
Worst-Case Execution Time
Analysis of OPC UA PubSub on a

Time-Predictable Processor

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Andreas Kirchberger, BSc.
Matrikelnummer 0626507

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dr. Wolfgang Kastner
Mitwirkung: Dr.techn. Thomas Frühwirth

Dipl.-Ing. Patrick Heinrich Denzler

Wien, 22. Februar 2022
Andreas Kirchberger Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Worst-Case Execution Time
Analysis of OPC UA PubSub on a

Time-Predictable Processor

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Andreas Kirchberger, BSc.
Registration Number 0626507

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dr. Wolfgang Kastner
Assistance: Dr.techn. Thomas Frühwirth

Dipl.-Ing. Patrick Heinrich Denzler

Vienna, 22nd February, 2022
Andreas Kirchberger Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Andreas Kirchberger, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. Februar 2022
Andreas Kirchberger

v

Danksagung

Ich möchte mich an dieser Stelle zuerst bei Wolfgang Kastner dafür bedanken, dass ich
nach meiner Bachelorarbeit in diesem Themengebiet die Möglichkeit erhalten habe, im
Zuge meiner Masterarbeit mein Wissen in diesem Bereich weiter zu vertiefen. Auch möchte
ich mich dafür bedanken, dass ich im Zuge dieser Masterarbeit die Möglichkeit erhalten
habe, an zwei Publikationen mitwirken zu können und dadurch wertvolle Erfahrungen in
diesem spannenden Prozess gesammelt habe.

Ein großer Dank gilt auch Martin Schöberl von der Technischen Universität Dänemark
(DTU) für die Unterstützung bei Fragen zur verwendeten Entwicklungsumgebung und
Eleftherios Kyriakakis für die Unterstützung bei der Lösung eines speziellen Problems
mit der Hardware.

Besonders bedanken möchte ich mich auch bei meinen zwei Betreuern Thomas Frühwirth
und Patrick Denzler für die großartige Unterstützung, Motivation und fachliche Expertise.

Weiter möchte ich auch meinen Eltern und Geschwistern danken, die mich immer in
meinen Plänen unterstützt haben, mir Halt gegeben haben und immer ein offenes Ohr für
mich hatten. Ein besonderer Dank gebührt meiner Freundin, die mich immer unterstützt
und motiviert hat, trotz ihrer eigenen Doppelbelastung mit Job und Masterstudium.

vii

Kurzfassung

Die industrielle Automatisierungspyramide erfährt derzeit einen Wandel hin zum indus-
triellen Internet der Dinge, mit einem höheren Integrationsgrad und einem nahtlosen
Kommunikationsfluss zwischen allen Ebenen. Die Zahl der Systeme mit Echtzeitanforde-
rungen an die Maschine-zu-Maschine-Kommunikation nimmt ständig zu. Insbesondere im
Bereich der Fertigung steigt die Dichte der Systeme mit Echtzeitanforderungen stark an.
Die aufkommenden Technologien Time-Sensitive Networking (TSN) und OPC Unified
Architecture (OPC UA) PubSub werden wahrscheinlich einen großen Beitrag zur Lösung
neuer Herausforderungen leisten, die sich in diesem Anwendungsbereich stellen. TSN
wurde entwickelt, um eine Echtzeitkommunikation auch unter hoher Netzwerklast zu ge-
währleisten, OPC UA hingegen wurde nicht speziell für Echtzeitanforderungen entwickelt,
so dass das zeitliche Verhalten des OPC UA-Stacks unbekannt bleibt.

In dieser Arbeit wird der Weg von der Erstellung allgemeiner Worst Case Execu-
tion Time (WCET) Code-Transformationsregeln, zur Anwendung dieser Regeln auf
einen bestehenden Open-Source OPC UA PubSub-Stack, bis hin zur statischen WCET-
Ausführungszeitanalyse vorgestellt. Die WCET-Analyse wird auf der Grundlage des
open62541 OPC UA PubSub-Stack jeweils für ein OPC UA-Publisher- und ein OPC UA-
Subscriber-Beispiel mit Basisfunktionalität für den Datenaustausch durchgeführt. Für die
Evaluierung werden zwei T-CREST-Plattformen, die direkt über Ethernet miteinander ver-
bunden sind, als zeitlich vorhersehbarer Plattform verwendet, um die End-to-End-Latenz
zu bewerten. Für die statische Analyse von WCET wird das zur T-CREST-Plattform
gehörende Toolset verwendet. Die dynamische WCET-Analyse durch Messung wird mit
einem Logikanalysator durchgeführt und ergänzt die statischen WCET Zeitmessergebnisse
um die Teile der End-to-End-Latenz, die nicht statisch analysiert werden können.

ix

Abstract

The industrial automation pyramid is currently experiencing a transformation towards
the Industrial Internet of Things (IIoT), with a higher level of integration and a seamless
communication flow among all levels. The number of systems with real-time requirements
for machine-to-machine communication is constantly increasing. Especially towards the
shop-floor, the density of systems with real-time requirements is increasing. The emerging
Time-Sensitive Networking (TSN) and OPC Unified Architecture (OPC UA) PubSub
technologies are likely to contribute greatly to solving new challenges that arise in this
application area. TSN was developed to ensure real-time communication, even under
high network load, OPC UA on the other hand wasn’t especially developed to meet
real-time requirements. Thus, timely behaviour of the OPC UA stack remains unknown.

This thesis presents a path from the creation of general Worst Case Execution Time
(WCET) code transformation rules, over the application of these rules to an existing
open-source OPC UA PubSub stack, to static WCET execution time analysis. The
WCET analysis process is applied to the open62541 OPC UA PubSub stack for an OPC
UA publisher- and an OPC UA subscriber-example with basic functionality for data
exchange. For the evaluation, two T-CREST platforms, that are directly connected over
Ethernet with each other, are used as a time-predictable platform to evaluate the end-to-
end latency. For static WCET analysis, the toolset that is part of the T-CREST platform
is utilized. The dynamic WCET analysis, by means of measurement, is performed with a
logic analyzer and complements the static WCET timing results with the parts of the
end-to-end latency that cannot be statically analyzed.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and problem statement . 2
1.2 Delimitations . 4
1.3 Structure of the work . 5

2 Technical background and related work 7
2.1 Definition of realtime . 7
2.2 WCET analysis . 8
2.3 T-CREST . 10

2.3.1 Platform tools . 10
2.3.2 Patmos . 12

2.4 OPC Unified Architecture . 12
2.4.1 Introduction to OPC UA . 12
2.4.2 OPC UA PubSub . 15

2.5 Related work . 17

3 Methodological approach 21
3.1 Design and creation methodology . 21
3.2 Design and creation for WCET analysis 22
3.3 Timeline . 23

4 Code transformation for WCET analysis 25
4.1 Code transformation process . 25

4.1.1 Port application to new platform 26
4.1.2 Generate call graph and control flow graph 27
4.1.3 Apply code annotations . 28
4.1.4 Apply code transformations . 31

4.2 Code transformation example . 34

xiii

5 WCET analysis of OPC UA PubSub 39
5.1 End-to-end latency . 39
5.2 Adjusting the OPC UA Publisher . 41
5.3 Adjusting the OPC UA Subscriber . 42

6 Evaluation 43
6.1 Evaluation procedure . 43
6.2 Evaluation setup . 44
6.3 WCET measurement results . 46
6.4 End-to-end latency analysis . 48

7 Discussion 51

8 Conclusion 53
8.1 Findings . 53
8.2 Future work . 54

List of Figures 55

List of Tables 57

List of Algorithms 59

Acronyms 61

Bibliography 63

CHAPTER 1
Introduction

In the past, industrial automation systems were formed in a pyramid-like architecture with
complex Information Technology (IT) and Operational Technology (OT) components,
which consist of software and hardware [1]. Thereby, IT and OT covered fundamentally
different tasks and the differing requirements resulted in the development of specialized
Information and Communication Technology (ICT) for each domain. Modern communi-
cation technologies, however, aim at supporting both IT and OT requirements, a trend
known as IT/OT convergence or Industrial Internet of Things (IIoT) transformation.
Both, the traditional pyramid-like and the more modern IIoT architecture, are illustrated
in Figure 1.1 and briefly discussed in the following.

MES

SCADA

PLC

Devices

ERP

Le
ve

l 0
Se

ns
or

/A
ct

ua
to

r
Le

ve
l 1

Co
nt

ro
l

Le
ve

l 2
M

an
ag

em
en

t
Le

ve
l 3

O
pe

ra
tio

n
Le

ve
l 4

En
te

rp
ris

e

In
fo

rm
at

io
n

Te
ch

no
lo

gy
 (I

T)

IP
 C

om
m

un
ic

at
io

n

O
pe

ra
tio

na
l

Te
ch

no
lo

gy
 (O

T) IP
 C

om
m

un
ic

at
io

n

IIo
T

Tr
an

sf
or

m
at

io
n

Today

5 Layer Architecture
(Automation Pyramid)

Future

Cyber-Physical System (CPS) based
Automaton

R
ea

l T
im

e
Le

ve
l

Fl
ex

ib
ili

ty
an

d
IP

 C
om

m
un

ic
at

io
n

R
ea

l T
im

e
Le

ve
l Fl

ex
ib

ili
ty

 a
nd

 IP
 C

om
m

un
ic

at
io

n

Figure 1.1: Automation pyramid vs. IIoT architecture (adapted from [2], [1], [3])

1

1. Introduction

Devices and Programmable Logic Controllers (PLCs) form Level 0 and Level 1 of the
automation pyramid. Sensors and actuators of the lowest level are typically connected
with the overlying control level through industrial communication systems like Ether-
Cat or Profibus [4]. Time-critical control loops are mainly found in OT. Therefore,
communication and processing need to be timely predictable to meet defined deadlines.
Level 2 of the automation pyramid is the Supervisory Control and Data Acquisition
(SCADA) level, which manages the two layers below, performs control and monitor
tasks, and provides a Human Machine Interface (HMI). This last level of OT represents
the connection point to the IT with its Manufacturing Execution System (MES) and
Enterprise Resource Planning (ERP), which are part of the enterprise systems. Enterprise
systems are typically formed by servers and desktop PCs with off-the-shelf components
that communicate over the standard Internet Protocol (IP). The technology differences
between IT and OT lead to a gap between these two.

Today’s industrial automation systems are facing a transformation from the traditional
5-layer automation pyramid towards Industry 4.0 with its IIoT architecture [5]. IIoT
utilizes a more uniform IP-based communication scheme with fewer gateways based on
the Internet of Things (IoT) paradigm with a flat architecture of interconnected devices.
Emerging technologies like fog computing providing computing power near to the devices
and Time-Sensitive Networking (TSN) enabling deterministic networking will help to
close the IT/OT gap [6]. The still relatively new OPC Unified Architecture (OPC UA)
PubSub extension for publish-subscribe communication in combination with TSN has
the possibility to pave the way towards flexible, real-time, Machine-to-Machine (M2M)
communication [5].

1.1 Motivation and problem statement

Modern industrial automation systems include a large variety of devices and systems,
ranging from small field devices over complex machinery to management systems like MES
and ERP. Automating such systems requires not only real-time data transmission but also
sophisticated M2M communication protocols. This is where OPC UA comes into play,
which combines data transmission and information modeling in a single communication
standard. In particular the publish-subscribe communication scheme introduced by the
OPC UA PubSub Specification was identified as a viable approach to add real-time
capabilities to OPC UA [7].

Furthermore, major requirement of OT is real-time data transmission for a variety of
applications like closed-loop process control and safety systems. Therefore, a communica-
tion network that supports IT and OT tasks needs to ensure that low priority IT traffic
does not compromise the timeliness of real-time traffic in the OT domain under any
circumstances. TSN was specially designed for this purpose and supports mixed-criticality
traffic via a shared Ethernet network.

2

1.1. Motivation and problem statement

TSN is limited to the data link layer 2 of the OSI model and is aimed to replace it.
OPC UA extends from the session layer 5 to the application layer 7 in the OSI model.
Figure 1.2 presents the layers in the OSI model that are covered by TSN and OPC UA,
respectively.

