.4 2352.1 ± 174.8 3863.4 ± 62.0
SPR, Amp, – = 2.5, same, BN 6252.5 ± 39.1 2675.8 ± 126.0 3977.2 ± 80.2
SPR, Amp, – = 2.5, same, LN 6345.5 ± 14.0 2494.2 ± 200.6 3118.1 ± 721.7
SPR, Amp, – = 2.5, same, Re-norm 6316.8 ± 63.9 2728.2 ± 193.1 3636.7 ± 455.4
SPR, GN, ‡ = 0.01, – = 2.5, same, BN 6316.7 ± 72.3 1914.7 ± 391.6 3724.2 ± 496.5

Midpoint (250K)
CQL 5948.1 ± 112.8 2630.9 ± 241.4 3924.8 ± 35.5
SPR, BN 5985.2 ± 30.3 2070.4 ± 581.1 3798.2 ± 70.0
SPR, LN 5976.5 ± 106.0 2349.7 ± 135.7 3763.6 ± 104.5
SPR, Re-norm 5979.2 ± 164.9 2587.5 ± 95.3 3901.6 ± 66.8
SPR, – = 2.5, BN 6317.8 ± 62.9 2270.9 ± 748.0 3567.4 ± 297.7
SPR, – = 2.5, Re-norm 6272.9 ± 114.2 2637.5 ± 245.1 2174.9 ± 245.5
SPR, Amp, same, BN 5984.8 ± 59.0 2422.0 ± 463.4 3682.7 ± 278.5
SPR, Amp, same, LN 5937.2 ± 77.3 2596.4 ± 18.3 3751.1 ± 33.5
SPR, Amp, same, Re-norm 5986.8 ± 99.1 2725.3 ± 230.6 3792.7 ± 29.0
SPR, Amp, – = 2.5, same, BN 6185.3 ± 39.5 2451.1 ± 499.8 3021.1 ± 554.8
SPR, Amp, – = 2.5, same, LN 6183.1 ± 44.4 2098.6 ± 59.4 3042.0 ± 176.5
SPR, Amp, – = 2.5, same, Re-norm 6229.2 ± 72.7 2318.3 ± 798.5 3655.8 ± 171.0
SPR, GN, ‡ = 0.01, – = 2.5, same, BN 6175.9 ± 124.5 693.5 ± 329.4 3017.1 ± 875.3

Table A.12: Raw scores for CQL + SPR on continuous control tasks.
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A. Full results

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 Mean
Final step (500K)

CQL 120.7 140.2 99.2 120.0
SPR, BN 119.5 138.6 101.1 119.7
SPR, LN 121.2 134.0 101.2 118.8
SPR, Re-norm 121.6 143.6 100.6 122.0
SPR, – = 2.5, BN 129.0 131.4 81.7 114.0
SPR, – = 2.5, Re-norm 128.3 134.2 76.4 113.0
SPR, Amp, same, BN 117.7 120.8 95.9 111.5
SPR, Amp, same, LN 118.0 138.6 102.0 119.5
SPR, Amp, same, Re-norm 119.0 129.1 100.1 116.0
SPR, Amp, – = 2.5, same, BN 123.8 146.9 103.0 124.6
SPR, Amp, – = 2.5, same, LN 125.6 136.9 80.8 114.4
SPR, Amp, – = 2.5, same, Re-norm 125.0 149.8 94.2 123.0
SPR, GN, ‡ = 0.01, – = 2.5, same, BN 125.0 104.9 96.4 108.8

Midpoint (250K)
CQL 132.7 184.7 244.3 187.3
SPR, BN 133.5 145.2 236.4 171.7
SPR, LN 133.3 164.9 234.3 177.5
SPR, Re-norm 133.4 181.7 242.9 186.0
SPR, – = 2.5, BN 140.6 159.3 222.1 174.0
SPR, – = 2.5, Re-norm 139.6 185.2 135.4 153.4
SPR, Amp, same, BN 133.5 170.0 229.3 177.6
SPR, Amp, same, LN 132.5 182.3 233.5 182.8
SPR, Amp, same, Re-norm 133.5 191.4 236.1 187.0
SPR, Amp, – = 2.5, same, BN 137.8 172.1 188.1 166.0
SPR, Amp, – = 2.5, same, LN 137.7 147.2 189.4 158.1
SPR, Amp, – = 2.5, same, Re-norm 138.7 162.7 227.6 176.3
SPR, GN, ‡ = 0.01, – = 2.5, same, BN 137.6 48.1 187.8 124.5

Table A.13: Normalized scores for CQL + SPR on continuous control tasks.

