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Abstract
For an economic design of electric vehicles, the rated continuous power of the motor is
selected according to the typical power requirements. Temporarily allowing the power to
exceed the continuous power rating enables to use smaller, cheaper motors with higher
utilization under the condition that active thermal power management is used to prevent
thermal damage. The present diploma thesis aims at developing a thermal protection
algorithm for a permanent magnet synchronous motor used as main drive of an electric
vehicle. To take better advantage of the thermal limits, a model-based approach is used.
For this purpose, the electrical and thermal characteristics of the motor are modeled. Using
model predictive control (MPC), a derating algorithm is developed that systematically
considers temperature limits and aging of motor windings at elevated temperatures. It is
shown that the developed approach can increase the available motor torque compared
to static derating strategies currently used in electric vehicles. The functionality and
performance of the developed derating strategy is evaluated using simulation studies.
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Kurzzusammenfassung
Für eine wirtschaftliche Entwicklung von Elektrofahrzeugen wird die Motornennleistung
entsprechend der typischen Anforderungen an das Fahrzeug gewählt. Zeitlich begrenzt
wird eine Spitzenleistung über der Nennleistung zugelassen, wodurch kleinere, billigere
Motoren verbaut werden können. Voraussetzung dafür ist jedoch ein aktives thermisches
Management, um Schäden am Motor zu verhindern. In dieser Diplomarbeit soll ein
thermischer Schutzalgorithmus für eine Permanentmagnetsynchronmaschine, welche als
Hauptantrieb eines Elektrofahrzeugs dient, entwickelt werden. Um die thermischen
Grenzen besser auszunutzen, wird dafür ein modellbasierter Ansatz verwendet. Dafür
werden die elektrischen und thermischen Charakteristiken des Motors modelliert. Es wird
ein Derating-Algorithmus entwickelt, der eine modellprädiktive Regelung (MPC) nutzt und
damit systematisch die Temperaturgrenzen und die Alterung bei erhöhten Temperaturen
berücksichtigt. In der Arbeit wird gezeigt, dass der entwickelte Algorithmus das zur
Verfügung stehende Motordrehmoment, im Vergleich zu statischen Derating-Verfahren,
wie sie in aktuellen Elektrofahrzeugen verwendet werden, erhöhen kann. Die Funktions-
und Leistungsfähigkeit der entwickelten Derating-Strategie wird in Simulationsstudien
untersucht.
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1 Introduction

1.1 Motivation
In the last decade, the share of battery electric vehicles (BEV) in the global automotive
market significantly increased due to higher availability, improved battery capacities
enabling longer ranges, and climate goals that mandate a reduction of internal combustion
engine (ICE) vehicles [1]. This raised the interest in the development of electric powertrains,
including better models and controllers, to increase efficiency and lower costs.

BEVs can be equipped with different electric motor types, of which permanent magnet
synchronous motors (PMSM) and induction motors (IM) are the most prevalent [2].
Typically, a voltage source inverter (VSI) uses the battery voltage to drive the motor
currents according to the motor controller. In the motor, the currents generate a mechanical
torque through electromagnetic forces. Additionally, there are undesired losses that heat
the vehicle components including the battery, power electronics, and the PMSM.

All components have to be designed to withstand the resulting temperatures for a
specified lifetime. To improve utilization, it is desirable to use smaller motors with a
lower continuous power rating. This rating can be exceeded for limited periods of time,
which can temporarily increase the temperatures to potentially dangerous levels and thus
cause permanent damage or accelerated aging. Therefore, during operation above the
continuous power, a thermal monitoring and protection strategy (derating) has to be used,
to prevent excessive temperatures. The derating controller has two main goals. The first,
safety-relevant, goal is to protect the motor from exceeding the temperature limits by
restricting the available torque. The second goal is to provide enough torque to enable
the expected driving performance, especially for acceleration or overtaking maneuvers.
A compromise that unites these contradictory goals takes advantage of the typical load
profile of motors in vehicles. Most of the time, when driving on roads, the required power
is below the continuous power rating (e. g. for keeping a uniform speed). Driving situations
for which power above the continuous power rating is required are limited in time, (e. g.
accelerating to the desired cruise speed). Using the ability to temporarily exceed the
continuous power rating of the motor, a compromise between the two goals can be found.

In this thesis, a model-based thermal protection technique for a PMSM is developed.

1.2 Literature Review
An overview of important derating and temperature monitoring concepts as well as existing
thermal models is given in this section.
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Driving Cycles

Electric vehicles operate in a wide range of operating conditions, including high accelera-
tions after a stop or during overtaking maneuvers, repeated acceleration and deceleration
(e. g. in city traffic), and intervals with low acceleration [3]. These typical drive cycles are
considered in the design of electric vehicles by using smaller, cheaper motors that can be
temporarily overloaded (operate above their continuous power rating) to achieve higher
torque for these maneuvers for a limited time. However, prolonged operation above the
continuous power rating causes the motor temperatures to rise, which can lead to damage
or accelerate the aging of motor components when thermal limits are exceeded.

Thermal Limits

For PMSMs, the two main components affected by high temperatures are the winding
insulation and the permanent magnets. The maximum temperature the insulation can
withstand depends on its material properties and is classified according to IEC 60085 [4].
Higher temperatures accelerate the deterioration of the insulation. Its temperature-
dependent lifetime can be predicted according to an Arrhenius model [5]. For the
permanent magnets, irreversible demagnetization can occur when high temperatures are
combined with strong demagnetizing fields. When this occurs, the residual flux density
of the magnet is decreased, which reduces the efficiency of the motor and its ability to
generate torque [6].

Derating Strategies

To ensure safe operation, the motor temperature is monitored and thermal derating is
applied when necessary. Thermal derating means that power and therefore torque are
reduced in order to stay within temperature limits. When using derating, there is a
compromise between different goals. On the one hand, the motor temperatures have to
stay low enough to ensure a sufficiently high motor lifespan and prevent accelerated aging
of the winding insulation and demagnetization of the permanent magnets. On the other
hand, the power and torque demanded by the driver should be followed closely to provide
good driving responsiveness.

The state of the art in production vehicles is to use static derating strategies, which
reduce the available torque according to a static relationship above a threshold temper-
ature [7]. This method is an improvement over suddenly shutting off the motor when
a temperature limit is reached but often results in conservative behavior and power
reductions noticeable to the driver [7].

To avoid these downsides, other, more sophisticated derating strategies were proposed
and investigated. In [8], Lemmens et al. integrate a derating algorithm into the current
setpoint calculation of a PMSM. Their thermal management strategy monitors the
temperature of the stator windings as well as the power electronics, including the insulated-
gate bipolar transistors (IGBTs) and freewheeling diodes. The strategy estimates the
maximum allowed power losses to keep the temperature within limits. This estimation
uses a static equation that contains two terms. The first term is proportional to the
difference of the temperature to its limit. The second term contains the permitted power
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losses for steady-state operation at a constant temperature. The current limit in the
setpoint calculation is then derived from the estimated maximum power loss. A potential
drawback is that only the losses and resulting temperatures in the stator windings are
considered. Other losses, e. g. due to eddy currents, and the rotor temperatures are not
considered.

Additionally, the dynamic thermal behavior of the motor can be considered to improve
performance. In [9], Calzo et al. use a PI controller to limit the available current for
protecting the PMSM from high temperatures. The controller uses the difference between
the motor temperature and a temperature threshold, above which derating should start, as
input. The controller features an anti-windup strategy and outputs a factor, in the range
[0, 1], that limits the torque-producing motor current. The described approach additionally
protects the power electronics from high temperatures. The current modulation technique
and switching frequency are changed using a hysteresis controller. In the measured results,
an oscillation of the temperature is observable, however, the authors do not explain if this
is due to the PI controller or the hysteresis.

Model predictive control (MPC), also known as receding horizon control (RHC), allows
a systematic consideration of the model and the constraints. Grüne and Pannek [10]
cover the topic of MPC in detail. MPC is a model-based control method that solves an
optimization problem, consisting of a cost function and constraints that model the system
dynamics and limits of the state and input, to find the optimal system inputs, satisfying
the constraints.

In [11], Wallscheid and Böcker use MPC-based derating under the assumption that
the future course of the track is known. The cost function contains the time required to
finish the track as well as the amount of mechanical braking, thus improving efficiency
by using more electrical recuperation. A similar approach, for real-time operation in
a vehicle, is implemented in [12] by Winkler et al.. This approach improves lap times
as well as energy efficiency compared to a static derating strategy. An MPC for speed
control is used, for which the cost function contains the tracking error in terms of a
track-position-dependent desired speed. In both papers [11] and [12], a one-dimensional
mechanical vehicle model for the position and velocity is used, the temperature limits are
enforced through optimization constraints, and knowledge of the complete future track
is assumed. However, in real driving situations, the future course and desired speed are
rarely known to the vehicle controller. An approach without future track knowledge by
Sun et al. is detailed in [13]. Because no information about the upcoming desired velocity
is available, the future motor speed is assumed constant in the prediction horizon. Similar
to the approach by Lemmens et al. [8], the maximum permissible copper losses satisfying
the constraints are calculated in [13]. This calculation is performed using a linear MPC
with a cost function that minimizes the difference of the motor temperature to its limit.
The resulting maximum losses are then used to determine the motor current and torque
limits. As in the methods by Lemmens et al. [8], a downside of this approach is that only
the copper losses are considered. There is no clear way how other effects, such as eddy
losses, can be incorporated into this approach.
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Thermal Monitoring

For thermal protection methods, knowledge of the temperatures in the PMSM is usually
necessary. Wallscheid [14] gives an overview of how the thermal state of electric motors can
be determined: Placing temperature sensors within the motor is often not economically
viable. Therefore, the temperatures have to be monitored using different methods, which
can be categorized into direct and indirect methods. Indirect methods use temperature-
sensitive electrical quantities to make conclusions about the motor temperatures. However,
indirect methods do not allow monitoring temperatures at specific locations but only
average component temperatures [15]. Direct methods use a thermal model of the motor
based on the heat equation. In the papers [11], [12], and [13], which use MPC for derating,
the thermal dynamics of the PMSM are modeled using lumped-parameter thermal networks
(LPTNs) with two to four nodes. LPTNs represent the motor as a thermal equivalent
circuit consisting of thermal resistors, capacitors, voltage sources, and current sources.
Another approach is to use model-order reduction of a high-dimensional finite volume
model of the motor to make it suitable for real-time use [15]. This thesis uses a thermal
model based on the reduced-order model presented by Baumann et al. [15].

Road Parameter Estimation and Prediction

To substitute the unavailable knowledge about the future track and desired speed required
by the MPC-based derating approaches in [11] and [12], a prediction of these future
quantities can be used. This prediction is based on the current vehicle state, desired
torque, and road parameters. Many road parameters cannot be directly measured and
have to be estimated from other measurements. Extensive investigations of parameter
estimation for vehicles exist in the literature. Road slope estimation based on a longitudinal
vehicle model is implemented in [16] and using a Kalman Filter (KF) in [17]. A combined
road slope and vehicle mass estimation approach is presented in [18], using an adaptive
observer-based approach. In [19], an Extended Kalman Filter (EKF) for estimating road
slope and vehicle mass is combined with active modification of the motor torque, which
can improve parameter identifiability.

