
Squeezing Oscillations in a Multimode Bosonic Josephson Junction

Tiantian Zhang ,* Mira Maiwöger , Filippo Borselli , Yevhenii Kuriatnikov ,
Jörg Schmiedmayer , and Maximilian Prüfer †

Vienna Center for Quantum Science and Technology, Technische Universität Wien,
Atominstitut, Vienna, Austria

(Received 17 April 2023; revised 21 December 2023; accepted 9 February 2024; published 15 March 2024)

Quantum simulators built from ultracold atoms promise to study quantum phenomena in interacting
many-body systems. However, it remains a challenge to experimentally prepare strongly correlated
continuous systems such that the properties are dominated by quantum fluctuations. Here, we show how to
enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction, which is a
quantum simulator of the sine-Gordon field theory. Our approach is based on the ability to track the
nonequilibrium dynamics of quantum properties. After creating a bosonic Josephson junction at the stable
fixed point of the classical phase space, we observe squeezing oscillations in the two conjugate variables.
We show that the squeezing oscillation frequency can be tuned by more than one order of magnitude, and
we are able to achieve a spin squeezing close to 10 dB by utilizing these oscillatory dynamics. The impact
of improved spin squeezing is directly revealed by detecting enhanced spatial phase correlations between
decoupled condensates. Our work provides new ways for engineering correlations and entanglement in the
external degree of freedom of interacting many-body systems.
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I. INTRODUCTION

Understanding the role of quantum fluctuations and
entanglement in interacting many-body systems is of
critical importance for the development of quantum tech-
nologies, such as quantum metrology [1,2] and quantum
simulation [3]. In particular, the ability to prepare entan-
glement [4] in quantum many-body systems is pivotal. In
this context, ultracold atoms have proven to be a versatile
platform [1].
Internal spin degrees of freedom (d.o.f.) offer a high level

of control, and using a single spatial mode spin-squeezed
states could be generated experimentally [5–8]. Creating
entangled quantum states in motional d.o.f., for example, in
tunnel-coupled BECs in double wells (DWs) [9,10], is, on
the contrary, less explored; the impact of spin squeezing
and entanglement has only been studied with respect to the
global observables.
For spatially extended systems, where more than one

longitudinal mode is occupied, the interplay between

transverse (spin) and longitudinal d.o.f. leads to new
physical phenomena. For coupling internal states, interest-
ing dynamical phenomena as well as a high degree
of control have been shown [11,12]; for tunnel-coupled
systems, the influence of the multimode situation on
Josephson oscillations has been studied [13]. However,
so far the quantum regime has not been accessible.
Interestingly, in the one-dimensional (1D) regime these

systems are excellent quantum simulators for the sine-
Gordon field theory [14,15], which was mainly explored in
tunnel-coupled systems [16,17]. It is worth pointing out
that BECs in DWs at equilibrium can be experimentally
achieved by direct cooling in DWs [16]. But fluctuations
introduced by the finite temperature make it challenging to
prepare the system in the quantum correlated regime [18].
However, it has been shown that using a splitting routine
from a single condensate, quantum correlated states can be
prepared in a multimode scenario [10]. In this work, we
combine the ability to prepare quantum correlated states
with spatially resolved measurements of the sine-Gordon
fields entering a new regime.
We realize a multimode bosonic Josephson junction

(BJJ) [19,20] by splitting 1D quasi-BECs into a DW (see
Fig. 1, upper panel). Instead of studying Josephson
oscillations [13,21–25], we prepare the system at the stable
fixed point of the classical phase space and access its
quantum properties. Despite the stationary expectation
values of both relevant observables, relative number and
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relative phase, we observe oscillatory dynamics of the
quantum fluctuations which result from the evolution of an
initial quantum state different from the ground state at zero
temperature. We employ these nonequilibrium dynamics of
the fluctuations in the BJJ to foster strong spin squeezing in
decoupled condensates. Furthermore, we study its impact
on spatial phase correlations in the multimode system.
To probe the multimode properties of the prepared states

we use a spatially resolved detection of the relative phase
(see Fig. 1, lower panel). The observations in this observ-
able enable us to demonstrate how the improved number
squeezing enhances spatial correlations between two
decoupled 1D condensates. We are able to connect quan-
tum properties resulting from the preparation process to
enhanced phase correlations in a regime where a sine-
Gordon model is realized. The enhanced squeezing can in
principle be directly related to lower effective temperatures
in the prethermalized regime [26,27], and our work thus
shows a pathway to prepare sine-Gordon field simulators in
a regime dominated by quantum fluctuations.

