
Patient-Prosthesis Interaction:
Control through the Healthy Leg

DOCTORAL THESIS

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften (Dr. techn.)

in

Doctoral Program in Natural Science Electrical Engineering

by

Michael Tschiedel
Registration Number 01326357

to the
Faculty of Electrical Engineering and Information Technology at the TU Wien

Advisor: Dipl.-Ing. Michael Friedrich Russold, PhD, MBA
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eugenijus Kaniusas

Vienna, 22.02.2022
Michael Tschiedel

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Patienten-Prothesen Interaktion:
Steuerung durch das gesunde Bein

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften (Dr. techn.)

im Rahmen des Studiums

Doktoratsstudium der Technischen Wissenschaften Elektrotechnik

eingereicht von

Michael Tschiedel
Matrikelnummer 01326357

an der
Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität Wien

Betreuer: Dipl.-Ing. Michael Friedrich Russold, PhD, MBA
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eugenijus Kaniusas

Wien, 22.02.2022
Michael Tschiedel

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Michael Tschiedel
1200 Wien, Österreich

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quel-
len und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit - einschließlich
Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im Wortlaut oder
dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)





“Education isn’t something you can finish.”
-Isaac Asimov-





Abstract

The loss of a lower limb is an irreversible and traumatic event in the life of the affected person.
Although modern prostheses can restore the function of the missing body parts to a high extent,
commercial state-of-the-art lower limb devices neither measure nor incorporate environmental
information for intent recognition or for device control. This inevitably leads to the problem
that the patient adapts to the behavior of the prosthesis rather than the system to the amputees’
needs. Unphysiological gait patterns and increased compensatory movements are just some of
the known consequences.

This thesis offers a concept for improving patient-prosthesis interaction. The device control is
enhanced by measuring and evaluating the position of the unimpaired residual contralateral leg.
This leads to an even more lifelike replication of the physiological gait pattern.

First, an extensive literature survey was conducted to find out which modalities of environmental
sensors are already being used and how they improve the control of lower limb prostheses. During
this review, five control approaches were identified, as to how “next generation prostheses” could
be optimized. Overall, there is a clear trend towards more upcoming terrain or object estimation,
with the basic idea of delivering switching probabilities between different activities. Most rele-
vant to this work, however, was the conclusion that even a single sound-leg measurement can
significantly reduce the error rate in detecting the amputees’ intent correctly.

Based on these findings, a first depth camera-based system was developed. This contralateral limb
tracking (CoLiTrack) approach, combines a single depth camera with an inertial measurement
unit, both mounted on the ipsilateral leg, which is able to estimate the shank axis of the contralat-
eral side. Initially, the scene captured by the camera was transformed into a stabilized world
coordinate system. In order to achieve real-time performance, the subsequent shank-estimation
process was split into two less computationally intensive steps: First, circular models were
fitted against 2D projections of the input using the iterative closest point algorithm. Second,
the final shank axis was determined by applying the random sample consensus method. In
three experiments, data from five able-bodied subjects was evaluated. The results demonstrated
a trackability of the shank axis over one sixth of the entire human gait cycle for dynamic situations.

In order to overcome the limitations of the previous depth camera-based approach, a second
contralateral limb ranging (CoLiRang) system was developed. Using four novel ultrasonic time-
of-flight sensors on the ipsilateral leg, the position of the other contralateral leg was estimated.
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Initially, each sensor measured the respective distances to the contralateral side. These distances
were then triangulated to determine the directional information of the other leg. In order to
evaluate the system as a whole, several tests were performed and experiments with two healthy
participants were conducted. The results showed a mean triangulation deviation of less than
30mm and a divergence in detecting the moment of passing even below 1°. Most importantly,
this novel approach was able to track the state of the other leg correctly in dynamic situations
throughout the entire human gait cycle.

Finally, the ultrasonic-based concept was integrated into an enhanced seeing prosthesis (SEP)
system. For the first time, it was possible to control the damping behavior, walking resistance
of the device, via the state of the patient’s unimpaired contralateral residual leg in real time. In
order to evaluate the novel system, a prospective pilot clinical study was designed, approved, and
conducted with five transfemoral amputees. Closed-loop optimization sessions were conducted
first, followed by a clinical biomechanical gait analysis with each participant. The results revealed
a more physiological gait pattern and a distinct facilitation of the remaining musculoskeletal
system for yielding activities. In particular, the interception on the contralateral healthy leg
was reduced on average by about 25% for going down the ramp and even by about 40% for the
staircase task, respectively.

This work has demonstrated that environmental sensing technologies can successfully improve
the patient-prosthesis interaction. Taking these findings into account for further development,
prostheses of the next generation would be able to truly adapt to patients’ needs.



Kurzfassung

Der Verlust einer unteren Extremität ist ein irreversibles und traumatisches Ereignis im Leben des
Betroffenen. Moderne Prothesen ersetzen die fehlenden Körperfunktionen bereits weitgehend,
jedoch verwenden derartige kommerzielle Systeme nach dem Stand der Technik ausschließlich
interne Messwerte und Systemparameter, um die Bewegungsintention ermitteln und die Prothese
entsprechend steuern zu können. Dies führt allerdings zwangsläufig zu der Problematik, dass sich
die Patienten an das Prothesenverhalten anpassen und nicht die Systeme an die Bedürfnisse der
Amputierten. Unphysiologische Gangmuster und verstärkte kompensatorische Bewegungen sind
nur einige der bekannten Folgen davon.

Diese Arbeit bietet ein Konzept zur Verbesserung der Patienten-Prothesen-Interaktion. Durch
die Messung und Auswertung der Position des gesunden kontralateralen Beines wird die Geräte-
steuerung verbessert und dadurch eine noch naturgetreuere Nachbildung des physiologischen
Gangbildes erreicht.

Um den Forschungsfortschritt der letzten Jahre zu ermitteln, wurde in einem ersten Schritt eine
detaillierte Literaturrecherche durchgeführt. Ziel war es dabei herauszufinden, welche Umge-
bungssensoren bereits zur Anwendung kommen und wie deren Signale zur Erweiterung der
bestehenden Prothesensteuerungen verwendet werden. Anhand der gewonnenen Erkenntnisse
wurden fünf Steuerungsansätze ermittelt, wie “zukünftige Prothesen” erweitert werden könnten.
Insgesamt zeigt sich ein deutlicher Trend hin zu Systemen für Gelände- oder Objekterkennung
mit der Grundidee, eine Wahrscheinlichkeit für einen möglichen Terrainübergang frühzeitig
abzuschätzen. Maßgeblich für den Erfolg dieser Arbeit war die Erkenntnis, dass bereits die
Messung eines einzelnen kontralateralen Beinparameters die Fehlerrate der korrekten Erkennung
der Anwenderintention signifikant reduzieren kann.

Basierend auf diesen Erkenntnissen wurde ein erstes tiefenkamerabasiertes System entwickelt.
Das System namens CoLiTrack kombiniert eine Tiefenkamera mit einer inertialen Messeinheit,
beide angebracht auf dem einen ipsilateralen Bein, um die Achse des anderen kontralateralen
Unterschenkels zu schätzen. Initial wurde die von der Kamera erfasste Szene in ein stabilisiertes
Weltkoordinatensystem transformiert. Durch die Zerlegung des nachfolgenden Achsenermitt-
lungsverfahrens in zwei weniger rechenintensive Abschnitte wurde die Verarbeitungszeit deutlich
reduziert: Hierbei wurden zuerst kreisförmige Modelle mithilfe des Iterative Closest Point Algo-
rithmus an 2D-Projektionen aus dem Tiefenbild angenähert und dann mittels des Random Sample
Consensus Verfahren die endgültige Beinachse ermittelt. Insgesamt wurden drei Experimente
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mit fünf gesunden Probanden durchgeführt. Die Resultate haben gezeigt, dass die entwickelte
Methode in dynamischen Situationen die kontralaterale Unterschenkelachse über ein Sechstel
des gesamten menschlichen Gangzyklus hinweg korrekt verfolgen kann.

Um die Limitierungen des vorherigen tiefenkamerabasierten Ansatzes zu überwinden, wurde
ein zweites System namens CoLiRang entwickelt. Mittels vier neuartiger Ultraschalllaufzeit-
Sensormodule auf dem ipsilateralen Bein wird die Position des anderen kontralateralen Beines
geschätzt. Initial wird mit jedem Sensor der Abstand zur kontralateralen Seite gemessen. Durch
die nachfolgende Triangulation der gewonnenen Entfernungen wurde auch die Richtungsinfor-
mation des anderen Beins abgeleitet. Zur Beurteilung des Gesamtsystems wurden verschiedene
Untersuchungen sowie Experimente mit zwei gesunden Probanden durchgeführt. Die Resultate
haben gezeigt, dass die entwickelte Methode in dynamischen Situationen den Zustand des anderen
Beines über den gesamten menschlichen Gangzyklus hinweg korrekt verfolgen kann, wobei
insbesondere die korrekte Erkennung des Zeitpunktes des Vorbeischwingens von Relevanz ist.

Schließlich wurde das ultraschallbasierte Konzept in ein verbessertes Prothesensystem namens
SEP integriert. Dies ermöglichte es erstmalig, das Dämpfungsverhalten, den Gehwiderstand des
Geräts, in Echtzeit über den Zustand des gesunden kontralateralen Beines des Patienten zu steuern.
Um das neuartige System mit fünf Oberschenkelamputierten zu evaluieren, wurde eine klinische
Pilotstudie konzipiert, genehmigt und durchgeführt. Zunächst wurden mehrere Optimierungs-
messungen des geschlossenen Regelkreises durchgeführt und nachfolgend alle Probanden einer
klinischen Gang- und Bewegungsanalyse unterzogen. Die Ergebnisse zeigten besonders beim
Hinabgehen einer Rampe oder einer Stiege ein physiologischeres Gangbild und eine Entlastung
des übrigen Bewegungsapparates. Insbesondere das Abfangen auf dem kontralateralen gesunden
Bein war deutlich reduziert.

Diese Arbeit hat gezeigt, dass moderne Umgebungssensoren die Patienten-Prothesen-Interaktion
grundlegend verbessern können. Unter Berücksichtigung diese Erkenntnisse bei zukünftigen
Entwicklungen, würden sich Prothesen der nächsten Generation tatsächlich an die Bedürfnisse
der Patienten anpassen.
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CHAPTER 1
Introduction

The aim of this chapter is to provide the necessary background knowledge for this thesis. First,
an introduction into Lower Limb Prosthetics is given. Next, main concepts of Environmental
Sensing Technologies are introduced, followed by a final section defining the Aim of Work.

1.1 Lower Limb Prosthetics

1.1.1 Loss of the Lower Limbs

The amputation of a limb is an irreversible intervention into the physical and psychological
integrity of a human being. This event fundamentally changes the life of amputees in terms
of their perception by others, their independence and also with regards to their occupational
life. Furthermore, studies have shown a high risk of death [1] or reamputation [2]. Moreover,
approximately 30% of amputees are affected by depression [3]. Therefore, an amputation should
always be the last option, when conservative therapies are no longer applicable.

Prevalence. In general, it is difficult to determine the number of amputees because most countries
do not keep a central register of amputations. Especially for the United States of America, where
health insurance is not compulsory, it is difficult to obtain reliable information. Studies estimate
that there are nearly two million people living with limb loss [4] and approximately 185, 000
new amputees each year [5] in the United States. In Germany, approximately 55, 000 lower limb
amputations were performed in 2015, according to national hospital discharge data [6]. Overall,
amputation of the lower limb accounts for 85% of all amputations [7], and recent projections
indicate that the number of lower limb amputations will increase substantially in the next years [4].

Reasons for amputation. The main goal of an amputation is to remove diseased or damaged
tissue and to allow healing. In terms of lower limbs, the main reason (75-80%) for an amputation
are peripheral vascular diseases with or without diabetes [8, 9]. Other nonischemic indications

1
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include trauma (<5%), infection (3-5%), congenital anomaly (<3%) or other reasons, including
tumor (5%). In contrast, amputation of upper limbs are mostly caused by traumata (>90%).
However, there are quantifiable differences between different regions of the world. For example,
the risk of an amputation caused by infection is about five times higher in developing countries
than in the industrialized nations. [10]

Amputation level. The minimum amputation level is defined as the lowest level at which
an amputation will heal. In general, a balance needs to be maintained between a decreased
complication rate of a more proximal amputation and increased function of a more distal one [7].
Surgical procedures performed at the level of the ankle and below are known as minor amputations.
In contrast, any operation above the ankle is classified as major amputation. The levels of
amputation of the lower limb are depicted in figure 1.1. The foot amputation may occur below the
ankle at any part of the foot [11]. The transtibial amputation is the most common type of lower
limb amputation. The surgical procedure is performed between ankle and knee and has reported
success rates of more than 85% [7]. In a disarticulation of the knee, the amputation is carried out
at the knee joint. This does not require a separation of bone or muscle tissue, thus minimizing
the risk of haemorrhage or infection and ensuring that the muscles and the thigh are entirely
preserved, which is advantageous for loading the residual limb [12]. Further up, the transfemoral
amputation, performed between knee and hip, is the second most common type of amputation [7].
In this case, most leg muscles and bones are lost, and a prosthetic device is needed to replace
the natural movements of the knee and the ankle. In order to provide a strong lever arm for
interaction with the prosthesis, the residual stump should be left as long as possible [13]. Finally,
the hip disarticulation refers to the amputation of the entire lower limb through the hip joint.

Hip Disarticulation

Knee Disarticulation

Foot Amputation

Transtibial (below Knee)

Transfemoral (above Knee)

Figure 1.1: Different levels of lower limb amputation, adapted from [11].

2
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1.1.2 Modern Lower Limb Prostheses

Modern prostheses can replace the functionality of missing body parts to a high degree and, thus,
improve patients’ independence and mobility. One of the most important aims of lower limb pros-
thetic systems is the imitation of the physiological gait pattern [14]. In comparison to prostheses
for upper extremities, visual replacements of the lost body parts with cosmetic prostheses are
less common for the lower extremities [15]. Generally, the higher the amputation level, the more
sophisticated prosthetic systems are required in order to restore motion functionality.

A schematic of a transfemoral prosthesis system is presented in figure 1.2. The socket is an
important part of any system, as it is the customized interface between the residual limb and
the prosthetic device. A crucial factor for the overall performance and the rehabilitation success
is, therefore, the socket design – formerly crafted by hand, today computer-aided and based on
conditions of the patient’s stump. A standardized pyramid adapter connects the socket with a
prosthetic knee joint, which mimics the functions of the knee, thus providing mobility and safety.
Finally, a prosthetic foot is connected with the help of a tube adapter; its length is adapted to
the patient’s body size. Modern feet are made of carbon fiber to absorb shocks, stabilize while
walking and return energy through their spring designs. [16, 17]

Custom Socket

Prosthetic Foot 

Tube Adapter

Prosthetic Knee Joint

Figure 1.2: Parts of a transfemoral prosthesis system, adapted from* [MT1, 16].

K levels. The correct selection of prosthetic components is a very complex and responsible
task, which needs to fit the patient’s situation. Obviously, the higher the level of biomechanical
imitation, the higher its complexity and, thus, its price. Costs can rise up to e 60,000 or even
more for advanced systems [18]. The United States’ Health Care Financing Administration
established a 5-level functional classification concept [19]. This system, called K levels, is a
rating from 0 to 4 and it indicates a patient’s ability to reach a certain functional state within a
given period of time. A description of the individual levels is given in table 1.1 on the next page.

*Note: Author’s own publications are referenced as [MT1] to [MT4] while external works as [1] to [129].

3
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K Level Description

Level 0 Does not have the ability or potential to ambulate or transfer safely with or without assistance,
and a prosthesis does not enhance their quality of life or mobility.

Level 1 Has the ability or potential to use a prosthesis for transfers or ambulation on level surfaces at
fixed cadence. Typical of the limited and unlimited household ambulator.

Level 2 Has the ability or potential for ambulation with the ability to traverse low level environmental
barriers such as curbs, stairs, or uneven surfaces. Typical of the limited community ambulator.

Level 3 Has the ability or potential for ambulation with variable cadence. Typical of the community
ambulator who has the ability to traverse most environmental barriers and may have vocational,
therapeutic, or exercise activity that demands prosthetic utilization beyond simple locomotion.

Level 4 Has the ability or potential for prosthetic ambulation that exceeds basic ambulation skills,
exhibiting high impact, stress, or energy levels. Typical of the prosthetic demands of the child,
active adult, or athlete.

Table 1.1: Definition of K levels, adapted from [19].

Today, many health insurance companies around the world still use this evaluation system to de-
termine eligibility for reimbursement. However, in 2016, a survey found that 67% of prosthetists
criticised the K levels for not accurately assessing the patient’s rehabilitation potential [20]. There-
fore, clinical outcome measures like the amputee mobility predictor [21] or standardized tests
(e.g. timed up-and-go or timed walk test) are currently gaining more and more importance [22,23].

Knee classification. Prosthetic knee joints can be divided into three different types, namely
mechanical knees, microprocessor-controlled passive knee joints (pMPK) and microprocessor-
controlled active prosthetic knees (aMPK) [14]. Mechanical, non-microprocessor knees are
limited in functionality and safety and use only a friction-based hinge to replace the knee
joint [25]. Instead, modern passive as well as active microprocessor-controlled prostheses
evaluate embedded sensors to enable real-time control of joint movement, which attempts to
imitate the normal biological knee function for transfemoral amputees. pMPKs are energy
dissipating devices. The movement of the device is caused only by the energy generated by the
hip, and the actuators of such pMPKs adjusts the damping behavior.

(a) (b)

Extension

Flexion

FV

EV

Hydraulic 
Cylinder

Knee Axis

Figure 1.3: (a) pMPK with a hydraulic damper unit. (b) Schematic of hydraulic circuit with
valves for flexion (FV) and extension (EV), adapted from [MT1, 24].
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The well-known Ottobock C-Leg® prosthesis [26], first introduced around the turn of the millen-
nium, uses a hydraulic damper unit to adjust the knee impedance. As shown in figure 1.3 on the
facing page, the damper consists of a piston, which causes a hydraulic fluid to move in a cylinder.
Two valves control the flow of fluid, generating a damping torque τd around the knee axis and
thus changing the damping resistances for extension and flexion [24]. In contrast, aMPKs have
the capability to provide net positive work, enabling the performance of more energy demanding
tasks with less effort, like stair negotiation [27] or sit-to-stand transfer [28]. Although numerous
research aMPKs with powerful actuators are known [14, 29], so far Össur’s Power Knee™ [30]
and Reboocon Bionic’s IntelLeg [31] are the only commercially available devices.

Gait functionality. Mimicking normal biological leg functionality is a major requirement for
prostheses, as regaining mobility is an urgent desire of lower limb amputees. Humans use upright
gait on two legs for efficient locomotion, known as level-ground walking. Therefore, walking
can be described as a repetitious sequence to move forward: While one leg serves as support, the
other shifts itself to the new site. This is repeated, until the final destination (in space) is reached.
One single leg sequence is called gait cycle, consisting itself of two periods: stance and swing.
Stance refers to the period of the foot being on the ground. It begins with the heel strike, also
known as initial contact, when the heel touches the ground, before the foot is lifted off the ground
at toe off. Then it swings freely in the air for the rest of the gait cycle. In between, there is a short
phase, referred to as double support, in which both feet are on the ground. The stance-to-swing
proportion was found to be about 60 : 40 for healthy people. Typical sagittal plane motion of hip,
thigh, knee, shank and ankle is depicted in figure 1.4 on the next page. The sagittal plane is a
vertical plane across the body dividing it into left and right parts. [32]

Since walking is a repetitive alternating motion that results in forward progression of the body,
spatial (distance) and temporal (time) parameters are commonly used to characterize it [33]:

• Step length (m): Distance between the heel contacts of the opposite feet.

• Cadence (1/s): Number of steps per unit time.

• Velocity (m/s): Product of cadence and step length.

All these parameters are dependent on each other and vary with age, height and gender [33]. In
addition, Newton’s1 third law states that when a force acts on a body (action), an opposite and
equal force must act back (reaction) [34]. Therefore, the “ground reaction force” is the force
exerted by the ground on a body in contact with it. For example, if a person is standing motionless
on the ground, the force corresponds with the person’s weight. During dynamic motion, the
ground reaction force also has a component parallel to the ground: When the person is walking,
there is an exchange of horizontal (frictional) forces with the ground. Normally, spatio-temporal
parameters and ground reaction forces should be similar for the right or left (limb) side, and any
deviation in these measures is an indicator for a pathological gait. Even pMPKs, which replace
the missing body parts to a high degree, lead to measurable disturbances in gait pattern and, thus,
to an increase in energy expenditure during walking [35].
1Isaac Newton (1642 – 1727), English mathematician and physicist.
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Figure 1.4: Sagittal plane motion during free level-ground walking. (left schematic) Definition
of joint angles: thigh angle (αT) and shank angle (αS) relative to vertical, ankle angle (αA)
relative to horizontal, knee angle (αK) between thigh and shank, and hip angle (αH) relative to
pelvis. (right diagrams) Heel strike is the first inertial contact when the foot touches the ground.
At about 60% of the entire gait cycle, toe off is the end of the stance phase, initiating the swing
phase. Then, the leg swings freely in the air until the next heel strike, before repeating the cycle.
The plots show nominal angles with standard deviation in light-colored band, data from [32].
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1.1.3 Control of Lower Limb Prostheses

Advanced lower limb devices are able to adapt autonomously to the patients’ needs with the help
of numerous embedded sensors. Among those, knee angle and angular velocity sensors, shank
(axial) load cells or inertial measurement units (IMU) are commonly used. All these sensors
are typically sampled with 100Hz or higher to offer auto-adaptive control and to (re)act on a
perceived real-time basis. [14]

Generalized framework. The idea for a control framework stems from Varol et al. [36] and was
extended by Tucker et al. in 2015 [37]. This generalized control framework concept – dedicated
to lower limb prostheses control – consists of four major sub-blocks, namely the controller, the
device, the user and the environment, as shown in figure 1.6 on the following page.

In this framework, the Controller itself is represented as a three-level hierarchy. The high-level
layer is responsible for the correct estimation of the patient’s locomotive intent. Thereby, various
terrains like level ground, stairs or ramps are related to different modes of locomotion. For this,
identifying transitions between different forms of locomotion correctly is the most challenging
task. Furthermore, volitional control allows the patient to consciously manipulate the state of
the prostheses (e.g. mode of the device or only parameters, like damping resistance). It is also
possible to combine both of these, so that the behavior of the device can be modulated with
direct volitional control only within a given activity. Next, the mid-level layer maps the patient’s
estimated motion intent from the high-level to the desired state outputs of the device for the
low-level to track. Impedance, admittance, position/velocity or torque controllers are typically
used here. Finally, for the low-level layer, feedforward and feedback controllers send commands
to the actuator(s) to minimize the error with respect to the current state, actuating the device and
thus closing the control loop.

The controller is directly linked to the Device that provides the mechanical and actuator structure
to restore or support normal biological functionality, assisting the User in an intuitive and syner-
gistic way. From the device’s point of view, everything else is Environment.

Finite-state machine. Although “artificial intelligence” is receiving much attention in the media,
almost all commercial lower limb prosthetic devices use finite-state machines [14]. In accordance
to the generalized framework, such a system represents the high-level layer of the controller to
accurately reproduce the biomechanical aspects of gait.

The gait is decomposed into a series of distinct phases (states) characterized by a discrete set
of parameters (e.g. specific impedance setting). Based on a fixed set of rules (transitions), the
finite-state machine can switch between a pair of states [38], as depicted in figure 1.5 on the
next page. Typically, transitions are based on sensor signals (e.g. axial force or knee angle) or
combinations thereof, and corresponding threshold levels [14]. Ottobock, for example named its
finite-state machine RuleSet. The “simple” level-ground walking activity consist already of up to
ten states, called rules, depending on the mobility level of the patient [39].
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States

Transitions

Standing WalkingLiftingSitting

Figure 1.5: Example diagram of finite-state machine for lower limb prosthetic device control.

The simplicity and flexibility of finite-state machines allows them to be used for devices with
very limited processing power. Moreover, such heuristic rule-based approaches benefit from their
deterministic behavior, which lowers error rates well below the per mille range. In contrast, as-
suming a performance of about 99% of advanced “machine learning” approaches and calculating
with about 3000 steps per day [40], and further expecting only every tenth misclassification to be
serious, there would still be three tumbles per day, which does not seem very promising.

Environmental sensing. The environment is in ongoing interaction with the user and the
prosthetic device – ground reaction forces provide balance, support and propulsion. Beside the
generalized controller framework, Tucker et al. [37] coined the terms: implicit environmental
sensing (IES) and explicit environmental sensing (EES). On the one hand, IES tries to create an
understanding of the current mode of locomotion by measuring the state of the residual user’s
body. EES, on the other hand, directly estimates terrain features, as shown in figure 1.6.

Implicit

USER ENVIRONMENT

Mid Level 
Translation Layer 

Explicit

High Level 
Perception Layer 

Low Level 
Execution Layer 

DEVICE
CONTROLLER

for structure and actuation guided
by a hierarchical 3-layer

Figure 1.6: Control framework. Dynamics between a prosthetic device, a user, and his envi-
ronment. The hierarchical controller estimates the patient’s intent at the high-level, translates
it into device states at the mid-level and finally executes these commands at the lower level.
Environmental awareness is achieved by observing the user (IES) or the environment (EES),
adapted from [MT2, 37].
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1.2 Environmental Sensing Technologies

In recent years, the robotic and automotive industry have driven innovation and development
of environmental sensor systems. For example, (fully) autonomous vehicles need an almost
seamless 360° perception of their surroundings in order to navigate safely and to be able to (re)act
with foresight [41]. In general, there is a variety of approaches and technologies for distance
detection of obstacles, and it is beyond the scope of this thesis to give a complete overview of all
of them. Essential for this work, however, are the so-called time-of-flight (TOF) sensors, which
measure the pulse reflection duration. Based on the type of signal wave used, TOF sensors can be
categorized as shown in figure 1.7.

Electromagnetic Acoustic

Radio- / Microwaves Infrared / Visible Light

UltrasonicRadar Lidar / Depth Camera

Figure 1.7: Categorization of TOF sensors (green) based on the type of wave (blue) and range of
frequency (pink), adapted from [42].

1.2.1 Physical Foundations

Wave propagation. The propagation of waves, such as sound or light, can be described math-
ematically by the wave equation. Historically, d’Alembert2 discovered this partial differential
equation in the 18th century to describe the problem of a vibrating string of a musical instrument.
Nowadays, the wave equation is used to describe a variety of different physical problems [34].
The wave equation for a plane wave traveling in one space dimension x can be written as follows:

∂2u

∂t2
= v2

∂2u

∂x2
(1.1)

where u represents the dependent variable, which is changing as the wave passes with the velocity
v over time t. In terms of electromagnetic waves, u is substituted by the electric field E. Instead,
when considering sound waves, the sound pressure p replaces u in the wave equation. In general,
the simplified solution to this one-dimensional wave equation in positive space dimension x is:

u(x, t) = A sin(ωt− kx+ φ) (1.2)

2Jean le Rond d’Alembert (1717 – 1783), French mathematician, physicist, philosopher, and music theorist.
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where A is the amplitude, ω = 2πf is the angular frequency, and φ is the initial phase. The wave
number k is given by:

k =
2π

λ
(1.3)

where λ is the wavelength, and the propagation velocity v of the wave corresponds to the product
of the wavelength and the frequency:

v = λf. (1.4)

As depicted in figure 1.7, radar, lidar and depth cameras use electromagnetic waves but with
different frequencies. RADAR, as the full name RAdio Detection And Ranging already indicates,
uses radio waves with frequencies of 300 kHz up to 300GHz. Instead, LIDAR, short for LIght
Detection And Ranging, uses electromagnetic waves in the optical and infrared spectrum ranging
from 6THz up to 1PHz. [34, 42] Derived from Maxwell’s3 equations, electromagnetic waves
are generated when an electric field comes in contact with a magnetic field. Therefore, this
type of wave does not need a medium to propagate. The electric and magnetic components are
perpendicular to each other, and also perpendicular to the propagation direction, as shown in
figure 1.8(a). In vacuum, the velocity of an electromagnetic wave is limited by the distributed
capacitance and inductance, respectively known as the electric constant ε0 and the magnetic
constant µ0:

vvacuum =
1√
ε0µ0

(1.5)

resulting in 299,792,458m/s. In a medium, however, the electromagnetic wave usually does not
propagate at a speed of vacuum, as the two field constants are modified by the material. This is
given by the factors of relative permittivity εr and the relative permeability µr, respectively, both
depending on the frequency of the wave [43]. Therefore, the velocity of an electromagnetic wave
in the medium vmedium is lower than in vacuum, accordingly:

vmedium =
1√

ε0εrµ0µr
=

vvacuum√
εrµr

. (1.6)

Instead, ultrasonic sensors are based on acoustic waves, using frequencies which start in the
audible frequency range for humans of below 20 kHz and go up to 200 kHz [34, 42]. Mechanical
waves like these need a medium to travel, as propagation is based on the oscillation of molecules.
In general, the surrounding medium is compressed (local high-pressure regions) and expanded
(local low-pressure regions). As depicted in figure 1.8(b), molecules vibrate longitudinally to the
propagation direction of the traveling wave [34]. This manifests that the velocity of an acoustic
wave varies greatly in different media. In a perfect vacuum, where by definition there is nothing,

3James Clerk Maxwell (1831 – 1879), Scottish scientist in the field of mathematical physics.
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(b)

Propagation

Motion of Molecules

Pressure Level

(a)

Propagation

Magnetic Field

Electric Field

Figure 1.8: Schematic representation of (a) an electromagnetic wave and (b) a sound wave.

nothing can vibrate, and therefore the speed of sound is zero. The velocity of an acoustic wave
vacoustic is a function of the medium’s density ρ and its rigidity (or compressibility in gases) K:

vacoustic =

�
K

ρ
. (1.7)

The less stiff (or more compressible) the medium, the slower the velocity. Typically, in gases,
sound propagates at the slowest rate. In liquids, sound is faster, and even faster in solids because
they are relatively rigid and difficult to compress. Furthermore, there is a strong dependence on
the medium’s temperature, but only a weak dependence on the wave’s frequency. At 20 ◦C, the
speed of sound in ordinary air is about 343m/s and almost 4.3 times faster in water of about
1,484m/s [44].

Attenuation behavior. A disadvantage of using TOF sensors is the fact, that the intensity of an
emitted wave continuously decreases. Assuming a sensor as a point source, the inverse-square
law describes that intensity I is inversely proportional to the square of the distance d to the
sensor [34]:

I(d) ∝ I(0)
1

d2
. (1.8)

In addition to this geometric dilution, scattering, absorption, and other mechanisms of energy
dispersion reduce the intensity of the original signal even further [43]. This attenuation in a
homogenous medium is described by the Beer–Lambert4 law:

I(d) = I(0)e−αd (1.9)

where α depends on the medium properties and the frequency. The higher the frequency, the
shorter the distances that waves can travel, before exhausting all their energy. In general, these

4Pierre Bouguer (1698 – 1758), French mathematician and
Johann Heinrich Lambert (1728 – 1777), Swiss polymath.
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effects occur simultaneously during both the TOF signal transmission and the reflected return.

Reflection and transmission. Reflection and transmission play a decisive role depending on the
material properties of the object as well as on its surface structure and geometry [43].

When a wave reaches the boundary between one medium and another, part of the incident
wave is reflected and part of the wave is transmitted across the boundary, as depicted in figure
1.9(a). If the irregularities of the object surface are larger than the wavelength of the signal,
the wave is reflected specularly – the angle of incidence equals the angle of reflection, known
as law of reflection. Otherwise, the reflection is scattered diffusely in all directions, as shown
in figure 1.9(b). In general, objects with large, dense, and flat surfaces at 90° to the incident
wave yield strong echoes, while objects with small, round, and soft surfaces reduce the reflection
response. [43, 45]

(b)(a)

Medium 1

Reflection

Medium 2

Transmission
Incident Wave

Medium Boundary

Incident 
Wave

Specular 
Reflection

Diffuse
Reflection

Figure 1.9: (a) Visualization of reflection and transmission of an incident wave at medium
boundaries. (b) The reflection can be specular (at a definite angle) or diffuse (in all directions).

Signal modulation. Correct distinction between the transmitted and the reflected wave is essen-
tial for TOF sensors. Therefore, one or more properties of the basic wave equation are modulated.
In general, a low-frequency modulation signal varies the amplitude, frequency or phase of the
periodic high-frequency carrier signal. [42]

In terms of amplitude modulation, the carrier amplitude is varied in accordance with the amplitude
of the modulating signal. The most practical way is to use a rectangular pulse wave as modulation
basis. In this case, the amplitude of the carrier alternates between a fixed minimum, typically zero,
and a maximum, as shown in figure 1.10(a) on the next page. The period of the carrier signal TC

as well as the period of the modulation signal TM remain unchanged. They are both reciprocal to
the corresponding frequency. The “on time” of the wave correlates with the pulse-width period
TPW of the pulse wave, followed by the “off time” until the next (periodic) repetition. [42]

Instead of modulating the amplitude, frequency modulation alters the frequency of the carrier.
The carrier period (reciprocal to the frequency) varies in accordance with the amplitude of the
modulating signal. Again, a modulation with a rectangular pulse wave is very common. As shown
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Figure 1.10: Illustration of signal modulation. (a) Amplitude modulation and (b) frequency
modulation using a rectangular pulse wave (red dotted) as modulating signal, adapted from [42].

in figure 1.10(b), this variates the frequency of the carrier, while the period of the modulation
signal TM remains constant. [42]

1.2.2 Time-of-Flight Principle

Time-of-flight (TOF) refers to the time taken by a wave (acoustic or electromagnetic) to travel
a distance through a specific medium [42]. In terms of TOF sensors, a wave is emitted, then
reflected by surrounding objects and received again by the sensor. This sensor measures the delay
between the emitted and the received echo tTOF, as depicted in figure 1.11.

Transmitter

Receiver

Object

Figure 1.11: Time-of-flight principle. A wave is emitted by a transmitter, reflected by an object
and received again by the receiver, whereby the sensor measures the total round-trip time tTOF.
The gradient arrows indicate the continuous decrease of intensity.
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By knowing the velocity of propagation v, the measured round-trip time tTOF can be used to
calculate the distance d between the sensor and the object:

d = v
tTOF

2
. (1.10)

Since the wave (acoustic or electromagnetic) must propagate forth (transmitter ⇒ object) and
back (object ⇒ receiver) again, a division by 2 is necessary.

Range. The simplest version of TOF sensors uses amplitude pulse wave modulated signals, as
shown in figure 1.10(a) on page 13. In most applications, the transmitter and the receiver are
combined into one sensor, called transceiver [42, 45]. However, this has the disadvantage of
creating a blind zone that limits the minimum detection range. The minimum detectable distance
dmin corresponds with the pulse-width period TPW of the pulse by:

dmin = v
TPW

2
. (1.11)

In general, the shorter the pulse-width period, the smaller the blind zone.