Based on the estimated current parameters, the prediction provides the future quantities
required by the MPC-based derating approaches. It bridges the gap between the approach
in [13] which assumes no future knowledge and assumes the future quantities to be constant
and the approaches in [11] and [12] which require full knowledge of the future road slope
and desired speed.

1.3 Objectives
The aim of this thesis is to develop an algorithm for thermal protection of an interior
PMSM of a BEV for better utilization of the thermal limits of the motor compared to
static derating strategies. In contrast to the MPC-based derating algorithms presented in
[11] and [12], it should apply to situations where the future course of the track and actions
of the driver are not exactly known. However, the algorithm may internally predict the
track and the driver’s actions. This should be superior to the naive approach, used in [13],
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which assumes them to be constant. For this prediction, only sensors that are typically
available in standard BEVs should be used.

In detail, the following topics are addressed:

• Model the vehicle motion according to models available in the literature. Model the
temperature of the motor based on an existing thermal model [15].

• Develop and implement an MPC-based derating algorithm to prevent thermal
overload of the motor.

• For the MPC, formulate the optimization problem appropriate for thermal protection
of the PMSM in the vehicle.

• In the MPC, incorporate the cumulative thermal aging of the stator windings (cf. [5])
into the derating decision.

• Validate the designed algorithm using simulation studies and compare it to state-of-
the-art thermal protection strategies.

1.4 Structure
The remaining thesis has the following structure:

Chapter 2 describes the mathematical model of the vehicle, electrical and thermal parts
of the PMSM, and cooling. It also contains the parameter and state estimation method
used and explains the thermal aging model to predict the temperature-dependent lifetime
of the stator windings. Additionally, the model used in the MPC optimization is explained,
which is based on the full mathematical model and includes some reductions in favor of
real-time execution.

In Chapter 3, the MPC-based derating algorithm is described and the underlying
optimization problem is formulated and discussed. The derating algorithm allows for
different approaches to predict the torque and speed in the prediction horizon. A method
to predict the future quantities for motor speed and desired torque based on available
sensor data and an observer for the road slope is presented. Additionally, the naive
assumption of constant quantities and the unrealistic assumption of exactly known future
trajectories are implemented for comparison.

Chapter 4 presents simulation results of the developed derating algorithms and compares
them to the results of existing derating strategies. Based on the simulation of various
drive cycles, this includes a validation that the temperature limits are satisfied and a
quantitative comparison of the quality of the derating strategies. Moreover, the effects of
the different prediction approaches used in the MPC are compared.

Finally, Chapter 5 summarizes the main findings and gives an outlook on possible
extensions of the work.



2 Modeling
In this chapter, the mathematical model used for the controller and the simulation is
presented. The focus lies on accurately modeling the thermal behavior, which is necessary
for a well-performing, model-based derating algorithm.

The model consists of several parts. The thermal model (Section 2.4) describes the
temperature field in the motor based on the heat equation. Power losses and temperatures
of cooling fluids serve as inputs of this model. Section 2.5 explains the temperature limits
and thermal aging of the motor windings. The models for the water and oil cooling
circuits, the heat exchanger and the oil sump (Section 2.3) are needed to calculate the
temperatures of the cooling water and oil. The electrical model of the PMSM (Section 2.1)
is used for calculating the setpoint currents of the motor for a desired torque. The loss
model (Section 2.2) uses the calculated currents to determine the electromagnetic losses
of the PMSM. Finally, the mechanical model (Section 2.6) ties the internal motor speed
and torque to the vehicle speed and acceleration. The electrical-, loss-, cooling- and
thermal-models are based on [15].

2.1 Electrical Model
PMSMs are often applied in industry as well as electric vehicles due to their high efficiency
and power density. In this work, a three-phase interior PMSM with the specification
outlined in Table 2.1 is considered.

Parameter Value
continuous power rating ∼100 kW
maximum motor speed nlim 16500 rpm
number of pole pairs p 4

Table 2.1: Electrical parameters of the PMSM.

The nonlinear model of the PMSM is represented in the rotor-fixed d/q reference frame
[20] and is given by

Ψ̇s = −Rs is + Ωe Ψs + us (2.1)

with the current is, flux linkage Ψs, and voltage us each represented as xs =
�
xd xq

	T
and

the antisymmetric matrix Ωe = ωe

�
0 1

−1 0



. The electrical angular velocity is ωe = 2π n p

with the mechanical speed n of the rotor and the number p of pole pairs. The electrical

6
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resistance of the stator coils is modeled in the form

Rs = Rs,ref
�
1 + αCu (TCu − Tref)

	
kac(ωe, TCu) . (2.2)

Its dependencies on the average copper temperature TCu and the electrical angular velocity
ωe are modeled using a linear coefficient of temperature αCu and the AC resistance factor
kac(ωe, TCu), which includes proximity and skin effects in the winding. Rs,ref is the DC
stator resistance at the reference temperature Tref. To include saturation and cross-
coupling effects as well as the dependence of the magnetic flux on the permanent magnet
temperature Tpm, the flux linkages Ψd and Ψq in (2.1) are functions of the currents (id,
iq) and Tpm. These functions for flux linkages and stator resistance are implemented as
lookup tables which are populated based on measurements and finite element analyses of
the motor. The electromagnetic torque M produced by the PMSM [20] is

M = 3p

2
�
iq Ψd − id Ψq

�
. (2.3)

The mechanical motor speed n and torque M are limited

|n| ≤ nlim (2.4a)
|M | ≤ Mlim(|n|) (2.4b)

to prevent mechanical damage to the shaft. Figure 2.1 shows the torque limit func-
tion (2.4b). The maximum torque is constant below n = 4500 rpm, and then follows a
curve that is approximately proportional to 1/n.

0 1.5 4.5 7.5 10.5 13.5 16.5
×103

0

50

100

150

200

250

300

350

n in rpm

M
lim

(|n
|)

in
N

m

Figure 2.1: Torque limit function Mlim(|n|).

The battery dynamic is not modeled and a constant supply voltage is assumed. Powered
by the battery, the voltage source inverter (VSI) drives the motor voltages ud and uq,
which are therefore limited

∥us∥2 ≤ ulim(n) (2.5)
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with the maximum voltage magnitude ulim(n).
To find the optimal current i∗s such that torque M according to (2.3) equals a desired

torque Md while minimizing the current magnitude and satisfying the voltage constraints
(2.5), the optimization problem

min
is

J(is) = ∥is∥2
2 (2.6a)

s.t. g1(is) = −Rs is + Ωe Ψs + us = 0 (2.6b)
g2(is) = M − Md = 0 (2.6c)
h(is) = ∥us∥2 − ulim(n) ≤ 0 (2.6d)

is formulated and solved. In (2.6b), the quasi-static case Ψ̇s = 0 is considered. The

−800 −700 −600 −500 −400 −300 −200 −100 0 100

−600

−400

−200
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400
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800

Mlim (nlim)

ulim (nlim)

Mlim (n3)

ulim (n3)

Mlim (n2)

ulim (n2)

Mlim (n1)ulim (n1)

i∗s|n=0

O

A

i∗s|M=Mlim(|n|)

B

C
i∗s|n=nlim

id in A

i q
in

A

Figure 2.2: Visualization of the optimal solution i∗s of (2.6). For selected motor speeds ni

(i = 1, 2, 3, lim), the dotted lines show the maximum motor torque and the
dashed lines show the voltage limit. For a given motor speed n and desired
torque Md, the current i∗s must lie on the constant torque line M(n) = Md

and within the voltage limit ulim(n).

desired torque Md must satisfy the torque limit (2.4b).
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The solution i∗s of the optimization problem (2.6) is visualized in the id-iq-plane in
Figure 2.2. The blue lines show the optimal current setpoint i∗s. For motor speed n = 0,
the optimal setpoint for the currents starts at the origin O and follows the light blue
maximum torque per ampere (MTPA) curve (i∗s|n=0) for increasing torque until point A
at which the maximum torque is reached. When choosing a setpoint on this line, the
current magnitude is minimized for a given torque.

When the motor speed is increased, the maximum torque gets limited according to the
torque limit function (2.4b), cf. Figure 2.1. The optimal currents stay at point A until
the maximum torque gets reduced due to the increasing speed. First, the dark blue line
(i∗s|M=Mlim(|n|)) follows the MTPA curve back with decreasing torque until point B. At
this point, the voltage limit ulim(n) comes into effect. To increase the speed further, field
weakening is used to partially compensate the magnetic flux of the permanent magnets.
The curve of optimal current selection then follows the intersection points of the torque
limit and voltage limit curves of the respective motor speed n. At point C the motor
speed limit nlim is reached.

The teal line (i∗s|n=nlim) shows the optimal current setpoint at the maximum motor
speed for varying torque. For negative torque, the curves have a similar shape with iq < 0.
For any given motor speed n and torque M , the optimal current setpoint is located in the
area enclosed by the blue lines.

For specific motor speeds (n1, n2, n3, and nlim), the voltage limit curves ulim(n) are
displayed as dashed lines and the maximum torque curves Mlim(|n|) as dotted lines.

2.2 Loss Model
The loss model uses the currents id, iq, and the electrical frequency ωe to calculate the
electromagnetic losses and assign them to different parts of the motor. There are ohmic
copper losses in the windings, iron losses from magnetic hysteresis and eddy currents in
the rotor and the stator iron, and losses in the permanent magnets. The copper losses

PCu = 3
2 Rs ∥is∥2

2 (2.7)

depend on the magnitude of the current ∥is∥ =
�

i2
d + i2

q . The hysteresis losses are
proportional to the electrical angular frequency (Physt ∝ ωe) and the eddy-current losses
are proportional to the square of this frequency (Peddy ∝ ω2

e) [21]. The total losses in the
stator are modeled in the form

Pt = ωe Wt,hyst(id, iq) + ω2
e Wt,eddy(id, iq) (2.8a)

Py = ωe Wy,hyst(id, iq) + ω2
e Wy,eddy(id, iq) . (2.8b)

The stator losses are separated into losses in the stator teeth Pt and the yoke Py. The
total losses in the permanent magnets and the rotor can be described by

Ppm = Ppm(id, iq, ωe) (2.9a)
Pr = ωe Wr,hyst(id, iq) + ω2

e Wr,eddy(id, iq) . (2.9b)
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The factors Wx(id, iq) and Ppm(id, iq, ωe) are nonlinear functions determined by finite
element analyses. The losses PCu, Py, Pt, Ppm, and Pr serve as inputs of the thermal
model discussed in Section 2.4.

2.3 Cooling Model
Apart from the electromagnetic losses, the motor temperature is influenced by a dedicated
cooling system. There are two cooling circuits, one with water and one with oil. They are
coupled via a heat exchanger to transfer heat between the oil and the water circuit. The
water cools the voltage source inverter before it passes through the heat exchanger and
then the cooling jacket of the PMSM. The oil is pumped from an oil sump, through the
heat exchanger using an internal pump. Finally, it is sprayed through nozzles onto the
end-windings and via a lance into the hollow rotor shaft. The oil is then collected again
in the sump.

It is assumed that the water flow Qw and the water inlet temperature to the heat
exchanger Tw,in are held constant. The oil pump is a fixed displacement pump that is
driven by the PMSM. Therefore, the oil flow rate is a linear function of the motor speed
Qoil = Qoil(n).