OPC UA

UDP TCP

IP

IEEE 802.1
Today

IEEE 802.1 TSN
Future

e.g. 100Mbit/s, 1Gbit/s

7: Application

6: Presentation

5: Session

4: Transport

3: Network

2: Data link

1: Physical

Figure 1.2: TSN and OPC UA in the OSI model (adapted from [8])

In contrast to OPC UA PubSub, TSN was specially designed to meet timing constraints.
Therefore mainly the Worst Case Execution Time (WCET) analysis of the OPC UA
stack, especially the PubSub part, is a remaining challenge towards end-to-end real-time
communication. In other domains like automotive or avionic systems, the WCET is a
timing measure that defines a program’s execution time characteristic [9]. The most
common methods for determining this execution time are static program analysis by
means of calculation or dynamic program analysis by means of measurement.

This thesis presents a static WCET analysis of the OPC UA PubSub stack using the open-
source open62541 source code for software and the T-CREST platform with its toolset
and Patmos processor for a time-predictable hardware platform for the implementation.
For verification, the static static WCET analysis results are also dynamically analyzed
by measurement to verify the plausibility of the results. This WCET measurement is
done on a complete end-to-end system with a publisher and a subscriber by using two
time-predictable platforms. Applying static program analysis to existing software, which
was not designed for WCET analysis, is a particular challenge and a systematic process
to address this task is an additional contribution of this thesis.

3

1. Introduction

Overall, this work presents the first step towards a time-predictable OPC UA PubSub
implementation and forms the basis for further research and a possible communication over
TSN. Figure 1.3 illustrates how the WCET-analyzed OPC UA publisher and subscriber
can be connect via a TSN network to achieve real-time end-to-end data transmission in
modern automation systems.

WCET WCETNetwork latency

End-to-end latency

Figure 1.3: End-to-end latency

1.2 Delimitations
The combination of the T-CREST time-predictable platform, the open62541 OPC UA
PubSub stack, and TSN as a communication network in combination with WCET analysis
is a very complex task, which cannot be solved in its entirety in this thesis. Therefore,
some limitations of the work are listed in the following.

The open-source OPC UA stack open62541 was selected for the implementation of the
OPC UA PubSub subscriber and publisher. This stack implements a rich set of data
types that are defined in the OPC UA specification. This great selection of data types
and the extensive use of recursive functions lead to difficulties in the calculation of the
WCET. Therefore some functionality, primarily data types and special functions (e.g.
JSON encoding, data encryption, or keyframes and delta frames) that typically are not
used in real-time systems, were disabled in the stack. Additionally, the number of data
elements that can be transmitted in a single OPC UA PubSub message was limited to
get a tight WCET bound.

The time-predictable platform T-CREST was chosen for the implementation, mainly
because of its included toolset for WCET analysis and because most of the T-CREST
technology is available as open-source software [10]. It needs to be mentioned that the
proposed concept was specifically developed for this platform. However, compatibility

4

1.3. Structure of the work

with standard computing platforms has been preserved and it is still possible to run the
same code also on standard Linux systems, however without real-time functionality.

TSN enables deterministic real-time communication with a bounded maximum latency
over Ethernet. To guarantee a bounded end-to-end latency in a network setup with many
devices, a TSN switch is necessary. As TSN is not yet implemented in the T-CREST
project, the development platforms are instead connected through a point-to-point
Ethernet connection. This limitation ensures a uniform latency for the communication as
no other devices and services are communicating on the network in the evaluation setup.

1.3 Structure of the work
The remaining chapters of this thesis are briefly summarized in the following.

• Chapter 2 – Technical background and related work: This chapter gives
a brief introduction into the technical background of the utilized technologies,
platforms, standards, and definitions. It covers the definition of real-time, WCET
analysis, the T-CREST project, the history of OPC UA, the relatively new OPC
UA PubSub specification, and scientific work related to this thesis.

• Chapter 3 – Methodological approach: The applied methodological approach
entitled „design and creation“ and the interrelationship are presented in this chapter.
Also, the timeline of this thesis is presented at this point.

• Chapter 4 – Code transformation for WCET analysis: This chapter presents
the code transformation process from porting applications to new platforms, over
call graphs, and control flow graphs, towards code transformation and annotation
rules. Finally, a small example application is presented, on which the previously
defined annotation and transformation rules are applied.

• Chapter 5 – WCET analysis of OPC UA PubSub: In this chapter, the
previously defined code transformation process is applied to the OPC UA PubSub
stack and results of the WCET analysis are presented.

• Chapter 6 – Evaluation: In this chapter, the evaluation procedure, the utilized
toolset, and the interrelationship within the toolchain are briefly described at
the beginning. In this part, the various intermediate file formats and the flash
process are also stated. Also, the utilized hardware, the measurement tools, and
the measurement approach are presented here. The evaluation results and the
end-to-end latency analysis are presented at the end of this chapter.

• Chapter 7 – Discussion: The difficulties that arose during the implementation
and evaluation are discussed at the beginning of this chapter. Furthermore, the
measured and calculated WCET results are discussed at this point.

5

1. Introduction

• Chapter 8 – Conclusion: This chapter covers the findings during the WCET
analysis of a OPC UA PubSub stack in this thesis. Future research questions that
arose during the implementation and evaluation process are covered in the last part
of this chapter and lay the ground for further research efforts.

6

CHAPTER 2
Technical background and related

work

The first section of this chapter presents the definition of real-time and its classification
into soft, firm, and hard real-time. The next section introduces the fundamentals of
the T-CREST Specific Targeted Research Project (STREP) project of the Technical
University of Denmark, the Patmos processor, and the WCET analysis toolset. The
following section gives a review of the history of OPC UA and an introduction into
the relatively new OPC UA PubSub specifications. In the last section of this chapter,
scientific work related to this thesis is presented.

2.1 Definition of realtime
In a real-time system not only the computational correctness of the results is of interest,
but the time when the result is produced is also important [11]. A constraint that is
important for real-time systems is the deadline. It describes the maximum time until
a result must be produced. The consequence of a missed deadline classifies real-time
systems into three categories [11], [12], [13]:

• Soft real-time: In a soft real-time system, there is no hard deadline, after which
the result gets useless. It can still have utility for the system, but it decreases over
time. This is illustrated in Figure 2.1 (a), which shows that the value of the result
decreases towards zero over time, after passing the deadline.

• Firm real-time: In a firm real-time system, occasionally missing a deadline causes
no economical damage or human harm, but the result has no utility for the system

7

2. Technical background and related work

thereafter. This sudden loss of value can be seen in Figure 2.1 (b). The value of
the data immediately drops to zero once the deadline has passed.

• Hard real-time: In a hard real-time system, meeting the deadline is of utmost
importance. Missing a deadline results in a failure. Results that arrive after the
deadline, even when they are computationally correct, have zero value. Missing a
deadline not only means a complete loss of the value, but it can also have a negative
effect, which can result in economical damage or human harm (cf. Figure 2.1 (c)).

Va
lue

Deadline

Time

Deadline

Va
lue

Time Time

Deadline

(a) Soft real-time (b) Firm real-time (c) Hard real-time

Va
lue

Figure 2.1: Comparison of soft, firm and hard real-time (adapted from [14])

For real-time systems, it is important that the execution time of tasks is known a
priori. The upper bound of this execution time is called Worst Case Execution Time
(WCET), and is typically defined for a program or program part on a specific platform.
This characteristic determines if a real-time system can meet its deadline under any
circumstances for which the system has been designed. Figure 2.2 shows the execution
times of an example program with different input data. The WCET defines the upper
bound for these execution times. One can also see that the calculated WCET is smaller
than the set deadline. Because of the different input data, the execution time is subject
to a certain amount of jitter. However, the execution time for any given in put data is
bound by the calculated WCET.

2.2 WCET analysis
Timing analysis is a crucial part of real-time systems design because strict timing
constraints need to be satisfied to meet the requirements of the controlled system [9].
The main target is to determine the timing behavior of systems or programs and to
find upper timing bounds. The execution time of a program typically varies with the
input data and other effects determined by the environment like previously executed
programs or the contents of caches of the processor. Figure 2.3 shows the distribution of
the execution times for different program runs. Two values are important in this context,
the Best Case Execution Time (BCET) forms the shortest execution time and the Worst
Case Execution Time (WCET) the longest execution time. In general, these values can
be determined either via dynamic or via static timing analysis techniques.

8

2.2. WCET analysis

Jitter

WCET Deadline

Execution time

In
pu

t d
at

a

Figure 2.2: Execution times for different input data

Di
str

ibu
tio

n
of

 tim
es

0

Lower
timing
bound

BCET WCET

Time
measured execution times

possible execution times

worst-case guarantee

Upper
timing
bound

Figure 2.3: Basic notions of timing analysis (adapted from [9])

A commonly used timing analysis approach in the industry is end-to-end time measurement
with varying input values and multiple test runs, also called dynamic analysis [15].
Timing measurements are typically performed by logic analyzers, oscilloscopes, in-circuit
emulators, or platform timers. This method can give an average timing range with a
rough determination of the WCET. However, complex programs with many execution
paths can lead to an underestimated WCET, because every run follows a single program
path without any guarantee to cover the longest path. Therefore, a safety margin needs to
be added to the highest measured execution time to ensure that the WCET is not set too
low. A drawback of the dynamic WCET analysis method is that adding a safety margin
to the WCET can lead to scheduling problems caused by over- or under-dimensioned
computing resources.

9

2. Technical background and related work

To meet the requirements of systems or programs with strict timing constraints (in
particular hard real-time systems) and complex execution paths, static timing analysis is
more suitable. Static timing analysis doesn’t execute the program, but rather statically
analysis the timing behavior of the program [15]. Tools for static WCET analysis can
generally be split into three parts: first, the program flow is analyzed to determine the
possible execution paths by generating a Control-Flow Graph (CFG) from the source
code or binary code. Next, the timings of the basic blocks of the CFG are analyzed and
calculated. Finally, the WCET is formed by a combination of the two previous steps and
evaluation of the longest execution path.

A key aspect of program flow analysis is determining loop bounds and finding the
maximum loop iteration count [16], because loop bounds have a major effect on the
WCET. Some loop bounds can be determined by advanced tools automatically, but
manual annotation of the loop bounds is often still required. In addition, automatic
program flow analysis may identify a longest path that is actually infeasible when studying
the semantics of the program and taking the input data values into account. Therefore,
static WCET analysis often requires manual effort to determine a correct but sufficiently
tight WCET.

2.3 T-CREST
Modern processors and many programming languages are optimized for the average
use-case. They use various techniques such as caches, dynamic frequency scaling, paging,
and code optimization to deliver a good user experience and fast response times for most
applications. However, at the same time, these optimization techniques led to a point
where it is infeasible to precisely determine the WCET of programs, as they may cause
pauses and stalls, e.g., if a cache miss occurs. To solve these problems, the T-CREST
project was launched. T-CREST is a STREP of the Technical University of Denmark
funded by the Seventh Framework Programme for research and technological development
(FP7) which was created by the European Union Commission. The project was supported
by several partners, including GMVIS Skysoft, AbsInt Angewandte Informatik, TU Wien,
Eindhoven University of Technology, Intecs, The Open Group, and the University of
York. The T-CREST project provides a set of tools including a compiler and WCET
analysis tools for static timing analysis. Another target of the T-CREST project is the
reduction of complexity and costs for systems with safety-critical requirements, whilst
gaining faster time-predictable execution times. As part of the T-CREST project, a
time-predictable processor named PATMOS was developed [17].

2.3.1 Platform tools
The T-CREST project comes with a rich toolset that handles the toolchain from com-
pilation to the calculation of the WCET bounds [10]. This toolchain is illustrated in
Figure 2.4. The starting point is the application code (C-Code) and, if applicable,

10

2.3. T-CREST

Application
code

Source code (C language)
System
libraries

Linked
bitcode

Relocatable
ELF

Final ELF

Program
Metainfo File (pml)

WCET result

Intermediate
representation
(LLVM bitcode)

platin wcet gold

Machine code
(Patmos ELF)llc

clang,
llvm-ld,
opt

Figure 2.4: T-CREST toolchain (adapted from [10])

additional necessary system libraries. For compilation, the LLVM compiler infrastructure
project is used to extend the Patmos compiler [18].

The first step in the compilation process is the translation of every C source code file
with the C frontend clang to the LLVM intermediate bitcode format. This language- and
target-independent intermediate representation format represents the program using a
CFG in a static single assignment form. The application code and the system libraries
are linked by the l lvm-link tool at the bitcode level.