The maximum detection range is determined by the period of the complete pulse TM. This
maximum unambiguous range dmax to avoid interference of decisive echoes is given by:

dmax = v
TM

2
(1.12)

In general, the longer the period of the modulation, the larger the detection range.

Resolution. Another important characteristic of a TOF sensor is its resolution. Theoretically, the
minimum difference in range which is required between two objects, so that they can be distin-
guished as separate bodies, directly correlates with the minimum detectable distance, compare
equation 1.11. Below this (range) threshold, different bodies are registered as a single object. [42]

Detectability. The size of the target is a crucial factor for the sensor’s detectability. If the object
is too small, the reflected wave is too weak to be registered by a sensor. Moreover, it is also
influenced by the surface structure and the geometry of the objects as well as by the properties of
the medium itself. In addition, external influences (e.g. sunlight or wind) can have a negative
effect on the use of TOF sensors. [43, 45]

Field of View. The TOF sensor’s field of view is another important property for selecting the
right type of sensor for a specific application [46]. For example, laser distance sensors measure
only in the specific direction of the laser beam. In contrast, the emitted acoustic wave by ul-
trasonic sensors is far less directed, resulting in broad field of views of up to 180°. However,
measurements within these semicircular beam patterns provide only distance (radial) information,
but no directional (angular) information [MT2]. Therefore, most manufacturers offer horns for
their ultrasonic sensors to focus the beam mechanically in a specific direction [45]. Instead,
TOF-based depth cameras incorporate optics to capture depth information from a whole scene.
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Similar to color cameras, an array of individual TOF receivers is coupled to a lens system: each
pixel receives the echoed wave of a specific point within the scene. This measurement matrix is
also called a depth map and provides all the distance measurements between the sensor and the
imaged scene at once, updating at the frame rate of the camera. [46]

Comparison. In general, each type of sensor presented in figure 1.7 on page 9 has their own
advantages and disadvantages, summarized in figure 1.12 on the following page. Note: Technical
parameters were extracted from the publications reviewed in author’s work [MT2], where missing
information was completed with the help of the manufacturer’s data sheet. Instead of absolute
values, a rating scale (low, medium and high) is used. The “Unobstructed Field of View” field
indicates, whether the sensor functionality requires an unobstructed field of view or not: yes/no.

Ultrasonic sensors are based on acoustic waves, usually using frequencies that are above the
range of human hearing. Typically, piezoelectric transceivers, which are able to convert electrical
signals into ultrasound and vice versa, are used. As the speed of sound is far lower than the speed
of light, nature limits the maximum update rate of these sensors. For example, the round trip
time of an object at a distance of 1m is approximately 6ms. Although these sensors can have a
very wide field of view, directional resolution is not given. However, ultrasonic sensors are com-
mon for close-range applications because they can detect even transparent materials, such as glass.

Instead, sensors that operate on any type of light are based on electromagnetic waves. Since the
speed of light is much higher, the round trip time is usually negligible. Therefore, the update
rate of such sensors is only limited by the processing rate of the internal hardware. For example,
infrared-based distance sensors emit below the visible light range, while laser sensors are typically
in the visible range (red or green light) or above (invisible ultraviolet range). Lidar systems
combine 1D laser distance sensors with a sophisticated (mechanical) mirror system to capture
2D scene scans. However, the moving parts in devices like these can be damaged by shocks or
vibrations. Historically, lidar sensors used to be very expensive, whereas today the industry has
moved towards developing low-cost solid-state versions for a broad application.

Depth cameras try to estimate the surrounding world in 3D – something that nature (human
eyes) has perfected over millions of years. In the past, color cameras with passive light sensors
were combined into stereo vision systems to calculate depth information. The performance of
these systems dependes primarily on the underlying calculation method (stereo correspondence
algorithm) that attempts to match pixels of the two individual color images. Nowadays, depth
cameras also use the TOF principle, illuminating the scene with a light impulse and capturing
the reflection simultaneously by multiple elements. Thus, a full 3D perception is generated at
once. Modern TOF-based depth cameras provide resolutions of up to 640 x 480 pixels, with
update rates of up to 60 (depth) frames per second and are small enough to be implemented into
a smartphone [47]. However, all these concepts based on infrared, visible or even ultraviolet light
are limited by the fact that they explicitly require an unobstructed field of view, as depicted in
figure 1.12 on the next page.
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The only type of sensor not limited by an unobstructed field of view is radar. Although this tech-
nology also uses electromagnetic waves, thanks to the high-frequency range of up to 300GHz,
certain materials, such as fabrics or plastics, typically appear transparent. On the one hand, this
allows to “look through” these materials. On the other hand, objects or barriers made of these ma-
terials remain invisible, which may cause problems. Whether an object can be detected, depends
in turn on the material properties of the target as well as its size and geometry [48]. Another
positive aspect of radar sensors is that they can operate regardless of harsh outdoor conditions,
such as heavy rain, snow, or fog. Although radar technology was discovered in the early 20th
century, new super near-field radar sensors that can detect human gestures have only recently
become available. Recent advances include Google’s radar-based gesture recognition technology
for touchless interaction (Project Soli), which is implemented in their Pixel 4 smartphone, [49].
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Figure 1.12: Comparison of TOF sensors, data from [MT2].
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1.3 Aim of Work

The aim of this thesis is to improve patient-prosthesis interaction towards a more lifelike repli-
cation of the physiological gait pattern. Especially in situations such as walking down ramps
or stairs, the lack of sound-side control on all commercially available devices resulted in an
asymmetrical gait and thus increased stress on other joints.

First, the in-depth analysis of the current state of research in lower limb prostheses, which
is presented in the subsequent chapter, helped to identify areas where further research could
make “next generation prostheses” more user-friendly, functional and safe. Overall, there is
a clear trend towards more upcoming terrain or object estimation systems using all types of
TOF-based sensors. However, due to a relatively broad patent that was discovered through the
freedom-to-operate research, EES approaches like these are highly interesting in theory, but not
exploitable in a commercial way. To mitigate the patent risk, other concepts focused on IES have
been investigates. Subsequently, a proper patent was filed by the author, covering the idea of
enhancing the lower-limb prosthetic device control through the state of the sound side.

From this novel perspective, two completely new contralateral limb estimation systems were
designed, integrated and open-loop tested: a depth camera-based approach named CoLiTrack
and an ultrasonic-based system referred to as CoLiRang. Finally, the latter one was integrated
into a prosthesis system, identified as SEP, and underwent a closed-loop evaluation throughout a
prospective clinical pilot study.

The remainder of the thesis is organized as follows: Chapter 2 gives a thorough description of the
methodology. Chapter 3 provides the experimental results, which are then discussed in Chapter 4.
A conclusion of the lessons learned throughout the process is given in Chapter 5.
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CHAPTER 2
Methods

As a basis for this thesis, a Current State of Research survey was conducted. From a novel
perspective, two different contralateral limb estimation systems for enhanced patient-prosthesis
interaction were evaluated. Within this chapter, the methodology of the Depth Camera-based
Contralateral Limb Tracking approach, called CoLiTrack, and the Ultrasonic-based Contralateral
Limb Ranging system, referred to as CoLiRang, are presented. First, a detailed system overview
and the methodology for each concept are given. Next, the open-loop experimental trials are
outlined. Finally, the CoLiRang approach is integrated into an Enhanced Prosthesis Control
System, identified as SEP, and closed-loop evaluated throughout a prospective clinical pilot study.
The outcome of all performed trials can be found in the following chapter Results.

2.1 Current State of Research

Modern prostheses are powerful devices that can replace missing limbs already to a great extent.
However, the lack of environmental information – either IES or EES – often makes smooth
transition between different forms of locomotion difficult. In the field of environmental sensing
technologies, industry has driven innovation and development resulting in reduced prices for
evaluation kits with powerful computer vision tools. As a basis for further research, it is now
important to know which types of environmental sensors are already used in lower limb prostheses
and how they improve device control.

In order to identify the progress made in this area, a detailed literature search was conducted.
The related sections are largely based on my published survey titled Relying on more sense for
enhancing lower limb prostheses control: a review by Michael Tschiedel, Michael Friedrich Rus-
sold and Eugenijus Kaniusas, published in the Journal of NeuroEngineering and Rehabilitation
on July 17, 2020, which is referred to as [MT2] and appended as Publication A.
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2. METHODS

2.1.1 Snowballing on Reference

The search process for identifying the current state of research combined different strategies. A
very common starting-point is to use a well-known, frequently cited publication. From here, the
idea is to review the reference list as well as going forward by identifying articles citing this paper.
In academia, this approach is known as snowballing [50]. For this review, the comprehensive
survey by Tucker et al. from 2015 [37], which also introduced the generalized control framework
described in section 1.1.3 on page 7, was used as basis.

2.1.2 Systematic Database Search

A systematic (database) search is helpful to find publications within a field of interest. This
approach, defined by the PRISMA guidelines [51], was applied on two Internet databases, IEEE
Xplore and PubMed.gov. In order to find publications of interest, search strings were defined.
The first term was either “prosthe*”, “extremity” or “limb” combined with either “radar”, “lidar”,
“time-of-flight” or “depth” via a logical AND for focusing on dedicated sensor expressions, or
with “terrain”, “environment” or “locomotion” for more holistic synonyms.

Within the publications found with this first two approaches, duplicates were removed and title,
abstract as well as full publication were screened. Then, the following criteria were applied to
include or exclude publications:

Inclusion:

+ Concepts for estimating environmental information

+ Strategies for all types of locomotion modes

+ Application for enhancing “prosthesis control” must be mentioned

+ Only articles published in English

+ Only articles from the previous ten years (2009 – 2019)

Exclusion:

– Systematic reviews or literature reviews

– Any kind of upper extremity solution

– All types of exoskeletons or orthotics-related papers

– IMU-based gait analysis systems without any link to prosthesis control

– Studies focusing only on neuromuscular or mechanical signals from the device

– Concepts focusing only on the residual (ipsilateral) limb

– Computer vision papers without any link to prosthesis control
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2.1 Current State of Research

Finally, an author cross-check was done. For this purpose, the publication lists of all named
authors within the previously selected publications were retrieved using ORCID, Google Scholar,
or private and institutional websites. If individual publications fulfilled the inclusion criteria, they
were also included. For example, if the database search detected an earlier conference paper, but
the same author had also published an article on the topic that had not been found before, it was
also included.

32 Records 
included in this review (14 of IES / 18 of EES) 

Records through 
database search
6520 PubMed

2107 IEEE Xplore

Records through 
Tucker et al. (2015) 

243 references
172 citations

6739 Records 
after removal of duplicates

635 Records 
after screening on title level

105 Records 
after screening on abstract level

24 Records 
after full-text verification for eligibility 

+ 8 Records 
through additional author 
check of selected records

Figure 2.1: Flow diagram of database search and paper selection based on inclusion and exclusion
criteria throughout the different phases of the search process, adapted from [MT2].
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2.2 Depth Camera-based Contralateral Limb Tracking

In order to identify the potential of low-cost, high-resolution cameras for prosthetic applications,
a first depth camera-based contralateral limb tracking approach named CoLiTrack was designed,
developed and validated. For this, the system proposed by Hu et al. [52] using only a depth
camera to predict bilateral gait events served as source of inspiration. However, although their
approach was interesting, several limitations were mentioned. To begin with, only the results
of walking on level ground by one healthy subject were analyzed, in addition, initiation and
termination steps were excluded due to the difference in kinematics. Moreover, there were no
experiments that evaluated robustness to reflection and clutter or the behavior of the system with
regards to unknown objects in the field of view. The most limiting aspect, however, was the fact
that their methodology was not optimized for timing. The high processing time of more than 1 s
prevented any real-time implementation.

The related sections are largely based on my publication titled Real-time limb tracking in single
depth images based on circle matching and line fitting by Michael Tschiedel, Michael Friedrich
Russold, Eugenijus Kaniusas and Markus Vincze, published in the Journal The Visual Computer
on April 25, 2021, which is referred to as [MT4] and appended as Publication B.

2.2.1 System Overview

The basic idea behind the CoLiTrack approach is as follows: A unilaterally-worn depth cam-
era is used to estimate the axis and the respective shank angle of the contralateral shank, as
illustrated in figure 2.2 on the next page. Since the shank kinematics are usually independent
of the ankle kinematics [53, 54], this is an interesting feature, which can play a crucial role in
motion-dependent control applications. Hence, the question arises of how the shape of the human
leg can be identified correctly.

In principle, the shank of a human being can be modeled fairly well by the rudimentary shape of a
cylinder. However, fitting a deformed and incomplete point cloud that was captured with a depth
camera to such a model is challenging. Simple methods using surface normals [55] cannot be
used due to noise caused by wrinkles on the pants, and well-known least square methods [56] fail
due to outlier points. Furthermore, complex object matching approaches [57] are also unsuitable
because the high processing time prevents real-time evaluation.

In order to overcome these limitations, the CoLiTrack approach divides this modeling problem
into four parts. First, the captured point cloud is preprocessed in the camera coordinate sys-
tem. Second, this scene is transformed into a ground coordinate system using the orientation
information from the IMU. Next, layers from the transformed points are projected in 2D, before
predefined circle models are fitted using the iterative closest point (ICP) algorithm. Finally, a 3D
line is fitted through the centers of the circles using the random sampling consensus (RANSAC)
method. Overall, this segmentation has significantly reduced computation time, making it fast
enough for real-time applications. Moreover, compared to machine learning methods, this depth
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2.2 Depth Camera-based Contralateral Limb Tracking

camera CoLiTrack approach is unsupervised and has no training-induced bias. Consequently, it
could appear attractive for a variety of applications in many domains, including human-device
interaction, healthcare, or gaming.
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Figure 2.2: Overview of CoLiTrack. An IMU and a depth camera are fused to estimate the
axis of the uninstrumented contralateral shank. (X’,Y’, Z’) represents the camera coordinate
system and (X,Y, Z) the stabilized world coordinate system. Mounting is depicted in detail in
figure 2.3(a). The colors of the Depth Image correspond to the distance between an object and
the camera: Red parts are close to the sensor, blue parts are further away. The Color Image was
taken with a mobile phone and is for demonstration purpose only, adapted from [MT4].
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2.2.2 Image-Processing Chain

Configuration. The CoLiTrack sensor configuration utilized a 3D time-of-flight depth camera
(model CamBoard pico flexx with a resolution of 171 x 224 pixels manufactured by Pmd Tech,
Germany) and an IMU (model BNO055 manufactured by Bosch Sensortec, Germany). In general,
the depth camera measures the 3D position of objects relative to the camera origin, as described
in detail in section 1.2 on page 9, while the IMU estimates the orientation and acceleration. In
order to obtain a reliable reference signal of the subject’s contralateral shank, a second IMU
(identical model) was worn in a modified support stocking on the subject’s sound side, as depicted
in figure 2.3(a). The depth camera and the IMU were combined on a wearable support for quick
and easy mounting on the subject’s leg. More importantly, this configuration allowed the visual
information to be fused with the orientation information, thus stabilizing the input.

Nevertheless, the initial rotation of the camera after mounting it at the wearable support had
to be corrected. For this, the kit which carries the IMU and the depth camera, shown in detail
in the zoomed area of figure 2.3(a), was positioned in an upright orientation with a calibration
object in its field of view. The known object itself was also mounted in a predefined position, as
shown in figure 2.3(b) in pink. The initial rotation could be determined by taking a single scene
shot, represented in green. This rigid transformation was computed using the coherent point drift
algorithm [58] available within the Matlab Computer Vision Toolbox, stored and applied each
time before proceeding with the proposed algorithm.

Y (m)
X (m)

Z
(m

)

Measurement Setup

Depth
Camera IMU

Transformation

Cal. Object

0

0.2

0.4

0 0.15 0.3
0.2

0.4

0

(a) (b)

Figure 2.3: Measurement setup (a) worn by a participant and the calibration step (b) of the depth
camera. IMU and depth camera were fixed on a wearable support, attached to the shank of the
participant. The second IMU, mounted within a modified support stocking on the contralateral
side, served as reference. Trousers were rolled up only for the photo. For calibration, the camera
was placed in the origin of the world coordinate system. The true (pink) position of the calibration
object was known. The transformation matrix could be calculated out of the captured (green)
image, adapted from [MT4].
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Figure 2.4: Overview of the development (leg) test bench. System consists of a carton cylinder,
representing the “human leg” (shank and thigh with permanently stretched knee), which is
covered by conventional jeans (cut to just one pant leg and sewn accordingly). This setup is
inversely mounted on a two axis potentiometer joystick, which allows to tilt in each direction.

For algorithm development and optimization, a special “leg test bench” was designed and built.
As depicted in figure 2.4 , a carton cylinder which can swing about 45° in each direction simulates
the human leg.

Data acquisition and analysis were performed using Matlab R2018b and a wrapper library pro-
vided by the camera manufacturer, running on a business laptop with 8 GB memory size and an
Intel Core i5-8250U.

Preprocessing. After capturing, the depth data is preprocessed in the camera coordinate system,
as illustrated in the processing chain in figure 2.2 on page 23. First, points (pixels) without any
depth information are removed. Next, in order to remove (depth) noise, the point cloud is blurred
with a Gaussian blur. If the sound-side leg is in the depth camera’s field of view, it can be assumed
that the closest point also belongs to the contralateral leg. This point is then selected as “point
of interest”. In combination with the confidence map, which was also retrieved from the depth
sensor representing the confidence of a measured distance (Z’) for every pixel (X’, Y’) of the
input, points below a certain threshold relative to confidence of the point of interest are deleted:
the farther away, the lower the corresponding confidence. This made it possible to select only
points that belonged to the sound-side leg. In order to reduce the processing effort even further,
the preprocessed point cloud was downsampled using a 10mm grid filter.
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Figure 2.5: Visualization of the CoLiTrack algorithm. The point cloud after preprocessing
and transforming is taken as input. Z-slices are extracted, and a 10-point circle model is fitted
iteratively by using the ICP algorithm in 2D (X/Y-plane). All model circle center points are
then used to estimate the shank axis correctly by using the RANSAC method in 3D. Finally, the
contralateral shank angle α is calculated with respect to the sagittal plane (Y/Z-plane), adapted
from [MT4].
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2.2 Depth Camera-based Contralateral Limb Tracking

Transformation. Within the gait cycle, the subject’s shank can swing, as shown in figure 1.4 on
page 6. In order to transform the preprocessed input of camera coordinates into a stabilized world
coordinate system, the motion must be registered. With the help of the IMU, the pitch-angle
(rotation around the Y-axis), roll-angle (rotation around the X-axis) as well as the yaw-angle
(rotation around the Z-axis) are measured. However, since the latter is often unstable, only roll
and pitch angles are considered when applying Euler’s rotation angle matrix, while rotation about
the Z-axis is ignored. The stabilized world coordinate system is defined as the IMU reference
frame, calibrated to the ipsilateral foot, as depicted in figure 2.2 on page 23.

ICP circle fit. A visualization of the CoLiTrack algorithm with the ICP and the subsequent
RANSAC fitting process is depicted in figure 2.5 on the facing page. After transforming the
input into a stabilized world coordinate system, Z-layers with a height of 30mm and 10mm
overlapping on both sides are extracted in 2D. With the help of the ICP algorithm [59, 60],
predefined circular models are fitted to match the input in the best way possible. The principle of
this ICP algorithm is depicted in figure 2.6.

For the CoLiTrack approach, a circle model of 10 points, evenly distributed over 90° in a radius
of 50mm, is rigidly transformed (translated and rotated) to minimize the error metric. The
algorithm reiterates, until the sum of squared differences between the coordinates of the matched
points fall below a certain threshold. This was repeated for all Z layers, resulting in a center point
for each associated height.

Model

Scene Rotation & Translation

Figure 2.6: Principle of the iterative closest point method. The scene (blue) is kept fixed, while a
model (red) is transformed (rotation and translation) to best match the input.

RANSAC line fit. Next, the newly calculated center-points of the circles are used to fit a
line representing the shank axis correctly. This is done by using the RANSAC approach [61].
In general, the principle of this iterative method is to estimate parameters of a predefined
mathematical model, as visualized in figure 2.7 on the following page. Therefore, two points are
randomly taken to generate a hypothesis (fitting model), compare with figure 2.7(b). Points are
marked as “inlier” if they are within a threshold d, otherwise (they are marked) as “outlier”. This
step is repeated, until the obtained hypothesis exceeds a certain ratio. After that, only inlier-points
are used for the calculation of the final fit, depicted in figure 2.7(c). This makes it a robust
estimate even if there is a significant number of outliers in the data.
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(b)(a)

Random Points

Fitting Model
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(c)

Figure 2.7: Principle of the random sample consensus method. (a) Data points with outliers,
(b) randomly selected points with model hypothesis and (c) final fit, in which outliers have no
influence on the result.

For the CoLiTrack approach, a threshold d of 30mm is used. The maximum number of random
trials is set to 1000 and the probability to 0.99. The total number of input points is limited by
the scene height, approximately between 50mm and 300mm, and the Z-slice height, which is
set to 30mm, as depicted in figure 2.5 on page 26. After successfully estimating the axis, this
is used to calculate the sagittal plane shank-to-vertical angle αS, as defined in figure 1.4 on page 6.

2.2.3 Experimental Plan

In order to determine the accuracy and the detection range of the CoLiTrack approach, dynamic,
static and real-world experiments were conducted. The system was tested with five healthy
volunteers; informed consent was obtained prior to the experiments. The anthropomorphic data
of the subjects is given in table 2.1.

ID Height (m) Weight (kg) Age (years) Sex

S01 1.87 80 25 ♂
S02 1.88 78 25 ♂
S03 1.67 58 24 ♀
S04 1.78 83 23 ♂
S05 1.80 76 22 ♂

Table 2.1: Basic subjects’ information.
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2.2 Depth Camera-based Contralateral Limb Tracking

Static evaluation. First of all, the static tracking performance of the proposed method was
evaluated. Due to the fact that the camera had a very limited field of view (62° horizontal x
45° vertical, taken from the product’s datasheet), the sound-side leg is in view only for a small
part of the entire gait cycle and out of view for the rest of the time. Therefore, the wearable
support, containing the IMU and the depth camera, was mounted on a commercial treadmill
facing the subject’s shank, as depicted in figure 2.8(a), while the second IMU was still placed
on the subject’s sound-side shank. This setup allowed to determine the performance over the
entire gait cycle. The treadmill’s incline was set to 1%, which is considered to correspond to
the resistance level of an outdoor surface without incline [62]. In accordance to the walking
speed determined for amputees [63], treadmill speed was defined as slow (0.5 km/h), medium
(1.0 km/h), and high (1.5 km/h), which is slower than humans’ normal walking speed. Since
the camera is fixed and did not move within this experiment, the transformation step was not
necessary. Instead, a scene crop was applied to limit the view to only the area of the sound-side
shank. This experiment was carried out only with one subject (S01), who was asked to walk
about 5 minutes at each speed level. The results are presented in the subsequent chapter.

Dynamic evaluation. Next, the dynamic behavior, and thus in particular the maximum track-
able range of the entire gait cycle, was explored. Therefore, all five able-bodied subjects from
table 2.1 on the facing page were equipped with both, the wearable kit on the ipsilateral leg, and
the reference IMU on the sound-side leg. After that, the system was calibrated in an upright
standing position without movement. These parameters were stored and used for all subsequent
experiments – walking at the slow, medium and high speed level at an incline of 1%, as depicted
in figure 2.8(b). Again, each subject was asked to walk for approximately 5 minutes at each speed
level. Results are reported in the following chapter.

(a) (b)

Figure 2.8: Configuration for treadmill experiments. (a) The wearable support, which contains
the depth camera and the IMU, was placed stationary on the treadmill. (b) For the dynamic test,
the camera was mounted on the subject’s shank, as depicted in detail in figure 2.3(a) on page 24.
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Real-world evaluation. Finally, the real-world experiment was conducted to determine the
performance of the ColiTrack approach in other types of terrains (e.g. up/down stairs or ramps),
and to analyze the algorithm behavior with unknown objects (e.g. banisters) in the depth camera’s
field of view. For this, an online walking test with one subject, S01 from table 2.1 on page 28,
was conducted. The instrumentation was almost identical to the dynamic experiment described
before: on one leg the kit, on the other leg the reference IMU. The laptop for data collection had
to be carried in a backpack on the subject’s back to be mobile. The subject was asked to begin
with walking at a self-selected speed, before moving to a different terrain or varying the speed.
The results are presented in the subsequent chapter.

Data analysis. The performance of the CoLiTrack method was analyzed as follows: The recorded
gait data was separated into individual steps with the help of the reference signal αS,IMU. The
IMU was worn on the contralateral leg, as depicted in figure 2.3(a) on page 24. For determining
the individual steps, the data was searched for the local positive peaks, which indicate the initial
contact, as shown in figure 1.4 on page 6. Next, due to their kinematics differing from steady-state
walking, initiation and termination steps were excluded. Then, individual steps were normalized
from 0% to 100%. In order to determine the accuracy, the deviation between the reference signal
and the depth camera-based estimation αS,TOF was calculated for each percent of the entire gait
cycle. This shank angle error e is defined as |αS,IMU − αS,TOF|. Whenever possible, mean and
standard deviation were calculated and reported over the entire gait cycle.
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2.3 Ultrasonic-based Contralateral Limb Ranging

In order to overcome the limitations of the previously described depth camera system, a second
ultrasonic-based contralateral limb ranging approach named CoLiRang was designed, developed
and validated. Although this system is still limited by the need for an unobstructed field of view,
numerous positive results were found. Most importantly, tracking is possible for the entire gait
cycle with update rates of almost up to 70Hz, which is fast enough for real-time evaluations at
normal walking speed levels.

2.3.1 System Overview

The basic idea behind the CoLiRang approach is to use a sonar sensor instead of a depth camera
for capturing the contralateral leg, as illustrated in figure 2.9. However, these sensors provide
only distance measurements to the closest object in their field of view without any direction
information. Therefore, multiple sensors were combined into a sensor array, and a triangulation
strategy was developed to be able to obtain a directional estimate. In principle, a 2D direction
triangulation with known sensor positions requires only two independent distance measurements.
However, practice has shown that measurement artifacts or noise as well as the limited field of
view of each individual sensor can prevent a successful estimation. Thus, four of these ultrasonic
sensors were combined to ensure a robust estimation of the contralateral leg.

Preprocessing
Measurements 

with four

CH101 Modules

Direction (CoDir)

Distance (CoDist)

Passing (CoPas)

X

Y LocomotionZ posterior

CoDir CoPasIpsilateral
Limb

Contralateral
Limb

X

Y

CoDist
anterior

Figure 2.9: Overview of CoLiRang. Four CH 101 ultrasonic sensors are used to determine the
direction, distance and passing of the contralateral leg relative to the kit.
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CH 101 ultrasonic sensor. The CH 101 sensor used within this CoLiRang concept is a tiny state-
of-the-art product. It combines a micro-electro-mechanical system (MEMS)-based piezoelectric
ultrasonic transducer and a power-efficient digital signal processor unit into a small-sized package
with only 3.5 x 3.5 x 1.25mm. Although it was already introduced back in 2015 at the annual
Consumer Electronics Show in Las Vegas by Chirp Microsystems, it has only been available since
the end of 2019 and is now distributed by TDK InvenSense [64]. Together with a symmetrical
horn, it creates a compact module for rapid prototyping with an field of view up to 180°, as
depicted in figure 2.10(a). The MEMS structure of the ultrasonic engine shown in figure 2.10(b)
is produced in 0.18 µm complementary metal-oxide-semiconductor (CMOS) process technology
which is one thousandth compared to the volume of conventional ultrasonic sensors [65].

Size Comparison with a Pencil

Front   Back

Chip Horn CH 101 Module MEMS Structure

+ =

(a) (b)

Figure 2.10: Sensor Overview. (a) An ultra-small MEMS-based TOF sensor combined with a
symmetrical 180° horn creates the compact omnidirectional CH 101 module for rapid prototyping.
(b) Zoomed view of the piezoelectric ultrasonic engine, adapted from [64, 66].

This ultrasonic sensor supports a detection range of 100mm up to 1.2m, regardless of the object’s
color or its optical transparency. Furthermore, this sensor is neither affected by ambient light –
it works in complete darkness as well as in full sunlight – nor by unwanted sounds and noise
in the environment. Figure 2.11 depicts the block diagramm of the CH 101 module and the
corresponding development kit. The sensor unit consists of a piezoelectric membrane vibrating at

(a) (b)

CH 101 Module
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I²C

DSPADC
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Figure 2.11: Block Diagram of CH 101 module with development kit. (a) Inside the CH 101
module there is a piezoelectric micromachined ultrasonic transceiver and an ultra-low power
system on a chip. (b) Range measurements are read out via IIC. The provided development kit
supports up to four sensors and offers an easy-to-use COM interface, adapted from [66, 67].
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a fixed frequency near 175 kHz. This is interconnected with an application-specific integrated
circuit providing a standardized IIC interface. The development kit supports up to four CH 101
sensors and offers an easy-to-use serial interface for rapid prototyping.

Furthermore, the module supports three different operating modes, which are standby (recom-
mended to be used if inactive), free-running (where the chip runs autonomously) and hardware-
triggered (most useful for synchronizing several CH 101 ultrasonic sensors). Additionally, it
supports either full range or closest detection read-out configuration. A visualization of the full
range mode for two objects is depicted in figure 2.12, with the setup shown in (a) and a snapshot
of the amplitude-range diagram taken with the SonicLink graphical user interface provided by
the manufacturer in (b). A single measurement cycle consists of 150 (time) samples, with the
time directly related to the distance. The chip determines the presence of a target by comparing
the amplitude of each sample against a threshold value. Note: This threshold value cannot be
modified and varies across the range to compensate for the weaker signals from remote targets. If
the amplitude exceeds the corresponding threshold, the presence of an object is detected and the
resulting distance can be read out. Moreover, the if a real target is closer than the lower range
limit, the sensor still reports this minimal value (clipping).

The maximum detection distance is the main limitation for the achievable sampling rate. As
already described in section 1.2.2 on page 13, the round trip time of an object at a distance of
1m is approximately 6ms. After receiving the signal, the processing time is specified as another
5ms [67]. The update rate of the CH 101 ultrasonic sensor can, therefore, be as high as almost
100Hz for the closest detection read-out mode. However, in the full range setting, the additional
time required to read out the data via the IIC interface reduces the maximum sampling frequency
to as little as 30Hz.
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Figure 2.12: Multiple object range measurement. (a) Setup with one CH 101 sensor and two
objects in the field of view. (b) Full range read-out via the provided SonicLink graphical user
interface showing the received signal peaks for the two objects, adapted from [67].
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2.3.2 Signal-Processing Chain

Configuration. The CoLiRang configuration utilized four of these ultrasonic sensors (model
CH 101 module manufactured by TDK InvenSense, United States) to determine the distance and
the orientation of the sound side. For the evaluation with healthy subjects, a compact kit was
designed and tested, as shown in figure 2.9 on page 31. As the kit is worn on the ipsilateral leg
directly facing the contralateral leg, this setup allows for an easy integration into a prosthesis
system, described in detail in the subsequent chapter Enhanced Prosthesis Control System.

As an additional signal for later analysis, an IMU (model BNO055 manufactured by Bosch
Sensortec, Germany) was integrated into the sensor kit, too. This information could be used as a
control signal or as a reliable basis in order to enhance gait segmentation. However, in contrast
to the previously presented CoLiTrack (see section 2.2 on page 22), the estimated orientation
and acceleration from the kit was not used to stabilize the ultrasonic input. Instead, all measured
and calculated parameters (direction, distance and passing) are reported to the kit itself – the
origin is fixed to the center of the sensor casing with a (positive) X-axis going laterally from
the kit and a Y-axis in sagittal (locomotion) direction, as shown in figure 2.9 on page 31. Since
the kit is universal for wearing on the left and right leg, the direction (Y-value) must be inverted
accordingly. A description of the implemented processing approach is given in the following.

IMU

BT-Raw 
COM+ +

Development Kit4 pcs CH 101

Figure 2.13: Block Diagram of the CoLiRang system kit. Ultrasonic sensors measure the
distance to the sound-side leg, which is streamed to a laptop via a bluetooth module.

A (hardware) block diagram of the CoLiRang kit is depicted in figure 2.13. The CH 101
modules themselves were powered by the development kit operating in hardware-triggered
closest detection mode with an interval of 15ms between synchronized measurements. Based
on the typical step length combined with the average body height and the kit position itself, the
system was configured to a working distance from 100 up to 400mm, which should be sufficient
for tracking the entire gait cycle. Both, the IMU and the development kit with the ultrasonic
sensors were combined into a custom designed and 3D printed wearable kit, depicted in figure
2.14 on the next page. This setup allowed a quick and easy mounting on the subject’s leg. All
components were supplied by a commercial 5V power bank. The captured raw data – distance
measurements between the kit and the contralateral leg as well as the ipsilateral shank angle – was
streamed to the laptop via a bluetooth module. Finally, processing and analysis was performed
using Matlab R2018b running on a laptop with 8 GB memory size and an Intel Core i5-8250U.
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IMU Cover

Leg Mounting Frame Sensor Casing

Figure 2.14: CoLiRang casing. (a) Custom 3D printed parts. (b) Assembled system.

Preprocessing. After measuring, the distance raw data is preprocessed, as illustrated in the
processing chain in figure 2.9 on page 31. In order to suppress erroneous measurements, an
additional spike detection is applied. If the latest sensor value exceeded the previous one by
a certain amount, this (potentially wrong) value is discarded and replaced by the previous one
(zero-order hold). For the CoLiRang approach, a spike-peak threshold of 180mm is used, which
was derived from typical dynamic gait situations. In addition, spike suppression is performed for
a maximum of two cycles (samples) before updating to the actual input value.

Direction triangulation (CoDir). In general, a 2D direction triangulation with known sensor
positions requires only two independent distance measurements. However, in order to obtain a
robust estimation of the contralateral leg, four sensors were combined into the CoLiRang kit as
shown in the illustration 2.15.
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Figure 2.15: Visualization of the triangulation strategy using four CH 101 ultrasonic sensors.
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The sensors were synchronized to start transmitting or recording synchronously, whereby only
one sensor, S0, was used in transmit and receive mode (TX / RX). The other three sensors, S1, S2
and S3, were set to receive mode (RX) only. In this configuration, each sensor reports the distance
from sensor S0, which is the only one transmitting, to the object where it is reflected and back
to the respective detector. Since the sensors operate in the closest detection read-out mode, it is
assumed that the reflection point is identical for all four sensors. Different triangulations always
between two sensors are calculated to estimate the direction information of the contralateral leg
correctly. These can be categorized into two groups: direct, using the measured distance dS0
from S0, or indirect, calculating the object’s position without this information.

(a) (b)

Direct Indirect

Figure 2.16: Principle of 2D triangulation with known sensor positions. (a) Direct triangulation
using the distance dS0 . (b) Indirect triangulation without using the measured distance dS0 .

