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Abstract 
Most underwater communication and sensing systems use acoustic waves. However, acoustic 
signals cause stress to animals. Transmission systems with lasers are limited by turbidity. The use of 
electromagnetic waves presents a possible interesting alternative, however the penetration depth of 
electromagnetic waves under water is limited due to physical properties. In this work, the aim is to 
infer the specific conductance based on measurements of salinity and temperature, and by the waves 
arriving at the shore generated by the wind over a wide range; accurate estimates of the specific 
conductance, especially if they are low, may lead to increased use of electromagnetic/ optic 
communication systems underwater. 

 



Vienna University of Technology  Master programme Embedded Systems 

Melic Alena   3 

Kurzfassung 
Die meisten Unterwasserkommunikations- und -erkennungssysteme nutzen akustische Wellen. 
Akustische Signale verursachen jedoch Stress bei den Tieren. Übertragungssysteme mit Lasern werden 
durch Trübungen eingeschränkt. Die Eindringtiefe elektromagnetischer Wellen unter Wasser wird 
durch physikalische Eigenschaften begrenzt, vor allem durch den spezifischen Leitwert. Ziel dieser 
Arbeit ist es, den spezifischen Leitwert auf der Grundlage von Messungen des Salzgehalts und der 
Temperatur sowie der an der Küste eintreffenden, durch den Wind erzeugten Wellen in einem weiten 
Bereich zu bestimmen; genaue Schätzungen des spezifischen Leitwerts, insbesondere wenn sie niedrig 
sind, können zu einer verstärkten Nutzung elektromagnetischer/ optischer Kommunikationssysteme 
unter Wasser führen. 
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Introduction  
"If you want to build a ship, don't drum up the men to gather wood, divide the work and give orders. Instead, teach them to 
yearn for the vast and endless sea."- Antoine de Saint-Exupéry 

This thesis represents a significant section of my research focussing on the interplay of electromagnetic 
and acoustic waves. As we are aware most underwater communication and sensing systems use 
acoustic waves due to the low loss propagation. However, this type of signal transmission is prone to 
interference. The idea of my research is to combine acoustic and electromagnetic/ optic transmission, 
to enhance the accuracy of signal transmission (joint propagation of sensor array data). 

Most underwater communication systems rely on acoustics, as acoustic waves are better suited for 
propagation in water. However, this type of wave propagation is susceptible to interference, which 
can pose challenges for communication, particularly in situations requiring distress signals, such as 
submarines. For instance, in the case to locate a submerged submarine, one can exploit the fact that 
it is constructed of metal. A sonar system emits sound beams into the water, which travel 
approximately five times faster than in air. These beams are deflected by the submarine and captured 
as an image on a technical display. However, water represents a significant challenge due to its 
nonhomogeneous nature. It consists of various layers with differing temperatures and salinity levels, 
which are subject to constant change. The presence of such layers can cause the sound beam to be 
deflected, making it difficult to locate the object beneath. The primary objective of this thesis is to gain 
better understanding of these layers by analysing acoustic measurement data and by comparing to 
corresponding mathematical models. 

• As previously mentioned, the properties of water, such as salinity (S), density, turbidity, and 
temperature (T) are not uniform and vary in distinct layers. These factors interact with each 
other, affecting the speed of sound. The values of salinity, density, turbidity, depth(z) and 
temperature influence each other. The determination of sound velocity values, for example 
can be obtained by: 𝑣 = 1449.2 + 4.6 𝑇 − 0.055 𝑇2 + 0.00029 𝑇3 + (1.34 − 0.01 𝑇) (𝑆 − 35) +  0.016 𝑧 (1) 

(F.B. Jensen, 1994) 

Another parameter that undergoes changes is the electromagnetic conductivity, primarily influenced 
by salinity. The measurement of salinity is dependent on factors like temperature, altitude, and the 
speed of sound. Furthermore, an additional objective of this research is to gain insights into salinity 
values and consequently, the electromagnetic conductivity through acoustic measurement data from 
a hydrophone array near the island of Elba. Typically, salinity values are determined using 
electromagnetic conductivity. In this work, a regression should take place.  The aim is to derive the 
conductivity profile based on the determined salinity values, particularly within the range of up to 100 
meters of water depth. This depth range is crucial, as it provides a starting point for an acoustic 
receiver, which receives acoustic data (sound speed) from waves near the shore. Therefore, it is 
recommended to calculate for a profile of approximately 100- meter depth (typical diving depth of 
conventional submarines). 

• The penetration depth of electromagnetic waves is explained by this simple formula: 

𝛿 = / 2𝜔𝜇𝜎 (2) 

where 𝛿 is the penetration depth, 𝜔 is the angular frequency, 𝜎 is the electromagnetic conductivity, 
and 𝜇 is the permeability. By applying this formula to calculate the penetration depth of 
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electromagnetic waves in the atmosphere and consequently the range, it becomes evident, that at a 
frequency up to 2 GHz (such as WLAN), the penetration depth spans several meters. However, in a 
medium like water, it is limited to only a few centimetres. Gaining more knowledge about the 
electromagnetic conductivity in water can facilitate greater propagation of electromagnetic waves in 
this medium, despite its high attenuation value. 

Modelling and measuring acoustic and electromagnetic propagation media 
characteristics 
To assess parameters such as sound speed and density and conductivity in seawater, as well as 
simulate a model, a diverse range of sensors and approximation methods can be employed. This 
section will provide descriptions of some of these methods. 

Modelling key acoustic propagation media characteristics 
Key acoustic media characteristics are sound speed and density profiles, whereas permittivity and 
conductivity are key characteristics for electromagnetic propagation. The modelling process for both 
is similar, the nature of the waves differs (transverse waves for electromagnetic propagation and 
longitudinal waves for acoustic propagation). The Helmholtz equation serves for both as a foundation 
and can be solved either numerically or analytically. 

Simple sound propagation model 
• Sound propagation in gases and liquids is described by spatial fluctuations around a rest 

position, which affect the physical quantities pressure, density, and velocity of the particles: 𝑝 = 𝑝0 + 𝑝~ (3) 𝜌 = 𝜌0 + 𝜌~ (4) 𝑣 = 𝑣0 + 𝑣~ (5) 

• By the total differential of the velocity vector for a volume element (The first term is the change 
of the velocity field with time, the second considers that the element moves to a different 
location due to the motion): 𝑑𝑉 = 𝜕t𝑣 𝑑𝑡 + (𝑑𝑟 . ∇)𝑣 (6) 

one can see how pressure and sound velocity influence each other (the acceleration 
must be expressed by force; gravity and viscosity were neglected to find a simple 
solution; density is considered constant) 𝜌 𝜕t𝑣 + (𝑣 . ∇)𝑣 = −∇p (7) 

• If it is assumed that the plane wave is valid only in one direction (in 𝑥) in the sound 
propagation, then the equation can be simplified for one direction, and the solution for 
pressure is 𝑝~ = 𝑝1𝑓 (𝑡 ∓ 𝑥𝑐) (8) 

with the characteristic impedance 𝑍0 =  𝑝~𝑣~ (9) 

and for water the characteristic impedance is 𝑍0 =  1.5 106 𝑃𝑎 𝑠 (10) 
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In sound propagation, there is friction (caused by dynamic viscosity), thermal conductivity 
(compression and pressure variations cause temperature changes), and molecular absorption. These 
are all attenuation factors that can be included to determine the sound velocity in a model. In addition 
to attenuation factors, bottom loss and volume scattering could appear and modify the solution.  

