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Abstract

This Master’s thesis explores the use of a Dirichlet process (DP) prior to enhance Bayesian

estimation of the parameters of multiple objects. Specifically, it focuses on a hierarchical

Gaussian model where each object is linked to one parameter of interest, one noisy measure-

ment, and one hyperparameter, and the hyperparameters are shared among objects within

the same cluster. The model permits the derivation of closed-form performance bounds,

enabling a quantification of performance improvements relative to the theoretically achiev-

able performance. Our primary objective is to estimate the parameter of interest for each

object based on its associated noisy measurement while leveraging the cluster structure of

the hyperparameters. Because a closed-form calculation of the posterior distribution is not

possible, we employ a Markov chain Monte Carlo sampling method to approximate the min-

imum mean square error (MMSE) estimator. This methodology yields an estimator that

exploits the inherent cluster structure and, as we show through simulations, consistently

achieves a mean squared error (MSE) that is lower than the MSE of the MMSE estimator

for a scenario without a cluster structure. Additionally, we derive a closed-form MMSE esti-

mator assuming known object-cluster associations and demonstrate its performance through

simulations. Our approach of combining estimation and clustering demonstrates superior

performance compared to the widely used method of first clustering and then performing

estimation within each cluster; however, this performance advantage comes at the cost of a

higher computational complexity.



CONTENTS

Contents

1 Introduction 6

1.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Bayesian Estimation 10

2.1 Fundamentals of Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The MMSE Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Convolution Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Posterior pdf for Jointly Gaussian Measurement and Parameter . . . 15
2.3.3 Posterior pdf for Multiple Jointly Gaussian Measurements and Pa-

rameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Dirichlet Process and Dirichlet Process Mixture 23

3.1 Dirichlet Process Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Positions and Weights . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Generation of Random Vectors θn . . . . . . . . . . . . . . . . . . . . 27

3.2 Properties of the Dirichlet Process . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 The The Rich Get Richer Property and the Pólya Urn Model . . . . 28
3.2.2 Distributions Associated with the Dirichlet Process . . . . . . . . . . 29

3.3 Clustering Property and Chinese Restaurant Process . . . . . . . . . . . . . 34
3.3.1 Clustering Property and Random Partition . . . . . . . . . . . . . . . 34
3.3.2 Cluster Assignment Variables . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Chinese Restaurant Process . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Dirichlet Process Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 General Gaussian Model, Benchmark Scenarios and Estimators 50

4.1 General Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 First Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 MMSE Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Second Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 MMSE Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4



CONTENTS

4.3.3 MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Comparison of MSE(1)

min and MSE(2)
min . . . . . . . . . . . . . . . . . . . . . . . 66

5 Inherent Clustering Scenarios and Estimators 68

5.1 Statistical Model for Scenarios 3 and 4 . . . . . . . . . . . . . . . . . . . . . 68
5.2 Third Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 MC Approximation of the MMSE Estimator . . . . . . . . . . . . . . 71
5.2.2 Simple Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3 Gibbs Sampler Using Cluster Assignment Variables . . . . . . . . . . 80
5.2.4 MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Fourth Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 MMSE Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Simulation Results 103

6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 MSE of the Four Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.2 Comparison with Other Clustering Algorithms . . . . . . . . . . . . . 108

7 Conclusion 111

A Proofs 113

A.1 Proof of (3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2 Proof of (5.160) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.2.1 Recursive Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2.2 Proof by Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2.3 Further Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B Matrix Inversion Identities 124

C Product of Gaussian pdfs 125

C.1 Joint pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C.2 Marginal pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5



1 INTRODUCTION

1 Introduction

1.1 Motivation and Contributions

This Master’s thesis investigates the use of a Dirichlet process (DP) prior in the context of

Bayesian estimation. We focus on multiple-object estimation within a hierarchical Gaussian

model where each object is associated with one parameter of interest, one hyperparameter,

and one noisy measurement. The objects are assigned to clusters that are defined by shared

hyperparameters. The primary aim is to estimate the parameter of interest for each ob-

ject from the associated noisy measurement while leveraging the cluster structure of the

hyperparameters.

To solve this estimation problem, we present a technique where the measurements are

clustered simultaneously with estimating the parameters of interest. This integration of

clustering into estimation results in more precise estimates of the parameter of interest,

compared to traditional methods that perform clustering and estimation as separate steps.

We adopt a Bayesian approach, which makes it possible to seamlessly integrate prior knowl-

edge with observed measurements [1]. The resulting posterior distribution provides not only

estimates of the parameters of interest but also a detailed characterization of the uncertainty

associated with these estimates.

We consider four different scenarios of the Gaussian estimation problem that differ in

the prior distribution and the available prior knowledge; in particular, two of the four

scenarios involve a DP prior. For each scenario, we calculate the minimum mean square

error (MMSE) estimator and the corresponding MMSE. More specifically, we derive closed-

form expressions of the MMSE estimator and the MMSE for three scenarios and a Markov

chain Monte Carlo (MCMC) [2] approximation for the remaining scenario. These results

allow us to quantify the clustering gain (i.e., the reduction in MMSE due to the use of the DP

prior and the integration of clustering) and to establish performance bounds for our proposed

clustering-aided estimator. These results are complemented by a detailed introduction to

the theoretical foundations and statistical properties of the DP, which builds on [3] and, in

contrast to the original definition in [4], does not require measure theory.
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1 INTRODUCTION

1.2 State of the Art

In recent years, statistical modeling has shifted towards more flexible methods to capture

complex dataset structures. Dirichlet process mixtures (DPMs) have emerged as powerful

tools across various domains, including machine learning and Bayesian statistics [5]. In-

troduced by Ferguson in the early 1970s [4], the DP provides a non-parametric framework

for modeling uncertainty about the number of clusters in a dataset. Unlike fixed-size mix-

ture models, DPMs adapt dynamically to data complexity by accommodating an infinite

number of latent components, thereby eliminating the need to pre-specify the number of

clusters. DPMs facilitate a robust modeling of complex real-world datasets, making them

a compelling choice for tasks ranging from clustering and capturing latent structures to

density estimation in diverse applications, such as target tracking [6] [7], robotics [8] [9],

and medical imaging [10] [11].

Since the complexity of DPMs often renders direct analytical solutions intractable, Monte

Carlo methods [2] or variational inference (VI) methods [12] are typically used to calculate

approximations to the posterior distributions. In particular, MCMC algorithms like Gibbs

sampling [13] and Metropolis-Hastings sampling [14] provide means to generate samples

from the posterior distribution. A detailed review of MCMC sampling algorithms is provided

in [6]. A VI-based coordinate ascent variational inference (CAVI) algorithm for the Gaussian

estimation problem is derived in [15].

1.3 Thesis Outline

Following the introductory Chapter 1, we provide an overview of Bayesian estimation and

consider the Gaussian distribution in Chapter 2.

In Chapter 3, we introduce and discuss the DP and the DPM. In particular, we focus

on the properties and distributions associated with the DP and derive four different proce-

dures that can be used for generating samples from the DP. Furthermore, we discuss the

DP’s relation to clustering and consider the Chinese restaurant process (CRP). Finally, we

introduce the DPM and the distributions associated with it.

In Chapter 4, we present our general statistical model and derive closed-form expressions

for the MMSE estimator and the MMSE for two benchmark scenarios that do not involve

the DP nor any classification or clustering.

In Chapter 5, we consider two scenarios that involve the DP and inherent clustering.

7



1 INTRODUCTION

We provide MCMC approximations for the MMSE estimator with inherent clustering and

derive the distributions occurring in the Gibbs sampler. Furthermore, we derive closed-

form expressions for the MMSE estimator and the MMSE for the case where the cluster

association of each object is known.

Simulation results are presented in Chapter 6. We study the performance of the estima-

tors for the four scenarios using artificial data generated according to our Gaussian models.

Furthermore, we compare the performance of our estimators with the performance of esti-

mators that use two standard clustering algorithms (DBSCAN [16] and K-Means ++ [17]).

Chapter 7 concludes the thesis with a summary of the main results and some suggestions

for future research.

1.4 Notation

Table 1 provides an overview of the notation used in this thesis.

8



1 INTRODUCTION

Table 1: Summary of notation

x deterministic scalar
x random scalar
x deterministic vector
x random vector
X deterministic matrix
X random matrix
C deterministic set
e random set
{x} set consisting of single vector x

|C| cardinality of set C
‖x‖ Euclidean norm
tr[X] matrix trace
X−1 matrix inverse
xT, XT transpose
X ⊗ Y Kronecker product
cov(x, y) cross-covariance matrix of x and y

var(x) variance of x
IN identity matrix of size N ×N

1N all-ones vector of size N

x1:N column vector stacking vectors xn for n = 1, . . . , N ,
i.e., (xT

1 , . . . ,x
T
N)

T

x¬n column vector stacking vectors xn, for n, = 1, . . . , n− 1, n+ 1, . . . , N ,
i.e., (xT

1 , . . . ,x
T
n−1,x

T
n+1, . . . ,x

T
N)

T

x̄1:N sample mean of x1, . . . ,xN , i.e., 1
N

∑N
n=1 xn

fx(x), fx(x) probability density function (pdf)
px(x), px(x) probability mass function (pmf)
fx | y(x | y), fx | y(x |y) conditional pdf
px | y(x | y), px | y(x |y) conditional pmf
fDP(x) random pdf
N ( · ;μ, σ2) Gaussian pdf with mean μ and variance σ

N ( · ;μ,∑) multivariate Gaussian pdf with mean μ and covariance matrix ∑

DP(α, fH) Dirichlet process with concentration parameter α and base pdf fH

GEM( · ;α) GEM distribution with parameter α

U( · ; a, b) continuous uniform distribution on [a, b]

δ( · ) Dirac delta function
✶( · ) indicator function
(f ∗ g)( · ) convolution
E[ · ] expectation
log( · ) natural logarithm
exp( · ) exponential function
xn raising factorial (Pochhammer symbol)
R real numbers
N natural numbers

9



2 BAYESIAN ESTIMATION

2 Bayesian Estimation

In this chapter, we introduce the basics of Bayesian inference. Our presentation is based

on [1].

2.1 Fundamentals of Bayesian Estimation

We use observed data or measurements to infer an unknown quantity or parameter of inter-

est. As opposed to the classical or frequentist approach, in which the parameter of interest

is modeled as deterministic but unknown, both the parameter of interest and the measure-

ment are modeled as continuous random variables, i.e., we assign to them a probability

density function (pdf). This approach allows us to incorporate prior knowledge about the

parameter of interest into the estimation. Thus, we consider the following:

• The random parameter of interest x ∈ R, with the pdf fx(x), or random parameter

vector x = (x1, . . . , xD)
T ∈ RD, with the pdf fx(x), which is called the prior pdf.

• The random data or measurement y ∈ R, with the pdf fy(y), or random measurement

vector y = (y1, . . . , yN)
T ∈ RN , with the pdf fy(y), which is called the evidence.

• The likelihood function fy | x(y |x), which describes the statistical dependence of the

measurement y given the parameter vector x = x.

• The estimator x̂(y) is a function that assigns a value (“estimate”) x̂ ∈ RD to each

realization y = y. Here, x̂ is desired to be close to the true parameter x. The estimate

depends only on the observed data y and the statistical model. Because the estimate

x̂ is a function of the random data y, it is also random.

• The estimation error e = x̂− x is the difference between the estimate x̂ and the true

parameter of interest x.

Our goal is to find an estimator that minimizes the estimation error e, mapped to a

nonnegative scalar value by a cost function C(e) (sometimes also called loss function or

objective function). We define the Bayes risk as

R = E[C(e)] =

∫
y

∫
x

C(x̂(y)− x)fy,x(y,x)dxdy, (2.1)

10



2 BAYESIAN ESTIMATION

which for fixed cost function C(e) only depends on the estimator .x(·). The Bayesian

estimator x̂B(·), for the given cost function C(·), is now defined to minimize the Bayes risk

R among all possible estimators, i.e.,

x̂B(·) = argmin
.x(·)

R = argmin
.x(·)

∫
y

∫
x

C(x̂(y)− x)fy,x(y,x)dxdy. (2.2)

Here, the joint pdf fy,x(y,x) can be obtained from the prior fx(x) and the likelihood function

fy | x(y |x) according to

fy,x(y,x) = fy | x(y |x)fx(x). (2.3)

An alternative factorization is

fy,x(y,x) = fx | y(x |y)fy(y). (2.4)

2.2 The MMSE Estimator

We now derive the most commonly used Bayesian estimator, the minimum mean square

error (MMSE) estimator, following the definitions in [1]. First we specify the cost function

as C(e) = 1
D
‖e‖2, i.e., the risk R becomes the mean square error (MSE),

R = E[C(e)] =
1

D
E[‖e‖2] = 1

D
E[‖x̂− x‖2] = MSE. (2.5)

Using (2.4) in (2.2) and rearranging the terms, we obtain

x̂B(·) = argmin
.x(·)

∫
y

[∫
x

‖x̂(y)− x‖2fx | y(x |y)dx
]
fy(y)dy, (2.6)

where we note that fy(y) ≥ 0. This means that if we minimize the term in brackets

(conditional risk), the entire expression (2.6) will be minimized. Therefore for fixed y = y

we need to minimize the conditional risk with respect to the vector x̂ = x̂ as opposed to the

function x̂(·). To this end, we calculate1 the gradient of the conditional risk with respect

to x̂, i.e.,

∇.x

∫
x

‖x̂− x‖2fx | y(x |y)dx =

∫
x

∇.x‖x̂− x‖2fx | y(x |y)dx

1We can apply the Leibniz integral rule and interchange the order of integration and differentiation in
(2.7) since both ‖.x− x‖2fx I y(x |y) and ∇.x‖.x− x‖2fx I y(x |y) are continuous in x and .x.

11



2 BAYESIAN ESTIMATION

=

∫
x

2(x̂− x)fx | y(x |y)dx

= 2x̂

∫
x

fx | y(x |y)dx− 2

∫
x

xfx | y(x |y)dx

= 2 (x̂− E[x | y = y]) , (2.7)

where we used
∫
x
fx | y(x |y)dx = 1. Setting the gradient in (2.7) equal to the zero vector

yields the critical point of the function, i.e.,

x̂ = E[x | y = y]. (2.8)

In order to prove that this point is a minimum we consider the Hessian matrix H, i.e., the

matrix of second order partial derivatives. It can be shown that the Hessian matrix is equal

to

H = 2ID, (2.9)

where ID is the identity matrix of size D×D. Since H is positive definite, the critical point

x̂ is a minimum. Therefore, the MMSE estimator is finally seen to be

x̂MMSE(y) = E[x | y = y] =

∫
x

xfx | y(x |y)dx, (2.10)

which is the posterior mean, i.e., the mean of the posterior pdf fx | y(x |y). The posterior

pdf fx | y(x |y), which is the pdf of the parameter x after the data y = y has been observed,

can be obtained by using Bayes’ theorem,

fx | y(x |y) = fy | x(y |x)fx(x)
fy(y)

, (2.11)

where the prior pdf fx(x) represents our knowledge of x before any data has been observed.

Before we discuss the choice of the prior pdf, we derive an expression for the MSE

achieved by the MMSE estimator .xMMSE(y). Inserting (2.10) in (2.5) and briefly writing

the posterior mean E[x | y = y] as μx |y, we obtain

MSEmin =
1

D
E[‖x̂MMSE − x‖2]

12



2 BAYESIAN ESTIMATION

=
1

D

∫
y

∫
x

‖x̂MMSE(y)− x‖2fy,x(y,x)dxdy

=
1

D

∫
y

(∫
x

(
x− μx |y

)T (
x− μx |y

)
fx | y(x |y)dx

)
fy(y)dy

=
1

D

∫
y

tr
[∫

x

(
x− μx |y

) (
x− μx |y

)T
fx | y(x |y)dx

]
fy(y)dy

=
1

D

∫
y

tr [cov (x | y = y)] fy(y)dy, (2.12)

where we used (2.4) and the identity aTb = tr
[
abT

]
. Thus, the MSE achieved by the MMSE

estimator is the trace of the posterior covariance matrix averaged over the distribution fy(y)

of the measurements.

2.3 The Gaussian Distribution

We now discuss one of the most commonly chosen prior pdfs and likelihood functions, the

Gaussian pdf (also called normal distribution). For a scalar random variable z ∈ R, the

Gaussian pdf is defined as

fz(z) =
1√
2πσ2

z

exp

(
−1

2

(
z − μz

σz

)2
)
, (2.13)

where μz is the mean and σ2
z is the variance. In what follows, we will denote the Gaussian

pdf as N (z;μz, σ
2
z). In case of a D-dimensional random vector z ∈ RD, the Gaussian pdf is

defined as

fz(z) = N (z;μz,∑z) =
1√

(2π)Ddet(∑z)
exp

(
−1

2
(z − μz)

T∑−1
z (z − μz)

)
, (2.14)

where ∑z is the covariance matrix. In subsequent calculations, it will sometimes be advan-

tageous to use the precision matrix Λz = ∑−1
z , i.e., the quadratic form in the exponent of

(2.14) can be written as

(z − μz)
T∑−1

z (z − μz) = (z − μz)
TΛz(z − μz) (2.15)

= zTΛzz − zTΛzμz − μT
zΛzz + μT

zΛzμz (2.16)

13



2 BAYESIAN ESTIMATION

2.3.1 Convolution Property

An important property of the Gaussian distribution is that the convolution of two Gaussian

pdfs is also Gaussian [18, Sec. 7.14]. We consider two Gaussian pdfs, with generally different

means and covariance matrices,

fx(x) = N (x;μx,∑x), fy(y) = N (y;μy,∑y). (2.17)

The convolution of fy(y) and fx(x) is defined as

(fy ∗ fx) (z) =
∫
x

fy(z − x)fx(x)dx =

∫
x

N (z − x;μy,∑y)N (x;μx,∑x)dx. (2.18)

As shown in [18, Eq. 7.49], two Gaussians convolve to make another Gaussian, the means

μ and covariance matrices ∑ being additive i.e.,

∫
x

N (z − x;μy,∑y)N (x;μx,∑x)dx = N (z;μx + μy,∑x +∑y). (2.19)

Next, we consider two independent variables x and y, distributed according to (2.17).

We are interested in the distribution of the sum of x and y, we define z as

z = x+ y. (2.20)

The convolution of two, independent 2 random variables is equal to the pdf of the sum of

the random variables [19, Eq. 6-43], i.e., we have

(fy ∗ fx) (z) = fz(z), (2.21)

The mean of z is equal to the sum of the means of the Gaussian random variables x and y,

i.e.,

μz = μx + μy. (2.22)

Since we assume x and y are independent, the covariance matrix of z can be given by the
2If x and y are not independent then fz(z) =

∫
x
fx,y(z − x,x)dx

14



2 BAYESIAN ESTIMATION

sum of the respective covariance matrices, i.e.,

∑z = ∑x +∑y. (2.23)

Using (2.22) and (2.23) we can write the pdf of z as

fz(z) = N (z;μz,∑z) = N (z;μx + μy,∑x +∑y). (2.24)

2.3.2 Posterior pdf for Jointly Gaussian Measurement and Parameter

The choice of a prior is a critical part of Bayesian estimation, as shall be illustrated in the

following example. In the expression (2.10) for the MMSE estimator, it may be impossible

to calculate the posterior pdf fx | y(x |y) in closed form, or we may have to compute the

integral using numerical methods. From (2.11), we conclude that the ability to calculate

the posterior pdf depends on the prior pdf fx(x), the likelihood function fy | x(y |x), and the

evidence fy(y) =
∫
x
fy | x(y |x)fx(x)dx.

We now derive the posterior pdf fx | y(x |y) under the assumption that the parameter x

and the data y are jointly Gaussian. Our development is based on [20]. We consider the

stacked Gaussian random vector

z =

(x

y

) . (2.25)

The mean μz and covariance matrix ∑z of z can be partitioned according to

μz =

(μx

μy

) and ∑z =

(∑xx ∑xy

∑yx ∑yy

) . (2.26)

We note that ∑z is a positive definite, symmetric matrix, which implies that both ∑xx

and ∑yy are positive definite symmetric matrices and ∑yx = ∑T
xy. The precision matrix

Λz = ∑−1
z can be partitioned similarly to ∑z, i.e.,

Λz =

(Λxx Λxy

Λyx Λyy

) . (2.27)

As the inverse of the positive definite symmetric matrix ∑z, the precision matrix Λz is also

positive definite symmetric, which implies that Λxx and Λyy are positive definite symmetric
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matrices and Λyx = ΛT
xy.

The posterior pdf fx | y(x |y) can be obtained from the joint distribution fx,y(x,y) by

fixing y and normalizing the expression to a valid pdf, i.e., by using Bayes’ theorem (2.11)

and the joint distribution fx,y(x,y) = fy | x(y |x)fx(x) we have

fx | y(x |y) = fx,y(x,y)

fy(y)
= αfx,y(x,y), (2.28)

with normalizing factor α so that
∫
x
fx | y(x |y)dx = 1. Since we assume that x and y are

jointly Gaussian, using the stacked Gaussian random vector z (see (2.25)), the joint pdf

fx,y(x,y) is given by (2.14), therefore we have

fx | y(x |y) = αfz(z), (2.29)

which according to (2.14) is Gaussian. If x and y are jointly Gaussian, then the posterior

distribution fx | y(x |y) is also Gaussian, i.e.,

fx | y(x |y) = N (x;μx |y,∑x |y), (2.30)

with some posterior mean μx |y and posterior covariance matrix ∑x |y.

We now take up the joint pdf fx,y(x,y) given by (2.14). First, we consider the quadratic

form in the exponent of (2.14), given in (2.15). Using (2.26) and (2.27), the quadratic form

in (2.15) becomes

(z − μz)
TΛz(z − μz) = (x− μx)

TΛxx(x− μx) + (x− μx)
TΛxy(y − μy)

+ (y − μy)
TΛyx(x− μx) + (y − μy)

TΛyy(y − μy). (2.31)

We now view the expression in (2.31), i.e., the exponent of the joint Gaussian pdf fx,y(x,y)

(up to the factor of −1
2
), as a function of x and consider y fixed, i.e.,

(z − μz)
TΛz(z − μz) = xTΛxxx− μT

xΛxxx− xTΛxxμx + xTΛxyy − xTΛxyμy

+ yTΛyxx. .. .
xTΛT

yxy

−μT
yΛyxx. .. .

xTΛT
yxμy

+const.

= xTΛxxx− 2xTΛxxμx − 2xTΛxyμy + 2xTΛxyy + const.
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= xTΛxxx− 2xT (Λxxμx −Λxy (y − μy)) + const. (2.32)

The right hand side of (2.32) is recognized as a quadratic form in x, which can be written

as

(x− μx |y)T∑−1
x |y(x− μx |y) = xT∑−1

x |yx− 2xT∑−1
x |yμx |y + const. (2.33)

Comparing the quadratic terms in x occurring in (2.32) and (2.33), we obtain the posterior

covariance matrix as

∑x |y = Λ−1
xx. (2.34)

Furthermore, by comparing the linear terms in x occurring in (2.32) and (2.33), we obtain

for the posterior mean μx |y

∑−1
x |yμx |y = Λxxμx −Λxy(y − μy), (2.35)

and therefore

μx |y = ∑x |y (Λxxμx −Λxy(y − μy))

= μx −Λ−1
xxΛxy(y − μy), (2.36)

where (2.34) was used. The posterior covariance ∑x |y in (2.34) and the posterior mean in

μx |y (2.36) are expressed in terms of the partitioned precision matrix Λz in (2.27); however,

using linear algebra it is possible to express them in terms of the partitioned covariance

matrix ∑z in (2.26). We have ∑−1
z = Λz or equivalently

(∑xx ∑xy

∑yx ∑yy

)−1

=

(Λxx Λxy

Λyx Λyy

) . (2.37)

One can show [20, Eq. 2.79] that,

Λxx =
(
∑xx −∑xy∑

−1
yy∑yx

)−1
, (2.38)
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Furthermore, using [20, Eq. 2.80] we have

Λxy = − (
∑xx −∑xy∑

−1
yy∑yx

)−1
∑xy∑

−1
yy. (2.39)

Using (2.38) in (2.34) yields for the posterior covariance matrix

∑x |y = ∑xx −∑xy∑
−1
yy∑yx. (2.40)

Furthermore, using (2.38) together with (2.39) in (2.36) yields for the posterior mean

μx |y = μx +∑xy∑
−1
yy(y − μy). (2.41)

To summarize, if x and y are jointly Gaussian, then the posterior distribution fx | y(x |y) is

also Gaussian, i.e.,

fx | y(x |y) = N (x;μx |y,∑x |y), (2.42)

with posterior mean μx |y given by (2.41) and posterior covariance matrix ∑x |y given by

(2.40).

2.3.3 Posterior pdf for Multiple Jointly Gaussian Measurements and Parame-

ter

We now consider multiple measurements yn ∈ RD, n = 1, . . . , N , that are drawn indepen-

dently from identical Gaussian distribution with mean x ∈ RD and covariance matrix ∑y,

i.e., the likelihood function is given by

fyn | x(yn |x) = N (yn;x,∑y) for n = 1, . . . , N. (2.43)

Let y1:N = (yT1 , . . . , y
T
N)

T denote the stacked vector of measurements. Furthermore, the

prior pdf is also Gaussian, with mean μx and covariance matrix ∑x, i.e.,

fx(x) = N (x;μx,∑x). (2.44)

We are interested in the posterior pdf fx | y1:N (x |y1:N), i.e., the pdf of x conditioned on

the measurements y1:N . First, since we assumed the observations to be independent and
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identically distributed (i.i.d.), using (2.43) we have

fy1:N | x(y1:N |x) =
N∏

n=1

N (yn;x,∑y). (2.45)

Using Bayes theorem (2.11) together with (2.44) and (2.45), we obtain

fx | y1:N (x |y1:N) =
fx(x)fy1:N | x(y1:N |x)

fy1:N (y1:N)
(2.46)

= ϓ(y1:N)N (x;μx,∑x)
N∏

n=1

N (yn;x,∑y). (2.47)

The expression in (2.47) is recognized to be a product of Gaussian pdfs, which is another

Gaussian [18, 7.14]. We will now show that the posterior distribution is Gaussian. Using

the precision matrices Λy = ∑−1
y and Λx = ∑−1

x , (2.47) can be written as

fx | y1:N (x |y1:N) ∝ exp
(
−1

2
(x− μx)

TΛx(x− μx)

) N∏
n=1

exp
(
−1

2
(yn − x)TΛy(yn − x)

]
)

= exp

(
−1

2

(
(x− μx)

TΛx(x− μx) +
N∑

n=1

(yn − x)TΛy(yn − x)

))

= exp
(
−1

2
E

)
, (2.48)

with

E = (x− μx)
TΛx(x− μx) +

N∑
n=1

(yn − x)TΛy(yn − x). (2.49)

We claim that E can be written as a quadratic form in x, while considering all remaining

terms as constant, i.e., it is equal to

Ẽ = (x−μx |y1:N
)T∑−1

x |y1:N
(x−μx |y1:N

) = xT∑−1
x |y1:N

x−2xT∑−1
x |y1:N

μx |y1:N
+const., (2.50)

with some mean μx |y1:N
and covariance matrix ∑x |y1:N

. To show that E = Ẽ and find

μx |y1:N
and ∑x |y1:N

, we expand (2.49) as

E = xTΛxx−xTΛxμx−μT
xΛxx+μT

xΛxμx+
N∑

n=1

(yT
nΛyyn−xTΛyyn−yT

nΛyx+xTΛyx)
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= xTΛxx− 2xTΛxμx +
N∑

n=1

(yT
nΛyyn− 2xTΛyyn + xTΛyx) + const.

= xTΛxx+NxTΛyx− 2xTΛxμx − 2
N∑

n=1

xTΛyyn + const.

= xT(Λx +NΛy)x− 2xT(Λxμx +Λy

N∑
n=1

yn) + const. (2.51)

Comparing the quadratic term in x in (2.51) with the quadratic term in (2.50), we obtain

∑−1
x |y1:N

= Λx +NΛy or equivalently

∑x |y1:N
= (Λx +NΛy)

−1 =
(
∑−1

x +N∑−1
y

)−1
. (2.52)

The last expression can be simplified using matrix identity (B.1) and an alternative expres-

sion can be obtained using (B.3), i.e.,

∑x |y1:N

(B.1)
= ∑y (∑y +N∑x)

−1 ∑x
(B.3)
= ∑x (∑y +N∑x)

−1 ∑y (2.53)

Similarly, comparing the linear terms in x occurring in (2.51) and in (2.50) yields

∑−1
x |y1:N

μx |y1:N
= Λxμx +Λy

N∑
n=1

yn (2.54)

and thus

μx |y1:N
= ∑x |y1:N

(Λxμx +Λy

N∑
n=1

yn)

= ∑x |y1:N
(∑−1

x μx +N∑−1
y ȳ1:N)

= ∑x |y1:N
∑−1

x μx +N∑x |y1:N
∑−1

y ȳ1:N , (2.55)

with the sample mean ȳ1:N = 1
N

∑N
n=1 yn. Finally, inserting the two alternative expressions

in (2.53) into (2.55) yields

μx |y1:N
= ∑y (∑y +N∑x)

−1 μx +N∑x (∑y +N∑x)
−1 ȳ1:N , (2.56)

which can be interpreted as a matrix-weighted mean of the prior mean μx and the sample

mean (mean of the measurements) ȳ1:N . Using the covariance matrix in (2.53) and the mean
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in (2.56), we can finally write the posterior pdf in (2.47) as

fx | y1:N = N (x;μx |y1:N
,∑x |y1:N

). (2.57)

Note that by completing the square in (2.51) in terms of x and considering all remaining

terms as constant, the resulting expression in (2.57) is a normalized Gaussian pdf. We now

insert (2.57) into (2.47) and obtain

N (x;μx |y1:N
,∑x |y1:N

) = ϓ(y1:N)N (x;μx,∑x)
N∏

n=1

N (yn;x,∑y), (2.58)

or equivalently,

N (x;μx,∑x)
N∏

n=1

N (yn;x,∑y) = ϓ̃(y1:N)N (x;μx |y1:N
,∑x |y1:N

) (2.59)

with

ϓ̃(y1:N) = fy1:N (y1:N) =

∫
x

N (x;μx,∑x)
N∏

n=1

N (yn;x,∑y)dx. (2.60)

which as shown in Appendix C.2 is Gaussian and only depends on y1:N . Using A → IN ,

B → IN and μyn → 0, (C.35) reduces to (2.60), therefore we can use the result (C.36) and

obtain

ϓ̃(y1:N) = N
(
y1:N ; μ̃y1:N

, ∑̃yy

)
(2.61)

with mean μ̃y1:N

μ̃y1:N
=

(���
μx

...