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2
Final step (500K)

SGI, BN 6133.8 ± 107.9 2439.0 ± 244.0 3778.2 ± 47.8
SGI, Re-norm 6180.3 ± 23.7 2358.7 ± 139.2 3701.9 ± 49.2
SGI, Amp, same, BN 6068.4 ± 57.2 2491.6 ± 90.2 3773.8 ± 79.4
SGI, Amp, same, Re-norm 6137.1 ± 35.5 2688.5 ± 290.5 3628.6 ± 22.8
SGI, – = 2.5, BN 6575.9 ± 114.7 2672.1 ± 208.2 3936.4 ± 102.3
SGI, – = 2.5, Re-norm 6652.4 ± 23.3 2569.8 ± 278.6 3949.7 ± 114.0
SGI, Amp, – = 2.5, same, BN 6410.7 ± 90.3 2772.2 ± 312.9 3834.6 ± 112.4
SGI, Amp, – = 2.5, same, Re-norm 6550.8 ± 44.6 2681.6 ± 436.9 3859.9 ± 136.6

Midpoint (250K)
SGI, BN 6013.1 ± 25.5 2212.9 ± 310.2 3754.3 ± 53.8
SGI, Re-norm 6119.0 ± 27.8 2553.8 ± 216.4 3690.3 ± 182.4
SGI, Amp, same, BN 6084.0 ± 80.8 2558.9 ± 273.2 3694.6 ± 45.0
SGI, Amp, same, Re-norm 6047.2 ± 61.0 2613.6 ± 406.0 3469.4 ± 104.9
SGI, – = 2.5, BN 6431.0 ± 90.8 2320.4 ± 162.4 3787.6 ± 74.6
SGI, – = 2.5, Re-norm 6580.0 ± 29.3 3083.9 ± 103.8 3704.1 ± 102.4
SGI, Amp, – = 2.5, same, BN 6305.5 ± 82.8 2832.0 ± 178.6 3766.0 ± 102.2
SGI, Amp, – = 2.5, same, Re-norm 6517.1 ± 79.9 3034.6 ± 24.1 2416.2 ± 2040.3

Table A.14: Raw scores for CQL + SGI on continuous control tasks.
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A.4. Self-supervised tasks

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 Mean
Final step (500K)

SGI, BN 121.6 133.9 97.8 117.8
SGI, Re-norm 122.4 129.4 95.9 115.9
SGI, Amp, same, BN 120.3 136.7 97.7 118.3
SGI, Amp, same, Re-norm 121.6 147.6 94.0 121.1
SGI, – = 2.5, BN 129.9 146.7 101.9 126.2
SGI, – = 2.5, Re-norm 131.4 141.1 102.3 124.9
SGI, Amp, – = 2.5, same, BN 126.8 152.2 99.3 126.1
SGI, Amp, – = 2.5, same, Re-norm 129.4 147.2 100.0 125.5

Midpoint (250K)
SGI, BN 134.1 155.3 233.7 174.4
SGI, Re-norm 136.4 179.3 229.7 181.8
SGI, Amp, same, BN 135.6 179.7 230.0 181.8
SGI, Amp, same, Re-norm 134.8 183.5 216.0 178.1
SGI, – = 2.5, BN 143.0 162.8 235.8 180.5
SGI, – = 2.5, Re-norm 146.2 216.7 230.6 197.8
SGI, Amp, – = 2.5, same, BN 140.3 198.9 234.4 191.2
SGI, Amp, – = 2.5, same, Re-norm 144.8 213.2 150.4 169.5

Table A.15: Normalized scores for CQL + SGI on continuous control tasks.