Helmholtz Equation 
• The wave equation for pressure with constant density is: 

∇2𝑝 − 1𝑐2 𝜕2𝑝𝜕𝑡2 = 0 (11) 

whereas c is the speed of sound.  
• The wave equation for displacement potential is: 

∇2𝛷 − 1𝑐2 𝜕2𝛷𝜕𝑡2 = 0 (12) 

whereas the kinematic relation between velocity and displacement 𝑣 = 𝑢̇. The 
displacement potential is defined by 𝑢 = ∇𝛷. Discrete changes in density are handled 
by appropriate boundary conditions between regions of constant density. The 
boundary conditions require then continuity of pressure and displacement. Therefore, 
the acoustic pressure in terms of the displacement potential is defined by:  𝑝 = −𝜌𝑐2∇²𝛷 (13) 

The underwater acoustic pressure signals can be modelled using a variety of methods, enabling us to 
gain a certain level of understanding trough their analysis: 

• Ray- Methods (used to explain sound propagation in water, but should not be chosen for 
higher-value applications) 

• Wavenumber Integration Techniques 
• Normal Modes Methods 
• Parabolic Equation 

o Standard Parabolic Equation 
o Generalized Parabolic Equation 
o Elastic Parabolic Equation 

The Split Step Fourier Algorithm 

Since many practical ocean acoustics problems are narrow angle problems with little to no 
bottom interaction, the split step technique will remain the preferred technique for sonar- 
performance. The Split Step algorithm is used to solve the standard PE. 

The principal advantage of the various parabolic wave equations is that they can be solved by split- 
step- Fourier technique and various FE and FD techniques. This technique is computationally 
efficient for long range, narrow angle propagation. For short-range, deep-water problems and 
shallow water problems in general, this requires wide- angled PEs, which can be solved by FD. 

• Finite Differences Methods 
• Finite Elements Methods 
• etc. 

(F.B. Jensen, 1994) 



Vienna University of Technology  Master programme Embedded Systems 

Melic Alena   9 

Normal Mode Method vs. Finite Element Method 
In this section we compare the results of a model of the sound pressure field in response to an isotropic 
point source emitting a sinusoidal spherical wave in shallow ocean, approximated by the normal mode 
method and the finite element method. 

Normal Mode Method 
Normal mode methods and boundary element methods have drawbacks, as they provide solutions 
and estimations either fully determined in two dimensions (2D) or within a specific range in 2D). 

Normal Mode Method- Formulation 
• In underwater acoustics, it is customary to consider a medium in which density ρ and the 

velocity c depend on the depth coordinate z. Later a weak horizontal variation can be 
approximately accounted for using adiabatic approximation. The motivation behind this 
method lies in the Hankel transformation for the sought- after Green’s function: 

𝐺(𝑟, 𝑟0, 𝜔) = −𝑗4𝜌(𝑧0) ∑ 𝜑a(𝑧)𝜑a(𝑧0)𝐻0(2)(𝑘a𝑅)A(w)
a=1 − ∫ . 

cBJP (14) 

The subsequent figure illustrates the sound pressure field in response to an isotropic point source 
emitting a sinusoidal spherical wave of 250 Hz estimated by the normal mode method:  

 
Figure 1: Analytical Solution for the Sound pressure field:  Normal Mode Method 

A small calculation error arises from the omission of the integral term from the equation in the 
program implementation (Mecklenbräuker, 1998). 

Finite Element Method 
Finite element and finite differences solver are usually used for finite volume calculations, a problem 
with the ocean. Through specific boundary conditions such as the perfectly matched layer (PML) 
calculations and approximations are nevertheless achievable. The PML setup allows one or two modes 
with a specific wave number to pass the modelling domain with minimal reflections. We specified the 
size of the modelling domain to be 130 meters in width ties 130 meters in depth times 130 meters in 
height.  

• The sea surface is simulated by the Dirlichlet Boundary: 𝑝 = 0 (15) 

• The seabed is simulated by the Neumann Boundary: 
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𝑑𝑝𝑑𝑛 = 0 (16) 

We dealt with the open boundaries with the PML setup. One limitation of this method is its high 
computational cost in comparison to the normal mode method. Advantages, however, are: Its ease 
and speed of application, allowing for easy modification of the parameters being modelled and their 
interdependencies. For example, it enables the inclusion of scattering, ocean damping and 
perturbation effects. 

Finite Element Method- Formulation 
Let Ψ be a function space generated by functions Φ(x) that are sufficiently often differentiable with 
compact supports. The elements φ(x) of this generating system are called test functions. For example, 
let ux(x, t) = f(x).  

• First, choose Ψ as any space with at least one continuously differentiable function φ(x) with 
bounded support. 𝑢x(x, t)Φ(x)  =  f(x)Φ(x) (17) 

• Integrate: ∫ 𝑢x(x, t)Φ(x)dx = ∫ f(x)Φ(x)∞
-∞

∞
-∞ (18) 

• Partial integration: ∫ 𝑢x(x, t)Φ(x)dx = [𝑢(𝑡, 𝑥)𝛷(𝑥)]-∞∞ − ∫ u(t, x)Φx(x)dx∞
-∞ =  −∞

-∞ ∫ u(t, x)Φx(x)dx∞
-∞ (19) 

The gray-highlighted part of the partial integration is the compact support and must vanish. 

From the strong formulation: 𝑢x(x, t)Φ(x)  =  f(x)Φ(x) (20) 

 

 we derive the weak formulation: − ∫ u(t, x)Φx(x)dx =∞
-∞  ∫ f(x)Φ(x)dx (21)∞

-∞  

u(t, x) does not need to be differentiable everywhere anymore. 

The finite object to be integrated is partitioned into triangles/tetrahedra, each transformed into what 
are known as 'hat functions,' with each of these functions being assigned its corresponding physical 
interpretation and conditions. 

Finite Element Method- Formulation for Acoustics 
 

1. The acoustic domain is divided by a mesh of finite elements, the equation that needs to be 
solved for each element with their specific boundary conditions e.g.:  

∇ ∙ (− 1𝜚c (∇𝑝t − 𝑞d)) − 𝑘eq 2 𝑝t𝜚c = 𝑄m (22) 
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𝑘eq2 = (𝜔𝑐c)2 (23) 

2. The choice and arrangement of these elements depend on the specific problem being solved. 
We specified the maximum tolerable element size to be: 
 𝜆5 (25) 

 
3. The acoustic wave equation is formulated in terms of the unknown acoustic pressure field. 

This equation is derived by the physical properties of the medium. 
 

4. The local equations are combined to form a global system of equations that represents the 
entire domain. 
 

5. The global system of equations is solved numerically at each node. (𝐾a − 𝛬n2 𝑀a)𝛷 n = 0 (26) 

𝐾a = ∫ 𝐵aT𝐵a𝑑𝑉 
V (27) 

𝑀a = ∫ 1𝐶0² 𝑁aT𝑁a𝑑𝑉 (28) 
V  𝐵a = [𝑑/𝑑𝑥, 𝑑/𝑑𝑦, 𝑑/𝑑𝑧]T𝑁a (29) 

 

In following figures, the sound pressure field is estimated from a point source emitting a sinusoidal 
spherical wave (170 Hz). Additionally, in this case the point source is located at a depth of 65 meters, 
which roughly corresponds to the experiment presented later in this thesis: 

 

 
Figure 2: Numerical Solution for the Sound pressure field: Finite Element Method x-, y- axis 
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Figure 3: Numerical Solution for the Sound pressure field: Finite Element Method y-, z- axis 

 

As computer performance continues to improve, the finite element method is recommended for 
further model validations. It allows the incorporation of element- wise scattering disturbances, 
attenuation factors and acoustic flow source coupling. More suitable model approximations are 
achievable. 

Modelling electromagnetic propagation media characteristics 
The finite element method has demonstrated its effectiveness as a versatile numerical modelling 
technique. Its successful application in approximating the acoustic pressure field in shallow oceans is 
indicative of its potential to yield promising results in other respective fields, such as the 
electromagnetic field, for e.g., obtaining the power density. While the modelling process for 
electromagnetic and acoustic waves shares similarities (the Helmholtz equation serves for both as a 
foundation and can be solved either analytically or numerically), it's important to note that the nature 
of these waves differs, with electromagnetic waves being transverse and acoustic waves being 
longitudinal. 

Electromagnetic vector potential 
The electromagnetic vector potential is used in electrodynamics to describe electromagnetic fields and 
wave propagation in electromagnetic systems. It is closely related to the magnetic field (B- field), the 
electric potential, it provides an alternative representation of the Maxwell’s equations and can 
therefore be used to infer power density properties.  