Optimizations like sub-expression elimination and constant propagation are performed
by the opt optimizer in a generic, target-independent way. The linked LLVM bitcode is
then translated into machine code by the l lc tool. In addition, target-specific information
for WCET analysis is also handled by this tool. The backend, which is constituted by
the l lc tool, generates a relocatable binary ELF file. This file contains symbolic address
information. The final ELF file is then generated by the gold tool and contains the final
data, resolved symbol relocations, and memory layout.

The backend also generates a Program Metainfo File, which contains information for the
optimization and WCET analysis via subsequent tools. The WCET analysis is performed
by the platin’s internal analysis tool WCA, which outputs its results to the command
line.

11

2. Technical background and related work

2.3.2 Patmos
The Patmos processor is part of the T-CREST platform. In contrast to general-purpose
processors, this processor was not optimized for high performance in the average case but
was specially designed to deliver narrow WCET bounds and to simplify the determination
of these. In order to deliver good single-thread performance, specially designed caches
and a Very Long Instruction Word (VLIW) pipeline is used. Patmos follows a RISC-style
microprocessor architecture with a 32-bit instruction set and a dual-issue pipeline [19].

2.4 OPC Unified Architecture
In the 1990s, the number of computer-based control and monitor systems increased
continuously. A lot of different industrial communication systems were introduced to gain
access to the automation data. Many vendor-specific solutions emerged that actually
addressed very similar requirements. Consequently, it was and still is difficult and
time-consuming to build an automation system with components from different vendors.

Eventually, vendors of HMI and SCADA software joined their forces as they had to
solve similar challenges. A task force was formed by the companies Intuitive Technology,
Intellution, Opto 22, Rockwell Software, and Fisher-Rosemount in 1995. To unify the
data access in Windows-based automation systems, standards were defined under the
name OLE for Process Control and later renamed to Open Platform Communications
(OPC). The first specification for OPC Data Access was released in August 1996. The
reuse of Windows Component Object Model (COM)/Distributed COM (DCOM) base
technology and the focus on key features enabled rapid adoption of the standard in the
corresponding areas. A variety of OPC specifications followed to meet the requirements
of modern industrial applications.

As stated, the focus on the key features and the reuse of existing Windows standards lead
to a fast spread of Classic OPC in many products in the automation pyramid. However,
as there were not only Windows-based systems, many applications were excluded from
using Classic OPC. Other disadvantages of Classic OPC are the lack of a data model
and deficient security features. As a result, OPC UA was developed to overcome all
these issues regarding performance and features. Comprehensive modeling features and
interfaces for various platforms were enabled by OPC UA to fulfill the requirements of
state-of-the-art systems. OPC UA has been shown to be applicable on all levels of the
automation pyramid up to ERP systems.

2.4.1 Introduction to OPC UA
The OPC UA architecture is typically represented as two pillars. Figure 2.5 shows the
Transport pillar left and OPC UA Meta Model pillar right. Data encoding and the
message exchange between devices are handled in the Transport pillar. The initial version
of OPC UA provided a binary TCP protocol, which was specifically designed for high

12

2.4. OPC Unified Architecture

performance applications, but also mappings for standard Internet standards like Web
Services, XML and HTTP are available for firewall-friendly communication over the
Internet. Since the abstract communication model is not dependent on a specific protocol
mapping, new protocols can be added in the future, such as the new UDP UA PubSub
extension. An overview of current available OPC UA communication technologies is
present in [20].

The OPC UA Meta Model pillar on the other hand covers the information modeling. It
describes the basic building blocks that are necessary to expose the OPC UA information
model. Base types for building the type hierarchy and entry-points into the address space
are also defined within this pillar. Also enhanced modeling concepts are available for
special applications.

OPC UA Services form the interface between the server and the client. The information
model is supplied by the server and accessed by the client. The data is exchanged between
the server and the client via the transport mechanisms.

Information Models
using OPC UA

Base OPC UA Information Model

OPC UA Services

OP
C

UA
 M

et
a

M
od

el Rules how
to model

Base modelling
constructs

Tr
an

sp
or

t

Web
Services

TCP UA
Binary

UDP UA
PubSub

Figure 2.5: The foundation of OPC UA (adapted from [21])

OPC UA mainly uses a Client-Server communication paradigm, but also a Publish-
Subscribe (OPC UA PubSub) communication model is available. More complex services
like information model browsing and method calls are provided by the Client-Server
model. OPC UA PubSub with its minimal communication overhead is mainly used for
process data exchange. Figure 2.6 shows the two communication paradigms and their
coexistence in an OPC UA application.

13

2. Technical background and related work

In the OPC UA Client-Server communication model the address space is exposed in
an object-oriented way, which for example contains periodically updated temperature
values of an industrial system. Each client is accessing individual values in the address
space or registers for periodically updated values from the server. The server sends the
periodically sampled values from the address space, according to the client configuration,
over the client TCP connection. For each client a separate session and TCP connection is
created, which increases the memory and CPU usage for a higher number of clients [22].

The OPC UA PubSub communication model that is defined in the OPC UA Specification
Part 14 [23] introduces a completely decoupled connection between the communication
partners. This also includes additional nomenclature, namely publisher for the information
producer and subscriber for the information consumer. The OPC UA publisher can
group values from the address space into DataSets, which are then sent to UDP multicast
groups in an OPC UA PuSub broker-less setup. Thereby, no session data needs to be
stored for each subscriber. This leads to a lower CPU and memory usage compared to
the Client-Server communication scheme. However, it must be mentioned that UDP
transmission is not reliable and packet loss cannot be detected. In addition to the
broker-less system, the OPC UA also supports a broker-based setup, which utilizes a
message broker like a Message Queuing Telemetry Transport (MQTT) server to exchange
DataSets. More detail on the OPC UA PubSub communication mechanisms is provided
in the following section.

Client A Session

Subscription

DataSetWriter

DataSet

OPC UA Server

OPC UA
Application

Publisher

OPC UA
Client A Message Oriented Middleware

Subscriber 1 Subscriber N

Address Space

Client B Session

Subscription

OPC UA
Client B

Figure 2.6: Integrated Client-Server and Publish-Subscribe models (adapted from [24])

14

2.4. OPC Unified Architecture

2.4.2 OPC UA PubSub
To propagate the use of OPC UA in particular in the lower levels of the automation
pyramid, i.e., the control level and the field level (cf. Figure 1.1), OPC UA PubSub [23]
was released. It fulfills the requirements for low power, optimized, and local low-latency
communication on embedded devices, controllers, and sensors.

Figure 2.7 shows the process of packing and publishing data from the information space
via a network message. The main components are described below. Further details can
be found in OPC UA Specification Part 14 [23]. A DataSet is a list of name and value
pairs. Each item is called DataSet field and can represent arbitrary information. The
configuration of which data elements from the information space shall be published is
called the PublishedDataSet and used by the data collector. The publisher encodes each
DataSet into a DataSetMessage. One or multiple DataSetMessages are then combined
in a NetworkMessage and transmitted via a communication medium to all subscribers.
Semantic information like the data type and the full name of the variable of a DataSet
can optionally be stored and transmitted via the DataSetMetaData. Figure 2.7 shows
this process in the context of the publisher.

Information space

DataSetMetaData

Publisher

Tail DataSetMessage 2 DataSetMessage 1 Header

Data
collector

Data
collector

List of
values
timestamp
quality

Published
DataSets

DataSet
writers

Network Message

Figure 2.7: DataSet in the process of publishing (adapted from [23])

Figure 2.8 illustrates in a simplified form how an OPC UA PubSub message is built
from DataSet fields. Multiple DataSet fields are combined to a DataSetMessage, which
in turn is encoded in a NetworkMessage with other DataSetMessages. Finally, the
NetworkMessage is transmitted in the payload field via the TransportProtocol of a specific
Message Oriented Middleware (MOM).

OPC UA PubSub supports two fundamentally different types of MOMs. The broker-less
middleware leverages existing network infrastructure that is able to route datagrams.
UDP is typically used for this. Figure 2.9 shows how datagrams are transmitted from
the publisher through the Network Infrastructure to the Subscriber. In a broker-based

15

2. Technical background and related work

DataSetMessage field

DataSetMessage

NetworkMessage

Transport
Protocol

[0] .. [n]

[0] .. [n]

Figure 2.8: OPC UA PubSub message layers (adapted from [23])

implementation, the central point of datagram exchange is formed by a Broker (cf.
Figure 2.10). The communication to and from the Broker is based on protocols like
MQTT and Advanced Message Queuing Protocol (AMQP). Messages are published to
defined queues, which Subscribers can listen to. Both, the broker-less and the broker-based
system have certain benefits, which are listed in the following.

Network Infrastructure

Publisher Subscriber

Publisher

Publisher

Subscriber

Subscriber

Figure 2.9: OPC UA PubSub using network infrastructure (adapted from [23])

Advantages of a broker-less middleware model:

• This model builds on standard network hardware and no special software like a
broker is necessary.

• Messages are directly delivered without software interaction over a switched Ethernet
network, which reduces the latency significantly.

• The support for multicast addressing in UDP and in switched Ethernet networks
enables the transmission of messages to multiple subscribers.

• Periodic message transmission via UDP is very well supported by TSN.

16

2.5. Related work

Advantages of a broker-based middleware model:

• The number of subscribers can be easily extended to a large number, even beyond
local networks with scalable or chained brokers.

• The publisher and its subscribers do not need to be online at the same time. The
broker can store messages and forward them as soon as the subscriber is online.
This is especially important for low power devices, where low power states are
important.

• The broker enables the use of different communication protocols for the publisher
and the subscriber.

• Using standard protocols such as MQTT and AMQP makes the firewall traversal
more easy, as there is no need for the subscribers to directly establish a connec-
tion with the publisher. Instead, only the broker needs to be accessible by all
communication partners.

BROKER

Publisher Subscriber

Publisher

Publisher

Subscriber

Subscriber

Figure 2.10: OPC UA PubSub using broker (adapted from [23])

2.5 Related work
The number of publications in the field of timing analysis, in contrast to studies especially
focused on industrial software analysis, is significantly more extensive. In addition, WCET
studies on the quite new OPC UA PubSub standard are not available at the moment.
Therefore, this section first focuses on the related work in the area of WCET analysis in
industrial automation, and then covers several approaches regarding of real-time capable
OPC UA data transmission.

A comparison of static and dynamic WCET analysis on five industrial case-studies was
presented by Gustafson et al. [25]. Static and measurement-based tools were used on
typical industrial systems for evaluation. The results were very accurate but the authors
reported the high complexity of the process caused by the necessary annotation work. In

17

2. Technical background and related work

this context it was mentioned how important a well-developed graphical user interface
is for the analysis tools to get a clear and holistic view of the whole system. Possible
execution paths can be visualized and the influence of various input values on these paths
can be evaluated.

The focus of other authors lies on general challenges in the WCET field. Sehlberg
et al. [26], for example, found that industry in this area combats complexity with
strict guidelines that prohibit programming constructs that would lead to problems in
WCET analysis. This concerns especially language constructs like pointers, recursive
functions, recursive data structures, variable-length loops, dynamic memory allocation
and assignments with side effects [27]. Some constructs can be handled by modern
WCET tools in combination with code annotations, which are used to provide additional
information about possible execution paths (e.g., maximum recursion depth). However,
partly reprogramming cannot be avoided sometimes. In general, the desired accuracy of
the WCET bounds affects the amount of work that is necessary [28].

Automatic flow analysis was used by Barkah et al. [29] on industrial real-time applica-
tions to minimize manual work. They showed that the WCET times are the same for
automatically generated and manually provided flow information. This result indicates
that automatic flow analysis techniques can reduce the need for manual annotation,
making WCET analysis tools easier to use.

WCET analysis is often performed at the binary level, which makes it difficult to apply the
annotation rules. To circumvent these annotation problems, Lisper et al. [30] proposed
to face this problem by program flow analysis at the source level and to resolve specific
program flow problem statements on the binary level. They also suggested introducing
standards for source-level analysis tools and information for build processes and tools,
such as linkers. This should relieve tool vendors from having to offer multiple versions of
their tools.

Combining OPC UA programs (a special form of OPC UA state machines) with real-time
communication over TSN was proposed in [31]. This should enable real-time commu-
nication between distributed processes running on multiple components. A handshake
protocol was introduced to synchronize the state machines of various distributed OPC UA
programs. For this purpose, the open-source OPC UA open62541 stack was extended to
enable the communication between the distributed state machines. The main contribution
presented in this paper is the concept of long-running and real-time capable tasks in
OPC UA. Since only direct network connections without additional load were used for
the evaluation, future experiments with more practical network topologies and stress
testing with additional network loads are planned.