μx

)��� (2.62)

and covariance matrix ∑̃yy

∑̃yy =

(������
∑y +∑x ∑x . . . ∑x

∑x ∑y +∑x
. . . ∑x

... . . . . . . ...

∑x . . . ∑x ∑y +∑x

)������ . (2.63)

Lastly, we discuss a special case, where only one measurement is available (N = 1). The
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likelihood function is still given by

fy | x(y |x) = N (y;x,∑y) (2.64)

and the prior pdf is also Gaussian, with mean μx and covariance matrix ∑x, i.e.,

fx(x) = N (x;μx,∑x). (2.65)

Since this is a special case (N = 1) of the general result in (2.57), (2.69) is also Gaussian,

i.e.,

fx | y(x |y) = N (x;μx |y,∑x |y) (2.66)

with posterior covariance matrix

∑x |y = ∑y (∑y +∑x)
−1 ∑x = ∑x (∑y +∑x)

−1 ∑y (2.67)

and posterior mean

μx |y = ∑y (∑y +∑x)
−1 μx +∑x (∑y +∑x)

−1 y, (2.68)

where we adapted (2.53) and (2.56) using N = 1. Similar to (2.59), we have

N (x;μx,∑x)N (y;x,∑y) = ϓ̃(y)N (x;μx |y,∑x |y) (2.69)

with

ϓ̃(y) = N (y;μx,∑y +∑x) . (2.70)
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3 Dirichlet Process and Dirichlet Process Mixture

We now introduce the Dirichlet process (DP). The DP is a stochastic process whose real-

izations (outcomes) are discrete probability distributions, i.e., the DP is a distribution over

distributions, as opposed to, e.g., the Gaussian distribution in (2.13), whose realizations are

real numbers. This means that drawing from the DP produces a discrete distribution.

The DP is an instance of a Bayesian nonparametric model. Let us consider a simple

example to illustrate the difference between a parametric model and a nonparametric model.

In order to model the weight distribution of people, we could choose the Gaussian distribu-

tion and estimate the mean and variance of the distribution from a set of measurements. If

we model the mean and variance as random, with a prior distribution, we are considering

a Bayesian model. Unfortunately, choosing only one Gaussian distribution would not yield

an accurate model, since the weight distributions of women and men differ. We could ex-

pand the model by using a mixture of two Gaussian distributions so that the mean weights

of women and men are modeled separately; however, there are still many other cases to

consider, such as athletes or children. Using this approach, it is necessary to know the

number of distributions beforehand. By contrast, if we decide to use the DP as a prior for

the mean and variance, we do not need to know the number of distributions. Using the

DP as a prior distribution in a mixture model is referred to as Dirichlet process mixture

(DPM). The DPM, just as the DP, is an example of a Bayesian nonparametric model, since

it cannot be parameterized by a finite number of parameters. This is a difference from

the Gaussian mixture model considered above, which is an example of a parametric model,

since it is parameterized by a finite number of parameters (the mean and variance for each

distribution).

In what follows, we first introduce the DP and study some of its properties. Subsequently,

we introduce and briefly discuss the properties of the DPM. The presentation is based on [21]

and [6].

3.1 Dirichlet Process Construction

The DP was introduced in [4] as a random probability measure. The formal definition of the

DP thus requires measure theory, which is beyond the scope of this thesis. We will therefore

adopt the definition in [3], which does not require measure theory and has the advantage of
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0 θ∗
l

Figure 1: Random positions θ∗
l visualized for P = 1 and represented by red bullets.

being constructive. We will show presently what this means.

3.1.1 Positions and Weights

We start by defining two random sequences: a random sequence of positions θ∗
l , l ∈ N and a

random sequence of weights Ql, l ∈ N. The sequence of random positions (θ∗
l )

∞
l=1 is defined

to be independent of the sequence of the weights (Ql)
∞
l=1. In the literature, this construction

of positions and weights is also referred to as homogeneous [21].

Random Positions

First, we consider a sequence of i.i.d. random vectors θ∗
l ∈ RP that are individually dis-

tributed according to a continuous distribution with pdf fH, i.e.,

θ∗
1,θ

∗
2, . . . ∼i.i.d. fH, (3.1)

where fH is referred to as the base distribution of the DP. The random variables θ∗
l can be

thought of as random positions, as shown in Figure 1 for the one-dimensional case (P = 1).

Random Weights: Stick-Breaking Process

We consider an auxiliary sequence Vl ∈ [0, 1], l ∈ N, where the Vl are independent and

individually Beta distributed with shape parameters (1, α), i.e.,

Vl ∼i.i.d. Beta(1, α), (3.2)

where α > 0. We note that the support of the Beta distribution is [0, 1], and for α = 1,

the uniform distribution on [0, 1] is obtained. Using the sequence Vl, we define the weight

sequence Ql ∈ [0, 1] by the following recursive construction:

Q1 = V1, Ql = Vl

l−1∏
l,=1

(1− Vl,) , l = 2, 3, . . . . (3.3)
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l = 1 Q1

l = 2 Q1 Q2

... 1−∑l−1
l,=1 Ql,

l ≥ 3 Q1 Q2
. . . Ql−1 Ql

...

1

Figure 2: The stick-breaking process. The broken-off parts of the stick are represented by
gray rectangles.

It can be shown that
∑∞

l=1 Ql = 1 almost surely. The distribution of the Ql resulting from

this construction is called the GEM distribution (after Griffiths, Engen, and McCloskey [22]).

We shall briefly write

(Ql)
∞
l=1 ∼ GEM

(
(Ql)

∞
l=1;α

)
. (3.4)

The construction in (3.3) is commonly referred to as the stick-breaking process [13].

Indeed, as shown in Appendix A.1, Eq. (3.3) can be reformulated as

Q1 = V1, Ql = Vl

(
1−

l−1∑
l,=1

Ql,

)
, l = 2, 3, . . . . (3.5)

Recalling that Vl ∈ [0, 1], this can be interpreted as follows. Consider a stick with length

1. Initially, for l = 1, we break off a part of that stick whose length Q1 is equal to V1, i.e.,

Q1 = V1 ∈ [0, 1]. Subsequently, for l = 2, 3, . . ., we consider the currently remaining part

of the stick, whose length is given by 1 −∑l−1
l,=1 Ql, , and we break off a part whose length

Ql is proportional to Vl, i.e., Ql = Vl

(
1−∑l−1

l,=1 Ql,
)
. Thus, the random weights Ql are

constructed by repeatedly breaking off parts of a stick with length 1. This stick-breaking

process is visualized in Figure 2.
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1

θ∗
l

Ql

Figure 3: Visualization of the broken-off parts Ql of the stick as vertical bars located at the
random positions θ∗

l (red bullets).

Dirichlet Process Definition

Using the random positions θ∗
l ∈ RP and the random weights Ql ∈ [0, 1] defined by the stick

breaking process, we now define the DP as a random pdf fDP, as follows:

fDP(θ) =
∞∑
l=1

Qlδθ∗
l
(θ). (3.6)

Here, δθ∗
l
(θ) = δ(θ−θ∗

l ) denotes the Dirac delta function at random position θ∗
l , the weight

sequence (Ql)
∞
l=1 is distributed according to GEM

(
(Ql)

∞
l=1;α

)
with α > 0, and the position

sequence (θ∗
l )

∞
l=1 is distributed i.i.d. according to the base distribution fH defined on RP .

Thus, fDP(θ) is an infinite sum of Dirac delta functions at random positions θ∗
l weighted by

random weights Ql, as schematically shown in Figure 3. Accordingly, each realization of the

random pdf actually describes a discrete distribution of θ: the random variable θ assumes

the values θ∗
l with probabilities Ql. We will denote the distribution of the random pdf fDP

as

fDP ∼ DP(α, fH), (3.7)

where we call α the concentration parameter and fH the base distribution.

Lastly, we note that the Dirichlet Process is homogeneous [21]. This means that the

random positions θ∗
l are i.i.d. and independent of the weights Ql, i.e.,

fθ∗
l |Ql

(θ∗
l |Ql) = fθ∗

l
(θ∗

l ) = fH(θ
∗
l ). (3.8)
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3.1.2 Generation of Random Vectors θn

Consider the following two-step generation of random vectors (samples) θn ∈ RP , n ∈ N.

1. First, we define a DP by generating a random sequence of positions (θ∗
l )

∞
l=1 that are

distributed i.i.d. according to a base distribution fH (see (3.1)), and a random sequence

of weights (Ql)
∞
l=1 (see (3.3)) that are distributed according to the GEM distribution

with parameter α. Hence, the DP is given by the random pdf (see (3.6))

fDP(θ) =
∞∑
l=1

Qlδθ∗
l
(θ). (3.9)

2. Then, given a realization fDP(θ) of the DP fDP(θ) (equivalently, given realizations

(θ∗
l )

∞
l=1 and (Ql)

∞
l=1), we define the random vectors θn, n ∈ N, to be distributed

conditionally i.i.d. according to fDP(θ), i.e.,

θ1,θ2, . . . | (fDP = fDP) ∼i.i.d. fDP. (3.10)

From (3.10) and the fact that fDP(θ) =
∑∞

l=1 Qlδθ∗
l
(θ), it follows that for all n ∈ N

we have

θn = θ∗
l with probability Ql. (3.11)

That is, conditioned on fDP = fDP or, equivalently, on (θ∗
l )

∞
l=1 = (θ∗

l )
∞
l=1 and (Ql)

∞
l=1 =

(Ql)
∞
l=1, θn is chosen as θ∗

l with probability Ql, for l ∈ N.

Empirical Reordering

Once the random vectors θn are generated, we can perform a reordering (θ∗
l )

∞
l=1 = (ϑ∗

s)
∞
s=1

of the random positions θ∗
l as follows. For s = 1, we set

ϑ∗
1 = θ1. (3.12)

For s = 2, we set ϑ∗
2 = θn2 , where θn2 is the next sample within the remaining sequence

(θn)
∞
n=2 that is not equal to θ1. Similarly, for all subsequent new indices s = 3, 4, . . ., we

set ϑ∗
s = θns , where θns is the next random position that is not equal to any previously

used sample θn. Since the θn were randomly drawn from the sequence (θ∗
l )

∞
l=1, the sequence
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(ϑ∗
s)

∞
s=1 is a permuted version of the sequence of random positions (θ∗

l )
∞
l=1, i.e.,

(θ∗
l )

∞
l=1 = (ϑ∗

σ(l))
∞
l=1 (3.13)

or individually

θ∗
l = ϑ∗

σ(l), l = 1, 2, . . . , (3.14)

corresponding to some index transformation (permutation)

s = σ(l), l = 1, 2, . . . . (3.15)

Since this index transformation does not change the i.i.d. property and individual distribu-

tion of the θ∗
l given by (3.1), the permuted sequence of random positions (ϑ∗

s)
∞
s=1 is also

distributed according to

ϑ∗
1,ϑ

∗
2, . . . ∼i.i.d. fH. (3.16)

3.2 Properties of the Dirichlet Process

We now discuss the most important properties of the DP and the distributions associated

with it.

3.2.1 The The Rich Get Richer Property and the Pólya Urn Model

The the rich get richer property of the DP can be explained by the following procedure

of drawing colored balls from an urn [23], which is based on the Pólya Urn model [24].

Consider an urn that at time n contains various colored balls and α ∈ N black balls. Balls

are drawn from the urn at random. If a black ball is drawn, we return it back to the urn,

together with an additional colored ball with a new color that is not contained in the urn;

for example, the color can be sampled from a continuous color distribution. If a colored ball

is drawn, we return it back to the urn, together with an additional ball of exactly the same

color, thereby increasing the number of balls with this color.

We assume that at time n = 0 the urn only contains α black balls, therefore the first

draw at time n = 1 results in a black ball, and a new colored ball is added to the urn (for

example orange). Next, at time n = 2, we can either pick the orange-colored ball or one of

the black balls. For larger α, we are more likely to pick a black ball, thus adding a new ball

28



3 DIRICHLET PROCESS AND DIRICHLET PROCESS MIXTURE

with a distinct new color to the urn. This means that for a large α, the number of uniquely

colored balls in the urn (i.e., the number of different colors) increases, as drawing a black

ball also adds into the urn a ball whose color is different from those of the already existing

balls. Conversely, for a small α, we are more likely to pick the orange ball, which results in

two orange balls and α black balls in the urn. This means that for a small α, we are more

likely to draw a colored ball from the urn and return it together with an additional ball of

the same color. As a consequence, for a small α, the balls in the urn are less likely to have

different colors. This is a manifestation of the the rich get richer property: for a small α,

we are most likely to draw a colored ball from the urn, more specifically, the ball whose

color is represented the most in the urn, i.e., an abundant or “rich” color. Drawing a colored

ball adds an additional ball of exactly the same color into the urn, thereby increasing the

probability that a ball with this abundant or “rich” color will be drawn again and further

increasing the number of such colored balls in the urn.

This is closely related to the DP. The colored balls inside the urn can be thought of as

random vectors θn, whereas the color of the ball corresponds to the distinct positions ϑ∗
s

and the number of black balls is related to the concentration parameter α, which is the only

parameter of the GEM distribution (see (3.4)) of the weights Ql.

In the next subsection, we will discuss DP-associated distributions that describe the

drawing of the samples θn from the DP, and in Section 3.3, we will further discuss the the

rich get richer property. An expanded model presented in [23] also allows for α ∈ R+, which

is what we assume in the definition of the DP.

3.2.2 Distributions Associated with the Dirichlet Process

We will now discuss the marginal pdf fθn(θn) of an individual θn, the predictive pdf

fθn |θ1:n−1(θn |θ1:n−1), and the joint pdf fθ1,...,θN
(θ1, . . . ,θN) of the length-N sequence of

random vectors (θn)
N
n=1, equivalently written as a vector θ1:N = (θT

1 , . . . ,θ
T
N)

T. Further-

more, we will discuss the posterior distribution and the conjugate posterior property of the

DP.

Marginal Distribution

According to our generation model described in Section 3.1.2 (see (3.10)), the random vectors

θ1,θ2, . . . ,θN are conditionally i.i.d. given the realization of the DP, i.e., given fDP = fDP

29



3 DIRICHLET PROCESS AND DIRICHLET PROCESS MIXTURE

or equivalently given the sequences of positions θ∗
l and weights Ql, l ∈ N. Note that in

a practical sampling scheme, fixing the weights and positions is not feasible, as there are

infinitely many of them. In (3.1), we defined the random positions θ∗
l as i.i.d. with pdf

fH(θ
∗
l ).

To derive the marginal pdf fθn(θn), we recall that θn is chosen as θ∗
l with probability

Ql. Let An,l denote the event that θn is chosen as θ∗
l , i.e., An,l = {θn = θ∗

l }, and note that

P (An,l) = Ql for n ∈ N. Therefore, we can write

fθn(θn) =
∞∑
l=1

fθn | An,l
(θn | An,l)P (An,l). (3.17)

Now fθn | An,l
(θn | An,l) = fH(θn) since An,l = {θn = θ∗

l }, i.e., given An,l, θn equals θ∗
l and

thus the pdf of θn (still given An,l) equals the pdf of θ∗
l , which is fH(θn). Furthermore,

P (An,l) = Ql. Therefore, (3.17) becomes

fθn(θn) =
∞∑
l=1

fH(θn)Ql = fH(θn)
∞∑
l=1

Ql. .. .
1

= fH(θn). (3.18)

Thus, the marginal pdf of each θn, fθn(θn), equals the base pdf fH(θn).

As an alternative to the above derivation, the marginal distribution can be derived as

follows. As discussed in [22, Theorem 14] and in [13, Sec. 2.2.1], the sequence of random

vectors (θn)
N
n=1 generated according to (3.10) is exchangeable. This means that for any

permutation σ(1), . . . , σ(N) of the indices 1, . . . , N , the joint distribution of θ1, . . . ,θN is

equal to the joint distribution of θσ(1), . . . ,θσ(N), i.e., we have

fθ1,...,θN
(θ1, . . . ,θN) = fθσ(1),...,θσ(N)

(θ1, . . . ,θN). (3.19)

(We note that the joint distribution of θ1, . . . ,θN will be discussed in detail in a later

subsection.) As a consequence of de Finetti’s representation theorem, the exchangeability of

samples θn implies that the marginal distribution of any θn equals the marginal distribution

of any specific θn, , say θ1, i.e., fθn(θn) = fθ1(θn) [25]. Furthermore, from the fact that θ1

equals ϑ∗
1, we conclude that fθ1(θ1) equals fH(ϑ

∗
1) which is the base distribution fH (see
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(3.16)). Thus, we obtain

fθn(θn) = fθ1(θn) = fϑ∗
1
(θn) = fH(θn), for all n ∈ {1, . . . , N}. (3.20)

In other words, the marginal distribution of any individual θn is the base distribution fH.

The random vectors θn are identically distributed (see (3.18) or (3.20)) but, in con-

trast to the θ∗
l or ϑ∗

s, they are not independent. Consider drawing θ1 = θ1 from the DP,

which consequently fixes ϑ∗
1 = θ1 as well (see (3.12)). Then, when drawing θ2, we either

obtain θ2 = ϑ∗
1 = θ1 or another randomly chosen position ϑ∗

2. This shows that θ2 is not

independent of θ1. The pdf of θ2 given θ1 will be discussed in the following subsection.

Predictive Distribution

Let us now consider the pdf of θn given the vector of previously drawn samples θ1:n−1 =

(θT
1 , . . . ,θ

T
n−1)

T, i.e., fθn |θ1:n−1(θn |θ1:n−1), which is sometimes referred to as the predictive

pdf. In [4], it was shown that

fθn |θ1:n−1(θn |θ1:n−1) =
α

α + n− 1
fH(θn) +

1

α + n− 1

n−1∑
n,=1

δθn, (θn). (3.21)

This is a mixture distribution involving the continuous base distribution fH(θn) and up to

n− 1 distinct discrete components δθn, (θn), n, = 1, . . . , n− 1. We note that the θn, are not

necessarily distinct. The predictive pdf fθn |θ1:n−1(θn |θ1:n−1) in (3.21) can be interpreted

as follows: given the previously drawn θ1:n−1, the new θn is either drawn from the base

pdf fH(θn) with probability α
α+n−1

or is equal to one of the previously drawn θn, , n, ∈
{1, . . . , n− 1}, with probability 1

α+n−1
(i.e., equal to θ1 with probability 1

α+n−1
, equal to θ2

with probability 1
α+n−1

, etc.). Note however, that θn, may take on identical values. We will

further discuss the predictive pdf fθn |θ1:n−1(θn |θ1:n−1) in more detail, including a simulated

example, in Section 3.3.

Lastly, we consider a sequence of samples (θn)
N
n=1 from the DP and discuss the con-

ditional pdf of one sample θn, n ∈ {1, . . . , N}, given a subset of the remaining samples,

i.e., {θm}m∈M with M = {nm(1), . . . , nm(|M|)} ⊆ {1, . . . , N}\{n}, with |M| denoting the

cardinality of the set M. As previously stated, the samples θn, n = 1, . . . , N are exchange-

able. This implies that also the samples θm, m ∈ M with M ⊂ {1, . . . , N} are exchange-
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able [26, Theorem 1]. Thus, in analogy to (3.19), the joint pdf of all θm, m ∈ M satisfies

fθm(1),...,θm(|M|)(θm(1), . . . ,θm(|M|)) = fθm(σ(1)),...,θm(σ(|M|))(θm(1), . . . ,θm(|M|)). (3.22)

Using [27, Proposition 6.7] and the exchangeability of the subset {θm}m∈M, we can gener-

alize (3.21) to obtain

fθn | (θm)m∈M(θn | (θm)m∈M) =
α

α + |M|fH(θn) +
1

α + |M|
∑
m∈M

δθm(θn), (3.23)

for any n ∈ {1, . . . , N} and M ⊆ {1, . . . , N}\{n}.

Generation of the Samples θn Using the Predictive pdf

Let us consider the following recursive construction of a sequence of samples θn, (for n =

1, 2, . . .):

1. Draw the first sample θ1 from the base distribution fH.

2. For n = 2, 3, . . ., draw the next sample θn from the predictive pdf fθn |θ1:n−1(θn |θ1:n−1)

in (3.21).

We note this generation procedure of the samples θn does not involve the weights Ql. The

resulting sequence of random vectors θn, n ∈ N is called a Pólya sequence. A Pólya sequence

can be shown to be exchangeable, i.e., it satisfies the generalized permutation invariance

property (3.19) for N → ∞. Therefore, as was shown in [5, Sec. 4.2.4], by de Finetti’s

theorem there exists a random pdf fDP such that

θ1,θ2, . . . | (fDP = fDP) ∼i.i.d. fDP, (3.24)

with fDP ∼ DP(α, fH). A comparison with (3.10) shows that the considered recursive

generation based on the predictive pdf is equivalent to our previous generation procedure

described in Section 3.1.2.
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Joint Distribution

The joint pdf fθ1:N
(θ1:N) = fθ1,...,θN

(θ1, . . . ,θN) has a complicated mixture structure; how-

ever, it can be derived by applying the chain rule [5, Sec. 4.1.4]. Indeed, we have

fθ1,...,θN
(θ1, . . . ,θN) = fθ1(θ1)fθ2 |θ1(θ2 |θ1) . . . fθN |θ1,...,θN−1

(θN |θ1, . . . ,θN−1)

= fθ1(θ1)
N∏

n=2

fθn |θ1:n−1(θn |θ1:n−1). (3.25)

According to (3.20), we have

fθ1(θ1) = fH(θ1). (3.26)

Using (3.26) and (3.21) in (3.25) finally yields

fθ1,...,θN
(θ1, . . . ,θN) = fH(θ1)

N∏
n=2

(
α

α + n− 1
fH(θn) +

1

α + n− 1

n−1∑
n,=1

δθn, (θn)

)
. (3.27)

This is recognized to be a product mixture of the base distribution fH(θn) and discrete

components δθn, (θn) for n, = 1, . . . , n− 1, weighted by α
α+n−1

and 1
α+n−1

respectively.

We recall from (3.19) that the samples θn are exchangeable, i.e., for any permutation

σ(1), ..., σ(N) of the indices 1, ..., N , we have fθ1,...,θN
(θ1, ...,θN)=fθσ(1),...,θσ(N)

(θ1, ...,θN),

even though this is not obvious from expression (3.27). For further discussion of the joint

pdf, we refer to [28].

Posterior Distribution

Let us consider the random pdf fDP ∼ DP(α, fH) and the random variables θ1:N . With

an abuse of language, the random variables θ1:N are often referred to as samples from

the Dirichlet process, or as observations. The observations are sampled conditionally i.i.d.

(given fDP = fDP) from the distribution fDP, as stated in (3.10). The distribution fDP

was previously drawn from DP(α, fH). We will refer to the distribution of the random pdf

fDP ∼ DP(α, fH) as DP prior and to the distribution of the random fDP after we observed

θ1:N , i.e., fDP | (θ1:N = θ1:N), as DP posterior. An important property of the DP prior is its

conjugate posterior [21]. Indeed, it was shown in [4] that the DP posterior is given by

fDP | (θ1:N = θ1:N) ∼ DP(α, f̃H), (3.28)
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where the base pdf f̃H is given by

f̃H(θ) =
α

α +N
fH(θ) +

1

α +N

N∑
n=1

δθn(θ). (3.29)

We see that the posterior fDP | (θ1:N = θ1:N) in (3.28) is again a DP; however, the base

distribution is no longer fH but f̃H as given in (3.29). That is, given θ1:N = θ1:N , the random

positions θ∗
l are now drawn from fH with probability α

α+N
and equal to θn for n ∈ {1, . . . , N}

with probability 1
α+N

. The conjugacy is similar to a Gaussian prior having a Gaussian

posterior (provided the likelihood function is Gaussian). In our case, the random pdf fDP ∼
DP(α, fH) is the DP prior, whereas the likelihood function is given by θ1, . . . ,θN | (fDP =

fDP) ∼i.i.d. fDP (see (3.10)).

3.3 Clustering Property and Chinese Restaurant Process

We now discuss the clustering property of the DP and the effect of the value of the concen-

tration parameter α on the samples θ1:N .

3.3.1 Clustering Property and Random Partition

In what follows, let S(N) be the number of unique positions ϑ∗
s within the N samples θ1:N ,

and let ϑ∗
1:S(N) = (ϑ∗T

1 , . . . ,ϑ∗T
S(N))

T be the vector composed of these unique positions ϑ∗
s

we observe within θ1:N . We note that 1 ≤ S(N) ≤ N . Furthermore, m̃s(N) denotes the

number of times ϑ∗
s is observed within θ1:N , i.e.,

m̃s(N) =
N∑

n=1

✶(θn = ϑ∗
s), s = 1, . . . , S(N), (3.30)

where ✶ denotes the indicator function, i.e., ✶(θn = ϑ∗
s) = 1 if θn = ϑ∗

s and 0 otherwise.

Since ϑ∗
1:S(N) comprises only positions ϑ∗

s that have been observed within θ1:N and s ∈
{1, . . . , S(N)}, we note that m̃s(N) = 0 is not possible. Using (3.30), we have

S(N)∑
s=1

m̃s(N) = N. (3.31)

We consider a simple simulated example, with a DP with dimension P = 2, i.e., θ∗
l ∈ R2,

and Gaussian base distribution fH(θ
∗
l ) = N (θ∗

l ;0,∑) with ∑ = σ2I2, where σ2 = 2 and I2
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(a) α = 0.1 (b) α = 1 (c) α = 10

Figure 4: Example of N = 10 samples θn drawn from the DP. The observed distinct positions
ϑ∗

s are represented by circles whose radius is proportional to the number m̃s(10) of samples
θn that are equal to ϑ∗

s.

is the identity matrix of size 2× 2. To demonstrate the role of the concentration parameter

α, we consider three different values α = 0.1, 1, and 10. We draw N = 10 samples θn,

n = 1, . . . , 10 from the DP. Figure 4 shows realizations of the distinct ϑ∗
s (or equivalently,

of the θ∗
l , see (3.13)) observed within our N = 10 samples θn. Each realization of ϑ∗

s is

represented by a circle whose radius is proportional to m̃s(10), i.e. the number of samples

θn that are equal to ϑ∗
s. Evidently, for each s, this number is at least 1 and at most N = 10.

For α = 0.1, we observed only two distinct positions ϑ∗
s, i.e., ϑ∗

1 and ϑ∗
2, whereas for α = 10

there are nine distinct positions ϑ∗
1, . . . ,ϑ

∗
9. This also shows that a strong concentration

of the θn, corresponding to a small number m̃s(10) of distinct values ϑ∗
s, is obtained for a

small concentration parameter α.

The joint pdf in (3.27) can be rewritten using (3.30) as

fθ1,...,θN
(θ1, ...,θN) = fH(θ1)

N∏
n=2

( α

α + n− 1
fH(θn) +

1

α + n− 1

S(n−1)∑
s=1

m̃s(n− 1)δϑ∗
s
(θn)

) ,

(3.32)

with S(n − 1) indicating the number of unique positions ϑ∗
s observed within the sequence

θ1:n−1, for 2 ≤ n ≤ N . Similarly, we can rewrite the predictive pdf (3.21) as

fθn |θ1:n−1(θn |θ1:n−1) =
α

α + n− 1
fH(θn) +

1

α + n− 1

S(n−1)∑
s=1

m̃s(n− 1)δϑ∗
s
(θn). (3.33)

Note that in this mixture distribution, there are S(n− 1) discrete components at the posi-
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(a) α = 0.5 (b) α = 1 (c) α = 10

Figure 5: Example of the predictive pdf fθ11 |θ1:10(θ11 |θ1:10) for P = 1, after n − 1 = 10
samples θ1:10 have been drawn from the DP. The discrete components of the pdf, i.e., the
Dirac delta functions δϑ∗

s
(θ11) located at the ϑ∗

s, are represented graphically by their weights
~ms(10)
α+10

, shown in blue, whereas the continuous component (the Gaussian base pdf weighted
by α

α+10
), is shown in red.

tions ϑ∗
s, s = 1, . . . , S(n − 1), and the probability that θn = ϑ∗

s (given θ1:n−1) is ~ms(n−1)
α+n−1

,

i.e., proportional to the number m̃s(n − 1) of times ϑ∗
s was observed within the sequence

θ1:n−1. This is a manifestation of the the rich get richer property. Each time we observe

θn, = ϑ∗
s, the number m̃s(n − 1) grows, therefore also the probability that the subse-

quent sample θn equals ϑ∗
s, which is proportional to m̃s(n − 1), also increases. Figure 5

visualizes expression (3.33) for P = 1, i.e., θ∗
l ∈ R, and a Gaussian base distribution

fH(θ
∗
l ) = N (θ∗l ; 0, σ

2) with σ2 = 1. We consider three different concentration parameters

α = 0.5, 1, and 10 and draw samples θn, , n, = 1, . . . , 10. Figure 5 shows the predictive pdf

fθn |θ1:n−1(θn |θ1:n−1) = fθ11 |θ1:10(θ11 |θ1:10), i.e., the pdf of the sample θ11 drawn after the

first n − 1 = 10 samples θ1:10 have been observed. For the small concentration parameter

α = 0.5 (shown in Figure 5a), θ11 will most likely be equal to either ϑ∗
1 or ϑ∗

2, as the weighted

base pdf (shown in red) is very small compared to the weights of the Dirac delta functions,

located at the ϑ∗
s. On the other hand, for the large concentration parameter α = 10 (shown

in Figure 5c), θ11 will most likely be sampled from the base distribution, which means it

will be different from the previously drawn samples ϑ∗
s. Furthermore, we can also see that

for α = 0.5, there are only S(10) = 2 distinct positions ϑ∗
s, whereas for α = 10, there are

S(10) = 9 distinct positions ϑ∗
s. This is another manifestation of the the rich get richer

property.
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Number of Unique Positions

We consider N samples θ1:N from a DP with concentration parameter α. As before, S(N)

denotes the number of the unique positions ϑ∗
s within the samples θ1:N . Figure 4 suggests

that S(N) depends on the parameter α; however, Figure 4 only shows one realization of

S(N). Furthermore, S(N) also depends on the number of samples N . For a random

sequence of samples θ1:N , S(N) is itself a random number. It can be shown [5, Prop. 4.8]

that the expected value of S(N) can be approximated by

E[S(N)] ≈ α log(N). (3.34)

This approximation is asymptotically exact as N → ∞.