II. REALIZATION AND READOUT
OF A MULTIMODE BJJ

We realize a multimode BJJ with 1D tunnel-coupled
quasi-BECs of 87Rb atoms trapped magnetically under an
atom chip [28]. The DW potential is generated with the

radio-frequency (rf) dressing [29] technique. The dressing
is calibrated such that the precise transformation from a
single well to a DW is achieved by ramping up the
amplitude A of the rf field whose value is normalized to
the maximal current. We display in Fig. 1 the transverse
trap configuration and typical experimental readout with
our single-atom-sensitive fluorescence imaging system [30]
after time of flight of tF ¼ 43.4 ms. The aspect ratio
between the radial and axial trap frequency is ∼100.
Each of the quasicondensates in a DW can be

described in the density-phase representation by Ψj ¼ffiffiffiffiffiffiffiffiffiffi
ρjðzÞ

p
exp½−iϕjðzÞ�, where j∈ ½L;R� labels the left (L)

and the right (R) condensate. The local density ρj and local
phase ϕj are spatially varying and fluctuating fields. This is
illustrated by the wiggly brown lines in Fig. 1. We are
interested in the local fields in the relative d.o.f., namely the
local relative density ρ−ðzÞ ¼ ρRðzÞ − ρLðzÞ and local
relative phase ϕðzÞ ¼ ϕRðzÞ − ϕLðzÞ. For finitely tunnel-
coupled condensates, the spatially dependent relative
phase field ϕðzÞ can be described by the sine-Gordon field
theory [14].
Our imaging allows us to measure the relative phase with

spatial resolution (see Fig. 1, lower panel). From this, we
can access the two-point phase correlations to study the
sine-Gordon physics in the multimode regime, as will be
discussed later. Valuable insights into the dynamical
quantum properties of BJJs can already be obtained from
a single-mode description of the BJJ [31]. Therefore, we
will first investigate the properties of the two global
observables of the 1D BJJ, the relative atom number,
N− ¼ P

z ρ−ðzÞ, and the relative phase, Φ ¼ P
z ϕðzÞ,

which correspond to the spatial zeroth mode.
The macroscopic dynamics of the global observables

N− andΦ in a BJJ can be described by the two-mode Bose-
Hubbard (BH) model,

H ¼ 2J
ℏ

�
UN
4J

n2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2

p
cosΦ

�
; ð1Þ

where N ¼ NL þ NR is the total atom number, n ¼ N−=N
is the relative imbalance, U is the interaction strength,
and J is the single particle tunnel coupling strength.
The Josephson regime of the BJJ is indicated by
1=N ≪ U=2J ≪ N. From Eq. (1), we can obtain the
Josephson oscillation frequency [19,20] of the mean values
hΦi and hN−i,

fp ¼ 2J
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcosΦ0i þ

UN
2J

r
; ð2Þ

also known as the plasma frequency. Here cosΦ0 indicates
the initial phase coherence factor. From Eq. (2), we see that
fp depends explicitly on the single particle tunnel coupling
strength J.

Atom chip

x

x

y

z

z

FIG. 1. System and readout with spatial resolution. Two 1D
quasi-BECs with locally fluctuating quantum phases trapped
magnetically below an atom chip with rf dressing technique. The
local relative phase ϕðzÞ and relative atom density ρ−ðzÞ between
the two BECs are detected with fluorescence imaging after a long
time of flight. The spatial resolution allows us to probe the spatial
phase correlations along the condensates. We integrate over the
longitudinal direction to obtain the global observables, namely
the relative phase Φ and relative atom number N−.
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For the multimode many-body dynamics dominating in
decoupled DWs, the two-mode BHmodel definitely does not
give a full description. However, we will see in the following
that it nicely captures the dynamics of the squeezing in the
spatial zeroth mode. Exact modeling of the splitting process
together with the ensuing dynamics are challenging when
taking into account the true multimode quantum dynamics;
thus, quantum simulations can provide new insights.

III. PREPARING QUANTUM
CORRELATED STATES

To prepare strongly correlated BECs, we split a single
BEC into two by transforming a single well into a DW
[see Fig. 2(a)]. BEC splitting as a pathway to generate
quantum correlated states was investigated in many earlier
works [9,32,33]; here, we introduce and implement a new
scheme which is based on understanding the nonequili-
brium dynamics after a nonadiabatic splitting into a tunnel-
coupled DW. In the following, we introduce the relevant
quantities and summarize our findings which lay the basis
for observing the nonequilibrium dynamics of the prepared
squeezed state.