The direct triangulation approach uses the measured distance dS0 from sensor S0. As depicted in
figure 2.16(a), this creates a triangle with known lengths of the sides, and the law of cosines can
be used to calculate the unknown angles. In general, the law states:

c2 = a2 + b2 − 2ab cos(γ) (2.1)

where γ represents the angle between the sides a and b. If the angle γ is 90° (right triangle), the
law of cosines reduces to the Pythagoras’s theorem. In this setting, the length of side a is known
as the sensor position is known. The length of side b corresponds directly to the half distance dS0
measurement with sensor S0, and the length of side c is given by the difference of the distances
dSi − dS0/2. Therefore, equation 2.1 can be rewritten to calculate the unknown angle γ, which
can then be used to determine the direction information of the target. Note: For the sensor S0
running in TX / RX mode, the development board already divides the distance dS0 by the factor
of 2 (distance from/to the object).

In contrast to this, the information of sensor S0 is not used in the indirect approach. As illustrated
in figure 2.16(b), the direction information of the object is estimated based on geometric con-
straints. With the help of the known sensor positions, the lengths of e, f and g can be determined.
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2.3 Ultrasonic-based Contralateral Limb Ranging

According to the schematic, the measured distance dSi of sensor Si is given by l + k, and the
measured distance dSj of sensor Sj is represented by l+m. Now, each of these sides (k, l and m)
creates a right triangle, rewritten based on the Pythagoras’s theorem, as follows:

k =
�
(g + f + y)2 + x2,

l =
�
(f + y)2 + (x− e)2,

m =
�
y2 + x2.

(2.2)

These equations can then be put into the relations for the measured distances dSi and dSj and be
solved for x and y. According to the design of the system depicted in figure 2.9 on page 31, this
represents the direction information of the target relative to the kit.

For developing and optimizing the different triangulation configurations, the “leg test bench”,
shown in figure 2.4 on page 25, was used again. However, since the reflection signal was
strongly attenuated by the loose trousers, the jeans cover was removed. Overall, six different
triangulations, half belonging to the direct and half to the indirect approach, are calculated to
estimate the direction information of the contralateral leg correctly. Beside latest individual
measurements (tnew), also values from the previous sampling cycle (told) were used to detect
and exclude erroneous ones. A summary of all combinations of triangulations is given in table 2.2.

In order to get an accurate and noise-free direction signal, the information about all 18 com-
binations listed in table 2.2 was postprocessed. To begin with, impossible triangulations were
excluded; for example, cases with values reported by the sensor that are too high or too low,
which prevent (geometric) triangulation. Next, only results within a certain range around the old
(last known) position are selected to calculate the new position by averaging the remaining values.
Finally, the signal is enhanced by first-order low-pass filtering with 5Hz cut off frequency, which
is commonly used for movement analysis in biomechanics [33, 68]. In the following, the sagittal
component of this final triangulation output is referred to as contralateral direction signal and
abbreviated as CoDir.

Approach Combinations of Triangulations

Direct dS0,tnew / dS1,tnew | dS0,tnew / dS1,told | dS0,told / dS1,tnew

Direct dS0,tnew / dS2,tnew | dS0,tnew / dS2,told | dS0,told / dS2,tnew

Direct dS0,tnew / dS3,tnew | dS0,tnew / dS3,told | dS0,told / dS3,tnew

Indirect dS1,tnew / dS2,tnew | dS1,tnew / dS2,told | dS1,told / dS2,tnew

Indirect dS1,tnew / dS3,tnew | dS1,tnew / dS3,told | dS1,told / dS3,tnew

Indirect dS2,tnew / dS3,tnew | dS2,tnew / dS3,told | dS2,told / dS3,tnew

Table 2.2: Triangulation overview.
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Passing point (CoPas). Another very interesting gait event is the moment when the contralateral
side passes the ipsilateral leg. Although this information is already available within the CoDir
signal – searching for the change of sign – it could be helpful to calculate it directly. This was
done by comparing the distances measured by S1 and S3. For example, assuming the situation
when the kit is worn on the left shank. As long as the right leg is behind: dS1 < dS3 ; however,
if the leg is in front: dS1 > dS3 . In the following, this swing-by detection is referred to as
contralateral passing signal and abbreviated as CoPas. It is defined to be -1 if the contralateral
is posterior and to be 1 if it is anterior. If one or even both of the distances used to calculate it are
invalid, the CoPas signal is set to 0 for this measurement cycle.

Raw distance (CoDist). In addition to the direction, the distance to the nearest object is also
evaluated. For this, the range values from all four CH 101 sensors are averaged and filtered. Again,
a first-order 5Hz cut off low pass filter is used to enhance the signal quality. In the following, this
(raw) range information is referred to as contralateral distance signal and abbreviated as CoDist.
This signal is always positive (from 100 up to 400mm), regardless of whether the contralateral
leg is forward or backward, with a (local) minimum at the moment of passing by.

2.3.3 Experimental Plan

In order to determine the performance of the CoLiRang approach, static, behavior-simulation
and dynamic experiments were carried out. Static experiments were conducted to determine
the sensor’s distance performance as well as the accuracy of the triangulation approach. Next,
the robustness of the triangulation methodology against noise and the performance of correctly
detecting a sound-side passing was evaluated. Furthermore, the level-ground walking behavior
was simulated using a 4-link biped walking model. Finally, the CoLiRank system was tested
with two healthy volunteers; informed consent was obtained prior to the experiments. The an-
thropomorphic data of the participants as well as the related segment lengths are given in table 2.3.

ID Height (m) Age (years) Sex Simulation Parameters (mm)

P01 1.87 26 ♂ hKIT = 375 | lP = 220 | lT = 410 | lS = 545

P02 1.67 25 ♀ hKIT = 360 | lP = 220 | lT = 385 | lS = 465

Table 2.3: Basic participant’s information.

Static evaluation. To begin with, distance accuracy of the sensors as well as triangulation
accuracy of the CoLiRang method were evaluated. For the (sensor) distance accuracy experiment,
four CH 101 modules were mounted in a flat plate parallel to a normal wall or pin board,
respectively, as shown in figure 2.17 on the next page. The distance was increased in 50mm steps
from 100 up to 400mm. 1,000 measurements were performed at each level (n=1,000), whereby
sensor S0 was configured in TX/RX mode, while the other three sensors, S1, S2 and S3, were set
to RX only. The provided SonicLink graphical user interface was used to record the amplitude as
well as the distance for each configuration.
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Setup 2Pin Board

 Setup 1Normal Wall

Sensor Board

30 mm

Figure 2.17: Configuration for the (sensor) distance accuracy evaluation. Four CH 101 modules:
S0 (red), S1 (blue), S2 (green) and S3 (orange) are mounted 30mm apart on a flat plate. The
distance between the Sensor Board and the Setup 1: Normal Wall as well as against Setup 2: Pin
Board is varied, while amplitude and distance are measured.
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Figure 2.18: Configuration for triangulation accuracy evaluation of the CoLiRang system. The
kit is placed on a hole pattern plate with 100mm grid size. A cardboard cylinder with a bench
hook adapter simulates the “human shank”.
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For the triangulation accuracy experiment, the kit was placed on the side of a 100mm grid
hole-pattern plate. A 0.5m high cardboard cylinder served to simulate the human shank. As
depicted in figure 2.18 on the preceding page, the position was varied in the range from -300mm
posterior to 300mm anterior and from 100mm medial to 300mm lateral. This test was done
for the left and for the right configuration of the kit, averaging 1,000 samples in each position
(n=1,000). The results of these static experiments are presented in the subsequent chapter.

Behavior simulation. Next, the robustness of the algorithm against noise and the performance
of detecting a sound-side passing correctly were explored. Furthermore, the level-ground walking
behavior was simulated. The methodology for the triangulation robustness experiment was as
follows: First, the correct distance values were generated out of the known positions of the CH
101 modules within the kit and the simulation target position. Next, an additional noise-factor
was added. This was done by generating a uniformly distributed random number in the interval
(-e/2, e/2), which was used to introduce noise to each simulated distance. Based on the results
from the distance accuracy testing, the standard (distance) deviation was below 8mm, as shown
in figure 3.6 on page 68. Therefore, the error level e used for this experiment was set to 5, 10 and
15mm, respectively. Finally, all four generated noise-corrupted values were used to calculate
the triangulations and the final CoDir signal. Within this experiment, the position of the sound
side was varied in 100mm steps from -400mm posterior to 400mm anterior and from 100mm
medial to 300mm, averaging 1,000 samples at each position and each noise level (n=1,000).

For the passing performance experiment, the kit was placed in front of the “leg test bench”
pendulum, as shown in figure 2.19 on the following page. Next, the pendulum was deflected
manually by approximately 15° in both directions with about half an oscillation per second. The
distance was increased in 100mm steps from 100 up to 300mm. 100 repetitions were performed
at each (distance) level (n=100), to analyze the (reference) pendulum angle at the moment of the
sign change of CoPas, which represents the passing detection by the kit.

For the walking behavior experiment, a 4-link biped model was generated. As shown in fig-
ure 2.20 on the facing page, the lower extremities (shank and thigh) are modeled by links, and
the joints (hip and knee) are reduced to hinges – motion is therefore only possible in a sagittal
(Y/Z) plane. The segment proportions for both healthy participants are summarized in table 2.3
on page 38. The contralateral shank is approximated by the shape of a cylinder with 100mm in
diameter. The basic idea of this simulation approach is as follows: The (norm) gait data from
Perry et al. [32], visualized in figure 1.4 on page 6, is taken as input, with the sound-side leg
input data generated by 50% gait-cycle shift. Next, this is used to calculate the minimum distance
dSIM between the kit worn by the participant on the ipsilateral leg and the contralateral shank
for each percent of the gait cycle. In the following, this simulated distance signal dSIM serves
as a reference for the CoDist behavior at level-ground walking. The results for the behavior
simulation experiments are given in the subsequent chapter.
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posterior

anterior

1 m

100 mm

Figure 2.19: Configuration for passing performance evaluation of the CoLiRang system. The kit
is placed in front of the cardboard cylinder pendulum simulating the “human leg”. The distance
is varied, while the moment of passing and the pendulum angle are measured.

Healthy Subject Simulation Model

X

YZ

Figure 2.20: 4-link simulation model. The lower extremity of a healthy subject is transferred
into a 4-link biped walking model. Motion is simulated only in sagittal (Y/Z) plane. The segment
length of pelvis (lP), thigh (lT) and shank (lS) as well as the height of the sensor-kit (hKIT) are
given in table 2.3 on page 38. The sound-side shank is approximated by the primitive shape of a
cylinder. The minimum distance (dSIM) between the kit and the sound-side leg for each percent
of the gait cycle is determined by using the joint angle data from [32].
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Dynamic evaluation. Finally, the dynamic testing was done to analyze the performance of
the CoLiRang approach in real-world terrains. For this, an online walking test was conducted
with both participants from table 2.3 on page 38. The instrumentation is shown in figure 2.14
on page 35 – the participant wore the kit on the ipsilateral shank, measuring the state of the
contralateral side. Next, the participant was asked to start level-ground walking at a self-selected
speed, before moving to different terrains, as shown in figure 2.21. Data was recorded individually
for the settings of walking at level ground, going down the ramp and descending the stairs. In
order to analyze the algorithm behavior with respect to external influences (e.g. sunlight or wind),
participant P01 also conducted a short “outdoor walk”, however, this data was only evaluated
qualitatively.

The performance of the CoLiRang approach was analyzed as follows: With the help of the IMU,
which was embedded into the kit, as depicted in figure 2.14 on page 35, recorded gait data was
separated into individual steps. This was done by detecting the local positive peak in the shank
data as indicator for the initial contact. Next, due to their kinematics differing from steady-state
walking, initiation and termination steps were excluded for all types of terrains (level ground and
a ramp and stairs, both downward). Then, individual steps were normalized from 0% to 100%.
This was done for the ipsilateral shank angle signal αS,IMU recorded with the IMU as well as for
the CoDist, CoDir and CoPas signal captured with the CH 101 modules. The results of the two
participants wearing the kit on the left side and on the right side, respectively, are presented in the
following chapter.

Level Ground

Ramp Stair

Figure 2.21: Ottobock’s in-house gait laboratory with a 3.5m / 15° ramp and a 6-steps staircase.
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2.4 Enhanced Prosthesis Control System

From this novel perspective, the ultrasonic-based CoLiRang approach was integrated into a
prosthesis system, which is referred to as SEP. A prospective clinical pilot study was designed,
approved and conducted with the aim to enhance the device control by incorporating information
about the amputee’s healthy contralateral leg.

2.4.1 System Integration

The CoLiRang approach described previously was extended in order to be integrated into a
prosthetic system. Instead of processing sensor data offline, Matlab code was converted and
executed directly on an embedded hardware (Arduino Due). This was done by using the support
package for Arduino provided with the Matlab Simulink Toolbox. The (hardware) block dia-
gram of this approach is shown in figure 2.22, the complete system in figure 2.23 on the next page.

First, identical to the prior CoLiRang kit (see section 2.3), four ultrasonic CH 101 modules in
combination with the development board are used to measure the distances to the contralateral leg.
Next, these measurement results are sent to the Arduino for processing. However, additionally,
this raw data can also be streamed directly to a laptop via a wireless serial bluetooth module
(BT-Raw). In the embedded hardware, the signals (CoDir, CoPas and CoDist) are calculated
and sent to a prosthesis – a C-Leg – which is modified so that external data can be read in. Finally,
within the high-level layer of the prosthesis, this (healthy leg) information can be used to improve
control – the concrete modification is described subsequently in this chapter on page 45. Two
additional (safety) signals are generated and sent to the prosthesis: one reporting the status of
the “Ultrasonic System” and another to monitor the status of the “Embedded Control” itself.
Moreover, a synchronization signal is generated, which can be used for wireless synchronization
with external systems (RF-Sync). The power supply of all additional components is provided by
a battery pack which is certified for medical applications.

BT-Raw 

Ultrasonic System 

COM

+

Embedded Control

COM

+

C-Leg

RF-Sync 

Figure 2.22: Block Diagram of the enhanced prosthesis control system. Ultrasonic sensors
measure the distance to the contralateral leg, which is processed in real time directly on an
Arduino Due before being sent to a C-Leg prosthesis.
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(a)
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Electronic 
Cover

Mounting
Frame
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Figure 2.23: Enhanced Prosthesis Control System using four CH 101 ultrasonic sensors to deter-
mine the distance and orientation of the sound-side leg. (a,b) Custom designed and manufactured
parts; 3D printed. (c) Assembled SEP system. (c) Visualization of the entire concept: An amputee
wears the system on the ipsilateral (prosthetic) leg, which determines the state of the contralateral
(healthy residual) leg.
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Control modification. One of the most important aims of the SEP system is the imitation of the
natural gait pattern. However, the currently available C-Leg only provides a constant damping
behavior for yielding activities, such as going down ramps or staircases. This is not optimal: First,
for the initial contact the damping is too high, later on the support is too low. Therefore, based
on the experience gathered from the Ottobock flagship pMPK Genium® [69] as well as from
the analysis of able-bodied and disabled lower limbs’ kinematic parameters, three novel control
enhancements were proposed, implemented and tested. Figure 2.24 depicts these improvements,
which are described in the following:

⑦I In order to provide an effective absorption of the initial impact, the knee is not fully
stretched during the swing phase. This PreFlex-feature is set to 2° and can be activated or
deactivated individually.

⑦II For improving the performance further, the damping factor is reduced to DFmin below the
original value and linearly increased to DFmax above the reference, with the maximum to
be reached at a configurable knee angle KAmax. These three parameters for this advanced
RampUp-dampening can be adjusted depending on the subject’s personal preferences.

⑦III Finally, in order to support a smooth weight transition, the heightened flexion damping is
again linearly reduced, until the original damping factor is reached. This is controlled via
the contralateral leg information CoPas.
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Figure 2.24: Schematic of the high-level control modification for yielding activities.
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2.4.2 Clinical Pilot Study

One of the main goals of this thesis was to validate the developed SEP system. For this purpose,
a clinical pilot study for testing the system on amputees was designed, and approved by the ethics
commission of the city of Vienna (EK 20-296-1220). This section describes the main points from
the clinical investigation plan for this study.

General design. The aim of this study is to assess the safety and efficacy of SEP in activities
of daily living. The study should help to understand the effect of SEP on the ability to walk,
especially down ramps and downstairs. Therefore, the SEP’s effect on safety, level walking, stairs
and ramps mobility, and patients’ satisfaction with the system will be assessed.

The study was conducted at two different study sites: One is the in-house gait laboratory and the
orthopaedic workshop at Ottobock and the other one the Orthopädisches Spital Speising, referred
to as OSS, both located in Vienna, Austria. As shown in Figure 2.25, this study consists of the
four phases Enrollment, Fitting, Optimization and Evaluation. A detailed description for each of
them is given subsequently in the section 2.4.3 of this chapter.

Enrollment
Enrollment of subjects @OSS

Fitting
Socket copy for subjects @Ottobock

Optimization
Up to 5 visits per subject @Ottobock

Evaluation
Outcome measures for each subject @OSS

Data analysis 
Analysis of
the behavior  

Data collection 
Observation and

optional recording

Control changes
If necessary

minor changes 

Figure 2.25: Clinical pilot study outline.
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Recruitment process. Potential participants for this clinical pilot study were selected according
to the following criteria:

Indications:

+ Person is between ≥ 18 and ≤ 60 years old.

+ Person is willing and able to independently provide informed consent.

+ Person is willing and able to comply with study procedures.

+ Person is a unilateral knee-exarticulation or transfemoral amputee with a completely
healed amputation wound.

+ Person is a Level 3 or Level 4 ambulator based on the K levels.

+ Person is currently fitted with an pMPK (preferably Genium or C-Leg).

+ Person’s weight is ≤ 125 kg (without prosthesis).

+ Person is able to negotiate stairs.

+ Person is able to walk at different speed levels.

+ Person is able to ascend and descend ramps with different inclinations.

Contraindications:

– Pregnant women.

– Person after bilateral lower limb amputation.

– Person has serious problems with current socket (not well fitting socket).

– Person has an unhealed amputation wound, a wound dehiscence or a history of
chronic skin breakdown on the residual limb.

– Person falls at least once a week for reasons that are not related to prosthetic use
(e.g. problems with vestibular system).

– Person has conditions that would prevent participation and pose increased risk
(e.g. terminal cancer, unstable cardiovascular conditions, neurological disorder).

– Person is unwilling/unable to follow instructions.

– Person cannot personally provide their consent.

– Person is using underarm auxillary crutches or a walker.

– Person is currently using an implanted or not implanted medical electrical device
(e.g. pace maker or oxygen supply). The abovementioned medical electrical device
may be influenced by the electromagnetical emissions from the SEP (exception: the
patient’s knee and foot prostheses, hearing aids or cochlea implants).

– Person after osseointegration surgery.
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Regulatory requirements. Concerning the regulatory considerations, the Guidelines of the
World Medical Association Declaration of Helsinki, the Guidelines of Good Clinical Practice,
ISO 14155 as well as the demands of national drug and data protection laws were strictly followed.
According to EN ISO 14971, a risk analysis was carried out for the SEP system (depicted in
figure 2.23 on page 44) and its technical clearance has been verified. In accordance with the
Regulation (EU) 2017/745 regarding the clinical investigation and sale of medical devices for
human use, SEP meets the applicable requirements for the clinical study.

COVID-19 pandemic. As this study was done during the COVID-19 pandemic, special precau-
tions had to be taken in order to minimize the risk of an infection: First, participants were enrolled
considering patients’ medical history and following the recommendations of local authorities at
the given time. Second, whenever possible, the number of visits at the study site was kept as low
as possible. Moreover, during patient visits, every effort was taken to minimize any potential
infection risk by limiting the number of staff to a minimum, providing sufficient protection
material to the patients as well as to the staff (e.g. gloves, coats and face masks). Finally, in
case of increasing health risk or for any other reason, subjects were able to withdraw from the
study at any time. Therefore, it can be concluded that the risks associated with a study visit
during the COVID-19 pandemic minimized by the mitigation measures described above are
acceptable, when weighed against the benefit that this research can generate for the individual
and the population in general.

2.4.3 Experimental Plan

Enrollment. Potential participants were invited to attend an information meeting. If the subject
was eligible to participate in the study, they were fully informed about the setting, given an
opportunity to ask questions and ample time to consider. Subjects who wished to enter signed the
consent form and were subsequently enrolled. In total, five amputees participated in this study.
The anthropomorphic data of the subjects is given in table 2.4. Note: The color assignment is
only for easier identification and will be reused in the subsequent results chapter.

ID A01 A02 A03 A04 A05

Sex ♂ ♂ ♂ ♂ ♂
Height (m) 1.78 1.78 1.85 1.88 1.73

Weight (kg) 98.3 80.9 91.1 100.7 94.3

Year of Birth 1964 1988 1969 1963 1973

Amputation Side right right right left left

Amputation Time 2005 2015 1986 1980 1981

Table 2.4: Basic amputees’ information.
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Fitting. After the patient enrollment, a certified prosthetist evaluated the participant’s socket
and foot. Copies of the patient’s current socket were manufactured, and the subject was fitted
with the SEP system and a suitable prosthetic foot, compare with 2.23 on page 44. As shown
in figure 2.26, prosthetic alignment was optimized using the 3D L.A.S.A.R. Posture [70], a live
orthopaedic device to improve the subject’s static body posture. Acclimatization time was offered
after the fitting process and before testing. While an established minimum acclimatization time
has not been defined, up to 2 hours accommodation time was recommended [71].

(a) (b)

Figure 2.26: SEP setup on an amputee. (a) Frontal and sagittal view taken with a color camera.
(b) Sagittal view from the 3D L.A.S.A.R. Posture system used for posture optimization.

Optimization. The aim of the optimization phase was to determine the ideal control parameters
DFmin, DFmax and KAmax for each participant, as shown in figure 2.24 on page 45. The initial
parameters were defined systematically, however, the final settings varied from patient to patient
according to numerous factors, such as the (subjective) sense of safety and the dynamic of the
fitting itself or through variations in the (trained) gait pattern. In order to ensure a safe operation
of the device, a functional testing of the SEP system was done before each optimization session.
This included checking the battery charge, manually testing the stand- and swing-phase, visual
inspection of the hardware to eliminate loose components (e.g. loose screws), and monitoring the
sensor’s signals according to predefined conditions (e.g. movements or loading). Moreover, it is
important to mention that there was no home-use phase; patients tested the novel SEP only under
supervision and were not allowed to take the test system home. After every single session, the
patients were refitted with their own prosthesis, before they left the study site.

As depicted in figure 2.25 on page 46, the cycle for optimization included the three steps of data
collection, data analysis and control changes. First, the participants performed the activities
of level-ground walking, walking on ramps as well as walking on stairs without any control
improvements at the in-house laboratory at Ottobock shown in figure 2.21 on page 42. This status
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is referred to as “OFF (C-Leg)”. During this phase, data was collected and video recordings were
made. Next, the obtained data was analyzed. Finally, the enhanced controlling was activated:
“ON (SEP)” and the activities were repeated. Based on the participant’s feedback, (minor) changes
were made to the control, which were then re-evaluated; the cycle required to optimize the control
was repeated. According to the study protocol, up to five (optimization) visits per subject were
possible. Note: Walking on stairs and ramps was approached gradually by first doing one stair or
just a shallow incline, and then increasing the demands step-by-step.

Evaluation. The SEP system with optimized parameters was evaluated in the gait laboratory
at OSS, as shown in figure 2.27. The goal was to provide an objective and comprehensive
assessment of walking on level ground (a,b) as well as going down the ramps (c) or stairs (d).
According to the Cleveland clinic marker set, 54-markers were placed on the patient’s body,
which were subsequently captured by a 17-camera VICON® motion analysis system [72, 73].

MarkerVICON

Force Plates

(a) (b)

(c) (d)

32 cm

17 cm10°

Figure 2.27: Biomechanical analysis system. (a) Laboratory at the Orthopädisches Spital
Speising using a 17-camera clinical gait analysis system. (b) Visualization of the 54-markers
captured to calculate kinematics as well as the force plates to determine kinetics at level-ground
walking. Schematic of the 5m ramp (c) and 5-steps staircase (d) with embedded force plates.
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The following parameters were examined in detail for the activities of walking on level ground as
well as going down the ramps or staircases:

• Spatiotemporal gait parameters describe the spatial (distance) and temporal (time) param-
eters of walking. Within this study, stance phase and step length are expressed as “gait
symmetries” – differences between the ipsilateral (prosthesis) side and the contralateral
(healthy) leg. Instead, the velocity, cadence and step width are given as “absolute values”.

• Body center of mass motion describes the displacement of the body during human walking.
Within this study, only the vertical displacement was analyzed, because gravity acts as a
downward force and, therefore, lifting the body up requires work. In general, minimizing
vertical displacement results in a more energy-efficient gait.

• Ground reaction forces describe the force exerted by the ground on a body in contact with
it. Within this study, only the vertical component was analyzed, which is responsible for
the acceleration of the body’s center of mass in the vertical direction while walking.

• Kinematic and kinetic gait data describe the joint angles and mechanical moments and
powers. The kinematic data is acquired directly with such a VICON system, while the
kinetic values are calculated based on the measured ground reaction forces and a 3D body
model. Within this study, the sagittal components of the hip, knee, and ankle joints of the
human body were analyzed.

In this clinical pilot study neither randomization nor blinding was possible – the test sequence
was identical for all five subjects. Moreover, the number of trials per activity was relatively low
too, somewhere between five to ten, depending on the number of successful hits on the force
plates. However, it was not possible to do more repetitions (than that) for two reasons: First, the
procedure already took about 3 hours per session and, second, the testing in its current form was
exhausting for the amputees. Nevertheless, to be consistent with literature and academia, results
were calculated and reported in form of mean and standard deviation.

Finally, in order to assess the end users’ perception of use, safety, performance and satisfaction
of the novel SEP system, a self-report test was done. Figure 2.28 on the following page depicts
the self-designed questionnaire in German language, which was developed for the case report
form Evaluation used in this clinical pilot study. All results are reported in the subsequent chapter.
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2. METHODS

Wie empfinden Sie das

Case Report Form – Evaluation

Patienten ID: |__|__| Datum: |__|__| |__|__| | 2 | 0 | 2 | |

SELF DESIGNED QUESTIONNAIRE

Frage
Bitte markieren Sie
eine Antwort pro Frage

Bitte optional
Kommentare ergänzen

Wie empfinden Sie das

Gehen Rampe abwärts?

� Sehr komfortabel

� Komfortabel

� Unkomfortabel

� Sehr unkomfortabel

Wie empfinden Sie das

Gehen Treppe abwärts?

� Sehr komfortabel

� Komfortabel

� Unkomfortabel

� Sehr unkomfortabel

Gewicht:

Gewicht Ihrer Testprothese?

� Sehr leicht

� Leicht

� Schwer

� Zu schwer

Sicherheit:
Wie sicher fühlen Sie sich

mit Ihrer Testprothese?

� Sehr sicher

� Sicher

� Unsicher

� Sehr unsicher

Körperliche Anstrengung:
Wie anstrengend empfinden

Sie das Gehen mit Ihrer

Testprothese?

� Nicht anstrengend

� Mäßig anstrengend

� Anstrengend

� Sehr anstrengend

Mentale Anstrengung:
Wie stark müssen Sie sich

auf das Gehen mit Ihrer

Testprothese konzentrieren?

� Nicht anstrengend

� Mäßig anstrengend

� Anstrengend

� Sehr anstrengend

Zufriedenheit:
Wie zufrieden sind Sie

mit Ihrer Testprothese?

� Sehr zufrieden

� Zufrieden

� Unzufrieden

� Sehr unzufrieden

Präferenz:
Welches System würde

im Alltag bevorzugen?

� Alltagsprothese (C-Leg 4)

� Testprothese (SEP)
Sien

Figure 2.28: Excerpt of the self-designed questionnaire from the case report form Evaluation.
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CHAPTER 3
Results

The presentation of the results starts with the findings from the current state of research in section
3.1. In the following, the results from the performed experiments are given: the CoLiTrack
approach in section 3.2 and the CoLiRang system in section 3.3. The outcomes from the closed-
loop prosthesis system testing are presented in section 3.4. A detailed evaluation is given in the
following chapter Discussion.

3.1 Current State of Research

The search process resulted in 32 publications of interest, as depicted in the flowchart in figure 2.1
on page 21. 24 articles were identified using the database and the snowballing strategy, another 8
were added through the author cross-check.

According to the classification described in section 1.1.3 on page 7 – implicit and explicit environ-
mental sensing – each retrieved publication was assigned to one category. 18 of the publications
were found to be related to EES, the remaining 14 to IES. A summary of all included records is
given in table 3.1 on the next page. Note: The Group field shows the assigned control strategy
category; a detailed explanation is given in the discussion chapter.

3.1.1 Implicit Environmental Sensing

Vallery et al. [74] used a linear mapping function to control the missing limb (prosthesis) in
dependence of the healthy contralateral leg. Therefore, angle and angular velocity sensors were
attached to the residual sound-side hip and knee. The use of this complementary limb motion
estimation strategy enabled a transfemoral amputee to achieve an almost physiological gait
pattern. However, no further (detailed) technical information was given.
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3. RESULTS

Study Type / Group Sensor selection Sensor placement Concept description

Vallery et al.
(P, 2011) [74]

IES / 1 2 x angle & angular
velocity sensors

C: hip & knee Mapping function for control of knee prototype
with estimated contralateral limb motion data.

Bernal-Torres et al.
(H, 2018) [75, 76]

IES / 1 1 x IMU C: thigh Active biomimic polycentric knee prototype with
contralateral echo-control strategy.

Su et al.
(P, 2019) [77]

IES / 1 3 x IMUs C: thigh, shank &
ankle

Intent recognition system based on
convolutional neural network classification.

CYBERLEGs
project series1

(P, 2017) [78–81]

IES / 1 2 x pressure insoles
7 x IMUs

B: shoe inlays
B: thighs, shanks,
feet & 1 x trunk

Finite-state control of a powered ankle-knee
coupled prototype using whole-body aware
noninvasive, distributed wireless sensor control.

Hu et at.
(P, 2018) [82–84]
Extended by:
Krausz et al.
(H, 2019) [85]

IES / 2

EES / 2

4 x IMUs
4 x GONIOs
14 x EMGs
1 x IMU
1 x depth camera

B: thighs & shank
B: knee & ankle
B: leg muscles
On the waist in
a belt construction

Classification error reduction through fusion of
bilateral lower-limb neuromechanical signals,
providing feasibility & benchmark datasets.
Adding vision features to the prior
concept improving the classification.

Hu et al.
(H, 2018) [52]

IES / 3 1 x IMU
1 x depth camera

I: thigh Bilateral gait segmentation from ipsilateral depth
sensor with the contralateral leg in field of view.

Zhang et al.
(H, 2018) [86]

IES / 3 1 x depth camera On the waist
with tilt angle

Depth signal from legs as input to an
oscillator-based gait phase estimator.

Scandaroli et al.
(T, 2010) [87]

EES / 4 2 x gyroscopes
4 x infrared sensors

Built into a
foot prototype

Infrared distance sensor setup for estimation
of foot orientation with respect to ground.

Ishikawa et al.
(H, 2018) [88]

EES / 4 2 x infrared sensors
1 x IMU

Left & right on
one normal shoe

Infrared distance sensor setup for estimation
of foot clearance with respect to ground.

Kleiner et al.
(T, 2011) [89]

EES / 5 1 x motion tracking
1 x laser scanner

I: between artificial
ankle & knee joint

Concept and prototype of a foresighted
control system using a 2D laser scanner.

Huang’s group2

(P, 2016) [90–93]
EES / 5 1 x IMU

1 x laser sensor
I: lateral side
of the trunk

Terrain recognition based on laser distance,
motion estimation and geometric constraints.

Carvalho et al.
(H, 2019) [94]

EES / 5 1 x laser sensor On the waist
with 45◦ tilt angle

Terrain recognition based on laser distance
information and geometric constraints.

Sahoo et al.
(H, 2019) [95]

EES / 5 3/4 x range sensors
1 x force resistor

I: On the shank &
on the heel of the foot

Array of distance sensors for geometry-based
obstacle recognition in front of the user.

Varol et al. and
Massalin et al.
(H, 2018) [96, 97]

EES / 5 1 x depth camera I: shank Intent recognition framework using a single
depth camera and a cubic kernel support
vector machine for real-time classification.

Laschowski et al.
(H, 2019) [98]

EES / 5 1 x color camera Wearable
chest-mounting

Terrain identification based on color images
and deep convolutional network classification.

Yan et al.
(H, 2018) [99]

EES / 5 1 x depth camera On the trunk
in 1.06m height

Locomotion mode estimation based on depth
feature extraction and finite-state classification.

Diaz et al.
(H, 2018) [100]

EES / 5 1 x IMU
1 x color camera

I: foot & shin Terrain context identification and inclination
estimation based on color image classification.

Krausz et al.
(H, 2015) [101]

EES / 5 1 x depth camera
1 x accelerometer

Fixed in 1.5m height
with -50◦ tilt angle

Stair segmentation strategy from depth
sensing information of the environment.

Kleiner et al.
(P, 2018) [102]

EES / 5 1 x IMU
1 x radar sensor

I: thigh Stair detection algorithm through fusion of
motion trajectory and radar distance data.

Zhang et al.
(P, 2019)
[103, 104]

EES / 5 1 x IMU
1 x depth camera

I: knee lateral Environmental feature extraction based on
neural network depth scene classification.

P / H / T ... Tested on: (P)atient / (H)ealthy subjects / (T)heoretical; I / C / B ... Mounted on: (I)psilateral / (C)ontralateral / (B)ilateral side;

1Publications through CYBERLEG: Ambrozic et al. [78, 79], Gorsic et al. [80] and through CYBERLEG++: Parri et al. [81].
2Research group from Huang: F. Zhang et al. [90], X. Zhang et al. [91], Wang et at. [92] and Liu et al. [93].

Table 3.1: Overview of records reviewed, adapted from [MT2].
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3.1 Current State of Research

Bernal-Torres et al. [75, 76] proposed a concept using the echo-control schema. To estimate the
trajectory of the unimpaired knee, an inertial measurement unit was mounted on the sound-side
thigh. So far, only results from a workbench setting were presented, showing an average tilt angle
error between the active polycentric knee prototype and the lower limb of a healthy subject of
about 2°.

Su et al. [77] used three IMUs for intent recognition. Sensor data from the contralateral thigh,
shank and ankle were processed in a convolutional neural network. These computational process-
ing systems, which are strongly inspired by biological neural networks, “learn” how to perform
tasks by optimizing weights and biases during training (example-based learning). Especially
through the use of filters, hierarchical patterns can be easily recognized, which makes them
very interesting for image recognition systems [105]. Ten healthy subjects and one transfemoral
amputee participated in this study. Its aim was to analyze different strategies for user-independent
as well as for user-dependent classification approaches. The highest accuracy was achieved in
the classification of five terrain types and eight transitions between them, with 89.2% for the
amputee and 94.2% for the non-disabled, respectively.