Random Partition

Let us consider an ordered random partition of N,

φ = (φ1,φ2, . . .), (3.35)

with an infinite number of subsets φl ⊂ N. Each n ∈ N is contained in exactly one subset

φl, which we refer to as the lth cluster. This means that

N = φ1 ∪ φ2 ∪ . . . and φi ∩ φj = ∅ for i /= j. (3.36)

The random partition φ is constructed from an infinite sequence of DP samples θ1,θ2, . . .

by including in φl all n ∈ N for which θn = θ∗
l , i.e.,

n ∈ φl if θn = θ∗
l . (3.37)

By this construction, each n ∈ N belongs to exactly one subset φl, and thus all φl are

disjoint and their union is N, i.e., we obtain a partition of N; furthermore, all the samples

θn, n ∈ N that equal θ∗
l are associated with the lth cluster φl. Thus, our clustering of the

indices n ∈ N into subsets φl corresponds to a clustering of the DP samples θn, n ∈ N.

Since both θ∗
l and θn are random, the partition φ defined by (3.37) is random as well. For
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a characterization of its probability distribution, we obtain using (3.11)

P
(
n ∈ φl | (θ∗

l )
∞
l=1 = (θ∗

l )
∞
l=1, (Ql,)

∞
l,=1 = (Ql,)

∞
l,=1

)
= Ql. (3.38)

This means that the probability distribution of φ is induced only by the weights (Ql)
∞
l=1

and is independent of the values of the positions (θ∗
l )

∞
l=1 [21, pg.17].

3.3.2 Cluster Assignment Variables

The assignment of the samples θn to distinct positions θ∗
l (or equivalently the association of

the θn with clusters φl) can be expressed in terms of cluster assignment variables c1,c2, . . . ∈
N by setting

cn = l if θn = θ∗
l . (3.39)

Note that we can also write

θn = θ∗
cn
. (3.40)

By (3.37), cn = l implies n ∈ φl, and vice versa, i.e.,

n ∈ φl if and only if cn = l. (3.41)

In other words, for each n ∈ N, cn equals the label l of the subset (cluster) φl to which n (or

by association, θn) belongs. This implies that the random sequence of cluster assignment

variables c1,c2, . . . is equivalent to the random partition φ = (φ1,φ2, . . .) of N. We note

that the order of the cn is different from the order of the partition φ = (φ1,φ2, . . .) since

according to (3.39) we have cn = l if θn = θ∗
l . This means that since θ1 is not necessarily

equal to θ∗
1, c1 is not necessarily equal to 1, but may be any l ∈ N. In the last paragraph of

the current subsection, we will introduce an alternative definition of the cluster assignment

variables using the ordering implied by the ϑ∗
s.

We recall from (3.11) that θn = θ∗
l with probability Ql. Furthermore, θn = θ∗

l is

equivalent to cn = l. Therefore, conditioned on fDP = fDP, or equivalently conditioned on

a sequence of positions (θ∗
l,)

∞
l,=1 = (θ∗

l,)
∞
l,=1 and weights (Ql,)

∞
l,=1 = (Ql,)

∞
l,=1, we have

P
(
cn = l | (θ∗

l,)
∞
l,=1 = (θ∗

l,)
∞
l,=1, (Ql,)

∞
l,=1 = (Ql,)

∞
l,=1

)
= Ql, (3.42)
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or equivalently formulated in terms of probability mass function (pmf),

pcn | (θ∗
l, )

∞
l,=1

,(Ql, )∞l,=1
(l | (θ∗

l,)
∞
l,=1, (Ql,)

∞
l,=1) = Ql. (3.43)

Moreover, we conclude from (3.40) that, together with the sequence of positions (θ∗
l )

∞
l=1,

the cluster assignment variables cn are probabilistically equivalent to the DP samples θn.

Therefore, since the θn are conditionally i.i.d. given (θ∗
l )

∞
l=1 = (θ∗

l )
∞
l=1 and (Ql)

∞
l=1 = (Ql)

∞
l=1,

also the cluster assignment variables cn are conditionally i.i.d. given (θ∗
l )

∞
l=1 = (θ∗

l )
∞
l=1 and

(Ql)
∞
l=1 = (Ql)

∞
l=1 (equivalently, given fDP = fDP).

Lastly, as evidenced by the right-hand side of (3.43), the cluster assignment variables cn

are conditionally independent of the positions (θ∗
l )

∞
l=1 given the weights (Ql)

∞
l=1 = (Ql)

∞
l=1.

The weights (Ql)
∞
l=1 are by definition independent of the positions (θ∗

l )
∞
l=1 (see 3.1.1).

Generation of Random Vectors θn

The two-step generation of the random vectors (samples) θn, n ∈ N described in Sec-

tion 3.1.2 can be reformulated in terms of the cluster assignment variables cn as follows:

1. As before, we generate a DP by generating a random sequence of positions (θ∗
l )

∞
l=1

that are distributed i.i.d. according to a base distribution fH (see (3.1)), and a random

sequence of weights (Ql)
∞
l=1 that are distributed according to the GEM distribution

with parameter α (see (3.4)). Hence, the DP is given by the random pdf (see (3.6))

fDP(θ) =
∞∑
l=1

Qlδθ∗
l
(θ). (3.44)

2. Next, we generate cluster assignment variables cn, n ∈ N conditionally i.i.d. given

fDP = fDP (or equivalently given (θ∗
l )

∞
l=1 = (θ∗

l )
∞
l=1 and (Ql)

∞
l=1 = (Ql)

∞
l=1), using the

conditional pmf pcn | (θ∗
l, )

∞
l,=1

,(Ql, )∞l,=1
,(l | (θ∗

l,)
∞
l,=1, (Ql,)

∞
l,=1) = Ql (see (3.43)).

3. Finally, for each n ∈ N, we set the random vector θn equal to the position θ∗
l with

l = cn, i.e., the position determined by the cluster assignment variable cn:

θn = θ∗
cn
, n ∈ N. (3.45)

Similarly to m̃s(N) defined in (3.30), we define ml(N) as the number of occurrences of
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θ∗
l in the sample sequence θ1:N , i.e.,

ml(N) =
N∑

n=1

✶(θn = θ∗
l ). (3.46)

Using the cluster assignment variables cn, this can be expressed as

ml(N) =
N∑

n=1

✶(Cn = l), l ∈ {C1, . . . , CN}. (3.47)

Note that in the sequence (C1, . . . , CN), some of the Cn may be equal and that ml(N) = 0 is

not possible since l ∈ {C1, . . . , CN}. Furthermore, ml(N) is a permutated version of m̃s(N):

ml(N) = m̃σ(l)(N) = m̃s(N), (3.48)

with same permutation s = σ(l) as in (3.15). It will be convenient to define the random

vector of cluster assignment variables

c1:N = (c1, . . . ,cN)
T (3.49)

and the random set3

e (N) = {c1:N} = {c1, . . . ,cN}, (3.50)

which is the set containing all unique cluster assignment variables cn, for n = 1, . . . , N .

Similarly, for c1:N = C1:N we define

C(N) = {C1:N} = {C1, . . . , CN}, (3.51)

as the set containing all unique observed cluster assignment variables Cn, for n = 1, . . . , N .

In analogy to (3.31), we obtain ∑
l∈C(N)

ml(N) = N. (3.52)

Furthermore, based on (3.50), we define

me (N) = (ml)l∈e (N) (3.53)

3Note that in (3.50), and also subsequently, the notation {a} expresses the set composed of the compo-
nents of the vector a.
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as the vector of all cluster sizes ml, ordered in any convenient way, for example ascending.

Similarly, we also define

θ∗
e (N) = (θ∗

l )l∈e (N) (3.54)

as the vector of all distinct θ∗
l within the samples θ1:N , again ordered in any convenient

way. We note that since the positions θ∗
l are i.i.d. (see (3.1)), the conditional joint pdf of

the positions θ∗
e (N) given c1:N = C1:N or, equivalently, e (N) = C(N), can be written as

fθ∗
e(N) |c1:N

(θ∗
C(N) |C1:N) = fθ∗

e(N) | C(N)(θ
∗
C(N) | C(N)) =

∏
l∈C(N)

fH(θ
∗
l ). (3.55)

The predictive pdf in (3.33) can be rewritten in terms of the set of cluster assignment

variables C(n− 1) = {C1, . . . , Cn−1} as

fθn |θ1:n−1(θn |θ1:n−1) =
α

α + n− 1
fH(θn) +

1

α + n− 1

∑
l∈C(n−1)

ml(n− 1)δθ∗
l
(θn). (3.56)

Similarly, the joint pdf in (3.32) can be rewritten as

fθ1,...,θN
(θ1, ...,θN) = fH(θ1)

N∏
n=2

( α

α + n− 1
fH(θn) +

1

α + n− 1

∑
l∈C(n−1)

ml(n− 1)δθ∗
l
(θn)

) .

(3.57)

Cluster Assignment Variables Based on Empirical Reordering

Finally, we introduce a modified definition of the cluster assignment variables cn in which

the indices l are replaced by the empirically ordered indices s. That is, similarly to (3.39),

we now define the cluster assignment variable c̃n using ϑ∗
s, i.e.,

c̃n = s if θn = ϑ∗
s. (3.58)

Note that this can equivalently be written as (see (3.45))

θn = ϑ∗
~cn
, n ∈ N. (3.59)
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The number m̃s(N) of occurrences of ϑ∗
s in the sample sequence θ1:N , previously defined in

(3.30), can now be expressed using the cluster assignment variables c̃n as (see (3.47))

m̃s(N) =
N∑

n=1

✶(C̃n = s), s = 1, . . . , S(N). (3.60)

For completeness, we define the random vector of cluster assignment variables (see (3.49))

c̃1:N = (c̃1, . . . , c̃N)
T (3.61)

and the random set (see (3.50))

ẽ (N) = {c̃1:N} = {c̃1, . . . , c̃N} = {1, . . . , S(N)}, (3.62)

which is the set containing all unique cluster assignment variables c̃n, for n = 1, . . . , N .

Finally, based on (3.54), we define

ϑ∗
~e (N)

= (ϑ∗
s)s∈ ~e (N) (3.63)

3.3.3 Chinese Restaurant Process

We have mentioned that the DP, with continuous fH, induces a random partition of N. The

distribution over the partitions is called a Chinese restaurant process (CRP). The name

comes from the analogy to seating customers in a restaurant that has an infinite number of

tables and space for an infinite number of customers. Each time a new customer enters the

restaurant, he/she sits either at an already occupied table or at an empty table.

Let us reconsider the discrete part α
α+n−1

∑S(n−1)
s=1 m̃s(n− 1)δϑ∗

s
(θn) of the predictive pdf

fθn |θ1:n−1(θn |θ1:n−1) in (3.33). We see that the probability that the next sample θn equals

ϑ∗
s increases with m̃s(n − 1), i.e., the number of times ϑ∗

s has already been observed. For

example, in Figure 5a, out of the n − 1 = 10 samples that were observed, there are only

two distinct positions ϑ∗
s or, equivalently, clusters, whereas in Figure 5c, there are nine

distinct positions ϑ∗
s or clusters, i.e., only one cluster contains more than one sample. If we

were to sample from the predictive distribution shown in Figure 5a, the next sample would

most likely be equal to one of the two previous samples. On the other hand, in the case of

Figure 5c, the next sample would most likely be sampled from the base distribution. This
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is again a manifestation of the the rich get richer property of the DP.

Suppose now that θ1 represents a customer that enters an empty restaurant (n− 1 = 0)

and sits down at the first table. This customer is therefore assigned to cluster c̃1 = 1.

Next, the second customer θ2 can either sit down at the already occupied table or at a

previously empty table, therefore there are two possible cluster assignments, c̃2 = 1 or

c̃2 = 2. Continuing in this manner, let θn represent a customer entering the restaurant

with n−1 customers θ1:n−1 already inside and S(n−1) tables occupied. The new customer

chooses to sit at the already occupied table s ∈ {1, . . . , S(n− 1)} with probability ~ms(n−1)
α+n−1

,

or he/she sits at an empty table s = S(n− 1) + 1 with probability α
α+n−1

. The customer is

assigned a cluster c̃n = s according to his/her table. The predictive pmf of c̃n, i.e., given

the previous cluster assignment variables c̃1:n−1 = (c̃1, . . . , c̃n−1)
T, is thus obtained as

p~cn | ~c1:n−1
(s | C̃1:n−1) =

����
∑n−1

n,=1 ✶(C̃n, = s)

α + n− 1
for s = 1, . . . , S(n− 1) and n ≥ 2

α

α + n− 1
for s = S(n− 1) + 1 and n ≥ 2,

(3.64)

where (3.60) was used. For the case n = 1, we obtain p~c1
(s) = 1.

CRP-based Generation of the Samples θn

The recursive construction presented in Section 3.2.2 can similarly be formulated using the

cluster assignment variables c̃n and the predictive pmf of the cluster assignment variables

in (3.64), thus establishing a relation to the CRP:

1. Draw the distinct random positions ϑ∗
s, s ∈ N i.i.d. from the base distribution fH, i.e.,

ϑ∗
1,ϑ

∗
2, . . . ∼i.i.d. fH. (3.65)

2. Initialize the recursion by choosing the first cluster assignment c̃1 as

c̃1 = 1, (3.66)

and for n = 2, 3 . . ., draw the next cluster assignment variable c̃n from the predictive

pmf p~cn | ~c1:n−1
(s | C̃1:n−1) in (3.64).
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3. For all n ∈ N, set

θn = ϑ∗
~cn
. (3.67)

We note that using this construction, we have c̃1 = 1 and therefore also θ1 = ϑ∗
1, as

postulated previously (see (3.12)). A remarkable feature of this recursive construction is

that it does not involve the weights Ql.

CRP-induced Random Partition

Using an infinite sequence of DP samples θ1,θ2, . . . generated according to the above-

described recursion, we can construct an ordered random partition φ̃ = (φ̃1, φ̃2, . . .) of N

by including in the subset (cluster) φ̃s all n ∈ N for which θn = ϑ∗
s, i.e.,

n ∈ φ̃s if θn = ϑ∗
s. (3.68)

This random partition φ̃ is equivalent to the sequence of cluster assignment variables (c̃n)
∞
n=1

because φ̃s comprises all n ∈ N for which c̃n = s, i.e.,

n ∈ φ̃s if and only if c̃n = s. (3.69)

Note the analogy of (3.68) and (3.69) to (3.37) and (3.41), respectively. For n = 1 and

s = 1, (3.69) reads 1 ∈ φ̃1 if and only if c̃1 = 1, and thus we conclude from (3.66) that

1 ∈ φ̃1.

According to (3.69), the CRP induces a partition of N that is independent of the positions

ϑ∗
s. This is because the predictive pmf p~cn | ~c1:n−1

(s | C̃1:n−1) in (3.64) that is used in the

recursive generation of the infinite sequence of cluster assignment variables (c̃n)
∞
n=1 does

not depend on the positions ϑ∗
s.

Joint pmf of the Cluster Assignment Variables

Next, we consider the joint pmf of the cluster assignment variables c̃1:N . By applying the

chain rule, this can be formulated as a product of the conditional pmfs p~cn |~c1:n−1
(s|C̃1:n−1)

(see (3.64)), i.e.,

p~c1:N
(C̃1:N) = p~c1

(C̃1)
N∏

n=2

p~cn | ~c1:n−1
(C̃n | C̃1:n−1). (3.70)
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Following the results in [29, Eq. 8], the joint pmf of the cluster assignment variables,

conditioned on the respective cluster sizes m̃1:S(N) = (m̃1(N), . . . , m̃S(N)(N))T is given by

p~c1:N | ~m1:S(N)(C̃1:N | m̃1:S(N)) =
αS(N)

∏S(N)
s=1 (m̃s(N)− 1)!∏N

n=1(α + n− 1)
. (3.71)

We note that this pmf depends only on the respective cluster sizes m̃1:S(N), the total number

of distinct objects S(N), and the concentration parameter α. On the other hand, it does

not depend on the order of the cluster assignment variables C̃n, which means the cluster

assignment variables are conditionally exchangeable given m̃1:S(N) [29].

Exchangeable Random Partition

Let us consider the ordered random partition φ = (φ1,φ2, . . .) of N constructed from an

infinite sequence of DP samples (θn)
∞
n=1 according to (3.37). From the fact that the DP sam-

ples (θn)
∞
n=1 are exchangeable, it follows that the random partition φ is also exchangeable.

This is proven using Kingman’s representation [30], which shows that for any exchange-

able infinite random partition, there exists an exchangeable sequence defined by (3.10) that

generates the infinite partition (see (3.37)) [5, Theorem 14.7].

Next, we reconsider the index transformation s = σ(l), l = 1, 2, . . . in (3.15). Using

(3.14) in (3.68), we have

n ∈ φ̃σ(l) if θn = ϑ∗
σ(l) = θ∗

l . (3.72)

Comparing (3.72) with (3.37) we conclude that

φ̃σ(l) = φl, (3.73)

which implies that the random partition φ̃ is a reindexed version of φ, i.e.,

(φ̃σ(1), φ̃σ(2), . . .) = (φ1,φ2, . . .). (3.74)

Furthermore, using (3.73) in (3.69) and recalling that s = σ(l), we obtain

n ∈ φl if and only if c̃n = σ(l). (3.75)
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Comparing with (3.41), we conclude that

c̃n = σ(l) = σ(cn). (3.76)

Thus, the cluster assignment variable c̃n is related to the cluster assignment variable cn by

the permutation function σ(·).
The random partition φ = (φ1,φ2, . . .) implied by the random sequence of cluster

assignment variables (cn)
∞
n=1 (see (3.41)) is (up to reindexing) equivalent to the random

partition φ̃ = (φ̃1, φ̃2, . . .) implied by the random sequence of cluster assignment variables

(c̃n)
∞
n=1 (see (3.69)).

We note that the process of generating the cluster assignments by sampling from the

predictive pmf in (3.64) is called recursive partitioning [5, caption of Figure 14.1], and the

conditional pmf of the cluster assignment variables in (3.71) is also called the exchangeable

partition probability function [5, Eq. 14.6].

3.4 Dirichlet Process Mixture

The DP is widely used across a great variety of applications in Bayesian analysis, e.g., in

density estimation and data clustering. Due to its discrete nature, i.e., realizations of the DP

are discrete probability distributions, the DP alone is not suitable as a prior for estimating

a continuous density. However, the DP can be used as a prior distribution in a mixture

model. The resulting mixture model is referred to as a Dirichlet process mixture (DPM).

At the beginning of this chapter, we considered the DPM in the context of the simple

example of estimating the weight distribution of people from a set of measurements. Let

us denote the weight of person n by xn ∈ R+. We argued previously that in a given

population, there are several different groups of people (clusters). Since it is very unlikely

that two people have exactly the same weight, even within the same cluster, the DP cannot

be used as a prior for the weight distribution.

Let the random position θ∗
l ∈ R+ represent the mean weight of the lth cluster. Using

the cluster assignment variable cn to assign person n to a cluster l, i.e., l = cn, we have

θn = θ∗
cn

for all n (here, θn denotes the mean weight of the cluster to which person n

belongs). Since the weight distribution we want to estimate is continuous whereas the DP

is discrete, we do not use θn to model the weight xn, but instead, we use a continuous
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pdf fxn | θn(xn | θn) = φ(xn | θn) to smooth out the DP. For example, we might consider

using φ(xn | θn) = N (xn; θn, σ
2). However, since this allows xn ≤ 0, we use for φ(xn | θn)

a truncated Gaussian distribution, with mean θn and some variance σ2 > 0, where the

truncation enforces xn > 0. The advantage of the DPM model is that we do not need to

specify the number of clusters beforehand, i.e., the number of distinct weight means θ∗
l , as

the underlying DP offers an infinite number of θ∗
l , which are automatically chosen depending

on the observed data and the concentration parameter α.

Definition of the DPM

We now formally define the DPM, following [6] and [5, Sec. 5.1]. Consider a random position

θn ∈ RP distributed according to the DP, i.e.,

θn | (fDP = fDP) ∼i.i.d. fDP, (3.77)

where fDP ∼ DP(α, fH) with some concentration parameter α > 0 and base pdf fH(θ) for

θ ∈ RP . In addition, consider a random vector xn ∈ RD, and let the conditional distribution

of xn given θn be described by a continuous pdf φ(x |θ) on RD for each θ ∈ RP , i.e.,

fxn |θn(xn |θn) = φ(xn |θn). (3.78)

The DPM is now defined as the random pdf φ(xn |θn) with random condition variable θn

distributed according to (3.77). Consistent with this hierarchical model for generating θn

from fDP and xn from θn, we further assume that xn is conditionally independent of fDP

given θn, i.e.,

fxn | fDP,θn(xn | fDP,θn) = fxn |θn(xn |θn). (3.79)

Note that this corresponds to a Markov chain fDP → θn → xn.

The conditional distribution of xn given fDP can be calculated as [6, Eq. 3.34]

fxn | fDP(xn | fDP) =

∫
θn

fxn | fDP,θn(xn | fDP,θn)fθn | fDP(θn | fDP)dθn

=

∫
θn

fxn |θn(xn |θn)fDP(θn)dθn

=

∫
θn

φ(xn |θn)fDP(θn)dθn, (3.80)
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where we used the law of total probability as well as (3.79), (3.77), and (3.78). We recall

that a realization fDP = fDP corresponds to a realization of the position sequence (θ∗
l )

∞
l=1 =

(θ∗
l )

∞
l=1 and a realization of the weight sequence (Ql)

∞
l=1 = (Ql)

∞
l=1, and by (3.6) we have

fDP(θ) =
∞∑
l=1

Qlδθ∗
l
(θ), (3.81)

for some (θ∗
l )

∞
l=1 and (Ql)

∞
l=1. Using (3.81) in (3.80) finally yields

fxn | fDP(xn | fDP) =

∫
θn

φ(xn |θn)

( ∞∑
l=1

Qlδθ∗
l
(θn)

)
dθn

=
∞∑
l=1

Ql

∫
RP

φ(xn |θn)δθ∗
l
(θn)dθn

=
∞∑
l=1

Qlφ(xn |θ∗
l ). (3.82)

We note that (3.82) is an infinite mixture of continuous distributions φ(xn |θ∗
l ), weighted

by Ql.

We can equivalently express the random condition variable θn using the cluster as-

signment variable cn and the random position θ∗
l as θn = θ∗

cn
(see (3.40)), therefore the

right-hand side of (3.79) can equivalently be written as

fxn |θn(xn |θn) = fxn |θ∗
cn

,cn(xn |θ∗
Cn
, Cn). (3.83)

Finally, we consider a length-N sequence of random vectors (θn)
N
n=1, equivalently writ-

ten as a vector θ1:N = (θT
1 , . . . ,θ

T
N)

T, where θn is conditionally i.i.d. given fDP = fDP (see

(3.77)). Furthermore, we consider a length-N sequence of random vectors (xn)Nn=1, equiva-

lently written as a vector x1:N = (xT1 , . . . , x
T
N)

T, where xn is conditionally i.i.d. given θ1:N ,

i.e.,

xn | (θ1:N = θ1:N) ∼i.i.d. fxn |θ1:N
(xn |θ1:N). (3.84)

In addition, we assume that xn is conditionally independent of all other θn, given θn, with

n, /= n. Thus, the joint conditional pdf can also be factorized as

fx1:N |θ1:N
(x1:N |θ1:N) =

N∏
n=1

fxn |θ1:N
(xn |θ1:N) =

N∏
n=1

fxn |θn(xn |θn). (3.85)
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Equivalently, (3.85) can be expressed using the cluster assignment variable cn and the

random position θ∗
l by inserting (3.83) into (3.85), hence

fx1:N |θ1:N
(x1:N |θ1:N) =

N∏
n=1

fxn |θ∗
cn

,cn(xn |θ∗
Cn
, Cn) =

∏
l∈C(N)

∏
n:Cn=l

fxn |θ∗
l ,cn(xn |θ∗

l , Cn),

(3.86)

with C(N) = {C1, . . . , CN} being the set of all unique cluster assignment variables (see

(3.51)) for n = 1, . . . , N .
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4 General Gaussian Model, Benchmark Scenarios and

Estimators

This chapter will first introduce our statistical model and some fundamental assumptions

that are valid for each of the four scenarios. We then discuss two basic scenarios that do not

make use of any classification or clustering. These results will later be used as performance

bounds in Section 5, where we study two more sophisticated scenarios that make use of joint

clustering and estimation.

In each scenario, multiple objects are indexed by n ∈ {1, . . . , N}, where N is the total

number of objects. For each object, we want to estimate a random parameter vector of

interest xn = (xn,1, . . . , xn,D)
T ∈ RD, which is statistically dependent on a hyperparameter

vector θn = (θn,1, . . . , θn,D)
T ∈ RD. Also, for each object, we observe a noisy measurement

yn = (yn,1, . . . , yn,D)
T ∈ RD, which in all four scenarios is considered known and generated

according to a stochastic dependence on our parameter of interest xn.

Thus, object n is associated with a single xn, a single θn, and a single yn. The task is to

estimate the parameter of interest xn for each object n, given the vector of all measurements

y1:N = (yT1 , . . . , y
T
N)

T. We denote the vector containing all hyperparameter vectors as θ1:N =

(θT
1 , . . . ,θ

T
N)

T and the vector of all parameters of interest as x1:N = (xT1 , . . . , x
T
N)

T.

Representative Scenarios

For each scenario, we choose a different prior pdf of the hyperparameter θn for all n ∈
{1, . . . , N}. In general, we do not necessarily assume independence of θn across the object

index n, which means that the hyperparameter θn can be statistically related not only to

xn but also to xj with j /= n. More specifically, we consider the following four scenarios:

1. θn is i.i.d. across n and distributed according to a given prior fθn(θn).

2. θn is distributed according to fθn(θn) as in first scenario, but observed, i.e. θn = θn.

3. θ1:N is distributed according to a DP as introduced in (3.7).

4. Similar to the previous scenario, θ1:N is distributed according to a DP; however, we

assume that the cluster assignments c1:N (see Sec. 3.3) are known.

We consider the first two scenarios as benchmarks providing theoretical performance

bounds relative to the third and fourth scenarios. As opposed to the first two scenarios,
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the third and fourth scenarios involve the DP prior, and they enable joint clustering and

estimation. Since in the first scenario the hyperparameter θn is i.i.d. across n, we cannot

make use of any underlying cluster structure, and thus we expect the estimator in the first

scenario to have the worst performance in terms of MSE. On the other hand, in the second

scenario, the hyperparameter θn = θn is assumed to be known, therefore the estimator

in this scenario should have the best performance in terms of MSE. In the third scenario,

we make use of the cluster structure, therefore we expect better performance in terms of

MSE than in the first scenario but still poorer performance than in the second scenario.

Furthermore, as we will observe in Section 5.2, the MMSE estimator in the third scenario

cannot be expressed in closed form; however, it can be approximated by a Monte Carlo

(MC) evaluation of the posterior mean. Lastly, in the fourth scenario, we also make use of

the cluster structure; however, since the cluster assignments c1:N are given, the estimator is

provided with additional knowledge compared to the third scenario. Hence, we expect the

estimator in the fourth scenario to perform better than the estimator in the third scenario,

but still worse than the estimator in the second scenario.

4.1 General Model and Assumptions

We assume that the parameter of interest of each object n, xn, is related to the hyperpa-

rameter θn according to the additive-noise model

xn = θn + un, (4.1)

where un will be called the parameter noise. We also assume that un is zero-mean Gaussian,

i.e.,

fun(un) = N (un;0,∑u), (4.2)

with some covariance matrix ∑u. It follows from (4.1) and (4.2) that given θn, xn is Gaussian

distributed according to

fxn |θn(xn |θn) = N (xn;θn,∑u). (4.3)

Thus, conditioned on the hyperparameter θn, the mean of xn equals θn and the covariance

matrix of xn is ∑u.

Furthermore, we assume that the measurement yn is xn corrupted by additive Gaussian
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noise vn, i.e.,

yn = xn + vn, (4.4)

where vn is zero-mean Gaussian, i.e.,

fvn(vn) = N (vn;0,∑v), (4.5)

with some covariance matrix ∑v. It follows from (4.4) and (4.5) that yn given xn is Gaussian

with mean xn and covariance matrix ∑v, i.e,

fyn | xn(yn |xn) = N (yn;xn,∑v). (4.6)

Note also that combining (4.1) and (4.4) gives

yn = θn + un + vn. (4.7)

We can also write (4.1), (4.4) and (4.7) using vector-matrix notation as

(���
yn

xn

θn

)��� =

(���
θn + un + vn

θn + un

θn

)��� =

(���
ID ID ID

ID ID 0

ID 0 0

)���
(���
θn

un

vn

)��� , (4.8)

with identity matrix ID of size D ×D.

Independence Assumptions

For all scenarios, we furthermore assume the following:

A1) The parameter noise un is i.i.d. across object index n. Therefore, the pdf of the

parameter noise vector of all objects, u1:N = (uT
1 , . . . ,u

T
N)

T, is

fu1:N (u1:N) =
N∏

n=1

fun(un) =
N∏

n=1

N (un;0,∑u). (4.9)

A2) The measurement noise vn is i.i.d. across object index n. Therefore, the pdf of the
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measurement noise vector of all objects, v1:N = (vT1 , . . . , v
T
N)

T, is

fv1:N (v1:N) =
N∏

n=1

fvn(vn) =
N∏

n=1

N (vn;0,∑v). (4.10)

A3) θn, uj, and vk are mutually independent for any n, j, k ∈ {1, . . . , N}. This means that

the joint pdf fθ1:N ,u1:N ,v1:N (θ1:N ,u1:N ,v1:N) can be factored as

fθ1:N ,u1:N ,v1:N (θ1:N ,u1:N ,v1:N) = fθ1:N
(θ1:N)

N∏
n=1

fun(un)fvn(vn)

= fθ1:N
(θ1:N)

N∏
n=1

N (un;0,∑u)N (vn;0,∑v). (4.11)

In general, except for the first scenario, we do not assume that θn is independent

across object index n, hence fθ1:N
(θ1:N) is not necessarily equal to

∏N
n=1 fθn(θn).