To quantify the fluctuations of the observables, we define
the squeezing factors,

ξ2N ¼ Δ2N−

N
; ξ2Φ ¼ Δ2Φ · N; ð3Þ

where Δ2N− and Δ2Φ represent the statistical variance,
evaluated as in Fig. 8. We use the quadrature projection
noise of spin coherent states in the denominators. Hence,
ξ2N ¼ ξ2Φ ¼ 1 represents the standard quantum limit (SQL).
Furthermore, spin-squeezed states [34,35] representing a
class of entangled states are characterized by spin squeez-
ing factor ξ2s ¼ ξ2N=hcosΦi2 < 1, where hcosΦi is the
phase coherence factor.
The ground state of the many-body Hamiltonian [36]

exhibits a growing degree of number squeezing in less
coupled DWs owing to repulsive interatomic interactions.
In Fig. 2(a), we show the experimentally inferred squeezing
factors in N− and Φ as a result of BEC splitting with finite
duration, denoted with rescaled rf dressing amplitude A.
We conduct ∼200 repetitions for each measurement to
ensure reliable statistics. At the beginning of the Josephson

Initial out-of-equilibrium state

Standard quantum limit

State evolution
Initial stateGround state

=

Split

(a) (b)

= 0
J

FIG. 2. Preparation and dynamics of spin-squeezed quasi-BECs in the Josephson regime. (a) Measured squeezing factors in N− andΦ
quadrature, denoted as ξ2N and ξ2Φ, right after a linear ramp-up at a constant ramp speed to various tunnel-coupled DWs, denoted with the
rescaled rf dressing amplitudeA. In the upper x axis, the parameter 1=N ≪ U=2J ≪ N indicates that we are in the Josephson regime of
BJJ. The colored bands mark the expected ground state squeezing factors of BJJ at zero temperature [Eq. (A3)] with atom number
N ∈ ½2; 5� × 103. (b) Schematics of state evolution in the classical phase space. Left-hand column illustrates the expected ground state
fluctuation of BJJ according to Eq. (A4), where orange (green) arrows represent projection noise in the relative number (phase)
quadrature. The right-hand column represents the out-of-equilibrium quantum state evolution. The triangle markers indicate single
classical realizations orbiting along the equipotential lines at the plasma frequency fp. In the Josephson regime, the distribution of out-
of-equilibrium states rotates and deforms, which results in squeezing oscillations. A full period of the quantum state evolution around
the stable fixed point (n ¼ N−=N ¼ 0 and Φ ¼ 0) conforms to a half period of evolution of single realizations (mean values) in the
phase space.

SQUEEZING OSCILLATIONS IN A MULTIMODE BOSONIC … PHYS. REV. X 14, 011049 (2024)

011049-3



regime, U=2J ∼ 1=N, the measured relative number fluc-
tuations of split BECs approach the expected ground state
number squeezing ξ2N;0 [see Appendix Eq. (A4)].
During further ramp-up of the rf amplitude A, the

adiabaticity condition can no longer be satisfied. This
breakdown is shown explicitly in Fig. 2(a), where ξ2N
become increasingly larger than ξ2N;0 in less tunnel-coupled
DWs. This initialized out-of-equilibrium state with BEC
splitting is expected to evolve dynamically in the Josephson
regime [see Fig. 2(b)]. As we will discuss in the following
sections, this evolution of the quantum state in phase spaces
with number-squeezed ground states is not just a rotation,
but also additional shearing.
The fluctuations in the relative phase are always much

above the expected ground state phase squeezing factor
ξ2Φ;0, as shown in Fig. 2(b). This is due to the interatomic
interaction induced phase diffusion [37] during the ramp
and can be prevented by increasing the splitting speed of
linear ramps. The trade-off of faster splitting is poorer
number squeezing right after the splitting. Thus, alternative
splitting routines beyond linear single ramps are sought
after to enhance spin squeezing in decoupled traps.

IV. SQUEEZING OSCILLATIONS IN
CONJUGATE QUADRATURES

We prepare two BECs in a strongly coupled DW
(A ¼ 0.5) by linearly ramping up from a single well; this
prepares the system at the stable fixed point of the classical
phase space, i.e., hN−i ¼ 0 and hΦi ¼ 0 (see Fig. 10) with
phase space fluctuations different from the ground state. By
tracking the evolution of this out-of-equilibrium quantum
state in the strongly coupled double well, we observe the
dynamics of the quantum fluctuations of the conjugate
observables (see Fig. 3).
The squeezing factors in both quadratures undergo

oscillatory dynamics. Strikingly, the number quadrature
stays always squeezed while the phase never gets squeezed
below the SQL; i.e. the oscillatory dynamics is not a simple
linear rotation of the state in phase space. This results from
the interplay of tunnel coupling and on-site interaction
and leads to a rotation and deformation of the state [see
Figs. 2(b) and 3, inset]. We can understand the frequency
of the oscillation with the intuitive picture that a π rotation
of a single realization corresponds to a 2π rotation of
quantum state distribution in phase space [see Fig. 2(b)
and the Appendix]. We thereby deduce that the squeezing
oscillations are twice as fast as the Josephson oscillations
of the mean (with plasma frequency fp); this is in
accordance with a semiclassical analysis for Raman
coupled BECs [38].
We fit the observed squeezing factors in Fig. 3 with a