Ambrozic et al. [78, 79] and Gorsic et al. [80] implemented a “whole-body aware” control
approach for the α-prototype of the CYBERLEG project. Seven IMUs – one on the trunk and
two each on the feet, the shanks and the thighs – were used to capture user intent. In addition,
the ground reaction forces were measured with two pressure inserts on both sides. Control
decisions were made with a state machine with unified states and transitions, which were obtained
by analyzing the gait of healthy subjects. 85.2% intent recognition accuracy was reported for
level-ground walking, tested with three unilateral transfemoral amputees. Within the subsequent
CYBERLEG Plus Plus project, Parri et al. [81] implemented this wearable sensory control
approach also in the β-prototype. In contrast to the previous study, more activities than just
level-ground walking were analyzed here. The overall accuracy of intention recognition in four
unilateral transfemoral amputees was reported to be 100% when walking on a treadmill, even at a
low walking speed. With 94.8%, the lowest score was obtained for the sit-to-stand task.

Hu et al. [82–84] were the first to analyze the positive effect of contralateral signals for intention
prediction systematically. First, in this study, a (publicly available) benchmark dataset of lower
limb electromyography (EMG) and joint kinematics data was collected from ten healthy subjects.
Kinematic signals were recorded with electrogoniometers (GONIO) on the knee and on the
ankles of both legs, and with IMUs on the subject’s upper and lower leg. Simultaneously, EMG
data was recorded by using bipolar surface electrodes on seven muscles in each leg. Second,
different combinations of sensors and algorithms were analyzed, with the result that even a single
additional sound-side sensor could reduce the error rate in intention detection significantly. Third,
data from a transfemoral amputee walking with a (powered) prosthesis was analyzed offline.
Compared to ipsilateral sensor placement as baseline (on one side only), two additional IMUs on
the patient’s contralateral upper and lower leg reduced overall, steady-state and transitional error
rates by more than 60%. Krausz et al. [85] extended the system by a single depth camera and an
IMU worn on a belt-like construction. Three types of vision-based features were extracted from
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the environment in front of the subject, namely motion information, distance and orientation as
well as the shape of the terrain. Again, the benefits of such a sensor modality were analyzed,
and it was concluded that “vision information” reduces variability across activities and subjects,
while the repeatability increases.

Hu et al. [52] used the results of their own previous research and presented a novel method
for bilateral gait segmentation only from unilaterally worn sensors. In this study, bilateral gait
events were detected using a single depth camera and an IMU on the patient’s thigh. Within
the depth scene, the RANSAC method [106], an iterative approach for estimating a model in
a set of data containing outliers, was applied to detect the ground plane (floor). Next, filtering
and grouping methods were used to correctly estimate the shank angle of the sound-side leg.
Finally, the ipsilateral IMU data and the contralateral features were fused for improved intention
recognition. So far, the system has only been tested with one healthy subject. However, the
results showed that it is possible to detect bilateral gait events from sensors worn on only one side .

Zhang et al. [86] also used a depth camera within their study. Both legs were in the camera’s
field of view, which was fixed to the waist. The tilt angle was such that the toes were just
not captured when standing still. However, walking resulted in a periodic detection that was
captured as a variation in the depth values. This data was fed into an adaptive oscillator gait
phase detector [107], a concept the author had published earlier. The main idea was to extract
“gait features” triggered by the periodic signal. In this study, four healthy subjects participated
in a level-ground walking experiment. The maximum estimation error between the (reference)
gait phase calculated out of two consecutive steps and the estimated gait phase with the proposed
approach was about 0.3 rad.

3.1.2 Explicit Environmental Sensing

Scandaroli et al. [87] proposed a concept to estimate foot clearance, which is an important
indicator of gait quality and safety. In this study, two gyroscopes and four infrared distance
sensors were mounted on a prosthetic foot prototype. Results from a test bench experiment were
presented showing the height and inclination of the foot in relation to the ground. However,
detailed technical information was not given.

Ishikawa and Murakami [88] mounted an IMU and two infrared distance measuring elements
on a normal shoe. The system was tested with a healthy subject in five different locomotion activi-
ties. The analysis of the recorded data revealed a characteristic waveform of the measurement
signal for the different modes of locomotion. For example, within leveled walking, a dominant
double peak was reported. There was no further information presented.

Kleiner et al. [89] proposed an approach of a foresighted control for a lower limb prosthesis. The
idea behind their study was to use an optical measurement system to detect objects such as stairs
or ramps in front of the user. For this purpose, an inertial navigation system and a laser scanner
were attached between the foot and knee of a prosthetic fitting. It was planned to combine the
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motion information gathered from the inertial navigation system with the depth data captured
from the laser scanner to create a full 3D representation of the environment. However, so far only
“images” from a single indoor experiment without any technical details have been presented.

F. Zhang et al. [90], X. Zhang et al. [91], Wang et al. [92] and Liu et al. [93], as part of
Huang’s research group, extended the mode recognition approach. It was based only on me-
chanical load information on the device and neuromuscular EMG measurements of the residual
muscles [108, 109] by adding a single IMU and a laser distance sensor. Six healthy subjects
and one transfemoral amputee took part in this study, wearing the additional sensors on the
trunk facing forward. Based on geometric constraints and thresholds, the decision tree approach
was used to classify the environment in front of the user into five different categories. With an
accuracy of 98%, new terrains were identified already 500ms before executing the locomotion
mode transition.

Carvalho et al. [94] used only a waist-mounted laser sensor for terrain recognition. The data
collected from ten healthy subjects was classified using a three-layer decision tree with heuristic
rules. The proposed approach achieved an overall accuracy of over 80% classifying eight types of
locomotion mode transitions. The transition from stair descent or ramp descent into level ground
was even recognized correctly to 100%.

Sahoo et al. [95] used an array of distance sensors to classify four terrain types in front of the
user. Three laser sensors or four distance sensors were mounted on the subject’s shank. In order
to obtain reliable data, a force resistor attached to the heel of the foot was used to trigger the
measurement during every stance phase. Two classification approaches were explored on the data
gathered from two healthy subjects: a rule-based system and a quadratic discriminant analysis
approach. An accuracy above 97% was achieved with the ultrasonic distance sensors, however,
the detection range was reported to be less than 50 cm. Therefore, using the ultrasonic sensors
could lead to the risk of “missing” a transition if the user’s step length exceeded the detection
range. By using the laser distance sensors, this maximum range could be increased to up to
100 cm. Within a single step, the proposed system was able to identify the new terrain with an
accuracy of over 98% already 650ms before executing the locomotion mode transition.

Varol et al. [96] and Massalin et al. [97] proposed a system to differentiate between five different
locomotion modes. A depth camera was worn on the shank oriented to the front of the user with
an angle of inclination relative to the ground of 45°. By subtracting the previous and a current
image, a certain motion information was generated. These “depth difference images” were then
classified by a support vector machine, a trained algorithm that sorts data into predefined groups.
A total of twelve healthy subjects participated in the study. The data from eight subjects was
used to train the system, which was then tested by the remaining four. The cubic kernel classifier
achieved the highest accuracy of 94.1%, with an averaged computation time of 14ms.

Laschowski et al. [98] used a color camera mounted on the subject’s chest with the environment
ahead in its field of view. A 10-layer deep convolutional neural network was used to classify
between three types of terrains. In this study, one healthy subject wore the camera and walked
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around while capturing over two million images. Around 34, 000 of them were labeled manually
to train the classifier. The final overall accuracy of the system was reported to be about 94.85%.

Yan et al. [99] proposed a strategy for locomotion recognition without the need of classifier
pre-training. In this study, a depth camera was mounted on the user’s waist in approximately 1m
height with such a tilt angle that the toes were just slightly captured. Next, the depth images were
segmented into twelve blocks and averaged within each segment. The use of a finite-state machine
with predefined thresholds made it possible to distinguish between four modes of locomotion.
In addition, staircase edges were detected using the Hough Line Transform [110]. This is a
feature extraction and voting technique for finding a specific class of shapes, here in this study
“lines” representing the stair edges. In total, data from nine able-bodied subjects’ trials were
analyzed, resulting in 100% accuracy for steady state locomotion and 82.4% for locomotion
mode transitions, respectively. Although the calculation time was given as only 5ms, no online
(real-time) evaluation was carried out in this study.

Diaz et al. [100] published an approach for estimating the surface inclination as well as classi-
fying the soil material in front of a subject. An IMU was worn on the foot and a color camera
slightly higher up the shin of one healthy participant. In order to capture comparable images,
IMU sensor information was used to trigger the camera within the gait cycle’s stance phase.
Next, the Bag of Words method [111] was applied to distinguish between six types of terrains
(cobblestone, grass, carpet, asphalt, tile and mulch). In general, this method classifies the input
image according to a predefined bag of local scene features. In this study, an averaged accuracy
of 86% was determined for the correct detection of soil properties. Furthermore, the deviation of
the inclination prediction compared to a reference was given to be only 0.76°.

Krausz et al. [101] proposed a strategy for estimating stair parameters. Data recorded from a
healthy subject holding a depth camera at a height of 1.5m with a tilt angle relative to the ground
of 50° was analyzed. The classification of depth images was done by searching for basic stair
structure elements such as edges and planes. The results from the online experiment, in which
the participant walked through a hallway and entered a stairwell, achieved an accuracy of 98.8%
for distinguishing whether the person was approaching a staircase or not.

Kleiner et al. [102], who were one of the first to publish a foresighted control approach, see
above, were also the first group to use radar technology in prosthetic applications in 2018. In this
study, a transtibal prosthetic fitting was equipped with an IMU and a a radar distance sensor for
stair detection. By combining the orientation and depth information, a 2D sagittal plane image
of the terrain in front of the subject was generated. Results from an experiment were presented,
indicating a mean distance accuracy of 1.5±0.8 cm for objects in a range up to 5m and a height
accuracy of 0.34±0.67 cm.

Zhang et al. [103] published the most advanced environmental feature recognition system to be
mentioned in this current state of research evaluation. In this study, an IMU and a depth camera
were combined to classify five types of environments. First, the camera scene was transformed
into a world coordinate system. Next, 3D input was projected into a sagittal 2D binary image.
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Finally, the type of scene was classified using a deep convolutional neural network. In addition,
basic computer vision methods were applied to estimate terrain features such as the height and
width of stairs or the incline of a ramp. Data from simulations, indoor and outdoor experiments
conducted with six healthy subjects and three transfemoral amputees were used to evaluate the
proposed approach. The network training was accomplished with simulation results and data from
a healthy subject, while the rest was used to test the proposed system performance. The achieved
accuracy for amputees was 98.5% for the outdoor experiment. For the indoor experiment, where
the terrain change was identified at least 600ms before the locomotion mode transition was
executed, 99.3% accuracy were reached. The most recent article fulfilling the inclusion criteria is
also by Zhang et al. [104]. In order to improve the classification further, they extended their own
approach and included an appreciation of the relationship between states and the credibility of
decisions.
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3.2 Open-Loop Depth Camera Tracking

This section contains the results of the static, dynamic and real-world experiments carried out
with the depth camera-based CoLiTrack approach.

3.2.1 Static Evaluation

The static evaluation experiment shows the potential of this depth camera-based contralateral
shank estimation methodology. The gait data from one subject (N=1) walking 30 steps (n=30) at
each speed level on a treadmill was statistically analyzed. In this setup, the camera was mounted
on the treadmill itself, facing the subject’s shank, as shown in figure 2.8(a) on page 29. Therefore,
tracking was possible for the entire gait cycle at all three walking speed levels, as depicted in
figure 3.1 on the facing page. Further, camera estimations αS,TOF closely correspond to the IMU
reference αS,IMU. The shank angle error was calculated for each percent of the gait cycle and
summarized in table 3.2. For the medium walking speed, the error e is also depicted as individual
box plots (median, lower and upper quartile, as well as the minimum to maximum range), in
figure 3.1(b) on page 61. Although higher errors were found in the range between 85% to 95% of
the gait cycle, these can be explained by imperfectly synchronized data read-in procedures rather
than by estimation errors. Instead, the slightly higher errors at the beginning of the gait cycle,
from 5% to about 30%, can be attributed to relative movement of the pants with respect to the leg.
Overall, the lowest mean error of 1.4± 1.2° was measured at the slow walking speed, while the
highest mean error of 3.4± 1.9° occurred at the high speed level.

N=1 / n=30 % of Gait Cycle Shank Angle Error (deg)

Speed Min / Max x / σ Min / Max x / σ

slow 100 / 100 100 / 0 1.4e−4 / 09.3 1.4 / 1.2

medium 100 / 100 100 / 0 4.4e−4 / 11.3 1.8 / 1.4

high 100 / 100 100 / 0 3.2e−5 / 14.1 3.4 / 1.9

Table 3.2: Static performance of CoLiTrack, adapted from [MT4].
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Figure 3.1: Static performance visualization of CoLiTrack at (a) slow, (b) medium and (c) high
walking speed. Diagrams depict the statistical analysis of αREF and αIMU for subject S01 (N=1)
walking 30 steps (n=30) at each speed level. The bottom diagram at (b) shows the corresponding
shank angle error e as box plots depicting the minimum to maximum, the lower to upper quartile
and the median error for each percent of the gait cycle, adapted from [MT4].
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3.2.2 Dynamic Evaluation

In order to prove the claim that the CoLiTrack approach does not have a subject-related bias and
works independently of the gait speed, it was important to carry out a dynamic test. As depicted
in figure 3.2 on the facing page, tracking is possible for about one sixth of the entire gait cycle
at all three walking speed levels. The trackable range corresponds thereby with the end of the
swing phase, where the heel strike initiates the next step, compare with figure 1.4 on page 6.
For some steps, tracking was even possible for longer periods – up to 28% of the total cycle at
medium walking speed, as shown in the magnified area in figure 3.2(b) on page 63. With the help
of statistical evaluation of 150 steps, plots were generated. For this, 30 steps from each walking
speed level (n=30) for all subjects (N=5) were taken, as listed in table 2.1 on page 28. Through
the combination of the depth camera and the IMU into the wearable kit, depicted in figure 2.3(a),
instrumentation and calibration of the system on the subjects shank took less than 10 minutes.
Although the error for individual steps was higher, the mean error for all three walking speed
levels was below 3°. The results of the dynamic testing can be found summarized in table 3.3.

Throughout this testing procedure, the processing time was also analyzed in detail. Overall, the
averaged computation time was 50ms, with the first 10ms needed to read in the data from both
IMUs and the camera itself. The next 25ms are taken up by preprocessing, since the raw camera
data consists of more than 38, 000 depth points. The remaining 15ms are almost entirely needed
for fitting the circular models with ICP, whereas the processing time of RANSAC is negligible.
Therefore, an online evaluation with up to 20 frames/s is possible.

N=5 / n=30 % of Gait Cycle Shank Angle Error (deg)

Speed Min / Max x / σ Min / Max x / σ

slow 7 / 29 16.7 / 4.6 4.7e−3 / 16.9 2.8 / 2.1

medium 6 / 28 17.5 / 4.4 1.6e−3 / 13.7 2.4 / 2.0

high 9 / 26 18.4 / 3.8 1.0e−3 / 14.1 2.4 / 1.9

Table 3.3: Dynamic performance of CoLiTrack, adapted from [MT4].
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Figure 3.2: Dynamic performance visualization of CoLiTrack at (a) slow, (b) medium and (c)
high walking speed. Diagrams depict the statistical analysis of αREF and αIMU for all five
subjects (N=5) from table 2.1 on page 28 walking 30 steps (n=30) at each speed level. The x-axis
was shifted for a better visualization. The bottom diagram in (b) magnifies the total tracking area
and shows ten randomly taken curves out of all 150 steps, adapted from [MT4].
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3.2.3 Real-World Evaluation

The final test revealed the suitability of the proposed method under real conditions. The one
subject (N=1) participating in this experiment was first equipped and then asked to walk normally,
before varying gait-speed or moving to different terrains, as depicted in figure 3.3.

Walking on level ground yielded an almost similar result to the dynamic treadmill experiment,
whereby initiation and termination steps were successfully tracked as well. However, if the
subject walked too fast, a meaningful (real-time) evaluation failed. This was due to the limited
sampling and processing rate of a maximum of 20 frames/s, as previously analyzed in detail.

As assumed during preprocessing, the closest point in the depth camera’s field of view belongs to
the contralateral leg. In this case, other unknown objects (e.g. banisters or even another person
standing in front of the subject) were effectively eliminated. However, if the contralateral shank
was out of sight, such close obstacles occasionally led to misclassifications. By contrast, ground
reflection or clutter did not have any negative impact on the tracking performance.

Since the camera positioning was optimized for walking at ground level, going into other terrains
affected the performance negatively. While going from level ground up a ramp had almost no
influence on the trackability, depicted in figure 3.3(a), transitioning down a ramp reduced it, as
shown in (b). Nevertheless, the tracking of the contralateral leg worked better on ramps than
on stairs, where it mostly failed, both up and down. Despite the fact that the contralateral leg
was still in the view, as depicted in figure 3.3(c) for up the stairs and (d) for down the stairs,
folds in the shoe area often prevented a successful evaluation. In contrast, during level-ground
walking, the camera captured a more proximal part of the shank, where the trousers are usually
less wrinkled, as shown in figure 2.2 on page 23.

(b)(a) (c)

Level Ground → Up Ramp 

Depth Image Color Image

15° 15°

Depth Image Color Image

Level Ground → Down Ramp Level Ground → Up Stairs 

17cm
30cm

Depth Image Color Image

Level Ground → Down Stairs 

17cm

30cm

Depth Image Color Image

(d)

Figure 3.3: Visualization of terrain changes from level ground into (a) up a ramp, (b) down a
ramp, (c) up the stairs and (d) down the stairs. Depth Images were taken straight out of the depth
camera without any preprocessing. Color Images were taken with a mobile phone and are for
comparison only, adapted from [MT4].
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3.3 Open-Loop Ultrasonic Ranging

This section contains the results of the static evaluation, the behavior simulation and the dynamic
evaluation carried out with the ultrasonic based CoLiRang approach.

3.3.1 Static Evaluation

Two experiments were conducted in a static setup – one to determine the distance accuracy of
the sensors and another to identify the triangulation accuracy used in the CoLiRang approach.

(Sensor) distance accuracy. The first experiment showed that CH 101 sensors can be seen as
both, reliable and valid. This is especially important as the subsequent triangulation strategy
requires precise distance values. Range measurements were possible for the full range from 100
up to 400mm. For each configuration, 1,000 measurements (n=1,000) were analyzed statistically
and plotted in figure 3.4 on the next page. The colors used correspond to the different sensors, as
described in figure 2.17 on page 39. Note: The increased path due to the spacing between the
sensors is ignored, as this distance is relatively small compared to the range of interest. Overall,
the standard deviation in range is below 8mm for all measurements and for most of them even
below 1mm, which is in line with the specifications given in the manufacturer’s datasheet [66].
Moreover, the measured range and the true distance fall within 5mm.

Although the actual amplitude is less important for the final application, it is crucial for the
correct distance determination by the development board. As shown in the graph, the amplitude
decreases with increasing distance. Moreover, the amplitude is lower for the pin board than it is
for the normal wall. This is consistent with theory, as the pin board’s surface structure is more
absorbent and less reflective than a normal wall. It is notable that at the minimal measurable
range of 100mm, the amplitude of sensor S0 is lower than for all the other (longer) distances. As
this sensor is the only one operating in transmit and receive mode, the listening (receiving) period
could therefore be negatively effected by the previous sending (transmitting) cycle. Instead the
other sensors are not effected, as they are operate permanently in receive mode. Nevertheless, this
had no effects on the overall (distance) measurement performance as the range was still correctly
determined.

Triangulation accuracy. The second experiment proved that the implemented triangulation
procedure is sound. Although a single ultrasonic distance measurement does not provide direc-
tional information, the CoLiRang method was able to determine the correct position. For each
setup, 1,000 measurements (n=1,000) were analyzed statistically and plotted in figure 3.5 on
page 67; the top diagram for the left-side configuration and the bottom diagram for the right-side
configuration. Overall, the mean deviation error lies around 30mm with an standard deviation
for this triangulation approach even below 10mm. Moreover, an increased lateral deviation had
almost no effect on either of them. Therefore, the accuracy of this novel CoLiRang triangulation
approach can be deemed sufficient.
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Figure 3.4: Distance accuracy of four CH 101 modules. The diagram clearly shows the decrease
in amplitude with increasing distance. Important for the subsequent CoLiRang triangulation
strategy is the range deviation, which lies below 8mm for all measurements and for most of
them even below 1mm. The pin board (�) has a weaker reflection than the normal wall (•).
In the table above the diagram, the values for each sensor are given as mean value ± standard
deviation (n=1,000). The first line refers to the range (R), the second line to the amplitude (A). In
the graphic, the sensors are each shown in the corresponding colors.
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Figure 3.5: Triangulation accuracy achieved by the CoLiRang kit. The top diagram visualizes the
results for the left-side configuration, the bottom diagram for the right-side setup. The notation
within the fields is as follows: (reference value) mean value ± standard deviation of the CoDir
signal (n=1,000) at each position defined in figure 2.18 on page 39.
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3.3.2 Behavior Simulation

In order to develop a sense for the CoLiRang system, three behavior simulations were carried
out. The first one determined the triangulation robustness. Next, the passing performance was
evaluated and finally the walking behavior was explored.

Triangulation robustness. The (triangulation) algorithm developed proved robust against arti-
ficially added noise. The statistical analysis of 1,000 calculations (n=1,000) for three different
noise levels is shown in figure 3.6. For completeness, it should be noted that when the noise level
was set to zero, the simulated output matched the input perfectly. Therefore, it is not depicted.

In general, more noise caused more deviation. For example, at the simulation position 100mm
medial / 100mm anterior: At the lowest noise level, shown in figure 3.6(a), the mean deviation
error is only 1.3mm, while at the highest level (c) the mean deviation error increased up to
7.5mm. In summary, at the medium noise level (b) which corresponds with the previously
determined standard deviation of the distance accuracy, the mean deviation between the known
target position and the calculated algorithm output is less than 30mm for all examined positions.
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Figure 3.6: Simulation of triangulation deviation caused by (a) low, (b) medium and (c) high
uniformly distributed noise. The notation is as follows: mean value ± standard deviation of
the simulated CoDir signal (n=1,000), with the reference value given by the posterior-anterior
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Passing performance. The experiment proved that the CoLiTrack kit can correctly identify
the moment of passing (sign change of CoPas) independently of the distance between the kit
and an object. The pendulum (reference) angle and the CoPas signal itself are plotted in figure
3.7. In the scatter plot (b) it can be seen that the maximum deviation lies within ±4°. For each
(distance) configuration, 100 measurements (n=100) were analyzed statistically and summarized
in table 3.4. Overall, the mean deviation lies below 1° for all distances between the kit and the
pendulum. Therefore, the passing performance of this novel approach can be deemed sufficient.

n=100 Pendulum Angle at the sign change of CoPas

Distance (mm) min (deg) x (deg) σ (deg) max (deg)

100 -3.3 0.16 1.48 3.5

200 -4.1 0.50 1.59 3.8

300 -4.2 -0.29 1.71 4.2

Table 3.4: Passing performance of CoLiRang.

(a
) S

am
pl

es
 P

lo
t

(b
) S

ca
tte

r P
lo

t

Samples

Ra
w

 S
ig

na
ls

Pendulum Angle

CoPas

Pendulum Angle (deg)
-5 0 5 15-15 -10 10

Co
Pa

s

0

-1

1

posterior

error

anterior

Figure 3.7: Visualization of the passing performance achieved by the CoLiRang kit at a distance
of 200mm. The diagram (a) visualizes the pendulum angle as well as the CoPas signal over some
samples. (b) Depicts the scatter plot of those signals for 100 (pendulum) swings. The purple area
corresponds to the pendulum angle range at the moment of passing, sign change of CoPas.
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Walking behavior. This test simulated the potential CoDist behavior for level-ground walking
situations. The only input parameter is the nominal joint angle data taken from [32]. Nevertheless,
the simulation represents the actual result quite well, compared with the results of the dynamic
evaluation in figure 3.9 on page 72 for participant P01 and in figure 3.10 on page 73 for participant
P02, respectively. The simulation itself is depicted in figure 3.8.

The local dSIM minimum, for both participants at approximately 30% and 75%, corresponds to
the passing of the legs. However, since the minimum range of the CH 101 modules is limited to
100mm, this limitation was also taken into account for the simulation. As expected, the shape
is relatively smooth. Nevertheless, the almost linear increase from about 45% up to 55% was
surprising. A detailed analysis revealed that this corresponds closely to the double support phase
starting with the contralateral initial contact and ending with ipsilateral toe off.
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Figure 3.8: Simulation of the CoDist behavior at level-ground walking for both participants from
table 2.3 on page 38. Joint angle data from [32] are used as input (a) to calculate the output (b):
minimum distance dSIM between the kit worn on the ipsilateral leg and the contralateral shank
for each percent of the gait cycle.
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3.3.3 Dynamic Evaluation

Finally, a dynamic evaluation of different activities was done. The experiment started with the
equipping of the participants listed in table 2.3 on page 38 with the CoLiRang kit, first on the left
side, and then repeating the procedure on the right side. The instrumentation took less than five
minutes. Next, the participants started with level-ground walking, before going into the ramp
and staircase, as show n figure 2.21 on page 42. With the help of the additional IMU integrated
into the kit, gait segmentation became possible. Normalized data of the ipsilateral shank angle
αS,IMU as well as the corresponding contralateral CoDist, CoDir and CoPas signal measured
with the CoLiRang kit are depicted in figure 3.9 on the following page for participant P01 and in
figure 3.10 on page 73 for participant P02.

The distance information CoDist for walking on level ground showed an almost similar result
to the simulation experiment, with body height directly influencing step length and, thus, the
maximum values. The two almost identical peaks at around 10% and 60% indicate a symmetric
behavior – the leg is as far away in the back as it is in the front. Especially during passing at
about 35% and 85%, respectively, the distance would actually be lower. However, since the kit is
worn medially on the shank, this remains undetected due to clipping of the sensors – all sensor
values are limited to the minimum range. Overall, the step length and thus, the maximum CoDist
values are lower for the ramp and even lower for the stairs. However, for both terrains, there
exists also the distinct second peak at around 60% for the ramp and approximately at 40% for the
stairs, which indicates that the sound side is considerably in front.

The direction information CoDir provides reliable information about the direction of the sound-
side, i.e. whether the leg is behind or in front of the kit. However, the results also revealed that
the triangulations itself were less consistent in determining the moment when the contralateral
side passes the ipsilateral leg accurately. This is due to the fact that sensor clipping truncates this
(close) situations. Strictly speaking, the input for the calculations at these moments is invalid.

In contrast, the direct passing determination CoPas proved to be more reliable. The analysis for
both subjects in each terrain concluded as follows: For each cycle, an explicit switching from
“posterior” to “anterior” and vice versa can be observed. For the ramp this is at around 35% and
for the stairs slightly earlier at approximately 30%. The same exists for walking on level ground.
However, in this situation, the (contralateral) leg moves forward or backward so far that CoPas
becomes zero, as one of the underlying distances becomes invalid – the leg is out of range/view
for one of the utilized sensors. Note: For better identifiability, the CoPas signal is visualized in
the plots 3.9 and 3.10 only by a gray band for the complete switching range. Additionally, one
random taken curve indicates the typical change from posterior to anterior and vice versa.

Throughout this test, the processing time was analyzed as well. As the approach was already opti-
mized for timing, preprocessing, triangulation and filtering took on average only 1ms. However,
so far, calculation was done only offline in Matlab running on a normal laptop. Furthermore, the
short outdoor walk proved the robustness of the sensor modality – a inspection of the signals
revealed that external influences such as sunlight or wind did not have any effects at all.
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Figure 3.9: Dynamic performance visualization of CoLiRang. Participant P01 wears the kit on
the left side (red) and the right side (blue), respectively. The diagrams depict ten randomly taken
curves for the ipsilateral shank angle αS,IMU as well as the corresponding contralateral CoDist,
CoDir signal walking at level ground, going down the ramp and going down the stairs. For better
recognizability, only one CoPas curve is plotted showing the change from posterior to anterior
and vice versa with a gray band for the complete switching range. Note: At Level Ground the
leg comes so far forward or backward that CoPas becomes zero, as one of the underlying raw
distances used for the calculation of this parameter becomes invalid.
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Figure 3.10: Dynamic performance visualization of CoLiRang. Participant P02 wears the kit on
the left side (red) and the right side (blue), respectively. The diagrams depict ten randomly taken
curves for the ipsilateral shank angle αS,IMU as well as the corresponding contralateral CoDist,
CoDir signal walking at level ground, going down the ramp and going down the stairs. For better
recognizability, only one CoPas curve is plotted showing the change from posterior to anterior
and vice versa with a gray band for the complete switching range. Note: At Level Ground the
leg comes so far forward or backward that CoPas becomes zero, as one of the underlying raw
distances used for the calculation of this parameter becomes invalid.
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3.4 Closed-Loop Prosthesis System

This section contains the results of the ultrasonic enhanced prosthesis system SEP, which were
obtained during the clinical pilot study. First, the optimized parameters are summarized. Next,
the outcomes from the biomechanical analysis are presented, and finally the satisfaction ques-
tionnaires are evaluated.

3.4.1 Optimized Parameters

According to the clinical investigation plan for this study, patients completed up to five (opti-
mization) visits at the study site Ottobock. In every single session, the patients were fitted with
the SEP system, which took about an hour on average. Next, the participants were given an
acclimatization time with the deactivated system OFF (C-Leg). The individual C-Leg damping
factors for all subjects are summarized in table 3.5. The aim of the optimization was to determine
the enhanced parameters for each subject. Therefore, the system was activated ON (SEP), and
the activities of level walking, walking on ramps and walking on stairs were repeated.

Overall, the high-level control modifications shown in figure 2.24 on page 45 proved to be
effective and convenient. With the help of the recorded gait data footage and all the detailed
feedback from the participants, the ideal control parameters were derived. It is important to note
that there were neither sudden nor large damping changes, which was perceived as pleasant, or as
one amputee said: “The smoother, the better!” Table 3.5 summarizes DFmin, DFmax, PreFlex,
KAmax and CoDistlimit for all subjects. As already suggested in the discussion section of the
previous CoLiRang system (see section 2.3 on page 31), the distance signal CoDist and the
passing signal CoPas were combined. This means that detecting a passing is only possible, when
the CoDist value is below the CoDistlimit threshold. Moreover, due to the narrower kit design, as
seen in figure 2.23 on page 44, the medial spacing between the legs increased. This eliminated
the sensor clipping, which occurred in the prior CoLiRang work (see section 3.3 on page 65).
Finally, after testing, the patients were refitted with their own devices.

Parameter \ ID A01 A02 A03 A04 A05

C-Leg DF ∗ 82.5 79 81 82.5 82.5

SEP DFmin
∗ 80 75 78.5 80 75

SEP DFmax
∗ 90 89 90 90 92.5

SEP PreFlex [deg] 2 2 2 2 2

SEP KAmax [deg] 30 25 25 25 25

SEP CoDistlimit [mm] 140 150 140 155 150
∗Damping factor in % from 0 (nil damping) to 100 (infinity damping).

Table 3.5: Optimized amputees’ parameters.
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3.4.2 Biomechanical Analysis

This final measurement was crucial in order to objectively determine the “better behavior” sub-
jectively perceived by the amputees during the optimization sessions of this study. Therefore, all
of them had to undergo a full biomechanical gait analysis. According to the clinical investigation
plan shown in figure 2.25 on page 46, this was the final visit at the clinical partner study site
OSS. Again, each patient was fitted with the SEP system and 54-markers were placed on the
participant’s body necessary for the biomechanical (VICON) analysis, compare with figure 2.27
on page 50. Enhanced control parameters were taken from table 3.5 on the facing page. The test
procedure was as follows:

In order to prove that the novel SEP system is sound, three different activities were analyzed. First,
the subject started level-ground walking with the deactivated system OFF (C-Leg). Then, only the
PreFlex-feature was activated ON (SEP) and the activity was repeated. Therefore, the damping
itself was not modified for the level ground task. Second, the system was again deactivated OFF
(C-Leg) and the participant was asked to walk on the ramp. Now, the complete enhanced control
approach with the damping modification was activated ON (SEP) and the subject repeated this
activity. Third, the system was deactivated OFF (C-Leg) one more time and the amputee started
to walk on the stairs. Finally, after that, the system was reactivated ON (SEP), before repeating
the staircase activity. Between each configuration, acclimatization time was given and after all
conditions the patient was refitted with their own system.

Gait pathology. The observation that was first made during the optimization sessions was
confirmed in the biomechanical analysis: All the participants in this study have very individual
gait patterns, even despite the fact that the prosthetic fitting is virtually identical for everyone of
them. Figure 3.11 on the next page depicts the pelvis and ankle joint angle of all five amputees
walking on level ground with the deactivated system OFF (C-Leg). As seen within this group,
the gait strategy is (fundamentally) different, as they have to compensate for the prosthesis
system itself and probably also for muscle tension or weakness. Therefore, the gait patterns are
heterogeneous. For example, A01 and A05 try to compensate with their pelvis. Instead, A02 and
A04 use their pelvis less, but compensate with the contralateral (healthy) ankle by vaulting. In
this case, the sound foot is on the tip of the toe lifting the body’s center of mass to support the
ipsilateral (prosthesis) side with the necessary clearance in the swing phase. The participant A03
is the only one using a foot with a “shock absorber unit” [112], which helps to reduce vertical
and torsional forces in the extremities during walking.
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Figure 3.11: Gait pattern deviations of all five amputees walking on level ground.
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Level-ground walking. Following the test procedure, level-ground walking was the first activity
within the final evaluation session done in this pilot study. The subjects started with the deactivated
OFF C-Leg, before repeating it again with the activated PreFlex-feature. Note: The damping
factor of the prosthesis was not modified for the level ground task. Based on subjective feedback
from amputees, no noticeable difference could be perceived between these two conditions.

The mean spatiotemporal gait parameters are depicted in figure 3.12 on the following page.
Again, gait pattern differences are clearly noticeable, however the difference with or without the
PreFlex-feature is less prominent. For three (A01, A02 and A04) out of five participants the gait
symmetry improved, while for the remaining two (A03 and A05) the symmetry even decreased.
What is not discernible from the graphs but applicable for all subjects: the stand phase on the
healthy leg is larger than on the prosthesis side. Instead, again for all, the step length of the
contralateral leg is lower than for the ipsilateral side. In terms of velocity, cadence or step width,
there were no considerable differences between the deactivated (C-Leg) or activated (SEP) system.

The mean body center of mass motion is shown in figure 3.13 on page 79. The total center of
mass range and the contralateral leg landing do not show a homogeneous alteration. Instead, the
prosthesis side lifting is slightly reduced for all five subjects, which is presumably caused by the
preflexed prosthesis. However, overall, the changes are very small.