The authors in [7] also evaluated the potential of sending OPC UA PubSub messages
over a real-time TSN network. To enable real-time properties, a modified open62541

18

2.5. Related work

publisher was proposed that is triggered by a hardware interrupt to access a shared
information model and publish a DataSet. The setup was based on a standard PC with a
special network interface that supports TSN. A Linux operation system patched with the
well-known RT-Preempt patch was used as a real-time capable evaluation platform. The
measurements showed that a Linux operation system is capable to deliver sub-millisecond
intervals with minimal jitter. Porting to other TSN implementations, porting to other
embedded platforms, and long-term tests are planned.

Other works in this area focus on field devices based on commercial off-the-shelf (COTS)
hardware and software components with OPC UA and TSN. [32] showed that various
traffic shaping methods can yield to a reduced latency in the OPC UA communication.
This improvement of the latency was even possible on devices with no dedicated TSN
hardware support. Prinz [33] investigated ways to use TSN and OPC UA to form an
application layer protocol.

The future of industrial network configuration was explored by the authors of [34]. A
Software Defined Networking (SDN)-based TSN network architecture in combination
with OPC UA for dynamic interconnected devices and applications was proposed. This
concept is also especially useful for dynamically networked devices and applications
with time-critical requirements. Also, future plug- and produce applications, with their
dynamic applications and always-changing interconnections between applications and
devices, may benefit from this solution. The implementation was evaluated through
several experiments that verified the correct routing, the correct timing of the traffic
between the interconnected applications, and the correct auto-configuration capability.
The authors also highlighted the complexity caused by the combination of the three
technologies OPC UA, TSN, and SDN, and stated that standardization is required in
this topic.

OPC UA Field Level Communication simulation was explored in [35] by using OPC
UA PubSub. A shared information model with a best-effort IP-based OPC UA Server
communication and real-time TSN OPC UA PubSub was used in this approach. The
open-source project open62541 was used as the OPC UA library for the simulation
environment. They showed that with the developed publisher and subscriber modules, a
simulation of the end-to-end jitter and latency is possible.

A large part of the current research related to OPC UA PubSub utilized the open-source
OPC UA project open62541. This project is licensed under the Mozilla Public License
v2.0. It is royalty-free available on github [36] and supported by a broad and active
community.

Industrial software that requires timing analysis can be found in a variety of applications,
from space applications [37, 38] to the avionics industry [39, 40]. A case study to find the
upper bounds with static WCET analysis for time-critical code, was presented in [41],

19

2. Technical background and related work

which is especially relevant in the field of automotive communication. The conclusion
of this paper was how labor-intensive the analysis is and what the practical difficulties
are, especially the need for better loop bound analysis was mentioned at this point. It
was also stated that a fully automated static WCET analysis is not fully mature, yet.
Therefore, detailed knowledge of the target system and source code are required for
manual annotations.

20

CHAPTER 3
Methodological approach

This chapter briefly covers the research methodology that was followed during this thesis.
Section 3.1 presents the design and creation research methodology in general. Section 3.2
describes how this methodology was applied to enable WCET analysis of OPC UA
PubSub. Finally, Section 3.3 provides a summary of the time and effort that went into
the creation of this thesis.

3.1 Design and creation methodology
The thesis aims at contributing knowledge to the field of computer science. A strategy
often used in computer sciences is design and creation research [42]. The main focus of
this research strategy lies in developing new IT products (artifacts) [43]. An artifact
is everything from simple constructs (symbols and vocabulary), models (abstractions
and representations), methods (algorithms and practices), and finished instantiations
(programs and prototype systems) [44]. In most research activities, however, several
artifacts in combination create new knowledge and insights. To distinguish design and
creation research strategy from product development, rigorous analysis, explanation,
justification, and critical evaluation of the results is necessary.

21

3. Methodological approach

3.2 Design and creation for WCET analysis
As indicated beforehand, the design and creation methodology uses an artifact as a vessel
to create knowledge. Examples for new knowledge are that an IT application incorporates
a new theory or produces new insights while in use or the process to create the artifact
is new [45]. In this thesis, the artifact is the OPC UA PubSub stack, and the unknown
is its timing behavior while executed. Additional knowledge can be gained in the process
to obtain the desired information. Figure 3.1 depicts the two knowledge outputs.

Adjustment
ProcessOPC UA

PubSub
Stack

 Artifact

WCET
Values

 Knowledge Output

Figure 3.1: Knowledge output produced by this thesis

The design and creation strategy builds upon multiple system development principles,
which typically involve awareness, suggestion, development, evaluation, and conclu-
sion [46]. These elements of the problem-solving process are used in an iterative manner,
where steps are executed several times when new insights appear. Specifically for
computer-based research, the development part requires the most effort and is often
further divided into analysis, design, implementation and testing. As there is no specific
development methodology covering WCET analysis, typical industrial methods provided
the necessary framework. The used T-CREST environment described in Section 2.3
is used in various other projects that act as best practice guidelines. In summary, the
combination of industry best practices and related work provided the framework applied
in the implementation and testing phase. Figure 3.2 visualizes the key elements of the
applied methodology.

The following Chapter 4 Code transformation for WCET Analysis and Chapter 5 WCET
analysis of OPC UA PubSub introduce the developed process and findings made while
adjusting the publisher and subscriber of the OPC UA PubSub stack. The Evaluation
is presented in Section 6. Section Technical background and related work 2, which also
contains industry best practices, serves as a source of information for the evaluation and
development process.

22

3.3. Timeline

Research Methodology

Development

Related
Work

Industry
best practices

Evaluation

Design and Creation

Testing Design

Analysis

Imple-
mentation

Methods

Systems
Development
Principles

Strategy

Methodology

Figure 3.2: Research method overview and elements (based on [42])

3.3 Timeline
The timeline in Table 3.1 separates the activities conducted while following the above
methodology into twelve phases and provides estimations of the time that was required
for conducting each phase. In total, about 97 full 8 h working days were necessary.

Table 3.1: Estimated workload for each activity conduced during this thesis

Phase Activity description Duration
I Problem statement, literature review, proposal 18 days
II Familiarization with the evaluation system (T-CREST) 5 days
III Platform porting 5 days
IV OPC UA publisher example implementation 3 days
V Publisher adaptations on OPC UA stack 5 days
VI Publisher code annotations and transformation for WCET analysis 7 days
VII OPC UA subscriber example implementation 4 days
VIII Subscriber adaptations on OPC UA stack 5 days
X Subscriber code annotations and transformation for WCET analysis 10 days
XI Measurements and creation of the charts 5 days
XII Thesis write-up 30 days

Total 97 days

23

CHAPTER 4
Code transformation for WCET

analysis

This chapter starts with an introduction to the WCET code transformation process. It
covers the main steps required to prepare existing software for WCET analysis, including
application porting, call graph and control-flow graph generation, code annotations, and
code transformations. In the subsequent section, the previously defined annotation and
transformation rules are exemplified using an existing C application.

4.1 Code transformation process
One major goal of the WCET community is the advancement towards further automation
in WCET analysis. This resulted in well known commercial tools like Rapita Systems
RapiTime and Absint aiT but there are also open-source alternatives available like
Bound-T, Chronos, and the T-CREST platform. All these tools offer considerable
assistance in the process of calculating the WCET, but a fully automated determination
is not possible. Often, existing code that was not developed specifically for real-time
applications needs manual adjustment to obtain a result with static WCET analysis.
Furthermore, additional effort may be required to get a reasonable tight WCET bound
and make the existing code suitable for real-time applications.

The route towards the calculation of the WCET is shown in Figure 4.1. It shows the steps,
that need to be performed to systematically get the WCET of an existing application.
This process is partly derived from WCET tools and is meant to be an abstract helping
guide and a starting point towards WCET analysis. The process consists of different
activities that can be separated into porting the application to the real-time platform
(Section 4.1.1), generating the the call graph and the CFG (Section 4.1.2), applying

25

4. Code transformation for WCET analysis

code annotations (Section 4.1.3), and applying code transformations (Section 4.1.4). The
output of this process is an application that can be WCET analyzed.

Port application
to new platform

Generate call
graph and control

flow graph

Apply
annotations[else]

[WCET can
be calculated]

Apply
transformations[else]

[All annotation
rules applied]

Figure 4.1: Process for adjusting existing software for WCET analysis

4.1.1 Port application to new platform

Nowadays, industrial applications are mostly running on specific computing hardware
with platform-specific functionality, especially in real-time applications. Existing software
is, on the other hand, mostly developed for general-purpose computers with standard
peripheral devices and interfaces. Because of this, one of the first steps is often porting
the existing application code from a general-purpose to a time-predictable platform.
Platform-specific functions that need may require porting include:

• I/O operations for user interaction

• Filesystem access

• Interrupts

• Network interface access

• Memory management

The outcome of this process step should be code that can be compiled and executed on
the new target platform.

26

4.1. Code transformation process

4.1.2 Generate call graph and control flow graph
To gain a structured overview of a software program, the call graph and the CFG are
very helpful tools. The call graph gives an overview of the interdependencies between the
different functions of a program. Thereby, functions are represented as nodes and function
calls are indicated by directed edges in the call graph. For example, a function call of g in
function f shows up in the call graph as a directed edge from the nodes f to g, g is thus
a sub-routine of f . An example of a call graph can be found in Figure 4.2, the function
simple_function has a directed edge from the main function an is thus a sub-routine of
main. Figure 4.2 also shows how a direct recursive function (cfg. recursive_infinite) and
a indirect recursive function (cfg. recursive_function_loop) will show up in the CFG.

CGNode:(main)17

CGNode:(recurse_infinite)13 CGNode:(recurse_function_loop1)10 CGNode:(simple_function)15

CGNode:(recurse_function_loop2)11

CGNode:(recurse_function_loop3)12

Figure 4.2: Example call graph with indirect and direct recursions

Figure 4.3 shows the CFG for the code example provided in Listing 4.1. The CFG
consists of program statements (one or multiple lines) in one or several nodes. The
control flow is visualized with directed edges between nodes. One can distinguish between
intraprocedural (only a single function is covered) and interprocedural (multiple functions
are covered).
int a = z;
int b = z*2;

if(c > 0)
{

a = a*2;
b = b+1;

}
else
{

a = a-1;
b = b*3;

}

z = a+b;

while(z > 0)
{

c = c+z;

27

4. Code transformation for WCET analysis

z = z-1;
}

Listing 4.1: C application serving as an example for a simple control flow graph

int a = z;
int b = z*2;

a = a-1;
b = b*3;

a = a*2;
b = b+1;

z = a+b;

elseif (c > 0)

c = c+z;
z = z-1; while (z>0)

Figure 4.3: Example of a control flow graph with condition and loop

4.1.3 Apply code annotations

To perform the WCET analysis of a source code with WCET analysis tools, code
annotations have to be added to the source code or in a separate file. This section
presents some pseudo-code examples before and after applying the code annotations.
Thereby, the syntax recommended by TACLeBench [47] is applied.

While loop

The code annotations that are shown in Algorithm 1 (top) need to be applied to enable
WCET analysis of a while loop. The number of loop iterations is defined via the
code annotation (_Pragma) before the while loop with a minimum and maximum loop
iteration count. To perform a runtime check of the iteration count, an assert statement
may be added within the while loop. This may be necessary if the exact loop bounds
are impossible to determine by static value analysis or other techniques before runtime.
Appropriate error handling routines need to be implemented by the programmer to handle
violations against this assert statement because violating the assertion also presents a
WCET violation.

28

4.1. Code transformation process

Algorithm 1 Annotations: loops

While loop

� Original code:
while loop condition do

execute loop content

� Code annotated for WCET analysis:
_Pragma("loopbound min X max Y")
while loop condition do

assert loopbound defined by _Pragma is not violated
execute loop content

Do-while loop

� Original code:
do

execute loop content
while loop condition

� Code annotated for WCET analysis:
_Pragma("loopbound min X max Y")
do

assert loopbound defined by _Pragma is not violated
execute loop content

while loop condition

For loop

� Original code:
for initialization; loop condition; iteration statement do

execute loop content
end for

� Code annotated for WCET analysis:
_Pragma("loopbound min X max Y")
for initialization; loop condition; iteration statement do

assert loopbound defined by _Pragma is not violated
execute loop content

end for

29

4. Code transformation for WCET analysis

Do-while loop

Do-while loops are treated very similar to while loops. However, the minimum loop
bound in Algorithm 1 (middle) is at least one (X ≥ 1). This is because in do-while loops
the loop condition is first checked after the loop content has already been executed once.