sine function to determine the squeezing oscillation
frequency and obtain fξ ¼ 567ð29Þ Hz in relative number
N− quadrature with total atom number N ¼ 4154ð35Þ and

fξ ¼ 649ð33Þ Hz in relative phase Φ quadrature with
N ¼ 4302ð45Þ (see the Appendix). The measured squeez-
ing oscillations in both quadratures as expected from the
nonlinear Josephson dynamics match with twice the
experimentally measured plasma frequency fp and have
a π phase shift with respect to each other. Combining
the complementary measurements in Fig. 3, we infer the
mean quantum state fluctuations in the phase space to be

ξ2N · ξ2Φ ≈ 3.5 with ξ2N ¼ 0.44ð2Þ and ξ2Φ ¼ 8.0ð7Þ.

V. TWO-STEP SEQUENCE FOR OPTIMIZED
SPIN SQUEEZING

So far, mostly simple linear ramps have been used to
generate squeezing. In single-mode situations theoretical
studies showed that nonlinear ramps generated by optimal
control can lead to better squeezing [39,40]; for our
multimode BJJ the development of a many-body

Split Hold time 

FIG. 3. Squeezing oscillations in a coupled double well.
(a) Dynamics of the fluctuations of relative phase (green) and
relative number (orange markers) for variable hold time in the
coupled trap after the splitting. We observe oscillatory dynamics
with comparable frequency and relative phase shift of π. The
oscillatory dynamics is not a simple linear rotation of the state in
phase space but results from the interplay of tunnel coupling and
on-site interaction and leads to a rotation plus deformation of the
state (see inset). From a sinusoidal fit (solid lines) we extract the
frequencies which are roughly twice the plasma frequency as
expected from the rotation and shearing of the distribution in the
phase space [see inset and Fig. 2(b)]. Bands indicate 68%
prediction confidence interval of the fits and error bars represent
one standard error of the mean.
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simulation, required for performing open loop optimization
on spin squeezing, is not possible, as the splitting process is
hard to calculate. Thus we develop an experimentally
tractable two-step approach (see Fig. 4) based on the observed
squeezing oscillations in the coupled DW; in single-mode
spinorBECs a similar approachhas beenused to achieve spin-
squeezed ground states [41,42]. Here, we employ it for
optimizing the spin squeezing in a decoupled DW (J ¼ 0)
in a multimode situation (see Fig. 4). It is of particular interest
to use entangled BECs in a decoupled DW as a sensitivity-
enhanced matter-wave interferometer [1,2,10].
We show in Fig. 4 that the generated squeezing

oscillation in the coupled DW is successfully preserved
after the ramp to the decoupled DW with two-step
splitting; this means we are able to manipulate the
quantum properties in the decoupled trap by a holding
time in the coupled trap. Furthermore, the number
squeezing is even further enhanced during the second
ramp. With this approach, we obtain a phase coherence
factor of hcosΦi ¼ 0.86þ0.01

−0.02 . This leads to a spin squeez-
ing factor [5] of ξ2s ¼−9.2þ1.9

−3.0 dB [with no detection noise
correction, ξ2s ¼ −4.0ð1.1Þ dB; see the Appendix], which
witnesses many-body entanglement [35].
In contrast, a single linear ramp with a similar duration

yields lower spin squeezing of ξ2s ≈ −1.5 dB, demonstrat-
ing a significant gain with two-step splitting. A simple way
to understand this is that two-step splitting enables us to
achieve optimal number squeezing at an earlier stage of the
splitting procedure and, as a result, suppressing the phase
diffusion more efficiently.

VI. TUNING SQUEEZING OSCILLATIONS

To achieve controlled preparation of strongly correlated
states with two-step splitting, it is crucial to understand the

control parameters and tunability of the squeezing oscil-
lation frequency. We identify two strategies: the first one
involves tuning the parameters in a static BJJ, and the
second one involves introducing time dependence on the
control parameters through transversal motions.
We explore experimentally the frequency scaling in

elongated BJJ based on Eq. (2). In Fig. 5(a), we show
the measured number squeezing oscillations in different
DWs with decreasing single particle tunnel coupling J
(bottom to top). We observe squeezing oscillations with
frequencies spanning more than one order of magnitude. In
Fig. 5(b), we plot collectively the extracted frequencies and
as a comparison the expectation of 2fp (gray band)
estimated directly from Eq. (2). Here, J for each A is
inferred from simulated DW potential and experimental
atom number N ∈ ½2; 5� × 103. We find good agreement