• The Maxwell equations are:  ∇ ∙ 𝐷 = 𝜌 (30) ∇ ∙ 𝐵 = 0 (31) ∇ × 𝐸 = − 𝜕𝜕𝑡 𝐵 (32) 

∇ × 𝐻 = 𝐽e + 𝜕𝜕𝑡 𝐷 (33) 

The last two equations are Faraday's law of electromagnetic induction and Ampère's 
Maxwell's law. 



Vienna University of Technology  Master programme Embedded Systems 

Melic Alena   13 

 

• We consider a pure vortex field in advance harmonic processes:  𝐵 = ∇ × 𝐴 (34) 𝐻 = 1µ ∇ × 𝐴 (35) 

and insert this equation in Faradays law of electromagnetic induction: ∇ × 𝐸 = −𝑗𝜔∇ × 𝐴 (36) ∇ × (𝐸 + 𝑗𝜔𝐴) = 0 (37) 

 

• For the electric field, it would then apply: 𝐸 + 𝑗𝜔𝐴 = −∇𝜙 (38) 𝐸 = −𝑗𝜔𝐴 − ∇𝜙 (39) 

which is only possible with a scalar potential 𝜙. 

• Using these equations and the Lorentz gauge (The choice of a particular gauge, including the 
Lorentz gauge, depends on the requirements and convenience of a specific problem. In the 
Lorentz gauge, the divergence of the vector potential is set to vanish with respect to the 
scalar potential and the speed of light in a vacuum. This simplifies the mathematical 
treatment of electromagnetic fields and waves in certain special cases.), we've expressed our 
electric field E and magnetic field H as functions of two potentials, and we can place them 
into the Ampère-Maxwell’s law: ∇2𝐴 + 𝜔2𝜀µ𝐴 = −µ 𝐽e (40) 

• The solution to this equation can be represented as a convolution integral: 

𝐴(𝑟) = µ ∫ 𝐽e(𝑟,)𝑒-jk|r-r,|4 𝜋|𝑟 − 𝑟′| 𝑑𝑉′ (41) 
V,  

where V' is the source region, r is the incident point, and r' is the observation point of 
the object. 

Far field approximation 
• In the derivation, we consider that the source region is approximately at a distance of r-r' 

from r, and then, through a cosine approximation, the solution for the electromagnetic 
potential A will appear differently: 

𝐴(𝑟) = µ 𝑒-jkr4𝜋𝑟 ∫ 𝐽e𝑒jkr,cosϕ𝑑𝑉 (42) 
V,  

with parts of the solution as a spherical wave, as a radiation vector and as a complex 
weighted Fourier Integral. With the far-field approximation, we assert the modelling 
of an electromagnetic wave emitted from an antenna; it corresponds to a spherical 
wave. By employing far-field approximations of the electromagnetic potential A, one 
can infer properties of the electric and magnetic fields E and H. 
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• Using the equation of the Poynting vector: 𝑆 = 𝐸 × 𝐻 (43) 

 conclusions can be drawn additionally regarding the power density. 
Note: Validating the modelling of an antenna by using measurement data; the antenna's 
properties must be experimentally verified: Typically, this involves measuring received power 
density and, in some cases, incorporating a reference antenna. Characteristics such as 
directional pattern and gain are measured and then cross-referenced e.g., with an existing 
model.  

Model Setup- Electromagnetic Field 
Given the high electromagnetic conductivity of saltwater, underwater communication using 
electromagnetic waves often requires a substantial transmitting station to penetrate depths of several 
hundred meters.  

• Naval Radio Station Rhauderfehn- an example 

An example of such a large transmitting station is the Naval Radio Station Rhauderfehn, a 
longwave transmitter, featuring eight towers, each 352 meters in height, for a total height of 
2,816 meters. Each of the eight towers is operated at 20,000 volts (eight times 20 kV 
approximately 160 kV). All eight towers are equipped with 100-kilowatt transmitters (eight 
times 100kW approximately 800kW). 

 

 

 

 

 

 

Lower frequencies, typically within the range of a few Hertz, are commonly selected for 
transmission purposes.  

Simulating such transmitting stations is approached by using a monopole antenna configuration, 
characterized by its significant height and capacitive top hat design. Conductivity values are pre-set to 
observe (e.g.: from 6 S/m to 3 S/m (standard values in shallow ocean)) how the electric field behaves 
under different conductive conditions in sea water.  

• These conductivity values are approximations for values at the surface of the Mediterranean, 
with conductivity decreasing as depth decreases (Given the observed decrease with CTD 
measurements in velocity with decreased depth and assuming a corresponding decrease in 
conductivity, see equation 1). 

• To simulate transmitting stations like the Naval Radio Station Rhauderfehn, we consider a 
monopole- antenna (l/4 =2000m, f=34747Hz, U=160kV and Z= 3200W) with capacitive top hat, 
surrounded by a sphere. Half of the sphere consists of air with its electromagnetic propagation 
characteristics, and the other half consists of saltwater with its respective characteristics. As 
mentioned earlier, the Finite Element Method is used in both acoustic and electromagnetic 
cases to obtain approximations for their respective fields.  

Figure 4: location map Figure 5: transmission station 2004 
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• For the electromagnetic field, the following form of the Helmholtz equation is employed and 
needs to be solved for each element: ∇ × 1µr (∇ × 𝐸) − 𝑘02 (𝜀r − 𝑗𝜎𝜔𝜀0) 𝐸 = 0 (44) 

where µr  is the electromagnetic permeability, 𝑘0 the wavevector, 𝜀r  the electromagnetic 
permittivity, 𝜔 the angular frequency.    

• No boundary conditions were established for the interface between air and the water. Initially, 
the numerical field was analysed as if it was located solely in an airspace, and subsequently, 
adjustments were made to the medium, e.g., changes in conductivity in the lower half, 
changing the medium. 

• It is worth noting that this is a finite volume approach and as such, the perfectly matched layer 
is also applied. The maximum tolerable element size is: 𝑑 = 𝜆5 (45) 

 

Figure 6: An example mesh for the FEM for 
electromagnetic waves, structured as described above. 

The illustration is provided solely for the purpose of 
visualizing the antenna and the hat capacity, as well as 

the division between the medium water and the medium 
air; for accurate FEM approximations, a finer mesh is 

required. 

We simulate the electromagnetic field response to a monopole antenna emitting a sinusoidal wave at 
a frequency of 37474 Hz (long-wave range) using the FEM approach. 

• We derived a far-field approximation for the electromagnetic field for the electromagnetic 
potential, see equation 42, we assume that, when examining the approximated values 
obtained from the FEM method, the far-field approximation criteria should be considered, 
which is:  2𝐷2𝜆 ≤ 𝑟 (46) 

In essence, we examine the approximated values at distances greater than this 
threshold r. 

Multiple approximation analyses were conducted: Analysis a) aimed to closely approximate the ocean 
model, see figure 7, 8 and 9. The results for multiple approximations analyses are depicted in figure 8 
and 9. In analysis a) (the orange colour curve (points) in the figures 8 and 9) the electromagnetic 

Figure 7: Result of the FEM Simulation of the 
monopole antenna configuration with hat 

capacitance for the electromagnetic field; upper 
segment air (s = 0), lower segment: standard ocean 
model for conductance: s = 6 S/m for the first 30m 

depth, then s = 3 S/m 
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conductivity is pre-set to be as described in the standard ocean model, in analysis, b) (the blue colour 
curve (points), the electromagnetic conductivity is pre-set to be 6 [S/m] the first 15 m and then 3 [S/m]. 
Analysis b) is similar to the standard ocean model. The conductivity values from the other analyses are 
preset to be s=10 [S/m] (yellow) and s=0.5 [S/m] (violet). The numerical approximation, based on 

estimated conductivity values, indicates that, commencing at a depth of 30 meters, the second ocean 
model undergoes a transition to 3 [S/m]. At a depth of 15 meters, the conductivity was 6 [S/m]. 
Preceding this change, similar to ocean model 1 (initially 6 [S/m], transitioning to 3 [S/m] at a depth of 
30 meters), it yields improved results for the EM field. However, the noteworthy observation is the 
inflection point in the curve of ocean model 2. Despite the anticipation of superior EM values from a 
depth of 15 meters, this inflection suggests that the standard ocean model outperforms up to a depth 
of approximately 30 meters, see figure 9. 