General Factorizations of PDFs

The hierarchical model for generating xn from θn (see (4.1)) and yn from xn (see (4.4)) is a

Markov chain, denoted as θn → xn → yn. That is, given xn, yn is conditionally independent

of θn, or equivalently

fyn | xn,θn(yn |xn,θn) = fyn | xn(yn |xn). (4.12)

The conditional pdf on the right-hand side of (4.12) is recognized as the likelihood function.

We now factorize the joint likelihood function fy1:N | x1:N (y1:N |x1:N) using, in turn, (4.4),

(4.10), and (4.6) as follows:

fy1:N | x1:N (y1:N |x1:N)
(4.4)
= fv1:N | x1:N (y1:N − x1:N |x1:N)

(4.10)
=

N∏
n=1

N (yn − xn;0,∑v)

=
N∏

n=1

N (yn;xn,∑v) (4.13)

(4.6)
=

N∏
n=1

fyn | xn(yn |xn) (4.14)
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Hence, the joint likelihood function fy1:N | x1:N (y1:N |x1:N) is given for all scenarios by

fy1:N | x1:N (y1:N |x1:N) =
N∏

n=1

fyn | xn(yn |xn) =
N∏

n=1

N (yn;xn,∑v). (4.15)

Furthermore, we factorize fy1:N | x1:N ,θ1:N
(y1:N |x1:N ,θ1:N) using, in turn, (4.4), (4.1), As-

sumption A3, and (4.10), as follows:

fy1:N | x1:N ,θ1:N
(y1:N |x1:N ,θ1:N)

(4.4)
= fv1:N | x1:N ,θ1:N

(y1:N − x1:N |x1:N ,θ1:N)

(4.1)
= fv1:N |θ1:N+u1:N ,θ1:N

(y1:N − x1:N |θ1:N + u1:N ,θ1:N)

A3
= fv1:N (y1:N − x1:N)

(4.10)
=

N∏
n=1

N (yn − xn;0,∑v)

=
N∏

n=1

N (yn;xn,∑v). (4.16)

Thus, using (4.6) and (4.15), we also have

fy1:N | x1:N ,θ1:N
(y1:N |x1:N ,θ1:N) =

N∏
n=1

fyn | xn(yn |xn) (4.17)

= fy1:N | x1:N (y1:N |x1:N) (4.18)

Next, the conditional pdf fx1:N |θ1:N
(x1:N |θ1:N) can be factorized using, in turn, (4.1),

Assumption A3, and (4.9) as follows:

fx1:N |θ1:N
(x1:N |θ1:N)

(4.1)
= fu1:N |θ1:N

(x1:N − θ1:N |θ1:N)

A3
= fu1:N (x1:N − θ1:N)

(4.9)
=

N∏
n=1

N (xn − θn;0,∑u)

=
N∏

n=1

N (xn;θn,∑u). (4.19)

Using (4.3), we also have

fx1:N |θ1:N
(x1:N |θ1:N) =

N∏
n=1

fxn |θn(xn |θn). (4.20)
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Lastly, the conditional pdf fy1:N |θ1:N
(y1:N |θ1:N) can be written using the law of total

probability as

fy1:N |θ1:N
(y1:N |θ1:N) =

∫
x1:N

fy1:N | x1:N ,θ1:N
(y1:N |x1:N ,θ1:N)fx1:N |θ1:N

(x1:N |θ1:N)dx1:N .

(4.21)

Inserting (4.17) and (4.20) into (4.21), we obtain

fy1:N |θ1:N
(y1:N |θ1:N) =

∫
x1:N

(
N∏

n=1

fyn | xn(yn |xn)fxn |θn(xn |θn)

)
dx1:N

=
N∏

n=1

∫
xn

fyn | xn(yn |xn)fxn |θn(xn |θn)dxn. (4.22)

Using (4.12) and again the law of total probability, this becomes further

fy1:N |θ1:N
(y1:N |θ1:N) =

N∏
n=1

∫
xn

fyn | xn,θn(yn |xn,θn)fxn |θn(xn |θn)dxn

=
N∏

n=1

fyn |θn(yn |θn). (4.23)

The equality of (4.23) and (4.22) also shows that

fyn |θn(yn |θn) =

∫
xn

fyn | xn(yn |xn)fxn |θn(xn |θn)dxn. (4.24)

Inserting (4.6) and (4.3) into (4.24) we obtain

fyn |θn(yn |θn) =

∫
xn

N (yn;xn,∑v)N (xn;θn,∑u)dxn

=

∫
xn

N (yn − xn;0,∑v)N (xn;θn,∑u)dxn. (4.25)

This integral is the convolution of two Gaussian pdfs. Therefore according to (2.19), it is

again a Gaussian pdf; its mean is the sum of the means, i.e., μyn |θn = θn + 0 = θn and its

covariance matrix is the sum of the covariance matrices, i.e., ∑yn |θn = ∑u +∑v. Thus, we

obtain

fyn |θn(yn |θn) = N (yn;θn,∑u +∑v), (4.26)

55



4 GENERAL GAUSSIAN MODEL, BENCHMARK SCENARIOS AND ESTIMATORS

and by inserting (4.26) into (4.23)

fy1:N |θ1:N
(y1:N |θ1:N) =

N∏
n=1

N (yn;θn,∑u +∑v). (4.27)

4.2 First Scenario

In the first scenario, we assume that the hyperparameter θn is i.i.d. across object index n

and Gaussian distributed.

4.2.1 Statistical Model

Because of this assumption, the pdf of the hyperparameter vector θ1:N is given by

fθ1:N
(θ1:N) =

N∏
n=1

fθn(θn), (4.28)

where

fθn(θn) = N (θn;μθ,∑θ), (4.29)

with some mean μθ and covariance matrix ∑θ. Using (4.3) and (4.29) we obtain

fxn(xn) =

∫
θn

fxn |θn(xn |θn)fθn(θn)dθn

=

∫
θn

N (xn;θn,∑u)N (θn;μθ,∑θ)dθn

=

∫
θn

N (xn − θn;0,∑u)N (θn;μθ,∑θ)dθn

= N (xn;μθ,∑θ +∑u), (4.30)

where (2.19) was used. We conclude that

fxn(xn) = N (xn;μx,∑x) (4.31)

with mean

μx = μθ (4.32)

and covariance matrix

∑x = ∑θ +∑u. (4.33)
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θ1 θ2 θ3

x1 x2 x3

y1 y2 y3

Figure 6: Bayesian network for the first scenario, assuming three objects (N = 3). Observed
random variables are displayed in shaded disks.

Similarly, using (4.6), (4.30), and again (2.19), we obtain

fyn(yn) =

∫
xn

fyn | xn(yn |xn)fxn(xn)dxn

=

∫
xn

N (yn;xn,∑v)N (xn;μθ,∑θ +∑u)dxn

=

∫
xn

N (yn − xn;0,∑v)N (xn;μθ,∑θ +∑u)dxn

= N (yn;μθ,∑θ +∑u +∑v), (4.34)

and thus

fyn(yn) = N (yn;μy,∑y) (4.35)

with mean

μy = μθ (4.36)

and covariance matrix

∑y = ∑x +∑v = ∑θ +∑u +∑v, (4.37)

where (4.33) was used. We can visualize the dependencies via the Bayesian network shown

in Figure 6.
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4.2.2 MMSE Estimator

We will now derive the MMSE estimator of xn for this scenario, denoted as x̂
(1)
n (y1:N).

According to (2.10), we have

x̂(1)
n (y1:N) = E[xn | y1:N = y1:N ] =

∫
xn

xn fxn | y1:N (xn |y1:N) dxn. (4.38)

The posterior pdf fxn | y1:N (xn |y1:N) can be obtained from the joint posterior pdf

fx1:N | y1:N (x1:N |y1:N) as

fxn | y1:N (xn |y1:N) =

∫
x¬n

fx1:N | y1:N (x1:N |y1:N)dx¬n, (4.39)

where

x¬n = (xT
1 , . . . ,x

T
n−1,x

T
n+1, . . . ,x

T
N)

T (4.40)

stands for all parameters of interest not associated with object n. Using Bayes’ theorem,

we can write the joint posterior as

fx1:N | y1:N (x1:N |y1:N) =
fy1:N | x1:N (y1:N |x1:N)fx1:N (x1:N)

fy1:N (y1:N)
. (4.41)

In what follows, we will consider the individual factors in this expression.

• Using (4.20) and (4.28), the joint prior fx1:N (x1:N) can be developed as

fx1:N (x1:N) =

∫
θ1:N

fx1:N |θ1:N
(x1:N |θ1:N)fθ1:N

(θ1:N)dθ1:N

=

∫
θ1:N

(
N∏

n=1

fxn |θn(xn |θn)fθn(θn)

)
dθ1:N

=
N∏

n=1

∫
θn

fxn |θn(xn |θn)fθn(θn)dθn

=
N∏

n=1

fxn(xn). (4.42)

Inserting (4.31) into (4.42) gives

fx1:N (x1:N) =
N∏

n=1

N (xn;μx,∑x) =
N∏

n=1

N (xn;μθ,∑θ +∑u). (4.43)
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• The likelihood function fy1:N | x1:N (y1:N |x1:N) is by (4.15)

fy1:N | x1:N (y1:N |x1:N) =
N∏

n=1

fyn | xn(yn |xn) (4.44)

=
N∏

n=1

N (yn;xn,∑v) (4.45)

• The evidence fy1:N (y1:N) can be written as

fy1:N (y1:N) =

∫
x1:N

fy1:N | x1:N (y1:N |x1:N)fx1:N (x1:N)dx1:N . (4.46)

Inserting (4.42) and (4.44) into (4.46), we obtain further

fy1:N (y1:N) =

∫
x1:N

(
N∏

n=1

fyn | xn(yn |xn)fxn(xn)

)
dx1:N

=
N∏

n=1

∫
xn

fyn | xn(yn |xn)fxn(xn)dxn

=
N∏

n=1

fyn(yn) (4.47)

=
N∏

n=1

N (yn;μθ,∑θ +∑u +∑v), (4.48)

where (4.34) was used in the last step.

We now insert (4.42), (4.44), and (4.47) into expression (4.41) and obtain for the joint

posterior pdf

fx1:N | y1:N (x1:N |y1:N) =
N∏

n=1

fyn | xn(yn |xn)fxn(xn)

fyn(yn)
=

N∏
n=1

fxn | yn(xn |yn). (4.49)

Using (4.49), we can now perform the marginalization in (4.39). We obtain

fxn | y1:N (xn |y1:N) =

∫
x¬n

(
N∏

n,=1

fxn, | yn, (xn, |yn,)

)
dx¬n

= fxn | yn(xn |yn)

∫
x¬n

(∏
n, /=n

fxn, | yn, (xn, |yn,)

)
dx¬n

= fxn | yn(xn |yn)
∏
n, /=n

∫
xn,

fxn, | yn, (xn, |yn,)dxn,
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= fxn | yn(xn |yn), (4.50)

where we used
∫
xn, fxn, | yn, (xn, |yn,)dxn, = 1. Note that the marginal posterior in (4.50)

only depends on yn even though we have all measurements y1:N available. Finally, we apply

Bayes’ theorem to (4.50) and use (4.6), (4.30), and (4.34), to obtain

fxn | yn(xn |yn) =
fyn | xn(yn |xn)fxn(xn)

fyn(yn)
=

N (yn;xn,∑v)N (xn;μθ,∑θ +∑u)

N (yn;μθ,∑θ +∑u +∑v)
. (4.51)

This must be a Gaussian pdf, since xn and yn are jointly Gaussian, which follows from

(4.8) along with the fact that θn, un, and vn are statistically independent Gaussian random

vectors. Thus, we have

fxn | yn(xn |yn) = N (xn;μx |yn ,∑x |y), (4.52)

with some posterior mean μx |yn and posterior covariance matrix ∑x |y. Using (2.40) and

(2.41), we obtain

∑x |y = ∑x −∑xy∑
−1
y ∑yx (4.53)

and

μx |yn = μx +∑xy∑
−1
y (yn − μy). (4.54)

We have ∑y = ∑θ + ∑u + ∑v (see (4.37)) and ∑xy = cov(xn, yn) = cov(xn, xn + vn) =

cov(xn) + cov(xn, vn) = cov(xn) = ∑x = ∑θ +∑u (see (4.33)) as well as μy = μx = μθ (see

(4.32) and (4.36)), so that the posterior covariance (4.53) becomes

∑x |y = ∑θ +∑u − (∑θ +∑u)(∑θ +∑u +∑v)
−1(∑θ +∑u). (4.55)

Using the matrix identity (B.4) with ∑A = ∑θ +∑u and ∑B = ∑v, this becomes further

∑x |y = ∑v(∑θ +∑u +∑v)
−1(∑θ +∑u). (4.56)

Similarly, (4.54) becomes

μx |yn = μθ + (∑θ +∑u)(∑θ +∑u +∑v)
−1(yn − μθ). (4.57)
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Using (4.50) and (4.57) we can find a closed form expression for the MMSE estima-

tor x̂
(1)
n (y1:N) in (4.38). According to (4.38), x̂

(1)
n (y1:N) is equal to the posterior mean

E[xn | y1:N = y1:N ], which, due to (4.50), is equal to E[xn | yn = yn] = μx |yn , as given by

(4.57). Hence, the MMSE estimator is given by

x̂(1)
n (y1:N) = μθ + (∑θ +∑u)(∑θ +∑u +∑v)

−1(yn − μθ). (4.58)

4.2.3 MSE

In order to compare the performance of x̂(1)
n (y1:N) with that of other estimators in subsequent

sections, we consider the minimum MSE, i.e., the MSE achieved by the MMSE estimator.

As shown in (2.12), the minimum MSE is given by

MSE(1)
min =

1

D
Ey1:N

[
tr
[
∑xn |y1:N

] ]
. (4.59)

Due to (4.50), the posterior covariance matrix ∑xn |y1:N
is equal to ∑xn |yn = ∑x |y, hence

we further obtain

MSE(1)
min =

1

D
Ey1:N

[
tr
[
∑x |y

] ]
=

1

D
tr
[
∑x |y

]
, (4.60)

where we exploited the fact that, according to (4.56), the posterior covariance matrix ∑x |y

is not functionally dependent on the measurements y1:N . Note that this expression does

not depend on the object index n. Using (4.56), the minimum MSE for the first scenario is

finally obtained as

MSE(1)
min =

1

D
tr
[
∑v(∑θ +∑u +∑v)

−1(∑θ +∑u)
]
. (4.61)

In particular, if θn, un and vn are random vectors with i.i.d. components, i.e., ∑θ = σ2
θID,

∑u = σ2
uID, and ∑v = σ2

vID, then (4.61) simplifies to

MSE(1)
min =

1

D
tr
[
σ2
v(σ

2
θ + σ2

u)

σ2
θ + σ2

u + σ2
v

ID

]
=

σ2
v(σ

2
θ + σ2

u)

σ2
θ + σ2

u + σ2
v

. (4.62)

4.3 Second Scenario

In this scenario, we observe the hyperparameter θn = θn for all n ∈ {1, . . . , N}.
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θ1 θ2 θ3

x1 x2 x3

y1 y2 y3

Figure 7: Bayesian network for the second scenario, assuming three objects (N = 3). Ob-
served random variables are displayed in shaded disks.

4.3.1 Statistical Model

The hyperparameter θn is still modeled as a random vector; however, in this scenario, we

treat it as observed data, just like yn = yn. Otherwise, we use the same general model as

in the first scenario (see Section 4.1). Therefore, several conditional pdfs are the same and

we can use some of the previous results. The conditional dependencies in this scenario are

visualized in Figure 7.

4.3.2 MMSE Estimator

As in our first scenario, our goal is to calculate the MMSE estimator of xn, denoted as

x̂
(2)
n (y1:N ,θ1:N). Since we consider both y1:N and θ1:N as our data, the MMSE estimator is

now given by (see (2.10))

x̂(2)
n (y1:N ,θ1:N) = E[xn | y1:N = y1:N ,θ1:N = θ1:N ] =

∫
xn

xn fxn | y1:N ,θ1:N
(xn |y1:N ,θ1:N) dxn,

(4.63)

with the posterior pdf fxn | y1:N ,θ1:N
(xn |y1:N ,θ1:N). Similar to the first scenario,

we can obtain the posterior pdf fxn | y1:N ,θ1:N
(xn |y1:N ,θ1:N) from the joint posterior pdf

fx1:N | y1:N ,θ1:N
(x1:N |y1:N ,θ1:N) according to

fxn | y1:N ,θ1:N
(xn |y1:N ,θ1:N) =

∫
x¬n

fx1:N | y1:N ,θ1:N
(x1:N |y1:N ,θ1:N)dx¬n, (4.64)
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where x¬n was defined in (4.40). Furthermore, using Bayes’ theorem, we obtain for the joint

posterior

fx1:N | y1:N ,θ1:N
(x1:N |y1:N ,θ1:N) =

fy1:N | x1:N ,θ1:N
(y1:N |x1:N ,θ1:N)fx1:N |θ1:N

(x1:N |θ1:N)

fy1:N |θ1:N
(y1:N |θ1:N)

.

(4.65)

Next, we will work out the individual factors in this expression.

• The conditional pdf fx1:N |θ1:N
(x1:N |θ1:N) is still given by (4.19) and (4.20), i.e.,

fx1:N |θ1:N
(x1:N |θ1:N) =

N∏
n=1

fxn |θn(xn |θn) (4.66)

=
N∏

n=1

N (xn;θn,∑u). (4.67)

• For the conditional pdf fy1:N | x1:N ,θ1:N
(y1:N |x1:N ,θ1:N), we obtain by (4.16), (4.17),

and (4.18)

fy1:N | x1:N ,θ1:N
(y1:N |x1:N ,θ1:N)

(4.16)
=

N∏
n=1

N (yn;xn,∑v) (4.68)

(4.17)
=

N∏
n=1

fyn | xn(yn |xn) (4.69)

(4.18)
= fy1:N | x1:N (y1:N |x1:N). (4.70)

• The conditional pdf fy1:N |θ1:N
(y1:N |θ1:N) can be factorized according to (4.23) and

(4.27), i.e.,

fy1:N |θ1:N
(y1:N |θ1:N) =

N∏
n=1

fyn |θn(yn |θn) (4.71)

=
N∏

n=1

N (yn;θn,∑u +∑v). (4.72)

Next, we insert (4.66), (4.69), and (4.71) into the expression for the joint posterior pdf

(4.65), i.e.,

fx1:N | y1:N ,θ1:N
(x1:N |y1:N ,θ1:N) =

N∏
n=1

fyn | xn(yn |xn)fxn |θn(xn |θn)

fyn |θn(yn |θn)
. (4.73)
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Using (4.12), we obtain further

fx1:N | y1:N ,θ1:N
(x1:N |y1:N ,θ1:N) =

N∏
n=1

fyn | xn,θn(yn |xn,θn)fxn |θn(xn |θn)

fyn |θn(yn |θn)
(4.74)

=
N∏

n=1

fxn | yn,θn(xn |yn,θn). (4.75)

We now insert the factorization (4.75) into (4.64) and obtain

fxn | y1:N ,θ1:N
(xn |y1:N ,θ1:N)=

∫
x¬n

(
N∏

n,=1

fxn, | yn, ,θn, (xn, |yn, ,θn,)

)
dx¬n

= fxn | yn,θn(xn |yn,θn)

∫
x¬n

(∏
n, /=n

fxn, | yn, ,θn, (xn, |yn, ,θn,)

)
dx¬n

= fxn | yn,θn(xn |yn,θn)
∏
n, /=n

∫
xn,

fxn, | yn, ,θn, (xn, |yn, ,θn,)dxn,

= fxn | yn,θn(xn |yn,θn). (4.76)

Finally, we apply Bayes’ theorem to (4.76) and use (4.12) together with (4.3), (4.6), and

(4.26), to obtain

fxn | yn,θn(xn |yn,θn) =
fyn | xn,θn(yn |xn,θn)fxn |θn(xn |θn)

fyn |θn(yn |θn)
(4.77)

=
fyn | xn(yn |xn)fxn |θn(xn |θn)

fyn |θn(yn |θn)

=
N (yn;xn,∑v)N (xn;θn,∑u)

N (yn;θn,∑u +∑v)
, (4.78)

which again is a Gaussian pdf, as yn and xn are still jointly Gaussian. Similar to the first

scenario, we obtain

fxn | yn,θn(xn |yn,θn) = N (xn;μx |yn,θn ,∑x |y,θ) (4.79)

with (see (2.40))

∑x |y,θ = ∑x |θ −∑xy |θ∑−1
y |θ∑yx |θ (4.80)

64



4 GENERAL GAUSSIAN MODEL, BENCHMARK SCENARIOS AND ESTIMATORS

and (see (2.41))

μx |yn,θn = μx |θn +∑xy |θ∑−1
y |θ(yn − μyn |θn). (4.81)

Using ∑x |θ = ∑u (see (4.3)), ∑y |θ = ∑u + ∑v (see (4.26)), and ∑xy |θ = ∑yx |θ =

cov(xn, yn |θn) = cov(θn + un,θn + un + vn |θn) = cov(un,un + vn) = cov(un) = ∑u. We

can write (4.80) as

∑x |y,θ = ∑u −∑u(∑u +∑v)
−1∑u (4.82)

(B.4)
= ∑v(∑u +∑v)

−1∑u. (4.83)

Similarly, using μx |θn = θn (see (4.3)) and μyn |θn = θn (see (4.26)). we can write (4.81) as

μx |yn,θn = θn +∑u(∑u +∑v)
−1(yn − θn). (4.84)

According to (4.63), the MMSE estimator x̂(2)
n (y1:N ,θ1:N) is equal to the posterior mean

E[xn | y1:N = y1:N ,θ1:N = θ1:N ], which due to (4.76) is equal to E[xn | yn = yn,θn = θn] =

μx |yn,θn . Using (4.84), we then obtain

x̂(2)
n (y1:N ,θ1:N) = θn +∑u(∑u +∑v)

−1(yn − θn). (4.85)

4.3.3 MSE

According to (2.12), the minimum MSE is given by

MSE(2)
min =

1

D
Ey1:N ,θ1:N

[
tr
[
∑xn |y1:N ,θ1:N

] ]
. (4.86)

Due to (4.76), the posterior covariance matrix ∑xn |y1:N ,θ1:N is equal to ∑xn |yn,θn = ∑x |y,θ,

hence we further obtain

MSE(2)
min =

1

D
Ey1:N ,θ1:N

[
tr
[
∑x |y,θ

] ]
=

1

D
tr
[
∑x |y,θ

]
, (4.87)

where we exploited the fact that the posterior covariance matrix ∑x |y,θ is not functionally

dependent on y1:N or on θ1:N , as evidenced by (4.83). Using (4.83), the minimum MSE for
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the second scenario is finally obtained as

MSE(2)
min =

1

D
tr
[
∑v(∑u +∑v)

−1∑u

]
. (4.88)

Again, this expression does not depend on the object index n.

In the special case where un and vn are random vectors with i.i.d. components, i.e.,

∑u = σ2
uID and ∑v = σ2

vID, expression (4.88) reduces to

MSE(2)
min =

1

D
tr
[

σ2
uσ

2
v

σ2
u + σ2

v

ID

]
=

σ2
uσ

2
v

σ2
u + σ2

v

. (4.89)

4.4 Comparison of MSE(1)
min and MSE(2)

min

It is interesting to compare MSE(1)
min, i.e., the minimum MSE for Scenario 1, and MSE(2)

min,

i.e., the minimum MSE for Scenario 2. For simplicity, we restrict our discussion to the case

where un, vn, and in Scenario 1 also θn are random vectors with i.i.d. components, i.e.,

∑u = σ2
uID, ∑v = σ2

vID, and ∑θ = σ2
θID. For a quantitative comparison of MSE(1)

min and

MSE(2)
min, we develop our expression for MSE(1)

min in (4.62) to obtain

MSE(1)
min = σ2

v

σ2
θ + σ2

u

σ2
θ + σ2

u + σ2
v

= σ2
v

σ2
θ + σ2

u + σ2
v − σ2

v

σ2
θ + σ2

u + σ2
v

= σ2
v

(
1− σ2

v

σ2
θ + σ2

u + σ2
v

)
. (4.90)

Similarly, we manipulate our expression for MSE(2)
min in (4.89) to obtain

MSE(2)
min = σ2

v

σ2
u

σ2
u + σ2

v

= σ2
v

σ2
u + σ2

v − σ2
v

σ2
u + σ2

v

= σ2
v

(
1− σ2

v

σ2
u + σ2

v

)
. (4.91)

Now
σ2
v

σ2
θ + σ2

u + σ2
v

≤ σ2
v

σ2
u + σ2

v

(4.92)

66



4 GENERAL GAUSSIAN MODEL, BENCHMARK SCENARIOS AND ESTIMATORS

and further

1− σ2
v

σ2
θ + σ2

u + σ2
v

≥ 1− σ2
v

σ2
u + σ2

v

. (4.93)

Together with expressions (4.90) and (4.91), this implies

MSE(1)
min ≥ MSE(2)

min, (4.94)

with equality, i.e., MSE(1)
min = MSE(2)

min, if σ2
θ = 0. Note that if σ2

θ → 0 in Scenario 1, then

θn → μθ, which means that θn is known and thus Scenario 1 reduces to Scenario 2.
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5 Inherent Clustering Scenarios and Estimators

In the previous chapter, we considered Scenario 1 with unknown i.i.d. hyperparameters θn,

and Scenario 2, where the hyperparameters θn are assumed to be observed and thus known.

In this chapter, we consider two further scenarios, referred to as Scenarios 3 and 4. Their

difference from the previously discussed Scenarios 1 and 2 is that the underlying Bayesian

models involve a DP prior on the hyperparameters θn, which allows the estimators to exploit

the associated cluster structure to improve the estimation performance. In Scenario 4, we

assume that we know which objects belong to each cluster, whereas in Scenario 3, the cluster

assignment needs to be inferred and the estimator is only provided with the measurements.

This chapter is organized as follows. In Section 5.1, we present the statistical model for

this section, which still relies on the general model presented in Section 4.1. This means

that all independence assumptions and factorizations of pdfs described in Section 4.1 are

also valid for Scenarios 3 and 4.

In Section 5.2, we derive the MMSE estimator for Scenario 3. This estimator takes

into account the DP prior on the hyperparameters θn. Because the estimator cannot be

calculated in closed form, we provide a Monte Carlo (MC) approximation.

In Section 5.3, we derive the MMSE estimator for Scenario 4. While we still impose

the DP prior, we now assume that we know which objects belong to each cluster, i.e., the

estimator is provided with the cluster assignment variables c1:N = (c1, . . . ,cN)
T as defined

in (3.39). We obtain a closed-form expression of this estimator.

5.1 Statistical Model for Scenarios 3 and 4

We assume that θn ∈ {1, . . . , N} is distributed according to a Dirichlet process (DP) as

introduced in Chapter 3. We have (see (3.10))

θ1, . . . ,θN | (fDP = fDP) ∼i.i.d. fDP, (5.1)

where fDP ∼ DP(α, fH) (see (3.7)) with concentration parameter α > 0. The base distribu-

tion of the DP is assumed to be Gaussian, i.e.,

fH(θ
∗) = N (θ∗;μθ∗ ,∑θ∗), (5.2)

68



5 INHERENT CLUSTERING SCENARIOS AND ESTIMATORS

with some mean μθ∗ and covariance matrix ∑θ∗ . The random cluster hyperparameters θ∗
l

are i.i.d. and each is distributed according to the base pdf (see (3.1)), i.e.,

θ∗
1,θ

∗
2, . . . ∼i.i.d. fH. (5.3)

As opposed to the first scenario, discussed in Section 4.2, the hyperparameters θn are not

independent across the object index n; however, they are conditionally i.i.d. given fDP = fDP

as stated in (5.1).

The random parameters of interest xn are parametrized by the respective hyperparam-

eters θn according to (3.78), i.e.,

fxn |θn(xn |θn) = φ(xn |θn), n ∈ {1, . . . , N} (5.4)

with some continuous pdf φ(xn |θn). Hence, the xn are distributed according to a DPM as

discussed in Section 3.4 and xn is conditionally i.i.d. given θ1:N , i.e.,

xn | (θ1:N = θ1:N) ∼i.i.d. fxn |θ1:N
(xn |θ1:N). (5.5)

We recall that given θn, xn is conditionally independent of all other hyperparameters θn,

with n, /= n, i.e.,

fxn |θ1:N
(xn |θ1:N) = fxn |θn(xn |θn) (5.6)

and

fx1:N |θ1:N
(x1:N |θ1:N) =

N∏
n=1

fxn |θ1:N
(xn |θ1:N) =

N∏
n=1

fxn |θn(xn |θn). (5.7)

Furthermore, still assuming the Gaussian additive-noise model in (4.1), we have (see (4.3))

φ(xn |θn) = fxn |θn(xn |θn) = N (xn;θn,∑u), (5.8)

with some covariance matrix ∑u.

The measurements yn are generated according to (4.4), i.e.,

yn = xn + vn, (5.9)
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where vn is i.i.d. and zero-mean Gaussian. Therefore (see (4.6))

fyn | xn(yn |xn) = N (yn;xn,∑v), (5.10)

with some covariance matrix ∑v.

We will use the cluster assignment variables c1:N = (c1, . . . ,cN)
T to express the assign-

ment of objects to clusters, i.e. (see (3.39))

cn = l if θn = θ∗
l . (5.11)

We can also write (see (3.40))

θn = θ∗
cn
, (5.12)

which means that

θ1:N = (θT
1 , . . . ,θ

T
N)

T = (θ∗T
c1
, . . . ,θ∗T

cN
)T. (5.13)

In other words, for all objects n that share the same cluster hyperparameter θ∗
l we assign

cluster cn = l. For example, let us consider three different objects with parameters of

interest xi, xj and xk, and let us assume that two parameters of interest belong to the same

cluster, i.e., xj = θ∗
t + uj and xk = θ∗

t + uk, whereas xi = θ∗
p + ui, with p /= t. This means

that the cluster assignment variables are given by cj = ck = t and ci = p. We use ml(N) as

defined in (3.47) to denote the number of objects that belong to the same cluster l. Finally,

we recall from Section 3.3.2 the notation

e (N) = {c1:N} = {c1, . . . ,cN}, (5.14)

which is the set containing all unique cluster assignment variables cn, n = 1, . . . , N , and

we define

θ∗
e (N) = (θ∗

l )l∈e (N) (5.15)

as the vector composed of all cluster hyperparameters θ∗
l .