 Hold time SplitSplit

FIG. 4. Two-step sequence for optimized spin squeezing. For
optimizing the spin squeezing in the decoupled trap (A ¼ 0.65),
we perform a two-step sequence (black line in left-hand sche-
matic) instead of a simple linear ramp (blue line). By varying the
hold time in the coupled trap (A ¼ 0.5) and performing the final
measurement after adding a second linear ramp to the decoupled
trap, we observe an oscillatory behavior. This oscillation is
similar to Fig. 3, but overall better number squeezing. For the
optimal spin-squeezed point (red marker) we find −9.2 dB spin
squeezing instead of −1.5 dB for a single linear ramp with a
similar total duration as the two-step sequence.

(a) (b)

(c)

(d)

FIG. 5. Tuning squeezing oscillation frequency. (a) Observed
number squeezing factor ξ2N evolution in coupled DWs after a
constant splitting speed with increasing A (bottom to top). The
solid line is a fitted sine function with 68% simultaneous
prediction bounds. (b) The extracted squeezing frequency fξ
(diamond) from (a) together with the calculated prediction 2fp
(gray shade) with N ∈ ½2; 5� × 103. (c) Fitted initial phases of
squeezing oscillations in (a) compared to the expected accumu-
lated phases (gray band) of the quantum state during the linear
ramp with constant ramp speed to different DWs at A with atom
number N ∈ ½2; 5� × 103 as in (b). Here the band uses the fitted
phase of squeezing oscillation at A ¼ 0.48 [in (a)] as the initial
value. (d) Dependence of fξ (diamond) on total atom number N
in coupled DW at A ¼ 0.5, and for comparison experimentally
measured plasma frequency 2fp (circle) and solid line marks the
inferred 2fp from Eq. (2).
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between the experimentally observed fluctuation dynamics
on the global observable N− (zeroth mode) of the multi-
mode BJJ and the simple calculations based on the two-
mode BH model. This confirms first of all that the observed
squeezing oscillations indeed originate from stationary
nonlinear Josephson dynamics.
On top of which, we show in Fig. 5(c) that fitted phases

of the squeezing oscillations in Fig. 5(a) match quantita-
tively with the expected evolution of the quantum state
during the linear ramp. The experimental results in Fig. 5(a)
are obtained after single linear ramps with the same
splitting speed. We can estimate the additionally gained
phase during the ramp compared to the first experimental
data point at A ¼ 0.48 (set as t ¼ 0) as the sum of
constantly evolving plasma frequencies fpðtiÞ [Eq. (2)]
over a ramp time ΔT, namely ΔT ·

PΔT
t¼0 2πfpðtÞ. Despite

the quantum state evolution in the phase space [Fig. 2(b)]
not being a simple rotation, the differences between the
initial phases in different DWs built up during the ramp can
be surprisingly well predicted with this simple estimation.
The other d.o.f. for tuning squeezing oscillation is the

total atom number N. In Fig. 5(c) we show experimentally
measured squeezing oscillation frequency fξ as a function
of N (for fixed A ¼ 0.5) and compare them directly with
experimentally measured plasma frequency 2fp and a solid
line derived from Eq. (2). In this strongly coupled DW, we
can tune squeezing oscillation frequency from 300 to
800 Hz by adjusting only the atom number.
To expand the tuning capabilities, we incorporate an

active modulation on the tunneling mechanism. By per-
forming a splitting quench, we excite out-of-phase trans-
verse sloshing between the two BECs at the transverse
trap frequency fx ¼ 1418ð10Þ Hz. We depict in Fig. 6(a)
this induced motion with the inferred intercondensate
distance d. This motional excitation drives the effective
tunnel coupling J periodically at the trap frequency fx. We
show in Fig. 6(b) how this periodic drive enforces ξ2N to
oscillate at frequencies comparable with fx. Furthermore,
we can reproduce this oscillation frequency with a two-step
splitting quench to the decoupled DW [see Fig. 6(c)].
By utilizing this method, we boost the preparation of

spin-squeezed states with two-step sequence from two
perspectives: reduced ramp times and faster squeezing
dynamics. Our observations potentially facilitate investi-
gations into captivating phenomena like parametric reso-
nance [43] and Floquet engineering [44].