For each case, two APPROXIMATE field strength points were taken, and their distance. From this, the 
respective attenuation/penetration depth is approximated. Similar values are determined using 
equation 2. It is important to note that these values were determined for a frequency of 34747 Hz; it 
is recommended to use a carrier frequency of 15000 Hz for underwater electromagnetic propagation 
(As a result, the electromagnetic field would be intensified, rendering differences in electromagnetic 
field strength more discernible and consequently leading to increased penetration depth.). 

Table 1: Estimating the penetration/attenuation from numerically approximated electric fields (FEM Analyses) 

Electromagnetic conductivity changes with temperature, pressure, and density.  

f = 34747Hz Electric field position 
blue sending position, 

white receiving 
position 

Electric field value 
blue sending position, 

white receiving 
position 

Penetration depth 
according to equation 

2 

ss = 0.5 S/m -2.407 m 0.00467268 V/m 3.81 m 
 -14.8836 m 0.0018533 V/m  
ss = ss(Oceanmodel 1) -1.17043 m 0.00418558 V/m 1.1 m 
 -24.7538 m 0.000096645 V/m  
ss = ss(Oceanmodel 2) -12.2987 m 0.000194018 V/m 1.5588 m 
 -31.4879 m 0.00014705 V/m  
ss = 10 S/m -1.03414 m 0.000254446 V/m 0.85 m 
 -27.1703 m 0.0000074 V/m  

Figure 8 and 9: FEM Analyses of the electromagnetic field response of an antenna with hat capacitance with different 
electromagnetic conductivity values for simulating the ocean. Four analyses were conducted, and the values of the 

electromagnetic field were depicted in the far field. 



Vienna University of Technology  Master programme Embedded Systems 

Melic Alena   17 

Numerically it is evident that changes in the electromagnetic field's penetration depth are influenced 
by variations in conductivity parameters. These changes occur depending on alterations in density, 
temperature, pressure, and humidity (in simulations and real-world conditions). This implies that 
under favorable natural conditions, greater penetration depths are achievable, according to the results 
of the numerical analysis (simulated experiment). 

Measuring key acoustic and electromagnetic propagation media characteristics 
The speed of sound in underwater environments is typically around 1485 meters per second (although 
it can vary due to non- uniformity of water caused by different layers). One of the earliest 
measurements that closely approximated this value was conducted by Beyer in 1826 in Lake Geneva. 
In this experiment, a mechanoacoustic transducer was used to generate sound, and the receiver was 
positioned 13 km away. The measured velocity value, at a temperature of 8°C, was 1438 meters per 
second. Hydrophones and hydrophone chains are commonly used to determine sound velocity 
underwater. 

One objective of this research is to conduct parameter estimation of velocity and conductivity in 
underwater environments. Two approaches can be pursued: employing mathematical models and 
parameter estimation to determine the parameters to a certain extent and then validating them 
against measured data, or initially conducting measurements and subsequently validating them 
against one or more models. Furthermore, data can be measured at one point and compared with data 
obtained at another point in time to obtain a more precise understanding of the properties.  

To evaluate parameters such as sound speed, density, electromagnetic conductivity, and salinity in 
seawater, a diverse range of sensors and approximation methods can be employed. This section will 
provide descriptions of some of these methods. 

Hydrophone 
The hydrophone is considered the most crucial measurement sensor for water sound velocity. It is 
responsible for converting underwater sound pressure waves (with a measuring range of 10 Hz to 
400kHz) into corresponding electrical voltages, preferably utilizing the piezoelectric effect. The 
sensitivity of a hydrophone, based on the piezoelectric effect, is defined as the ratio between the open 
circuit voltage amplitude and the free field pressure amplitude of an incident soundwave, often 
represented by the symbol M. Piezoelectric hydrophone types often provide the logarithmic value of 
M as a measurement parameter:  𝑅𝑉𝑆 = 20 log 𝑀 (47) 

For example, PZT-4 plate hydrophone with a thickness of 0.01m, operating in the 33 mode exhibits: 𝑅𝑉𝑆 =  −192𝑑𝐵(𝑉/µ𝑃𝑎) (48) 

(John L. Butler, 2016) 

Cylindrical and spherical hydrophones are widely used for measurements due to their design, which 
offers high sensitivity, a wide-band smooth response up to and potentially through resonance, low 
impedance, good hydrostatic pressure capability, and simplicity. However, there are also other types 
available, such as the clay hydrophone mushroom (consisting of parallel wired ceramic sections 
enclosed in an airfield), the 1-3 Composite hydrophone (manufactured by cubing standard 
piezoelectric material into a grid, filling the spaces with epoxy resin, and coating both sides for 
electrical contact), and the Bender hydrophone, among others. 

(John L. Butler, 2016) 
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Hydrophones can be constructed in two ways: A membrane hydrophone is created by stretching a 
PVDF film over a ring and vapor- depositing it with electrodes. This type of hydrophone offers a high 
bandwidth with minimal feedback effect on the sound field and is commonly used as a standard 
hydrophone. Needle hydrophones, on the other hand, have a compact body with a small piezoelectric 
element attached to the end. They are rougher in design and tend to interfere more with the sound 
field.  

(Koch, 1999) 

Hydrophone array 
In the context of the “N- Elba Experiment,” the measurement data was recorded using a hydrophone 
array in 1993 in an area with approximately 130 meters water depth. Hydrophone arrays can record 
data vertically as well horizontally, allowing the analysis of velocity in three axes. In the N- Elba 
Experiment, the multi- channel hydrophone data was recorded with a vertical antenna (vertical array), 
low- pass filtered at the antenna, and digitized at a sampling frequency of 1000 Hz. The hydrophone 
data is transmitted via cable to a radio buoy for further processing. 

  

 

 
Figure 10: The SACLANTCEN vertical array 

(Mecklenbräuker, 1998) 

Sound sources 
For measurements it is advisable to generate a PRN (Pseudo- Random Noise) signal at a specific 
frequency to ensure reliable detection at the receiver. For underwater acoustic applications, it is 
recommended to use a frequency range of 200 to 800 Hz. 
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Measuring and estimating Salinity, Conductivity and Density 
Salinity, pressure, temperature, and density are factors that contribute to the conductivity of water. 
Different levels of salinity have a significant impact on ocean currents. Salinity is typically expressed as 
a percentage (grams of salt per kilogram of solution). The widely used Practical Salinity Scale (PSS-78) 
is based on the relationship between salinity and electrolytic conductivity, and it is dimensionless. One 
formula used to estimate salinity values based on conductivity is: 

𝑆 = 0.008 − 0.1692 𝐾1512 + 25.3851 𝐾15 + 14.0941 𝐾1532 − 7.0261 𝐾152 + 2.7081 𝐾1552 (49) 

(E. L. Lewis, 1981) 

Conductivity is an important property of water. Pure water itself does not conduct electricity, but 
dissolved substances like chlorides, sulphates, or carbonates make it conductive. The more dissolved 
particle in the water, the higher the conductivity. It is worth noting that electromagnetic waves 
generally penetrate deeper in pure water compared to saltwater. 

CTD Rosette 
The salinity is measured using the CTD (Conductivity, Temperature and Depth) rosette. Additional 
sensors for important parameters, such as turbidity, oxygen and current meters can also be attached 
to it.  

(Mecklenbräuker, 1998) 

The CTD onboard consists of a series of small probes attached to a large metal rosette wheel. The 
rosette is lowered to the seabed via a cable, and scientists monitor water properties in real-time 
through a data cable connecting the CTD to a computer on the ship. Using a remote-controlled device, 
water bottles can be selectively closed during the instrument's ascent. A standard CTD typically takes 
between two to five hours, depending on water depth, to collect a complete dataset. Water samples 
are often collected at specific depths to learn about the physical properties of the water column at 
that particular location and time. 