2.3.1 Heat Exchanger
A stationary heat exchanger model is used that calculates the thermal power transferred
from the cooling water to the oil in the form

Phx = (Tw,in − Tsump)αhx(Qoil, Qw) (2.10)

depending on the flow rates Qw and Qoil, the input temperatures Tw,in and Tsump, and
the heat transfer coefficient αhx(Qoil, Qw). The temperature of the oil entering the heat
exchanger is the same as the oil sump temperature Tsump. The output temperatures

Tw = Tw,in − Phx
Qw ρw cp,w

(2.11a)

Toil = Tsump + Phx
Qoil ρoil cp,oil

(2.11b)

follow from the first law of thermodynamics.

2.3.2 Oil Sump
The dynamics of the oil sump temperature are modeled assuming a spatially homogenous
temperature Tsump. From the first law of thermodynamics

Ṫsump = 1
Coil

(Pew,oil + Ps,oil + Phx + Pgbx + Pamb) (2.12)

follows. The power from the end-windings Pew,oil and from the shaft Ps,oil are determined
in (2.23) using the thermal motor model described in Section 2.4.
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Mechanical losses are considered in the form

Pgbx = (1 − kgbx) n M (2.13)

using a gearbox efficiency factor kgbx. Cooling of the sump through the housing by ambient
air with the temperature Tamb is modeled in the form

Pamb = (Tamb − Tsump)αamb (2.14)

with the heat transfer coefficient αamb. The ambient temperature Tamb is considered
constant. The factors kgbx, and αamb, as well as the thermal capacity Coil of the oil in the
oil sump have been identified from measurements [15].

2.4 Thermal Motor Model
The thermal model is the centerpiece of the model and its accuracy is important for a
reliable operation of the developed derating algorithm. The model captures the ther-
mal dynamics of the PMSM based on the inputs from the electrical (Section 2.1), loss
(Section 2.2), and cooling (Section 2.3) sub-models.

2.4.1 Thermal Modeling
Wallscheid [14] provides a summary of thermal modeling strategies for electrical motors.
Due to the complex thermal behavior and complex geometries, there are different types of
models:

Black-box models do not include any prior information and are trained based on
measurement or simulation data. Recently, especially machine learning techniques have
been increasingly used to create black-box thermal models.

Gray- or white-box models are based on physical equations. For the considered applica-
tion, the heat equation

ρcp
dT

dt
= ∇ · (λ∇T ) + g , (2.15)

i. e. a partial differential equation (PDE), is the basis for the model, where ρ, cp, and λ
are the mass density, specific heat capacity, and thermal conductivity, respectively, of the
material. To get a model that can be numerically evaluated, spatial discretization may be
applied to transform the PDE into ordinary differential equations (ODEs).

Finite element and finite volume methods typically use a fine mesh to capture spatial
details. The resulting high-dimensional system of equations is often not suitable for
real-time evaluation, especially on embedded computers. Model reduction techniques can
be used to simplify these models while retaining the properties and dynamics that are of
interest [22].

Lumped-parameter thermal networks (LPTNs) are the thermal counterpart to electrical
equivalent circuits [14]. Every node of the circuit is associated with a temperature state
(analogous to an electrical potential) of the dynamic system. The nodes are connected
with edges consisting of thermal resistors, thermal capacitors, or thermal sources. The
thermal sources are the system inputs and represent losses (analogous to electrical current
sources) and external temperatures (analogous to electrical voltage sources).
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2.4.2 Reduced-Order Model
The thermal model of the PMSM used in this thesis is a reduced-order model developed
by Baumann et al. [15]. It is based on the heat equation (2.15) and discretization using
the finite volume method. In the full finite volume model, the state xf consists of the
temperatures of the individual finite volumes. The state space representation of this
nonlinear system is

Mẋf = Axf +
NG�
k=1

Gk(ps, n)Nkxf + B
�

q(ps)
g(u, Cavgxf )



, (2.16)

with the thermal mass matrix M, constant matrices A, Nk, and B, thermal conductances
Gk(ps, n) for k ∈ [1, NG], with the number of thermal conductances NG. The system
inputs are q(ps), which represents part of the heat flows across the boundaries to the
cooling fluids, and the electromagnetic losses g(u, Cavgxf ). The inputs themselves depend
on

ps =
�
Qw Tw Qoil Toil

	T
, (2.17)

u =
�
id iq n

	T
, (2.18)

and averaged component temperatures Cavgxf .
Using model reduction, a simpler model that can be evaluated in real-time was derived

from the high-dimensional finite volume model (2.16) [23], [22]. This reduced-order model
(ROM) is a ten-dimensional nonlinear system with the thermal state xt. Contrary to the
full model or LPTNs, the states do not correspond to actual temperatures of the motor.
However, interpretable physical temperatures are obtained from the output equation
(2.19b).

The state space representation of the reduced-order model is

Mrẋt = Ar(ps, n)xt + Br

�
q(ps)

g(u, Cr,avgxt)



(2.19a)

y = C xt =
�
TCu Tpm Tew,le Tew,ole

	T
, (2.19b)

where
xf ≈ Vxt , (2.20)

Ar(ps, n) = WT

A +
NG�
k=1

Gk(ps, n)Nk

V , (2.21)

and
Br = WTB (2.22)

with projection matrices W and V from the model reduction. The output matrix C is
used to calculate the representative temperatures of the active windings TCu, permanent
magnet Tpm, and end-windings on the lead-end and opposite-lead-end side, Tew,le and
Tew,ole.
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The thermal powers transferred from the end-windings Pew,oil and shaft Ps,oil, respec-
tively, to the cooling oil,

Pew,oil = Pew,oil(xt, Toil) (2.23a)
Ps,oil = Ps,oil(xt, Toil) , (2.23b)

are functions of the thermal state xt and oil temperature Toil.

2.5 Thermal Limits, Degradation, and Damage
In addition to influencing the electrical and thermal properties of the PMSM, high
temperatures can cause damage or accelerated aging if they exceed certain thresholds.
There are two main reasons for temperature limits in PMSMs: demagnetization of the
permanent magnet and degradation of the winding insulation.

When a strong magnetic field opposing the magnetization direction of a permanent
magnet is applied, demagnetization may occur. This demagnetization behavior is tem-
perature dependent. With higher temperatures, lower field strengths are required for
demagnetization [6]. In the design phase of PMSMs, permanent magnets are selected
according to the rated operating temperatures of the motor [24]. Therefore, the maximum
permanent magnet temperature is considered a hard limit. In addition to the demagne-
tization behavior, the magnet temperature influences the motor efficiency because the
residual flux density is temperature-dependent with a negative temperature coefficient [6].

The second reason for thermal limits are aging effects of the winding insulation. Ac-
cording to [25], this degradation can be modeled as follows. The insulation consists of
polymers that electrically insulate the wires against each other and against the iron.
Chemical processes in the polymers deteriorate the quality until electrical faults occur.
With higher temperature T , the deterioration rate increases, which decreases the lifetime
L(T ) according to the Arrhenius-Dakin equation

L(T ) = A exp


B

T


(2.24)

where A and B are material-dependent constants [25]. Madonna et al. [5] identified
these parameter values for PMSM windings using accelerated thermal aging tests. Their
results are given in Table 2.2. In these experimental tests, sample windings are heated to

Parameter Value
A 4.48 · 10−12 h
B 17 030 K

Table 2.2: PMSM winding lifetime parameters.

temperature levels far above the normal point of operation to make them fail in short
timespans. From the observed lifespans at high temperatures, the parameters A and B in
(2.24) are estimated.
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In (2.24), T is a constant temperature. To model the effect that a time-varying
temperature profile has on the lifetime, the so-called loss of life function [5]

LF (T (·), t) =
� t

t0

1
L(T (τ)) dτ (2.25)

is used. It calculates the fraction of the lifetime that is lost during the time interval
t ∈ [t0, t]. This approach represents a cumulative damage model.

In addition to faster degradation of the winding insulation, high winding temperatures
negatively affect the motor efficiency. Due to temperature-dependent properties of the
electrical conductors, e. g. the positive temperature coefficient of resistance αCu > 0,
the losses are greater at higher winding temperatures. Therefore, lower stator winding
temperatures are preferred.

2.6 Mechanical Model
To characterize the dynamics of the vehicle, a longitudinal vehicle model

ṡ = v

v̇ = 1
meff

(Fa − Fd − Fr − Fg)
(2.26)

similar to that in [11] is used, with the vehicle position s and speed v. An effective mass

meff = m + J

r2
w

(2.27)

includes the vehicle mass m and the influence of the moment of inertia J of the rotating
masses (e. g. wheels and shafts). It is assumed that there is no slip along the power train
(motor, gearbox, wheel-street interface, . . . ) so that the mechanical motor speed n of the
PMSM and vehicle speed v are related by

v = ωm
rw

igbx
(2.28)

with the gearbox ratio igbx and the wheel radius rw. The driving force

Fa = M
igbx
rw

(2.29)

is proportional to the motor torque M from (2.3). The other external force terms in (2.26)
are the drag force Fd, the friction force Fr, and the gravitational force along the road
slope Fg. Assuming no wind, the drag force

Fd = 1
2 ρa cd Ad v2 (2.30)

is proportional to the square of the vehicle speed v using the density of air ρa, vehicle
drag coefficient cd, and cross-sectional area Ad. For simplicity, only positive speeds are
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considered, which implies Fd ≥ 0. Considering simple rolling friction, the road slope γ
and the friction coefficient cr, the friction force follows as

Fr = crmg cos(γ) . (2.31)

The gravitational force along the road slope is modeled in the form

Fg = mg sin(γ) . (2.32)

Table 2.3 lists all parameters of the mechanical model. The values for vehicle mass,
cross-sectional area, and drag coefficient correspond to values of a typical electric SUV.
The rolling friction coefficient cr is chosen as a typical value for tires on concrete.

Parameter Value
Vehicle mass m 2200 kg
Effective mass meff 2500 kg
Vehicle cross-sectional area A 2.78 m2

Drag coefficient cd 0.29
Rolling friction coefficient cr 0.01
Wheel radius rw 0.38 m
Gearbox ratio igbx 11.3
Air density ρa 1.2 kg/m3

Gravitational acceleration g 9.81 m/s2

Table 2.3: Parameters of the longitudinal mechanical vehicle model.

2.7 Assembled Model
Figure 2.3 displays a diagram of the assembled model. The state of the complete model
consists of the vehicle position s, the vehicle speed v, the oil sump temperature Tsump,
and the thermal state xt of the reduced-order model. The model inputs are the desired
torque Md, the road slope γ, the water inlet temperature Tw,in, and the water flow Qw.

For the simulation and use in the controller, the model is discretized using the forward
Euler method with the sampling time ts = 0.1 s.

For the MPC-based derating algorithm explained in Chapter 3, the motor model has
to be repeatedly calculated to solve the optimal control problem (OCP). Therefore, it
is important that the model can be efficiently evaluated. The thermal model takes the
longest to evaluate of all models used in the algorithm. To improve the computational
efficiency, the following measures are implemented:

First, the optimal current setpoints according to (2.6) are stored in a lookup table, so
that (2.6) does not have to be solved online. The optimal currents are then computed by
linear interpolation in the form

i∗s = fops(M, ωe, TCu, Tpm) , (2.33)
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Figure 2.3: Assembled model

as functions of the motor torque M , the electrical frequency ωe, the active winding
temperature TCu, and the magnet temperature Tpm.