Agent Breakout Pong QBert Seaquest
Final step (2.5M)

CQL 167.3 ± 50.5 10.1 ± 4.9 12835.0 ± 1061.0 516.0 ± 132.2
CURL, LN 117.8 ± 99.1 12.0 ± 7.6 10676.7 ± 2392.9 254.7 ± 104.4
CURL, – = 2.0, LN 128.5 ± 41.6 13.5 ± 6.4 10260.0 ± 2628.4 344.0 ± 124.2
CURL, Crop, LN 194.3 ± 83.3 7.2 ± 6.6 8233.3 ± 4371.1 176.0 ± 72.8
CURL, Crop, same, LN 127.5 ± 53.9 12.9 ± 4.3 10420.0 ± 1149.5 237.3 ± 92.7
CURL, Crop, no_c_aug, LN 178.8 ± 59.1 14.7 ± 4.0 9910.0 ± 2011.1 218.7 ± 66.0
CURL, Crop, – = 2.0, same, LN 192.5 ± 87.0 15.5 ± 7.9 9415.0 ± 1449.7 294.7 ± 151.5
SPR, Re-norm 165.3 ± 46.8 15.7 ± 6.1 12640.0 ± 2216.6 281.3 ± 161.1
SPR, Crop, same, Re-norm 171.8 ± 29.5 14.1 ± 9.4 8698.3 ± 3431.5 190.7 ± 22.7

Midpoint (1.25M)
CQL 158.6 ± 44.5 17.5 ± 0.6 11088.3 ± 986.1 225.3 ± 29.5
CURL, LN 90.7 ± 36.4 18.0 ± 2.8 7500.0 ± 1265.2 221.3 ± 54.6
CURL, – = 2.0, LN 43.7 ± 10.8 19.7 ± 1.1 4748.3 ± 484.3 292.0 ± 101.4
CURL, Crop, LN 148.1 ± 33.0 11.9 ± 8.2 8188.3 ± 2774.6 188.0 ± 49.2
CURL, Crop, same, LN 121.9 ± 68.6 18.1 ± 1.8 8296.7 ± 3535.1 205.3 ± 6.1
CURL, Crop, no_c_aug, LN 137.9 ± 22.6 19.1 ± 1.9 8495.0 ± 3476.7 172.0 ± 76.3
CURL, Crop, – = 2.0, same, LN 57.1 ± 40.9 19.7 ± 1.1 5315.0 ± 448.9 244.0 ± 62.9
SPR, Re-norm 150.7 ± 53.7 20.2 ± 0.5 8940.0 ± 3496.5 288.0 ± 50.0
SPR, Crop, same, Re-norm 119.3 ± 33.0 20.8 ± 0.0 7090.0 ± 1140.4 202.7 ± 84.3

Table A.16: Raw scores for self-supervised agents on discrete control tasks.
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A. Full results

Agent Breakout Pong QBert Seaquest Mean
Final step (2.5M)

CQL 130.7 73.6 297.5 54.2 139.0
CURL, LN 91.8 78.2 246.9 23.1 110.0
CURL, – = 2.0, LN 100.3 81.9 237.1 33.8 113.3
CURL, Crop, LN 151.9 66.5 189.6 13.8 105.4
CURL, Crop, same, LN 99.4 80.3 240.9 21.1 110.4
CURL, Crop, no_c_aug, LN 139.7 84.9 228.9 18.9 118.1
CURL, Crop, – = 2.0, same, LN 150.5 86.8 217.3 27.9 120.6
SPR, Re-norm 129.1 87.1 293.0 26.3 133.9
SPR, Crop, same, Re-norm 134.2 83.2 200.5 15.5 108.4

Midpoint (1.25M)
CQL 129.8 96.7 461.6 134.8 205.8
CURL, LN 74.0 97.9 310.1 131.5 153.4
CURL, – = 2.0, LN 35.3 102.2 193.9 189.1 130.1
CURL, Crop, LN 121.2 82.1 339.2 104.3 161.7
CURL, Crop, same, LN 99.7 98.3 343.8 118.5 165.1
CURL, Crop, no_c_aug, LN 112.8 100.9 352.1 91.3 164.3
CURL, Crop, – = 2.0, same, LN 46.3 102.4 217.9 150.0 129.1
SPR, Re-norm 123.4 103.6 370.9 185.9 195.9
SPR, Crop, same, Re-norm 97.5 105.2 292.8 116.3 153.0

Table A.17: Normalized scores for self-supervised agents on discrete control tasks.
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A.4. Self-supervised tasks

(a) Pong (b) Breakout

(c) Seaquest (d) QBert

Figure A.7: Learning curves for Curl on discrete control tasks.
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A. Full results

(a) Pong (b) Breakout

(c) Seaquest (d) QBert

Figure A.8: Learning curves for SPR on discrete control tasks.
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A.5. Best agents: Gym-MuJoCo

A.5 Best agents: Gym-MuJoCo
In Figure A.9 we show the interval estimates and probabilities of improvements for all
agents that outperformed the base CQL agent on Gym-MuJoCo.