5.2 Third Scenario

In this section, we will develop an MMSE estimator for Scenario 3, using the general model

introduced in the previous section. We assume that the cluster assignment variables cn, n =
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fDP

{θ∗
l }l∈N{cn}n∈N

c1 c2 c3

θ1 θ2 θ3

x1 x2 x3

y1 y2 y3

Figure 8: Bayesian network for the third scenario, assuming three objects (N = 3). Random
variables displayed in shaded disks are observed. The cluster assignment variables {cn}n∈N
and the cluster hyperparameters {θ∗

l }l∈N are generated from the DP. Each cluster assign-
ment variable cn is then related to exactly one hyperparameter θn; however, the cluster
assignment variables may be equal for two different objects and thereby also relate these
objects to the same cluster hyperparameter θ∗

l .

1, . . . , N are unknown to the estimator (as opposed to Scenario 4 discussed in Section 5.3).

The statistical model for this scenario is shown in Figure 8.

5.2.1 MC Approximation of the MMSE Estimator

Similarly to our first and second scenarios, we want to calculate the MMSE estimate

x̂(3)
n (y1:N) = E[xn | y1:N = y1:N ] =

∫
xn

xn fxn | y1:N (xn |y1:N) dxn. (5.16)

Due to the prior (5.1) imposed on the hyperparameters θn, we cannot calculate the posterior

pdf fxn | y1:N (xn |y1:N) in closed form as in the other scenarios. We can, however, generate
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a set of samples x
(q)
n for q = 1, . . . , Q from fxn | y1:N (xn |y1:N), where Q ∈ N denotes the

number of samples, and use these samples to obtain the following MC approximation of the

MMSE estimator in (5.16):

x̂(3)
n (y1:N) ≈ 1

Q

Q∑
q=1

x(q)
n . (5.17)

It follows from the law of large numbers that this approximation is accurate for sufficiently

large Q and is exact for Q → ∞ [2]. However, as it is impossible to sample directly

from the posterior distribution fxn | y1:N (xn |y1:N), we will adapt the Markov Chain Monte

Carlo (MCMC) approach; concretely, we will develop two different variations of the Gibbs

sampler [21]. The Gibbs sampler can be viewed as a special case of the Metropolis-Hastings

algorithm with kernel cycles, with the acceptance probability for each proposal equal to

one [2] [6]. The Gibbs sampler is an iterative algorithm that generates samples from “full

conditional pdfs”.

The posterior pdf fxn | y1:N (xn |y1:N) can be obtained from the joint posterior pdf

fx1:N | y1:N (xn |y1:N) according to

fxn | y1:N (xn |y1:N) =

∫
x¬n

fx1:N | y1:N (x1:N |y1:N)dx¬n. (5.18)

As a result of our statistical model and, in particular, the DP prior imposed on the hyper-

parameters θn, the xn are dependent across the object index n; indeed, xn and xn, belong

to the same cluster if θn = θn, for n /= n,. Therefore, it is again impossible to sample

from (5.18) directly. We can expand the integrand in (5.18), i.e., the joint posterior pdf

fx1:N | y1:N (x1:N |y1:N) according to

fx1:N | y1:N (x1:N |y1:N) =

∫
θ1:N

fx1:N ,θ1:N | y1:N (x1:N ,θ1:N |y1:N)dθ1:N . (5.19)

By inserting (5.19) into (5.18) we obtain

fxn | y1:N (xn |y1:N) =

∫
x¬n

∫
θ1:N

fx1:N ,θ1:N | y1:N (x1:N ,θ1:N |y1:N)dθ1:Ndx¬n. (5.20)

We will show that by using the Gibbs sampler, we can obtain samples x
(q)
n from the

joint pdf fx1:N ,θ1:N | y1:N (x1:N ,θ1:N |y1:N); however, we will also need to obtain samples θ
(q)
n ,

even though we are only interested in x
(q)
n . The approach of sampling an additional random
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variable θn allows us to obtain a closed-form expression for both full conditional pdfs of xn

and θn, which are needed in the Gibbs sampler algorithm. Sampling an additional random

variable (in our case θn) to facilitate sampling of the parameter of interest (in our case xn) is

sometimes referred to as linchpin variable sampler [31]. Once we obtain Q pairs of samples

x
(q)
n and θ

(q)
n for n = 1, . . . , N , the marginalization in (5.20) is done simply by discarding

all samples of the linchpin variable, i.e., θ(q)
n for n = 1, . . . , N , and keeping only the samples

x
(q)
n , which are then used in (5.17). For each random variable (in our case x

(q)
n and θ

(q)
n ), we

will derive the full conditional pdf in what follows. During each iteration q ∈ {1, . . . , Q},
the Gibbs sampler “loops” over the object index n = 1, . . . , N and calculates new samples

x
(q)
n and θ

(q)
n for each n = 1, . . . , N , using the samples from the previous iteration q − 1 or,

if already available, it uses the samples from the current iteration q.

We will consider two versions of the Gibbs sampler: a “simple” Gibbs sampler that

samples x(q)
n and θ

(q)
n for each object index n = 1, . . . , N separately, and a more sophisticated

Gibbs sampler that uses the cluster assignment variables c1:N .

5.2.2 Simple Gibbs Sampler

In each iteration q of the “simple” Gibbs sampler algorithm, we obtain the samples θ
(q)
n and

x
(q)
n for each n = 1, . . . , N by sampling from their respective full conditional pdfs. The full

conditional pdf of θn is the pdf of θn conditioned on all the other random variables, i.e.,

the remaining hyperparameters, θ¬n = (θT
1 , . . . ,θ

T
n−1,θ

T
n+1, . . . ,θ

T
N)

T, the parameters of in-

terest, x1:N , and the measurements, y1:N , i.e., fθn |θ¬n,x1:N ,y1:N (θn |θ¬n,x1:N ,y1:N). Similarly,

the full conditional pdf of xn is the pdf of xn, conditioned on the remaining parameters of

interest x¬n = (xT1 , . . . , x
T
n−1, x

T
n+1, . . . , x

T
N)

T, the hyperparameters θ1:N , and the measure-

ments y1:N , i.e., fxn | x¬n,θ1:N ,y1:N (xn |x¬n,θ1:N ,y1:N). These full conditional pdf are evaluated

using samples from the previous iteration q − 1 or, if already available, from the current

iteration q. We accordingly define

θ(q,q−1)
¬n =

(
θ
(q)T
1 , . . . ,θ

(q)T
n−1 ,θ

(q−1)T
n+1 , . . . ,θ

(q−1)T
N

)T
, (5.21)

as the vector containing the hyperparameter samples θ
(q)
n, from the current iteration q for

all n, = 1, . . . , n− 1 and the hyperparameter samples θ
(q−1)
n, from the previous iteration for
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n, = n+ 1, . . . , N . Similarly, we define

x(q,q−1)
¬n =

(
x
(q)T
1 , . . . ,x

(q)T
n−1 ,x

(q−1)T
n+1 , . . . ,x

(q−1)T
N

)T
. (5.22)

In each iteration q of the simple Gibbs sampler algorithm, we will sample the random

variables in the following order:

1. Obtain samples θ
(q)
n of the hyperparameter θn for all n according to

θ(q)
n ∼ fθn |θ¬n,x1:N ,y1:N (θ

(q)
n |θ(q,q−1)

¬n ,x
(q−1)
1:N ,y1:N), (5.23)

using θ
(q,q−1)
¬n (see (5.21)) and the samples x

(q−1)
1:N from the previous iteration.

2. Obtain samples x
(q)
n of the parameter of interest xn for all n according to

x(q)n ∼ fxn | x¬n,θ1:N ,y1:N (x
(q)
n |x(q,q−1)

¬n ,θ
(q)
1:N ,y1:N), (5.24)

using x
(q,q−1)
¬n (see (5.22)) and samples the θ

(q)
1:N from the current iteration q.

Full Conditional pdf of θn

We will now derive the full conditional pdf fθn |θ¬n,x1:N ,y1:N (θn |θ¬n,x1:N ,y1:N) (see (5.23)).

By Bayes’ theorem, we have

fθn |θ¬n,x1:N ,y1:N (θn |θ¬n,x1:N ,y1:N) ∝ fx1:N ,y1:N |θn,θ¬n(x1:N ,y1:N |θn,θ¬n)fθn |θ¬n(θn |θ¬n).

(5.25)

Here, the first factor in (5.25) can be factorized as

fx1:N ,y1:N |θn,θ¬n(x1:N ,y1:N |θn,θ¬n)

= fy1:N | x1:N ,θn,θ¬n(y1:N |x1:N ,θn,θ¬n)fx1:N |θn,θ¬n(x1:N |θn,θ¬n). (5.26)

Noting that (θT
n ,θ

T
¬n)

T = θ1:N and using (4.18) and (4.20), we obtain further

fx1:N ,y1:N |θn,θ¬n(x1:N ,y1:N |θn,θ¬n)
(4.18)
= fy1:N | x1:N (y1:N |x1:N)fx1:N |θn,θ¬n(x1:N |θn,θ¬n)
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(4.20)
= fy1:N | x1:N (y1:N |x1:N)fxn |θn(xn |θn)

∏
n,∈{1,...,N}\{n}

fxn, |θn, (xn, |θn,). (5.27)

Next, we note that only the second factor fxn |θn(xn |θn) in (5.27) is functionally dependent

on θn, therefore we have

fx1:N ,y1:N |θn,θ¬n(x1:N ,y1:N |θn,θ¬n) ∝ fxn |θn(xn |θn). (5.28)

Inserting (5.28) into (5.25), we obtain

fθn |θ¬n,x1:N ,y1:N (θn |θ¬n,x,y1:N) ∝ fxn |θn(xn |θn)fθn |θ¬n(θn |θ¬n). (5.29)

We now consider the second factor in (5.29). By adapting expression (3.23), we obtain in a

straightforward manner

fθn |θ¬n(θn |θ¬n) =
α

α +N − 1
fH(θn) +

1

α +N − 1

∑
n,∈{1,...,N}\{n}

δθn, (θn). (5.30)

Finally, using (5.30) in (5.29), the full conditional distribution can be given by

fθn |θ¬n,x1:N ,y1:N (θn |θ¬n,x1:N ,y1:N)

∝ α

α +N − 1
fxn |θn(xn |θn)fH(θn) +

1

α +N − 1

∑
n,∈{1,...,N}\{n}

fxn |θn(xn |θn)δθn, (θn)

∝ αfxn |θn(xn |θn)fH(θn) +
∑

n,∈{1,...,N}\{n}
fxn |θn(xn |θn,)δθn, (θn). (5.31)

This expression shows that the full conditional pdf of θn does not functionally depend

on the measurements y1:N . This follows from the hierarchical Markov chain generation

θn → xn → yn and also can be seen in our statistical model shown in Figure 8. Fur-

thermore, the full conditional pdf (5.31) is seen to be a discrete-continuous mixture dis-

tribution; more specifically, θn is either drawn from the continuous mixture component

fxn |θn(xn |θn)fH(θn), which means θn belongs to a newly created cluster, or θn equals to

one of the N −1 previously drawn θn, constituted by discrete mixture components δθn, (θn),

weighted by ∝ 1
α+N−1

fxn |θn(xn |θn,).
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Using (5.2) and (5.8), the continuous component of the mixture in (5.31) is given by

fxn |θn(xn |θn)fH(θn) = N (xn;θn;∑u)N (θn;μθ∗ ;∑θ∗). (5.32)

Using the identity established by (2.69) with the substitutions x → θn, μx → μθ∗ , ∑x →
∑θ∗ , y → xn and ∑y → ∑u, we see that (5.32) is proportional to a Gaussian pdf in θn, i.e.,

fxn |θn(xn |θn)fH(θn) = ϓ̃(xn)N (θ;μθ |x,∑θ |x) (5.33)

with covariance matrix (see (2.67))

∑θ |x = ∑u (∑u +∑θ∗)−1 ∑θ∗ (5.34)

and mean (see (2.68))

μθ |x = ∑u (∑u +∑θ∗)−1 μθ∗ +∑θ∗ (∑u +∑θ∗)−1 xn. (5.35)

Furthermore, we obtain

ϓ̃(xn) = N (xn;μθ∗ ,∑u +∑θ∗) , (5.36)

which is independent of θn. Inserting (5.33) and (5.8) into (5.31), the full conditional pdf

of θn is thus finally obtained as

fθn |θ¬n,x1:N ,y1:N (θn |θ¬n,x1:N ,y1:N)

∝ αϓ̃(xn)N (θn;μθ |x,∑θ |x) +
∑

n,∈{1,...,N}\{n}
N (xn;θn, ,∑u)δθn, (θn), (5.37)

with ∑θ |x and μθ |x as given by (5.34) and (5.35).

For use in the Gibbs sampler, we need to evaluate expression (5.37) at the already

available samples (see (5.23)). We obtain

fθn |θ¬n,x1:N ,y1:N (θ
(q)
n |θ(q,q−1)

¬n ,x
(q−1)
1:N ,y1:N)
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∝ αϓ̃(x(q−1)
n )N (θ(q)

n ;μθ |x(q−1) ,∑θ |x) +
∑

n,∈{1,...,N}\{n}
N (x(q−1)

n ;θ
(q,q−1)
n,,n ,∑u)δθ(q,q−1)

n,,n
(θ(q)

n ),

(5.38)

with θ
(q,q−1)
n,,n defined as

θ
(q,q−1)
n,,n =

θ
(q)
n, for n, = 1, . . . , n− 1

θ
(q−1)
n, for n, = n+ 1, . . . , N.

(5.39)

and

μ
(q−1)
θ |x = ∑u (∑u +∑θ∗)−1 μθ∗ +∑θ∗ (∑u +∑θ∗)−1 x(q−1)

n . (5.40)

Lastly, we normalize (5.38), i.e.,

fθn |θ¬n,x1:N ,y1:N (θ
(q)
n |θ(q,q−1)

¬n ,x
(q−1)
1:N ,y1:N)

= πn N (θ(q)
n ;μθ |x(q−1) ,∑θ |x) +

∑
n,∈{1,...,N}\{n}

πn, δ
θ
(q,q−1)

n,,n
(θ(q−1)

n ), (5.41)

with

πn =
αϓ̃(x

(q−1)
n )

αϓ̃(x
(q−1)
n ) +

∑
n,∈{1,...,N}\{n} N (x

(q−1)
n ;θ

(q,q−1)
n,,n ,∑u)

(5.42)

and

πn, =
N (x

(q−1)
n ;θ

(q,q−1)
n,,n ,∑u)

αϓ̃(x
(q−1)
n ) +

∑
n,∈{1,...,N}\{n} N (x

(q−1)
n ;θ

(q,q−1)
n,,n ,∑u)

, for n, ∈ {1, . . . , N}\{n}.

(5.43)

The pseudocode for sampling from a discrete-continuous mixture distribution is given in

Algorithm 1. For a detailed discussion of mixture distributions, we refer to [32].

Full conditional pdf of xn

Next, we will derive the full conditional pdf of xn, given all the other random variables, i.e.

fxn | x¬n,θ1:N ,y1:N (xn |x¬n,θ1:N ,y1:N) (see (5.24)). Using Bayes’ theorem, we obtain

fxn | x¬n,θ1:N ,y1:N (xn |x¬n,θ1:N ,y1:N)

=
fy1:N | xn,x¬n,θ1:N

(y1:N |xn,x¬n,θ1:N)fxn | x¬n,θ1:N
(xn |x¬n,θ1:N)

fy1:N | x¬n,θ1:N
(y1:N |x¬n,θ1:N)

. (5.44)
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Algorithm 1 Discrete-continuous mixture sampling

Input: θ
(q−1)
1:N , x(q−1)

1:N , y1:N

for all n = 1, . . . , N do
sample b

(q)
n from U(b(q)n ; 0, 1)

if b
(q)
n ∈

[∑n,−1
i=1 πi,

∑n,
i=1 πi

)
then

set θ(q)
n equal to θ

(q,q−1)
n,,n as defined in (5.39)

else
sample θ(q)

n from N (θ
(q)
n ;μθ |x(q−1) ,∑θ |x)

end if
end for

Output: θ
(q)
1:N

Noting that (xTn , x
T
¬n)

T = x1:N as well as using (4.17) and the conditional independence of

xn (see (5.6)), the denominator of (5.44) simplifies to

fy1:N | x¬n,θ1:N
(y1:N |x¬n,θ1:N) =

∫
xn

fy1:N | x1:N ,θ1:N
(y1:N |x1:N ,θ1:N)fxn |θ1:N

(xn |θ1:N)dxn

=

∫
xn

fyn | xn(yn |xn)fxn |θn(xn |θn)dxn

∏
n, /=n

fyn, | xn, (yn, |xn,)

= fyn |θn(yn |θn)
∏
n, /=n

fyn, | xn, (yn, |xn,). (5.45)

Using (4.17) to factorize the nominator of (5.44) and inserting (5.45) into (5.44), we obtain

fxn | x¬n,θ1:N ,y1:N (xn |x¬n,θ1:N ,y1:N)

=
fyn | xn(yn |xn)

(∏
n, /=n fyn, | xn, (yn, |xn,)

)
fxn | x¬n,θ1:N

(xn |x¬n,θ1:N)

fyn |θn(yn |θn)
∏

n, /=n fyn, | xn, (yn, |xn,)

=
fyn | xn(yn |xn)fxn |θ1:N

(xn |θ1:N)

fyn |θn(yn |θn)
. (5.46)

where in the last step (5.5) was used. Finally, using (4.12) and (5.6) we obtain

fxn | x¬n,θ1:N ,y1:N (xn |x¬n,θ1:N ,y1:N) =
fyn | xn,θn(yn |xn,θn)fxn |θn(x |θn)

fyn |θn(yn |θn)

= fxn | yn,θn(xn |yn,θn)

= N (xn;μx |yn,θn ,∑x |y,θ), (5.47)
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where Bayes’ theorem and (4.79) were used. By (5.47) the full conditional pdf of xn is a

Gaussian pdf with covariance matrix (see (4.83))

∑x |y,θ = ∑u −∑u(∑u +∑v)
−1∑u

(B.4)
= ∑v(∑u +∑v)

−1∑u, (5.48)

and mean (see (4.84))

μx |yn,θn = θn +∑u(∑u +∑v)
−1(yn − θn). (5.49)

By evaluating (5.47) at the already available samples (see (5.24)), we finally obtain

fxn | x¬n,θ1:N ,y1:N (x
(q)
n |x(q,q−1)

¬n ,θ
(q)
1:N ,y1:N) = N (x(q)

n ;μ
(q)
x |yn,θn

,∑x |y,θ), (5.50)

with

μ
(q)
x |yn,θn

= θ(q)
n +∑u(∑u +∑v)

−1(yn − θ(q)
n ). (5.51)

Pseudocode for the Simple Gibbs Sampler

Finally, based on (5.23) and (5.24) we can formulate the Gibbs sampler for our scenario,

using (5.37) to generate samples θ(q)
n and (5.50) to generate samples x(q)

n for all n = 1, . . . , N.

The pseudocode for the qth iteration of the Gibbs sampler is given in Algorithm 2.

Algorithm 2 Naive Gibbs sampler

Input: θ
(q−1)
1:N , x(q−1)

1:N , y1:N

for all n = 1, . . . , N do
sample θ(q)

n from fθn |θ¬n,x1:N ,y1:N (θ
(q)
n |θ(q,q−1)

¬n ,x
(q−1)
1:N ,y1:N) as given by (5.37)

end for
for all n = 1, . . . , N do

sample x
(q)
n from fxn | x¬n,θ1:N ,y1:N (x

(q)
n |x(q,q−1)

¬n ,θ
(q)
1:N ,y1:N) as given by (5.50)

end for
Output: θ

(q)
1:N , x(q)

1:N

The algorithm is initialized for q = 0 by sampling the hyperparameters θ(0)
n from the

Gaussian base distribution (5.2), i.e.,

θ(0)
n ∼ N (θ(0)

n ;μθ∗ ,∑θ∗), n = 1, . . . , N, (5.52)
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and by calculating the parameter samples x(0)
n based on the measurements yn. More specif-

ically, inspired by (4.58), we set

x(0)
n = μθ* + (∑θ* +∑u)(∑θ* +∑u +∑v)

−1(yn − μθ*), n = 1, . . . , N. (5.53)

Unfortunately, this Gibbs sampler algorithm exhibits a rather slow convergence towards

the posterior distribution. This is because the algorithm does not update the cluster hy-

perparameters θ∗
l , which are independent of each other, but rather the individual hyper-

parameters θn. Therefore, to improve the convergence of the Gibbs sampler algorithm, we

will next modify it using the cluster assignment variables c1:N and cluster hyperparameters

θ∗
e (N) (see (5.15)).

5.2.3 Gibbs Sampler Using Cluster Assignment Variables

The Gibbs sampling algorithm using the cluster assignment variables c1:N was presented

by MacEachern in [33] and [34] and also by Escobar and West in [35]; in the literature,

it is sometimes referred to as MacEachern’s algorithm. This algorithm updates samples

of the cluster hyperparameters θ∗
l , as opposed to the simple Gibbs sampler presented in

Section 5.2.2 that updates samples of the hyperparameter θn. In each iteration q of this

algorithm, we will need to sample three random variables in the following order:

1. Obtain samples C
(q)
n of the cluster assignment variable cn for all n

1.A. If C(q)
n is distinct from other previously obtained samples, i.e., C(q)

n = lnew, obtain

sample θ
∗(q−1)
lnew

of the new cluster hyperparameter θ∗
lnew

2. Obtain samples θ
∗(q)
l of the cluster hyperparameters θ∗

l for all l (including lnew)

3. Obtain samples x
(q)
n of the parameters of interest xn for all n

In what follows, we will derive the full conditional pdfs and pmfs necessary for this Gibbs

sampler.

Full Conditional pmf of cn

First, we calculate samples C
(q)
n of the cluster assignment variables cn for all n = 1, . . . , N ,

using the full conditional pmf of cn given the cluster assignment variables cn, = Cn, of the
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other objects (n, /= n), i.e.,

C¬n = (C1, . . . , Cn−1, Cn+1, . . . , CN)
T , (5.54)

as well as all cluster hyperparameters θ∗
e (¬n) = θ∗

C(¬n) of the other objects (n, /= n), where

we define

C(¬n) = {C¬n} = {C1, . . . , Cn−1, Cn+1, . . . , CN} (5.55)

as the set comprising all unique elements of the vector C¬n (cf. (5.14)), as well as x1:N and

y1:N , i.e.,cn ∼ pcn |c¬n,θ∗
e(¬n)

,x1:N ,y1:N (l |C¬n,θ∗
C(¬n),x1:N ,y1:N).

We will consider two distinct cases:

• Cn is equal to one of the cluster assignment variables of the other objects, i.e., Cn ∈
C(¬n).

• Cn is different from all cluster assignment variables of the other objects, i.e., Cn /∈
C(¬n).

For cn = l, the full conditional pmf is thus given by

pcn |c¬n,θ∗
e(¬n)

,x1:N ,y1:N (l |C¬n,θ∗
C(¬n),x1:N ,y1:N) =

bn,l for l ∈ C(¬n)
bn,lnew for l /∈ C(¬n),

(5.56)

with

bn,l = P
(
cn = l |c¬n = C¬n,θ∗

e (¬n) = θ∗
C(¬n), x1:N = x1:N , y1:N = y1:N

)
, l ∈ C(¬n)

(5.57)

as defined in [21, Eq. 2.34] and

bn,lnew = P
(
cn = lnew |c¬n = C¬n,θ∗

e (¬n) = θ∗
C(¬n), x1:N = x1:N , y1:N = y1:N

)
, lnew /∈ C(¬n)

(5.58)

as defined in [21, Eq. 2.35]. We will now derive the conditional probabilities bn,l and bn,lnew .

First, to calculate bn,l we assume that l ∈ C(¬n), i.e., l is equal to one of the cluster

assignment variables of the other objects. Using (5.11), we have that cn = l implies θn = θ∗
l ,

and thus we can equivalently write (5.57) as

bn,l = P
(
θn = θ∗

l |c¬n = C¬n,θ∗
e (¬n) = θ∗

C(¬n), x1:N = x1:N , y1:N = y1:N

)
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=

∫
{θ∗

l }
fθn |c¬n,θ∗

e(¬n)
,x1:N ,y1:N (θn |C¬n,θ∗

C(¬n),x1:N ,y1:N)dθn. (5.59)

The conditional pdf fθn |c¬n,θ∗
e(¬n)

,x1:N ,y1:N (θn |C¬n,θ∗
C(¬n),x1:N ,y1:N) can be obtained by

invoking (3.83), i.e., conditioning fθn |θ¬n,x1:N ,y1:N (θn |θ¬n,x1:N ,y1:N) on c¬n and θ∗
e (¬n)

instead of θ¬n. We then obtain from (5.31)

fθn |c¬n,θ∗
e(¬n)

,x1:N ,y1:N (θn |C¬n,θ∗
C(¬n),x1:N ,y1:N)

∝ αfxn |θn(xn |θn)fH(θn) +
∑

n,∈{1,...,N}\{n}
fxn |θn(xn |θ∗

Cn, )δθ∗
Cn,

(θn). (5.60)

Furthermore, we define analogously to (3.47)

ml(¬n) =
n−1∑
n,=1

✶(Cn, = l) +
N∑

n,=n+1

✶(Cn, = l), l ∈ C(¬n), (5.61)

which denotes the number of cluster assignment variables Cn, of the other objects, n, /= n,

C(¬n) that are equal to l. Using (5.61) in (5.60), we obtain

fθn |c¬n,θ∗
e(¬n)

,x1:N ,y1:N (θn |C¬n,θ∗
C(¬n),x1:N ,y1:N)

∝ αfxn |θn(xn |θn)fH(θn) +
∑

l∈C(¬n)
ml(¬n)fxn |θn(xn |θ∗

l )δθ∗
l
(θn). (5.62)

Finally, inserting (5.62) into (5.59) gives

bn,l ∝
∫
{θ∗

l }
αfxn |θn(xn |θn)fH(θn) +

∑
l,∈C(¬n)

ml,(¬n)fxn |θn(xn |θ∗
l,)δθ∗

l,
(θn)dθn

= α

∫
{θ∗

l }
fxn |θn(xn |θn)fH(θn)dθn +

∑
l,∈C(¬n)

ml,(¬n)fxn |θn(xn |θ∗
l,)

∫
{θ∗

l }
δθ∗

l,
(θn)dθn

(5.63)

Assuming that fxn |θn(xn |θn) and fH(θn) do not contain any discrete (Dirac) components,

the first integral in (5.63) is equal to 0. Furthermore, using our earlier assumption that

l ∈ C(¬n), the second integral in (5.63) is 1 for l, = l and 0 for l, /= l, i.e., the sum becomes

∑
l,∈C(¬n)

ml,(¬n)fxn |θn(xn |θ∗
l,)δl,,l = ml(¬n)fxn |θn(xn |θ∗

l ) (5.64)
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Thus the expression (5.63) becomes

bn,l ∝ ml(¬n)fxn |θn(xn |θ∗
l ). (5.65)

Finally, using (5.8) and (5.61), we obtain

bn,l ∝
n−1∑
n,=1

✶(Cn, = l) +
N∑

n,=n+1

✶(Cn, = l)N (xn;θ
∗
l ,∑u), l ∈ C(¬n). (5.66)

We now consider the second case, lnew /∈ C(¬n), and provide an expression for bn,lnew in

(5.58). In this case, Cn is different from all the other cluster assignment variables, which

implies that a new cluster lnew is created. According to (5.11), cn = lnew implies θn = θ∗
lnew

,

therefore the new cluster hyperparameter θ∗
lnew

is not equal to any other cluster hyperpa-

rameters θ∗
l with l ∈ C(¬n) i.e., it needs to be sampled from the subset RD\{θ∗

C(¬n)}D.

Here, {θ∗
C(¬n)}D is the set4 that contains all cluster hyperparameters θ∗

l ∈ RD for l ∈ C(¬n).
Similar to (5.59), we can rewrite (5.58) equivalently as

bn,lnew = P
(
θn = θ∗

lnew
|c¬n = C¬n,θ∗

e (¬n) = θ∗
C(¬n), x1:N = x1:N , y1:N = y1:N

)
=

∫
RD\{θ∗

C(¬n)
}D

fθn |c¬n,θ∗
e(¬n)

,x1:N ,y1:N (θn |C¬n,θ∗
C(¬n),x1:N ,y1:N)dθn. (5.67)

Using (5.62) in (5.67), we obtain further

bn,lnew ∝
∫
RD\{θ∗

C(¬n)
}D

αfxn |θn(xn |θn)fH(θn) +
∑

l∈C(¬n)
ml(¬n)fxn |θn(xn |θ∗

l )δθ∗
l
(θn)dθn

=

∫
RD\{θ∗

C(¬n)
}D

αfxn |θn(xn |θn)fH(θn)dθn (5.68)

+
∑

l∈C(¬n)
ml(¬n)

∫
RD\{θ∗

C(¬n)
}D

fxn |θn(xn |θ∗
l )δθ∗

l
(θn)dθn (5.69)

In the second integral (5.69), the points excluded in the integration domain RD\{θ∗
C(¬n)}D

are exactly the locations of the Dirac components δθ∗
l
(θn) in the integrand, and therefore the

second integral (5.69) is equal to 0. Furthermore, we assume that fxn |θn(xn |θn) and fH(θn)

do not contain any discrete (Dirac) components, we can replace the integration domain of
4Here we use {·}D to note that the set contains vectors of size D and not the individual components as

used in Chapter 3.
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the integral (5.68) by RD. Thus, we obtain

bn,lnew ∝ α

∫
RD

fxn |θn(xn |θn)fH(θn)dθn. (5.70)

Recalling (5.8) and (5.2), this becomes

bn,lnew ∝ α

∫
RD

N (xn;θn,∑u)N (θn;μθ∗ ,∑θ∗)dθn

= α

∫
RD

N (xn − θn;0,∑u)N (θn;μθ∗ ,∑θ∗)dθn

= αN (xn;μθ∗ ,∑θ∗ +∑u), (5.71)

where we used the identity (2.19). Lastly, we need to normalize bn,l for all l ∈ C(¬n) and

bn,lnew so that ∑
l,∈C(¬n)∪{lnew}

bn,l, = 1. (5.72)

Finally, to obtain samples C
(q)
n of the cluster assignment variable, we evaluate the full

conditional pmf pcn |c¬n,θ∗
C(¬n)

,x1:N ,y1:N (l |C¬n,θ∗
C(¬n),x1:N ,y1:N) at the samples already avail-

able in the qth iteration of the Gibbs sampler algorithm. Similarly to (5.21) and (5.22), we

define a vector of already available cluster assignment variables samples of other objects as

(cf. (5.54))

C(q,q−1)
¬n =

(
C

(q)
1 , . . . , C

(q)
n−1, C

(q−1)
n+1 , . . . , C

(q−1)
N

)T
(5.73)

and a corresponding set, comprising all unique elements of the vector C(q,q−1)(¬n), as (cf.