The ground reaction force is plotted in figure 3.14 on page 80, however, no clear variations can
be distinguished between the two conditions (with or without the PreFlex-feature).

The individual kinematic and kinetic gait data are shown in figures 3.15 to 3.19 on pages 81 to 85.
Although the PreFlex-feature would support a higher knee stance-phase flexion on the prosthesis
side, only three (A01, A04 and A05) out of five actually did do so. For the remaining two (A02
and A03), the preflexed prosthetic joint had almost no influence on the (knee) gait pattern. Again,
gait pattern differences are clearly noticeable. For example, patient A01, who is very active with
his pelvis, as described in the gait pathology section, has also a very high hip moment and power.
The higher standard deviation of hip angle seen with subject A03 could indicate that, despite the
acclimatization time provided, he is still not yet completely familiarized with the SEP system.
Patient A05 is doing an extreme stance-phase flexion on the contralateral knee, resulting also in
very high contralateral knee moment and power, irrespective of the system enhancement.

In summary, the additional PreFlex-feature of 2° was only a minor modification to the (commer-
cially available) C-Leg system, and led to hardly any measurable changes. Therefore, both the
(subjective) perception of all five patients and the (objective) biomechanical measurements are in
agreement for the task of level-ground walking.
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Figure 3.12: Spatiotemporal gait parameters of all five amputees walking on level ground.
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Figure 3.15: Kinematic and kinetic gait data of amputee A01 walking on level ground.
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Figure 3.16: Kinematic and kinetic gait data of amputee A02 walking on level ground.
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Figure 3.17: Kinematic and kinetic gait data of amputee A03 walking on level ground.
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Figure 3.18: Kinematic and kinetic gait data of amputee A04 walking on level ground.
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Figure 3.19: Kinematic and kinetic gait data of amputee A05 walking on level ground.
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Down the ramp. Following the test procedure, walking down the ramp was the second task in
the final evaluation session. The subjects started again with the deactivated OFF (C-Leg) system,
before the modification was activated ON (SEP). For the ramp task, the damping factor of the
prosthesis was modified too, using the individual parameters summarized in table 3.5 on page 74.
According to the participants’ subjective perception, this modification reduced the load on the
contralateral side and allowed them to walk in a more controlled manner than without it.

The mean spatiotemporal gait parameters are depicted in figure 3.20 on the facing page. Again,
gait pattern differences are clearly noticeable. For example, while patient A01 has the lowest
stance phase asymmetry of only 4%, A03 has almost 20% deviation. For subject A04, the
SEP system improved both symmetry measurements, while for participants A02, A03 and A04
this was only the case for the stand phase, which is also evident in the ground reaction force
graphs. For all subjects, the stand phase on the healthy leg is larger than on the prosthesis
side. In contrast, the step length with the contralateral leg is lower than on the ipsilateral side,
again for all participants. More important, however, are the changes that have shown up in the
absolute values: The cadence was reduced for all subjects, and the velocity and step width for
four out of five, with the exception of patient A05. This indicates a more stable and controlled gait.

The mean body center of mass motion is shown in figure 3.21 on page 88. For going down the
ramp, the vertical displacement was reduced for all measurements, partly at very high percentages.
The total center of mass range was reduced by almost 10%, resulting in a more energy-efficient
gait. Due to the PreFlex-feature of 2°, prosthesis side lifting was reduced too. Most important,
however, was the distinct reduction of the contralateral leg landing, by about 25% on average for
all of the subjects and almost up to 40% for participant A05.

The ground reaction force is plotted in figure 3.22 on page 89. The graphs show a reduction of
the maximum weight acceptance on the contralateral (healthy) leg. On average, this reduction is
about 18% for all subjects and even up to 30% for participant A05. The extended stand phase on
the ipsilateral (prosthesis) side is also identifiable.

The individual kinematic and kinetic gait data are shown in figures 3.23 to 3.27 on pages 90 to 94.
With the activated SEP system, the prosthesis allowed more knee flexion (lower damping) at
loading response and provided then more support (higher damping) during stance phase. However,
an explicit extension, as seen in the reference from able-bodied individuals, is not possible, as
the used pMPK is unable to provide net positive work. Nevertheless, the maximum knee angle
during the swing phase was also reduced. At the same time, it led to a relief of the contralateral
(healthy) side, with knee progressions more toward the reference – knee flexion and, thus, knee
moment and power, are reduced. These effects were seen for all five patients.

In summary, the enhanced SEP system allowed the patient to walk down the ramp in a more
controlled manner. This resulted in a slower and more stable gait and, more importantly, reduced
the load on the healthy leg. Therefore, both the (subjective) perception of all amputees and the
(objective) biomechanical measurements are in consensus for the task of walking down the ramp.
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Figure 3.20: Spatiotemporal gait parameters of all five amputees walking down the ramp.
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Figure 3.21: Body center of mass motion of all five amputees walking down the ramp.
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Figure 3.23: Kinematic and kinetic gait data of amputee A01 walking down the ramp.
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Figure 3.24: Kinematic and kinetic gait data of amputee A02 walking down the ramp.
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Figure 3.25: Kinematic and kinetic gait data of amputee A03 walking down the ramp.
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Figure 3.26: Kinematic and kinetic gait data of amputee A04 walking down the ramp.
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Figure 3.27: Kinematic and kinetic gait data of amputee A05 walking down the ramp.
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Down the stairs. Finally, walking down the stairs was the third and last task within the evalua-
tion session of this study. The subjects started again with the deactivated OFF (C-Leg) system,
before the damping modification was activated ON (SEP). Again, the subjective perception of the
patients was that the novel SEP system reduced the load on the contralateral leg, resulting in a
more stable and controlled gait.

The mean spatiotemporal gait parameters are depicted in figure 3.28 on the next page. It is
remarkable that the activated SEP system improved the symmetry for all five subjects, with stand
phases on the contralateral side larger than on the prosthesis leg. For the staircases, neither step
length nor velocity were evaluated. The step width was reduced for four out of five participants,
with the exception of patient A03, indicating more stability and less sidelong movements.

The mean body center of mass motion is shown in figure 3.29 on page 97. The total center of
mass range and the prosthesis side lifting do not show a homogeneous alteration. The distinct
reductions that have shown up in the contralateral leg landing, however, are more important: 40%
on average for all five patients and even up to 65% for A02. This is a strong sign that amputees
need to intercept less with the healthy leg.

The ground reaction force is plotted in figure 3.30 on page 98. The graphs show a reduction of
the maximum weight acceptance on the contralateral side for all five patients: 20% on average
and up to 30% for patient A02 and A03. It is worth mentioning that the novel SEP system reduces
the load on the healthy leg for four out of five subjects to such an extent that it is more or less
perfectly within the reference range of the able-bodied individuals. Moreover, the extended stand
phase on the ipsilateral (prosthesis) side is identifiable yet again.

The individual kinematic and kinetic data are shown in figures 3.31 to 3.35 on pages 99 to 103.
Again, similar to the previous ramp task with the activated SEP system, the patients can be
observed doing more stand phase flexion. Simultaneously, the contralateral knee was relieved
and compensatory movements were reduced. Note: The kinematic (angle) data of the hip, knee
and ankle are both evaluated from the steady-state range of the stairs [113]. Therefore, these
progressions can be compared directly. Due to the relatively short staircase, see figure 2.27
on page 50, not all force plates are within the steady-state range, meaning that the (calculated)
moments and powers could deviate. However, our clinical partner OSS reported that kinetic gait
data should not be interpreted anyway, as there are still unsolved problems, which could either
originate from the construction itself or from the evaluation routine. Nevertheless, for the sake of
completeness, they are still plotted (within one graph) but not interpreted any further. It must also
be mentioned that patient A05 used the handrail lightly, thus influencing the measurements.

In summary, the novel SEP system improved the staircase performance. Gait asymmetry as well
as weight bearing on the healthy, unimpaired leg were reduced for all amputees participating
in this study. Therefore, both the (subjective) perception of all amputees and the (objective)
biomechanical measurements are in accordance for the task of walking down the stairs.
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Figure 3.28: Spatiotemporal gait parameters of all five amputees walking down the stairs.
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Figure 3.29: Body center of mass motion of all five amputees walking down the stairs.
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Figure 3.30: Ground reaction force of all five amputees walking down the stairs.

98



3.4 Closed-Loop Prosthesis System

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
% of Gait Cycle % of Gait Cycle % of Gait Cycle

A01
Down the Stairs

0

25

50

75

100

-50

-25

0

25

50

-1

0

1

2

3

-2

-1

0

1

2

3

-1

0

1

2

3

-15

-10

-5

0

5

10

-9

-6

-3

0

3

-4

-2

0

2

4

0

15

30

45

60

of Prosthesis Side 
of Contralateral Leg 

ReferenceOFF
(C-Leg)

of Prosthesis Side 
of Contralateral Leg 

ON
(SEP) from Able-Bodied Subjects 

Hip Knee Ankle

A
ng

le
 (d

eg
)

ex
te

ns
io

n 
←

 |
→

 fl
ex

io
n

M
om

en
t (

N
m

/k
g)

fle
xi

on
 ←

 |
→

 e
xt

en
sio

n
ab

so
rp

tio
n 

←
 |

→
 g

en
er

at
io

n
Po

w
er

 (W
/k

g)

A
ng

le
 (d

eg
)

ex
te

ns
io

n 
←

 |
→

 fl
ex

io
n

M
om

en
t (

N
m

/k
g)

fle
xi

on
 ←

 |
→

 e
xt

en
sio

n
ab

so
rp

tio
n 

←
 |

→
 g

en
er

at
io

n
Po

w
er

 (W
/k

g)

do
rs

al
←

 |
→

 p
la

nt
ar

pl
an

ta
r←

 |
→

 d
or

sa
l

A
ng

le
 (d

eg
)

M
om

en
t (

N
m

/k
g)

ab
so

rp
tio

n 
←

 |
→

 g
en

er
at

io
n

Po
w

er
 (W

/k
g)

Figure 3.31: Kinematic and kinetic gait data of amputee A01 walking down the stairs.
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Figure 3.32: Kinematic and kinetic gait data of amputee A02 walking down the stairs.
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Figure 3.33: Kinematic and kinetic gait data of amputee A03 walking down the stairs.
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Figure 3.34: Kinematic and kinetic gait data of amputee A04 walking down the stairs.
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Figure 3.35: Kinematic and kinetic gait data of amputee A05 walking down the stairs.
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3.4.3 Satisfaction Questionnaire

All five patients finished the study by filling out the questionnaire shown in figure 2.28 on page 52,
with the aim to assess their subjective perception of this novel SEP system. Most importantly,
none of the amputees experienced pain; stumbles, trips or falls did not occur at any time. In
order to properly estimate a prospective user’s possibly gained surplus, the (individual) answers
were grouped and evaluated. Figure 3.36 on the facing page displays the distribution of the users’
answers.

The activity of walking down the ramp as well as walking down the stairs were described as
“very convenient” for four of the participants and at least “convenient” by one. A patient com-
mented in the allocated field that the SEP system allows a super easy initiation of the knee flexion
with a pleasant initial damping.

Three out of five subjects rated the weight of the system as “light”. One even said “very light”,
whereas the system felt “heavy” for the remaining subject. Although the majority stated that
the weight difference is not really dominant, the one participant who rated the system as heavy
argued that feeling the more distal mass (comment: sensor kit) made the system more inert.

Regarding the perception of safety the subjects felt “very secure” (three out of five) or at least
“secure” (two participants). This emphasizes the reliability of the fundamental concept.

When being asked to assess the perception of physical effort and the perception of mental effort,
three out of the five participants described it as “not strenuous” and the remaining two only as
“medium strenuous”. One patient stated in the comment field that the SEP system is better, but
not yet the familiar daily device.

In terms of the satisfaction with SEP, three amputees responded that they were at least “satisfied”,
while the other two were even “very satisfied”. In the corresponding comment field, it was stated
that the SEP system relieves the contralateral leg, facilitates downward tasks and reduces tilting
effects within the socket. However, one patient also pointed out that the increased damping could
result in a faster heating, thus leading to a shortened uptime (comment: if the prosthesis becomes
too hot, it switches to a safety mode).

Finally, all five patients answered that they would prefer the novel SEP system for day-to-day use,
instead of the commercially available C-Leg, at least for the yielding tasks. Note: According to
the clinical investigating plan, there was no home-use phase – patients were not allowed to take
the device home at any point of time. Nevertheless, the feedback showed that although it is only
a research prototype, there was already a lot of interest in using it.
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Figure 3.36: Distribution of the amputees’ responses in the satisfaction questionnaire.
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CHAPTER 4
Discussion

The discussion begins in section 4.1 by outlining the possibilities of novel environmental per-
ception sensors to improve control of lower limb prostheses and the constraints that need to be
considered for further development. With the idea of an improved patient-prosthesis interaction
in mind, completely new contralateral limb estimation strategies were designed, integrated and
tested. In the following, the advantages as well as the concept-inherent limitations of the different
systems are presented: first, for the open-loop CoLiTrack system in section 4.2; next, for the
open-loop CoLiRang approach in section 4.3; finally, for the closed-loop prosthesis system in
section 4.4. Necessary adaptations for producing a marketable product are summarized in the
future work paragraph of each concept.

4.1 Current State of Research

4.1.1 Control Strategy Landscape

The detailed analysis of the current state of research made it possible to clarify how environ-
mental sensing can improve the control of next-generation prostheses. The approaches can be
grouped into five clusters: (1) continuous control, (2) motion classification, (3) event detec-
tion, (4) safety functions, and (5) upcoming object or terrain prediction, as shown in figure 4.1.
An important decision factor for assigning the approaches into these groups is the required
resolution and update rate of the underlying sensor modalities. In the column labeled “Group”
in table 3.1 on page 54, each retrieved publication was classified into one of these main categories.

Approaches belonging to the field of continuous control measure, process and, finally, control in
real time. This requires sensor modalities with high resolutions and high update rates. Based on
Tucker’s three-level controller hierarchy, which is described in detail in section 1.1.3 on page 7,
input processing for continuous control strategies is done on mid-level layer of the controller.
Within the retrieved papers, mostly kinematic sensors such as GONIOs or IMUs were investigated
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Figure 4.1: Control strategy landscape overview based on required resolution and update rate of
the underlying sensor modality, adapted from [MT2].

in this category, estimating the state of the (residual) user’s body. Using information about the
sound-side leg was found to be a promising approach [74–77]. Although primitive “echo-control”
strategies have been studied for more than 40 years [114], errors often occur at the end of an
activity, when the leg should stop but echoes again. The extended measurement of the entire
(lower) body, referred to as “whole-body awareness”, made it possible to distinguish between
different types of locomotion and transitions [78–81]. However, all of these concepts require to
wear numerous additional sensors, which compromises usability and practicality for amputees.

Motion classification systems process the sensory input at the high-level layer of the controller to
classify the user’s intent correctly. The sensor requirements in terms of resolutions and update
rates are typically lower than for the continuous control class. As systematically proven [82–85],
the fusion of various whole-body signals increased the intent recognition rates. Although this
was not unexpected, the finding that already a single sound-side leg parameter could significantly
reduce misclassification rates was remarkable. This means that instead of attaching and calibrat-
ing a number of sensors to the user’s body, a single contralateral sensor is enough to improve
device control. The group of motion classification also overlaps with the category of upcoming
object or terrain prediction. This is due to the fact that obstacles and terrain features are the
“boundary conditions” for all types of movement. Nevertheless, this group is mainly concerned
with correctly identifying the user’s intention, rather than predicting upcoming objects or terrains.
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4.1 Current State of Research

The category event detection summarizes all approaches that attempt to identify certain “events”
from locomotion. Important factors for level-ground walking are the heel strike and the toe off, as
shown in figure 1.4 on page 6. According to Tucker’s framework, movement-dependent actions
are triggered by this information in the mid-level layer of the controller. Therefore, timing is
crucial. Sensors used within this group should have high update rates, but the resolution may be
lower. As an example, pressure inserts are often used to determine the exact moment of ground
contact. However, the resolution of sensors like these is not relevant, since the distinction whether
the foot does or does not touch the ground is often sufficient. For a continuous estimation of the
gait phase, a gait-related depth signal combined with an adaptive oscillator detector was used [86].
Instead, the concept proposed by Hu et al. [52], which predicts bilateral gait events from unilater-
ally worn sensors only, seems to be more promising. Nevertheless, as the implementation was not
optimized for processing time, the high computation time of more than 1.16±0.56 s prevented
any real-time evaluation.

Approaches that increase the safety of a lower limb prosthesis belong to the safety function group,
interacting at the low-level layer of the controller. In general, a high resolution is mandatory, for
being able to detect small barriers correctly. Although the update rate could be lower, a high
update rate would enable a “(re)action” in real time. In terms of device control, reliable stumbling
prevention in unexpected terrain is still an open (research) question. A study conducted with
healthy individuals found that an unrecognized object with a height of only 1 cm can already
lead to stumbling. Therefore, it concluded that foot clearance is an important gait parameter
for safety [115]. Within this survey, there were two publications in which the foot clearance
was estimated [87, 88], but none of them were investigated in a prosthetic setup. Although few
concepts have been found for this category, some are obvious: By taking a single (color or depth)
image during the stance phase when the leg is vertical, path planning could reduce the risk of
falling during the next step. Furthermore, it would be beneficial to correctly estimate the ground
inclination. This could be done via an IMU in combination with two distance sensors, one more
heel-related and the other more toe-related.

Upcoming object or terrain prediction approaches are the biggest research trend, across all
five categories, depicted in figure 4.1. Half of all the publications reviewed attempt to observe
the amputee’s environment, classify the input and, finally, provide a probability for changing
the locomotion mode. Based on the controller framework by Tucker, input is processed at the
high-level of the controller. For a smooth transition between different terrains, humans link visual
information with proprioception, whereas, for prosthetic devices, the correct recognition of these
transitions is very challenging. Currently available lower limb prostheses require the patient to
perform a predefined “special movement”, which is not very intuitive. This is detected by the
built-in sensors and triggers the transition between modes of locomotion with distinctly different
properties [116]. For the smooth and safe switching between terrains without losing balance
or interrupting the transition, the term “critical timing” was coined by Huang et al. [109]. Ap-
proaches combining distance information with geometric constraints [90–95] to predict upcoming
terrain features proved to be fast and accurate enough. However, all of these concepts require an
unobstructed field of view, and the research group studying the radar sensor [102] did not evaluate
the the feature of “look-through” cosmetics (cover of a prosthesis to appear lifelike) or clothes.

109



4. DISCUSSION

A fundamentally different approach is the explicit recognition of upcoming objects. The aim
of systems like these is to recognize and identify object parameters directly, which is a crucial
capability for autonomous systems in particular. Especially the development of low-cost and
high-resolution depth cameras opened up a wide range of applications in many areas [117]. In
terms of smart vehicles, the first fully autonomous wheelchair already successfully navigated
the hospital’s corridors in 2016 [118]. However, in terms of lower limb prostheses, the amputee
voluntarily decides what to do or where to go. Based on this fact, the sensor input is usually
processed to obtain a probability for the change of locomotion mode. With this in mind, depth
cameras were used to detect if the user was approaching a staircase [101] or to distinguish between
various locomotion modes [96, 97, 99, 103, 104]. Instead, a color camera was used to determine
the soil material [100]. All these image-based concepts, however, required an unobstructed field
of view and were (very) computationally intensive, as will be discussed in the next paragraph. Al-
though concepts with pre-trained classifiers [96–98,100,101,103,104] achieved higher accuracies
compared to finite-state machines without learning [90–95, 99], the performance of the former
strongly depends on the quality and size of the training data. In addition, training with predefined
step sequences led to unintended biases, which then occasionally led to misclassifications in
unpredictable real-world situations.

4.1.2 Development Considerations

Sensor modalities. Out of the retrieved 32 publications, eleven different types of sensors were
used to enhance the control of prosthetic devices. Most of these are various distance-based
and depth-based sensors for environmental scanning, which were already described in detail
section 1.2 on page 9. Furthermore, kinematic sensors, typically IMUs, are used in 24 out of
32 publications. In fact, all commercially available MPKs from Fluit’s review [14] employed
an IMU for motion estimation. Although widely utilised, IMUs have a fundamental problem:
Integrating sensor information – for example, calculating a position from acceleration data – can
lead to cumulative errors that may cause drifts. Instead of IMUs, some of the papers use GONIOs
to measure kinematic parameters. Although sensors like these are very reliable and highly precise,
they usually restrict the natural freedom of movement of the complex human joints. Some studies
also use force resistive insoles or surface EMG electrodes, both of which require direct contact
with the body – insoles need to be in contact with the foot to detect ground contact and electrodes
with the skin to register muscle activity, respectively. Although they are not really “environmental
sensors”, they can provide valuable input for (gait) event detection or conscious device control. In
general, each type of sensor modality has their own pros and cons. Especially for distance-based
and depth-based sensors, the main limitation seems to be the need for an unobstructed view.

Computing power. The publications analyzed within this state of research survey used powerful
computers with memory sizes of up to 32 GB and clock rates of 3 GHz or more to evaluate and
process the (image) inputs. The computing power available in commercial prostheses, however,
is very limited. As described in detail in section 1.1.3 on page 7, finite-state machines running on
low-power microprocessors are typically used for intention recognition and prosthetic control. It
is obvious that limited processing power also affects processing time. Nevertheless, to ensure re-
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liable and user-friendly functioning, the extraction and classification of interpretable information
from the complex input should be as fast as possible. For real-time (prosthetic) applications, the
update rate is typically in the range of 100Hz [14]. This leads to the conclusion that the system
architecture of prostheses must be modified significantly to support on-board vision processing in
real time. One solution would be to integrate Intel’s Myriad 2, a vision processor developed for
mobile phones with less than 0.5W power consumption [119], into prostheses.

Energy consumption. In addition to the limitation presented by computing power and processing
time, energy consumption is also a critical factor. The CamBoard pico flexx from pmdtechnolo-
gies, which was used in [52, 85, 103], has the lowest power consumption of 300mW [120]. The
depth camera DS 325 from SoftKinetic used in [96, 97] needs more energy, but is still under
2.5W [121]. With nearly the same geometrical dimensions as the depth sensors, the radar module
used in [102] has a rated power consumption of 5W [122]. For comparison, actuators with a
power consumption of up to 200W are integrated into advanced aMPKs [14]. Regardless of
this, the energy consumption of processors and sensors can still be reduced through further devel-
opments and is, therefore, probably not the main factor for the exclusion of a particular technology.

Freedom to operate. As this is an industrial-related thesis, it was also important to know
whether patents of others oppose potentially commercial plans. In order to find such patents, a
freedom-to-operate search was carried out, which led to one relevant finding: Already in 2009,
the Fraunhofer-Gesellschaft, Europe’s largest application-oriented research organization, patented
a concept of a foresighted control of a prosthetic device [123]. The claims describe a system of a
foot or leg prosthesis with at least a socket (for coupling to the patient’s leg), a treading body
(which is in contact with the ground), a joint with a controllable actuator (in between the socket
and the treading body replacing the missing body part) and one sensor to detect the “conditions of
the ground”. In theory, EES approaches are still highly interesting, but because of this relatively
broad patent, they are no longer commercially viable. Although licensing this technology would
be an option, possible alternative concepts were investigated in detail.

IES concepts are not protected by any patents and have two further positive side aspects: First,
the object of interest is already known, since parameters of the patient’s residual body have been
estimated (e.g. contralateral shank). For EES systems this is not the case – everything can be in
front of the amputee. Second, the physical inter-joint coordination that exists between human
limbs is very strong [124]. As systematically proven by Hu et al. [82–84], even a sound-leg
estimate can significantly reduce the error rate in intention recognition.

From this novel perspective, the author has filed a patent related to the IES area [MT3]. This
covers the idea of controlling a prosthetic or orthopedic device which has (at least) one controllable
actuator, by measuring with (at least) one sensor (at least) one parameter of a second body part of
the user, as depicted in figure 4.2 on the following page.
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Figure 4.2: First page of the author’s own patent application [MT3].
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4.2 Open-Loop Depth Camera Tracking

This section discusses the advantages as well as the limitations of the novel CoLiTrack approach.
Finally, necessary adjustments for a possible product are resumed in future work.

4.2.1 Advantages

This depth camera-based solution is the first concept capable of estimating sound-side leg
information from unilaterally worn sensors only and in real time. Although it was developed with
prostheses in mind, the novel approach could be applied to a wide variety of applications in many
areas. Several qualities underline the effectiveness of this proposed CoLiTrack system:

+ First, the most important achievement to be mentioned is the low processing time of only 50ms,
which is fast enough for a real-time evaluation with up to 20 frames/s. In contrast to the work
by Hu et al. [52], this presents a decrease by a factor of 23. Moreover, the proposed algorithm
is based only on a direct computation strategy. There is no prior network training required, in
contrast to machine learning approaches. This guarantees user independence, which was also
confirmed by the experiments.

+ Additionally, the estimation accuracy was also high. Throughout the static experiment, the
proposed approach successfully estimated the contralateral shank angle over the entire gait
cycle and for all three speed levels, as depicted in figure 3.1 on page 61. As the predefined
speed levels on the treadmill were slower than humans’ normal walking speed, the global
minimum of the shank angle is shifted from about 70% towards 80%, compare with figure 1.4
on page 6. Nevertheless, the estimation αS,IMU closely corresponds to the reference αS,TOF.
The highest mean error of 3.4± 1.9° was measured at high speed level, while the lowest mean
error of 1.4± 1.2° occurred at the slow walking speed.

+ The dynamic experiment yielded a trackable range for about one sixth of the entire gait cycle:
16.7± 4.6% at slow speed, 17.5± 4.4% at medium speed and 18.4± 3.8% at high walking
speed. However, as shown in the magnified area in figure 3.2(b) on page 63, for some steps,
tracking was even possible for longer periods (up to 28%). Beside the trackable range, the
estimation error was also low. Overall, the lowest mean error of 2.4± 1.9° was measured at the
high walking speed, while the highest mean error of 2.8± 2.1° occurred at the low speed level.

+ In terms of gait analysis, a deviation of more than 5° is regarded as a clinically significant
difference [125]. Therefore, the accuracy of the novel CoLiTrack approach can be claimed
to be sufficient. In contrast, results from a walker [126] as well as from crutches [127], both
equipped with a depth camera for estimating the shank angle, showed deviations of up to 10°.

+ Finally, the real-world experiment proved that neither clutter nor ground reflection had a nega-
tive impact on the tracking performance. Furthermore, as long as the sound-side shank was
in the camera’s field of view, unknown other obstacles were successfully suppressed, which
underlines the efficiency of the preprocessing strategy. Thanks to the integration of the IMU
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4. DISCUSSION

and the depth camera into a compact kit, depicted in figure 2.3(a) on page 24, the fitting and
calibration of the system on the subject’s shank took less than 10 minutes. As the camera was
already worn on the ipsilateral (prosthesis-side) shank, this design would also allow for easy
integration into a future product.

4.2.2 Limitations

Besides the numerous advantages of the novel CoLiTrack approach, there are also some limita-
tions that need to be considered:

– Firstly, although the concept was optimized for timing and is real-time capable with an update
rate of up to 20 frames/s, the real-world experiment has shown that higher velocity levels can
lead to misclassification.

– Additionally, the trackable range is also very limited. So far, the proposed system is able to
estimate the sound-side shank axis only in the range of about one sixth of the total gait cycle,
as determined by the dynamic experiments.

– Finally, (invisible) light-based depth cameras, as used within this approach, are limited by
needing an unobstructed field of view. Therefore, no garments or prosthetic covers can be worn
over them, as they would restrict the view.

4.2.3 Future Work

The proposed CoLiTrack method can accurately estimate the contralateral shank axis with only a
short time delay. Nevertheless, all of the above-mentioned constraints should be appropriately
considered in product design, whereupon the following thoughts can serve as a guide for further
research in this area.

Update rate. Assuming a step length of 1m and a walking speed of 3.6 km/h for active
amputees [63] resulted in one gait cycle per second. Now, considering that the CoLiTrack
approach in its current form tracks about one sixth of the entire gait cycle and processes at 20
frames/s, no more than three to four shank-angle calculations can be done per gait cycle. However,
according to the author’s experience, at least ten images would be required for use in real life.
Therefore, the 20 frames/s achieved are not bad at all for lower walking speeds, but an increase to
at least 60Hz would be needed for more normal speed levels. In comparison, typical update rates
for prosthetic applications are in the range of 100Hz [14]. Nevertheless, the maximum sampling
rate is inherently limited by the supported frame rate of the camera. For reference, the camera
used in this study provides a maximum of 45 (depth) frames/s, according to the manufacturer’s
data sheet. This shows clear that the read-in and computing time must also be reduced even
further. For example, instead of running Matlab code on a consumer laptop, it could be converted
to C++ programs and executed on dedicated vision processors.
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4.2 Open-Loop Depth Camera Tracking

Tracking range. In addition to the update rate, the trackable gait cycle range also needs to be
extended. In its current form, the system can estimate the sound-side leg axis in the range of one
sixth of the entire gait cycle, as it is out of view for the rest of time, compare with the results of
the dynamic experiment in figure 3.2 on page 63. A solution would be to combine multiple depth
cameras to increase the field of view and, thus, the trackable range. Moreover, the camera position
and orientation within the wearable support kit must be adjusted for other activities. In partic-
ular, it must be optimized for stairs or ramps to capture the areas of the pants that are less wrinkled.

Unobstructed view. Although the sensor positioning within this study would allow a direct
implementation into a prosthesis, the camera is restricted by the requirement of having an unob-
structed view. This means that no prosthetic covers or clothing can be worn over them, drastically
limiting usability for amputees. As already described in chapter 1.2 on page 9, the only sensor
modality not limited by this factor is a radar solution. Thanks to the high-frequency, plastics
or fabrics typically appear transparent for such sensors allowing them to “look through” these
materials. Therefore, the deployment of these sensors should be considered.

Enhanced processing. During the phases of design, integration and testing of this innovative
CoLiTrack approach, some ideas for possible further developments have emerged, but they have
not yet been implemented: To begin with, the preprocessing of the raw input could be enhanced.
For example, depth regions below a minimum size could automatically be removed. Furthermore,
the “region of interest” (contralateral shank) could be selected based on the last valid position.
These minor modifications could make the algorithm more robust against unknown obstacles
without the need to implement more computationally intensive approaches, such as background
subtraction or transformation strategies. Next, it seems possible to determine the heel strike by
using the method presented in [128]. It is assumed that the swing phase is indicated by a positive
angular velocity of a shank, while a negative velocity indicates the stance phase. Based on this
information, the timing of the heel strike could be obtained. Finally, the depth camera directly
provides the distance information between the sound-side leg and the sensor itself. However, this
parameter has not been used so far, but (in future) it could help to estimate spatial parameters
(e.g. step length).
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4. DISCUSSION

4.3 Open-Loop Ultrasonic Ranging

This section outlines the advantages as well as the limitations of the novel CoLiRang approach.
Finally, necessary adjustments for the integration into an enhanced prosthesis system are resumed
in the section future work.

4.3.1 Advantages

This ultrasonic-based solution is the first approach, which is capable of estimating sound-side
leg information over the entire gait cycle. Several qualities underline the effectiveness of this
proposed CoLiRang system:

+ First, the used CH 101 ultrasonic (distance) sensors itself can be seen as reliable and valid.
Based on that, the implemented triangulation strategy is able to determine the sound-side
leg position correctly. The triangulation (CoDir) accuracy is below 30mm, as depicted in
figure 3.5 on page 67, and robust against noise, as shown in figure 3.6 on page 68. Moreover,
the mean passing (CoPas) performance lies within 1°, as summarized in table 3.4 on page 69.

+ Furthermore, the walking simulation corresponded closely to the actual measurements, depicted
in figure 3.9 on page 72 for participant P01 and in figure 3.10 on page 73 for participant
P02. And, although limited by the minimal range (clipping) of the sensors, the CoPas signal
indicated the sound-side passing correctly for all three terrains. Nevertheless, the most important
achievement to be mentioned is the traceability of the contralateral leg over the entire gait cycle.
In contrast, the prior CoLiTrack work (see section 4.2 on page 113) was only able to track one
sixth of the gait cycle.

+ Additionally, the processing time is also low. Although the calculation was done only offline in
Matlab running on a normal business laptop, the optimization for timing reduced the processing
time to only 1ms on average. Overall, the sampling interval time of the CH 101 module of
15ms limits the maximal update rate, which would allow a potential online evaluation with up
to 67Hz. In contrast, the maximal update rate of the prior CoLiTrack approach was only 20
frames/s. Moreover, the processing steps needed within this ultrasonic system are “easier to
implement” on a traditional microprocessor than the previous image processing tasks.

+ Furthermore, this novel CoLiRang system is based only on a (conventional) triangulation
strategy. Therefore, compared to readily used machine learning approaches, prior network
training is not required. Moreover, neither sunlight nor wind had any negative impact on the
system performance.

+ Finally, thanks to the compact design of the kit, depicted in figure 2.14 on page 35, the fitting
of the system on the subject’s shank takes less than five minutes. Furthermore, this compact
integration also allows for easy integration into a future product, as the kit was already worn on
the ipsilateral (prosthesis side) shank.
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4.3 Open-Loop Ultrasonic Ranging

4.3.2 Limitations

Besides all the advantages of the novel CoLiRang approach, there are also some limitations that
need to be addressed:

– Firstly, although the concept was already optimized for timing, no online (real-time) evaluation
was done.

– Additionally, the minimum detectable range is (too) limited. Due to the medial positioning of
the kit on the subject’s shank, clipping of the sensors occurs.

– Finally, ultrasonic sensors, as used within this approach, are limited by their need for an
unobstructed field of view. Therefore, no garments or prosthetic covers can be worn over them,
as these would restrict the view.

4.3.3 Future Work

The proposed CoLiRang method can accurately estimate sound-side leg parameters with only a
short time delay. Nevertheless, all of the above-mentioned constraints should be considered in
product design. The following thoughts can serve as a guide for further research in this area.

Online evaluation. Although the approach was already optimized for timing – time needed for
triangulation and filtering was below 1ms – so far, processing was done only offline. There-
fore, the Matlab code should be converted to C++ programs and ideally executed directly on
the embedded device hardware. – the processing steps needed within this ultrasonic system
are comparatively “easy to implement” on a traditional microprocessor. Overall, the sampling
interval of 15ms for the CH 101 modules seems to be the only major limitation. Nevertheless,
according to the author’s experience, an online evaluation with up to 67Hz should be sufficient
for a real-time (prosthetic) implementation.