VII. SQUEEZING-PROTECTED
SPATIAL CORRELATIONS

With the gained insight on how to optimize spin
squeezing, we now investigate how the spin squeezing
influences the spatial correlations in our multimode system
which is a quantum simulator for the sine-Gordon field
theory. In a decoupled DW, number squeezing prolongs the

global phase coherence by reducing the relative phase
diffusion [10,33]. Indeed, we find a good qualitative
agreement between experimentally extracted global phase
diffusion rates and the levels of global number squeezing
(see Fig. 13).
The spatial resolution of our imaging system grants

direct access to the local relative phase (see the Appendix).
This allows us to explore how the observed number
squeezing impacts the local dephasing [26,45]. To study
this, we prepare split BECs in an effectively decoupled DW,
with two different levels of (global) number squeezing. We
consider the two-point phase correlation function (PCF),
defined as hcos θðz; z0Þi, where θðz; z0Þ ¼ ϕðzÞ − ϕðz0Þ is
the relative phase field.
In Fig. 7(a), we compare the two-point PCF in the

decoupled DW at two time instances, t ¼ 0 ms and
t ¼ 4 ms, after initial preparation with ξ2N ¼ 0.31ð3Þ
(upper panels) and 0.44(4) (lower panels). Despite higher
PCF in the beginning, the decay is faster with weaker
number squeezing (lower panels). For better visualization,
we plot in Fig. 7(b) the averaged PCF, hcos θðz̄Þi, where
z̄ ¼ jz − z0j, in the central region z ¼ ½−36; 36� μm. It is
evident that enhanced global number squeezing slows
down the decay of PCF over large spatial separations z̄.
For prethermalized states [27], it was found that the local

number squeezing is directly linked to the effective temper-
ature T− of the implemented sine-Gordon model according
to the relation T− ∝ ξ2N (see Ref. [46] and the Appendix);
thus, for decoupled DWs enhanced squeezing leads to a
larger phase coherence length λT ∝ 1=T−.

t1  

t4 
t3

t2

(a)

t1  

t4 

t3

t2

(b)

(c)

FIG. 6. Driving number squeezing oscillation. (a) Intercon-
densate distance d in 0.5 trap resulting from splitting quench
with κ ¼ 0.085 ms−1 into A ¼ 0.5 trap. d oscillates at the
transverse trap frequency fx. With this effective periodic
modulation of tunnel coupling, we observe in (b) that ξ2N
(orange circle) is driven at the trap frequency fx > fp. (c) Trans-
ferred squeezing oscillation after a two-step quench. τ indicates
hold time in coupled DW.
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In multimode systems, different spatial modes can in
principle feature different levels of squeezing; this would
result in mode-dependent effective temperatures as, for
example, in a generalized Gibbs ensemble [47]. To examine
the spatial dependence of squeezing in our experiment, we
track the time evolution of the fluctuations Δθðz;−zÞ of the
relative phase field between two symmetric points. We
extract linear rates ∂tΔθðz;−zÞ and show an exemplary at
two distances z ¼ 8 and 24 μm in Fig. 7(c) (see Fig. 14 for
dephasing rates at more distances). We observe a spatial
dependence of dephasing rates ∂tΔθðz;−zÞ [see Fig. 7(d)].
As expected, the experimental set with better global
number squeezing yields an overall lower dephasing rate
∂tΔθðz;−zÞ, and additionally we observe slower dephasing
at small distances.

VIII. CONCLUSION AND OUTLOOK

We have observed oscillatory dynamics of quantum
fluctuations on conjugate variables of a multimode BJJ

and, based on this observation, developed a more efficient
approach for achieving enhanced spin-squeezed states. We
envision a more efficient preparation of spin-squeezed states
with the help of optimal control algorithms optimizing the
classical external dynamics after rapid two-step sequences.
In consideration of our 1D multimode system, we have
demonstrated the influence of number squeezing on pro-
hibiting local dephasing in decoupled DWs. In the future, the
ability to track the squeezing dynamics provides a new way
for optimizing the preparation of strongly correlated sine-
Gordon field simulators with lower effective temperatures;
by experimentally approaching a regime that is dominated
by quantum fluctuations, measurements of the entanglement
entropy in quantum fields will become possible [48].

Source data and all other data that support the plots
within this paper and other findings of this study are
available from the corresponding authors upon reasonable
request.
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APPENDIX

1. Number squeezing factor estimation

By summing up the total photon signal of each cloud
(see Fig. 1) to obtain SL and SR, we can calculate the global
number squeezing factor using,

ξ2N ¼ Δ2S− − 2S − 2Δ2b
p̄S

: ðA1Þ

Here Δ2S− ¼ Δ2ðSL − SRÞ is the variance on the relative
photon signal, p̄ is the experimentally calibrated average
number of photons collected per atom, and Δ2b is the
variance of the background noise of an atom-free region
on the electron multiplying charge-coupled device
(EMCCD) chip. The noise of 2S ¼ 2ðSL þ SRÞ originates

(c)

(b)

(d)

(a)