(a) Interval estimates

(b) Probability of improvement

Figure A.9: Interval estimates of normalized scores and probability of improvement for
best agents on continuous control tasks.
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A. Full results

A.6 Online fine-tuning for offline RL
Finally, in this section, we list the full results for our experiments with offline pre-training
and online fine-tuning. The results for continuous control tasks (Gym-MuJoCo) are listed
in Tables A.18 and A.19. The results for discrete control tasks (Atari) are listed in Tables
A.20 and A.21.

A.6.1 Continuous control: Gym-MuJoCo

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2
Final step (500K)

CQL 6088.3 ± 22.7 2553.9 ± 202.4 3829.8 ± 70.2
Online SAC 4994.6 ± 2393.9 1825.0 ± 1173.1 3861.4 ± 386.5
Off-on 12538.6 ± 178.4 3567.6 ± 50.4 5236.3 ± 124.3
Off-on, on_– = 5.0 10162.4 ± 377.0 3439.3 ± 26.1 5222.9 ± 224.7
Off-on, on_– = 5.0, zero_after=5 12204.1 ± 133.4 3573.9 ± 24.3 3892.0 ± 1274.5
Off-on, on_– = 5.0, half_every=5 11066.3 ± 384.3 3521.8 ± 39.2 5614.3 ± 98.8
Off-on, on_– = 5.0, decay_every=1000 10481.8 ± 723.0 3440.7 ± 15.0 4688.1 ± 272.6
Off-on, on_– = 5.0, –_lr=0.0001 12074.2 ± 716.4 2867.5 ± 637.8 4063.9 ± 2555.0

Midpoint (250K)
CQL 5948.1 ± 112.8 2630.9 ± 241.4 3924.8 ± 35.5
Online SAC 4410.1 ± 2267.3 1429.3 ± 1093.5 1605.4 ± 514.5
Off-on 11235.8 ± 149.6 2898.3 ± 932.1 2129.6 ± 1928.9
Off-on, on_– = 5.0 8635.1 ± 167.3 3353.4 ± 26.4 4060.8 ± 457.2
Off-on, on_– = 5.0, zero_after=5 10036.9 ± 144.6 2668.0 ± 747.0 1574.7 ± 1435.3
Off-on, on_– = 5.0, half_every=5 8657.7 ± 480.5 3373.9 ± 24.7 3600.9 ± 1340.7
Off-on, on_– = 5.0, decay_every=1000 9128.5 ± 44.5 3359.2 ± 11.3 3263.9 ± 2052.6
Off-on, on_– = 5.0, –_lr=0.0001 10126.2 ± 863.0 3129.9 ± 678.9 2746.0 ± 866.4

Table A.18: Raw scores for CQL with online fine-tuning on continuous control tasks.

Agent halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 Mean
Final step (500K)

CQL 120.7 140.2 99.2 120.0
Online SAC 100.0 100.0 100.0 100.0
Off-on 242.8 196.1 135.6 191.5
Off-on, on_– = 5.0 197.8 189.0 135.2 174.0
Off-on, on_– = 5.0, zero_after=5 236.4 196.4 100.8 177.9
Off-on, on_– = 5.0, half_every=5 214.9 193.5 145.4 184.6
Off-on, on_– = 5.0, decay_every=1000 203.8 189.1 121.4 171.4
Off-on, on_– = 5.0, –_lr=0.0001 234.0 157.5 105.2 165.6