(5.55))

C(q,q−1)(¬n) = {C(q,q−1)
¬n } = {C(q)

1 , . . . , C
(q)
n−1, C

(q−1)
n+1 , . . . , C

(q−1)
N }. (5.74)

At each iteration q, the cluster assignment variables Cn are sampled first, therefore we will

use the cluster hyperparameter samples θ
∗(q−1)
l from the previous iteration; however, we

must use the already available cluster assignment variables C
(q,q−1)
¬n . Similar to (5.15), we

define

θ
∗(q−1)

C(q,q−1)(¬n) = (θ
∗(q−1)
l )l∈C(q,q−1)(¬n), (5.75)

as well as the vector of the samples of all the parameters of interest from the previous

iteration, i.e.,

x
(q−1)
1:N =

(
x
(q−1)T
1 , . . . ,x

(q−1)T
N

)T
. (5.76)
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By evaluating (5.56) at the available samples given in (5.73-5.76) we obtain

pcn |c¬n,θ∗
e(¬n)

,x1:N ,y1:N (l |C(q,q−1)
¬n ,θ

∗(q−1)

C(q,q−1)(¬n),x
(q−1)
1:N ,y1:N) =

b
(q)
n,l for l ∈ C(q,q−1)(¬n)
b
(q)
n,lnew

for l /∈ C(q,q−1)(¬n),
(5.77)

with (see (5.66))

b
(q)
n,l ∝

(
n−1∑
n,=1

✶(C
(q)
n, = l) +

N∑
n,=n+1

✶(C
(q−1)
n, = l)

)
N (x(q−1)

n ;θ
∗(q−1)
l ,∑u), l ∈ C(q,q−1)(¬n),

(5.78)

and (see (5.71))

b
(q)
n,lnew

∝ αN (x(q−1)
n ;μθ∗ ,∑θ∗ +∑u). (5.79)

For later use, we define

C(q)(N) = {C(q)
1:N} = {C(q)

1 , . . . , C
(q)
N } (5.80)

as the set of all unique cluster assignment variables samples C(q)
n obtained in the qth iteration

of the algorithm.

Lastly, if C(q)
n = lnew was obtained, we also need to sample a new cluster hyperparameter

θ
∗(q−1)
lnew

. We note that if C(q)
n = lnew, we set

lnew = max{ max
n,∈{1,...,n−1}

C
(q)
n, , l

(q−1)
max }+ 1, (5.81)

and we include lnew in C(q)(N), i.e., lnew ∈ C(q)(N).

Full Conditional pdf of θ∗
l

The samples θ
∗(q)
l of the cluster hyperparameters θ∗

l are obtained from the full condi-

tional pdf of θ∗
l given the other cluster hyperparameters θ∗

e (N)\{l}, the cluster assign-

ment variables c1:N , the parameters of interest x1:N , and the measurements y1:N , i.e.,

fθ∗
l |θ∗

C(N)\{l},c1:N ,x1:N ,y1:N (θ
∗
l |θ∗

C(N)\{l},C1:N ,x1:N ,y1:N).

We first derive the full conditional pdf and then evaluate it at the samples available at
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the qth iteration. Using Bayes’ theorem, we obtain

fθ∗
l |θ∗

e(N)\{l},c1:N ,x1:N ,y1:N (θ
∗
l |θ∗

C(N)\{l},C1:N ,x1:N ,y1:N)

∝ fx1:N ,y1:N |θ∗
l ,θ

∗
e(N)\{l},c1:N

(x1:N ,y1:N |θ∗
l ,θ

∗
C(N)\{l},C1:N)fθ∗

l |θ∗
e(N)\{l},c1:N

(θ∗
l |θ∗

C(N)\{l},C1:N)

(5.82)

We recall from Section 5.1 that we can express the hyperparameter θn equivalently using

the cluster assignment variable cn and the corresponding cluster hyperparameter θ∗
l as

θn = θ∗
cn

(see (3.40)). Accordingly, we can express the hyperparameter vector θ1:N as

θ1:N = (θ∗T
c1
, . . . ,θ∗T

cN
)T. (5.83)

Restricting to the set of distinct random variables θ∗
cn

, this is equivalent to the random

vector θ∗
e (N) =

(
θ∗
l

)
l∈e (N)

. Therefore, we obtain for (5.82)

fθ∗
l |θ∗

e(N)\{l},c1:N ,x1:N ,y1:N (θ
∗
l |θ∗

C(N)\{l},C1:N ,x1:N ,y1:N)

∝ fx1:N ,y1:N |θ∗
e(N)

,c1:N
(x1:N ,y1:N |θ∗

C(N),C1:N)fθ∗
l |θ∗

e(N)\{l},c1:N
(θ∗

l |θ∗
C(N)\{l},C1:N). (5.84)

The first factor in (5.84) can be factorized as

fx1:N ,y1:N |θ∗
e(N)

,c1:N
(x1:N ,y1:N |θ∗

C(N),C1:N)

= fy1:N | x1:N ,θ∗
e(N)

,c1:N
(y1:N |x1:N ,θ

∗
C(N),C1:N)fx1:N |θ∗

e(N)
,c1:N

(x1:N |θ∗
C(N),C1:N). (5.85)

By invoking (5.83), i.e., conditioning on θ1:N instead of c1:N and θ∗
e (N) and in turn using

(4.17) and (3.86), (5.85) can be simplified to

fx1:N ,y1:N |θ∗
C(N)

,c1:N
(x1:N ,y1:N |θ∗

C(N),C1:N)

(5.83)
= fy1:N | x1:N ,θ1:N

(y1:N |x1:N ,θ1:N)fx1:N |θ1:N
(x1:N |θ1:N)

(4.17)
=

( N∏
n=1

fyn | xn(yn |xn)
)
fx1:N |θ1:N

(x1:N |θ1:N)

(3.86)
=

( N∏
n=1

fyn | xn(yn |xn)
) ∏

l∈C(N)

∏
n,:Cn=l

fxn, |θ∗
l ,cn, (xn, |θ∗

l , Cn,) (5.86)

We now take up the second factor in (5.84). We recall that the cluster hyperparame-
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ters θ∗
l are i.i.d. with pdf fθ∗

l
(θ∗

l ) = fH(θ
∗
l ) (see (5.3)). Using (3.55), the conditional pdf

fθ∗
l |θ∗

e(N)\{l},c1:N
(θ∗

l |θ∗
C(N)\{l},

C1:N) becomes

fθ∗
l |θ∗

e(N)\{l},c1:N
(θ∗

l |θ∗
C(N)\{l},C1:N) = fH(θ

∗
l ). (5.87)

Inserting (5.86) and (5.87) into (5.82) yields

fθ∗
l |θ∗

e(N)\{l},c1:N ,x1:N ,y1:N (θ
∗
l |θ∗

C(N)\{l},C1:N ,x1:N ,y1:N)

∝
(

N∏
n=1

fyn | xn(yn |xn)

)( ∏
l,∈C(N)

∏
n,:Cn=l,

fxn, |θ∗
l, ,cn, (xn, |θ∗

l, , Cn,)

) fH(θ
∗
l ). (5.88)

Lastly, all factors in (5.88) that do not functionally depend on θ∗
l are considered as constant;

therefore, we obtain the final expression for the full conditional pdf of θ∗
l as

fθ∗
l |θ∗

C(N)\{l},c1:N ,x1:N ,y1:N (θ
∗
l |θ∗

C(N)\{l},C1:N ,x1:N ,y1:N)

∝
( ∏

n:Cn=l

fxn |θ∗
l ,cn(xn |θ∗

l , Cn)

)
fH(θ

∗
l )

=

( ∏
n:Cn=l

fxn |θ∗
Cn

,cn(xn |θ∗
Cn
, Cn)

)
fH(θ

∗
l )

=

( ∏
n:Cn=l

fxn |θn(xn |θ∗
l )

)
fH(θ

∗
l ) (5.89)

where (3.83) was used. Finally, using (5.2) and (4.3), we obtain a product of Gaussian pdfs:

fθ∗
l |θ∗

e(N)\{l},c1:N ,x1:N ,y1:N (θ
∗
l |θ∗

C(N)\{l},C1:N ,x1:N ,y1:N)

∝
( ∏

n:Cn=l

N (xn;θ
∗
l ,∑u)

)
N (θ∗

l ;μθ∗ ;∑θ∗). (5.90)

Finally, expression (5.90) is a product of Gaussians, hence using the identity (2.59) with

the following substitutions x → θ∗
l , μx → μθ∗ , ∑x → ∑θ∗ , yn → xn and ∑y → ∑u, the

expression (5.90) is also Gaussian, i.e.,

fθ∗
l |θ∗

e(N)\{l},c1:N ,x1:N ,y1:N (θ
∗
l |θ∗

C(N)\{l},C1:N ,x1:N ,y1:N) ∝ ϓ̃N (θ∗
l ;μθ∗

l |x1:N ,C1:N
,∑θ∗

l |x1:N ,C1:N
).

(5.91)
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Here, the covariance matrix is given by (see (2.53))

∑θ∗
l |x1:N ,C1:N

= ∑u (∑u +ml(N)∑θ∗)−1 ∑θ∗ = ∑θ∗ (∑u +ml(N)∑θ∗)−1 ∑u, (5.92)

where

ml(N) =
N∑

n=1

✶(Cn = l) (5.93)

denotes the number of objects n for which C
(q)
n = l. Furthermore, the mean μθ∗

l |x1:N ,C1:N
is

given by (see (2.56))

μθ∗
l |x1:N ,C1:N

= ∑u (∑u +ml(N)∑θ∗)−1 μθ∗ +ml(N)∑θ∗ (∑u +ml(N)∑θ∗)−1 x̄l (5.94)

where x̄l denotes the sample mean

x̄l =
1

ml(N)

∑
n:Cn=l

xn (5.95)

of all xn belonging to cluster l. Here we note that both the mean and the covariance matrix

depend on the cluster index l.

We note that similar to (5.31), expression (5.91) does not functionally depend on the

measurements y1:N . Furthermore, (5.91) does not functionally depend on the other cluster

hyperparameters θ∗
C(N)\{l}. We also note that only parameters of interest xn that belong to

the same cluster (xn)n:C(q)
n =l

are used.

In order to obtain the cluster hyperparameters samples θ∗(q)
l , we have to evaluate the full

conditional pdf fθ∗
l |θ∗

C(N)\{l},c1:N ,x1:N ,y1:N (θ
∗
l |θ∗

C(N)\{l},C1:N ,x1:N ,y1:N) at the samples already

available at qth iteration, i.e., the samples of the cluster assignment variables C
(q)
1:N , the

samples of the parameters of interest x(q−1)
1:N (see (5.76)), and the vector of already available

samples θ
∗(q,q−1)

C(q)(N)\{l}, whose elements θ
∗(q,q−1)
l,l, , l, ∈ C(q)(N)\{l} are defined as

θ
∗(q,q−1)
l,l, =

θ
∗(q)
l,l, for l, ∈ C(q)(N)\{l} already sampled at the qth iteration

θ
∗(q−1)
l,l, for l, ∈ C(q)(N)\{l} not yet sampled at the qth iteration.

(5.96)

Here, we refer to the values of the cluster hyperparameters θ
∗(q)
l, that have been sampled in

the qth as all the cluster assignment variables C
(q)
n have already been sampled previously.
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Using (5.91), we obtain

fθ∗
l |θ∗

e(N)\{l},c1:N ,x1:N ,y1:N (θ
∗(q)
l |θ∗(q,q−1)

C(q)(N)\{l},C
(q)
1:N ,x

(q−1)
1:N ,y1:N)

∝ N (θ
∗(q)
l ;μ

(q)
θ∗
l |x1:N ,C1:N

,∑
(q)
θ∗
l |x1:N ,C1:N

). (5.97)

with

∑
(q)
θ∗
l |x1:N ,C1:N

= ∑u

(
∑u +m

(q)
l (N)∑θ∗

)−1

∑θ∗ = ∑θ∗
(
∑u +m

(q)
l (N)∑θ∗

)−1

∑u, (5.98)

and

m
(q)
l (N) =

N∑
n=1

✶(C(q)
n = l). (5.99)

Furthermore,

μ
(q)
θ∗
l |x1:N ,C1:N

= ∑u

(
∑u +m

(q)
l (N)∑θ∗

)−1

μθ∗ +m
(q)
l (N)∑θ∗

(
∑u +m

(q)
l (N)∑θ∗

)−1

x̄
(q)
l

(5.100)

and

x̄
(q)
l =

1

m
(q)
l (N)

∑
n:C

(q)
n =l

x(q−1)
n . (5.101)

Sampling of θ∗
lnew

We recall that if C(q)
n = lnew was obtained, we need to sample a new cluster hyperparameter

θ
∗(q−1)
lnew

. This is done directly after sampling the cluster assignment variable C
(q)
n , which

means we have available the cluster assignment variable samples C(q,q−1)(¬n) (see (5.74)),

and from the previous iteration the cluster hyperparameter samples θ∗(q−1)

C(q,q−1)(¬n) (see (5.75)),

and the samples of the parameters of interest x(q−1)
1:N (see (5.76). We can easily adapt (5.97),

and obtain

fθ∗
lnew

|θ∗
e(N)\{lnew},c1:N ,x1:N ,y1:N (θ

∗(q−1)
lnew

|θ∗(q−1)

C(q,q−1)(N)\{lnew},C
(q,q−1)
1:N ,x

(q−1)
1:N ,y1:N)

∝ N (θ
∗(q−1)
lnew

;μ
(q−1)
θ∗
lnew

|xn
,∑θ∗

lnew
|xn). (5.102)
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By definition, the only parameter of interest associated with the cluster lnew is xn, which

means that m
(q)
lnew

(N) = 1. Therefore the covariance matrix is given by (see (5.92))

∑θ∗
lnew

|xn = ∑u (∑u +∑θ∗)−1 ∑θ∗ = ∑θ∗ (∑u +∑θ∗)−1 ∑u, (5.103)

and the mean μ
(q−1)
θ∗
lnew

|xn
is given by (see (5.94))

μ
(q−1)
θ∗
lnew

|xn
= ∑u (∑u +∑θ∗)−1 μθ∗ +∑θ∗ (∑u +∑θ∗)−1 x(q−1)

n . (5.104)

Full Conditional pdf of xn

Lastly, samples x
(q)
n of the parameters of interest xn are obtained from the full conditional

pdf of xn given the parameters of interest of the other objects, x¬n, the cluster hyper-

parameters θ∗
C(N), the cluster assignment variables c1:N , and the measurements y1:N , i.e.,

fxn | x¬n,θ∗
C(N)

,c1:N ,y1:N (x
(q)
n |x(q,q−1)

¬n ,θ
∗(q)
C(q)(N)

,C
(q)
1:N ,y1:N). Using θn = θ∗

cn
(see (3.45)) and the

fact that conditioning on θ1:N is equivalent to conditioning on c1:N and θ∗
e (N) we obtain

fxn | x¬n,θ∗
e(N)

,c1:N ,y1:N (xn |x¬n,θ∗
C(N),C1:N ,y1:N) = fxn | x¬n,θ1:N ,y1:N (xn |x¬n,θ1:N ,y1:N).

(5.105)

We can therefore adapt the result of (5.47) so that

fxn | x¬n,θ∗
e(N)

,c1:N ,y1:N (xn |x¬n,θ∗
C(N),C1:N ,y1:N) = fxn | yn,θ∗

cn
(xn |yn,θ

∗
Cn
)

= N (xn;μx |yn,θ∗
Cn
,∑x |y,θ) (5.106)

with (see (5.48))

∑x |y,θ = ∑u −∑u(∑u +∑v)
−1∑u

(B.4)
= ∑v(∑u +∑v)

−1∑u, (5.107)

and (see (5.49))

μx |yn,θ∗
Cn

= θ∗
Cn

+∑u(∑u +∑v)
−1(yn − θ∗

Cn
). (5.108)
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By evaluating (5.106) at the already available samples, we finally obtain

fxn | x¬n,θ∗
e(N)

,c1:N ,y1:N (x
(q)
n |x(q,q−1)

¬n ,θ
∗(q)
C(q)(N)

,C
(q)
1:N ,y1:N) = N (x(q)

n ;μ
(q)
x |yn,θ∗

Cn

,∑x |y,θ)

(5.109)

with x
(q,q−1)
¬n previously defined in (5.22) and

μ
(q)
x |yn,θ∗

Cn

= θ
∗(q)
C

(q)
n

+∑u(∑u +∑v)
−1(yn − θ

∗(q)
C

(q)
n

). (5.110)

Pseudocode for the Gibbs Sampler Using Cluster Assignment Variables

The pseudocode for the qth iteration of the Gibbs sampling algorithm, using the cluster

assignment variables c1:N is given in Algorithm 3.

Algorithm 3 Gibbs sampler using cluster assignment variables

Input: θ
(q−1)
1:N , C(q−1)

1:N , l(q−1)
max , x(q−1)

1:N , y1:N

for all n = 1, . . . , N do
sample C

(q)
n from pcn |c¬n,θ∗

e(¬n)
,x1:N ,y1:N (l |C(q,q−1)

¬n ,θ
∗(q−1)

C(q,q−1)(¬n),x
(q−1)
1:N ,y1:N) as given

by (5.77)
if C

(q)
n = lnew then
set lnew = max{maxn,∈{1,...,n−1} C

(q)
n, , l

(q−1)
max }+ 1 (see (5.81)) and sample θ

∗(q−1)
lnew

from fθ∗
lnew

|θ∗
e(N)\{lnew},c1:N ,x1:N ,y1:N (θ

∗(q−1)
lnew

|θ∗(q−1)

C(q,q−1)(N)\{lnew},C
(q,q−1)
1:N ,x

(q−1)
1:N ,y1:N)

as given by (5.102)
end if

end for
set l

(q)
max = max{maxn∈{1,...,N} C

(q)
n , l

(q−1)
max }

for all l ∈ C(q)(N) do
sample θ

∗(q)
l from fθ∗

l |θ∗
e(N)\{l},c1:N ,x1:N ,y1:N (θ

∗(q)
l |θ∗(q,q−1)

C(q)(N)\{l},C
(q)
1:N ,x

(q−1)
1:N ,y1:N)

as given by (5.97)
end for
for all n = 1, . . . , N do

assign θ
(q)
n = θ

∗(q)
C

(q)
n

end for
for all n = 1, . . . , N do

sample x
(q)
n from fxn | x¬n,θ∗

e(N)
,c1:N ,y1:N (x

(q)
n |x(q,q−1)

¬n ,θ
∗(q)
C(q)(N)

,C
(q)
1:N ,y1:N) as given by

(5.109))
end for

Output: θ
(q)
1:N , C(q)

1:N , l(q)max, x(q)
1:N

Similarly to the “simple” Gibbs sampler (see (5.52)), the Gibbs sampling algorithm using

the cluster assignment variables c1:N is initialized for q = 0 by sampling the hyperparameters
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θ(0)
n from the Gaussian base distribution, i.e.,

θ(0)
n ∼ N (θ(0)

n ;μθ∗ ,∑θ∗), n = 1, . . . , N. (5.111)

Moreover, the cluster assignment variables cn are initialized according to

C(0)
n = n, n = 1, . . . , N. (5.112)

This means that in the zeroth iteration of the algorithm, each object is assigned to an

individual exclusive cluster. Finally, the parameter samples x
(0)
n are again initialized using

the measurements yn as in (5.53), i.e.,

x(0)
n = μθ* + (∑θ* +∑u)(∑θ* +∑u +∑v)

−1(yn − μθ*), n = 1, . . . , N. (5.113)

5.2.4 MSE

No closed-form expression, but can be estimated by empirical MSE, as described in Sec-

tion 6.2.

5.3 Fourth Scenario

In our final scenario, we assume that we know the cluster assignment variables c1:N =

(c1, . . . ,cN)
T. We recall that the statistical model for this scenario was introduced in

Section 5.1. The cluster assignment variables c1:N together with the measurements y1:N are

now considered as data that are known to the estimator; however, we still model them as

random variables. Since θn = θ∗
cn

(see (3.40)), we know that objects n, for which cn = l are

associated with cluster hyperparameter θ∗
l ; however, we do not know the realization|(value)

of θ∗
l . The statistical dependencies for this scenario are visualized in Figure 9. Note that

the only difference from Figure 8 is that the cluster assignment variables are considered

known to the estimator.

Contrary to Scenario 3, where we had to approximate the MMSE estimator using nu-

merical methods, the present Scenario 4 admits a closed form solution. Since the cluster

assignment variables cn are known, the estimator can now use all the measurements yn,

that are associated with the same cluster, i.e., for all n such that cn = l, instead of just

using one measurement yn as in Scenario 1. Therefore, we expect a lower MSE than in the
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fDP

{θ∗
l }l∈N{cn}n∈N

c1 c2 c3

θ1 θ2 θ3

x1 x2 x3

y1 y2 y3

Figure 9: Bayesian network for the fourth scenario, assuming three objects N = 3. Random
variables displayed in shaded disks are observed. The cluster assignment variables {cn}n∈N
and the cluster hyperparameters {θ∗

l }l∈N are generated from the DP. Each cluster assignment
variable is then related to exactly one hyperparameter θn; however, the cluster assignment
variables may be equal for two different objects and thereby relate these objects to the same
cluster hyperparameter θ∗

l .

first scenario; however, since the cluster hyperparameters θ∗
l are unknown, the MSE will

be higher than in Scenario 2. In Scenario 3, the estimator also uses clustering to improve

the estimate; however, since the cluster assignment variables c1:N need to be inferred (see

(5.77)), the MSE is higher than in the present Scenario 4.

5.3.1 MMSE Estimator

As in our previous scenarios, we are interested in the MMSE estimator, i.e.,

x̂(4)
n (y1:N ,C1:N) = E[xn | y1:N = y1:N ,c1:N = C1:N ] =

∫
xn

xn fxn | y1;N ,c1;N
(xn |y1:N ,C1:N) dxn.

(5.114)
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Here, the posterior pdf fxn | y1;N ,c1;N
(xn |y1:N ,C1:N) can be obtained from the joint posterior

pdf fx1:N | y1:N ,c1:N
(x1:N |y1:N ,C1:N) as

fxn | y1;N ,c1;N
(xn |y1:N ,C1:N) =

∫
x¬n

fx1:N | y1:N ,c1:N
(x1:N |y1:N ,C1:N)dx¬n, (5.115)

where we recall that x¬n = (xT
1 , . . . ,x

T
n−1,x

T
n+1, . . . ,x

T
N)

T. In order to calculate the joint

posterior pdf, we first condition on the cluster hyperparameters θ∗
e (N), which results in

fx1:N | y1:N ,c1:N
(x1:N |y1:N ,C1:N)

=

∫
θ∗
C(N)

fx1:N | y1:N ,θ∗
e(N),c1:N

(x1:N |y1:N ,θ
∗
C(N),C1:N)fθ∗

e(N) | y1:N ,c1:N
(θ∗

C(N) |y1:N ,C1:N)dθ
∗
C(N).

(5.116)

First factor of integrand (5.116)

Let us consider the first factor of the integrand in (5.116). As discussed in Section 3.3.2,

the cluster assignment variables c1:N together with the cluster hyperparameters θ∗
e (N) are

statistically equivalent to the hyperparameters θ1:N , since θn = θ∗
cn

(see (3.45)). This also

means

fx1:N | y1:N ,θ∗
e(N),c1:N

(x1:N |y1:N ,θ
∗
C(N),C1:N) = fx1:N | y1:N ,θ1:N

(x1:N |y1:N ,θ1:N). (5.117)

This posterior distribution was already derived in Section 4.3.2, and since our assumptions

about the noise vectors u1:N and v1:N are the same as in the previous cases, the result in

(4.75) is still valid, yielding

fx1:N | y1:N ,θ1:N
(x1:N |y1:N ,θ1:N) =

N∏
n=1

fxn | yn,θn(xn |yn,θn). (5.118)

Inserting this expression into (5.117) and rewriting the product
∏N

n=1 using c1:N and θ∗
e (N),

we obtain

fx1:N | y1:N ,θ∗
e(N),c1:N

(x1:N |y1:N ,θ
∗
C(N),C1:N) =

∏
l∈C(N)

∏
n:Cn=l

fxn | yn,θn(xn |yn,θ
∗
l ). (5.119)
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Using (4.79) we obtain

fxn | yn,θ∗
l ,cn(xn |yn,θ

∗
l , Cn) = N (xn;μx |yn,θ∗

l
,∑x |y,θ), (5.120)

with (see (4.83))

∑x |y,θ = ∑v (∑u +∑v)
−1 ∑u (5.121)

and (see (4.84))

μxn |yn,θ∗
l
= θ∗

l +∑u(∑u +∑v)
−1(yn − θ∗

l ), (5.122)

or equivalently

μxn |yn,θ∗
Cn

= θ∗
Cn

+∑u(∑u +∑v)
−1(yn − θ∗

Cn
). (5.123)

Finally, inserting (5.120) into (5.119), we obtain

fx1:N | y1:N ,θ∗
e(N),c1:N ,(x1:N |y1:N ,θ

∗
C(N),C1:N) =

∏
l∈C(N)

∏
n:Cn=l

N (xn;μx |yn,θ∗
l
,∑x |y,θ). (5.124)

Second factor of integrand (5.116)

We now take up the second factor of the integrand in (5.116). Using Bayes’ theorem, we

have

fθ∗
C(N) | y1:N ,c1:N

(θ∗
C(N) |y1:N ,C1:N) ∝ fy1:N |θ∗

C(N),c1:N
(y1:N |θ∗

C(N),C1:N)fθ∗
C(N) |c1:N

(θ∗
C(N) |C1:N).

(5.125)

By conditioning on θ1:N instead of θ∗
e (N) and c1:N , the first factor in (5.125) can equivalently

be written as

fy1:N |θ∗
e(N),c1:N

(y1:N |θ∗
C(N),C1:N) = fy1:N |θ1:N

(y1:N |θ1:N), (5.126)
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which, using the result in (4.27), yields

fy1:N |θ∗
e(N),c1:N

(y1:N |θ∗
C(N),C1:N) =

N∏
n=1

N (yn;θ
∗
Cn
,∑u +∑v). (5.127)

Similar to (5.119), we rewrite the product
∏N

n=1 in terms of c1:N and θ∗
C(N) and obtain

fy1:N |θ∗
e(N),c1:N

(y1:N |θ∗
C(N),C1:N) =

∏
l∈C(N)

∏
n:Cn=l

N (yn;θ
∗
l ,∑u +∑v). (5.128)

The second factor in (5.125) is given by (3.55) as

fθ∗
e(N)

|c1:N
(θ∗

C(N) |C1:N) =
∏

l∈C(N)

fH(θ
∗
l ) =

∏
l∈C(N)

N (θ*
l ;μθ∗ ,∑θ∗), (5.129)

where in the last step (5.2) was used. Inserting (5.128) and (5.129) into (5.125), we obtain

fθ∗
e(N) | y1:N ,c1:N

(θ∗
C(N) |y1:N ,C1:N) ∝

∏
l∈C(N)

( ∏
n:Cn=l

N (yn;θ
∗
l ,∑u +∑v)

)
N (θ*

l ;μθ∗ ,∑θ∗).

(5.130)

We note that the product
(∏

n:Cn=l N (yn;θ
∗
l ,∑u +∑v)

)N (θ*
l ;μθ∗ ,∑θ∗) in (5.130) is of the

same format as left-hand side of the identity (2.59), i.e., with the following substitutions

x → θ∗
l , μx → μθ∗ , ∑x → ∑θ∗ , and ∑y → ∑u +∑v, we obtain

( ∏
n:Cn=l

N (yn;θ
∗
l ,∑u +∑v)

)
N (θ*

l ;μθ∗ ,∑θ∗) = ϓ̃N (θ∗
l ;μθ∗

l |y1:N ,C1:N
,∑θ∗

l |y1:N ,C1:N
),

(5.131)

with the covariance matrix given by (see (2.53))

∑θ∗
l |y1:N ,C1:N

= (∑u +∑v) (∑u +∑v +ml(N)∑θ∗)−1 ∑θ∗ (5.132)

= ∑θ∗ (∑u +∑v +ml(N)∑θ∗)−1 (∑u +∑v) (5.133)

and mean (see (2.56))

μθ∗
l |y1:N ,C1:N

= (∑u +∑v) (∑u +∑v +ml(N)∑θ∗)−1 μθ∗

+ml(N)∑θ∗ (∑u +∑v +ml(N)∑θ∗)−1 ȳl. (5.134)
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Here, ml(N) denotes the number of objects for which cn = l, as defined in (3.47), and ȳl

denotes the sample mean of all measurements (yn)n:Cn=l, i.e.,

ȳl =
1

ml(N)

∑
n:Cn=l

yn. (5.135)

We note that both the mean and the covariance matrix depend on the cluster index l.

Lastly, with the aforementioned substitutions, according to (2.61) the multiplicative factor

ϓ̃ in (5.131) does not depend on θ∗
l , therefore inserting (5.131) into (5.130) yields

fθ∗
e(N) | y1:N ,c1:N

(θ∗
C(N) |y1:N ,C1:N) ∝

∏
l∈C(N)

N (θ∗
l ;μθ∗

l |y1:N ,C1:N
,∑θ∗

l |y1:N ,C1:N
). (5.136)

Evaluation of (5.116)

Inserting (5.124) and (5.136) into (5.116) yields

fx1:N | y1:N ,c1:N
(x1:N |y1:N ,C1:N)

∝
∫
θ∗
C(N)

∏
l∈C(N)

( ∏
n:Cn=l

N (xn;μx |yn,θ∗
l
,∑x |y,θ)

)
N (θ∗

l ;μθ∗
l |y1:N ,C1:N

,∑θ∗
l |y1:N ,C1:N

)dθ∗
C(N)

=
∏

l∈C(N)

∫
θ∗
l

( ∏
n:Cn=l

N (xn;μx |yn,θ∗
l
,∑x |y,θ)

)
N (θ∗

l ;μθ∗
l |y1:N ,C1:N

,∑θ∗
l |y1:N ,C1:N

)dθ∗
l .