For loop

The annotations that need to be applied to a for loop are presented in Algorithm 1
(bottom). The applied annotations are semantically analogous to while loops.

Recursion

Recursion can be split into two types: direct and indirect recursions. Direct recursions are
functions that call themselves inside their code. In the call graph, direct recursions show
up as edges where the source and the target are the same nodes, also called self-referencing
node. Algorithm 2 illustrates the annotations required for a direct recursion in order to
enable WCET analysis.

Algorithm 2 Annotation: direct recursion
� Original code:
function Rec(F)

if termination condition then
return F // base case

else
F := calculations before recursive call
R := Rec(F) // solve subproblem
R := calculations after recursive call
return R

� Code annotated for WCET analysis:
function Rec(F)

if termination condition then
return F // base case

else
assert recursion depth defined by _Pragma is not violated
F := calculations before recursive call
_Pragma("marker recursivecall")
R := Rec(F) // solve subproblem
_Pragma("flowrestriction 1*REC≤X*recursivecall")
R := calculations after recursive call
return R

Indirect recursions are more difficult to locate in a call graph as they show up as cycles
that span across multiple nodes. The simplest ordinary indirect recursion spans over two
functions, where function a is calling function b, which again calls a. Indirect recursions

30

4.1. Code transformation process

are more difficult to handle and only a few WCET analysis tools provide annotations to
treat them. Therefore, often code transformations are needed.

4.1.4 Apply code transformations
Even if the WCET analysis tool does not provide the possibility of code annotation for
a specific programming construct, it is often still possible to change the code in way
such that the WCET can be determined. Such changes are called code transformation.
Common programming constructs that require code transformation, specifically to be
WCET analyzable on the T-CREST platform, are presented in the following.

Recursion

Some WCET analysis tools do not support recursion annotations. In this case, iterations
need to be used to replace the recursion. The original code in Algorithm 3 shows a
directly recursive function that performs calculations before and after the recursive call.
Calculations before the recursive call may be performed on the state/variable F . In the
next step, the recursive call itself is executed with the state/variable F as a parameter.
Finally, calculations on the return state/variable R might be performed.

One way to transform a directly recursive function into a function that only uses iterations
is to simulate the stack of the recursive function as shown in Algorithm 3. The iterative
function consists of two loops. The first loop pushes data to the stack and the second
pulls data back from the stack in a Last-In, First-Out (LIFO) manner. By means of
determining the maximum stack size, the loop bound for the two loops can be defined
and, thus, the calculation of the WCET is possible. Again, the input data may need to
be checked with an assert statement before the loops to ensure that the loop bound will
not be exceeded.

Algorithm 3 Transformation rule: direct recursion
� Original code: cf. Algorithm 2

� Code transformed for WCET analysis:
function Recursion(F)

Stack S
_Pragma("loopbound min X max Y")
while base case not reached do

assert loopbound defined by _Pragma is not violated
F := calculations before recursive call
S.push(F)

_Pragma("loopbound min X max Y")
while S not empty do

assert loopbound defined by _Pragma is not violated
F := S.pop()
R := calculations after recursive call

31

4. Code transformation for WCET analysis

To deal with indirect recursions, a process called inlining can be used. Thereby the
function call is replaced by the body of the called function, resulting in a direct recursion
function. One simple example would be a function a that calls function b, whereby
function b calls again function a. Therefore, the call of function b in a needs to be
replaced by the contents of function b. Algorithm 3 can then be applied to the resulting
direct recursion.

Function pointer / callback function

In C programming, callback functions and function pointers are often used to simplify or
to avoid redundant code. In contrast to pointers that store the reference of a variable,
function pointers store references to a function. This reference is typically the start of
executable code. Function pointers that are passed as an argument to a function are
called callback functions. Function pointers and callback functions are difficult to be
WCET analyzed because it is often unknown at compile-time which callback functions
will be called at runtime. To allow the WCET analysis of callback functions, the possible
functions need to be explicitly stated as shown in Algorithm 4.

Algorithm 4 Transformation rule: callback function
� Original code:
FunctionPointer cb
function RegisterCallback(FunctionPtr)

cb = FunctionPtr
function CallCallback

cb()

� Code transformed for WCET analysis:
FunctionPointer cb
function RegisterCallback(FunctionPtr)

cb = FunctionPtr
function CallCallback

assert cb is one of Function0 .. FunctionX
switch cb

case Function0 do
Function0()

case Function1 do
Function1()

case FunctionX do
FunctionX()

end switch

Jump table

A jump table or also called branch table is used to alter/branch the program flow with
an array of function pointers. The called function is selected at runtime based on the
array index. Therefore, the called function is not known at compile-time. Jump Tables

32

4.1. Code transformation process

can be replaced by an if-else-if chain or by a switch statement for WCET analysis. The
corresponding transformation rule is shown in Algorithm 5.

Algorithm 5 Transformation rule: jumptable
� Original code:
Array JumpTable[] = {Function0, Function1, FunctionX}
function Function(I)

JumpTable[I]()

� Code transformed for WCET analysis:
function Function(I)

assert I is a valid index for the JumpTable
switch I

case 0 do
Function0()

case 1 do
Function1()

case X do
FunctionX()

end switch

Non-WCET-analyzable code

Besides the previously presented annotations and transformations rules, often non-
analyzable code fragments exist in software projects. Such problems are often very
specific and must be treated individually since general annotations and transformation
rules are difficult to determine.

One example of this category are existing programs that use pre-compiled libraries where
the source code is sometimes not fully available, which leads to problems in the WCET
analysis process. The affected parts in the source code that use pre-compiled libraries
must be narrowed down and replaced either by a re-implemented version with the same
functionality or be replaced by a WCET-analyzable library alternative.

Other problems that are often encountered when WCET analyzing existing source code
are functions that are very complex resulting in a calculated WCET bound that is
impractical for the target application. Finally, it is sometimes impossible to calculate
the WCET of many existing implementations of output functions like printf, blocking
input function like getch or scanf, and functions for dynamic memory management like
malloc for allocation and free for de-allocation of memory. Such functions need either be
removed or replaced by WCET analyzable alternative.

33

4. Code transformation for WCET analysis

4.2 Code transformation example

In this section, the previously defined annotation and transformation rules are applied
to an existing C application. The result should be C code for which the WCET can
be computed using the T-CREST toolset. The existing example C application can be
seen in Listing 4.2. In this example, the power of a number is calculated using either an
iterative or a recursive approach. Only unsigned integer values are possible for simplicity.

The function to calculate the power be is called cal_pow. Four arguments are passed
to this function and one number is returned as a result of the power calculation. The
first two arguments are the base b and the exponent e. The argument t determines the
applied calculation method (iterative or recursive), and the last argument is used to
return the measured execution time as a pointer to the calling function.

The function cal_pow uses a jumptable to select the function that is called based on the
argument t. The execution time is measured with a clock_gettime call before and after
the calculation method. The difference is calculated with the timespec_diff function
which gives the difference in nanoseconds. This value is then returned as a pointer to
the calling function of cal_pow. In its current form, the program cannot be WCET
analyzed but has to ported to the T-CREST platform first and then code annotation
and transformation rules have to be applied.

In Listing 4.3 the transformed version of the application can be found. It is executable on
the Patmos processor and the T-CREST toolset can be applied for WCET analysis. The
function clock_gettime for measuring the start and end timestamp was replaced by the
platform-specific function get_cpu_usecs, which returns a timestamp in microseconds.
It needs to be mentioned that in this simple case, the jumptable that is used to select the
function that is called based on the argument t was recognized and solved by T-CREST
toolset. It is also visible in the call graph of the function cal_pow that two paths (rec ,
iter) are possible due to the jumptable (c.f. Figure 4.4).

According to the „for loop code annotation“ (cf. Section 4.1.3), first the preceding
_Pragma specifying the min and max loop bound needs to be added to the iterative
version of the implementation. In this case, the minimum loop bound is 0 and the
maximum is defined as a value MAX that is in the range of a 32-bit unsigned integer
value. As the _Pragma is only used for WCET calculation but not checked at runtime,
calling the function with e > MAX is possible and would result in a WCET violation.
For this reason, an assert statement is added to ensure that the loopbound defined by
_Pragama is not violated. As neither the loop index i, nor the loop bound e are changed
within the loop, the assertion can, in this very simple case, also be placed before the loop.

Transforming the recursive version of the power calculation function to an iterative
equivalent requires two loops. The first loop pushes the variables that are needed after

34

4.2. Code transformation example

uint32_t iter(uint32_t b, uint32_t e)
{

uint32_t pow=1;
for(uint32_t i=0;i<e;i++)

pow=pow*b;
return pow;

}

uint32_t rec(uint32_t b, uint32_t e)
{

if(e==0)
return 1;

else
return b*rec(b,e-1);

}

uint32_t (*pw[])(uint32_t b, uint32_t e) = {iter, rec};

uint32_t calc_pow(uint32_t b, uint32_t e, uint32_t t, struct timespec *diff)
{

struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
uint32_t ret = pw[t](b, e);
clock_gettime(CLOCK_MONOTONIC, &end);
timespec_diff(&start,&end,diff);

return ret;
}

Listing 4.2: Example C application to be WCET analyzed

the recursive call on the stack. In this example, this is only the base of the exponent.
In the next step, the values are popped from the stack and the calculations after the
recursive call are executed. In the example, the ret variable is initialized with the base
case 1 and updated in every iteration with the ret variable multiplied with the value
popped from the stack. Furthermore, both loops require additional code for the _Pragma
and the assertion. With this transformed application code, the T-CREST toolset can be
used for the WCET analysis.

35

4. Code transformation for WCET analysis

uint32_t iter(uint32_t b, uint32_t e)
{

int pow=1;

assert(e<MAX);

_Pragma("loopbound min 0 max MAX")
for(uint32_t i=0;i<e;i++) {

pow=pow*b;
}
return pow;

}

uint32_t rec(uint32_t b, uint32_t e)
{

uint32_t ret=1;

_Pragma("loopbound min 0 max MAX")
for(uint32_t i=e;i>0;i--) {

assert(e<MAX);
push(b);

}

_Pragma("loopbound min 0 max MAX")
for(uint32_t i=e;i>0;i--) {

assert(e<MAX);
ret=ret*pop();

}

return ret;
}

uint32_t (*pw[])(uint32_t b, uint32_t e) = {iter, rec};

uint32_t calc_pow(uint32_t b, uint32_t e, uint32_t t, uint64_t *diff)
{

uint64_t start, end;
start=get_cpu_usecs();
uint32_t ret = pw[t](b, e);
end=get_cpu_usecs();

*diff=end-start;

return ret;
}

Listing 4.3: Example C application after applying the annotation and transformation
rules

36

4.2. Code transformation example

Callgraph for (calc_pow)14

CGNode:(calc_pow)14

CGNode:(get_cpu_usecs10)16 CGNode:(rec)13 CGNode:(iter)12

CGNode:(pop)11 CGNode:(push)10

Figure 4.4: Call graph of the transformed C example application

37

CHAPTER 5
WCET analysis of OPC UA

PubSub

To enable real-time communication with OPC UA PubSub, the timings that are involved
in the end-to-end communication need to be determined. The whole timing path between
an input signal change on one end system and the corresponding action on another end
system is discussed in Section 5.1. In Section 5.2, the process of preparing existing code
is applied to the publisher implementation using the open-source open62541 stack and
the WCET analysis toolset provided by the T-CREST project. The last Section 5.3
applies the same process to the subscriber.

5.1 End-to-end latency
The time between signal change and action perform in an OPC UA PubSub system is
called end-to-end latency. It depends on numerous delays between the sending system
(i.e., the publisher), the network, and the receiving end system (i.e., the subscriber).
Thus, to get a guaranteed upper limit of the end-to-end transmission latency, the upper
bounds of all involved delays need to be determined and accumulated. Figure 5.1 shows
the different delays that affect the end-to-end latency.