Secondly, the thermal conductances Gk(ps,k, nk) and the values ps,k in (2.16) related
to the cooling model are assumed to be constant within the whole prediction horizon.
Therefore, the cooling model (Section 2.3) does not have to be evaluated when solving the
OCP. Additionally, the system matrix Ar,k = Ar(ps,k, nk) and heat flows to the cooling
fluids qk = q(ps,k) in (2.19a) have to be calculated only once per prediction horizon.



3 Optimization and Derating Algorithm
This chapter describes the developed MPC-based derating algorithm as well as the
underlying optimization problem. Based on the models from Chapter 2, the individual
parts of the derating algorithm are explained. The optimization problem is formulated
such that it protects the motor components from thermal damage and accelerated aging.
For this purpose, the temperature-dependent deterioration of the windings is quantitatively
modeled, road parameters are estimated, and the future vehicle speed as well as desired
torque are predicted.

3.1 Thermal Limits
Section 2.5 explains how operation with elevated temperatures can negatively impact
the motor. Most importantly, there are temperature limits for the stator windings and
the permanent magnet in order to avoid damage and rapid deterioration of the PMSM.
Additionally, the motor efficiency is influenced by the temperatures, mainly because of
the temperature-dependent stator resistance and permanent magnet flux. However, the
primary goal of this work is thermal protection of the motor. Efficient operation is thus
left as a task for the speed controller or vehicle driver and is of minor concern.

The lifetime of the windings depends on the temperature profile they are exposed to.
This effect is modeled using the loss of life function (2.25). The thermal model (Section 2.4)
has three outputs related to the stator: the copper temperature y1 = TCu, the lead-end
end-winding temperature y3 = Tew,le, and the opposite-lead-end end-winding temperature
y4 = Tew,ole. For the derating algorithm, the loss of life function (2.25) is discretized

LF (yi(·), k) =
k�

m=1

τC

L(yi,k) i = 1, 3, 4 (3.1)

with the MPC step size τC and evaluated individually for each output temperature.
For use in the optimization cost function, the discrete loss of life function is normalized

by the desired lifetime Ld. This yields a relative measure of how much lifetime is lost
during the time step k in the form

λlt(yi,k) = Ld

L(yi,k) . (3.2)

This measure allows systematic incorporation of the temporary overload capability of the
motor into the design of the derating algorithm. During time periods where λlt(yi,k) > 1,
the winding isolation is deteriorating faster than permissible to achieve the desired lifetime
Ld. It is possible to compensate periods with faster aging with periods where λlt(yi,k) < 1.

17
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To ensure that the actual lifetime of the PMSM windings achieves the desired lifetime,
the temperatures yi(t), i = 1, 3, 4 must fulfill the condition

1
Nlt

Nlt�
k=1

λlt,k(yi,k) ≤ 1 for i = 1, 3, 4 (3.3)

with the number of steps in the desired lifetime Nlt = ⌈Ld
τC

⌉.
The required lifetime of the PMSM is supposed to be at least 300 000 km or Ld =

10 000 h [5]. It is possible to either directly choose the desired lifetime or derive it using
equation (2.24)

Ld = L(Td) (3.4)

from a reference temperature Td.

3.2 Estimation and Prediction
For the best utilization of the thermal durability of the motor by the derating algorithm,
it needs to know the future vehicle state, desired speed trajectory, torque inputs, and
external disturbances. Using the system model, the future state can be calculated, given
the inputs and disturbances are known. However, especially with a human driver, whose
commands cannot be predicted with certainty, the required quantities cannot be exactly
known by the vehicle controller. To still be able to make useful derating decisions, a
prediction model is used to provide estimates of future inputs and external disturbances.

There are several unknowns, including the vehicle, road, and external parameters. In
the simple one-dimensional model (Section 2.6), the parameters are the vehicle mass, drag
area and coefficient, rolling friction coefficient, and road slope. All of these can vary, e. g.
different vehicle loading, a changing number of passengers, attachments to the car such
as roof racks, and changing road conditions. Additionally, there can be influences on
the vehicle which are not modeled in Section 2.6, e. g. wind. These extra model-plant
mismatches can cause additional estimation errors.

To keep the focus on the derating algorithm, for this work, the vehicle mass, drag
parameters, and rolling friction coefficient are assumed constant and known. This leaves
the road slope γ as the only parameter of the mechanical vehicle model that has to be
estimated. With the parameters known or estimated, the future desired input and vehicle
state is predicted, which includes the vehicle speed and motor torque. In the following
sections, the approaches to estimate the road slope and predict the future desired torque
and speed are detailed.

3.2.1 Parameter Estimation
In Chapter 1, some estimation approaches found in the literature are referenced. The
slope estimation is based on the longitudinal vehicle model (2.26). The quantities used
for this estimation are the motor speed and torque. The motor speed is measured and the
motor torque is calculated from the electrical quantities of the PMSM (Section 2.1). The
slope estimation is implemented using an Extended Kalman Filter (EKF). The estimator
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is evaluated using simulations. Additive Gaussian noise is added to the measured motor
speed and the motor torque used by the EKF.

For the EKF, the discretized mechanical model is extended with a second state for the
slope, which is assumed as quasi-constant. This gives

xk+1 =
�
vk+1
γk+1



= xk + ts

�
1

meff
(Fa,k − Fd,k − Fr,k − Fg,k)

0



+ wk

yk = cTxk + vk

(3.5)

with the output vector cT =
�
1 0

	
and additive process and measurement noise wk and

vk, respectively. For the system (3.5), an extended Kalman filter is implemented [26] to
estimate the road slope γ̂k.
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Figure 3.1: Simulation of slope estimation with additive Gaussian measurement noise for
the motor speed and motor torque.

Figure 3.1 shows a simulation of the slope estimation using the EKF and the corre-
sponding error ∆γ = γ − γ̂ for a simulated road with changing slope. The upper graph
shows the true and estimated road slope and includes a zoomed part. The EKF estimates
the slope with good accuracy despite the measurement noise. The lower graph shows the
absolute estimation error |∆γ| with a logarithmic scale.

3.2.2 Prediction
The next step is to use the estimated slope to predict the future desired motor torque and
vehicle speed. As no future information concerning the slope is available, it is assumed to
be constant within the prediction horizon. The goal is to get a more realistic prediction
than that the current torque and motor speed stay constant within the prediction horizon.
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The evolution of the speed is predicted within the prediction horizon using the mechanical
model (2.26) and the currently desired motor torque and assuming that this torque stays
constant in the predicted time span, except when limits are reached. These limits include
the speed and torque limits in equation (2.4). Additionally, when decelerating, the lower
speed limit is 0 m/s. This means braking will stop the vehicle but will not lead to negative
speeds. If the vehicle accelerates in the prediction horizon, it may happen that the torque
limit given in (2.4b) and thus also the predicted torque decrease. When the speed reaches
one of its limits, the predicted torque is adapted so that the speed stays constant for the
rest of the prediction interval.
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Figure 3.2: Scenario to show the prediction of torque and speed. The solid line shows
the actual values and the dashed lines show the predicted values. Predictions
from two starting points A and B are plotted.

Figure 3.2 shows an example prediction for a driving scenario with repeated acceleration
and braking with zero slope (γ = 0). At point A, a high torque is used for acceleration.
The prediction matches the actual torque and speed until the braking phase starts. The
change from acceleration to braking cannot be predicted, and therefore the predicted
speed continues to increase until the maximum speed is reached. The predicted torque
starts with a constant value and then follows the torque limit. When the maximum speed
is reached, the torque is reduced so that the remaining torque ensures a constant speed.
At point B, the vehicle brakes and a speed decrease is predicted. The scenario simulates
braking with the maximum available (negative) motor torque. The fact that the torque
limit is relaxed because of the decreasing speed is not considered, i. e., the predicted torque
stays constant and does not match the actual torque. This also results in a prediction
error of the speed. When the speed reaches zero, the predicted torque is also set to zero.

This highlights a disadvantage of the implemented prediction approach: Future changes
of the driving behavior cannot be anticipated, and only the currently available information
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about the slope and desired torque is used. However, the proposed prediction approach
is more accurate than the assumption of constant torque and speed and allows for less
conservative decisions of the derating algorithm. This is especially true for driving
maneuvers that utilize high torques, like overtaking. However, it does not predict the
typical behavior of human drivers very well and does not account for the typically changing
road slope. In [27], an approach using machine learning is used to improve the prediction
of the control reference for model predictive control in vehicles. In the outlook of the
current work (see Chapter 5), possible extensions are mentioned to include additional
information for a better prediction of the slope as well as the torque and speed.

For comparison, the results of two additional torque and speed prediction approaches
are shown in Chapter 4. The first is the assumption that the current speed n stays
constant and that the torque equals the maximum torque Mlim(|n|). This approach is
used in [13] and can be used when no additional information, such as vehicle acceleration
or road slope, is available to the vehicle controller. The second (admittedly unrealistic)
prediction approach uses the desired speed and torque known from the test cycles in the
simulation.

3.3 Static Derating Curves
Before the MPC-based derating algorithm is developed in the following sections, this
section explains the derating approach using static curves. This traditional approach
serves as a comparison in the simulation studies in Chapter 4. Individual derating factors
fi,drt are calculated based on a number of quantities: temperature of the windings TCu,
rotor Tpm, cooling water Tw, cooling oil Toil, and flow rate of water Qw and oil Qoil. For
every quantity, two thresholds ϑi,1 and ϑi,2 are defined. Using the saturation function

fi,drt =

����
fi,max if ϑi > ϑi,2

fi,min if ϑi < ϑi,1

fi,min + (ϑi − ϑi,1)fi,max−fi,min
ϑi,2−ϑi,1

otherwise

for ϑi = TCu, Tpm, Tw, Toil, Qw, Qoil

, (3.6)

the respective derating curves are defined. Table 3.1 lists the parameters of the static
derating curves. The final derating factor fdrt ∈ [0, 1] is determined as the minimum of
all component factors

fdrt = min
i

(fi,drt) (3.7)

and is used to limit the torque to the range [−Mdrt, Mdrt] with

Mdrt = fdrtMlim(|n|) (3.8)

and Mlim(|n|) from (2.4b). Hence, if the torque Md is requested, the torque

M(Md) =

����
Mdrt if Md > Mdrt

−Mdrt if Md < −Mdrt

Md otherwise
(3.9)

is actually applied.
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Quantity ϑi,1 ϑi,2 fi,min fi,max

TCu 150 ◦C 170 ◦C 1 0
Tpm 120 ◦C 140 ◦C 1 0
Tw 70 ◦C 80 ◦C 1 0
Toil 120 ◦C 135 ◦C 1 0
Qw 0.5 l/min 1 l/min 0 1
Qoil 0.5 l/min 1 l/min 0 1

Table 3.1: Parameters of the static derating curves.

3.4 Optimization Problem
This section presents the optimization problem underlying the MPC-based derating
algorithm. The goal of the derating approach is to thermally protect the PMSM while
still permitting high torques if they are requested.