(5.137)

To simplify the notation, we write the mean μx |yn,θ∗
l

(see (5.123)) as

μx |yn,θ∗
l
= θ∗

l +∑u (∑u +∑v)
−1 yn −∑u (∑u +∑v)

−1 θ∗
l

= (∑u +∑v) (∑u +∑v)
−1 θ∗

l +∑u (∑u +∑v)
−1 yn −∑u (∑u +∑v)

−1 θ∗
l

= ∑u (∑u +∑v)
−1 yn + (∑u +∑v −∑u) (∑u +∑v)

−1 θ∗
l

= M1yn +M2θ
∗
l , (5.138)

with

M1 = ∑u (∑u +∑v)
−1 (5.139)

and

M2 = ∑v (∑u +∑v)
−1 , (5.140)
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where the size of both matrices is D × D. Furthermore, we group all the parameters of

interest xn that belong to the same cluster Cn = l, and thus define

xψl
= (xn)n:Cn=l = (xT

ψl(1)
, . . . ,xT

ψl(ml(N)))
T, (5.141)

where the function Ψl maps each index p ∈ {1, . . . ,ml(N)} to the corresponding index

n ∈ {1, . . . , N}. Similarly, we define

yψl
= (yn)n:Cn=l = (yT

ψl(1)
, . . . ,yT

ψl(ml(N)))
T. (5.142)

Using (5.139 - 5.142) we can rewrite (5.137) as

fx1:N | y1:N ,c1:N
(x1:N |y1:N ,C1:N)

∝
∏

l∈C(N)

∫
θ∗
l

(ml(N)∏
p=1

N (xψl(p);μx |yψl(p)
,θ∗

l
,∑x |y,θ)

)N (θ∗
l ;μθ∗

l |y1:N ,C1:N
,∑θ∗

l |y1:N ,C1:N
)dθ∗

l

=
∏

l∈C(N)

∫
θ∗
l

(ml(N)∏
p=1

N (xψl(p);M1yψl(p)+M2θ
∗
l ,∑x |y,θ)

)N (θ∗
l ;μθ∗

l |y1:N ,C1:N
,∑θ∗

l |y1:N ,C1:N
)dθ∗

l .

(5.143)

Furthermore, with the following substitutions in (C.35) A → M2, B → M1, x → θ∗
l ,

yn → xψl(p), μx → μθ∗
l |y1:N ,C1:N

, ∑x → ∑θ∗
l |y1:N ,C1:N

, ∑y → ∑x |y,θ, N → ml(N), the

expression (5.143) for the joint posterior is given by

fx1:N | y1:N ,c1:N
(x1:N |y1:N ,C1:N) ∝

∏
l∈C(N)

N
(
xψl

; μ̃xψl
|y1:N ,C1:N

, ∑̃xψl
|y1:N ,C1:N

)
, (5.144)

with the mean μ̃xψl
|y1:N ,C1:N

(see (C.37))

μ̃xψl
|y1:N ,C1:N

=

(���
M1yψl(1) +M2μθ∗

l |y1:N ,C1:N

...

M1yψl(ml(N)) +M2μθ∗
l |y1:N ,C1:N

)��� (5.145)

and covariance matrix ∑̃xψl
|y1:N ,C1:N

(see (C.30) and (C.38))

∑̃xψl
|y1:N ,C1:N

= Iml(N) ⊗∑x |y,θ + 1ml(N)1T
ml(N) ⊗M2∑θ∗

l |y1:N ,C1:N
MT

2

98



5 INHERENT CLUSTERING SCENARIOS AND ESTIMATORS

= Iml(N) ⊗∑x |y,θ + 1ml(N)1T
ml(N) ⊗∑M2

=

(������
∑x |y,θ +∑M2 ∑M2 . . . ∑M2

∑M2 ∑x |y,θ +∑M2

. . . ∑M2

... . . . . . . ...

∑M2 . . . . . . ∑x |y,θ +∑M2

)������ , (5.146)

where Iml(N) denotes the identity matrix of size ml(N)×ml(N), 1ml(N) denotes the all-one

vector of size ml(N)× 1 and

∑M2 = M2∑θ∗
l |y1:N ,C1:N

MT
2 . (5.147)

Finally, we obtain the posterior of xn by inserting (5.144) into (5.115) and perform the

marginalization, using the results [20, Eq.2.92 and Eq.2.93], i.e.,

fxn | y1;N ,c1;N
(xn |y1:N ,C1:N) ∝

∫
x¬n

∏
l∈C(N)

N (xψl
; μ̃xψl

|y1:N ,C1:N
, ∑̃xψl

|y1:N ,C1:N
)dx¬n

= N (xn;μx |y1:N ,C1:N
,∑x |y1:N ,C1:N

), (5.148)

where the posterior mean is obtained from (5.145) using the index Ψl(p) equal to n, and

using Cn = l, i.e.,

μx |y1:N ,C1:N
= M1yn +M2μθ∗

Cn
|y1:N ,C1:N

, (5.149)

and the posterior covariance matrix ∑x |y1:N ,C1:N
is obtained from (5.146) as

∑x |y1:N ,C1:N
= ∑x |y,θ +∑M2 = ∑x |y,θ +M2∑θ∗

Cn
|y1:N ,C1:N

MT
2 . (5.150)

Inserting (5.139), (5.140) and the expression (5.134) (with Cn = l) into (5.149), we obtain

for the posterior mean

μx |y1:N ,C1:N

= ∑u (∑u +∑v)
−1 yn +∑v (∑u +∑v)

−1 (∑u +∑v) (∑u +∑v +mCn(N)∑θ∗)−1 μθ∗

+mCn(N)∑v (∑u +∑v)
−1 ∑θ∗ (∑u +∑v +mCn(N)∑θ∗)−1 ȳCn

= ∑u (∑u +∑v)
−1 yn +∑v (∑u +∑v +mCn(N)∑θ∗)−1 μθ∗
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+mCn(N)∑v (∑u +∑v)
−1 ∑θ∗ (∑u +∑v +mCn(N)∑θ∗)−1 ȳCn , (5.151)

with

mCn(N) =
N∑

n,=1

✶(Cn, = Cn), (5.152)

and ȳCn (see (5.95))

ȳCn = 1

mCn(N)

N∑
n,=1

✶(Cn, = Cn)yn, . (5.153)

Similarly, inserting (5.140), (5.121), and (5.132) into (5.150), the covariance matrix

∑x |y1:N ,C1:N
is obtained as

∑x |y1:N ,C1:N
=∑v (∑u +∑v)

−1∑u +∑v (∑u +∑v)
−1(∑u +∑v)(∑u +∑v +mCn(N)∑θ∗)−1

×∑θ∗
(
∑v (∑u +∑v)

−1)T

= ∑v (∑u +∑v)
−1 ∑u +∑v (∑u +∑v +mCn(N)∑θ∗)−1 ∑θ∗ (∑u +∑v)

−1 ∑v.

(5.154)

Final expression for x̂
(4)
n (y1:N ,C1:N)

According to (5.114), the MMSE estimator x̂
(4)
n (y1:N ,C1:N) is equal to the posterior mean

E[xn | y1:N = y1:N ,c1:N = C1:N ] = μx |y1:N ,C1:N
. Using (5.151), we thus obtain

x̂(4)
n (y1:N ,C1:N) = ∑u (∑u +∑v)

−1 yn +∑v (∑u +∑v +mCn(N)∑θ∗)−1 μθ∗

+mCn(N)∑v (∑u +∑v)
−1 ∑θ∗ (∑u +∑v +mCn(N)∑θ∗)−1 ȳCn ,

(5.155)

with the sample mean ȳCn (see (5.153)) and mCn(N) (see (5.152)). We can see that (5.155)

consists of three additive terms, the measurement yn, multiplied by ∑u (∑u +∑v)
−1, the

prior knowledge μθ∗ , multiplied by ∑v (∑u +∑v +mCn(N)∑θ∗)−1 and the sample mean

ȳCn of all measurements that are in the same cluster Cn as the object xn, weighted by

mCn(N)∑v (∑u +∑v)
−1 ∑θ∗ (∑u +∑v +mCn(N)∑θ∗)−1.
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5.3.2 MSE

According to (2.12), the minimum MSE is given by

MSE(4)
min =

1

D
Ey1:N ,c1:N

[
tr
[
∑x |y1:N ,C1:N

] ]
, (5.156)

where ∑x |y1:N ,C1:N
is given by (5.154). This expression involves mCn(N) (see (5.152)) and

is thus functionally dependent on the cluster assignment variables c1:N . On the other hand,

expression (5.154) is not functionally dependent on y1:N . Therefore, the minimum MSE for

Scenario 4 is finally obtained as

MSE(4)
min =

1

D
Ec1:N

[
tr
[
∑x |y1:N ,C1:N

] ]
(5.157)

=
1

D
Ec1:N

[
tr
[
∑v (∑u +∑v)

−1 ∑u +∑v (∑u +∑v +mcn(N)∑θ∗)−1

× ∑θ∗ (∑u +∑v)
−1 ∑v

] ]
. (5.158)

We note that (5.158) functionally depends on mcn(N) (see (5.152)), hence the expectation

in (5.158) with respect to c1:N can be expressed as

MSE(4)
min=

1

D
Ec1:N |mcn (N)

[
Emcn (N)

[
tr
[
∑v (∑u +∑v)

−1 ∑u +∑v (∑u +∑v +mcn(N)∑θ∗)−1

× ∑θ∗ (∑u +∑v)
−1 ∑v

] ]]
. (5.159)

The pmcn (N)(m) of the cluster size mcn(N), i.e., the number of objects for which cn, = cn

(see (5.152)), is shown in Appendix A.2 to be given by

pmcn (N)(m) =
αN−m(N − 1)!

(α + 1)N−1(N −m)!
, for m ∈ {1, . . . , N}, (5.160)

with αm = α(α + 1) · · · (α + m − 1) denoting the Pochhammer symbol (with α0 = 1 and

α1 = α) [36, Eq. 13.154]. Next, by exploiting the fact that given mcn(N) = m, the posterior

covariance matrix ∑x |y1:N ,C1:N
is independent of c1:N , we can write (5.159) as

MSE(4)
min =

1

D
Emcn (N)

[
tr
[
∑v (∑u +∑v)

−1 ∑u +∑v (∑u +∑v +mcn(N)∑θ∗)−1

×∑θ∗ (∑u +∑v)
−1 ∑v

]]
, (5.161)

101



5 INHERENT CLUSTERING SCENARIOS AND ESTIMATORS

which using (5.160) becomes

MSE(4)
min =

N∑
m=1

tr
[
∑x |y1:N ,C1:N

]
pmcn (N)(m)

=
1

D

N∑
m=1

tr
[
∑v (∑u +∑v)

−1 ∑u +∑v (∑u +∑v +m∑θ∗)−1

×∑θ∗ (∑u +∑v)
−1 ∑v

]
pmcn (N)(m). (5.162)

In the special case where θ∗
l , un and vn are random vectors with i.i.d. components, i.e.,

∑θ∗ = σ2
θ∗ID, ∑u = σ2

uID, and ∑v = σ2
vID, expression (5.162) reduces to

MSE(4)
min =

N∑
m=1

tr
[

σ2
uσ

2
v

σ2
u + σ2

v

ID +
(σ2

v)
2σ2

θ∗

(σ2
u + σ2

v)(σ
2
u + σ2

v +mσ2
θ∗)

ID

]
pmcn (N)(m)

=
N∑

m=1

(
σ2
uσ

2
v

σ2
u + σ2

v

+
(σ2

v)
2σ2

θ∗

(σ2
u + σ2

v)(σ
2
u + σ2

v +mσ2
θ∗)

)
αN−m(N − 1)!

(α + 1)N−1(N −m)!
. (5.163)
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6 Simulation Results

In this section, we evaluate and compare the performance of the estimators introduced in

Sections 4 and 5. We will discuss the generation of the data, the simulation parameters, the

performance metrics, and the obtained performance results.

6.1 Simulation Setup

For each object n, we consider a parameter of interest xn = (xn,1, xn,2)
T ∈ R2, a hy-

perparameter θn = (θn,1, θn,2)
T ∈ R2, and a measurement yn = (yn,1, yn,2)

T ∈ R2. In

each simulation run, we generate θn from a DP assuming a Gaussian base distribution

fH(θ
∗
l ) = N (θ∗

l ;μθ∗ ,∑θ∗), where μθ∗ = 0 and ∑θ∗ = σ2
θ∗I2 with σ2

θ∗ = 5. In the first simu-

lation, we consider three different values α = 0.5, 1, 5 of the concentration parameter. Later,

we will investigate the performance in terms of the MSE and how the MSE depends on the

concentration parameter α, and we will consider α = 0.1, 0.5, 1 . . . , 5. We recall that the hy-

perparameter vector θn and the parameter of interest xn are statistically related according

to (4.1), where we assume that the parameter noise un is zero-mean Gaussian (see (4.2))

with ∑u = σ2
uI2 where σ2

u = 1. Similarly, the measurement vector yn and xn are statistically

related according to (4.4), where we assume that the measurement noise vn is zero-mean

Gaussian (see (4.5)) with ∑v = σ2
vI2 where σ2

v = 1. To investigate the performance in

terms of the MSE and how the MSE depends on the total number of objects N , we simulate

up to N = 50 objects, i.e., N = 1, 2 . . . , 50. Each simulation result for one value of N is

averaged over J = 500 simulation runs, where in each run, we create new hyperparameters

θ1:N , parameters of interest x1:N , and measurements y1:N . We create Q = 1000 samples

x
(q)
n from the posterior distribution fxn | y1:N (xn |y1:N) by means of the Gibbs sampler using

Table 2: Simulation parameters.

Parameter Value

μθ∗ 0
∑θ∗ 5I2
∑u I2
∑v I2
α {0.1, 0.5, 1 . . . , 5}
N {1, 2, . . . , 50}
Q 1000
J 500
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y1:N

(a) Scenarios 1 and 3.

yψ1

yψ2

yψ3

yψ4

θ*
1

θ*
2

θ*
3

θ*
4

(b) Scenario 2.

yψ1

yψ2

yψ3

yψ4

(c) Scenario 4.

Figure 10: One realization of the data available to the estimator for each of the four scenarios,
for N=20 and α=1. In (a) (Scenarios 1 and 3), these data are only the measurement vector
y1:N . In (b) (Scenario 2), the data are the measurement vector y1:N and the hyperparameters
θ1:N , or, equivalently because θn = θ∗

Cn
, the hyperparameters θ∗

Cn
and cluster assignment

variables Cn for n = 1, ..., N . Using the cluster assignment variables Cn, we group all
measurements yn for which Cn = l, i.e., (yn)n:Cn=l, which we denote as yψl

(see (5.142)). The
cluster assignment variables Cn are represented by the color of the respective cluster. Lastly,
in (c) (Scenario 4), the data are the measurement vector y1:N and the cluster assignment
variables Cn for n=1, ..., N . Similar to (b), we group all measurements of the lth cluster
into yψl

.
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cluster assignment variables (see Algorithm 3). The simulation parameters can be seen in

Table 2. Figure 10 shows one realization of the data available to the respective estimator

for N = 20 objects and α = 1.

6.2 Performance Metrics

In this subsection, we discuss the metrics we use to analyze the performance of the estima-

tors.

MSE

In order to quantify and compare the performance of the estimators for our four scenarios,

we calculate their respective MSEs under the assumption that θn, un, and vn are random

vectors with i.i.d. components. For the first, second, and fourth scenarios, the MSE is

given in closed form (see (4.62), (4.88), and (5.163), respectively). In the third scenario, no

closed-form expression for the MSE or the estimate is available. Therefore, we calculate the

empirical MSE, by averaging the squared estimation error over all times n = 1, . . . , N and

all simulation runs j = 1, . . . , J , i.e.,

MSE(3)
min ≈ MSE(3)

MC = 1

JN

J∑
j=1

N∑
n=1

‖x̂(3)
n,MC(y

(j)
1:N)− xn,j‖22. (6.1)

We can approximate the posterior mean (see (5.16) and (5.17)) as

x̂(3)
n (y1:N,j) ≈ x̂

(3)
n,MC(y

(j)
1:N) =

1

Q

Q∑
q=1

x
(q)
n,j, (6.2)

where y
(j)
1:N denotes the measurement vector y1:N obtained in the jth simulation run. Sim-

ilarly, xn,j stands for the true parameter in the jth simulation run and x̂
(3)
n,MC(y

(j)
1:N) is the

estimate of the parameter of interest, calculated using the measurements created in the jth

simulation run. Table 3 lists the MSE expressions for the four scenarios.

Clustering Gain

Since we expect an improved MSE performance due to clustering, we introduce a new perfor-

mance metric called clustering gain (CG), which will allow us to quantify such improvement.
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We consider the MSE in the first scenario, MSE(1)
min =

σ2
v(σ

2
θ+σ2

u)

σ2
θ+σ2

u+σ2
v
, as a baseline since it does

not make use of the cluster structure and only uses the measurement vector y1:N , which is

available to all estimators. The CG is therefore defined as

CG = 10 log10

(
MSE(1)

min

MSE(clustering)

)
, (6.3)

where MSE(clustering) is an MSE of the estimator that uses clustering, i.e., MSE(3)
MC or MSE(4)

min.

The clustering gain for the third scenario (CG(3)) has to be approximated, whereas for the

fourth scenario, the clustering gain can be obtained in closed form by inserting (4.62) and

(5.163) into (6.3), i.e.,

CG(4) = 10 log10

( σ2
v(σ

2
θ+σ2

u)

σ2
θ+σ2

u+σ2
v∑N

m=1

(
σ2
uσ

2
v

σ2
u+σ2

v
+

(σ2
v)

2σ2
θ∗

(σ2
u+σ2

v)(σ
2
u+σ2

v+mσ2
θ∗ )

)
αN−m(N−1)!

(α+1)N−1(N−m)!

) . (6.4)

We note that this expression depends on the number of objects N ; in particular, for N = 1

we obtain CG(4) = 0.

6.3 Performance Evaluation

First, we compare the performance of the four estimators in terms of MSE. Subsequently,

we will compare the performance in terms of MSE and CG achieved by the estimators in

Scenarios 3 and 4 as opposed to modification of the estimator in Scenario 4, which uses a

clustering algorithm followed by a pure estimation algorithm.

Table 3: MSE expressions for the four scenarios.

Scenario MSE Estimator uses clustering

1
σ2
v(σ

2
θ+σ2

u)

σ2
θ+σ2

u+σ2
v

(see (4.62)) no

2 σ2
uσ

2
v

σ2
u+σ2

v
(see (4.89)) no

3 ≈ 1
JN

∑J
j=1

∑N
n=1 ‖x̂(3)

n,MC(y
(j)
1:N)− xn,j‖22 (see (6.1)) yes

4

∑N
m=1

(
σ2
uσ

2
v

σ2
u+σ2

v
+

(σ2
v)

2σ2
θ∗

(σ2
u+σ2

v)(σ
2
u+σ2

v+mσ2
θ∗ )

)
αN−m(N−1)!

(α+1)N−1(N−m)!

(see (5.163))
yes
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Figure 11: MSE of the four estimators as a function of the number of objects N . Closed-form
expressions are shown using solid lines, whereas Monte Carlo simulation results (MSE(3)

MC)
are shown using dashed lines. The shaded regions indicate the empirical standard deviation
of the simulated MSE.

6.3.1 MSE of the Four Scenarios

Figure 11 presents the MSE as a function of the number of objects N for all four scenarios.

As expected, the MSE achieved by the first estimator, MSE(1)
min in (4.62), is higher than

the MSE of any of the other estimators, as the first estimator makes no use of the cluster

structure. On the other hand, the MSE achieved by the second estimator, MSE(2)
min in

(4.89), is the lowest of all MSEs, since in Scenario 2 the hyperparameter θn is known. Note

also that, in line with (4.62) and (4.89), MSE(1)
min and MSE(2)

min do not depend on N . By

contrast, MSE(3)
MC and MSE(4)

min depend on N and on the concentration parameter α. As

the number of objects N increases, MSE(3)
MC and MSE(4)

min decrease. This can be explained

by the fact that with more objects, more measurements associated with each cluster are

available to the estimators and more objects share the same hyperparameter θ∗, which

results in an improved estimation. For the small concentration parameter value α = 0.5,

the hyperparameters are more concentrated; in other words, there are fewer distinct clusters

and more objects share the same hyperparameter θ∗. Here, we observe a strong decrease of

the MSE with increasing N . On the contrary, for the large concentration parameter value

α = 5, there are more clusters and fewer objects share the same hyperparameter θ∗; here,

the decrease of the MSE is less strong. Finally, MSE(4)
min is seen to be lower than MSE(3)

MC.

This is an expected result, since in the fourth scenario the cluster assignment variables c1:N

are considered to be known, and thus the estimator can use more measurements than in the
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(a) MSE versus the number of objects N , for α = 0.5.

(b) MSE versus the concentration parameter α, for N = 20 objects.

Figure 12: MSE of estimators 1 through 4 as well as of two versions of estimator 4 using
estimates of C1:N (MSE(DB)

MC and MSE(K)
MC). Closed-form expressions are shown using solid

lines, whereas the Monte Carlo simulation results (MSE(3)
MC, MSE(DB)

MC , and MSE(K)
MC) are

shown using dashed lines. The shaded regions indicate the empirical standard deviation of
the simulated MSE.

third scenario.

6.3.2 Comparison with Other Clustering Algorithms

The fourth estimator outperforms the third estimator because it exploits knowledge of the

cluster assignment variables c1:N . Let us now consider a modification of the fourth estimator

that uses an estimate Ĉ1:N of c1:N . The estimate Ĉ1:N is provided by two standard clustering

algorithms, namely, the DBSCAN algorithm [16] and the K-Means ++ algorithm [17]. The

resulting MSEs, denoted as MSE(DB)
MC and MSE(K)

MC, respectively, are shown in Figure 12 along

with MSE(1)
min, MSE(2)

min, MSE(3)
MC, and MSE(4)

min.
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(a) CG versus the number of objects N for α = 0.5.

(b) CG versus the concentration parameter α for N = 20 objects.

Figure 13: CG of estimators 3 and 4 (CG(3) and CG(4)) as well as of two versions of estimator
4 using estimates of C1:N (CG(DB) and CG(K)). The shaded regions indicate the empirical
standard deviation.

We can observe in Figure 12a that MSE(3)
MC is lower than MSE(DB)

MC and (for N ≥ 5) also

MSE(K)
MC, i.e., the third estimator outperforms both versions of the modified fourth estimator;

furthermore, MSE(K)
MC is lower than MSE(DB)

MC . The latter result can be explained by the

fact that the K-Means ++ algorithm uses knowledge of the number of clusters, whereas

the DBSCAN algorithm does not. Furthermore, Figure 12b shows that for concentration

parameter α ≥ 1.5, MSE(DB)
MC is higher than MSE(1)

min. This can be explained by the incorrect

clustering performed by the DBSCAN algorithm, which for larger values of α tends to assign

all samples into one cluster. Note that in Figure 12b, N = 20 is assumed; however, a similar

performance was observed for both larger and smaller values of objects N .

In Figure 13a, we show the CG versus the number of objects N (see (6.3)). As in

Figure 12a, the concentration parameter was chosen as α = 0.5. As expected, the fourth
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estimator achieves the largest CG, followed by the third estimator. It is also seen that the

modified versions of the fourth estimator using the K-Means ++ and DBSCAN clustering

algorithms achieve a considerably lower CG. Lastly, Figure 13b shows the GC versus the

concentration parameter α. Similar to Figure 12b, we note that for approximately α ≥ 1.5,

the CG(DB) is negative due to incorrect clustering performed by DBSCAN algorithm.
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7 Conclusion

In this Master’s thesis, we investigated the application of DPMs in the Bayesian estimation

framework, specifically exploring their use for estimation within a simple hierarchical Gaus-

sian model. By considering a DP prior, we overcame the limitations of fixed-size models

and thus avoided the need to pre-specify the number of clusters. Because the posterior dis-

tribution cannot be calculated in closed form, we used a Monte Carlo approximation of the

MMSE estimator and derived a Gibbs sampling algorithm for our estimation problem. A

notable distinction from prior works, such as [6] and [7], is that our model yields closed-form

performance bounds. This feature facilitates the quantification of improvements in estima-

tion performance due to the use of the DP prior in relation to the theoretically achievable

performance.

We commenced with an introduction to the Bayesian framework of estimation and a

discussion of key properties of the Gaussian distribution. Building on this foundation and

on [21] and [6], we explored the basic theory of DPs and DPMs. In particular, we discussed

certain distributions associated with a DP. Furthermore, we presented four procedures for

generating samples from a DP, and we studied the clustering property intrinsic to DPs.

Shifting the focus to our Gaussian estimation problem, we introduced our general Gaus-

sian model and associated independence assumptions. Within this general statistical frame-

work, we considered four different scenarios. In Scenario 1, the hyperparameters are assumed

to be i.i.d. and Gaussian distributed. In Scenario 2, they are still modeled as i.i.d. and

Gaussian distributed but are now considered to be known. For both scenarios, we derived

closed-form expressions for the MMSE estimator and the corresponding MMSE. Scenario

3 features a DP prior for the hyperparameters. Because the complexity of the DP prior

does not allow for closed-form solutions, we developed two Gibbs sampling algorithms that

provide Monte Carlo approximations of the MMSE estimator. In contrast to the estimators

for Scenario 1 and 2, the estimator for Scenario 3 leverages the cluster structure induced by

the DP prior. In Scenario 4, the hyperparameters are still distributed according to a DP

prior but the object-cluster associations are now considered to be known. Here again, we

derived closed-form expressions for the MMSE estimator and the corresponding MMSE.

The closed-form MMSEs of Scenarios 1, 2, and 4 provide lower and upper bounds on the

MSE of Scenario 3. Through simulations, we demonstrated the effectiveness of the Gibbs

sampler-based estimator in leveraging the cluster structure induced by the DP prior. Our
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proposed Monte Carlo approximation of the MMSE estimator in Scenario 3 consistently

achieves a lower MSE than the MMSE estimator in Scenario 1, which makes no use of the

cluster structure; that is, in all simulation settings within Scenario 3, we always obtained a

reduction in MSE due to clustering, or equivalently, a positive “clustering gain”. Moreover,

this clustering gain is only 0.5dB lower than the bound in Scenario 4, which uses knowledge

of the object-cluster associations. Finally, our simulations showed that our approach of

joint estimation and clustering outperforms the conventional approach of using a clustering

algorithm (K-Means ++ or DBSCAN) followed by an estimation algorithm.

On the other hand, the computational complexity of the proposed Gibbs sampling algo-

rithm is considerably higher than that of the other methods. This issue was addressed in [15]

by using the CAVI algorithm instead of the Gibbs sampler to approximate the posterior dis-

tribution. For a small concentration parameter α = 0.5, the CAVI algorithm proposed in [15]

achieves a clustering gain that is only 16% lower than that achieved with our method, while

the computational complexity is considerably smaller. However, for α = 5, the clustering

gain achieved with the CAVI algorithm is negative, which means that the algorithm per-

forms worse than the MMSE estimator without clustering (Scenario 1), whereas our method

consistently achieves a positive clustering gain for any α. Thus, our proposed method is

most suitable for applications where the data is spread across a larger number of clusters

(corresponding to a large concentration parameter α), and for applications that require a

high accuracy of estimation even at the cost of a higher computational complexity.

The primary limitation of our approach lies in the computational complexity of the

Gibbs sampler. This complexity can be reduced by adopting advanced sampling techniques

such as the Hogwild Parallel Gaussian Gibbs Sampler [37] or the Fast Asynchronous MCMC

Sampler [38]. Furthermore, our current model is limited in that it assumes that each object is

associated with a single latent variable and thus cannot belong to more than one cluster. In

certain applications, it would be advantageous to extend our model to accommodate objects

belonging to multiple clusters defined by different features. Such an extension, described

in [39], is constituted by a distribution that enables the construction of probabilistic models

for objects with an infinite number of binary latent variables, and that can be seamlessly

combined with priors on the latent variables’ values. This distribution is based on a Bayesian

non-parametric model known as the Indian buffet process, which is somewhat analogous to

the Chinese restaurant process considered in this thesis.
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A Proofs

A.1 Proof of (3.5)

We prove that the recursive construction of weights sequence (Ql)
∞
l=1 as presented in (3.5)

is equivalent to the definition in (3.3). Thus, in this proof, we can take (3.5) as being true,

but not (3.3). For l = 1, (3.5) states that

Q1 = V1 (A.1)

This is also stated in (3.3), and thus (3.5) is equivalent to (3.3) for l = 1.

For l ≥ 2, we use mathematical induction. We claim that the expressions stated in (3.3)

and (3.5) for l ≥ 2 are equal, i.e.,

Vl

l−1∏
l,=1

(1− Vl,) = Vl

(
1−

l−1∑
l,=1

Ql,

)
(A.2)

or, equivalently,

l−1∏
l,=1

(1− Vl,) = 1−
l−1∑
l,=1

Ql, . (A.3)

For the base case l = 2, (A.3) gives

1− V1 = 1− Q1, (A.4)

which is clearly true because of (A.1). In the induction step (l → l + 1), we assume that

(A.3) is true and wish to show that it remains true when l is replaced by l+1, i.e., we have

to show

l∏
l,=1

(1− Vl,) = 1−
l∑

l,=1

Ql, . (A.5)

The left hand side of (A.5) becomes

l∏
l,=1

(1− Vl,) = (1− Vl)
l−1∏
l,=1

(1− Vl,) . (A.6)
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Using (A.3), we obtain further

l∏
l,=1

(1− Vl,) = (1− Vl)

(
1−

l−1∑
l,=1

Ql,

)

= 1− Vl −
l−1∑
l,=1

Ql, + Vl

l−1∑
l,=1

Ql,

= 1− Vl

(
1−

l−1∑
l,=1

Ql,

)
−

l−1∑
l,=1

Ql,

(A.7)

Using (3.5), this finally becomes

l∏
l,=1

(1− Vl,) = 1− Ql −
l−1∑
l,=1

Ql,

= 1−
l∑

l,=1

Ql, , (A.8)

which is seen to be equal to the right-hand side of (A.5).