Small, low-power CTD sensors are also used in autonomous instruments: 

Water column profilers make repeated measurements of ocean currents and water properties up and 
down through nearly the entire water column, even in very deep water. These profilers carry basic 
instruments such as a CTD for temperature and salinity and an ACM (Acoustic Current Meter) for 
measuring currents, with the capability to add other instruments including bio-optical and chemical 
sensors. 

Spray gliders roam the ocean independently, following pre-programmed routes and occasionally 
surfacing to transmit collected data and receive new commands. As they traverse horizontally, internal 
bladders control their buoyancy, enabling them to navigate up and down through the water column 
akin to whales and other marine creatures. 

Floats are floating robots that record profiles or vertical measurement series (e.g., temperature and 
salinity) in the oceans. 

Autonomous Underwater Vehicles (AUVs) are programmable robotic vehicles capable of drifting, 
driving, or gliding through the ocean without real-time control by human operators, depending on 
their design. Some AUVs communicate periodically or continuously with operators via satellite signals 
or acoustic underwater beacons to provide a certain level of control. 

Various other accessories and instruments can be included with the CTD package, such as Niskin bottles 
for collecting water samples at different depths for chemical analysis, Acoustic Doppler Current 
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Profilers (ADCP) for measuring horizontal velocity, and oxygen sensors for measuring dissolved oxygen 
content in the water. 

Features of CTD sensors include: 

• Saltwater resistant 
• High accuracy 
• Lightweight 
• Low power consumption 
• Deployable to depths of up to several thousand meters 

Note: The small, low-power CTD sensors used on autonomous instruments like water column profilers, 
spray gliders, floats, and AUVs are more complex to operate. The primary limitation is the need to 
calibrate individual sensors, especially for autonomous instruments deployed over extended periods. 
Consequently, sensors must be stable during deployment, or assumptions about seawater properties 
must be made and referenced to the data. Deep water properties are typically very stable, so 
autonomous sensor data is matched with historical deep-water properties. STS provides highly precise 
pressure cells for this specific application.  

Compared to the CTD rosette, the hydrophone array has the clear advantage of recording data 
simultaneously over a longer length (e.g. 130m). The density, salinity, and conductivity can then be 
estimated through approximation methods, primarily machine or numerical. 

Hydrometer 
The hydrometer is a measuring instrument for determining the density or specific gravity of liquids.  

Power density of an antenna and its antenna gain 
The power density of an antenna and its antenna gain are typically measured using specialized 
measurement instruments and testing procedures: 

• Measuring Power Density: Power density is typically assessed using a power meter or a 
spectrum analyser. These instruments can quantify the power of an electromagnetic signal in 
relation to space and frequency, with the unit of power density being expressed in watts per 
square meter (W/m²). 

• Measuring Antenna Gain: Antenna gain is determined using an antenna testing chamber and 
specialized measurement equipment. This involves characterizing the antenna's directional 
pattern and calculating its gain. Gain represents the ratio of radiated power to the power 
radiated compared to an ideal isotropic spherical antenna. 

Utilizing a Reference Antenna: To measure antenna gain, a reference antenna with 
well-established characteristics is often employed. The antenna under examination 
and the reference antenna are positioned within a test setup, and signal comparisons 
provide valuable insights into antenna gain. 

• Simulation and Calculation: In some instances, antenna gain can also be determined through 
theoretical simulations and calculations based on the physical properties of the antenna. 
Specialized electromagnetic simulation software tools are commonly utilized for this purpose. 

The choice of method depends on specific requirements and the level of measurement precision 
desired. In practice, combinations of these methods are frequently employed to ensure accurate and 
dependable results. 
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Measurement setup and Data 
Location setup 
The vertical antenna (hydrophone chain) and the source were positioned at 5.8 km from each other 
north of the island of Elba. The static source was securely anchored to the seafloor using ballast. The 
horizontal displacement (tilt) was within a range of: ±200 𝑚 (50) 

At the source location, the ocean depth is 130m. The vertical antenna used in this setup consisted of 
N= 48 sensors, spaced equidistantly in 2m intervals, resulting in a total aperture of 94 m. The lowest 
hydrophone positioned at a depth of -112.7 m, while the highest at a height of -18.7 m. Despite being 
fixed to the seafloor, the measurement setup still introduced some error due to tilt. 

The ocean floor at the measurement site consisted of sand and clay layers. The velocity profile 
obtained from the CTD rosette (which measured conductivity, temperature, and depth) revealed that 
the sound velocity was approximately 1525 meters per second up to a depth of about 60 m. Beyond 
that depth, the sound velocity decreased significantly. The range between 60 m and 80 m may be 
potentially relevant for this research.  

Data 
In the autumn of '93, the 1NATO SACLANT Undersea Research Centre conducted an acoustic 
experiment in the Mediterranean. The aim of this endeavour was to obtain acoustic measurement 
data under highly favourable conditions in a relatively well-charted marine area. Prior to the data 
collection, a test was conducted against the background noise to estimate the spectrum of 
observations, revealing a distinctive frequency of 170 Hz above the ambient noise level. This frequency 
was subsequently selected for transmission. Table 1 presents the key signal-theoretical parameters of 
the N-Elba experiment. (Mecklenbräuker, 1998). 

Table 2: Key signal parameters of the N-Elba experiment 

Data Analysis  
In the following image, the sensor data from Sensor 20 has been filtered and Fourier-
transformed, revealing a clear distinction of the source from the ambient noise. The signal of 
interest from all sensors is distinctly evident within the frequency range of 50 to 180 Hz. This 
signal, originating from a source, underwent feedback through a 6-bit shift register with a shift 
clock frequency of 20 Hz. Subsequently, it was modulated onto a carrier at 170 Hz, and the 
transmitted bit sequence repeated every 3.15 seconds. The hydrophone data was initially 
sampled at a frequency of 6 kHz and filtered using a FIR low-pass filter. Since the measurement 
signal is clearly discernible in each sensor, it can certainly be utilized for analysis. 

 
1 Centre for Maritime Research and Experimentation (STO CMRE) 
 

Size Symbol Value 
Sensor group Hydrophone array vertical  
Sensor distance |rn-rn+1| 2m 
Sensor Nr. N 48 
Source Nr. M 1 
Bandwidth F 150Hz…180Hz 
Sampling frequency fs 1000Hz 
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Figure 11: Frequency domain visualization for Sensor 20: Note the signal of interest at 170 Hz is clearly. 

              
Figure 12: Power density distribution across all sensors; across the first measurements (half duration of the measurement) 

The power density distribution across sensors is depicted in the Figure 12. Building upon the 
observation in Figure 11, where the desired signal predominates in amplification compared to 
other signals, we can infer that the desired signal predominantly contributes to the power 
density spectrum. In Figure 12, the density remains low up to approximately the first 5 sensors, 
compared to sensors 6 through approximately 24, after which it decreases again. However, 
the sound source is positioned at a depth of 65 meters (sensor 24), prompting consideration 
as to why the power density spectrum is not approximately normally distributed. Several 
factors contribute to that result: 

o Ocean stratification: Oceans are typically divided into layers with variations in 
temperature, salinity, and density. The near-surface layers, especially the "mixed 
layer," may be turbulent and efficiently transmit sound waves. Deeper layers may 
experience higher damping due to lower turbulence or other absorption phenomena, 
resulting in lower power density. 
 

o Sound propagation effects: Various factors such as temperature, pressure, salinity, 
and layering influence sound propagation in the ocean. Favorable conditions like lower 
pressure and higher temperature in the upper layers could enhance sound 
transmission efficiency, leading to higher power density. Conversely, propagation in 
deeper layers could be dampened by various factors, resulting in lower power density. 
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o Reflection and refraction: Sound waves may reflect or refract at boundaries between 

different layers. Reflections at the water surface or thermocline boundaries in the 
upper layers could contribute to higher power density. In deeper layers, sound waves 
may be more heavily damped or behave differently, resulting in lower power density. 
 

o Biological factors: Biological processes such as the presence of phytoplankton or fish 
can influence sound propagation and power density in the ocean. These biological 
factors may vary at different depths, contributing to differences in power density. 