FIG. 7. Influence of number squeezing on multimode phase
correlation function. (a) Phase correlation function (PCF)
hcos θðz; z0Þi between two spatial positions z and z0 along the
condensates. Upper and lower panels show PCF of a state with
0.31(3) (orange) and ξ2N ¼ 0.44ð4Þ (green) and at time t after
splitting to DW at A ¼ 0.6. (b) Spatially averaged PCF,
hcos θðz̄Þi, with z̄ ¼ jz − z0j from (a) visualizes how number
squeezing suppresses decay of PCF. (c) Evolution of Δθðz;−zÞ
for z ¼ 8 μm (big circle) and z ¼ 24 μm (small circle). We infer
the dephasing rate ∂tΔθðz;−zÞ with a linear fit and plot the
extracted rates in (d) (see Fig. 14 for all distances z). The shaded
regions represent the extracted global phase diffusion rate. We
observe a spatial dependence of ∂tΔθðz;−zÞ along the conden-
sates, which hints at local number squeezing originating from the
multimode dynamics of quasicondensates.
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from the electron multiplication process of the EMCCD
chip. 2Sþ Δ2b is the combined detection noise which is
indicated as gray dotted line (Gaussian with corresponding
width) in the histogram of N− in Fig. 8(a).

2. Extraction of relative phase

We fit the interference fringe slicewise with ρðxÞ ≈
gðxÞf1þ C cos½k0ðx − x0Þ þ ϕ�g to extract the local rela-
tive phase ϕ and the fringe visibility C, indicating the single
particle coherence. To minimize the readout error origi-
nating from the locally fluctuating relative phases, we
extract the global relative phase Φ ¼ argfexp ½iϕðzÞ�g,
based on independently fitted local relative phase ϕðzÞ
over region z ¼ ½−3; 3�δz, where δz ¼ 4 μm is the pixel
size in the object space. The evaluated phase distribution is
shown in Fig. 8(b).

3. Characterization of imaging resolution

The longitudinal extension of the condensates is
L ¼ 60–120 μm depending on the total atom number.
Because of the random walk of atoms in the imaging light
and diffusion of emitted photons, the effective imaging
resolution is larger than the imaging resolution δz. The
effective imaging resolution is critical for the evaluation of
the local number squeezing factor. We show in Fig. 9 that the
calculated ξ2N reaches a steady value with integration regions
above 28 μm. This length signifies the effective resolution
which is still a few times smaller than the condensate length.

4. Mean-field Josephson oscillation

We show in Fig. 10 an example of Josephson oscillation
of relative imbalance hnpi by imprinting an initial nonzero
imbalance, which is used for extraction of the plasma
frequency fp [shown in Fig. 6(c)].
For comparison, we also display the typical evolution of

the imbalance, hnξi ≈ 0, in the case of symmetric splitting
investigated in this work.

5. Fit and error bars

Squeezing oscillations are fitted with the function

ξ2ðtÞ ¼ a sinð2πfξ · tþ p0Þ þ ξ2, with a, fξ, p0, and ξ̄
as its fit parameters. The shaded region of the fitted model
in Figs. 3, 4, and 5(a) signifies 68% simultaneous bound
prediction confidence intervals of the fit function. Error
bars on experimentally measured squeezing factors are
estimated standard error using a jackknife resampling.

6. Semiclassical simulation on squeezing oscillations

To visualize the squeezing oscillation in the coupled DW
(see Fig. 3), we set up a semiclassical simulation. In
Fig. 11, we plot the equipotential lines in the classical
phase space given by the two-mode Bose-Hubbard model,

H ¼ 2J
ℏ

�
Λ
2
n2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2

p
cosΦ

�
; ðA2Þ

where Λ ¼ UN=2J signifies the interplay between the
interatomic interaction energy and tunnel coupling energy.

(b)(a)

FIG. 8. Statistical evaluation of distribution. (a) Histogram of
N− together with fitted normal distribution (orange). As a
reference, we show a binomial distribution (black, indicating
the standard quantum limit) and a normal distribution with the
width corresponding to the detection noise level (gray). (b) Polar
distribution of Φ with fringe visibility C as radii. Error bars
represent one standard error of the mean.

.103

FIG. 9. Imaging influence on spatially resolved number squeez-
ing detection. Left: longitudinal profile of BEC. Middle: influ-
ence of finite integration length Δz on evaluation of number
squeezing factor ξ2N. Δz is evaluated symmetrically around the
peak density along the condensate. Right: atom number N within
integration region Δz. The shaded region indicates the lower
bound of Δz for reliable estimation of ξ2N .