Range limitation. In addition to the need for an online implementation, it is also important to
avoid sensor clipping during passing. In its current form, the system can estimate the sound-
side parameters correctly in the range from 100 up to 400mm, compare with the results of the
dynamic experiment for both subjects. However, if the sound side is closer than this minimum
sensor distance, this remains undetected. As a possible solution, the width of the kit could
be reduced, thus increasing the medial spacing to the other leg. Another option would be to
move the kit further caudally (more towards the feet). This would increase the distance even
more, as the lower limbs are normally thinner in this area. Furthermore, the kit could be placed
more towards the midline of the leg. Although this is obviously not possible for healthy sub-
jects, the general design of a transfemoral prosthesis system as presented in figure 1.2 on page 3
would allow for such a placement – the tube adapter is a very thin part compared to a sound shank.
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4. DISCUSSION

Unobstructed view. Although the sensor positioning within this study would allow for a direct
implementation into a prosthesis, the ultrasonic sensors are limited by requiring an unobstructed
view. This means that neither prosthetic covers nor clothing can be worn over them, thus drasti-
cally limiting usability. As already described in chapter 1.2 on page 9, the only sensor modality
not limited by this factor is a radar. Thanks to the high frequency, plastics or fabrics appear
transparent to sensors like these allowing them to “look through” those materials.

Signal usage. During the phases of design, integration and testing of this innovative CoLiRang
approach, some ideas of how to use the derived signals for enhanced prosthesis control have
emerged, but they have not yet been explored: The CoDist signal provides a reliable distance
information of the contralateral leg relative to the kit, however, this does not give any directional
statement. Instead, as a result of the triangulation approach, the CoDir signal allows a detailed
prediction about the direction of the sound side. The interesting moment when the contralateral
side passes the ipsilateral one is provided in the CoPas signal. Besides the possibility of using
these signals individually, it would also be conceivable to deduce them. For example, if the
contralateral leg is very far in front or behind, passing feature calculation is invalid and therefore
zero, as seen in figure 3.9 on page 72 for participant P01 and in figure 3.10 on page 73 for
participant P02, respectively. One solution would be to combine the distance and the passing
signal. This would mean that the CoPas information is only used when the CoDist is below
a certain threshold. Overall, the different experiments have proven that all derived signals
(CoDist, CoDir, and CoPas) are accurate and precise. There is definitely a high potential in
those parameters for improving device control, as investigated in the following chapter Enhanced
Prosthesis Control System.
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4.4 Closed-Loop Prosthesis System

This section discusses the advantages as well as the limitations of the novel SEP system approach.
Finally, necessary adjustments for a possible (commercially) product are resumed in future work.

4.4.1 Advantages

This enhanced prosthesis system is the first concept capable of adapting the damping behavior
based on the state of the unimpaired residual contralateral leg. Several qualities underline the
effectiveness of this proposed SEP system:

+ First, from a technical point of view, the CH 101 ultrasonic distance sensors as well as the
embedded control hardware were successfully integrated into a compact prosthesis-mounted kit,
as depicted in figure 2.23 on page 44. This allowed a stand-alone processing and a utilization
within the prosthesis on a perceived real-time base of about 67Hz, only limited by the sampling
interval time of the ultrasonic sensor. Moreover, thanks to the narrower design, the medial
spacing between the legs increased, eliminating thereby the sensor clipping. In contrast, the
prior CoLiRang work (see section 4.3 on page 116) was limited by this effect.

+ Next, a prospective clinical pilot study was successfully designed, approved and conducted. In
total, five amputees participated in the evaluation of the enhanced high-level control strategy, as
shown in figure 2.24 on page 45. The optimal control parameters for each subject, summarized
in table 3.5 on page 74, were retrieved within the optimization sessions of this study.

+ Subsequently, in order to prove that the novel SEP system objectively improved the subjects’
situation, all of them conducted a clinical biomechanical gait analysis. As presented in detail in
section 3.4.2 on page 75, this resulted in smoother gait patterns for yielding activities. Further,
compensatory mechanisms within the entire remaining musculoskeletal system (e.g. maximum
knee flexion at loading response and during swing phase or pelvis and hip movements) were
reduced. For example, for going down the ramp, body center of mass motion was reduced
by almost 10%, leading to a more energy-efficient gait, as depicted in figure 3.21 on page 88.
Moreover, using the novel SEP system on stairs reduced the load on the contralateral (healthy)
leg by about 20% on average to be within the typical reference range of the able-bodied
individuals, as plotted in figure 3.30 on page 98.

+ Finally, a self-report questionnaire, evaluated in section 3.4.3 on page 104, assessed the patients’
perception of use, safety and performance of the novel SEP system as well as their satisfaction
with it. In summary, all five participants within this study described that the modifications
facilitate the unimpaired residual contralateral side, allowing them to walk in a more controlled
manner than without. Not at any time did the amputees experience pain, nor did any stumbles,
trips or falls occur. Subjects felt secure using the prototype, while physical and mental effort
were also low. When asked to decide which system they would rather use, all of the participants
preferred the novel SEP system over the commercially available C-Leg for daily use.
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4.4.2 Limitations

Besides all the advantages of the novel SEP approach, there are also some limitations that need to
be considered:

– Firstly, although this concept was evaluated within a prospective clinical pilot study, no home-
use experiences were gathered. Therefore, it is not possible to judge how the used sensor
technology on the one hand, and the system behavior on the other hand, behave in real-life
situations.

– Additionally, the study was limited to a relatively low number of patients per design. Neither
randomization nor blinding was, therefore, possible. The number of trials per activity was also
relatively low.

– Moreover, the increased damping provided by the system could result in a faster heating of
the device. This would, however, shorten the operating time, as the prosthesis switches into a
locked safety mode, when it becomes too hot.

– Finally, ultrasonic sensors, as used again within this approach, are limited by their need for an
unobstructed field of view. Therefore, no garments or prosthetic covers can be worn over them,
as these would restrict the view.

4.4.3 Future Work

The proposed SEP method successfully used the information of the contralateral healthy leg to
enhance the commercially available C-Leg. Nevertheless, all of the above-mentioned constraints
should be considered in further product design. The following thoughts can serve as a guide for
further research in this area.

Tracking range. In the current approach, the system is able to determine the position of the
unimpaired residual contralateral leg over the entire gait cycle. However, in its current form, only
the moment of passing is used to reduce the damping again. Therefore, it would make sense
to modify the sensor placing or even downsize the total number of sensors, thus reducing the
(sensor) costs and, at the same time, the system complexity.

Sensor selection. Although the CH 101 ultrasonic sensors used in this system worked reliably
and validly, they are restricted by the requirement of having an unobstructed view. This means that
no prosthetic covers or clothing can be worn over them, which drastically limits the practicability
for amputees. However, if this (ultrasonic) technology should be used in the future as well, the
recently introduced ICU-10201 successor sensor version with improved performance [129] would
be preferable. The only sensor modality not limited by this factor is a radar: Due to the high
frequency of radar sensors, plastics or fabrics appear transparent. Thus, they are able to “look
through” those materials and should, therefore, be considered for future (SEP) systems.
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4.4 Closed-Loop Prosthesis System

Sensor-less approach. Furthermore, the question arises whether the additional sensors, either
ultrasonic or radar, could not be eliminated entirely. However, if the modified damping behavior
as shown in figure 2.24 on page 45 is to be maintained, the control strategy must be adapted. So
far, the increased flexion damping was reduced using the contralateral leg information CoPas,
which would no longer be available (without a sensor). Alternatively, the damping could be
controlled as a function of time. However, this would inevitably lead to the problem that the
(ideal) walking speed is predefined. Thus, the patient has to adapt to the system again, instead of
the system reacting to the user’s needs. Instead, damping control could also be accomplished
using only the internally available sensors, such as knee angle or IMU data. However, the op-
timal signal (combinations) were not investigated during this work and should be investigated first.

Real-life testing. Until now, this novel SEP system was tested only under well-controlled labora-
tory conditions. However, it is unclear how the system will perform in a real-world environment.
For example, the more rapid heating of the device did not lead to any restrictions in the execution
of this study. Nevertheless, it could become a problem in more extreme situations, such as hiking.
Therefore, after the approval of the fundamental concept itself, an extended investigation with
more users in a home-use setting would make sense.

New opportunities. Finally, also the potential of new applications should be pointed out. For
example, the information whether the contralateral side is posterior or anterior was eventually not
used. However, this could help in deciding whether the patient is doing a forward or a backward
step. Possibly, this could also simplify the transition between forms of locomotion. In contrast,
currently available lower limb prostheses require the patient to perform a predefined “special
movement”, which is not very intuitive. Lastly, especially when combined with aMPKs, which
can provide net positive work, enhanced control capabilities are more important than ever.

121





CHAPTER 5
Conclusion

Can information about the unimpaired contralateral leg enhance the control of a prosthetic device?
This thesis presents a scientific investigation into this question, following the aim of achieving
an improved patient-prosthesis interaction. Environmental sensing is not a completely new
technology, but the limited sensor resolution as well as the computing power required meant that
in the past sensors like these were less practical for low-power, battery-operated medical devices.

In recent years, the robotic and automotive industry have driven innovation and development
of environmental sensor systems. This reduced the computing power, increased the resolution
and, at once, improved the overall efficiency of these sensors. Therefore, a detailed investigation
became interesting. The analysis of the state of research showed that despite the many different
research activities in academia, not a single environmentally improved prosthesis system is yet
commercially available. In total, five major control categories were identified using all types
of depth-based sensors. Half of all the studies reviewed presented upcoming object or terrain
prediction approaches that provided switching probabilities between different locomotion modes
with accuracies ranging from 82% to 99% in well-controlled laboratory environments. However,
it is unclear how these systems will perform in real-world scenarios, both indoors and outdoors.
Nevertheless, the finding that implicit environmental sensing strategies which incorporate the state
of the patient’s residual body can significantly improve motion-dependent control applications
was highly relevant to this work. Understanding that even one contralateral leg measurement can
significantly reduce the error rate in intention recognition guided further development.

From this novel perspective, a depth camera-based leg tracking method named CoLiTrack was
proposed. This system consists of an IMU and a depth camera worn on the ipsilateral (prosthetic)
side, capable of estimating the axis of the contralateral (healthy) shank in real time. Three open-
loop experiments were conducted to validate the proposed algorithm. First, a static evaluation was
performed on a treadmill with one subject at three different walking speed levels. Results showed
trackability with a mean error of less than 4° degrees over the entire gait cycle, with an overall
processing time of 50ms. Therefore, the estimation of the shank axis can be up to 20 frames/s.
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Next, the evaluation of the dynamic testing, in which five subjects wore the sensor kit, while
walking on a treadmill at three different speeds, demonstrated a trackability of the sound-side
leg of one sixth of the entire gait cycle with a mean error of less than 3°. Finally, the real-world
experiment conducted with one subject confirmed the robustness of the proposed system against
clutter or ground reflectance. Despite the promising results of this novel CoLiTrack method,
several limitations were noted. To begin with, although the system in its current form was
real-time capable, higher velocity levels can lead to misclassifications. In addition, the field of
view also needs to be increased. Currently, only one sixth of the entire gait cycle can be captured
because the leg is out of view for the rest of the period. Furthermore, the camera position needs
to be adjusted especially for stair or ramp activities in order to capture less wrinkled parts of the
clothes. Finally, the depth camera is inherently limited by the need for an unobstructed field of
view, making it less promising for a commercial application.

Based on these learnings, a second ultrasonic-based system was derived. This system called
CoLiRang consists of four novel ultrasonic time-of-flight sensors on the ipsilateral (prosthetic)
leg. It is capable of estimating the relative distance and position of the contralateral (healthy)
leg over the entire gait cycle. Several open-loop experiments were conducted to validate the
sensor modality itself as well as the proposed algorithmic. First, a (sensor) distance accuracy and
a triangulation accuracy evaluation were performed. The results revealed a mean triangulation
deviation of below 30mm and even less than only 5mm for the distance deviation. Furthermore,
the simulation experiment confirmed the robustness against noise. Next, an experiment proved
that the CoLiTrack kit can identify the moment of passing correctly. Finally, a dynamic testing
done with two participants wearing the kit demonstrated a reliable performance for all three
different terrains (level ground and a ramp and stairs, both downward) over the entire gait cycle.
In addition, the results of level-ground walking were consistent with those of the simulation.
Moreover, an outdoor test done with one participant proved that external influences, such as
sunlight or wind, did not have any negative effects on the proposed approach. Despite the new
CoLiRang method’s promising results, some limitations need to be mentioned. To begin with,
although the processing time was low, 1ms on average, no online (real-time) evaluation was
carried out. Furthermore, the sensor caused clipping, when the sound-side leg was below the
minimum range limit. Finally, ultrasonic sensors, such as the camera from the previous approach,
are inherently limited by their need for an unobstructed field of view.

Finally, the previously derived ultrasonic-based time-of-flight approach was integrated into a
prosthesis system. This concept called SEP consists of a commercial C-Leg extended by the
ability to utilize information about the patient’s unimpaired residual contralateral leg, with the
aim to improve the damping behavior of the prosthesis. In order to obtain a working prototype
for stand-alone operations, processing was transferred into an embedded hardware, running on a
perceived real-time basis of about 67Hz. To evaluate the developed system, a prospective clinical
pilot study was designed, approved and conducted. In total, five transfemoral amputees were
eligible to participate in testing this novel SEP system. First, several optimization sessions were
conducted to derive the ideal closed-loop control parameters. Next, clinical biomechanical gait
analyses were performed to determine improvements objectively. The results revealed a more
physiological gait pattern with a distinct relief of the remaining musculoskeletal system for all
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of them. In particular, intercepting on the contralateral (healthy) leg was on average reduced by
about 25% for going down the ramp and even by about 40% for the staircase task, respectively.
Finally, a self-report questionnaire was used to assess the amputees’ perception and satisfaction
with this innovative approach. All patients perceived the system as advantage, as it allowed them
to walk in a more controlled manner. Moreover, they felt safe using the prototype. When asked to
choose a system for everyday use, all of them preferred the novel SEP system over the commercial
C-Leg. Despite the promising results of this enhanced control strategy, the following constraints
should be considered. To begin with, although the approach was evaluated within a clinical study,
so far, no home-use (real-world) experiences were gained. Next, due to the modified damping,
the operating time might be shorter, which could in turn affect the acceptance of such a product
negatively. Lastly, the ultrasonic sensors used in this approach again are still inherently limited
by their need for an unobstructed field of view. This means that neither prosthetic covers nor
clothing can be worn over them, limiting the usability even further.

In conclusion, this thesis showed that environmental sensing technologies can improve the patient-
prosthesis interaction successfully. From today’s perspective, future development could refine
the proposed systems using radar technology, and thus eliminate the main limitation. However,
before that, research must prove that radar sensors are sufficiently accurate and efficient.
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Abstract
Modern lower limb prostheses have the capability to replace missing body parts and improve
the patients’ quality of life. However, due to the lack of environmental information, a seamless
adaptation to transitions between different forms of locomotion is often challenging. Novel
sensors for environmental awareness, which have driven innovation in the robotic and automotive
industry in recent years, are required. This work presents a detailed review on environmental
sensing technologies applicable for enhancing the control of lower limb prostheses. A literature
search was conducted on two Internet databases, PubMed and IEEE Xplore. A total of 6739
studies was reviewed based on the criteria for inclusion/exclusion. 32 papers were selected for
the review analysis, 18 of those are related to explicit environmental sensing and 14 to implicit
environmental sensing. Concept characteristics were discussed with a focus on computing power,
computation time and energy consumption. The unobstructed field of view as well as the sensor
placement are criteria for an implementation in “next generation prostheses”. In summary, the
research studies reported accuracies in the range from 82% up to 99% in well-controlled labora-
tory settings, but it is unclear how the systems will perform in realistic environments, both indoor
and outdoor. According to the review analysis, high-frequency RADAR sensors capable to “look
through” clothing or cosmetics seem to be the most seminal approach.
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Abstract

Modern lower limb prostheses have the capability to replace missing body parts and improve the patients’ quality of
life. However, missing environmental information often makes a seamless adaptation to transitions between different
forms of locomotion challenging. The aim of this review is to identify the progress made in this area over the last
decade, addressing two main questions: which types of novel sensors for environmental awareness are used in lower
limb prostheses, and how do they enhance device control towards more comfort and safety. A literature search was
conducted on two Internet databases, PubMed and IEEE Xplore. Based on the criteria for inclusion and exclusion, 32
papers were selected for the review analysis, 18 of those are related to explicit environmental sensing and 14 to
implicit environmental sensing. Characteristics were discussed with a focus on update rate and resolution as well as
on computing power and energy consumption. Our analysis identified numerous state-of-the-art sensors, some of
which are able to “look through” clothing or cosmetic covers. Five control categories were identified, how “next
generation prostheses” could be extended. There is a clear tendency towards more upcoming object or terrain
prediction concepts using all types of distance and depth-based sensors. Other advanced strategies, such as bilateral
gait segmentation from unilateral sensors, could also play an important role in movement-dependent control
applications. The studies demonstrated promising accuracy in well-controlled laboratory settings, but it is unclear
how the systems will perform in real-world environments, both indoors and outdoors. At the moment the main
limitation proves to be the necessity of having an unobstructed field of view.

Keywords: Prosthesis control, Artificial limb, Locomotion mode estimation, Terrain, Environment, Contralateral,
Systematic review

Background
The amputation of a limb is an irreversible intervention
into the physiological integrity of a human being. Limb-
loss is often caused by cardiovascular complications or
diabetes; increasing obesity and aging population are the
main contributing factors [1, 2]. Recent projections indi-
cate that the number of major limb amputations will
increase substantially [1].

Passive prostheses can replace the missing body parts
to a high degree and improve patients’ independence
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and mobility. However, these devices lack the capabil-
ity of generating power and therefore result in higher
metabolic expenditure, increased stress to other joints and
an asymmetric gait [3]. An unphysiological gait, espe-
cially reduced toe clearance, increases the risk of falling.
Modern active powered prostheses have the capability
to overcome this issue by providing net positive work
required in daily activities [4]. But the question arises: do
we already have the best sensor and control concepts to
integrate such devices seamlessly into the patients’ lives
and autonomously adapt to their needs?

Focusing on lower limb prostheses, many state-of-the-
art devices use finite-state controllers, decomposing the
gait into a series of distinct phases with a discrete set

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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of parameters [5]. In 2015, Tucker et al. [6] conducted
a comprehensive review on control strategies for lower
extremity prosthetics and orthotics. The ideas by Varol et
al. 2010 [7] were extended to a generalized control frame-
work consisting of four major sub-blocks: the Controller,
the Device, the User and the Environment, as depicted
in Fig. 1. The Controller can be represented as a three
level hierarchy. At the highest level, the system is respon-
sible for correctly estimating the patient’s intent. Different
terrains like level ground, stairs or ramps are related to
different locomotion modes. The proper identification of
transitions between different forms of locomotion is the
most challenging task. The mid-level layer maps the esti-
mated locomotion mode to the desired state outputs of
the device. Finally, at a low-level, feedforward and feed-
back controllers minimize the error between the current
state and the reference. The Device itself contains the
mechanical and actuation structure for restoring or assist-
ing the human functional morphology. The User and the
device should work together in an intuitive and synergis-
tic way, in which the device supports the patient’s motion
intentions. From the perspective of the device every-
thing else is Environment. Tucker categorizes the environ-
ment interaction into implicit environmental sensing and
explicit environmental sensing. Implicit Environmental
Sensing (IES) creates an understanding of the locomotion
mode by measuring the state of the residual patient’s body
Explicit Environmental Sensing (EES), on the other hand,
tries to directly estimate terrain features.

In order to guarantee a safe and comfortable control, a
seamless estimation of IES and EES is required. In recent

years, the automotive and robotic industry have driven
innovation and development mainly in the fields of TOF
(time of flight) cameras, LIDAR (light detection and rang-
ing) systems or RADAR (radio direction and ranging)
solutions. This resulted in reduced prices for evaluation
kits with powerful computer vision tools.

For the first time, the progress made in this area over the
last ten years will be identified, focusing on the modalities
of the sensors used in lower limb prostheses and on the
strategies for enhancing device control. From this novel
perspective, we conclude by outlining the most promis-
ing approaches and improvements that could make “next
generation prostheses” more user-friendly, functional and
safe.

Methods
The selection process for this review combined three
different search strategies.

Firstly, the comprehensive review from Tucker et al. in
2015 [6] was used as starting point for the snowballing
approach [8], going backward from Tuckers paper by
reviewing the reference list as well as going forward by
identifying articles citing this publication.

Secondly, a systematic literature review, based on the
PRISMA [9] guidelines was conducted. Therefore, a
search string was defined for retrieving publications of
interest from two different databases (i.e. IEEE Xplore and
PubMed.gov). In order to find relevant articles, the first
term was either “prosthe*”, “extremity” or “limb”. It was
connected via a logical AND with either “radar”, “lidar”,
“time-of-flight” or “depth” for focusing on dedicated

Fig. 1 Control framework. Dynamics between a prosthetic device, a user, and his environment. The hierarchical controller estimates the patient’s
intent at the high-level, translates it into device states at the mid-level and finally executes these commands at the lower level. Environmental
awareness is achieved by observing the user (IES) or the environment (EES). Adapted from Tucker et al. 2015 [6]
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sensor expressions as well as with “terrain”, “environment”
or “locomotion” for more holistic synonyms. Duplicates
were removed, title, abstract and full publication were
screened, and the following inclusion and exclusion crite-
ria were applied to select or reject publications:
Criteria for inclusion: Strategies for estimating envi-

ronmental information to improve existing prosthesis
control as well as all types of locomotion modes were
included. Only portable prototypes were considered. The
application for enhancing “prosthesis control” must be
mentioned. Only articles published in “English” during the
last 10 years (i.e. 2009 – 2019, final update: 12 November
2019) were included.
Criteria for exclusion: Systematic reviews and liter-

ature reviews, any kind of upper extremity solution,
exoskeletons or orthotics-related papers were excluded.
Systems based on inertial measurement units (IMU), for
analyzing human motion (gait) without any link to pros-
thesis control are not in the focus of this review. Also
not included were studies focusing only on neuromuscular
or mechanical signals from the device itself or the resid-
ual ipsilateral limb. Computer vision publications without
association to enhancing prosthesis control were excluded
as well.

Finally, the selected publications of the outlined search
strategies were used for an author cross-check. The pub-
lication lists of all referred authors retrieved from Google
Scholar, ORCID or institutional and private websites
were rechecked to see if individual publications meet
the inclusion criteria. For example, if an earlier confer-
ence paper was discovered in the database search, but
the same author had also published a journal paper cov-
ering the topic of interest, which was not caught by the
first two search methods, it was also included in this
review.

Results
An overview of the selection process is shown in the
flow diagram in Fig. 2. Twenty four out of the 6739 arti-
cles identified with the search strategies met the inclusion
criteria. Another 8 were added through the final author
cross-check, resulting in 32 publications included in this
review.

Overview
The retrieved 32 publications were categorized by the
two types of environment. The majority (18) of those are
related to EES, the remaining (14) to IES. Table 1 provides
a summary of all included records. The main character-
istics of the publications are structured in the following
columns:
Study: In this column, the first author as well as the

publication year and the reference are mentioned. If more
than one reference is given, the year indicates the most

Fig. 2 Search process. Flow diagram of database search and paper
selection based on inclusion and exclusion criteria throughout the
different phases of the literature review process

recent publication. If research groups have performed
tests with amputees, this is indicated by (P). If they have
evaluated their system only with healthy subjects, it is
marked with (H). (T) implies that it is a theoretical con-
cept, eventually tested in an experimental setup, but not
tried in interaction with human beings.
Type / Group: Type serves as an indicator, to show

if the record is more related to implicit or to explicit
environmental sensing. Group assigns each publication
a particular control strategy out of five main categories
retrieved within this review – a detailed explanation is
given in “Discussion” section. The overview table is sorted
by this column.
Sensor selection: This column describes the type of

sensors used in the study.
Sensor placement: This column gives an overview,

where the respective sensors are placed on the human
body. The lower part of the human body is segmented into
foot, shank, thigh and trunk. The connecting joints are
ankle, knee and hip. Bilateral (B) means “on both sides of
the body”. Ipsilateral (I) means “located on the same side
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Table 1 Overview of records reviewed

Study Type / Group Sensor selection Sensor placement Concept description

Vallery et al. IES / 1 2 x angle & angular C: hip & knee Mapping function for control of knee prototype

(P, 2011) [10] velocity sensors with estimated contralateral limb motion data.

Bernal-Torres et al. IES / 1 1 x IMU C: thigh Active biomimic polycentric knee prototype with

(H, 2018) [11, 12] contralateral echo-control strategy.

Su et al. IES / 1 3 x IMUs C: thigh, shank & Intent recognition system based on

(P, 2019)[13] ankle convolutional neural network classification.

CYBERLEGs IES / 1 2 x pressure insoles B: shoes inlays Finite-state control of a powered ankle-knee

project series1 7 x IMUs B: thighs, shanks, coupled prototype using whole-body aware

(P, 2017) [15–18] feet & 1 x trunk noninvasive, distributed wireless sensor control.

Hu et at. IES / 2 4 x IMUs B: thighs & shank Classification error reduction through fusion of

(P, 2018) [19–21] 4 x GONIOs B: knee & ankle bilateral lower-limb neuromechanical signals,

Extended by: 14 x EMGs B: leg muscles providing feasibility & benchmark datasets.

Krausz et al. EES / 2 1 x IMU On the waist in Adding vision features to the prior

(H, 2019) [22] 1 x depth camera a belt construction concept improving the classification.

Hu et al. IES / 3 1 x IMU I: thigh Bilateral gait segmentation from ipsilateral depth

(H, 2018)[23] 1 x depth camera sensor with the contralateral leg in field of view.

Zhang et al. IES / 3 1 x depth camera On the waist Depth signal from legs as input to an

(H, 2018) [25] with tilt angle oscillator-based gait phase estimator.

Scandaroli et al. EES / 4 2 x gyroscopes Built into a Infrared distance sensor setup for estimation

(T, 2010) [27] 4 x infrared sensors foot prototype of foot orientation with respect to ground.

Ishikawa et al. EES / 4 2 x infrared sensors Left & right on Infrared distance sensor setup for estimation

(H, 2018) [28] 1 x IMU one normal shoe of foot clearance with respect to ground.

Kleiner et al. EES / 5 1 x motion tracking I: between artificial Concept and prototype of a foresighted

(T, 2011) [29] 1 x laser scanner ankle & knee joint control system using a 2D laser scanner.

Huang’s group2 EES / 5 1 x IMU I: lateral side Terrain recognition based on laser distance,

(P, 2016) [30–33] 1 x laser sensor of the trunk motion estimation and geometric constrains.

Carvalho et al. EES / 5 1 x laser sensor On the waist Terrain recognition based on laser distance

(H, 2019) [36] with 45° tilt angle information and geometric constrains.

Sahoo et al. EES / 5 3/4 x range sensors I: On the shank & Array of distance sensors for geometry-based

(H, 2019) [37] 1 x force resistor on the heel of the foot obstacle recognition in front of the user.

Varol et al. and EES / 5 1 x depth camera I: shank Intent recognition framework using a single

Massalin et al. depth camera and a cubic kernel support

(H, 2018) [38, 39] vector machine for real-time classification.

Laschowski et al. EES / 5 1 x color camera Wearable Terrain identification based on color images

(H, 2019) [40] chest-mounting and deep convolutional network classification.

Yan et al. EES / 5 1 x depth camera On the trunk Locomotion mode estimation based on depth

(H, 2018) [41] in 1.06m height feature extraction and finite-state classification.

Diaz et al. EES / 5 1 x IMU I: foot & shin Terrain context identification and inclination

(H, 2018) [43] 1 x color camera estimation based on color image classification.

Krausz et al. EES / 5 1 x depth camera Fixed in 1.5m height Stair segmentation strategy from depth

(H, 2015) [45] 1 x accelerometer with -50° tilt angle sensing information of the environment.

Kleiner et al. EES / 5 1 x IMU I: thigh Stair detection algorithm through fusion of

(P, 2018) [46] 1 x radar sensor motion trajectory and radar distance data.

Zhang et al. EES / 5 1 x IMU I: knee lateral Environmental feature extraction based on

(P, 2019) [47, 48] 1 x depth camera neural network depth scene classification.

1Publications through CYBERLEG: Amrozic et al. [15, 16], Gorsic et al. [17] and through CYBERLEG++: Parri et al. [18]
2Research group from Huang: F. Zhang et al. [30], X. Zhang et al. [31], Wang et at. [32] and Liu et al. [33]
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of the body part” or respectively on the same side as the
device. The opposite is contralateral (C) which signifies
“located on the opposite part”.
Concept description: This field shortly summarizes

how environmental information is used for enhancing
prosthesis control in each record.

Within the publications, 11 different types of sensors
were used. It was possible to divide those sensors into
three categories, as shown in Fig. 3. In particular, Dis-
tance & depth differentiating sensors based on ultrasonic
or electromagnetic waves with different frequencies and
Kinematic grouping sensors for measuring the motion
of bodies. EMG electrodes, pressure insoles and color
cameras were summarized into Other. Information was
extracted from the reviewed publications itself and, if
missing, completed with the help of the manufacture’s
datasheet. The main characteristics are the sensor update
rate, resolution and the need for an unobstructed field of
view.

Implicit environmental sensing
Vallery et al. [10] presented a complementary limb motion
estimation strategy. In this application, a linear mapping
function outputs the state of the missing limb depen-
dent on the state of the residual sound side. The angle
and angular velocity is measured by sensors attached to

the contralateral hip and knee. So far, only results from
one above-knee amputee were presented. The patient
was almost able to achieve a physiological gait pattern.
However, detailed technical information was not given.

Instead of using a monocentric knee prototype, Bernal-
Torres et al. [11, 12] proposed a concept of an active poly-
centric knee prosthesis using the echo-control schema.
An inertial measurement unit fixated on the contralateral
thigh estimates the trajectory of the unimpaired knee. The
average tilt angle error between the polycentric knee pro-
totype, mounted in a test workbench, and the anatomical
lower limb of one non-impaired subject was about 2°.

Three IMUs on the contralateral thigh, shank and ankle
for locomotion intent recognition, were used by Su et al.
[13]. The sensor data was taken as input into a convolu-
tional neural network, a class of computational processing
systems heavily inspired by biological neural networks. It
“learns” to perform tasks using self-optimizing weights
and biases throughout example-based learning. Filters are
used to extract hierarchical patterns in date, which makes
them particularly interesting for (image) recognition sys-
tems [14]. Ten able-bodied subjects and one above-knee
amputee participated in the study. Different strategies for
user-independent and user-dependent classification with
varying amount of test and training data were analyzed.
The highest accuracy was reported with 94.2% for the

Fig. 3 Sensor comparison. Different sensors used within the retrieved publications were divided into the three categories: Distance & depth,
Kinematic and Other. Update rate describes the number of measurements per second. The rating scale: (low), (medium) and (high) is used instead of
absolute values, representing a scale from approximately 10 Hz up to 100 Hz for real-time applications. The smallest change that can still be
detected by a sensor is its Resolution. The rating scale: (low), (medium) and (high) is used instead of absolute values, representing a scale from
several centimeters down to the millimeter range. Unobstructed field of view indicates whether the sensor functionality does or does not require an
unobstructed field of view: (yes/no). If its not applicable, this is indicated by: (n/a)
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able-bodied and 89.2% for the amputees, classifying five
types of terrains and eight transitions between them.

As part of the CYBERLEGs project Ambrozic et al.
[15, 16] and Gorsic et al. [17] used the α-prototype pros-
thesis (actuated ankle and a passive knee) with a “whole-
body aware” control approach. The user intention was
measured through seven wireless IMUs, attached bilat-
erally to the feet, shanks and thighs and one on the
trunk. Additionally, two pressure insoles measured the
ground force and the center of pressure. The control
scheme combined the intent detection from the body-
worn sensors and the prosthesis control into one state
machine with unified states and transitions based on the
analysis of gait in healthy subjects. The overall intent
recognition for three unilateral transfemoral amputees
was accurate in 85.2% of the cases for level-ground
walking. Parri et al. [18] used a similar wearable sen-
sory concept and the advanced β-prototype throughout
the CYBERLEGs Plus project. In this study, four uni-
lateral transfemoral amputees participated in the study
with different activities. 100% accuracy was reported in
treadmill walking, even at a low walking speed. The
lowest score was achieved for the sit-to-stand task at
94.8%.

A systemic analysis of different signals from the con-
tralateral side for predicting the locomotion mode was
done by Hu et al. [19–21]. Ten healthy subjects partici-
pated in the study generating a public available benchmark
dataset of lower limb joint kinematic and electromyog-
raphy (EMG) data, simultaneously recorded with wear-
able sensors. Electrogoniometers (GONIO) were used to
record joint kinematic signals of knee and ankle of both
legs. IMUs were placed bilaterally on the subject’s thigh
and shank. Bipolar surface EMG electrodes were placed
on seven muscles in each leg. They analyzed different
combinations of sensors and algorithms. It was shown
that only one additional contralateral sensor could signif-
icantly reduce intent recognition error rates. Finally, an
offline analysis of one above-knee amputee walking with
a powered leg prosthesis was presented. Placing two addi-
tional IMUs on the contralateral thigh and shank could
reduce overall, steady-state and transitional error rates by
more than 60%, compared to ipsilateral sensor placement
as baseline. Parallel to this, Krausz et al. [22] extended
the system by an IMU and a single depth camera. These
sensors were worn on a belt-like construction with the
environment in front of the subject in the field of view.
The IMU was used to transform the vision information
into a global reference system. Each frame was segmented
into a grid of regions of interest before extracting three
types of vision-based features: distance and orientation,
motion information and the projected shape of the ter-
rain on them. The influence of each sensor modality
was analyzed, reporting that adding “vision information”

increases the repeatability and, at the same time, reduces
the variability across subjects and locomotion modes.

Despite the positive outcomes, the additional instru-
mentation of the non-prosthetic side is not really practical
and comfortable for amputees. Hu et al. [23] extended
their ideas and presented a novel method for bilateral
gait segmentation using only unilaterally worn sensors.
A single IMU and a depth camera were placed on one
thigh to detect bilateral gait events. RANSAC [24], an
iterative method to estimate a model in a set of data con-
taining outliers, was used to identify the ground plane in
the depth points. Vision filtering and grouping methods
were applied to correctly estimate the shank angle of the
contralateral leg. IMU data and sound side features were
fused for intent classification. The system was tested with
one healthy subject showing that it is possible to detect
bilateral gait events even from unilaterally worn sensors.

Zhang et al. [25] conducted a study, in which both legs
were within the sensor’s field of view. A depth camera
was mounted on the waist looking forward with such a
tilt angle, that the toes are just not captured when the
person is standing still. A movement led to a periodic
variation of depth values. This signal was then used as
input into an earlier published concept of an adaptive
oscillator gait phase detector [26], a method for extract-
ing features and synchronizing to periodic signals. Four
able-bodied subjects participated in a level ground walk-
ing study, reporting a maximum estimation error of 0.3
rad between the estimated gait phase and the reference
gait phase calculated out of two consecutive steps.