In comparison, in Figure 13, the higher-level differences are indeed the areas from the 6th 
sensor downwards to the 24th sensor, which explains the power density spectrum. 

The power spectral density plot indicates a significant contrast between sensors 10 to 23, 
corresponding to the sediment region, and sensors in the oceanic region (approximately sensors 24 to 
39). The signal strength is notably amplified at sensor 21 compared to sensor 23, as illustrated in the 
following figure: 

 
Figure13: Acoustic pressure recorded over time (120 th measurement till 236 th  measurement) by Sensor 21 (blue) and Sensor 

23 (magenta). 
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Figure 14: Acoustic pressure recorded over time (50 th measurement till 280 th measurement) by Sensor 21 (blue) and Sensor 

10 (magenta). 

In Figure 14, sensor recordings from Sensor 21 and Sensor 10 were plotted. As known, Sensor 10 
arrived attenuated compared to Sensor 21. Additionally, it is evident in the image that the signal 
arrived with a time delay. 

 
Figure 15: Acoustic pressure recorded over time (50 th  measurement till 280 th  measurement) by Sensor 21 (blue) and Sensor 

40 (magenta). 

As demonstrated in Figures 13, 14, and 15, high coherence between neighboring sensors is observed, 
with significant coherence losses evident for sensor 40. Ingo Kalkhoff’s diploma thesis emphasizes this 
observation through the calculation of coherence matrices. Due to the stationary nature of the source 
during the experiment, coherence and covariance matrices can be computed. He highlights significant 
coherence losses occurring at sensors 6, 7, 25, and 40. Furthermore, he suggests that these coherence 
losses may be attributed to variations in propagation velocity during the experiment.(Kalkoff, 1996) 

The signal from Sensor 40 appears to have arrived attenuated and time- shifted. Given the stationary 
nature of the source, a robust covariance matrix of sensor signals can be derived. 



Vienna University of Technology  Master programme Embedded Systems 

Melic Alena   25 

Waveforms interfere with each other. Naturally, we perceive them as separate, but due to machine 
learning, interferences would be incorporated into the final model. To provide a clearer understanding 
of how the waveforms of the measured data, the initial 500-636 time-discrete values of the 48 sensors 
were plotted on a heatmap. The resulting visualization distinctly reveals the acoustic wave formation: 
The 24th sensor is connected reversely, so its data has a 180° phase shift compared to the others. 

 
Figure 21: Heatmap of the acoustic pressure level, of the measured acoustic wave, originated from the source, mentioned in 

the experiment. 

Modeling the Measurement Setup  
At the specified source location, the water depth measures 130 meters. The seafloor composition at 
the measurement site was characterized by alternating layers of sand and clay. Notably, data obtained 
from the CTD rosette, measuring conductivity, temperature, and depth, disclosed that sound velocity 
exhibited a steady rise, reaching an approximate 1525 m/s up to a depth of about 60 meters. However, 
beyond this threshold, a marked decline in sound velocity was observed. This intriguing setup lays the 
foundation for an intricate simulation environment. 

Sound Pressure Field analyzed with Finite Element Method 
In the pursuit of acoustic propagation insights, initial results are obtained with a commercially available 
three-dimensional finite element solver; an isotropic point source emitting a sinusoidal spherical wave 
at a frequency of 170Hz.  The expansive modeling domain spans dimensions of 700 meters in length, 
100 meters in width, and 130 meters in height. With the sediment density at the experiment's location 
constituted by a blend of sand and clay at depths nearing 100 meters (as reported by Mecklenbräuker, 
1998), a density of 1750 kg/m³ is embraced within the model. To optimally simulate the data, the 
velocity value 1550 m/s was adopted at approximately 100 meters depth. This empirically gathered or 
estimated data was thoughtfully integrated into the modeling framework. Following is an exposition 
of the finite element method for the N- Elba Experiment with Sediment (𝛼 = 0.13𝑑𝐵/𝜆): 
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Figure 16: Sound pressure field Finite Element Method with sediment attenuation, without ocean attenuation; x, y axis 

 
Figure 17: Sound pressure field Finite Element Method with sediment attenuation; without ocean attenuation; y, z axis 

 

Another model was generated without sediment to highlight the disparities in the acoustic wave field. 
In the ensuing images, the acoustic pressure field exhibits notable dissimilarities, while density and 
sound velocity remain 1510 m/s (Mecklenbräuker, 1998) and 1039 kg/m³ respectively at a depth 
around 100 meters: 
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Figure 18: Sound pressure field Finite Element Method without sediment, with ocean attenuation; x, y axis 

 
Figure 19:  Sound pressure field Finite Element Method with sediment, with ocean attenuation; y, z axis 

The simulations unequivocally demonstrate that both sediment attenuation and ocean attenuation, 
including salinity, influence the numerical approximations. It is evident that the addition of sediment 
to the model significantly attenuates the acoustic pressure field. Through the numerical results (with 
initial conditions held constant, only varying the damping), it is evident that the acoustic point source 
is more effectively attenuated when ocean attenuation is considered too. Therefore, it is advisable to 
consider both models in the analysis of the measurement data. 

Parameter estimation- a machine learning approach 
Finite Element Modeling- pressure acoustics analyses were conducted to gather data for a machine- 
learning model. These analyses revealed variations in the acoustic pressure field corresponding to 
different propagation parameters. Notably, distinct pressure patterns emerged when accounting for 
sediment attenuation versus ocean attenuation. Additionally, changes in velocity, such as those 
observed in the thermocline layer during the N-Elba experiment, were also analysed. However, these 
velocity changes did not yield significant alterations in the acoustic pressure field. It's worth noting 
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that analyses into the density of the sediment layer at the bottom were also conducted. It was found 
that only drastic changes in the density of the sediment layer result in different pressure fields. We can 
reasonably omit density and velocity for the machine learning model. The carrier frequency of the 
measured data is 170 Hz.  

The proposed study aims to estimate acoustic propagation parameters in shallow oceans using a 
machine learning approach. Training and testing the model on a dataset comprising recorded, and 
filtered measurements, with additional information established through physical modeling of the 
acoustic pressure field (Helmholtz equation). A sketch illustrating the measurement setup and 
therefore the FEM COMSOL analysis is provided in Figure 20: 

 
Figure 20: The sketch demonstrates the modelling in COMSOL of the acoustic pressure field, but also the measurement setup 
with the hydrophones at the y coordinates: 5800 m; the depth in the measurement setup (as in the COMSOL approximation) 

is 130 m; the source location in both cases is in the height of approximately 65 m.  

In our exploration of acoustic propagation insights using CTD Data, initial findings for the acoustic 
pressure fields were obtained through a three-dimensional finite element solver. These models 
incorporated an isotropic point source emitting a sinusoidal spherical wave at 170 Hz, spanning a 
domain of 700m x 100m x 130m. The sediment density, composed of sand and clay at depths nearing 
100 meters, was characterized with a density of 1750 kg/m³. Empirical data, including a velocity value 
of 1550 m/s at approximately 100 meters depth, was integrated into the model, providing the 
foundation for sediment modeling (α=0.13dB/λ). 

At the specified source location, with a water depth of 130 meters near the island of Elba, the seafloor 
comprised alternating layers of sand and clay. Analysis of CTD rosette data revealed a steady rise in 
sound velocity up to 60 meters, followed by a significant decline. Numerical observations corroborated 
this pattern, showing minimal changes in the acoustic pressure field in the simulated results, as already 
mentioned before. 

Furthermore, utilizing numerical approximations with FEM COMSOL analysis, we segregated the 
environment into two distinct layers: ocean attenuation and sediment attenuation. The sensor array 
group, covering the initial 100 meters of ocean depth (comprising 40 hydrophones), was indicative of 
ocean attenuation. Conversely, the subsequent 30 meters (encompassing the last 8 sensor values) fell 
within the range of sediment attenuation. Notably, Figure 21 illustrates higher sound levels in the 
region characterized by ocean attenuation. 