Based on the desired torque Md and the derating factor fdrt, the applied torque M is
computed using (3.8) and (3.9). In the MPC-based derating algorithm, an optimization
problem is repeatedly solved to find the trajectory of the optimal derating factor. The
discrete-time OCP at the time step k is

min��fdrt,l

� J


xt,k,


 �fdrt,l


=
N−1�
l=0

dk+l


 �fdrt,l, �xt,l+1


(3.10a)

s.t. �xt,0 = xt,k�xt,l+1 = Fk


�xt,l, �fdrt,l,

 �Md,l,j


, (�nl,j)


∀l ∈ [0, N − 1]

0 ≤ �fdrt,l ≤ 1 ∀l ∈ [0, N − 1]�yl = C�xt,l ≤ Tmax ∀l ∈ [1, N ]

(3.10b)

with the prediction horizon length N = 10 and stage cost dk+l


 �fdrt,l, �xt,l+1

. The variables�xt,l+1 and �fdrt,l denote the predicted values of the state vector of the reduced-order model

and the derating factor, respectively, at the time steps k + l and k + l +1, respectively. The
optimized derating factors are assembled in the sequence


 �f∗
drt,l


. The predicted desired

torque and speed trajectories

 �Md,l,j


and (�nl,j), respectively, are computed according to

Section 3.2.2. The discrete-time dynamics Fk


�xt,l, �fdrt,l,

 �Md,l,j


, (�nl,j)


are based on

the discrete-time model from Section 2.7 and include the current setpoint calculation,
the loss model, and the reduced-order temperature model. Algorithm 1 explains how the
state trajectory is predicted in the OCP. For computational efficiency, the state matrix
Ar,k, heat flows to the cooling fluids qk, and thermal conductances Gk(ps,k, nk) are only
calculated once per prediction horizon and not updated while solving the OCP. The inputs
of the algorithm are the previous state �xt,l, the derating factor �fdrt,l to be optimized, and
the predicted sequences of the desired motor torque


 �Md,l,j


and motor speed (�nl,j). The
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model is discretized using a multi-step forward Euler method, with Nd intermediate time
steps.

Algorithm 1 �xt,l+1 = Fk


�xt,l, �fdrt,l,

 �Md,l,j


, (�nl,j)


�xt,l,0 ← �xt,l

Mdrt,l ← �fdrt,l Mlim(|�nl,0|) ▷ (3.8)
for j = 0, . . . , Nd − 1 do�

TCu,j Tpm,j . . .
	T ← C �xt,l,j ▷ (2.19b)

Mj ←

����
Mdrt,l if �Md,l,j > Mdrt,l

−Mdrt,l if �Md,l,j < −Mdrt,l�Md,l,j otherwise
▷ (3.9)

ωe,j ← 2π �nl,j p
is,j ← fops(Mj , ωe,j , TCu,j , Tpm,j) ▷ (2.33)
uj ←

�
iTs,j nj

	T

gj ← g(uj , Cr,avg�xt,l,j)�̇xt,l,j ← Ar,k �xt,l,j + Br

�
qT

k �gT
j

	T
▷ (2.19a)�xt,l,j+1 ← �xt,l,j + ts �̇xt,l,j ▷ Forward Euler Method

end for�xt,l+1 ← �xt,l,Nd

The output matrix C from (2.19b) gives the predicted temperatures that are limited by

Tmax =
�
Tmax,Cu Tmax,pm Tmax,ew,le Tmax,ew,ole

	
=

�
250 ◦C 140 ◦C 250 ◦C 250 ◦C

	
.

(3.11)

However, the stator temperatures never reach these hard limits in practice. The stator
temperatures are additionally considered in the stage cost

dk+l


 �fdrt,l, �xt,l+1


= −wu,l
�fdrt,l + klt

1
3

�
i=1,3,4

λlt(�yi,l+1) . (3.12)

It uses the weighting factor klt to balance between two components, i. e. the derating factor
fdrt and the loss-of-life term λlt(�yi,l+1) according to (3.2) evaluated for the active winding
and the end-windings. The loss of life term has the effect that for high temperatures, the
cost strongly increases.

In the stage cost, the derating factor has a negative sign, which means that higher
allowed motor torques decrease the cost. It is weighted with the factor

wu,l = 1 − kw

N
+ kw

2(N − 1 − l) + 1
N2 , (3.13)

which depends on l and the user-defined tuning factor kw ∈ [0, 1]. The factor kw controls
how much stronger derating factors are weighted early in the prediction horizon. For
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kw = 0, uniform weighting is achieved. For kw > 0, wu,l decreases linearly with l. The
non-uniform weighting is motivated by the physical properties of the mechanical vehicle
model (see Section 2.6). A detailed explanation and derivation of (3.13) can be found
in Appendix A.1. Non-uniform weighting results in an increase of the immediate torque
responsiveness and makes the derating algorithm less conservative.

In the derating algorithm by Wallscheid and Böcker [11], the cost function weights
the track completion time. The algorithm by Winkler et al. [12] weights the speed error.
These strategies are not directly usable in the developed derating algorithm because
the mechanical vehicle model state is not part of the MPC scheme. Therefore, the cost
function (3.10a) weights the derating factor which indirectly has an influence on the
vehicle speed, as discussed in Appendix A.1.

Simulation time

MPC
timelines

OCP interval

Figure 3.3: Timeline and time constants in the MPC.

Figure 3.3 shows the timelines and time intervals used in the MPC-based derating
algorithm. The first timeline is associated with the simulation, which uses a sample time
ts = 0.1 s. The OCP is solved at every time step k. In the time interval between these
steps, the optimal derating factor f∗

drt and torque limit Mdrt stays constant. The length
of this interval tMPC determines how much time is available for solving the OCP. The
timeline with the index j = 0, . . . , Nd is associated with the multi-step forward Euler
method using the sample time ts. The index j refers to the intermediate time instant j
between the major grid points l and l + 1 on the timeline of the optimization problem
(3.10). This timeline has N + 1 steps of size τC . In the OCP, the derating factors


 �fdrt,l


for l = 0, . . . , N − 1 stay constant for the interval τC , which is the step size for input
parametrization. The last timescale shows the prediction horizon τP = NτC .
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3.5 Solving the Optimization Problem
In this work, the OCP is solved as follows. The discrete-time motor model is evaluated
as explained in Algorithm 1. The OCP only uses the state xt,k of the reduced thermal
model (cf. Section 2.4.2) and does not include the mechanical vehicle model (Section 2.6).
However, the vehicle model is implicitly considered via the prediction of the future motor
torque and speed.

The implementation of the nonlinear optimization problem is done using the nlmpc li-
brary of Matlab. Internally, it uses full discretization of the OCP and solves the
optimization problem using the fmincon function. The optimal solution is computed with
the interior-point method. Additionally, warm start is implemented to use the previous
solution to initialize the optimization variables. A good initial guess of the optimization
variables can speed up convergence, i. e. fewer iterations are required to find the optimal
solution.

3.6 MPC-Based Derating
This section presents the MPC-based derating algorithm, which uses the slope estimation
(Section 3.2.1), motor torque and speed prediction (Section 3.2.2), and the optimization
problem from Section 3.4.

At each time step k, the derating controller estimates the road slope γ̂, predicts the
future desired motor torque and speed, and computes all prerequisites for the optimization
problem. These prerequisites include evaluating Ar,k and qk from the motor speed n and
the cooling inputs ps,k (see Section 2.7). The optimization problem is the centerpiece of
the MPC-based derating algorithm. Its solution is the optimal sequence of future derating
factors


 �f∗
drt


. The derating algorithm sets the torque limit

Mdrt,k = fdrt,kMlim(|nk|) , (3.14)

according to (3.8) using the optimal derating factor fdrt,k = �f∗
drt,0 at the time step l = 0

of the optimization horizon.
The cost function (3.10a) combines both objectives, maximizing the derating factor fdrt

and reducing thermal aging of the stator windings. Because the MPC problem does not
have the form of a tracking problem, it belongs to the class of economic MPC [10].

In [10], methods to formally prove stability and proper performance are presented.
However, due to the complexity of the problem and the used models, no mathematical
proof of stability or performance is performed in this work. The developed algorithm is
validated using simulation studies in Chapter 4.

Figure 3.4 shows a visualization of active winding temperature trajectories obtained with
the MPC. It shows the time intervals tMPC = 0.1 s, τC = 10 s, and τP = 100 s explained in
Section 3.4. This implementation differs from the usual discrete-time MPC formulation,
in which the control horizon is both, the step size for input parametrization (τC), and the
time period tMPC after which the optimization problem is solved again. This approach
allows to reduce the number of optimization variables (and therefore computation time)
and to still compute a new derating factor fdrt when the vehicle state and inputs, i. e. speed
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Figure 3.4: Timeline and time parameters in the MPC. The time axis is non-uniformly
scaled to show tMPC, τC , and τP . The derating factor fdrt as well as the copper
temperature TCu and its prediction


 �TCu,j


at two selected MPC steps (k = 0

at t = 0s, and k = 300 at t = 30s) are plotted.

and torque, change. As discussed in Section 2.7, the MPC uses a performance-optimized
thermal model that neglects the changing cooling parameters ps in the prediction horizon.
By calculating the derating factor fdrt after each time step tMPC, the values of ps are
frequently updated.

For the simulation studies (presented in Chapter 4), tMPC = ts = 0.1 s is used. With
this choice, the MPC-based derating algorithm does not achieve real-time performance on
the used hardware (PC with Intel i5-8250U CPU, 16 GB RAM). The required CPU time
is around 30 times longer than the simulated time duration. Real-time performance (on
the used hardware) can be achieved by choosing tMPC = 30ts = 3 s. The majority of the
computation time is taken by the derating algorithm. The simulation model introduces
only a small overhead.

3.7 Summary
Using the MPC-based derating algorithm with the time interval tMPC, an optimal value
for the derating factor fdrt is determined by solving the optimization problem (3.10).
Its cost function considers the derating factor and thermal aging of the stator windings.
Constraints are used to limit the permanent magnet temperature (Section 3.4). To obtain
results that better utilize the thermal limits of the PMSM, the future desired torque and
speed are predicted based on an estimation of the current road slope from an EKF.
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Due to limited computational power, the MPC uses a simplified model of the PMSM,
which does not include the mechanical vehicle model. This design decision leads to some
limitations in defining the cost function compared to the derating approaches [11] and [12].
This decision is further discussed in Chapter 5, which also contains suggestions to minimize
the disadvantages.



4 Evaluation and Results
In this chapter, simulations and evaluations of the developed derating algorithm are
presented. The different approaches are compared based on simulation results including
quantitative metrics. Additionally, studies of how tuning the parameters influences these
results are conducted.

4.1 Simulation Setup
The derating approaches presented in Chapter 3 are evaluated and compared using
different simulation studies. For the simulation it is assumed that the MPC-based derating
algorithm has exact knowledge of the state of the reduced-order model, i. e. no observer
for state estimation is used. In the simulation, the desired motor torque and motor speed
are specified. This is done using test cycles that define a trajectory for torque and speed.
Two different approaches are used to specify these trajectories.

The first one resembles a machine test bed, which directly controls the motor speed
and defines the desired torque at each time step. This allows simulations that test specific
scenarios (any combinations of torque and speed) without considering the vehicle dynamics
which couple torque and speed.