Midpoint (250K)
CQL 132.7 184.7 244.3 187.3
Online SAC 100.0 100.0 100.0 100.0
Off-on 245.2 203.6 132.6 193.8
Off-on, on_– = 5.0 189.9 235.7 252.8 226.1
Off-on, on_– = 5.0, zero_after=5 219.7 187.3 98.1 168.4
Off-on, on_– = 5.0, half_every=5 190.4 237.1 224.2 217.2
Off-on, on_– = 5.0, decay_every=1000 200.4 236.1 203.2 213.2
Off-on, on_– = 5.0, –_lr=0.0001 221.6 219.9 171.0 204.2

Table A.19: Normalized scores for CQL with online fine-tuning on continuous control
tasks.
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A.6. Online fine-tuning for offline RL

A.6.2 Discrete control: Atari

Agent Breakout Pong QBert Seaquest
Final step (2.5M)

CQL 167.3 ± 50.5 10.1 ± 4.9 12835.0 ± 1061.0 516.0 ± 132.2
Online DQN 128.2 ± 63.6 20.9 ± 0.1 4416.7 ± 227.8 901.3 ± 778.2
Off-on 51.6 ± 7.5 20.5 ± 0.5 13913.3 ± 1012.1 2685.3 ± 769.5
Off-on, on_– = 4.0 45.7 ± 17.9 20.3 ± 0.3 7233.3 ± 2287.8 241.3 ± 84.0
Off-on, on_– = 4.0, half_every=5 110.7 ± 142.8 20.0 ± 0.6 13081.7 ± 1640.2 2162.7 ± 881.9
Off-on, on_– = 4.0, decay_every=1000 43.5 ± 19.3 20.3 ± 0.1 6851.7 ± 4113.4 2892.0 ± 538.3
Off-on, on_– = 4.0, zero_after=10 68.9 ± 36.4 18.7 ± 3.1 13448.3 ± 1635.9 2048.0 ± 613.5

Midpoint (1.25M)
CQL 158.6 ± 44.5 17.5 ± 0.6 11088.3 ± 986.1 225.3 ± 29.5
Online DQN 122.3 ± 13.3 18.8 ± 1.8 2523.3 ± 828.7 182.7 ± 70.5
Off-on 21.3 ± 19.2 2.4 ± 20.2 9598.3 ± 3507.2 612.0 ± 337.9
Off-on, on_– = 4.0 56.3 ± 9.8 20.3 ± 0.1 5740.0 ± 2719.5 257.3 ± 119.5
Off-on, on_– = 4.0, half_every=5 40.6 ± 10.0 0.7 ± 2.7 9536.7 ± 1088.9 322.7 ± 39.5
Off-on, on_– = 4.0, decay_every=1000 21.6 ± 4.7 3.7 ± 6.0 6890.0 ± 2969.2 554.7 ± 128.3
Off-on, on_– = 4.0, zero_after=10 27.3 ± 13.5 5.7 ± 5.0 4723.3 ± 1812.8 660.0 ± 218.1

Table A.20: Raw scores for CQL with online fine-tuning on discrete control tasks.

Agent Breakout Pong QBert Seaquest Mean
Final step (2.5M)

CQL 130.7 73.6 297.5 54.2 139.0
Online DQN 100.0 100.0 100.0 100.0 100.0
Off-on 39.9 98.9 322.8 312.0 193.4
Off-on, on_– = 4.0 35.2 98.5 166.1 21.6 80.3
Off-on, on_– = 4.0, half_every=5 86.2 97.7 303.3 249.9 184.3
Off-on, on_– = 4.0, decay_every=1000 33.5 98.5 157.1 336.6 156.4
Off-on, on_– = 4.0, zero_after=10 53.5 94.5 311.9 236.3 174.0

Midpoint (1.25M)
CQL 129.8 96.7 461.6 134.8 205.8
Online DQN 100.0 100.0 100.0 100.0 100.0
Off-on 16.8 57.7 398.7 450.0 230.8
Off-on, on_– = 4.0 45.6 103.8 235.8 160.9 136.5
Off-on, on_– = 4.0, half_every=5 32.7 53.4 396.1 214.1 174.1
Off-on, on_– = 4.0, decay_every=1000 17.1 61.0 284.4 403.3 191.4
Off-on, on_– = 4.0, zero_after=10 21.8 66.2 192.9 489.1 192.5

Table A.21: Normalized scores for CQL with online fine-tuning on discrete control
tasks.
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