A.2 Proof of (5.160)

Let us consider N samples from a DP with concentration parameter α. We wish to derive

expression (5.160) for the probability of the cluster size ml(N), i.e.,

pml(N)(m) = P(ml(N) = m), for 1 ≤ m ≤ N. (A.9)

We recall that θn can equivalently be written using the cluster assignment variable c̃n

as θn = ϑ∗
~cn

(see (3.67)). Let s = c̃n, i.e., the sample θn belongs to the sth cluster. The

number of samples θn belonging to the sth cluster, is denoted as m̃s(N), and given by

m̃s(N) =
N∑

n=1

✶(θn = ϑ∗
s), s = 1, . . . , S(N), (A.10)

or equivalently, using the cluster assignment variables c̃n, we obtain

m̃s(N) =
N∑

n=1

✶(c̃n = s), s = 1, . . . , S(N). (A.11)
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Since the DP samples (θn)
N
n=1 are exchangeable, for simplicity, we assume s = 1, i.e., we

consider the first cluster, according to the empirical ordering of the observed clusters (see

(3.12)). Thus we want to derive an expression for the probability size P(m̃1(N) = m).

A.2.1 Recursive Construction

Consider once more the CRP analogy to seating customers in a restaurant, presented in

Section 3.3.3. We recall that each customer n is assigned to a table (cluster), i.e., C̃n = s.

The conditional pmf of the C̃n is given in the expression (3.64).

We now examine the nth customer entering the restaurant, with n−1 customers already

seated and S(n− 1) tables occupied. Using (3.64) we conclude that the customer sits at a

new table S(n− 1) + 1 with probability

P
(
c̃n = S(n− 1) + 1 | c̃1:n−1 = C̃1:n−1

)
=

α

α + n− 1
, (A.12)

or at an already occupied table, s = 1, . . . , S(n − 1), with probability proportional to the

number of customers already seated at the table,

P
(
c̃n = s | c̃1:n−1 = C̃1:n−1

)
=

∑n−1
n,=1 ✶(C̃n, = s)

α + n− 1
=

m̃s(n− 1)

α + n− 1
. (A.13)

We note that the probability of the nth customer sitting at a new table in (A.12) only

depends on n and concentration parameter α, and is independent of c̃1:n−1. Moreover, we

note that the right-hand side of (A.13) only depends on the table size m̃s(n− 1) and α, i.e.,

P
(
c̃n = s | m̃s(n− 1) = m̃s(n− 1)

)
=

m̃s(n− 1)

α + n− 1
. (A.14)

We can now calculate the joint probability of m̃1(n), and c̃n. If the customer sits at the first

table, we set c̃n = 1 and the number of customers seated at the first table (s = 1) increases

by one, i.e., m̃1(n) = m̃1(n− 1) + 1. This probability is given as

P
(
m̃1(n) = m, c̃n = 1

)
= P

(
c̃n = 1 | m̃1(n− 1) = m− 1

)
P
(
m̃1(n− 1) = m− 1

)
. (A.15)

On the other hand, if the nth customer sits at another table (s /= 1), the number of customers

seated at the first table remains m̃1(n) = m̃1(n − 1) and we set c̃n /= 1. This conditional

115



A PROOFS

probability is given as

P
(
m̃1(n) = m, c̃n /= 1

)
= P

(
c̃n /= 1 | m̃1(n− 1) = m

)
P
(
m̃1(n− 1) = m

)
. (A.16)

This means we can write a general recursion for the table size P(m̃1(n) = m), by using the

total probability theorem, i.e.,

P(m̃1(n) = m) = P
(
c̃n = 1 | m̃1(n− 1) = m− 1

)
P
(
m̃1(n− 1) = m− 1

)
+ P

(
c̃n /= 1 | m̃1(n− 1) = m

)
P
(
m̃1(n− 1) = m

)
. (A.17)

Using (A.14) and P
(
c̃n /= 1 | m̃1(n−1) = m

)
=

(
1− m

α+n−1
= α+n−1−m

α+n−1

)
in (A.17), we obtain

a recursive probability

P(m̃1(N) = m) =
m− 1

α + n− 1
P
(
m̃1(n− 1) = m− 1

)
+

α + n− 1−m

α + n− 1
P
(
m̃1(n− 1) = m

)
.

(A.18)

We also note that 1 ≤ m ≤ n, therefore we need to consider two special cases of (A.18),

specifically m = 1 and m = n. For m = 1 we obtain

P
(
m̃1(n) = 1

)
=

α + n− 2

α + n− 1
P
(
m̃1(n− 1) = 1

)
, (A.19)

and for m = n,

P
(
m̃1(n) = n

)
=

n− 1

α + n− 1
P
(
m̃1(n− 1) = n− 1

)
, (A.20)

since P
(
m̃1(n− 1) = n

)
= 0 due to the condition 1 ≤ m ≤ n.

A.2.2 Proof by Induction

We claim that the probability P
(
ml(N) = m

)
is given by

P
(
ml(N) = m

)
=

(N − 1)! αN−m

(N −m)! (α + 1)N−1
, for 1 ≤ m ≤ N. (A.21)
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We prove this claim using mathematical induction. For N = 1 we also obtain m = 1, since

1 ≤ m ≤ N , therefore

P
(
ml(1) = 1

)
=

0! α0

0! (α + 1)0
= 1. (A.22)

This is trivial, since for one sample N = 1, there exists only one cluster and the sample

must belong to this cluster. In the induction step N → N + 1, we have to prove that from

the induction assumption (A.21), it follows that

P
(
ml(N + 1) = m

)
=

N ! αN+1−m

(N + 1−m)! (α + 1)N
for 1 ≤ m ≤ N + 1. (A.23)

Since the cluster sizes m̃s(n) are exchangeable and m̃s(n) is a permuted version of ml(n),

the recursive probabilities (A.18) and (A.20) are also valid for ml(N). Using (A.18) (with

ml(N) instead of m̃1(n)), the left hand side of (A.23) becomes

P
(
ml(N + 1) = m

)
=

α +N −m

α +N
P
(
ml(N) = m

)
+

m− 1

α +N
P
(
ml(N) = m− 1

)
, (A.24)

for 1 ≤ m ≤ N and

P
(
ml(N + 1) = m

)
=

m− 1

α +N
P
(
m̃1(N) = m− 1

)
, (A.25)

for m = N + 1. Substituting (A.21) into (A.24) yields

P
(
ml(N + 1) = m

)
=

α +N −m

α +N

(N − 1)! αN−m

(N −m)! (α + 1)N−1
+

m− 1

α +N

(N − 1)! αN+1−m

(N + 1−m)! (α + 1)N−1
.

(A.26)

Now αN−m(α +N −m) = αN−m+1 and (α + 1)N−1(α +N) = (α + 1)N , so that we further

obtain

P
(
ml(N + 1) = m

)
=

(N − 1)! αN+1−m

(N −m)! (α + 1)N
+

(N − 1)! αN+1−m

(N + 1−m)! (α + 1)N
(m− 1)

=
(N − 1)! αN+1−m

(N −m+ 1)! (α + 1)N
(N + 1−m) +

(N − 1)! αN+1−m

(N + 1−m)! (α + 1)N
(m− 1)

=
(N − 1)! αN+1−m

(N −m+ 1)! (α + 1)N
(N +--------

1−m+m− 1)
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=
N ! αN+1−m

(N −m+ 1)! (α + 1)N
, (A.27)

which is seen to be equal to the right-hand side of (A.23).

Finally, for the case m = N + 1, (A.23) becomes

P
(
ml(N + 1) = N + 1

)
=

N ! α0

(0)! (α + 1)N
=

N !

(α + 1)N
. (A.28)

Substituting (A.21) and m = N + 1 into (A.25) gives

P
(
ml(N + 1) = N + 1

)
=

m− 1

α +N

(N − 1)! αN+1−m

(N + 1−m)! (α + 1)N−1

=
N

α +N

(N − 1)! α0

(0)! (α + 1)N−1

=
N !

(α + 1)N
, (A.29)

which is seen to be equal to (A.28).

A.2.3 Further Considerations

To prepare the ground for a general case n ∈ N, we first consider the cases n = 1, 2, 3, 4.

n = 1

Consider n = 1, i.e., a customer is seated in an empty restaurant and therefore occupies

one table. Evidently, then, m̃1(1) = 1 and

P
(
m̃1(1) = 1

)
= 1.

n = 2

Let a new customer enter the restaurant so that n = 2. The new customer either sits at

a new table and the first table remains occupied by one customer (m̃1(2) = 1), i.e.,

P
(
m̃1(2) = 1

)
=

α

α + 1
, (A.30)

or the new customer joins the first table, i.e., using (A.18) with (m̃1(2− 1) = 1) we have

P
(
m̃1(2) = 2

)
=

1

α + 1
, (A.31)
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n = 1

n = 2

n = 3

n = 4

...

α
α+1

1
α+1

α+1
α+2

1
α+2

α
α+2

2
α+2

α+2
α+3

1
α+3

α+1
α+3

2
α+3

α+1
α+3

2
α+3

α
α+3

3
α+3

Figure 14: Probability tree diagram describing the events and probabilities related to the
number of customers m1(n) at the first table (s = 1). Each customer sitting at the first
table is represented by a gray square.

using P
(
m̃1(1) = 1

)
= 1 and P

(
m̃1(1) = 2

)
= 0. The probability of the second customer

n = 2 joining the first table is given by P
(
c̃2 = 1 | m̃1(1) = 1

)
= 1

α+1
, whereas the probability

of not joining is given by P
(
c̃2 /= 1 | m̃1(1) = 1

)
= α

α+1
. These exclusive events are depicted

in the probability tree diagram in Figure 14.

n = 3

For n = 3, the first table can remain occupied by one customer, which occurs when the

third customer does not sit down at the first table, i.e., P
(
c̃3 /= 1 | m̃1(2) = 1

)
and only one

customer is seated at the first table, i.e., P
(
m̃1(2) = 1

)
, as can be seen on the very left-hand

side of the Figure 14. Using (A.31), the probability P
(
m̃1(3) = 1

)
is therefore given by

P
(
m̃1(3) = 1

)
= P

(
c̃3 /= 1 | m̃1(2) = 1

)
P
(
m̃1(2) = 1

)
=

α + 1

α + 2

α

α + 1

=
α

α + 2
. (A.32)

Secondly, the first table can be occupied by two customers m̃1(3) = 2. This happens

when the third customer joins the first table with probability equal to P
(
c̃3 = 1 | m̃1(2) = 1

)
and the first table is occupied by only one customer with probability P

(
m̃1(2) = 1

)
, or the
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first table is already occupied by two customers P
(
m̃1(2) = 2) and the third customer one

does not join the first table P
(
c̃3 /= 1 | m̃1(2) = 2

)
. This means that

P
(
m̃1(3) = 2

)
= P

(
c̃3 = 1 | m̃1(2) = 1

)
P
(
m̃1(2) = 1

)
+ P

(
c̃3 /= 1 | m̃1(2) = 2

)
P
(
m̃1(2) = 2

)
(A.33)

As can be read from Figure 14, the probability of this event is given by

P
(
m̃1(3) = 2

)
=

1

α + 2

α

α + 1
+

α

α + 2

1

α + 1
=

2α

(α + 2)(α + 1)
, (A.34)

where we used (A.30) and (A.31).

Lastly, all three customers can be seated at the first table, i.e., m̃1(3) = 3. This event

only occurs when the third customer joins the first table P
(
c̃3 = 1 | m̃1(2) = 2

)
that is

already occupied by two customers P
(
m̃1(2) = 2

)
, i.e., using (A.31) we obtain

P
(
m̃1(3) = 3

)
= P

(
c̃3 = 1 | m̃1(2) = 2

)
P
(
m̃1(2) = 2

)
=

2

α + 2

1

α + 1

=
2

(α + 2)(α + 1)
. (A.35)

n = 4

From Figure 14 we can see that for n = 4, there is only one path leading to m̃1(4) = 1 and

m̃1(4) = 4; however, there are three paths leading to m̃1(4) = 2 and m̃1(4) = 3. In order not

to calculate each path separately, we can use the general recursion (A.18), together with the

previous results for n = 3 to calculate the probabilities for n = 4. First, for P
(
m̃1(4) = 1

)
,

we insert (A.32) into (A.19) (for n = 4 and m = 1) and obtain

P
(
m̃1(4) = 1

)
=

α + 2

α + 3
P
(
m̃1(3) = 1

)
=

α + 2

α + 3

α + 1

α + 2

α

α + 1

=
α

α + 3
. (A.36)

Similarly, in order to obtain an expression for P(m̃1(4) = 2), we insert (A.32) and (A.34)
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into (A.18) (for N = 4 and m = 2), i.e.,

P
(
m̃1(4) = 2

)
=

α + 1

α + 3
P(m̃1(3) = 2) +

1

α + 3
P
(
m̃1(3) = 1

)
=

α + 1

α + 3

2α

(α + 2)(α + 1)
+

1

α + 3

α

α + 2

=
3α(α + 1)

(α + 3)(α + 2)(α + 1)
, (A.37)

and for P
(
m̃1(4) = 3

)
, we insert (A.34) and (A.35) into (A.18) (for n = 4 and m = 3), i.e.,

P
(
m̃1(4) = 3

)
=

α

α + 3
P
(
m̃1(3) = 3

)
+

2

α + 3
P
(
m̃1(3) = 2

)
=

α

α + 3

2

(α + 2)(α + 1)
+

2

α + 3

2α

(α + 2)(α + 1)

=
6α

(α + 3)(α + 2)(α + 1)
. (A.38)

Lastly, to obtain P
(
m̃1(4) = 4

)
, we insert (A.35) into (A.20) (for n = 4 and m = 4), i.e.,

P
(
m̃1(4) = 4

)
=

3

α + 3
P
(
m̃1(3) = 3

)
=

3

α + 3

2

α + 2

1

α + 1

=
6

(α + 3)(α + 2)(α + 1)
. (A.39)

General n ∈ N

We now consider n ∈ N customer entering the restaurant. From Figure 14 we conclude

that only the path on the left edge leads to m̃1(n) = 1. This means that this event occurs

only if no other customer joins the first table, i.e.,

P
(
m̃1(n) = 1

)
= P

(
c̃2 /= 1 | m̃1(1) = 1

)
P
(
m̃1(1) = 1

)
P
(
c̃3 /= 1 | m̃1(2) = 1

)
P
(
m̃1(2) = 1

) · · ·
× P

(
c̃n /= 1 | m̃1(n− 1) = 1

)
P
(
m̃1(n− 1) = 1

)
, (A.40)

which as can be seen on the left-hand side of Figure 14 is given by

P
(
m̃1(n) = 1

)
=

α

α + 1

α + 1

α + 2
· · · α + n− 2

α + n− 1
=

αn−1

(α + 1)n−1
, (A.41)

with αm = α(α+ 1) · · · (α+m− 1) (α0 = 1 and α1 = α), denoting the rising factorial, also
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called the Pochhammer symbol. On the other hand, the probability P
(
m̃1(n) = n

)
of the

first table being occupied by n customers, i.e., all customers that entered the restaurant are

seated at the first table is given by

P
(
m̃1(n) =

)
= P

(
c̃2 = 1 | m̃1(1) = 1

)
P
(
m̃1(1) = 1

)
P
(
c̃3 = 1 | m̃1(2) = 2

)
P
(
m̃1(2) = 2

) · · ·
× P

(
c̃n = 1 | m̃1(n− 1) = n− 1

)
P
(
m̃1(n− 1) = n− 1

)
, (A.42)

which as can be seen on the right-hand side of Figure 14,i.e.,

P
(
m̃1(n) = n

)
=

1

α + 1

2

α + 2
· · · n− 1

α + n− 1
=

(n− 1)!

(α + 1)n−1
. (A.43)

We can now formulate a general expression for P
(
m̃1(n) = m

)
for 1 ≤ m ≤ n, m ∈ N. From

Figure 14 we note that there are
(
n−1
m−1

)
possible paths leading to event m̃1(n) = m. Since

the DP samples (θn,)nn,=1 are exchangeable, the order in which the customers sit down at

the first table does not affect the probability P
(
m̃1(n) = m

)
and each of the paths leading

to the event m̃1(n) = m is equally likely. Let A denote a scenario, where m customers join

the first table, and subsequently, n − m customers join another table. The probability of

this scenario is given by

P
(
m̃1(n) = m | A)

= P
(
c̃2 = 1 | m̃1(1) = 1

)
P
(
m̃1(1) = 1

) · · ·P(c̃m = 1 | m̃1(m− 1) = m− 1
)

× P
(
m̃1(m− 1) = m− 1

)
P
(
c̃m+1 /= 1 | m̃1(m) = m

)
P
(
m̃1(m) = m

) · · ·
× P

(
c̃n /= 1 | m̃1(n− 1) = m

)
P
(
m̃1(n− 1) = m

)
=

1

α + 1

2

α + 2
· · · m− 2

α +m− 2

m− 1

α +m− 1

α

α +m

α + 1

α +m+ 1
· · ·

× α + n−m− 1

α + n− 1

=
αn−m(m− 1)!

(α + 1)n−1
. (A.44)

The probability P
(
m̃1(n) = m

)
is finally obtained by considering the number of paths leading

to the event m̃1(n) = m, given by
(
n−1
m−1

)
and the probability of one path, given in (A.44),

i.e.,

P
(
m̃1(n) = m

)
=

(
n− 1

m− 1

)
αn−m(m− 1)!

(α + 1)n−1
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=
(n− 1)!

-----(m− 1)!(n−m)!

αn−m
-----(m− 1)!

(α + 1)n−1

=
(n− 1)!

(n−m)!

αn−m

(α + 1)n−1
. (A.45)

In [5, Proposition 4.11], it was shown that the cluster sizes m̃s(n) are exchangeable and the

joint pmf is given by

p ~m1:S(n)(n)(m̃1:S(n)(n)) =
αS(n)Γ(α)

∏S(n)
s=1 Γ(m̃s(n))

Γ(α + n)
. (A.46)

We note that the joint pmf (A.46) is a product in m̃s(n) and is invariant to permutations

(see (3.19)). Due to the exchangeability of the cluster sizes m̃s(n), we now conclude that

the marginal distribution of any cluster size m̃s(n) is given by

p~ms(n)(m) =
(n− 1)!

(n−m)!

αn−m

(α + 1)n−1
, for s = 1, . . . , S(n), and for m = 1, . . . n. (A.47)

Since the cluster size m̃s(n) is a permuted version of ml(n) (see (3.48)), the pmf pml(N)(m)

is finally obtained for n = N samples as

pml(N)(m) =
(N − 1)!

(N −m)!

αN−m

(α + 1)N−1
, m = 1, . . . N. (A.48)

for any l ∈ C(N) and 1 ≤ m ≤ N .
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B Matrix Inversion Identities

We consider two positive definite matrices ∑A and ∑B. Since positive definiteness implies

nonsingularity, ∑−1
A and ∑−1

B exist, and we have ∑−1
A ∑A = I and ∑−1

B ∑B = I. Therefore,

we obtain

(
∑−1

A +∑−1
B

)−1
=

(
∑−1

A ∑B∑
−1
B +∑−1

A ∑A∑
−1
B

)−1

=
(
∑−1

A (∑B +∑A)∑
−1
B

)−1

= ∑B (∑A +∑B)
−1 ∑A. (B.1)

Equivalently, since the addition of matrices is commutative, we also have

(
∑−1

A +∑−1
B

)−1
=

(
∑−1

B +∑−1
A

)−1
= ∑A (∑B +∑A)

−1 ∑B, (B.2)

where (B.1) was used with ∑A and ∑B interchanged. Combining (B.1) and (B.2) gives

∑B (∑A +∑B)
−1 ∑A = ∑A (∑A +∑B)

−1 ∑B. (B.3)

Furthermore, we have

∑B(∑A +∑B)
−1∑A = ∑A −∑A +∑B(∑A +∑B)

−1∑A

= ∑A − (∑A +∑B)(∑A +∑B)
−1∑A +∑B(∑A +∑B)

−1∑A

= ∑A − (∑A +∑B −∑B)(∑A +∑B)
−1∑A

= ∑A −∑A(∑A +∑B)
−1∑A. (B.4)
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C Product of Gaussian pdfs

We consider a Gaussian prior,

fx(x) = N (x;μx,∑x), (C.1)

and a Gaussian likelihood function

fyn | x(yn |x) = N (yn;Ax+Bμyn ,∑y), for n = 1, . . . , N, (C.2)

with square D×D matrices A and B. Let y1:N = (yT1 , . . . , y
T
N)

T denote the stacked vector of

measurements. We assume the measurements to be independent and identically distributed

(i.i.d.), using (C.2) we have

fy1:N | x(y1:N |x) =
N∏

n=1

N (yn;Ax+Bμyn ,∑y). (C.3)

In what follows we derive an expression for the joint pdf of the measurements y1:N and the

parameter of interest x, i.e., fx,y1:N (x,y1:N) as well as the marginal pdf fy1:N (y1:N).

C.1 Joint pdf

fx,y1:N (x,y1:N) = fx(x)fy1:N | x(y1:N |x) (C.4)

= N (x;μx,∑x)
N∏

n=1

N (yn;Ax+Bμyn ,∑y). (C.5)

The expression in (C.5) is recognized to be a product of Gaussian pdfs, which is another

Gaussian [18, 7.14]. We will now calculate this expression. Using the precision matrices

Λyy = ∑−1
y and Λxx = ∑−1

x , (C.5) can be written as

fx(x)fy1:N | x(y1:N |x)

∝ exp
(
−1

2
(x−μx)

TΛxx(x−μx)

) N∏
n=1

exp
(
−1

2
(yn−Ax−Bμyn)

TΛyy(yn−Ax−Bμyn)

)

= exp

(
−1

2

(
(x− μx)

TΛxx(x− μx) +
N∑

n=1

(yn −Ax−Bμyn)
TΛyy(yn −Ax−Bμyn)

))
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= exp
(
−1

2
E

)
, (C.6)

with

E = (x− μx)
TΛxx(x− μx) +

N∑
n=1

(yn −Ax−Bμyn)
TΛyy(yn −Ax−Bμyn). (C.7)

We claim that E can be written as a quadratic form (see (2.31) and [20, Eq. 2.70]), i.e.,

Ẽ =
( N∑

n=1

(yn − μ̃yn)
TΛ̃yy(yn − μ̃yn)

)
+

N∑
n=1

(yn − μ̃yn)
TΛ̃yx(x− μ̃x)

+ (x− μ̃x)
TΛ̃xy

N∑
n=1

(yn − μ̃yn) + (x− μ̃x)
TΛ̃xx(x− μ̃x), (C.8)

with unknown means μ̃yn and μ̃x, precision matrices Λ̃xx and Λ̃yy as well as unknown

cross-precision matrices Λ̃xy and Λ̃yx.

Completing the Square

By expanding the expression (C.7) into a quadratic form we obtain

E =
( N∑

n=1

(yn −Bμyn
)TΛyy(yn −Bμyn

)
)
−

N∑
n=1

(yn −Bμyn
)TΛyyAx+ μT

xΛxxμx

− xTATΛyy

N∑
n=1

(yn −Bμyn
) +NxTATΛyyAx+ xTΛxxx− μT

xΛxxx− xTΛxxμx

=
( N∑
n=1

(yn−Bμyn
)TΛyy(yn−Bμyn

)
)
−

N∑
n=1

(yn−Bμyn
)T ΛyyAx−xTATΛyy

N∑
n=1

(yn−Bμyn
)

+ xT(Λxx +NATΛyyA)x− μT
x(Λxx +NATΛyyA)x+ μT

xNATΛyyAx− xT(Λxx

+NATΛyyA)μx + xTNATΛyyAμx + μT
x(Λxx +NATΛyyA)μx − μT

xNATΛyyAμx

=
( N∑

n=1

(yn−Bμyn
−Aμx)

TΛyy(yn−Bμyn
−Aμx)

)
−

N∑
n=1

(yn−Bμyn
−Aμx)

TΛyyA(x−μx)

− (x−μx)
TATΛyy

N∑
n=1

(yn−Bμyn
−Aμx) + (x−μx)

T(Λxx +NATΛyyA)(x−μx).

(C.9)
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Comparing Coefficients

By comparing the coefficients in (C.8) with (C.9), so that E
!
= Ẽ we obtain

μ̃yn = Bμyn +Aμx, (C.10)

and

μ̃x = μx. (C.11)

For the precision matrices, we obtain

Λ̃yy = Λyy, (C.12)

and

Λ̃xx = Λxx +NATΛyyA. (C.13)

For the cross-precision matrices, we obtain

Λ̃yx = −ΛyyA, (C.14)

and

Λ̃xy = −ATΛyy. (C.15)

Next, using (C.10) we define the vector of the means

μ̃y1:N
= (μ̃T

y1
, . . . , μ̃yN

)T, (C.16)

so we can write (C.8) as

Ẽ = (y1:N − μ̃y1:N
)TΛ̂yy(y1:N − μ̃y1:N

) + (y1:N − μ̃y1:N
)TΛ̂yx(x− μ̃x)

+ (x− μ̃x)
TΛ̂xy(y1:N − μ̃y1:N

) + (x− μ̃x)
TΛ̂xx(x− μ̃x), (C.17)

with (see (C.12))

Λ̂yy = IN ⊗ Λ̃yy = IN ⊗Λyy, (C.18)

and (see (C.13))

Λ̂xx = Λ̃xx = Λxx +NATΛyyA. (C.19)
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Furthermore, using a all-ones vector 1N of size N × 1 , we obtain (see (C.14))

Λ̂yx = 1N ⊗ Λ̃yx = −1N ⊗ΛyyA, (C.20)

and (see (C.15))

Λ̂xy = 1T
N ⊗ Λ̃xy = −1T

N ⊗ATΛyy. (C.21)

Finally, since Ẽ = E, we can write (C.6) and thus also the right hand side of (C.5) as a

joint Gaussian distribution in terms of y1:N and x, i.e.,

N (x;μx,∑x)
N∏

n=1

N (yn;Ax+Bμyn ,∑y) = N
((y1:N

x

) ;

(μ̃y1:N

μ̃x

) ,

(Λ̂yy Λ̂yx

Λ̂xy Λ̂xx

)−1) ,

(C.22)

or equivalently, (∑̂yy ∑̂yx

∑̂xy ∑̂xx

) =

(Λ̂yy Λ̂yx

Λ̂xy Λ̂xx

)−1

. (C.23)

Using [40, Eq. 2.2], the joint-covariance matrix ∑̂yy is given by

∑̂yy = Λ̂−1
yy + Λ̂−1

yyΛ̂yx

(
Λ̂xx − Λ̂xyΛ̂

−1
yyΛ̂yx

)−1

Λ̂xyΛ̂
−1
yy. (C.24)

Inserting (C.18)-(C.21) into (C.24) we obtain

∑̂yy = (IN ⊗Λyy)
−1 + (IN ⊗Λyy)

−1 (−1N ⊗ΛyyA)(
Λxx −NATΛyyA− (

1T
N ⊗ATΛyy

)
(IN ⊗Λyy)

−1 (1N ⊗ΛyyA)
)−1

(−1T
N ⊗ATΛyy

)
(IN ⊗Λyy)

−1

= IN ⊗Λ−1
yy + 1N1T

N ⊗AΛ−1
xxA

T

= IN ⊗∑y + 1N1T
N ⊗A∑xA

T, (C.25)

where in the last step Λ−1
yy = ∑y and Λ−1

xx = ∑x was used (see (C.5)). Similar to (C.24),

the covariance matrix ∑̂xx is given by [40, Eq. 2.2]

∑̂xx =
(
Λ̂xx − Λ̂xyΛ̂

−1
yyΛ̂yx

)−1

. (C.26)
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Inserting (C.18)-(C.21) into (C.26) finally gives

∑̂xx =
(
Λxx +NATΛyyA− (−1T

N ⊗ATΛyy)(IN ⊗Λyy)
−1(−1N ⊗ΛyyA)

)−1

=
(
Λxx +NATΛyyA−NATΛyyA

)−1

= ∑x, (C.27)

where in the last step Λ−1
xx = ∑x was used (see (C.5)). Furthermore, we have

∑̂xy = −
(
Λ̂xx − Λ̂xyΛ̂

−1
yyΛ̂yx

)−1

Λ̂xyΛ̂
−1
yy, (C.28)

and

∑̂yx = −Λ̂−1
yyΛ̂yx

(
Λ̂xx − Λ̂xyΛ̂

−1
yyΛ̂yx

)−1

. (C.29)

By inserting (C.18), (C.21) and (C.26) into (C.28) we obtain

∑̂xy = −∑̂xx

(−1T
N ⊗ATΛyy

) (
IN ⊗Λ−1

yy

)
= ∑x

(
1T
N ⊗AT

)
, (C.30)

where in the last step (C.27) was used. Similarly, inserting (C.18), (C.20) and (C.26) into

(C.29) yields

∑̂yx = − (
IN ⊗Λ−1

yy

)
(−1N ⊗ΛyyA) ∑̂xx

= (1N ⊗A)∑x. (C.31)

Lastly, we can write (C.4) using (C.22) and (C.23) as a joint Gaussian, i.e.,

fy1:N ,x(y1:N ,x) = N
((y1:N

x

) ;

(μ̃y1:N

μ̃x

) ,

(∑̂yy ∑̂yx

∑̂xy ∑̂xx

)) , (C.32)

with means μ̃y1:N
and μ̃x given in (C.16) and (C.11) respectively. The components of the

partitioned covariance matrix are given in (C.25), (C.27), (C.30) and (C.31).
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C.2 Marginal pdf

We are now interested in the marginal distribution, given by

fy1:N (y1:N) =

∫
x

fx,y1:N (x,y1:N)dx (C.33)

=

∫
x

fx(x)fy1:N | x(y1:N |x)dx (C.34)

=

∫
x

N (x;μx,∑x)
N∏

n=1

N (yn;Ax+Bμyn ,∑y)dx. (C.35)

Using (C.32) and [20, 2.98], the marginal pdf fy1:N (y1:N) is obtained as

fy1:N (y1:N) = N
(
y1:N ; μ̃y1:N

, ∑̂yy

)
, (C.36)

with mean μ̃y1:N
(see (C.16) and (C.10))

μ̃y1:N
=

(���
Bμy1 +Aμx

...

BμyN
+Aμx,

)��� (C.37)

and covariance matrix ∑̂yy (see (C.25))

∑̂yy =

(������
∑y +A∑xA

T A∑xA
T . . . A∑xA

T

A∑xA
T ∑y +A∑xA

T . . . A∑xA
T

... . . . . . . ...

A∑xA
T . . . A∑xA

T ∑y +A∑xA
T

)������ . (C.38)
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