The second approach simulates driving on a road, where the desired speed and road
slope are specified and the mechanical model of the vehicle is used to determine the
resulting vehicle and motor speed from the applied torque. In this case, the desired motor
torque is determined using a driver model. A simple driver model in the form of a speed
controller is used. It inverts the mechanical model (Section 2.6) to calculate the necessary
torque to match the speed setpoint. Other ways to determine the torque setpoint from
the desired speed would also be possible, such as more sophisticated speed controllers or
simulating human behavior. Some of these approaches will be discussed in Chapter 5.
However, to keep the focus on the derating algorithm, they are not used in the simulation
studies.

The desired speed vd and road slope γ are simulated in two scenarios: The first one
is a simulated road where vd and γ depend on the current position of the vehicle. For
the second scenario, vd and γ are parameterized as functions of the time. While the first
scenario is useful to simulate undisturbed driving without stops on a road or racetrack,
the second scenario allows to simulate traffic with stop-and-go driving or waiting at traffic
stops.

The motor temperature is initialized to be homogenous at the value 110 ◦C. This
temperature is chosen because it is below the temperature at which the static derating
curves start limiting the torque (see Table 3.1). At the same time, it is relatively high to
reduce the necessary simulation time until the temperature limits are actually approached.
In practice, such an initial state could be the result of extended periods of highway driving.

28
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Figure 4.1 shows the simulation setup for the case including the mechanical vehicle
model. The following tasks are repeated for every time step. The desired speed trajectory
is defined by the test cycle from which the speed controller derives the desired torque. The
current speed v and state vector xt of the reduced thermal model constitute the available
state information for the controller. Using this information, the derating algorithm
determines a derating factor and the maximum allowed motor torque Mdrt according to
equation (3.9), as explained in Section 3.4.

electrical & loss
model thermal model

heat exchanger &
cooling model &

oilsump

limit

controller
MPC-based

derating
estimation

prediction

mechanical model

test cycle &
speed controller

simulation
model

Figure 4.1: Simulation setup including the models from Chapter 2, test cycle, and vehicle
controller for derating.

4.2 Test Cycles
The test cycles are designed so that the motor temperatures quickly rise to values where
derating is necessary. This means that the test cycles demand high loads of the motor,
often higher than usually expected in real driving situations.

In the electric motor, a high torque demand leads to high losses in the stator windings,
which increases their temperatures. The rotor temperature typically increases during
periods with high motor speeds due to increased eddy current losses and heat transfer
from the stator. However, because the motor directly drives the oil pump (Section 2.3),
there is a higher oil flow rate for cooling at higher motor speeds. The selected four test
cycles include scenarios with both low and high speed and acceleration to simulate a
variety of operating conditions.

The first test cycle shown in Figure 4.2a is a test bed simulation with constant motor
speed and constant desired torque with a cycle length of 700 s. A constant speed of
n = 8000 rpm (about half the maximum motor speed) is used. The desired torque
is Md = 178 Nm, which is 90 % of the peak torque at the given motor speed. This
combination of speed and torque presents a high load to the motor. Using the vehicle
parameters to calculate the equivalent road parameters, the first load scenario corresponds
to a vehicle speed of v = 28.3 m/s = 102 km/h at a road slope of γ = 22 %.

The second cycle is defined in Figure 4.2b based on the desired vehicle speed and
road slope. This scenario resembles a high-speed test cycle with the desired top speed
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Figure 4.2: Test cycles.

vd = 150 km/h = 41.7 m/s, corresponding to a desired motor speed of nd = 11 797 rpm.
The scenario also includes acceleration and braking phases at the start and the end so
that the desired velocity starts and ends at zero. To increase the motor load, there is a
constant road slope of γ = 8 % during the phase of constant speed.

The third test cycle shown in Figure 4.2c represents an archetypical case of urban
stop-and-go traffic. The desired velocity starts at zero and accelerates for 20 s, after which
the maximum speed of the cycle is reached. Then, the vehicle is decelerated to zero
velocity. This process is repeated 20 times during the scenario, which takes a total of
732 s. The road slope is zero in this cycle.

The last test cycle shown in Figure 4.2d was generated using road map data from a
mountain road. To increase the load, the three-fold road speed limits are used as the
desired velocity (limited to below the maximum vehicle speed). The slope starts with low
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values in the first half of the road and has larger values and larger changes in the second
half. The total road length is 28.9 km.

4.3 Simulations
In this section, the simulation results for each test cycle are presented, compared, and
interpreted. Additionally, parameter studies to show the effect of the prediction horizon
length τP , the weight distribution factor kw in (3.13), and the desired lifetime Ld in (3.2)
are conducted.
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(b) High-speed test cycle.
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(d) Mountain road test cycle.

Figure 4.3: Simulations without derating.

For each test cycle, temperature profiles without derating are shown in Figure 4.3. The
three stator temperatures of the active windings TCu, lead-end end-windings Tew,le, and
opposing-lead-end end-windings Tew,ole are shown on one axis and the permanent magnet
temperature Tpm on another axis. These results demonstrate that high temperatures
above the limits would be reached when the torque is not limited. For the MPC-based
derating, the stator temperatures yi, i = 1, 3, 4 are weighted in the cost function by the loss
of life term, i. e., the last term in (3.12). The limit Tmax,pm = 140 ◦C for the permanent
magnet temperature is also shown in Figure 4.3.
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To distinguish between which prediction method from Section 3.2.2 is used in the
MPC-based derating algorithm, the methods are identified using the following labels.
MPC 1) is used to refer to the prediction method, explained in Section 3.2.2, which uses
the mechanical model to predict the trajectories of the motor speed and torque. The
assumption that the future motor speed and torque stay constant is designated as MPC 2).
The (unrealistic) method to use the known motor speed and torque from the simulated
test cycle is referred to as MPC 3).

The following sections present simulation results which show the behavior of the different
derating approaches.

4.3.1 Static Curves and MPC-Based Derating Algorithm
First, the differences between the MPC-based derating algorithm and the derating using
static curves are analyzed. For this purpose, the high-load test cycle (Figure 4.2a) is used.
The corresponding simulated temperature profile without derating is shown in Figure 4.3a.
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Figure 4.4: Simulation of the high-load test cycle with derating using static curves.

The subsequent plots including Figure 4.4 consist of several subplots showing relevant
information about the derating. The first subplot shows the applied motor torque and
the torque limit according to (3.9) and (3.10). The desired torque is limited to get the
applied torque as described in Section 3.4. The second subplot shows the derating factor
from (3.8). The last two subplots show the relevant motor temperatures.
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Figure 4.5: Simulation of the high-load test cycle with MPC-based derating MPC 1).

Figure 4.4 shows the results for derating using static curves (Section 3.3). The plot of
the motor speed is omitted because it stays constant in this test cycle. In this scenario,
the derating factor starts at one and is reduced as soon as the copper temperature TCu
reaches the lower threshold 150 ◦C. The derating factor continuously decreases, mainly
because of other quantities such as the magnet temperature Tpm reaching their thresholds,
until it settles at a stationary value of approximately fdrt = 0.50.

Figure 4.4 shows the behavior that is typical for cycles with high desired torque, which
also causes higher electromagnetic losses. Due to the high losses in the stator windings,
their temperatures quickly rise. The permanent magnet temperature increases at a lower
rate, heated by the other parts of the motor and the rotor losses, e. g. due to eddy currents.

Figure 4.5 shows the simulation results using MPC-based derating MPC 1). Compared
to derating using static curves, the derating factor stays at one for a longer time until
there is a sudden drop at 3.6 minutes. The drop occurs when the predicted permanent
magnet temperature reaches its limit within the prediction horizon. This causes the stator
temperatures to stop increasing and slows the rate at which the magnet temperature rises
to ensure that the constraint is not violated. The main benefit of the MPC-based derating
algorithm is that it is possible to use the whole admissible temperature range up to the
specified limits. The derating factor reaches a stationary value of fdrt = 0.60, which is
higher than with the static derating curve approach because the temperature limit of the
permanent magnet is fully utilized. This shows that even for simple operating conditions
with constant motor speed and constant desired torque, for which the static curves can
be tuned best, the MPC-based derating satisfies the temperature limits while being less
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restrictive on the available torque.
The next section examines the influence of the prediction of motor torque and speed in

the prediction horizon on the MPC-based derating algorithm.

4.3.2 Prediction of Motor Speed and Torque
The MPC-based derating algorithm MPC 1) predicts the motor speed and torque trajectory
during the prediction horizon, using the mechanical model as described in Section 3.2.2.
This method is compared to MPC 2) which uses the assumption that the motor speed
and torque stay constant and to MPC 3) which predicts the future based on the known
trajectories of speed and torque from the test cycle. These comparisons use the high-speed
test cycle (Figure 4.2b) and stop-and-go test cycle (Figure 4.2c) for which the temperature
simulations without derating are shown in Figures 4.3b and 4.3c, respectively.

For the high-speed test cycle, the desired speed is constant for the majority of the time,
which makes it easy to predict. The assumption used in MPC 2) that the motor speed and
torque are constant, is reasonable for the high-speed test cycle except in the acceleration
and braking phases.
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Figure 4.6: Simulation of the high-speed test cycle with MPC-based derating MPC 2).
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Figure 4.6 shows simulation results for the high-speed test cycle using MPC-based
derating MPC 2). At the beginning of the simulation, the derating factor starts with
fdrt = 0.7 and increases to one after the acceleration phase. The lower derating factor
at the beginning is due to the deviation between the predicted and real motor speed.
According to the prediction, the motor speed stays lower, which also means that the oil
pump has a lower oil flow rate and therefore a lower cooling capacity. At the same time,
a high torque is predicted, which would cause the motor temperatures to quickly rise
within the prediction horizon. Therefore, derating is applied even though the actual motor
temperatures are far away from their limits. Later, the permanent magnet temperature
rises and the derating factor is gradually reduced to a stationary value of about fdrt = 0.64.
This ensures that the permanent magnet temperature stays within its limits.

The simulation result using method MPC 1) is shown in Figure 4.7. At the start,
i. e., during the acceleration phase, no derating is applied and the derating factor stays
at one because the increase of the motor speed is predicted. Between seven and eight
minutes, the derating factor drops suddenly. This drop ensures that the permanent magnet
temperature does not rise above its limit.
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Figure 4.7: Simulation of the high-speed test cycle with MPC-based derating MPC 1).
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Another difference to the simulation result using MPC 2) is that the permanent magnet
temperature stays approximately 1.5 ◦C below its limit because the stationary value of
the derating factor fdrt = 0.614 is lower than in the simulation using MPC 2). This is due
to two factors. One is the time-dependent weighting of the derating factors in the cost
function. In the optimization problem, the optimal solution can cause the derating factor
at the current time to be slightly lower so that the derating factors at subsequent time
steps do not have to be reduced as much. This effect will be investigated in Section 4.3.3
in a parameter study. However, this effect applies to both methods MPC 1) and MPC 2)
and can only explain why the temperature stays below the limit and cannot explain the
difference.

The second reason is caused by the prediction method used in MPC 1). As explained in
Section 3.2.2, the prediction is based on the desired torque without derating. Therefore,
the actual motor speed stays lower than the prediction. However, the MPC-based derating
takes into account the higher predicted motor speed, which would cause the temperatures
to rise faster, and reduces the derating factor and torque more than necessary.

Known Future

The goal of the model-based prediction of desired motor torque and speed is to provide
reliable information about the future load scenario, for the MPC-based derating algorithm.
The best possible prediction would be to exactly know the desired inputs in the future.
Therefore, the model-based prediction (MPC 1)) is compared to the (unrealistic) case
where the future desired torque and speed are exactly known (MPC 3)).