The sending end system can be split into four types of delays and starts with the change
of a signal that initiates a data transfer to another system. Most real-time systems
perform signal sensing and software tasks in fixed periods of time. Triggering on external
events is not commonly used because it can lead to unpredictable behaviors caused by
rapidly changing signals. The TaskSchedulingDelay in Figure 5.1 represents the delay
between the signal change and the sensing and processing in the next publisher task.
The upper bound of this delay is the task period, but it can be reduced towards zero if

39

5. WCET analysis of OPC UA PubSub

Signal Change

Task
Scheduling

Delay

OPC UA Stack

Network Stack

Media Access

Network

Perform Action

End-to-End Latency

Sending End System
(Publisher)

Receiving End System
(Subscriber)Network

Encode

UdpSend

EthSend

NetworkDelay

EthRec

UdpRec

Decode

Figure 5.1: OPC UA PubSub end-to-end latency diagram

the signal change can be synchronized with the task interval or if the data value to be
transferred only depends on internal data values.

Next, the data is encoded by the OPC UA publisher as defined in Part 6 [48] and
Part 14 [23] of the specification. After data encoding, the data from the OPC UA stack
is passed to the network stack. UdpSend adds additional headers like UDP, IP, and
Ethernet headers to the message. The operations up to this point are all done in software.
Therefore, the software can be WCET analyzed and the upper bounds of the execution
times can be computed.

Finally, the Ethernet frame is sent by the Ethernet controller to the network. This
controller is typically implemented in hardware. The delay that is caused in this part
(EthSend) is typically predictable, but only if the Ethernet controller message queue is
empty and no message is currently processed. This can be ensured either by implementing
TSN on the publishing end system or by carefully timing the sending of messages in a
way such that the network interface is idle whenever a time-critical message shall be
transmitted. This topic has already been discussed in the study [49].

The next delay that connects the publisher and subscriber part is the NetworkDelay. To
ensure that the message is sent within bounded delays, it is mandatory that a real-time
network like TSN is used.

The subscriber introduces analogous delays as the publisher, whereby EthRec is caused
by hardware. UdpRec and Decode are caused by software and can be determined by
performing WCET analysis of the OPC UA subscriber.

40

5.2. Adjusting the OPC UA Publisher

5.2 Adjusting the OPC UA Publisher
The task of the OPC UA publisher is encoding and transmitting the message containing
information from the application over the network interface. The message encoding is
defined in the OPC UA Specification Part 6 [48] and Part 14 [23]. The number of data
fields (i.e., the data field length) in a PubSub message is limited by the specification
to Int32, which gives a maximum count of 2,147,483,647. This huge number gives the
software stack flexibility, but for static WCET analysis this is not practically usable.
Therefore, a compromise between narrow WCET bounds and flexibility of the stack has
to be found.

This leads to several changes that need to be made on the open62541 stack to restrict
the maximum number of data fields that are supported per message. For testing, the
number of data fields was limited to two and only a limited amount of data types, mainly
the primary ones to build a message, are supported. The primary data types with fixed
lengths like Integer, Float, and Boolean are supported but data types with variable lengths
like Strings or Arrays are removed from the stack. For real-time systems, these limitations
seem acceptable for a first step, as real-time data like sensor values are mostly of fixed size.
The stack is further compiled with the open62541 UA_PUBSUB_RT_FIXED_SIZE
flag to tell the stack that the structure of a PubSub message is frozen and does not
change. This helps to reduce the processing effort for encoding messages because the
memory positions of the encoded values are known in advance and, thus, the data value
is simply copied into the predefined message structure.

The process presented in Section 4.1 was then applied to the publisher part of the
open62541 [50] OPC UA stack and then WCET analyzed. In Table 5.1 the number of
annotations and transformations that were necessary to perform the WCET analysis are
shown. The toolset provided by the T-CREST project was used to gather the WCET for
the publisher with 18,632 processor cycles. With the given clock cycle of 80 MHz, this
corresponds to a WCET of about 232.9 µs.

Table 5.1: Programming constructs and number of occurrences for the OPC UA publisher
and subscriber

Programming Number of occurrences
construct Publisher Subscriber
While loop 1 0
Do-While loop 0 0
For loop 1 11
Indirect recursion 1 3
Jumptable 1 1
Other, non-WCET-analyzable code 6 7

41

5. WCET analysis of OPC UA PubSub

5.3 Adjusting the OPC UA Subscriber
On the receiving side, the OPC UA subscriber decodes the received PubSub network
messages and passes the data to the application. The data values can now be processed
by the application, which, for example, performs calculations or sets outputs. As for
the publisher, the data types and number of data fields need to be restricted for the
subscriber to enable a WCET analysis.

The subscriber in the open62541 stack additionally adds the problem of dynamic memory
allocation, which is performed for every received message and data field. Dynamic memory
allocation is part of the standard C library. However, the standard implementations
of malloc, free, and related functions are non-WCET-analyzable code and had to be
re-implemented. A statically allocated memory partition with 32 memory blocks of 512
bytes and an array that holds the memory block status (used/unused) is allocated at
startup. The new implementation of malloc returns the next free block of memory and
marks the block as used in the status array. If no free memory block is available, the
function raises an out-of-memory error (ENOMEM), which needs to be handled by the
calling function. Free releases the memory block by marking the corresponding status
array entry as unused. As the newly implemented functions are replacing the standard C
library functions one by one, no additional changes have to be performed in the open62541
stack.

The number of annotations and transformations that had to be applied for the subscriber
is shown in Table 5.1. The WCET analysis with the T-CREST toolset calculated a
WCET of 443,543 processor cycles. On a processor with a 80 MHz clock, this response
to about 5,544.29 µs.

42

CHAPTER 6
Evaluation

This chapter starts with a discussion of the evaluation procedure, the utilized tools, and
their interaction within the toolchain in Section 6.1. Also, the different intermediate
file formats and the flash process are briefly described. This section is followed by a
description of the evaluation setup in Section 6.2, which presents the utilized hardware
for the implementation, the selected measurement tool, and the measurement approach.
The evaluation results are shown in Section 6.3 and the measured end-to-end latency is
compared to the theoretical WCET analysis results in Section 6.4.

6.1 Evaluation procedure
In the process of developing the application code for the publisher and subscriber, tools to
compile, analyze, visualize, and flash the program are used. Figure 6.1 gives an overview
of the utilized tools, their interaction in the toolchain, and the file formats or interfaces
that are used for information exchange.

The starting point for both applications is the application code in C language after the
WCET code transformation process has been applied. The patmos-clang compiler,m
which is especially adapted for the Patmos processor, compiles the source code for the
applications. The compiler creates an ELF binary and automatically a PML file that
contains meta-information as well as information about the program structure required
for WCET analysis.

This PML file can be used to generate control-flow graphs, call-graphs, and relation
graphs for both applications with the tool patmos visualize. These graphs are especially
of interest in the development process to visualize and understand the interrelationships
and find direct and indirect recursions. To find recursions, the existing tool was adapted

43

6. Evaluation

Altera DE2-115 (Publisher)
(FPGA Development Board)

patserdow
(Flash Patmos processor)

Serial

Application code
(Publisher)

open62541

library

patmos-clang
(Patmos clang compiler)

Source code
(C language)

Source code
(C language)

ELF binary

platin wcet
(WCET with wca tool)

ELF binary

PML

Application code
(Subscriber)

Altera DE2-115 (Subscriber)
(FPGA Development Board)

patserdow
(Flash Patmos processor)

Serial

patmos-clang
(Patmos clang compiler)

Source code
(C language)

Source code
(C language)

ELF binary

platin wcet
(WCET with wca tool)

ELF binary

PML

platin visulaize
(generate graphs)

Control-flow graph, call-
graph and relation graph

(PublishCallback)

WCET result
(Publisher)

WCET result
(Subscriber)

PNG, SVG Image

platin visulaize
(generate graphs)

Control-flow graph, call-
graph and relation graph

(SubscribeCallback)

PNG, SVG image

PML PML

Figure 6.1: Overview of the WCET analysis and deployment process

to detect nodes and edges that form a recursion in the CFG. Thereby, edges and nodes
that form a direct or indirect recursion are marked with dashed edges and gray nodes in
the CFG (cf. Figure 4.2).

To perform the WCET analysis for the publisher and the subscriber, the tool platin wcet
is used. By default, it uses the internal tool wca to perform the timing analysis, which
prints the result directly to the command line.

To enable the measurements on the real hardware, the Patmos processor is flashed with
the tool called patserdow, which is also part of the T-CREST toolset. The program code
is downloaded over a serial connection to the FPGA board and can then be executed to
to perform the timing measurements.

6.2 Evaluation setup
Figure 6.2 shows the evaluation setup, which includes two Altera DE2-115 boards with
one being the OPC UA publisher and the other the OPC UA subscriber. The two FPGA
boards are directly connected with a 2 m point-to-point Ethernet cable at a speed of
100 Mbit/s. Both boards include a Cyclon IV FPGA running the Patmos processor at
80 MHz. On each board, three General Purpose Input/Output (GPIO) pins were used
to measure different program positions in the publisher and subscriber.

To measure these timings, a Salea Logic Pro 8 logic analyzer is connected to the two
FPGA boards with six probe pins. The main parts of the PublishCallback (publisher)

44

6.2. Evaluation setup

Saleae Logic Pro 8
(8-Channel Logic Analyzer)

Altera DE2-115 (Publisher)
(FPGA Development Board)

Encode
Reset
GPIO

Encode
Set GPIO
Encode

GPIO
Encode

Program flow for PublishCallback

GPIO
UdpSend

UdpSend
Reset
GPIO

UdpSend
Set GPIO
UdpSend

Point-to-Point
Ethernet

Connection

Altera DE2-115 (Subscriber)
(FPGA Development Board)

UdpRec
Reset
GPIO

UdpRec
Set GPIO
UdpRec

GPIO
UdpRec

Program flow for SubscribeCallback

GPIO
Decode

Decode
Reset
GPIO

Decode
Set GPIO
Decode

Probe 2

Probe 3

Probe 5

Probe 6

0

1

0

1

0

1

0

1

Execution Time:
UdpSend

Execution Time:
Encode

Execution Time:
UdpRec

Execution Time:
Decode

Message n Message n+1

Probe 2 Probe 3 Probe 5 Probe 6

0

1
End-to-End

Latency

Set GPIO
Publish

Reset
GPIO

Publish

GPIO
Publish

Set GPIO
Subscribe

Reset
GPIO

Subscribe

GPIO
Subscribe

Probe 4Probe 1

Probe 4
1

Execution Time:
SubscribeCallb.

Probe 1
1

Execution Time:
PublishCallback

0

0

Figure 6.2: Evaluation setup

45

6. Evaluation

and the SubscribeCallback (subscriber), which handle the OPC UA PubSub messages,
are also shown in Figure 6.2. In addition to the measured times of Encode/Decode
and UdpSend/UdpRec, times for pre- and post-processing are covered by the whole
execution time of PublishCallback/SubscribeCallback. This time is measured by the
GPIO probe pins GPIO Publish and GPIO Subscribe. The example application for
evaluation exchanges a single Int32 value, which is incremented with every message.

6.3 WCET measurement results
To generate a histogram of the execution time distribution, 1000 PubSub messages were
sent with a delay of 2 ms in between. The distribution of the execution times of the
PublishCallback, encoding (Encode), sending (UdpSend), SubscribeCallback, receiving
(UdpRec) and decoding (Decode) are shown in the histograms in Figure 6.3.

The calculated WCET for the PublishCallback, which was presented in Section 5, must
be higher than the added execution time of Encode and UdpSend. The logic analyzer
recorded the maximum execution time for Encode + UdpSend with 136.852 µs, which is
approximately 70 % higher than the calculated WCET.

The same applies to the SubscribeCallback. The WCET which was presented in Section 5
must be higher than the sum of UdpRec and Decode. With a measured maximum
execution time of 513.08 µs, the WCET bound is about 980 % higher than the maximum
recorded execution time of UdpRec + Decode. The higher complexity and the difficult
problem with dynamic memory allocation lead to this far higher over-estimation of the
WCET compared to the publisher.