Modeling Experiment 
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Figure 21: Damping based on physical FEM model and data measurements that could be affected by the respective 
damping, sediment attenuation in magenta, ocean attenuation in blue. 

Related Work  
Two distinct methodologies were employed in analysing the N-Elba dataset, each offering unique 
insights into parameter estimation. In one approach, Bayesian inversion methods were harnessed to 
derive environmental parameter estimates, accompanied by a comprehensive assessment of the 
inherent uncertainties in these estimates. The results of this method furnished posteriori probability 
density functions for the estimated parameters, enabling the extraction of critical information such as 
means, higher moments, and marginal distributions. (Peter Gerstoft, August 1998) On the other hand, 
another method featured the development of a generalized likelihood ratio test, which was utilized to 
test acoustic environmental models and perform parameter inversion using an acoustic propagation 
code. Notably, both approaches underscored the pivotal role of parameters like source range, source 
depth, and tilt in shaping the characteristics of the measured data. These investigations shed light on 
the complex interplay of these parameters within the acoustic environment, offering valuable insights 
for further environmental characterization. (Mecklenbräuker C. F., 1999) 

Traditional methods rely on time-consuming iterative optimization algorithms, leading to potential 
local optimal solutions. Recognizing the superior performance of neural network algorithms in data 
processing, the authors of “A Method for Inverting Shallow Sea Acoustic Parameters Based on the 
Backward Feedback Neural Network Model” propose using a Back Propagation (BP) neural network 
model as an alternative for inversion purposes. This approach aims to expedite and improve the 
accuracy of obtaining shallow sea acoustic parameters by replacing traditional iterative optimization 
methods with neural network models. The paper outlines the methodological approach, emphasizing 
the establishment of a relationship model between the prediction sound field and the earth sound 
parameters using a BP neural network. The introduction sets the stage for the subsequent sections 
which delve into the specifics of the proposed method and its application in retrieving semi-infinite 
sea bottom sound parameters. (Hanhao Zhu, 2023) 

As computer technology advances and power consumption decreases, adopting deep learning 
algorithms is increasingly recommended for analysing geoacoustic parameters. In this context, 
exploring a deep learning approach could be beneficial, particularly in addressing regression/ 
classification problems. There exist several viable methods for this task, including classification, 
regression, unsupervised learning, and supervised learning techniques. For instance, in scenarios 
where the objective is to discern between ocean attenuation and sediment attenuation using 
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measurement data, classification or regression methods may be appropriate. Integrating deep learning 
methodologies into the analysis offers promising avenues for improving the efficiency and accuracy of 
parameter estimation in geoacoustic studies. 

For the measurements, which involved a single source and receiver setup (although for deep learning 
approaches, multiple receivers and sources at different locations are typically recommended to train 
a Neural Network), a series of experiments were conducted employing various methodologies. 
Ultimately, I opted for a Deep Neural Network- Levenberg-Marquardt Algorithm to analyse the 
measurements regarding ocean attenuation and sediment attenuation. Alternatives to Levenberg-
Marquardt Algorithm optimization algorithm are the Bayesian regularization Algorithm and the scaled 
conjugate gradient Algorithm. 

Following this, a concise list of the techniques and their respective advantages and disadvantages is 
presented to offer a comprehensive understanding of different approaches in deep learning 
algorithms. Initially, we address a regression problem for separating sediment from saltwater by using 
one algorithm from below.  

Machine Learning Algorithms with their respective strengths and weaknesses- an 
overview 
Levenberg-Marquardt Algorithm 

• Advantages 
o Efficient for nonlinear optimization problems. 
o Lower computational time compared to some other optimization algorithms. 
o Often converges quickly to the minimum. 

• Disadvantages 
o Can get stuck in local minima. 
o Sensitive to the choice of initial parameters. 
o Requires a good estimation of the Hessian matrix. 

Bayesian Regularization 

• Advantages 
o Provides a systematic method for addressing overfitting. 
o Accounts for uncertainties in the parameters. 
o Can be effective with small datasets. 

• Disadvantages 
o Can be complex and computationally expensive. 
o Requires setting prior and likelihood distributions. 
o May lead to conservative estimates if the prior distribution is not appropriate. 

Scaled Conjugate Gradient 

• Advantages 
o Efficient for large datasets and high dimensions. 
o Does not require computation of matrix Hessians or matrix gradients. 
o Can converge quickly and is relatively robust. 

• Disadvantages 
o May perform poorly with very inaccurate initial parameters. 
o Not always as precise as other algorithms like the Levenberg-Marquardt algorithm. 
o May have difficulty in selecting suitable parameters. 
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It is important to note that the list provides only a brief overview of some of the key techniques in 
machine learning and may not encompass all possible methods. However, it aims to highlight some 
significant techniques and their associated strengths and weaknesses. 

Performance of a Machine Learning Algorithm 
The performance of a deep learning algorithm can vary greatly depending on factors such as the 
complexity of the task, the quality and quantity of the data, the architecture of the neural network, 
the choice of hyperparameters, and the evaluation metric used. There is no fixed range for the 
performance metric, as it depends on the specific problem being solved. 

Common performance metrics for classification tasks include accuracy, precision, recall, F1-score, and 
area under the receiver operating characteristic curve (AUC-ROC). For regression tasks, metrics such 
as mean squared error (MSE), mean absolute error (MAE), and R-squared are often used. 

• MSE is a metric that indicates the average squared deviation between model predictions and 
actual data. A lower MSE value suggests that the model predicts the data more accurately and 
achieves a better fit. 

• An R-value typically refers to the correlation coefficient, which measures the strength and 
direction of the relationship between two variables in a dataset. The correlation coefficient 
value typically ranges from -1 to 1: 

o A value close to 1 indicates a strong positive linear relationship between the variables, 
meaning that as one variable increases, the other also tends to increase. 

o A value close to -1 indicates a strong negative linear relationship between the 
variables, meaning that as one variable increases, the other tends to decrease. 

o A value close to 0 indicates no linear relationship between the variables. 

In general, a higher value of accuracy, precision, recall, F1-score, or AUC-ROC indicates better 
performance for classification tasks, while a lower value of MSE or MAE indicates better performance 
for regression tasks. However, the acceptable range of performance metrics can vary widely depending 
on the application and the specific requirements of the problem. 

It's important to note that deep learning models often require extensive experimentation and tuning 
to achieve satisfactory performance, and the performance achieved by a model should be evaluated 
in comparison to baseline models and domain-specific benchmarks. Additionally, the performance 
metric should be chosen based on the specific objectives and constraints of the problem at hand. 

Levenberg- Marquardt for Acoustic Propagation Parameters in Shallow Ocean 
Environments 
The Levenberg-Marquardt algorithm is commonly used as an optimization algorithm in nonlinear least 
squares problems. Independently developed by Kenneth Levenberg and Donald Marquardt, it 
combines aspects of both the gradient descent method and the Gauss-Newton method. Here are some 
key points about the Levenberg-Marquardt algorithm: 

• Application: This algorithm finds frequent application in numerical optimization, particularly 
in solving nonlinear least squares problems. These may include parameter fitting in curve 
fitting, regression analysis, or solving inverse problems. 

• Optimization Method: The Levenberg-Marquardt algorithm merges the gradient descent 
method with the Gauss-Newton method. It employs an iterative approach to determine 
optimal parameters that minimize a given objective function. 

• Regularization: Incorporating a regularization term, the algorithm enhances optimization 
robustness against poorly conditioned problems. This term ensures that the Hessian matrix 
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(second derivative of the objective function) doesn't need to be inverted, which can lead to 
numerical instabilities in poorly conditioned problems. 

• Convergence: Typically, the Levenberg-Marquardt algorithm converges rapidly, especially 
near the optimal parameter set. However, convergence heavily depends on the choice of initial 
values and the characteristics of the objective function. 

• Implementation: The algorithm necessitates computing the Jacobian matrix (derivative of the 
objective function with respect to the parameters) and updating the parameters in each 
iteration. Various implementations and optimizations are available, depending on the specific 
application, to enhance efficiency. 