For this comparison, the stop-and-go test cycle is used, for which the prediction
accuracy varies a lot more than for the high-speed test cycle. Clearly, for this test cycle,
the assumption in MPC 2) of constant speed and torque is not applicable and results in a
bad prediction. The mechanical model-based prediction is more accurate, however, only
until the next switch between acceleration and deceleration, as shown in Figure 3.2. The
prediction errors result in an alternating over- and underestimation of the electrical losses
in the later parts of the prediction horizon.

Figure 4.8 shows the simulation of the stop-and-go test cycle with MPC-based derating
and the model-based prediction (MPC 1)). The first six acceleration and braking phases are
performed without any derating (fdrt = 1). However, the motor temperatures, especially
the stator temperature, quickly rise and the derating factor is reduced. The reduction
happens during the acceleration phase in which a high load is predicted. This results in a
bad speed tracking performance, i. e., the speed can no longer follow the desired trajectory.

The simulation results for the stop-and-go test cycle with MPC-based derating with
exactly known future desired torque and speed (MPC 3)) are shown in Figure 4.9. The
observed behavior is very different from the previous simulation results. The derating
factor is reduced earlier than in Figure 4.8 but does not have to be reduced as much.
Because the exact future of the desired speed and torque is known, the derating algorithm
can better consider the torque demand after changes between acceleration and braking.

In comparison, this means that the model-based prediction results in less conservative
derating in the short-term. With a known future, or when assuming constant speed
and torque, the derating is more conservative, i. e. trades off short-term lower torque for
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a higher derating factor in the long run. Therefore, using the model-based prediction,
the speed tracking is better at the start of the test cycle but deteriorates when the
motor temperatures approach their limits (Figure 4.8). Overall, the other two prediction
approaches result in a lower speed tracking error.

In the next section, the influence of important tuning parameters of the MPC-based
derating algorithm is investigated.
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Figure 4.8: Simulation of the stop-and-go test cycle with MPC-based derating MPC 1).
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Figure 4.9: Simulation of the stop-and-go test cycle with MPC-based derating MPC 3).

4.3.3 MPC Parameters
The analyzed parameters of the MPC-based derating algorithm are the prediction horizon
length τP , weight distribution factor kw in (3.13), and the desired lifetime Ld in (3.2),
which modifies the temperature-dependent loss-of-life term in the cost function.

Prediction Horizon Length

As discussed in Section 3.4, the prediction horizon length is chosen long enough so that the
temperature constraints can be satisfied and not too long so that the computation time is
still reasonable. Figure 4.10 shows the simulation results of the high-load test cycle with
MPC-based derating using MPC 1) and a reduced prediction horizon length of τP = 10 s.
This value is at the margin of being long enough and the simulated permanent magnet
temperature slightly violates its limit between five and six minutes. If the optimization
does not find an admissible solution, the derating factor and torque are set to zero. For
even shorter prediction horizon lengths, the permanent magnet temperature limit would
be considerably violated. Compared to the simulations with sufficiently long horizon
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lengths (like Figure 4.5 with τP = 100 s) a higher derating factor is computed and more
torque is allowed. As a result, the temperature limits cannot be enforced and an undesired
sudden reduction of the torque to zero occurs.
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Figure 4.10: Simulation of the high-load test cycle with MPC-based derating MPC 1)
with reduced prediction horizon length τP = 10 s.

Weighting of the Derating Factors

As discussed in Section 3.4, the weighting coefficients of the derating factor wu,l are not
chosen uniformly to improve the speed-tracking behavior. Figure 4.11 shows simulation
results for uniformly weighting the derating factor in the cost function (kw = 0 in
equation (3.13)) for the high-speed test cycle. Compared to Figure 4.7, the derating
factor is reduced earlier and the stationary value fdrt = 0.582 is lower. Additionally, the
permanent magnet temperature is lower and stays around 5 ◦C below its limit. In this
simulated scenario, when using uniform weights, the optimization chooses the derating
factors uniformly within the prediction horizon. This entails that the predicted permanent
magnet temperature increases steadily and reaches its limit only at the end of the prediction
horizon. When the optimization is solved for the next time step, the prediction horizon is
shifted. Therefore, the permanent magnet temperature limit is not fully utilized when
using equally weighted derating factors. This shows that the weighting coefficients control
how conservatively the derating factors are chosen.
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Figure 4.11: Simulation of the high-speed test cycle with MPC-based derating MPC 1)
with uniform derating factor weights.

Desired Lifetime

The last parameter study shows the effect of the desired lifetime Ld that is used as a
reference in the loss-of-life term (3.2) in the MPC cost function. For the simulation results
shown in Figure 4.12, the desired lifetime is increased by a factor of 100 to L′

d = 100Ld

compared to Figure 4.9. This means in the optimization that the stator temperatures are
weighted stronger than the derating factor. The effect is very noticeable in the resulting
lower stator temperatures and the reduced derating factor.

By inverting (3.4) the desired lifetime can be converted to an equivalent reference
temperature Td = L−1(Ld). For the original simulation in Figure 4.9, the reference
temperature is Td = 170 ◦C. For the simulation with increased desired lifetime it is
T ′

d = 122.5 ◦C. The stator temperatures in both of these simulations reach approximately
the specified reference temperature Td. The exact reference temperature is not exactly
reached, for several reasons including the specific driving cycle, non-uniform weighting
of the derating factor, predicted torque and speed and the difference between the three
individual stator temperatures corresponding to the active winding and both end-windings.



4 Evaluation and Results 4.3 Simulations 41

0

5

10

×103

n
in

rp
m

n
nd

−200

−100
0

100

200

M
in

N
m M

Mdrt

0

0.5

1

f d
r
t

110

115

120

125

T
in

◦ C

TCu

Tew,le

Tew,ole

0 2 4 6 8 10 12
110

120

130

140

time in min

T
p
m

in
◦ C Tpm

Tmax,pm

Figure 4.12: Simulation of the stop-and-go test cycle with MPC-based derating MPC 3)
with increased desired lifetime Ld.

4.3.4 Mountain Road Simulation
As a final example, Figure 4.13 shows the simulated mountain road test cycle using MPC 1).
This example represents a realistic driving scenario with changing speed requirements and
a varying road slope.

Figure 4.3d shows the motor temperatures without derating. As shown in Figure 4.13,
the derating algorithm ensures that the permanent magnet temperature stays within
its limit. Figure 4.13 additionally shows the road slope γ and slope estimation error
∆γ = γ̂−γ. The slope estimation, detailed in Section 3.2.1, can follow the actual slope with
a small estimation error. The first half of the simulation features some high acceleration
phases with lower road slopes. During the second half of the simulation, the desired speed
stays constant but there are larger slopes and more changes of the slope. During this
second half of the simulation, the derating factor is correlated to the slope. This behavior
occurs because the motor speed prediction uses the currently estimated slope for the whole
prediction horizon. When the slope is larger, the predicted motor speed increases less,
which causes a lower predicted permanent magnet temperature increase and therefore
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results in a higher derating factor. Conversely, when the slope is lower the predicted speed
increases more during the prediction horizon, causing the temperature to rise faster which
in turn results in a lower derating factor.
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Figure 4.13: Simulation of the mountain road test cycle with MPC-based derating MPC 1).
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4.4 Comparison Metrics
To evaluate and compare the simulation results, several performance metrics are used.
The MPC-based derating algorithm follows conflicting goals, i. e., maximizing the derating
factor, reducing winding degradation, and keeping the temperatures within their limits.
The metrics are designed to show how well these goals are achieved by the different
derating algorithms and prediction approaches.

The test cycles can take different amounts of time to simulate. Therefore, the total
number of steps Nsim in each simulation can vary. To simplify comparing the simulation
results, the comparison metrics are normalized by Nsim.

The derating algorithm computes a derating factor in each step, which limits the
maximum available torque. If the desired torque is below this limit, the derating factor
does not have any effect. To consider the derating factor only when it has an effect on the
applied torque, the effective derating factor

fdrt,e,k =
�

fdrt,k if |Md,k| > Mdrt,k

1 otherwise
(4.1)

is introduced. The average effective derating factor

fdrt,e = 1
Nsim

Nsim�
k=1

fdrt,e,k , (4.2)

is a measure of the average reduction of the available motor torque to keep temperatures
within their limits and to limit the loss of life of the stator windings. The goal of the
developed derating algorithm is to better utilize the temperature limits than the state-of-
the-art approach using static curves. Therefore, the average effective derating factor fdrt,e
should be higher using the MPC-based derating algorithm.

The loss of life of the stator windings is considered using the average relative loss of life

λlt = max
i

�
1

Nsim

Nsim�
k=1

λlt(yi,k)



for i = 1, 3, 4 , (4.3)

which is the average of (3.2) over the complete time span of the simulation. Out of the
active winding and both end-windings, only the component of the stator windings with
the largest loss of life is considered, i. e., the component that degrades the fastest during
the respective simulation.

The loss of life factor only applies to the stator windings and not the rotor permanent
magnet. The rotor temperature is limited by a hard constraint in the optimization problem.
If that constraint is violated, i. e., the optimization does not find an admissible solution,
the derating factor is set to zero.

Additionally, the root mean squared error (RMSE) for the speed

RMSE(v) =

���� 1
Nsim

Nsim�
k=0

(vk − vd,k)2 (4.4)
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is used to compare the algorithms for the high-speed and stop-and-go test cycles in terms
of the tracking performance. This tracking performance is not an explicit goal of the
MPC-based derating algorithm. However, it is important in real driving situations and
indirectly reflected in the cost function via the derating factor.

4.5 Conclusion
To summarize the results of this chapter, the metrics from Section 4.4 are computed and
compared in Table 4.1. Lines with a red background indicate that the permanent magnet
temperature limit is exceeded.

For the high-load test cycle (Section 4.5), the speed tracking error is zero and therefore
not shown. In the mountain road test cycle, the speed reference is not physically realizable.
Hence, the speed tracking error is not meaningful and not shown. Compared to derating
using static curves, the MPC-based derating algorithms achieve a higher average derating
factor by better utilizing the thermal constraints. This also results in higher temperatures
of the stator windings, which means that the average relative loss of life λlt of the
MPC-based derating is higher than for static curves.

In the high-speed test cycle, the MPC-based derating can improve the speed tracking
performance. However, in the stop-and-go test cycle, the speed tracking error of MPC 1)
is larger than using static curves, e. g. in Figure 4.8 which shows good speed tracking only
at the beginning of the simulation but strongly deteriorates later on. This causes the large
speed tracking error shown in Table 4.1c.