Explicit environmental sensing
Foot clearance is an important gait parameter and serves
as an indicator for gait quality and safety. Scandaroli et al.
[27] presented a prototype of a prosthetic foot equipped
with two gyroscopes and four infrared distance measuring
elements. The concept was to estimate foot orientation
with respect to the ground. So far, only test-bench results
estimating the inclination and height of the foot above the
ground have been presented. Ishikawa and Murakami [28]
equipped a normal shoe with two infrared distance sen-
sors and one IMU. The data gathered from one healthy
subject walking in five different terrains was analyzed.
The waveform of the sensor signal was reported to be
unique for different locomotion modes – a dominant dou-
ble peak was the characteristic of leveled walking, but
detailed technical information was not given.

Already in 2011, Kleiner et al. [29] published a concept
of a foresighted control for a foot prosthesis. An opti-
cal measuring system consisting of a laser scanner and
an inertial navigation system was mounted between the
ankle and the knee on the side of the prosthesis. The two-
dimensional (2D) depth data from the laser scanner was
combined with the motion information from the inertial
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system to create a three-dimensional (3D) representation
of the environment. The idea was to use computer vision
methods in order to detect objects like stairs, or ramps
in the environment. So far, only “images” from a single
indoor experiment were presented without any technical
details.

Instead of using a 2D laser scanner, the research group
from Huang [30–33] used a single laser distance meter
and one IMU for terrain recognition. They extended the
concept of a locomotion mode recognition system based
on neuromuscular EMG signals from the residual limb
and mechanical load information on the device [34, 35].
The additional sensors were mounted laterally on the
trunk of the prosthetic side. A decision tree classified the
terrain in front of the user into five different categories
depending on thresholds and geometric constrains. The
system was tested on six able-bodied subjects and one
above-knee amputee. It identified the new terrain 500
ms before executing locomotion mode transition with an
accuracy of 98%.

A concept without an IMU was introduced by Car-
valho et al. [36]. The information from an infrared laser
mounted on the user’s waist was classified with a three-
layer decision tree with heuristic rules. Tested on 10
able-bodied subjects, the classification accuracy for eight
locomotion mode transitions was above 80%, achieving
100% success for identifying the transition from ramp
descent or stair descent into level ground.

An array of distance sensors was used by Sahoo et al.
[37]. In this study, a prototype with either four ultra-
sonic distance sensors or three laser distance sensors was
mounted on the shank of the participant. Reliable mea-
surements were always taken during the stance phase
triggered by a force resistor attached at the heel of the foot.
The distance signals were used to classify four types of
terrains ahead of the user. Two classification approaches,
such as quadratic discriminant analysis and rule-based
system, were explored with two able-bodied subjects. The
ultrasonic sensors achieved an accuracy above 97%, how-
ever the range within obstacles were detected was less
than 50 cm leading to the risk to “miss a transition” if the
step length of the subject was greater than the detection
range. In comparison, the laser distance sensors increased
this range up to 100 cm. By taking the most frequent pre-
diction class within a single step, the system identified the
new terrain 650 ms before executing locomotion mode
transition with an accuracy of above 98%.

Varol et al. [38] and Massalin et al. [39] attempted
to detect five different locomotion modes with a depth
sensor. In this application, a single depth camera was
mounted unilaterally on the shank with a 45° tilt angle to
the ground plane. In order to embed motion information,
so called “depth difference images” were calculated. This
was done through pixelwise subtraction of the preceding

depth frame. Twelve healthy subjects participated in the
study. Data of eight subjects was used to train different
variations of support vector machine classifiers, a super-
vised learning algorithm that sorts data into predefined
categories. The highest reported accuracy of 94.1% was
achieved with a cubic kernel and no dimension reduction
classifier on the test-data of the remaining four subjects.
The averaged computation time was reported with 14 ms.

Three different types of terrains were classified with an
overall accuracy of 94.85% in the study from Laschowski et
al. [40]. A chest-mounted color camera with the environ-
ment in front of the subject in its field of view was used for
data acquisition. One able-bodied subject walked around,
collecting over two million sample images. Around 34,000
of them were individually labeled to train the 10-layer
deep convolutional neural network used for classification.

Yan et al. [41] presented a depth image-based loco-
motion recognition approach that does not require any
pre-training. A depth camera mounted on the waist in a
height of 1.06 m, having the terrain and a small portion
of the user’s feet in its field of view, is used in this setup.
Depth images were segmented into 12 blocks and locally
averaged. A finite-state machine with predefined thresh-
olds is then used to classify between four locomotion
modes. Additionally, stair edges were detected by using
a Hough Line Transform [42], a feature extraction tech-
nique to find a certain class of shapes by a voting proce-
dure. Nine healthy subjects participated in the study. The
accuracy for steady state locomotion tasks was reported
as 100%. However, correctly detecting the transitions was
challenging. Nevertheless, 82.4% of the terrain changes
could be detected before executing a locomotion mode
transition. In this study, there was no real-time evaluation
performed, although the computation time was only 5 ms.

Rather than classifying the locomotion mode of the user,
Diaz et al. [43] proposed a concept of estimating the soil
properties as well as the surface inclination in front of the
user’s leg. In this application, a normal color camera was
mounted on the shin and an IMU on the top of the foot of
an able-bodied subject. Comparable images were always
taken during the stance phase of the gait cycle. The images
were classified with the Bag of Words method [44], ana-
lyzing the input against a predefined bag of local image
features. The classifier was able to identify 6 types of ter-
rains (asphalt, carpet, cobblestone, grass, mulch and tile)
with an averaged accuracy of 86%. The prediction of the
terrain inclination in front of the leg was accurate to 0.76°
compared with a reference.

Krausz et al. [45] presented a method for estimating
stair parameters with a depth vision system in 2015. The
proposed algorithm used prior knowledge of a basic stair
structure and input of a single three-axis accelerometer.
One able-bodied subject held the camera in 1.5 m in
height with a -50° tilt angle from horizontal and walked
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through a hallway entering into a stairwell. This online test
resulted in 98.8% accuracy for classification if they were
either “approaching” stairs or “not approaching”.

The first and only group using a RADAR sensor for stair
detection was Kleiner et al. [46] in 2018. In this applica-
tion, a radar distance sensor and an IMU were mounted
on the thigh of the prosthetic device. Fusing both signals
created a 2D image of the sagittal plane in its virtual field
of view. For objects in a range up to 5 meters in front of the
device, a mean accuracy of 1.5±0.8 cm was reported. The
mean accuracy for height estimation lies within 0.34±0.67
cm.

The most advanced environmental feature recognition
system was presented from Zhang et al. [47]. In this appli-
cation, five different environments could be distinguished.
A depth camera and an IMU mounted ipsilaterally on
the knee joint were combined to transform the captured
scene into world coordinates. The 3D scene was reduced
to a 2D binary image, which reduced total computing
time remarkably to only 23 ms. A deep convolutional neu-
ral network was used to classify the type of input scene.
Finally, after classifying the type of terrain, basic computer
vision methods were used to estimate features such as the
slope angle of a ramp or the height and width of stairs.
The proposed system was evaluated using data from sim-
ulation, indoor and outdoor experiments. Six able-bodied
subjects and three above-knee amputees participated in
the study. Data from the simulation and one healthy sub-
ject was used to train the network, the remaining data was
used for validation only. The classification accuracy for
amputees was reported with 99.3% for indoor and 98.5%
for outdoor experiments, predicting the terrain change at
least 0.6 s before switching the locomotion mode. The
latest publication from Zhang et al. [48] considered the
credibility of decisions and the relationship between states
for improving the classification even further.

Discussion
Commercially available lower limb prostheses use mainly
device-embedded sensors to “(re)act” to the patient’s
intent. However, due to the lack of contextual (environ-
mental) information, misclassifications can result in stum-
bling or even falling down. The present review describes
the progress made over the last decade towards more
“foresighted” prosthetic systems. From this novel perspec-
tive, a “control strategy landscaping” was derived, how
environmental information can enhance “next generation
prostheses”.

Control strategy landscape
New concepts for environmental sensing in “next gener-
ation prostheses” can be distinguished according to how
they improve existing control systems. As depicted in
Fig. 4, enhanced control strategies can be separated into

Fig. 4 Control landscape. Control strategy landscape overview based
on required resolution and update rate of the underlying sensor
modality

five groups, namely continuous control (1), motion classi-
fication (2), event detection (3), safety functions (4), and
upcoming object or terrain prediction (5). The required
update rate and resolution is a criterion to select the best
sensor modalities for each of them. All retrieved pub-
lications were assigned into one of these main groups,
dedicated in column 2 of Table 1.
Continuous control systems measure and adjust in real

time. Hence, sensors with high update rates as well as high
resolutions are needed. In accordance with three-level
controller hierarchy framework from Tucker, input is pro-
cessed directly at mid-level layer to control the prosthetic
device state in real time. In this category, only IES-based
residual patient’s body estimation strategies were investi-
gated. Typically, kinematic sensors like IMUs or GONIOs
are used. Using contralateral leg information seems to be a
common concept [10–13]. However, simple echo-control
strategies caused errors, especially at the beginning and
the end of an activity, when the limbs are not required
to “echo” each other. Placing sensors not only on the
contralateral leg, but rather measuring the entire (lower)
body, expands the possibilities. These concepts [15–18]
can control in real-time throughout numerous locomo-
tion modes and transitions between them. However, for
all the presented “body aware” concepts, it was necessary
to mount additional sensors on the patient’s body, which
reduced usability.

Not controlling, but rather classifying is meant by
motion classification. Signals measured from distributed
sensors are used to perceive the patient’s intent at the

Relying on more sense for enhancing lower limb prostheses control: a review

135



Tschiedel et al. Journal of NeuroEngineering and Rehabilitation           (2020) 17:99 Page 9 of 13

high-level layer of the controller hierarchy framework
better. Therefore, sensor update rates as well as reso-
lutions are typically lower. Unsurprisingly, fusing whole
body kinematic signals lead to higher intent recognition
rates, as was proven systematically [19–22]. Remarkably,
however, it could be shown that an additional sensor on
the unimpaired sound side can reduce misclassifications.
Instead of mounting and calibrating a large number of
additional sensors to the patient’s body, a single contralat-
eral sensor would be sufficient to enhance device control.
As depicted in Fig. 4, motion classification also overlaps
with the group of upcoming object or terrain prediction.
Although the focus of this section here lies mainly on the
correct intent recognition rather than on predicting the
upcoming terrain directly, these two are strongly related
by nature – obstacles and terrain features are in this sense
the “boundary conditions” for all movements.

Strategies extracting specific “events” from the human
gait cycle are combined into event detection. The most
prominent are the “heel strike”, initiating the stance phase,
and the “toe off”, responsible for the beginning of the
swing phase [49]. Normally, this information is used at the
mid-level control layer to trigger movement-dependent
actions. Therefore, the required sensor update rate is typ-
ically higher than for motion classification, however, the
resolution can be lower. For example, pressure insoles
are typically used for measuring ground contacts. While
timing is very important, it can often be sufficient to dif-
ferentiate, whether the foot is, or is not, in contact with
the ground. A continuous gait phase estimation was car-
ried out on the basis of a gait-related depth signal captured
from a waist-worn depth camera [25]. The approach from
Hu et al. [23] seems to be more practical, where a uni-
laterally mounted depth camera detected bilateral gait
events. However, the computation time of more than 1 s
prevented any real-time (online) application.
Safety functions summarize all concepts which con-

tribute to the safety of a prosthetic device. In terms of
environmental sensing, reliable prevention of stumbling
and falling in unexpected terrains is still an open question.
A study with able-bodied individuals found that an unrec-
ognized object with a height of 1 cm can lead to stumbling,
concluding that foot clearance is an important parame-
ter to prevent falling [50]. For measuring this parameter,
infrared distance sensors were used in two publications
[27, 28], but not evaluated in a prosthetic setup. In gen-
eral, the resolution of the sensor modality has to be high
enough to correctly detect small barriers, ideally with a
high update rate to “(re)act” in real time. While high res-
olution is mandatory, update rates can also be lower. For
instance, a leg-mounted depth or color camera, capturing
a single image during the mid-stance phase when the leg is
almost vertical, could minimize stumbling risks during the
next step. It is also conceivable that two distance sensors,

one more toe-related and the other more heel-related,
in combination with an IMU, could estimate the correct
ground inclination. This could be especially interesting for
the further development of active ankle devices, but it was
not evaluated in any of the reviewed publications.

Half of all the reviewed studies deal with upcoming
object or terrain prediction concepts. The underlying prin-
ciple of all these publications is to observe the front
environment of the user, interpret the input and then
provide a probability for mode switching. This is mainly,
due to the fact that the correct detection of locomotion
mode transition between different terrains, e.g. switching
from level-ground walking to stair ascent mode, is often
challenging and unintuitive. For instance, in commercially
available products, the user must switch between locomo-
tion modes with substantially different characteristics by
carrying out a predefined “special movement”. This action
triggers the transition by using only sensors embedded
into the prosthesis [51]. In accordance with the con-
troller framework by Tucker, upcoming object or terrain
prediction strategies provide input for the high level of
the controller. Earlier listed safety functions on contrast,
interact mainly at the low-level layer, increasing patient
safety.

Huang et al. [35] coined the term “critical timing” for
switching mode, neither interrupting the transition nor
disturbing the balance. Concepts using 1D laser distance
meter [30–33, 36, 37] combine the sensory input with
geometric constrains to estimate upcoming terrain fea-
tures early enough and accurately. Although one group
used a RADAR sensor as an input device [46], the feature
of “looking through” materials was not evaluated in this
study.

Explicit object recognition is another approach for clas-
sifying upcoming barriers directly. The invention of low-
cost high-resolution depth and color cameras opened up
an entirely new field of vision-based object recognition
[52]. Especially for autonomous robots, the capability to
detect and classify objects correctly is critical. For exam-
ple, a self-driving wheel-chair was able to successfully
navigate through the hallways of a hospital [53]. How-
ever, in terms of lower limb device control, the final
decision “where to go” or “what to do” is made by the
user anyway. Therefore, the sensor raw data are usually
pre-processed to obtain probabilities for possible terrain
changes.

Depth cameras [38, 39, 41, 45, 47, 48] were used to
differentiate between a limited number of terrains and
whether the user is approaching stairs. The approach of
soil property estimation based on a color camera [43] was
also evaluated, but not in a prosthetic setup. Nevertheless,
all vision-based systems are computationally intensive and
require an unobstructed field of view. Concepts using
pre-trained classifiers [38–40, 43, 45, 47, 48] achieved
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higher accuracies compared to finite-state machines with-
out any training [30–33, 36, 37, 41]. However, pre-trained
classifier performance depends strongly on the size of
training data. Moreover, predefined step sequences during
the acquisition of training data can lead to an undesired
bias – the system is trained with specific parameters,
but in real life step sequence and walking speed are
unpredictable.

In general, it is very difficult to compare the different
approaches, as they use non-standardized test procedures.
In summary, the research studies reported accuracies
ranging from 82% to 99%. Assuming 100 locomotion
mode changes per day and expecting only every tenth mis-
classification to cause a fall, there would still be 3 to 54
serious tumbles per month, which does not seem very
promising.

Sensor modalities
The 32 publications reviewed use 11 types of sensors, as
depicted in Fig. 3. Kinematic sensors are widely used –
24 out of 32 publications, use IMUs for motion estima-
tion. Even all five commercially available microprocessor-
controlled prosthetic knees, reviewed by Fluit et al. [5],
use a shank IMU as sensory input. However, the inte-
gration of IMU information tends to suffer from accu-
mulating errors, which can lead to drifts. Alternatively,
GONIOs are accurate and reliable, but they usually limit
the degree of freedom of complex human joints.

Distance sensors usually use the principle of time of
flight, measuring the round trip time between emitting
and receiving back a specific pulse. Ultrasonic sensors are
based on mechanical (acoustic) waves. The propagation
speed for these sensors is limited by the speed of sound,
which results in a round trip time of approximately 6 ms
for an object at 1 m distance. Thus, nature limits the
update rate of ultrasonic sensors. Nevertheless, they are
common for close proximity applications, as they are able
to detect even transparent materials like glass. By using
electromagnetic waves, the round trip time is usually neg-
ligible, because the speed of light is substantially higher.
The update rate of these sensors is, therefore, limited only
by the processing rate of the internal hardware. Infrared
sensors emit light below the visible light range. Instead,
laser sensors have operating frequencies in the visible
range (red or green light) or above (invisible ultraviolet
range). Update rate and resolution are normally lower for
ultrasonic sensors than they are for lasers. LIDAR sensors
combine laser distance meters with a complex mechanical
mirror system to generate high-resolution 2D or even 3D
scans. However, shocks or vibrations can disrupt the mov-
ing parts in such devices. Historically seen, these sensors
used to be very expensive, whereas nowadays industries
have shifted to develop low-cost solid-state LIDARs for a
broad application.

Depth perception refers to the ability to estimate the
surrounding world in 3D – nature (human eyes) has per-
fected this over millions of years. Historically, color cam-
eras, working on passive light sensors, were combined to
stereo vision systems to extract depth information from
well-known digital images. Performance depends primar-
ily on the underlying stereo correspondence algorithms
(depth calculation process), which tries to match pixels of
the two individual images. Today, depth cameras based
on the time-of-flight principle have become increasingly
more available. Similar to TOF sensors, an artificial light
impulse is emitted, while the reflection is simultaneously
captured by multiple sensitive elements. This generates a
full 3D perception at once with resolutions up to 640 x
480 pixels, small enough to be implemented into a smart-
phone [54]. The resolution of depth cameras, for time of
flight as well as for stereo vision based concepts, is in the
range of 1% of distance with update rates varying from
5 to 60 (depth) frames per second. Nevertheless, all con-
cepts based on infrared, visible or even ultraviolet light
are limited by their explicit need of an unobstructed field
of view. The additional sensors must be worn over any
type of prosthetic cosmetic or clothing and can, therefore,
not be integrated directly into the device. RADAR tech-
nology, however, is not limited by this factor. Although
radar technology was already discovered in the late 19th
century, only recent developments have made new sen-
sors with operating frequencies up to 100 GHz available.
While RADAR sensors have much lower resolutions com-
pared to optical or depth sensors, they can still operate
in harsh outdoor conditions. To which degree an object
is detectable, is expressed in its cross-section, a property
of the target’s reflectivity [55]. Due to the high-frequency
range, certain materials, such as fabrics or plastics, typ-
ically appear transparent. On one hand, this is a good
feature of RADAR sensors, as it allows an implementa-
tion directly into the prosthetic device making it possible
to “look-through” clothes or cosmetics (cover of an artifi-
cial limb to appear lifelike). However, on the other hand,
objects or barriers made out of these materials remain
undetected. Nowadays, there is a shift towards the devel-
opment of super near-field RADAR sensors which are
able to detect human extremities and gestures for a broad
application. For example, Google’s radar-based gesture
sensing technology (Project Soli) is implemented in their
Pixel 4 smartphone allowing a touchless interaction [56].

For the sake of completeness, surface EMG electrodes
as well as force resistive insoles are mentioned, although
they are not really “environmental sensors”. Conceptually,
both type of sensors require a direct contact with the
body. Surface EMG electrodes with the skin to register
muscle activity and insols with the foot to detect ground
contact. The unobstructed field of view, mandatory for
all types of cameras, has no influence on the application
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here. Nevertheless, especially for event detection, insoles
can provide valuable information, but the sensors need to
be worn either ipsilaterally, contralaterally or bilaterally in
the user’s shoe. EMG information is commonly used for
real-time hand prosthesis control [57], but barely in lower
limb devices, since movement artifact and baseline noise
contamination is more prominent there.

Computing power & energy consumption
Nowadays, commercial prostheses have very limited com-
puting power. Typically, finite-state machines with heuris-
tic rule-based approaches are used for intent recognition
and device control. In contrast, most of the reviewed stud-
ies, carried out data acquisition and analysis on powerful
computers with clock rates of 3 GHz or above and mem-
ory sizes up to 32 GB. The available computing power also
influences the calculation time for interpreting or extract-
ing usable information from the complex sensory input.
The delay from measuring until adapting needs to be short
enough to guarantee a safe and comfortable device opera-
tion. Typically, update rates for real-time prosthetic device
applications are in the range of 100 Hz [5]. Therefore,
the embedded system architecture of prosthetic devices
needs to be modified significantly if real-time on-board
processing should be enabled. For example, Intel’s Myriad
2 is optimized for vision processing in mobile applications
within 0.5 W of power envelope [58] and could also be
used in lower limb prostheses.

The energy consumption of advanced sensors also needs
to be considered, when designing and developing new
systems. The power consumption of Softkinetic’s DS 325
depth camera used in [38, 39] is below 2.5 W [59]. The
pmdtechnologies’s CamBoard pico flexx used in [22, 23,
47] is below 0.3 W [60]. The radar module used in [46]
has a total power consumption of 5 W [61], with almost
identical geometric dimensions to those of depth sensors.
Ongoing development will thus reduce energy consump-
tion of sensors and processors even further. In contrast,
research and commercial active (powered) knee prosthe-
ses use actuators consuming up to 200 W [4]. Therefore,
the energy consumption of additional sensors cannot be
regarded as the main reasons for exclusion.

Conclusions
In this review, we summarized both implicit and explicit
approaches of environmental sensing. For this purpose,
a systematic literature review as well as a snowballing
analysis of the survey from Tucker et al. [6] was per-
formed. From our novel perspective, five broad control
strategies were identified, how environmental information
can make “next generation prostheses” more user-friendly,
functional and safe.

There is a clear trend towards more upcoming object or
terrain prediction concepts, providing switching probabil-
ities between different locomotion modes. In summary,
the research studies reported accuracies ranging from 82%
to 99% in well-controlled laboratory settings, but it is
unclear how the systems will perform in realistic environ-
ments, both indoor and outdoor. It was also shown that
implicit environmental sensing strategies in particular
can significantly improve control. Furthermore, informa-
tion about the contralateral leg can play a crucial role in
movement-dependent control applications.

Throughout the 32 reviewed publications, 11 types
of sensors were used. Technology differences were dis-
cussed, and aspects of computing power and energy con-
sumption mentioned. The update rate and resolution were
found to be essential criteria to determine a suitable con-
trol category. Distance sensors and depth cameras are
widely used, but they are limited by an unobstructed field
of view. Moreover, the latter also requires higher comput-
ing power for calculating interpretable features from the
(complex) raw inputs. In almost all studies, kinematic sen-
sors are used, either to estimate movements directly or to
stabilize other inputs. However, the additional instrumen-
tation of residual body parts seems less practical.

Together with the derived “control strategy landscap-
ing”, our in-depth evaluation of the novel sensors for
environmental awareness can serve as decision guidance
for future research in this field. New high-frequency
RADAR sensors may be the best choice for upcoming
object or terrain prediction approaches, perhaps even for
event detection strategies. Thanks to their ability to “look
through” clothing or cosmetic covers, these sensors could
be embedded directly into a prosthetic device, result-
ing in numerous new possibilities. Before that, however,
research must prove that they are sufficiently accurate and
efficient.
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Abstract
Modern lower limb prostheses neither measure nor incorporate healthy residual leg information
for intent recognition or device control. In order to increase robustness and reduce misclas-
sification of devices like these, we propose a vision-based solution for real-time 3D human
contralateral limb tracking (CoLiTrack). An inertial measurement unit and a depth camera are
placed on the side of the prosthesis. The system is capable of estimating the shank axis of
the healthy leg. Initially, the 3D input is transformed into a stabilized coordinate system. By
splitting the subsequent shank-estimation problem into two less computationally intensive steps,
the computation time is significantly reduced: First, an iterative closest point algorithm is applied
to fit circular models against 2D projections. Second, the random sample consensus method is
used to determine the final shank axis. In our study, three experiments were conducted to validate
the static, the dynamic and the real-world performance of our CoLiTrack approach. The shank
angle can be tracked at 20 Hz for one sixth of the entire human gait cycle with an angle estimation
error below 2.8± 2.1°. Our promising results demonstrate the robustness of the novel CoLiTrack
approach to make “next-generation prostheses” more user-friendly, functional and safe.
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Abstract
Modern lower limb prostheses neither measure nor incorporate healthy residual leg information for intent recognition or
device control. In order to increase robustness and reduce misclassification of devices like these, we propose a vision-based
solution for real-time 3D human contralateral limb tracking (CoLiTrack). An inertial measurement unit and a depth camera
are placed on the side of the prosthesis. The system is capable of estimating the shank axis of the healthy leg. Initially, the
3D input is transformed into a stabilized coordinate system. By splitting the subsequent shank estimation problem into two
less computationally intensive steps, the computation time is significantly reduced: First, an iterative closest point algorithm
is applied to fit circular models against 2D projections. Second, the random sample consensus method is used to determine
the final shank axis. In our study, three experiments were conducted to validate the static, the dynamic and the real-world
performance of our CoLiTrack approach. The shank angle can be tracked at 20 Hz for one sixth of the entire human gait cycle
with an angle estimation error below 2.8 ± 2.1◦. Our promising results demonstrate the robustness of the novel CoLiTrack
approach to make “next-generation prostheses” more user-friendly, functional and safe.

Keywords Shank modeling · Body tracking · Depth image · Gait analysis

1 Introduction

Extraction of 3D human limb parameters from depth images
is a research topic that has recently attracted the attention
of the scientific community. Driven by the availability of
low-cost depth cameras, human pose estimation strategies
[1–3], telerehabilitation concepts [4,5] and patient interac-
tion monitoring approaches [6,7] are evolving continuously.
For lower limb prostheses control, it can be advantageous to
gather information about the healthy residual leg. Humans
combine proprioception with visual information to navigate
different terrains smoothly. In contrast, state-of-the-art com-
mercial prosthetic devices only use device-embedded sensors
and finite-state controllers to adapt to the patient’s intent [8].
They do not collect information about the state of the other
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leg, which could improve overall system performance. A sys-
tematic analysis of different bilateral lower limb signals for
predicting locomotion activities was performed by Hu et al.
[9,10] in 2018. It came to the conclusion that only one addi-
tional contralateral leg parameter could reduce error rates
of intent recognition significantly. However, the additional
effort of instrumenting the contralateral shank can be incon-
venient and impractical for amputees.

In this paper, we propose a novel contralateral limb track-
ing approach named CoLiTrack, which utilizes unilaterally
worn depth cameras. Placing the camera on the ipsilateral
(prosthetic) side eliminates the need for an additional sensor
on the contralateral shank and allows an easier integration
into future products. The key to our method is that it separates
the complex modeling problem into two less computationally
intensive parts, in order to perform real-time shank axis esti-
mation. Initially, layers from the point cloud input (depicting
the residual leg) are projected in 2D, before fitting prede-
fined circular models. Next, a projected line using the center
points of the circles is used to estimate the shank axis. This
reduces computing time considerably, allowing for accurate
estimation of the shank axis fast enough for real-time applica-
tions. Furthermore, in comparison with traditional methods,
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CoLiTrack is unsupervised and has no training-related bias.
Experimental results produced by CoLiTrack demonstrate a
robust and accurate solution to improve human–device inter-
action in real time. Although our method was developed with
lower limb prostheses in mind, the proposed system could
be applied to a wide variety of applications in many areas,
including health care, gaming and human–device interaction.

The remainder of the paper is organized as follows: Sect. 2
presents the related work most relevant to the context of this
paper. Details of the proposed method for real-time contralat-
eral limb tracking are given in Sect. 3. Section 4 provides the
experimental results, which are then discussed in Sect. 5. The
conclusion of this paper is presented in Sect. 6.

2 Related work

In this section, we focus primarily on existing work on envi-
ronment recognition as a means for improving prosthetic
control. We present relevant principles of human gait and
known approaches to modeling the leg.

2.1 Principles of human gait

Humans use upright gait on two legs for efficient locomo-
tion. Biomechanics of gait have been studied in detail [11];
however, spinal and brain control of human walking cannot
yet be fully explained. Walking is described as a repetitive
sequence to move forward; a single sequence is called a gait
cycle, which begins with the heel strike (the heel touching
the ground) and continues until the heel strike of the same
foot. For approximately 60% of the gait cycle the foot stays
on the ground (stance phase), before the foot is lifted off the
ground at toe off and swings freely in the air (swing phase)
for the rest of the gait cycle. Numerous papers have been
published on markerless motion capture [12–15] in the past,
and it is beyond the scope of this paper to provide a complete
overview of this literature. For our approach, it is important to
mention that the shank kinematics are generally independent
of the ankle kinematics. The ankle adjusts automatically to
different heel heights, for example, as a result of wearing dif-
ferent types of shoes. The shank kinematics, however, remain
the same [16,17]. The shank angle α is therefore a very infor-
mative parameter representing the status of the contralateral
shank and can play a crucial role in movement-dependent
control applications. A typical sagittal plane shank motion
during free walking for one entire gait cycle is shown in
Fig. 1. The sagittal plane passes across the body, defined by
the Y/Z plane in the world coordinate system, as indicated
in Fig. 2. The shank angle is defined to be zero, when it is
perpendicular to the ground, and positive in the case of a
counterclockwise direction around the reference axis.

Fig. 1 Sagittal plane shank motion. Heel strike is the first inertial con-
tact, when the foot touches the ground. At about 60% of the full gait
cycle, toe off is the end of the stance phase initiating the swing phase.
Then, the leg swings freely in the air until the next heel strike, before
repeating the cycle. The plot shows nominal shank angle α relative
to vertical during free walking with standard deviation in a light gray
band, data from [11]. The trackable range of our CoLiTrack approach
determined during the dynamic experiment is shown in red

Fig. 2 Sensor configuration and overall process of CoLiTrack. An IMU
and a depth camera were fused to estimate the axis of the uninstrumented
contralateral shank. (X’,Y’, Z’) represents the camera coordinate sys-
tem and (X,Y, Z) the stabilized world coordinate system. Mounting is
depicted in detail in Fig. 3. The color of the Depth Image corresponds
to the distance between an object and the camera: red parts are close
to the sensor, blue parts are further away. The Color Image was taken
with a mobile phone and is for demonstration purpose

2.2 Environment detection for prostheses

One of the most important aims of lower limb prosthetic sys-
tems is the imitation of the physiological gait pattern [8].
Modern prosthetic systems can replace missing body parts
to a high degree and improve patients’ independence and
mobility [18]. Numerous studies have been carried out to
determine the best strategies to control locomotion in pros-
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thetic devices. Most of these studies used neuromuscular or
mechanical signals of the prosthetic leg, either individually
or in combination [19–21]. Inertial measurement units (IMU)
are also commonly used to estimate the position and orien-
tation of the prosthetic leg in a world reference system [8].
In contrast, environmental sensor technologies are not yet
commercially used in prosthetic devices, although we have
identified a clear research tendency toward the recognition
of surrounding objects and terrains, as shown in our sur-
vey [22]. The work found was divided into two categories:
explicit environmental sensing—direct estimation of terrain
features—and implicit environmental sensing—creating an
understanding of the locomotion mode by measuring the state
of the patient’s residual body. Within the first group, distance
and depth-based sensors were used to estimate the mode
of locomotion. Sensors were placed on different body seg-
ments, such as the shank, thigh, trunk or even the upper body,
scanning the environment in front of the patient. Intent recog-
nition was performed by means of geometry-based decision
trees [23], finite-state or support vector machines [24,25] and
neural networks [26,27]. One group investigated whether the
patient was approaching stairs [28], and another estimated
soil properties with a color camera was mounted on the foot
[29]. Toe clearance, which is an important parameter to pre-
vent stumbling or falling, was estimated as well [30], but not
evaluated in a prosthetic setup.

The second category, implicit environmental sensing,
incorporates the state of the amputee’s body, which we con-
sider to be more promising. This is based on the fact that
the amputee voluntarily decides where to go or what to do.
The strong physical inter-joint coordination between human
limbs [31] could be used to improve prosthesis control. Con-
cepts of primitive “echo-control” strategies, which try to
estimate the state of the missing limb depending on the state
of the residual sound side, have been investigated for more
than 40 years [32–35]. For example, stepping over unknown
obstacles becomes possible without explicit classification of
the environment [36]. However, errors occur especially at
the beginning and at the end of an activity, when the limbs
do not necessarily “echo” each other. As an improvement,
“whole-body” approaches [37–39] with distributed IMUs
and pressure insoles can distinguish between a limited num-
ber of modes of locomotion in real time, but need numerous
additional sensors worn by the user.

For our work, the concept proposed by Hu et al. [40] is the
most relevant one: It predicts bilateral gait events from uni-
laterally worn sensors. A thigh-mounted depth sensor and
an IMU are fused to extract the angle between the ground
and the shank of the contralateral leg in its field of view.
Then, classifiers are used to predict ipsilateral toe off and
contralateral heel contact, representing the beginning and
end of the human gait double support phase. Although their
methodology was sound, and the results suggested that depth

vision could improve device control, several limitations were
mentioned. To begin with, the evaluation was carried out
with only a single participant. Moreover, initiation and ter-
mination steps were excluded due to different kinematics
compared to steady-state steps. No tests were performed
regarding the influence of different environments, neither
to investigate the robustness against reflectance and clutter,
nor to analyze the effect of unknown objects in the field of
view. Additionally, the implementation was not optimized for
timing, resulting in a high computation time of 1.16±0.56s,
which prevented any online (real-time) evaluation.

2.3 Approximation of shank axis

The shank of a human can be modeled relatively well by the
primitive shape of a cylinder. The challenge is, however, to
fit such a model to the incomplete and deformed point cloud
captured with a depth camera. On the one hand, simple least
square methods [41] fail due to outliers, and methods using
surface normals [42] cannot be applied due to noise from
pleats on the clothes. On the other hand, complex object fit-
ting approaches [43] are unsuitable, since the high processing
time prevents any real-time evaluation. To address these chal-
lenges, we separate the complex shank estimation problem
into two less computationally intensive steps: First, prede-
fined circular models are matched in 2D. Second, a projected
line using the center points of the circles is used to estimate
the shank axis, as shown in Fig. 4. In general, detecting cir-
cles and lines is a fundamental task in computer vision and
has been widely studied and developed in a variety of ways.
Well-known techniques, such as the Hough transform or neu-
ral network approaches, are used to detect circle-like foreign
objects in chest X-ray images [44–46] or line-like lanes for
autonomous driving systems [47,48], to name recent appli-
cations.

3 Proposedmethod

Our contralateral limb tracking method named CoLiTrack
consists of four main functions for estimating the axis and,
therefore, the angle of the shank. The overall process is
illustrated in Fig. 2: In a first step, the depth values were
preprocessed in the camera coordinate system. Next, the
information from the IMU was used to transform the fil-
tered point cloud data into a ground coordinate system. The
transformed points were projected onto 2D planes for fitting
circle models with the iterative closest point (ICP) algorithm.
Based on these results, the axis was estimated with a 3D line
fit using the random sample consensus (RANSAC) method.
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Fig. 3 Measurement setup a worn by a participant and the calibration
step b of the depth camera. IMU and depth camera were fixed on a
wearable support, attached to the shank of the participant. The second
IMU, mounted within a modified support stocking on the contralateral
side, served as reference; trousers were rolled up only for the photo.