Insights of the Levenberg- Marquardt (LM) algorithm 
The problem for which the LM algorithm provides a solution is the Nonlinear Least Squares 
Minimization: 

𝑓(𝑥) =  12 ∑ 𝑟j2(𝑥) (51)m
j=1  

where 𝑥 is a vector and 𝑟j  is a function from ℛn ⟶ ℛ.  

The approach combines aspects of Gradient Descent and Gauss-Newton iteration techniques within 
the Levenberg-Marquardt (LM) algorithm. The update rule employed aims to determine the solution 
for Least Squares Minimization. 𝑥i+1 =  𝑥i − (𝐻 + 𝜆𝑑𝑖𝑎𝑔[𝐻])-1∇𝑓(𝑥i) (52) 

 where 𝐻 is the Hessian Matrix evaluated at 𝑥i. 
The algorithm 

1. Do an update as directed by the equation 52. 
2. Evaluate the error at the new parameter vector. 
3. If the error has increased as a result to the update, then retract the step (i.e. reset the 

weights to their previous values) and increase 𝜆 by a factor of 10 or some such significant 
factor. Then go to 1. And try an update again. 

4. If the error has decreased because of the update, then accept the step (keep the weights at 
their new values) and decrease 𝜆 by a factor of 10 or so. 

(Ranganathan, 2004). 

Overall, the Levenberg-Marquardt algorithm serves as a powerful tool for solving nonlinear 
optimization problems and finds utility across various applications, particularly in curve fitting, 
parameter optimization and classification.  

Neural Network Fitting Model for Acoustic Propagation Parameters in Shallow Ocean 
Environments 
The Levenberg-Marquardt (LM) algorithm is commonly utilized with neural networks for predicting 
output based on input sequences, a prevalent practice in supervised learning tasks such as regression 
or classification. During training, the LM algorithm iteratively adjusts the neural network's weights and 
biases to minimize the discrepancy between predicted and actual output values, thereby facilitating 
learning. Subsequently, the trained neural network is deployed to forecast output values for new input 
sequences. Post-training, it is customary to validate the network's performance using a separate 
validation dataset, ensuring its ability to generalize and guarding against overfitting. The effectiveness 
of predictions depends on factors including data quality, network architecture, hyperparameters, and 
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the suitability of the LM algorithm for the task. Experimentation and validation play pivotal roles in 
ensuring prediction reliability. Regression, on the other hand, involves modeling the relationship 
between a dependent variable and one or more independent variables by fitting an equation to 
observed data. Neural networks can be employed for regression, offering flexibility in modeling 
nonlinear relationships and diverse data structures. To utilize neural networks for regression tasks, 
appropriate network architecture and loss function selection tailored to the specific regression task 
are crucial. Typically, a simple architecture with a single layer of neurons and a linear activation 
function is employed, with the mean squared error (MSE) commonly chosen as the loss function for 
regression, as depicted in figure 22. 

Regression for Acoustic Propagation Parameters in Shallow Ocean Environments 
In the equation 53 𝑌 represents the input, 𝑋 is the matrix of output variables where rows denote data 
points and columns represent feature variables, 𝑓(𝑌) describes the relationship between input 𝑌 and 𝑋.  𝑋 = 𝑓(𝑌) (53) 

We formulate the problem as a nonlinear least squares problem, aiming to minimize the errors 
between the observed 𝑋 and those predicted by 𝑓(𝑌). 

In our scenario, each column of the matrix 𝑋 represents a different time point, and the regression 
models the relationship between these time points, the corresponding sound pressure level 
measurements, and the propagation media characteristics. 

For the 𝑋 values, sound pressure level measurements were taken at various discrete time points of 
equal length (100) intervals, while for the 𝑌 values, propagation media characteristics e.g.: damping 
coefficients, representing ocean attenuation (for the first 40 sensors), and sediment attenuation (for 
the remaining 8 sensors) and velocity values obtained from the CTD measurements, which were 
captured simultaneously with the acoustic data, were utilized as the independent input parameters.  

Three distinct approaches were implemented:  

1. The input data comprised two different attenuation values, ocean attenuation and sediment 
attenuation.  

2. The input data consisted of velocity values obtained from the CTD measurements.  

3. The input data included attenuation coefficients and velocity values from the CTD 
measurements.  

These approaches were employed to evaluate the influence of attenuation values, velocity values, and 
physical modeling using FEM Analysis. As an illustration, we examine Figure 21: the heatmap of the 
acoustic pressure level, originating from the source mentioned in the experiment, indicates potential 
sensors possibly situated in the sediment. 
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Figure 22: One layer feedforward network with sigmoid hidden neurons and linear output neurons, suitable for regression 

tasks 

Results- Levenberg- Marquardt for Acoustic Propagation Parameters in Shallow Ocean 
Environments 
The neural network depicted in Figure 22 was applied to our independent input variables and output 
variables, yielding the following results: 

The first approach, utilizing input data comprising two distinct attenuation values - ocean attenuation 
and sediment attenuation, yielded a lower R value compared to the second approach, which relied on 
velocity values obtained from the CTD measurements. Conversely, the third approach, integrating both 
attenuation coefficients and velocity values from the CTD measurements, resulted in a lower R value 
in comparison to the second approach, despite a notable decrease in MSE. The term "R value" likely 
denotes correlation coefficients, reflecting the strength and direction of the relationship between the 
input and output data of the model. In this context, the first approach, centred on attenuation values, 
demonstrates a weaker correlation with the output data compared to the second approach, which 
emphasizes velocity values. However, the third approach, encompassing both attenuation coefficients 
and velocity values, exhibits a lower correlation while showcasing a reduction in the mean squared 
error (MSE), indicative of heightened model accuracy, albeit with a less robust input-output 
relationship. 

Conclusion- Levenberg- Marquardt for Acoustic Propagation Parameters in Shallow 
Ocean Environments 
The approaches were explored concerning inputs such as ocean attenuation, sediment attenuation, 
and velocity. The results of the simple machine learning model suggest that the attenuation 
coefficients exert a greater influence on the model than the simultaneously recorded velocity values. 
Increasing the complexity by incorporating the source signal (bit sequence) would provide more 
information and allow for estimating additional parameters. However, detailed knowledge of the 
acoustic source would need to be included and modeled, thereby increasing the complexity.  
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Results- Estimation of electromagnetic conductivity in seawater based 
on acoustic propagation characteristics 
This thesis represents a significant contribution to the exploration of electromagnetic and acoustic 
wave interactions, particularly pertinent in the context of underwater communication and sensing 
systems. While acoustic waves are commonly employed due to their efficient propagation 
characteristics, their susceptibility to interference poses a challenge. Hence, this research endeavors 
to augment signal accuracy by integrating electromagnetic/optic transmission alongside acoustic 
waves, thereby mitigating interference issues and enhancing overall system performance. 

• Numerical experiments were conducted to investigate the acoustic pressure field for 
electromagnetic propagation underwater. Analyses revealed that the acoustic pressure field 
depends more on attenuation (ocean and sediment attenuation) than on velocity. 
Additionally, numerical experiments showed that changes in electromagnetic conductivity 
result in variations in penetration depth, particularly under favorable conditions, leading to 
higher achievable penetration depths. 

• The use of simple machine learning models to estimate parameters such as attenuation and 
velocity based on acoustic data was explored. However, in this case, attenuation and velocity 
were considered as input parameters, and the sensor level values were considered as output 
parameters. The results of these simple models suggest that attenuation (both ocean and 
sediment attenuation) have a stronger influence on sensor level values than velocity values. 
To estimate additional parameters such as electromagnetic conductivity more 
comprehensively, it would be necessary to integrate the signal and thus the signal source with 
its parameters into the models, increasing the complexity level. 

The results of this investigation illustrate that both numerical approximations and machine learning 
models can contribute to providing a comprehensive assessment of various parameters such as 
attenuation and velocity. Furthermore, by incorporating source information, there is the potential to 
capture additional parameters such as tilt, density, and temperature. This aspect represents an 
advancement for future research endeavours as it lays the foundation for precise analysis and 
interpretation of the underwater environment. 
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