Another conclusion from the simulation results is that the prediction method has a
major influence on the performance of the MPC-based derating algorithm. From the
data, it is not obvious if the approach MPC 2) using the assumption of constant speed
and peak torque or MPC 1) using the prediction based on the mechanical model is the
generally better approach for all possible driving conditions. The prediction based on the
mechanical model provides better performance and allows for higher torque in the short
term, while the other one results in more conservative derating decisions.
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algorithm fdrt,e λlt

no derating 1.000 1.96
static curves 0.618 0.059
MPC 1) 0.767 0.21
MPC 2) 0.779 0.15
MPC 3) 0.835 0.32
MPC P1) 0.763 0.32

(a) High-load test cycle.

algorithm fdrt,e λlt RMSE in m/s
no derating 1.000 0.08 0
static curves 0.608 0.02 21.7
MPC 1) 0.796 0.04 10.1
MPC 2) 0.782 0.04 8.9
MPC 3) 0.810 0.04 9.6
MPC P1) 0.827 0.04 8.5
MPC P2) 0.756 0.03 14.7

(b) High-speed test cycle.

algorithm fdrt,e λlt RMSE in m/s
no derating 1.000 1.50 0
static curves 0.610 0.08 17.4
MPC 1) 0.719 0.51 36.5
MPC 2) 0.681 0.18 9.5
MPC 3) 0.696 0.17 14.5
MPC P1) 0.823 0.35 12.7
MPC P3) 0.477 1.17 25.3

(c) Stop-and-go test cycle.

algorithm fdrt,e λlt

no derating 1.000 0.22
static curves 0.649 0.02
MPC 1) 0.827 0.06
MPC 2) 0.824 0.06
MPC P1) 0.837 0.07

(d) Mountain road test cycle.

Table 4.1: Average effective derating factor fdrt,e, average relative loss of life λlt, and
root mean squared speed tracking error (RMSE) of the various derating and
prediction algorithms for the test cycles. Simulations in which the permanent
magnet temperature constraint is violated are marked red.
Algorithm abbreviations:
MPC 1) – MPC-based derating using prediction with mechanical model.
MPC 2) – MPC-based derating with constant speed and torque.
MPC 3) – MPC-based derating with known future desired torque and speed.
MPC P1) – Parameter study with prediction horizon τP = 10 s (Figure 4.10).
MPC P2) – Parameter study with weight distribution kw = 0 (Figure 4.11).
MPC P3) – Parameter study with desired lifetime L′

d = 100Ld (Figure 4.12).



5 Conclusions and Outlook
This chapter summarizes the thesis, highlights the limitations behind and assumptions
of the presented methods, and discusses possible future improvements and alternative
approaches.

5.1 Summary
In this work, a derating algorithm for thermal protection of a permanent magnet syn-
chronous machine is developed based on dynamical models of the vehicle and the motor.
For the derating algorithm, the relevant parts of the vehicle are modeled in Chapter 2. The
motor models are based on Baumann et al. [15] and include the electrical model, the cool-
ing model, and the reduced-order thermal model. Using the electrical model (Section 2.1),
the optimal current setpoint is selected based on the desired motor torque. The modeled
motor cooling system (Section 2.3) consists of two cooling circuits, one operates with
cooling water and one with oil. Between these two circuits, energy is exchanged by a heat
exchanger. The oil flow rate, controlled by the oil pump, and the oil sump temperature
are modeled as part of the cooling system. To model the temperature dynamics of the
PMSM, a reduced-order model [15] is used. It is based on a high-dimensional finite-volume
model of the motor. To make it suitable for real-time evaluation, the model dimension is
reduced using model-reduction techniques.

The thermal damage and accelerated aging which can be caused by high temperatures
are accounted for in two ways. First, to quantify the degradation of the stator winding
insulation (Section 2.5), a lifetime prediction model from [5] is used. Based on this model,
the loss of life of the stator windings for a given temperature profile can be measured.
Secondly, for the permanent magnet, demagnetization can occur when it is exposed to
high temperatures and strong magnetic fields [24]. Both of these damage mechanisms
have to be prevented or minimized as part of the thermal protection algorithm.

The vehicle dynamics are modeled using a one-dimensional longitudinal mechanical
model, similar to the one used in [11]. This model gives the vehicle position and speed
(Section 2.6).

In Chapter 3, the developed thermal protection algorithm is presented and explained.
The MPC-based derating algorithm requires knowledge of the future desired motor torque
and speed. These quantities are predicted based on the current desired motor torque
and road slope using the mechanical vehicle model. The road slope is estimated using
an Extended Kalman Filter (Section 3.2.1). The MPC uses the predicted desired motor
torque and speed, the thermal motor state and the model of the PMSM to calculate the
future thermal state and determine the optimal derating factor. In the cost function of
the MPC optimization problem, a compromise between increasing the derating factor
and reducing the thermal damage to the stator windings is made (Section 3.4). The
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temperature limit of the permanent magnet is enforced using an inequality constraint of
the MPC optimization problem.

Section 3.5 contains a discussion on the solution and implementation of the MPC
optimization problem. To improve the performance, the model used in the MPC is
simplified and optimized for performance.

To validate and test the derating algorithm, simulation studies were conducted, which
are presented in Chapter 4. First, the simulation setup is explained and the test cycles
used in the simulations are presented. The MPC-based derating is compared to derating
based on static derating curves. The comparison shows that using MPC improves the
available torque while still keeping the temperatures within their limits. The effects of
the different prediction approaches of future desired motor torque and speed are studied.
Table 4.1 shows a summary of the simulation results and compares the derating algorithms.
Additionally, parameter studies of the prediction horizon length, weighting coefficients for
the derating factor in the MPC cost function, and desired lifetime in the loss of life term
in the MPC cost function are conducted.

5.2 Limitations
The simulation results show the capabilities of the developed algorithm and its advantages
over the derating strategy based on static curves. However, a few limitations also have to
be considered. Several simplifying assumptions are made. Only the mentioned components
of the vehicle are modeled while other parts are neglected. The battery is not modeled, and
its voltage is considered constant. The power electronics, e. g., voltage source inverter, are
not modeled. The cooling water flow rate Qw and input temperature Tw,in are considered
constant because the water pump is not included in the model. However, to be on the
safe side, the water cooling parameters are selected for a worst-case scenario at high
motor temperatures. Qw is set to its maximum and Tw,in is high as well. Mechanical
braking is not modeled, which implies in the simulations that for braking maneuvers less
torque is available than in a real vehicle. The mechanical model is only one-dimensional
and simplistic, e. g. it assumes that no slip occurs between the road and the wheels.
Additionally, other external influences are either not modeled, e. g., wind, or considered
constant, e. g., the coefficient of friction of the road and the ambient temperature. Despite
these assumptions, the developed derating algorithm has extension points where additional
models can be added, e. g., models for the battery or the water pump.

It is assumed that the current thermal state xt of the PMSM is known to the MPC-
based derating algorithm. In a real implementation, an estimation of the state of the
reduced-order model is required, e. g., by using an observer. Additionally, the algorithm
is only evaluated using simulations. The model used to represent the plant dynamics is
similar to the model used in the MPC-based derating algorithm. For example, the reduced-
order model is used to represent the plant dynamics. It is also used in the developed
algorithm with the modifications explained in Section 2.7. To evaluate the robustness of
the MPC-based derating algorithm, the simulations include noise of the measured motor
speed n, the applied torque M , and the measured state xt of the reduced-order model.

Another limitation is that the simulations in Chapter 4 were not simulated in real-time.
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For implementation on specific hardware, the derating algorithm has to be tuned to achieve
real-time performance, e. g., by using the parameter tMPC as explained in Section 3.6.

The next section suggests some improvements and how the mentioned limitations can
be overcome.

5.3 Outlook
In this final section, an outlook is given, on how the developed thermal protection algorithm
could be improved or extended in the future.

As shown in Chapter 4, the prediction of the future desired motor torque and speed
has a considerable influence on the performance of the algorithm. However, in the current
approach, only a limited amount of information, i. e., the current desired torque and
road slope, is used for this prediction. In many cases, more information about the future
driving course is available, e. g., from other sensors or from a navigation system integrated
into the vehicle. Sun et al. [28] analyzed the route choice behavior for given start- and
end-points based on GPS measurements and created a route prediction model for human
drivers. Helmholz et al. [29] predicted the future route trajectory for cases when the
end-point is unknown to the car (i. e., without an active navigation system) based on
the driver’s travel history. Another approach, specific for use by MPC applications, is
examined by Mohammadi et al. [27]. Using an artificial neural network, the future inputs
from a human driver are predicted, to improve the performance of the MPC.

Next, the limitation that the simulation model is very similar to the model used in
the algorithm is addressed. This limitation could be compensated if a better, more
sophisticated simulation environment was used that utilizes more accurate and complex
plant models. There exist various simulation tools for use in the automotive industry that
allow more realistic simulations, such as IPG CarMaker1, CarSim2, or AVL Cruise M3.
Additionally, some of these tools also include controllers that mimic the behavior of human
drivers.

Finally, the limitations due to the computational performance are discussed. To facilitate
real-time capabilities, the models, especially the thermal model, as well as the optimization
problem, as discussed in Section 3.5, would have to be modified to be more performant
to evaluate. Then, the mechanical model could be included in the MPC to allow for
a different cost function that could directly weigh the vehicle speed (see Section 3.4).
Additionally, the prediction of future motor torque and speed could be included into the
MPC so that the derating factor influences the predicted values within the optimization
problem.

1https://ipg-automotive.com/en/products-solutions/software/carmaker/
2https://www.carsim.com/products/carsim/
3https://www.avl.com/en/simulation-solutions/software-offering/simulation-tools-z/avl-cruise-m



A Calculations

A.1 Non-Uniform Derating Factor Weighting
This appendix explains the weighting coefficients wu,l of the derating factor introduced in
Section 3.4. Because the MPC does not include the mechanical model, it is not possible
to use the vehicle position, vehicle speed, or time to travel a certain distance in the MPC
cost function. The following derivations aim to maximize the traveled distance sN , even
though it cannot be explicitly included in the cost function.

The non-uniform weight distribution of the derating factor in the cost function is
selected based on the mechanical vehicle model and some simplifying assumptions. The
assumptions are:

• The acceleration is approximately proportional to the applied torque a = v̇ ∝∼ Mm.

• The acceleration is piecewise constant a(lτC) = al for intervals of the step size τC .

• The driving duration is fixed and a multiple of the step size ttot = NτC .

• The initial conditions for position and speed are s0 = 0 and v0 = 0, respectively.

The position at the end of the driving duration is

s(ttot) = sN =
�� ttot

0
a(t) dt2 = τC

N−1�
l=0

vl,l+1 , (A.1)

using the average speed vl,l+1 during a sampling period. The speed at the start of a time
step reads as

v(lτC) = vl =
� lτC

0
a(t) dt = τC

l−1�
i=0

ai . (A.2)

The average speed during a time step follows as

vl,l+1 = vl + vl+1
2 = τC

�
al

2 +
l−1�
i=0

ai



. (A.3)

Using (A.1) and (A.3), the final position

sN = τ2
C

N−1�
l=0

2(N − l − 1) + 1
2 al (A.4)
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can be calculated as a function of the acceleration values. This shows that, the influence
of the acceleration al on the final position sN is

dsN

dal
= τ2

C

2(N − l − 1) + 1
2 . (A.5)

This influence decreases linearly with time. When normalized by

N−1�
l=0

dsn

dal
= τ2

CN2

2 , (A.6)

this results in the second part of the weighting factor (3.13)

wu2,l = 2(N − l − 1) + 1
N2 , (A.7)

which is stage-dependent.
The first term wu1,l = 1

N in (3.13) is constant, which finally gives

wu,l = 1 − kw

N
+ kw

2(N − 1 − l) + 1
N2 . (3.13)

The weight distribution factor kw allows balancing the importance of the first and second
terms. It was found that a value of kw = 0.8 achieves a good compromise between
short-term and long-term performance.
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