46

6.3. WCET measurement results

0

100

200

300

400

136.65 136.70 136.75 136.80

#
Sa

m
pl

es

Execution Time: PublishCallback [μs]

0

200

400

600

800

45.60 45.65 45.70 45.75

#
Sa

m
pl

es

Execution Time: Encode [μs]

0

100

200

300

81.55 81.60 81.65 81.70

#
Sa

m
pl

es

Execution Time: UdpSend [μs]

0

20

40

60

513.00 513.05 513.10 513.15

#
Sa

m
pl

es

Execution Time: SubscribeCallback [μs]

0

200

400

600

800

17.20 17.25 17.30 17.35

#
Sa

m
pl

es

Execution Time: UdpRec [μs]

0

100

200

300

400

500

387.15 387.20 387.25 387.30

#
Sa

m
pl

es

Execution Time: Decode [μs]

Figure 6.3: Measurement results for PublishCallback, Encode, UdpSend, SubscribeCall-
back, UdpReceive, and Decode

47

6. Evaluation

6.4 End-to-end latency analysis
As discussed in Section 5.1, the execution times of the OPC UA publisher and subscriber
are only a part of the end-to-end latency. Table 6.1 presents the calculated WCET values
and the measured execution times of all hardware and software delays that affect the
end-to-end latency, whereby the sum of the upper bounds defines the upper bound of the
end-to-end latency. The sum of EthSend, NetworkDelay, and EthRec depends on the
evaluation hardware platform and is briefly discussed in the following.

Table 6.1: Comparison of highest timing measurement result and theoretical upper
bounds

SW/HW component Upper bound Measurement result
TaskSchedulingDelay not relevant not relevant
PublishCallback 232.9 µs 136.85 µs
� Encode � - � 45.67 µs
� UdpSend � - � 81.69 µs
� Pre- and postprocessing � - � 9.49 µs
EthSend +
NetworkDelay + HW-dependent 15.4 µs
EthRec
SubscribeCallback 5,544.29 µs 513.08 µs
� UdpRec � - � 17.29 µs
� Decode � - � 387.22 µs
� Pre- and postprocessing � - � 108.57 µs
End-To-End 5,777.19 µs + 642.32 µsLatency NetworkDelay

Sending Ethernet frames with the Altera DE2-115 evaluation kit requires the Ethernet
MAC and Ethernet PHY, which are both implemented in hardware [51]. The Ethernet
PHY is implemented on an external IC (Marvell 88E1111). The Ethernet MAC, on the
other hand, is implemented in the FPGA itself. This part of the delay is subsumed
on the publisher as EthSend and on the subscriber as EthRec. Furthermore, the two
Altera DE2-115 evaluation boards are connected with a point-to-point network cable.
Therefore, the NetworkDelay is in the range of nanoseconds and only of minor importance.
The histogram of the NetworkDelay distribution during the measurement is shown in
Figure 6.4. The longest delay of EthSend + NetworkDelay + EthReceive was measured
with 15.4 µs.

With the assumption that the network delay is ≤20 µs, a guaranteed end-to-end upper
bound can be calculated with 5,797.19 µs. The distribution histogram of the measured
end-to-end delay can be seen in Figure 6.5. The maximum measured end-to-end delay

48

6.4. End-to-end latency analysis

0

2

4

6

8

10 11 12 13 14 15 16 17 18

#
Sa

m
pl

es

Execution Time: EthSend + NetworkDelay + EthRec [μs]

Figure 6.4: Measured NetworkDelay including hardware delays

is 642.32 µs. Therefore, the measurement setup confirms that the practical end-to-end
latency for publishing, transmitting, and receiving a message over OPC UA PubSub is
well within the theoretical upper limit determined with WCET analysis.

0

2

4

6

8

638 639 640 641 642 643 644

#
Sa

m
pl

es

Execution Time: End-to-end Latency [μs]

Figure 6.5: Measured end-to-end latency

49

CHAPTER 7
Discussion

The aim of this thesis is the modification and adjustment of the open62541 OPC UA
PubSub stack [52] to enable static WCET analysis and to determine difficulties that
arise during this process. The analysis of the publisher and subscriber showed that the
subscriber turned out to be more complex. This is due to the extensive use of dynamic
memory allocation caused by the unknown message size and structure at compile time.
Reprogramming the affected code parts is often necessary [41, 28], because standard
dynamic memory allocation is not WCET anaylzable [25], although there are approaches
to make dynamic allocation possible in WCET analysis [53]. To enable the WCET
analysis of the subscriber, some delimitations like the possible data types and the allowed
number of data fields were defined in Section 1.2. These limitations are valid for specific
applications, but it needs to be ensured that these assumptions are not violated. Therefore,
it is also possible to get tighter WCET bounds by limiting the supported data types and
maximum message size for a specific application.

The the evaluation setup confirmed that the calculated WCET values are higher than the
measurement results for the publisher and the subscriber individually, as well as for the
overall end-to-end latency. In particular, the obtained WCET values of the subscriber
are much higher than the measured values. This is due to the higher complexity and the
dynamic memory allocation as stated in Section 6.3 and could certainly be improved. It
needs to be mentioned that the calculated WCET values are guaranteed upper-bounds.
This is in contrast to the closely related work done by Pfrommer et al. [7], which is based
on dynamic WCET analysis for one specific message. By changing the identified code
parts, even closer guaranteed WCET bounds are possible.

The results of this thesis show that the WCET analysis of the OPC UA PubSub stack
is possible and applicable for end-to-end real-time applications over standard Ethernet.
The lack of a TSN implementation makes it hard to precisely compare the end-to-end

51

7. Discussion

latency with other research results, but they showed to be in a similar range. Eymüller
et al. [31] measured a round trip time for floating-point values with 8 to 160 bytes in the
range of 268 µs – 369 µs. This is equivalent to an end-to-end latency of 134 µs – 184.5 µs,
which is approximately 25% of the highest value of 642 µs measured by the evaluation
setup used in this thesis. This higher latency is likely caused by the significantly lower
clock frequency of the Patmos processor (80 MHz) compared to the standard desktop
processor selected by Eymüller et al. [31]. It also needs to be stated that a higher network
speed of 1 Gbit/s was used in their work.

The claim that the delays in the hardware part (EthSend, NetworkDelay, EthRec) of the
evaluation setup are constant may need some additional investigation if certification is
required or for specific application scenarios. It can lead to problems if other software
also accesses the network interface. Additional hardware support (like a TSN interface)
in the end system may be used to overcome this issue.

52

CHAPTER 8
Conclusion

This chapter concludes the thesis by summarizing the main findings in Section 8.1.
Furthermore, it provides a summary of ongoing and future work in this research topic in
Section 8.2.

8.1 Findings
In this thesis, the WCET analysis of a OPC UA PubSub stack and the necessary
adaptations for a time-predictable platform are presented. In particular, the pitfalls,
challenges, and approaches while adjusting the open-source open62541 OPC UA PubSub
stack for WCET analysis are elaborated in this work.

A code transformation process was introduced, which allows to adapt existing software in
a way such that it can be analyzed with standard WCET analysis tools. After specifying
the process, its main steps, and the required annotation and transformation rules, the
applicability of the process was demonstrated using a small example application.

Next, the process was applied to the much more complex open62541 OPC UA publisher
and subscriber. The open-source time-predictable T-CREST platform with its rich toolset
for WCET analysis was leveraged to obtain theoretical upper limits for the time required
to send and receive OPC UA PubSub messages.

For evaluation of the WCET timing results, a test setup with two development boards,
one for the publisher and one for the subscriber, which are directly connected through a
point-to-point network cable, was selected. The setup was used to determine the network
delay for the end-to-end latency estimation, and the different states of the publisher and
subscriber, which were measured with GPIO signals and a logic analyzer. All obtained

53

8. Conclusion

measurement results were well within the expected limits. However, the evaluation also
revealed that the WCET for the subscriber is much higher than for the publisher, which
is because of the higher complexity and the dynamic memory allocation.

8.2 Future work
The presented work showed the implementation of a point-to-point connected OPC UA
publisher and subscriber that can be WCET analyzed on a time-predictable platform
within the given network setup and no other network traffic. This is laying the ground
for further research efforts towards a distributed end-to-end data transfer environment
with multiple participants.

The most promising network standard in the area of time-sensitive networks for au-
tomation systems is TSN. Therefore an implementation based on TSN would be a good
reference for future industrial implementations. More complex network constellations and
the inevitable presence of other network traffic require more comprehensive measurements
within different setup scenarios.

The presented implementation focuses on the Patmos processor with its toolset for
WCET analysis. Further evaluations of other time-predictable platforms, especially with
open-source licenses, would be also of interest for comparison of the evaluation results
and to provide an alternative development platform.

In the proof-of-concept implementation, the number of supported data types was limited
because of the complexity and due to the excessive-high WCET times caused by the
encoding or decoding function for some data types. Most of the data types that were not
implemented are hardly ever used in real-time applications (e.g. strings), but some could
be of interest for specific applications and, in general, it would be wishful to fully support
all data types supported by the OPC UA PubSub stack. Therefore, further development
and research efforts could be reasonable in this area.

54

List of Figures

1.1 Automation pyramid vs. IIoT architecture 1
1.2 TSN and OPC UA in the OSI model . 3
1.3 End-to-end latency . 4

2.1 Comparison of soft, firm and hard real-time 8
2.2 Execution times for different input data 9
2.3 Basic notions of timing analysis . 9
2.4 T-CREST toolchain . 11
2.5 The foundation of OPC UA . 13
2.6 Integrated Client-Server and Publisher-Subscriber models 14
2.7 DataSet in the process of publishing . 15
2.8 OPC UA PubSub message layers . 16
2.9 OPC UA PubSub using network infrastructure (adapted from [23]) 16
2.10 OPC UA PubSub using broker (adapted from [23]) 17

3.1 Knowledge output produced by this thesis 22
3.2 Research method overview and elements 23

4.1 Process for adjusting existing software for WCET analysis 26
4.2 Example call graph with indirect and direct recursions 27
4.3 Example of a control flow graph with condition and loop 28
4.4 Call graph of the transformed C example application 37

5.1 OPC UA PubSub end-to-end latency diagram 40

6.1 Overview of the WCET analysis and deployment process 44
6.2 Evaluation setup . 45
6.3 Measurement results for PublishCallback, Encode, UdpSend, Subscribe-

Callback, UdpReceive, and Decode . 47
6.4 Measured NetworkDelay including hardware delays 49
6.5 Measured end-to-end latency . 49

55

List of Tables

3.1 Estimated workload for each activity conduced during this thesis 23

5.1 Programming constructs and number of occurrences for the OPC UA publisher
and subscriber . 41

6.1 Comparison of highest timing measurement result and theoretical upper
bounds . 48

57

List of Algorithms

1 Annotations: loops . 29
2 Annotation: direct recursion . 30
3 Transformation rule: direct recursion 31
4 Transformation rule: callback function 32
5 Transformation rule: jumptable . 33

59

Acronyms

AMQP Advanced Message Queuing Protocol. 16, 17

BCET Best Case Execution Time. 8

CFG Control-Flow Graph. 10, 11, 25, 27, 44

COM Component Object Model. 12

COTS commercial off-the-shelf. 19

DCOM Distributed COM. 12

ERP Enterprise Resource Planning. 2, 12

GPIO General Purpose Input/Output. 44, 46, 53

HMI Human Machine Interface. 2, 12

ICT Information and Communication Technology. 1

IIoT Industrial Internet of Things. xi, 1, 2

IoT Internet of Things. 2

IP Internet Protocol. 2

IT Information Technology. 1, 2, 22

LIFO Last-In, First-Out. 31

M2M Machine-to-Machine. 2

MES Manufacturing Execution System. 2

MOM Message Oriented Middleware. 15

61

MQTT Message Queuing Telemetry Transport. 14, 16, 17

OPC Open Platform Communications. 12

OPC UA OPC Unified Architecture. ix, xi, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18,
19, 21, 22, 39, 40, 41, 42, 44, 46, 48, 49, 51, 53, 54, 55

OT Operational Technology. 1, 2

PLC Programmable Logic Controller. 2

SCADA Supervisory Control and Data Acquisition. 2, 12

SDN Software Defined Networking. 19

STREP Specific Targeted Research Project. 7, 10

TSN Time-Sensitive Networking. ix, xi, 2, 3, 4, 5, 16, 18, 19, 40, 52, 54, 55

VLIW Very Long Instruction Word. 12

WCET Worst Case Execution Time. ix, xi, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20,
21, 22, 25, 26, 28, 30, 31, 32, 33, 34, 35, 39, 40, 41, 42, 43, 44, 46, 48, 49, 51, 53, 54,
55

62

Bibliography

[1] Theodore J. Williams. The Purdue enterprise reference architecture. Computers in
Industry, 24(2-3):141–158, 1994.