FIG. 10. Evolution of expectation value of relative imbalance
hni ¼ hN−=Ni in coupled DW. Gray markers, hnpi, show
Josephson oscillation with an imprinted nonzero initial imbal-
ance. Orange markers, hnξi, indicate that the expectation values
are at equilibrium after symmetrical splitting.
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With suitable parameter values for DW A ¼ 0.5: single
particle tunnel coupling energy J ¼ 41 Hz, interaction
energy U ¼ 0.33 Hz, and total atom number N ¼ 3500.
Here J is estimated using the energy difference between the
two lowest single particle eigenstates in the simulated DW
potential, J ¼ ðE1 − E0Þ=2, and experimentally measured
atom number N.
Around the stable fixed point and given small fluctua-

tions in the lower energy states, the BH Hamiltonian can be
further linearized and expressed in harmonic approxima-
tion as

Hhc ¼
hfp
2

�
Φ2

2Δ2
GSΦ

þ N2
−

2Δ2
GSN−

�
; ðA3Þ

where Δ2
GSΦ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ Λ
p

=N and Δ2
GSN− ¼ N=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
are

ground state fluctuations. With these parameters, we can
estimate the expected ground state squeezing factors in
Eq. (A3) to be

ξ2N;0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
; ξ2Φ;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

p
; ðA4Þ

shown as shaded bands in Fig. 1(b).
We sample 1000 realizations from two normal distribu-

tions (one for each observable) with variances larger than
the ground state fluctuations Δ2

GS [deduced from Eq. (A3)]
and propagate them with equations of motion deduced from
Eq. (A2) in the classical limit. We show in Fig. 11 the
simulation result of quantum state propagation in a time
span of T ¼ 1=fp, where T corresponds to a period of
Josephson oscillation of the expectation value of the
obsevables (star marker). To make this more explicit, we
plot the evolution of N− and Φ of a single realization and
the projected fluctuations as squeezing factor ξ2 in each
quadrature in Fig. 12. As one can see, the projection noise
in each observable oscillates at twice the frequency as the
expectation values, namely fξ ¼ 2fp (see also Ref. [38]).

7. Impact of number squeezing
on global phase diffusion

In decoupled trap (J ≈ 0), phase diffusion after sym-
metric splitting [49,50] can be expressed as

Δ2ΦðtÞ ¼ Δ2Φ0 þ R2t2; ðA5Þ
where R ¼ ðξN

ffiffiffiffi
N

p
=ℏÞð∂μ=∂N ÞjN¼N=2 is the phase diffu-

sion rate and Δ2Φ0 is the initial variance of Φ right after
splitting and μðN Þ is the chemical potential of BEC with
atom number N . Equation (A5) implies slower phase
diffusion with stronger number squeezing.
We investigate experimentally the influence of number

squeezing on global phase diffusion rate by splitting into
effectively decoupled DW,A ¼ 0.6. For different split speed
κ ¼ δA=δt we measure the phase spread ΔΦðtÞ and deduce
the phase diffusion rate from a linear fit. The extracted rates
∂tΔΦ match the trend of the measured ξN (see Fig. 13).

8. Impact of number squeezing on spatial dephasing

For resolving local dynamics between two split 1D
condensates, we introduce the local observables along the

�

FIG. 11. Propagation of imprinted initial fluctuations in the
two-mode BH model. The star marker signifies the evolution of a
single realization, representing the mean-field value. A π rotation
of a single realization corresponds to a 2π rotation of the phase
space fluctuations. Here T is one period of Josephson oscillation.

(a)

(b)

(c)

FIG. 12. Squeezing oscillation frequency. Evolution of a single
realization in Fig. 11 in the Φ [in (a)] and N− quadrature [in (b)].
Evolution of quantum fluctuation in the conjugate quadratures
[in (c)] and its fitted frequency corresponding to twice the plasma
frequency fp.

FIG. 13. Global number squeezing suppresses global phase
diffusion in decoupled trap. Left: phase diffusion in A ¼ 0.6 trap
for different splitting speeds κ. Right: the linearly fitted phase
diffusion rates ∂tΔΦ agree qualitatively with the measured ξN
with different κ.
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condensates: the local relative phase ϕðzÞ ¼ ϕLðzÞ − ϕRðzÞ
and the relative densityρ−ðzÞ ¼ ρLðzÞ − ρRðzÞ. The local and
global observables fulfill the relation Φ ¼ argfexp ½iϕðzÞ�g,
N− ¼ P

z ρ−ðzÞ.
In previous works studying the phenomenon of pre-

thermalization [26,27], the effective temperature T−

between the two condensates was connected to the relative
density fluctuations Δ2ρ− ¼ hρ2−i by

T− ¼ gΔ2ρ−
2

¼ gρ0ξ2ρ
2

; ðA6Þ

where ρ0 is the peak atomic density in each condensate
after splitting and ξ2ρ is the local number squeezing factor.
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