For calibration, the camera was placed in the origin of the world coor-
dinate system. The true (pink) position of the calibration object was
known. The transformation matrix could be calculated out of the cap-
tured (green) image

3.1 Configuration of CoLiTrack

In this study, a 3D time-of-flight depth camera (CamBoard
pico flexx, Pmd Tech, Germany) and an IMU (BNO055,
Bosch Sensortec, Germany) were used to estimate param-
eters of the contralateral leg. In addition, a second IMU was
mounted on the contralateral shank to serve as reference sig-
nal. The sensor configuration is depicted in Fig. 3a. The IMU
and the depth camera were fixed together on a wearable sup-
port for two reasons: firstly, to combine camera orientation
information with vision information. Secondly, this wearable
support allowed for fast and easy positioning on the partici-
pant’s shank. With a resolution of 171x224 pixels, the depth
camera could measure the 3D position of object points (point
cloud) relative to the camera origin. The IMU was able to esti-
mate the orientation and acceleration of the wearable support
relative to the world reference system. By fusing orientation
information and point cloud data, scene information could be
stabilized. However, after the camera was mounted, its initial
rotation needed to be corrected. For this, the wearable sup-
port carrying the IMU and the depth camera was placed in an
upright position with the known calibration object in its field
of view. The object was mounted in a predefined position, as
shown in Fig. 3b in pink. The required rigid transformation
can be calculated from a scene capture, which is depicted
in green. The calculation was done by using the coherent
point drift algorithm [49] to assign correspondences between
two sets of points, provided within the MATLAB Computer
Vision Toolbox. The determined transformation parameters
were stored and applied every time before continuing with
the evaluation algorithm. The experimental data acquisition
and analysis were conducted using MATLAB R2018b and a
wrapper library provided by the camera manufacturer, run-
ning on a laptop with an Intel Core i5-8250U and 8 GB
memory size.

3.2 Preprocessing of depth data

The captured depth information was preprocessed in the
camera coordinate system. Pixels without any depth infor-
mation were removed and then blurred with a Gaussian
blur to reduce depth noise. If the contralateral leg was in
the camera’s field of view, the nearest detected point rel-
ative to the camera belonged to the sound leg and was,
therefore, selected as “point of interest” (POI). Next, the
confidence map, which was also retrieved from the depth
sensor, was used to identify all points belonging to the con-
tralateral leg. This parameter represented the confidence of
a measured distance (Z’) for every pixel (X’, Y’) of the
input—the closer a point, the higher the corresponding con-
fidence. The confidence of the POI was taken as reference,
points above a certain threshold were selected as belonging
to the contralateral leg. Finally, the selected point cloud was
downsampled using a 1 cm grid filter for computational effi-
ciency.

3.3 Point cloud transformation

As the shank of the human was swinging within a gait cycle,
the roll angle (rotation around the X-axis) and the pitch angle
(rotation around the Y-axis) were estimated with the help of
the ipsilateral IMU. By applying the Euler angle rotation
matrix, the retrieved point cloud in camera coordinates was
transformed into a stabilized world coordinate system (ipsi-
lateral IMU reference frame). The origin was fixed on the
foot calibrated to the sagittal plane, as shown in Fig. 2. Due
to the instability of the yaw angle, this parameter was not
used, and a rotation around the Z-axis remained unaccounted
for.
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Fig. 4 Visualization of the CoLiTrack algorithm. The point cloud
after preprocessing and transforming was taken as input. Z-slices were
extracted, and a 10-point circle model was fitted iteratively by using the
ICP algorithm in 2D (X/Y plane). All model circle center points were
then used to estimate the shank axis correctly by using the RANSAC
method in 3D. Finally, the contralateral shank angle α was calculated
with respect to the sagittal plane (Y/Z plane)

3.4 Circle fit with ICP

After transforming the point cloud input, Z-layers were pro-
jected in 2D. Then, a predefined circle model of 10 points
evenly distributed over 90◦ in a radius of 5 cm was fitted,
as shown in Fig. 4. The Z-layer height was set to 3 cm with
1 cm overlapping on both sides. The model fit itself was
realized with the ICP algorithm [50,51]. The basic concept
of this algorithm was as follows: The Z-layer projection was
kept fixed, while the circle model was rigidly transformed to
match the input in the best way possible. By doing this, shape
and size were preserved. The algorithm iteratively revised the
transformation to minimize the sum of squared differences
between the coordinates of the matched pairs. If the error
metric fell below a certain threshold, this was a criterion for
stopping the iterations. This was done for all Z-layers, which
resulted in center points with their associated heights. Fig-
ure 4 depicts this ICP and the subsequent RANSAC fitting
process.

3.5 Line fit with RANSAC

By using the RANSAC method [52], the newly calculated
center points served to estimate the shank axis correctly. The
principle of this iterative approach was to estimate parame-
ters of a predefined mathematical model—in our case, a line
representing the shank axis—from the input data. Therefore,
two circle-center points were randomly taken to generate
a hypothesis, which was then verified against all the other

points. If the distance between a point and the current hypoth-
esis lay below a certain threshold, the point was marked as
“inlier.” Otherwise it was marked as “outlier.” The algorithm
was repeated, until the obtained hypothesis exceeded a cer-
tain ratio. Finally, only the points marked as inliers were
used to calculate the optimal line, whereas outliers had no
further influence on the result. For our specific application,
we used a threshold of 3 cm, a probability of 0.99 and 1000 as
maximum number of random trials. As shown in Fig. 4, the
number of input points was limited by the previous Z-slice
height and the total object height, which varied between 5 cm
and 30 cm. Finally, the estimated axis was used to calculate
the contralateral shank-to-vertical angle α with respect to the
sagittal plane. The relative position information between the
depth camera and the contralateral leg was not used in our
application.

4 Experiments and results

We conducted three experiments to examine the static per-
formance, the dynamic performance and the real-world
performance of our novel approach. Generally, we analyzed
the performance of our CoLiTrack method as follows: For
each step, recorded gait data were separated, based on the
local positive peak of the shank angle captured with the
(second) reference IMU (αREF). As depicted in Fig. 1, this
corresponds with the beginning or, respectively, the ending of
one entire gait cycle. Individual steps were then interpolated
from 0 to 100%. Furthermore, gait initiation and termina-
tion steps were excluded, due to their kinematics differing
from steady-state walking. The deviation between the depth
camera-based estimation (αCLT) and the reference IMU was
calculated as shank angle error |αREF−αCLT| for each percent
of the gait cycle. Where possible, mean and standard devia-
tion over the entire gait cycle were calculated and reported.

4.1 Static performance

The goal of the static performance experiment was to evalu-
ate the performance of the proposed algorithm over the entire
gait cycle. As the depth camera had a very narrow field of
view (62◦ horizontal x 45◦ vertical, taken from the product’s
datasheet), parameters of the contralateral leg were “track-
able” only for a small part of the total gait cycle, as it was
out of view for the rest of the time. In order to evaluate our
approach over the entire gait cycle, the wearable support, con-
taining the depth camera and the IMU, was placed in front of a
commercial treadmill, so that the participant’s contralateral
shank was constantly in view. The incline of the treadmill
was set to 1% for all experiments, which is considered to
be the same resistance level as an outdoor surface without
incline [53]. Walking speed was defined as slow (0.5 km/h),
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Fig. 5 Static performance visualization of CoLiTrack at medium walk-
ing speed. Top diagram depicts the mean and the standard deviation of
the αCLT and αREF for one participant (N=1) and 30 steps (n=30). Bot-
tom diagram shows the corresponding shank angle error |αREF −αCLT|
as box-plots depicting the minimum to maximum, the lower to upper
quartile and the median error for each percent of the gait cycle. The
mean error at medium walking speed was calculated to be 1.8 ± 1.4◦

Table 1 Static performance of CoLiTrack

N=1 / n=30 % of Gait cycle Shank angle error (deg)

Speed Min/max x / σ Min/max x / σ

Slow 100/100 100/0 1.4e−4/09.3 1.4/1.2

Medium 100/100 100/0 4.4e−4/11.3 1.8/1.4

High 100/100 100/0 3.2e−5/14.1 3.4/1.9

medium (1.0 km/h) and high (1.5 km/h), corresponding to the
gait speed determined for amputees with a low mobility grade
[54], which is slower than healthy subjects’ walking speed.
The second (reference) IMU was mounted in a modified sup-
port stocking on the participant’s contralateral (right) shank,
as shown in Fig. 3a. In this experiment, the point cloud trans-
formation step was not necessary because the camera did not
move. However, the input scene was cropped to the area of
the (contralateral) leg of interest.

This experiment was carried out with one participant
(N=1) at all three walking speeds (slow, medium and high).
A total of 30 steps (n=30) was extracted from each walking
speed level. As shown in Fig. 5, the CoLiTrack estimations
corresponded closely to the reference measurements. The
individual box-plots—median, lower and upper quartile, as
well as the minimum to maximum range—depict the corre-
sponding tracking error for each percent of the gait cycle. The
mean error for medium walking speed was about 1.8±1.4◦.
Results for the other walking speeds were summarized in
Table 1. The highest mean error of 3.4±1.9◦ was measured
at high walking speed.

4.2 Dynamic performance

The goal of the dynamic performance experiment was to
determine how the accuracy and the tracking range of our
CoLiTrack method might vary across different walking
speeds. Therefore, our system was tested by five participants
on a treadmill. Parameters were set as previously in the static
test—walking speed levels of slow, medium and high at an
incline of 1%. The wearable support (depth camera and IMU
combination) was mounted on the ipsilateral (left) shank of
the participant, and a second (reference) IMU was installed
in a modified support stocking on the contralateral (right)
shank, as shown in Fig. 3a. To begin, offset calibration was
done for each participant in an upright standing position with-
out movement. These parameters were stored and used for
all subsequent experiments.

This experiment was carried out with five participants
(N=5) at all three walking speeds (slow, medium and high).
Instrumentation and calibration took less than 10 minutes
for all of them. For the statistical evaluation, a total of 150
steps were combined, 30 steps per speed level (n=30) from
each participant (N=5). The dynamic test revealed a track-
able range of about one sixth of the total gait cycle, coinciding
with the end of the swing phase, when the heel strike initi-
ates the next step, as indicated in Fig. 1. The results from
the dynamic test at medium walking speed are shown in
Fig. 6. With our CoLiTrack method, it was possible to esti-
mate the contralateral shank angle from about 97–14% of
the gait cycle. For some steps, tracking was even possible for
longer periods—up to 28% of the entire cycle, as shown in
the magnified area of the plot. Although the maximum esti-
mation error for all individual steps at medium walking speed
was 13.7◦, the mean estimation error was only 2.4±2.0◦. The
highest mean error of 2.8±2.1◦ was measured at slow walk-
ing speed. Table 2 reports the results for the other walking
speeds, showing similar values for all three speed levels. Our
claim that the proposed method works independently from
the walking speed was thus confirmed.

The averaged computation time for the overall process of
CoLiTrack was 50 ms: Data read-in from depth camera and
IMUs took about 10 ms, preprocessing about 25 ms and fit-
ting, finally, the remaining 15 ms. The processing time of
RANSAC, however, was almost negligible. Therefore, pro-
cessing speed can be as high as 20 frames/s.

4.3 Real-world performance

Finally, the goal of the third experiment was to validate the
real-world performance of our CoLiTrack approach, as this
is a crucial factor for a successful implementation in a future
product. Therefore, an online walking test was administered
to evaluate the algorithm behavior with unknown objects in
the camera’s field of view and to qualify the estimation per-
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Fig. 6 Dynamic performance visualization of CoLiTrack at medium
walking speed. Top diagram depicts the mean and the standard deviation
of the αCLT and αREF for all five participants (N=5) and 30 steps (n=30)
each. The x-axis was shifted for a better visualization. Bottom diagram
magnifies the total tracking area and shows 10 randomly taken curves
out of all 150 steps. The mean error at medium walking speed was
calculated to be 2.4◦

Table 2 Dynamic performance of CoLiTrack

N=5 / n=30 % of Gait cycle Shank angle error (deg)

Speed Min/max x / σ Min/max x / σ

Slow 7/29 16.7/4.6 4.7e−3/16.9 2.8/2.1

Medium 6/28 17.5/4.4 1.6e−3/13.7 2.4/2.0

High 9/26 18.4/3.8 1.0e−3/14.1 2.4/1.9

formance in other types of terrains, such as up/down ramps or
stairs. The instrumentation for the real-world test was identi-
cal to the dynamic experiment (wearable support on the left
leg and reference IMU on the right leg), apart from the laptop
for data acquisition, which was carried in a backpack on the
paticipant’s back.

This experiment was carried out with one participant
(N=1) at a self-selected walking speed, starting with normal
walking on level ground, before going into other terrains, as
shown in Fig. 7. Level-ground walking led mostly to results
similar to the treadmill evaluation. Gait initiation and termi-
nation steps were successfully tracked, too. However, due to
the variability of the walking speed, there was no statisti-
cal evaluation carried out. If the participant walked too fast,
tracking failed due to the limited update rate of a maximum
of 20 frames/s.

As long as the contralateral leg was the closest object in the
depth camera’s field of view, unknown other obstacles were
successfully suppressed. If the leg was out of view, nearby
objects such as banisters or even another person standing in
front of the participant occasionally led to misclassifications.

Fig. 7 Visualization of terrain changes from level ground into up/down
ramp and stairs. Depth Images were taken straight out of the depth
camera without any preprocessing. Color Images were taken with a
mobile phone and are for comparison only

Ground reflectance or clutter, however, had no influence on
the estimation performance.

As the camera positioning was optimized for level-ground
walking, going into other terrains increased the error. Transi-
tioning from level ground to inclines had almost no influence
on the estimation performance, while going from level
ground down a ramp reduced it. Still, trackability for ramps
worked better than for stairs: In the case of stairs, estima-
tion mostly failed, both upwards and downwards. Although
the contralateral leg was still in the camera’s field of view,
as shown in Fig. 7, wrinkles in the shoe area of the trousers
were the main cause for preventing a successful evaluation.
In comparison, when walking on level ground, more of the
proximal part of the shank was in view, where clothing was
normally less wrinkled, as depicted in Fig. 2.

5 Discussion

5.1 Advantages of the proposedmethod

This paper introduced a robust contralateral limb tracking
strategy for enhancing lower limb device control. To the best
of the authors’ knowledge, this is the first concept capable
of detecting contralateral shank parameters only from uni-
laterally worn sensors and in real time. Several qualities of
our proposed CoLiTrack might underline its effectiveness for
enhancing “next-generation prostheses.”

Firstly, the low computing time of only 50 ms is the most
important achievement of our concept to be mentioned. This
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allows an online evaluation up to 20 frames/s—fast enough
to be implemented in a prosthetic device. Compared to the
previous research by Hu et al. [40], this is a decrease by a
factor of 23. Furthermore, we do not need any prior network
training, as we use direct estimation strategies, guaranteeing
that the presented CoLiTrack system is user-independent.

In addition to high processing speed, the estimation
accuracy was also high. During the static experiment, the pre-
sented algorithm successfully tracked the leg over the entire
gait cycle with a maximum mean error of 3.4±1.9◦. Higher
errors were found in the area between 85 and 95% of the
duration of the gait cycle (Fig. 5). They are not caused by
estimation errors, but can rather be explained by imperfectly
synchronized data read-in procedures. The slight increase in
errors at the beginning of the gait cycle between 5 to 30%,
however, might be explained by a relative movement of the
trousers with respect to the shank. In the dynamic experi-
ment, tracking was possible for about one sixth of the full gait
cycle with a mean estimation error below 2.8±2.1◦. Given
that a joint angle difference of more than 5◦ is considered
a clinically significant difference for gait analysis [55], we
claim the accuracy of our CoLiTrack approach to be suf-
ficient. In comparison, results from instrumented crutches
[56] as well as from a smart walker (rollator + depth cam-
era) [57] using principal component analysis to estimate
the shank angle showed deviations of up to 10◦. Moreover,
our real-world experiment demonstrated that neither ground
reflectance nor clutter has an influence on CoLiTrack per-
formance. As long as the contralateral leg is in the field
of view of the camera, other (unknown) objects are elimi-
nated, which underlines the efficiency of our preprocessing
approach.

Finally, through the integration of depth camera and IMU
into a compact wearable support frame, instrumentation and
calibration of the system on the participants leg take less than
10 minutes. Since the kit is worn on the ipsilateral (prosthesis
side) leg, the additional sensors could be embedded directly
into a lower limb prosthetic device in the future.

5.2 Limitation and future work

Although the proposed method can estimate the contralateral
shank axis accurately and with only a short time delay, there
are some limitations, which need to be addressed.

Firstly, the trackable gait cycle range needs to be increased.
So far, our system successfully estimates the contralateral
shank axis in the range of one sixth of the full gait cycle, lim-
ited by the field of view of the camera. Several depth cameras
can be combined into a camera array, increasing the field of
view and, thus, the trackable range. Furthermore, the opti-
mal position and orientation of the system for other terrains,
such as stairs or ramps, need to be defined, in order to cap-
ture those trouser areas that are less wrinkled. In addition,

the preprocessing step of the depth data could be extended to
make it more robust against unknown objects. Simple solu-
tions, for example, could be to remove depth areas below
a minimum size or to select the region of interest based on
the last valid position of the shank. In this case, it would not
be necessary to implement more computationally intensive
approaches of background subtraction, in order to increase
the robustness of the algorithm. Nevertheless, in its current
form, the system is capable of tracking the contralateral shank
angle within its area of coverage. This information can be
used for the control of the next step. Additionally, it seems
possible to determine the heel strike with the help of the
shank’s angular velocity, as suggested in [58]. A positive
velocity indicates the swing phase, a negative velocity indi-
cates the stance phase. This would allow to derive the timing
of the heel strike, representing the beginning of the human
gait double support phase, as depicted in Fig. 1. Furthermore,
the distance between the contralateral shank and the ipsilat-
eral sensor—inherently detected by a depth camera, but not
utilized here—can be used to calculate spatial parameters,
such as step length [11].

Additionally, even though the system in its current form
is real time capable with an update rate of up to 20 frames/s,
practice has shown that higher walking speeds can lead to
misclassifications. Considering a walking speed of 3.6 km/h
for very active amputees [54] and assuming a step length
(heel strike to heel strike of the same leg) of 1 m, we can
expect one gait cycle per second. If we further resume that
CoLiTrack covers approximately one sixth of the gait cycle
and is sampling with an update rate of 20 frames/s, we may
calculate that no more than 3–4 images can be captured per
gait cycle. Although our approach does not rely on time his-
tory, we estimate that a minimum of 10 images is required for
use in real life in order to derive heel strike timing as men-
tioned above. This can be achieved by increasing the update
rate to at least 60 Hz. On the one hand, this is naturally con-
strained by the frame rate of the camera. For example, the
one used in our study is limited to 45 frames/s according to
the manufacturer’s data sheet. On the other hand, calculation
time needs to be reduced even further. This can be done by
converting MATLAB code into C++ programs and running
it on dedicated vision processors.

Finally, the depth camera used in our work is also restricted
by the requirement of having an unobstructed field of view.
Although sensor positioning would allow an implementation
directly into a prosthetic device, clothing or prosthetic cov-
ers cannot be worn above it. Instead, high-frequency super
near-field radar sensors are able to “look through” them. For
example, Google’s radar-based gesture-sensing technology
(Project Soli) allows a touchless interaction with their new
smartphone Pixel 4 [59]. Therefore, the use of these sensors
should be considered in future work.
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6 Conclusion

In this work, we present a robust real-time leg tracking
method called CoLiTrack for improved lower limb prosthetic
device control. A depth camera and an IMU are placed on the
ipsilateral (prosthetic) leg, capable of estimating the axis of
the contralateral (healthy residual) leg. We conducted three
experiments to validate our proposed CoLiTrack algorithm.
The evaluation of static performance demonstrated a tracka-
bility of the shank axis throughout the entire gait cycle with a
mean error of less than 3.4±1.9◦ for one participant. Dynamic
performance was evaluated with five participants wearing
the sensor kit while walking on a treadmill at three different
speeds. This resulted in a mean trackable range of one sixth
of the entire gait cycle, since the leg is out of the camera’s
field of view for the remaining time. The overall processing
time of the presented CoLiTrack system took less than 50 ms,
and the mean estimation errors for all walking speed levels
were below 2.8±2.1◦. Finally, the real-world performance
testing with one participant demonstrated robustness against
ground reflectance or clutter, but showed the limitations of
the approach in terms of walking speed and terrain varia-
tions. Our immediate plan is to enlarge the trackable range
by increasing the field of view, as well as to reduce the pro-
cessing time even further, in order to use the residual healthy
leg information in movement-dependent control applications
of “next-generation prostheses.”
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[80] M. Goršič, R. Kamnik, L. Ambrožič, N. Vitiello, D. Lefeber, G. Pasquini, and M. Munih,
“Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis,”
Sensors (Basel), vol. 14, no. 2, pp. 2776–2794, 2014.

[81] A. Parri, E. Martini, J. Geeroms, L. Flynn, G. Pasquini, S. Crea, R. M. Lova, D. Lefeber,
R. Kamnik, M. Munih, and N. Vitiello, “Whole Body Awareness for Controlling a Robotic
Transfemoral Prosthesis,” Frontiers in Neurorobotics, vol. 11, no. 25, 2017.

[82] B. Hu, E. Rouse, and L. Hargrove, “Fusion of Bilateral Lower-Limb Neuromechanical
Signals Improves Prediction of Locomotor Activities,” Frontiers in Robotics and AI, vol. 5,
2018.

[83] B. H. Hu, E. J. Rouse, and L. J. Hargrove, “Using bilateral lower limb kinematic and
myoelectric signals to predict locomotor activities: A pilot study,” in 2017 8th International
IEEE/EMBS Conference on Neural Engineering (NER), 2017, pp. 98–101.

[84] B. Hu, E. Rouse, and L. Hargrove, “Benchmark Datasets for Bilateral Lower-Limb Neu-
romechanical Signals from Wearable Sensors during Unassisted Locomotion in Able-Bodied
Individuals,” Frontiers in Robotics and AI, vol. 5, 2018.

[85] N. E. Krausz, B. H. Hu, and L. J. Hargrove, “Subject- and Environment-Based Sensor
Variability for Wearable Lower-Limb Assistive Devices,” Sensors, vol. 19, pp. 4887–4887,
2019.

161



LIST OF REFERENCES

[86] F. Zhang, T. Yan, and M. Q. Meng, “Gait Phase Recognition Based on A Wearable Depth
Camera*,” in 2018 IEEE International Conference on Information and Automation (ICIA),
Aug 2018, pp. 756–760.

[87] G. G. Scandaroli, G. A. Borges, J. Y. Ishihara, M. H. Terra, A. F. D. Rocha, and F. A.
de Oliveira Nascimento, “Estimation of Foot Orientation with Respect to Ground for an
Above Knee Robotic Prosthesis,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009, pp. 1112–1117.

[88] T. Ishikawa and T. Murakami, “Real-Time Foot Clearance and Environment Estimation
Based on Foot-Mounted Wearable Sensors,” 10 2018, pp. 5475–5480.

[89] B. Kleiner and D. Cesmeci, “D8.4 - Foresighted Control of Active Foot Prostheses,” in SEN-
SOR+TEST Conferences 2011, Nürnberg, ser. D8 - Medical III, vol. Proceedings SENSOR
2011, 2011, pp. 669 –672.

[90] F. Zhang, Z. Fang, M. Liu, and H. Huang, “Preliminary Design of a Terrain Recognition
System,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, vol. 2011, 2011, pp. 5452–5455.

[91] X. Zhang, D. Wang, Q. Yang, and H. Huang, “An Automatic and User-Driven Training
Method for Locomotion Mode Recognition for Artificial Leg Control,” in 2012 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, vol.
2012, 2012, pp. 6116–6119.

[92] D. Wang, L. Du, and H. Huang, “Terrain Recognition Improves the Performance of Neural-
Machine Interface for Locomotion Mode Recognition,” in 2013 International Conference on
Computing, Networking and Communications (ICNC), 2013, pp. 87–91.

[93] M. Liu, D. Wang, and H. Huang, “Development of an Environment-Aware Locomotion
Mode Recognition System for Powered Lower Limb Prostheses,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 24, no. 4, pp. 434–443, 2016.

[94] S. Carvalho, J. Figueiredo, and C. P. Santos, “Environment-Aware Locomotion Mode
Transition Prediction System,” in 2019 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC), April 2019, pp. 1–6.

[95] S. Sahoo, M. Maheshwari, D. K. Pratihar, and S. Mukhopadhyay, “A Geometry Recognition-
Based Strategy for Locomotion Transitions’ Early Prediction of Prosthetic Devices,” IEEE
Transactions on Instrumentation and Measurement, vol. 69, no. 4, pp. 1259–1267, 2019.

[96] H. A. Varol and Y. Massalin, “A Feasibility Study of Depth Image Based Intent Recognition
for Lower Limb Prostheses,” in 2016 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), 2016, pp. 5055–5058.

162



[97] Y. Massalin, M. Abdrakhmanova, and H. A. Varol, “User-Independent Intent Recogni-
tion for Lower Limb Prostheses Using Depth Sensing,” IEEE Transactions on Biomedical
Engineering, vol. 65, no. 8, pp. 1759–1770, 2018.

[98] B. Laschowski, W. McNally, A. Wong, and J. McPhee, “Preliminary Design of an Environ-
ment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons,”
in 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), June 2019,
pp. 868–873.

[99] T. Yan, Y. Sun, T. Liu, C. Cheung, and M. Q. Meng, “A Locomotion Recognition System
Using Depth Images,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), May 2018, pp. 6766–6772.

[100] J. P. Diaz, R. L. D. Silva, B. Zhong, H. H. Huang, and E. Lobaton, “Visual Terrain
Identification and Surface Inclination Estimation for Improving Human Locomotion with
a Lower-Limb Prosthetic,” in 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), 2018, pp. 1817–1820.

[101] N. E. Krausz, T. Lenzi, and L. J. Hargrove, “Depth Sensing for Improved Control of
Lower Limb Prostheses,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 11, pp.
2576–2587, 2015.

[102] B. Kleiner, N. Ziegenspeck, R. Stolyarov, H. Herr, U. Schneider, and A. Verl, “A Radar-
Based Terrain Mapping Approach for Stair Detection Towards Enhanced Prosthetic Foot
Control,” in 2018 7th IEEE International Conference on Biomedical Robotics and Biomecha-
tronics (Biorob), 2018, pp. 105–110.

[103] K. Zhang, C. Xiong, W. Zhang, H. Liu, D. Lai, Y. Rong, and C. Fu, “Environmental
Features Recognition for Lower Limb Prostheses Toward Predictive Walking,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 3, pp. 465–476,
2019.

[104] K. Zhang, W. Zhang, W. Xiao, H. Liu, C. W. D. Silva, and C. Fu, “Sequential Decision
Fusion for Environmental Classification in Assistive Walking,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 27, no. 9, pp. 1780–1790, 2019.

[105] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, ser. Adaptive computation and
machine learning. Cambridge, Massachusetts London: The MIT Press, 2016.

[106] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography,” Commun. ACM,
vol. 24, no. 6, pp. 381–395, 1981.

[107] E. Zheng, S. Manca, T. Yan, A. Parri, N. Vitiello, and Q. Wang, “Gait Phase Estimation
Based on Noncontact Capacitive Sensing and Adaptive Oscillators,” IEEE Transactions on
Biomedical Engineering, vol. 64, no. 10, pp. 2419–2430, 2017.

163



LIST OF REFERENCES

[108] F. Zhang, M. Liu, S. D. Harper, M. Lee, and H. Huang, “Engineering Platform and Experi-
mental Protocol for Design and Evaluation of a Neurally-controlled Powered Transfemoral
Prosthesis,” Journal of Visualized Experiments, vol. 89, 2014.

[109] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B. Englehart, “Con-
tinuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular-
Mechanical Fusion,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 10, pp.
2867–2875, 2011.

[110] R. Duda and P. Hart, “Use of the Hough transformation to detect lines and curves in
pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15, 1972.

[111] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual Categorization with
Bags of Keypoints,” in Workshop on Statistical Learning in Computer Vision, ECCV, 2004,
pp. 1–22.

[112] “Triton Vertical Shock Prosthetic Foot. Instructions for Use,” accessed 14 Sept 2021.
[Online]. Available: https://shop.ottobock.us/media/pdf/647G674-INT-11-1707w.pdf

[113] M. Grimmer, J. Zeiss, F. Weigand, G. Zhao, S. Lamm, M. Steil, and A. Heller, “Lower
limb joint biomechanics-based identification of gait transitions in between level walking and
stair ambulation,” PLoS One, vol. 15, no. 9, 2020.

[114] D. Grimes, W. Flowers, and M. Donath, “Feasibility of an active control scheme for above
knee prostheses,” Journal of Biomechanical Engineering, vol. 99, pp. 215–221, 1977.

[115] F. Dadashi, B. Mariani, S. Rochat, C. J. Büla, B. Santos-Eggimann, and K. Aminian,
“Gait and Foot Clearance Parameters Obtained Using Shoe-Worn Inertial Sensors in a Large-
Population Sample of Older Adults,” Sensors (Basel), vol. 14, no. 1, pp. 443–457, 2013.

[116] “Genium. Set-up Guide,” accessed 9 Sept 2019. [Online]. Available: https:
//shop.ottobock.us/media/pdf/647G868-EN-02-1210w.pdf

[117] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced Computer Vision With Microsoft Kinect
Sensor: A Review,” IEEE Transactions on Cybernetics, vol. 43, no. 5, pp. 1318–1334, 2013.

[118] M. Scudellari, “Self-driving wheelchairs debut in hospitals and airports [News],” IEEE
Spectrum, vol. 54, no. 10, 2017.

[119] D. Moloney, B. Barry, R. Richmond, F. Connor, C. Brick, and D. Donohoe, “Myriad 2:
Eye of the computational vision storm,” in 2014 IEEE Hot Chips 26 Symposium (HCS), 2014,
pp. 1–18.

[120] “CamBoard pico flexx Datasheet,” accessed 26 Sept 2019. [Online]. Avail-
able: https://pmdtec.com/picofamily/assets/datasheet/Data-sheet-PMD_RD_Brief_CB_pico_
flexx_V0201.pdf

164

https://shop.ottobock.us/media/pdf/647G674-INT-11-1707w.pdf
https://shop.ottobock.us/media/pdf/647G868-EN-02-1210w.pdf
https://shop.ottobock.us/media/pdf/647G868-EN-02-1210w.pdf
https://pmdtec.com/picofamily/assets/datasheet/Data-sheet-PMD_RD_Brief_CB_pico_flexx_V0201.pdf
https://pmdtec.com/picofamily/assets/datasheet/Data-sheet-PMD_RD_Brief_CB_pico_flexx_V0201.pdf


[121] “SoftKinetic DS325 Datasheet,” accessed 26 Sept 2019. [Online]. Avail-
able: https://www.sony-depthsensing.com/Portals/0/Download/WEB_20120907_SK_
DS325_Datasheet_V2.1.pdf

[122] C. Zech, A. Hulsmann, M. Schlechtweg, S. Reinold, C. Giers, B. Kleiner, L. Georgi,
R. Kahle, K.-F. Becker, and O. Ambacher, “A compact W-band LFMCW radar module with
high accuracy and integrated signal processing,” in 2015 European Microwave Conference
(EuMC), 2015, pp. 554–557.

[123] U. Schneider, B. Kleiner, H. V. Rosenberg, and B. Budaker, “Aktive Prothesenvorrich-
tung mit Terrainerfassung und Verfahren zum Steuern einer aktiven Prothesenvorrichtung,”
EP2448527B1, May 9, 2012.

[124] N. St-Onge and A. G. Feldman, “Interjoint coordination in lower limbs during different
movements in humans,” Experimental Brain Research, vol. 148, no. 2, pp. 139–149, 2003.

[125] J. L. McGinley, R. Baker, R. Wolfe, and M. E. Morris, “The reliability of three-dimensional
kinematic gait measurements: A systematic review,” Gait Posture, vol. 29, no. 3, pp. 360–369,
2009.

[126] S. Page, M. M. Martins, L. Saint-Bauzel, C. P. Santos, and V. Pasqui, “Fast embedded
feet pose estimation based on a depth camera for smart walker,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 4224–4229.

[127] S. Pasinetti, M. M. Hassan, J. Eberhardt, M. Lancini, F. Docchio, and G. Sansoni, “Per-
formance Analysis of the PMD Camboard Picoflexx Time-of-Flight Camera for Markerless
Motion Capture Applications,” IEEE Transactions on Instrumentation and Measurement,
vol. 68, no. 11, pp. 4456–4471, 2019.

[128] M. Grimmer, K. Schmidt, J. E. Duarte, L. Neuner, G. Koginov, and R. Riener, “Stance and
Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking,”
Frontiers in Neurorobotics, vol. 13, p. 57, 2019.

[129] “TDK News Release: Two new high-performance ultrasonic ToF sensors,” accessed 18 Jan
2022. [Online]. Available: https://www.tdk.com/en/news_center/press/20220106_04.html

165

https://www.sony-depthsensing.com/Portals/0/Download/WEB_20120907_SK_DS325_Datasheet_V2.1.pdf
https://www.sony-depthsensing.com/Portals/0/Download/WEB_20120907_SK_DS325_Datasheet_V2.1.pdf
https://www.tdk.com/en/news_center/press/20220106_04.html

	Introduction
	Lower Limb Prosthetics
	Loss of the Lower Limbs
	Modern Lower Limb Prostheses
	Control of Lower Limb Prostheses

	Environmental Sensing Technologies
	Physical Foundations
	Time-of-Flight Principle

	Aim of Work

	Methods
	Current State of Research
	Snowballing on Reference
	Systematic Database Search

	Depth Camera-based Contralateral Limb Tracking
	System Overview
	Image-Processing Chain
	Experimental Plan

	Ultrasonic-based Contralateral Limb Ranging
	System Overview
	Signal-Processing Chain
	Experimental Plan

	Enhanced Prosthesis Control System
	System Integration
	Clinical Pilot Study
	Experimental Plan


	Results
	Current State of Research
	Implicit Environmental Sensing
	Explicit Environmental Sensing

	Open-Loop Depth Camera Tracking
	Static Evaluation
	Dynamic Evaluation
	Real-World Evaluation

	Open-Loop Ultrasonic Ranging
	Static Evaluation
	Behavior Simulation
	Dynamic Evaluation

	Closed-Loop Prosthesis System
	Optimized Parameters
	Biomechanical Analysis
	Satisfaction Questionnaire


	Discussion
	Current State of Research
	Control Strategy Landscape
	Development Considerations

	Open-Loop Depth Camera Tracking
	Advantages
	Limitations
	Future Work

	Open-Loop Ultrasonic Ranging
	Advantages
	Limitations
	Future Work

	Closed-Loop Prosthesis System
	Advantages
	Limitations
	Future Work


	Conclusion
	Appendix
	Relying on more sense for enhancing lower limb prostheses control: a review
	Real-time limb tracking in single depth images based on circle matching and line fitting

	Author's Publications
	List of References