[2] S. Schriegel, T. Kobzan, and J. Jasperneite. Investigation on a distributed SDN
control plane architecture for heterogeneous time sensitive networks. In 2018 14th
IEEE International Workshop on Factory Communication Systems (WFCS), pages
1–10, 6 2018.

[3] Robert Harrison, Daniel Vera, and Bilal Ahmad. Engineering methods and tools for
cyber–physical automation systems. Proceedings of the IEEE, 104(5):973–985, 2016.

[4] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The Future of Industrial Communi-
cation: Automation Networks in the Era of the Internet of Things and Industry 4.0.
IEEE Industrial Electronics Magazine, 11(1):17–27, 3 2017.

[5] D. Bruckner, M. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. Seewald, and T. Sauter.
An Introduction to OPC UA TSN for Industrial Communication Systems. Proceedings
of the IEEE, 107(6):1121–1131, 2019.

[6] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the Internet of Things. In Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16, New York,
NY, USA, 2012. Association for Computing Machinery.

[7] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran. Open source OPC
UA PubSub over TSN for realtime industrial communication. In 2018 IEEE 23rd
International Conference on Emerging Technologies and Factory Automation (ETFA),
volume 1, pages 1087–1090, 2018.

[8] Sven Gottwald. TSN – Time-Sensitive Networking. https://new.siemens.com/
de/de/produkte/automatisierung/industrielle-kommunikation/
industrial-ethernet/tsn.html. [Online; accessed 21-April-2021].

[9] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,

63

https://new.siemens.com/de/de/produkte/automatisierung/industrielle-kommunikation/industrial-ethernet/tsn.html
https://new.siemens.com/de/de/produkte/automatisierung/industrielle-kommunikation/industrial-ethernet/tsn.html
https://new.siemens.com/de/de/produkte/automatisierung/industrielle-kommunikation/industrial-ethernet/tsn.html

Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and
Per Stenström. The Worst-Case Execution-Time Problem—Overview of Methods
and Survey of Tools. ACM Trans. Embed. Comput. Syst., 7(3), 5 2008.

[10] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso,
Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann,
Stefan Hepp, Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop,
Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Peter Puschner, André Rocha,
Cláudio Silva, Jens Sparsø, and Alessandro Tocchi. T-crest: Time-predictable
multi-core architecture for embedded systems. Journal of Systems Architecture,
61(9):449–471, 2015.

[11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems; Predictable Scheduling
Algorithms and Applications. Real-Time Systems Series. Springer US, Boston, MA,
Boston, MA, 2011.

[12] Douglas Wilhelm Harder, Jeff Zarnett, and Vajih Montaghami. A Practical Intro-
duction to Real-Time Systems for Undergraduate Engineering. 2014. Online; version
0.14.12.22.

[13] Hermann Kopetz. Real-Time Systems - Design Principles for Distributed Embedded
Applications. Real-Time Systems Series. Springer, 2011.

[14] Christine. Rochange, Sascha. Uhrig, and Pascal. Sainrat. Time-predictable archi-
tectures /. Focus Computer Engineering Series. ISTE Ltd : John Wiley & Sons„
London, England ; Hoboken, New Jersey :.

[15] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang. A Survey of WCET
Analysis of Real-Time Operating Systems. In 2009 International Conference on
Embedded Software and Systems, pages 65–72, 2009.

[16] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic Derivation of
Loop Bounds and Infeasible Paths for WCET Analysis Using Abstract Execution.
In 2006 27th IEEE International Real-Time Systems Symposium (RTSS’06), pages
57–66, 2006.

[17] C. Ferdinand, K. Goossens, J. Baptista, S. Mazzini, Martin Schoeberl, and Scott
Hansen. D 8.2 T-CREST white paper technical university of denmark with contri-
butions from all partners. 2013.

[18] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program analysis
transformation. In International Symposium on Code Generation and Optimization,
2004. CGO 2004., pages 75–86, 2004.

[19] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner, and
Christian Probst. Towards a time-predictable dual-issue microprocessor: The Patmos
approach. pages 11–21, 03 2011.

64

[20] Andreas Eckhardt, Sebastian Muller, and Ludwig Leurs. An evaluation of the
applicability of OPC UA Publish Subscribe on factory automation use cases. pages
1071–1074, 09 2018.

[21] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC Unified
Architecture. Springer Science & Business Media, 2009.

[22] Andreas Burger, Heiko Koziolek, Julius Rückert, Marie Platenius-Mohr, and Gösta
Stomberg. Bottleneck identification and performance modeling of OPC UA commu-
nication models. In Proceedings of the 2019 ACM/SPEC International Conference
on Performance Engineering, ICPE ’19, page 231–242, New York, NY, USA, 2019.
Association for Computing Machinery.

[23] OPC Foundation. OPC Unified Architecture Specification Part 14: PubSub, Release
1.04, 2018.

[24] OPC Foundation. OPC Unified Architecture Specification Part 1: Overview and
Concepts 1.04, 2017.

[25] J. Gustafsson and A. Ermedahl. Experiences from Applying WCET Analysis
in Industrial Settings. In 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC’07), pages 382–392,
2007.

[26] D. Sehlberg, A. Ermedahl, J. Gustafsson, B. Lisper, and S. Wiegratz. Static WCET
Analysis of Real-Time Task-Oriented Code in Vehicle Control Systems. In Second
International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (isola 2006), pages 212–219, 2006.

[27] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan, Bengt
Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange, Maurice Sebastian,
Reinhard Von Hanxleden, Reinhard Wilhelm, and Wang Yi. Building Timing
Predictable Embedded Systems. ACM Trans. Embed. Comput. Syst., 13(4), 03 2014.

[28] M. Platzer and P. Puschner. A Real-Time Application with Fully Predictable Task
Timing. In Proceedings - 2020 IEEE 23rd Int. Symposium on Real-Time Distributed
Computing, ISORC, pages 43–46, 2020.

[29] D. Barkah, A. Ermedahl, J. Gustafsson, B. Lisper, and C. Sandberg. Evaluation of
Automatic Flow Analysis for WCET Calculation on Industrial Real-Time System
Code. In 2008 Euromicro Conference on Real-Time Systems, pages 331–340, 2008.

[30] Björn Lisper, Andreas Ermedahl, Dietmar Schreiner, Jens Knoop, and Peter Gliwa.
Practical experiences of applying source-level WCET flow analysis to industrial code.
International Journal on Software Tools for Technology Transfer, 15(1):53–63, 2013.

65

[31] C. Eymüller, J. Hanke, A. Hoffmann, M. Kugelmann, and W. Reif. Real-time
capable OPC-UA programs over TSN for distributed industrial control. In 2020 25th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), volume 1, pages 278–285, 2020.

[32] A. Gogolev, R. Braun, and P. Bauer. Tsn traffic shaping for OPC UA field devices.
In 2019 IEEE 17th International Conference on Industrial Informatics (INDIN),
volume 1, pages 951–956, 2019.

[33] F. Prinz, M. Schoeffler, A. Eckhardt, A. Lechler, and A. Verl. Configuration
of application layer protocols within real-time I4.0 components. In 2019 IEEE
17th International Conference on Industrial Informatics (INDIN), volume 1, pages
971–976, 2019.

[34] T. Kobzan, I. Blöcher, M. Hendel, S. Althoff, A. Gerhard, S. Schriegel, and
J. Jasperneite. Configuration solution for TSN-based industrial networks utiliz-
ing SDN and OPC UA. In 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), volume 1, pages 1629–1636, 2020.

[35] S. K. Panda, M. Majumder, L. Wisniewski, and J. Jasperneite. Real-time industrial
communication by using OPC UA field level communication. In 2020 25th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA),
volume 1, pages 1143–1146, 2020.

[36] Open source implementation of OPC UA (OPC Unified Architecture) aka IEC 62541
licensed under Mozilla Public License v2.0. https://github.com/open62541/
open62541.

[37] Niklas Holsti, Thomas Langbacka, and Sami Saarinen. Using a worst-case execution
time tool for real-time verification of the DEBIE software. Proceedings of DASIA
2000 Conference (Data Systems in Aero- space 2000, ESA SP-457), 457:307–312,
2000.

[38] Manuel Rodríguez, Nuno Silva, João Esteves, Luis Henriques, Diamantino Costa,
Niklas Holsti, and Kjeld Hjortnaes. Challenges in Calculating the WCET of a Com-
plex On-board Satellite Application. In Proceedings of 3rd International Workshop
on Worst-Case Execution Time Analysis (WCET’2003), 2003.

[39] P. Montag, S. Görzig, and P. Levi. Challenges of Timing Verification Tools in the
Automotive Domain. In Second International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (isola 2006), pages 227–232, 2006.

[40] Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa Randim-
bivololona, Marc Langenbach, Reinhard Wilhelm, and Christian Ferdinand. An
abstract interpretation-based timing validation of hard real-time avionics software.
In Proceedings of the IEEE International Conference on Dependable Systems and
Networks (DSN), pages 625–632, 2003.

66

https://github.com/open62541/open62541
https://github.com/open62541/open62541

[41] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper. Applying static WCET
analysis to automotive communication software. In 17th Euromicro Conference on
Real-Time Systems (ECRTS’05), pages 249–258, 2005.

[42] B. J. Oates. Researching information systems and computing. 2005.

[43] S. March and G. F. Smith. Design and natural science research on information
technology. Decis. Support Syst., 15:251–266, 1995.

[44] P. Checkland. Soft systems methodology: A thirty year retrospective a. Systems
Research and Behavioral Science, 17, 2000.

[45] A. Hevner, S. March, Jinsoo Park, and S. Ram. Design science in information
systems research. MIS Q., 28:75–105, 2004.

[46] J. Hughes and T. Wood-Harper. Systems development as a research act. Journal of
Information Technology, 14:83–94, 1999.

[47] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann,
and Simon Wegener. TACLeBench: A benchmark collection to support worst-case
execution time research. In Martin Schoeberl, editor, 16th International Workshop
on Worst-Case Execution Time Analysis (WCET 2016), volume 55 of OpenAccess
Series in Informatics (OASIcs), pages 2:1–2:10, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[48] OPC Foundation. OPC Unified Architecture Specification Part 6: Mappings, Release
1.04, 2017.

[49] T. Frühwirth, W. Steiner, and B. Stangl. TTEthernet SW-based End System for
AUTOSAR. In Proceedings of the 10th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 1–8, Siegen, Germany, June 2015.

[50] Florian Palm, Sten Grüner, Julius Pfrommer, Markus Graube, and Leon Urbas.
open62541-der offene OPC UA-Stack. 5. Jahreskolloquium “Kommunikation in der
Automation”(KommA 2014), 2014.

[51] Luca Pezzarossa, Martin Schoeberl, and Jens Sparsø. Towards utilizing reconfigurable
shared resources in multi-core hard real-time systems. In 9th Junior Researcher
Workshop on Real-Time Computing JRWRTC 2015, pages 21–24, 2015.

[52] Real-Time OPC UA Pub/Sub implementaion using the open62541 library on Patmos.
https://github.com/t-crest/rt-ua.

[53] Jörg Herter and Jan Reineke. Making dynamic memory allocation static to support
wcet analysis. 01 2009.

67

https://github.com/t-crest/rt-ua

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and problem statement
	Delimitations
	Structure of the work

	Technical background and related work
	Definition of realtime
	WCET analysis
	T-CREST
	Platform tools
	Patmos

	OPC Unified Architecture
	Introduction to OPC UA
	OPC UA PubSub

	Related work

	Methodological approach
	Design and creation methodology
	Design and creation for WCET analysis
	Timeline

	Code transformation for WCET analysis
	Code transformation process
	Port application to new platform
	Generate call graph and control flow graph
	Apply code annotations
	Apply code transformations

	Code transformation example

	WCET analysis of OPC UA PubSub
	End-to-end latency
	Adjusting the OPC UA Publisher
	Adjusting the OPC UA Subscriber

	Evaluation
	Evaluation procedure
	Evaluation setup
	WCET measurement results
	End-to-end latency analysis

	Discussion
	Conclusion
	Findings
	Future work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

