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Abstract

In order to mitigate climate change, countries all over the world invest in replacing fossil fuel

power plants with electricity generation from renewable energy sources, whose availability is

subject to changing weather conditions. Besides storing excess electricity generation in electrical

storage systems, energy demand has to be adapted to the availability of renewable energy to

maintain the balance between electricity generation and consumption in the electricity grid at

all times. An incentive to do so are real-time energy tariffs. Manufacturing scheduling can take

energy costs into account as an optimization criterion but depends on forecasts of the power

profile of the individual manufacturing processes at the time of scheduling.

This thesis proposes a data-driven energy model architecture that generates a power profile

from the process parameters. The architecture is aimed at discrete production, especially

production types like batch production or job production, with processes of smaller quantities

that run on adaptable machines with adaptable process parameters. Unlike model-driven

approaches, the proposed data-driven energy model is easily adaptable to various use cases by

training it with historical data, and unlike a simple lookup table, it can interpolate between

parameter combinations from the historical data.

Different architectures were tested on synthetic energy data based on a real use case of battery

pack assembly and on energy consumption data recorded in an experiment series conducted on

an industrial robot. Of the tested model architectures, an Ensemble Long Short-Term Memory

architecture and a Long Short-Term Memory-Sequence-to-Sequence architecture generally showed

the best prediction accuracy while the Neural Network architecture proved to be unsuitable for

the task. Altogether, an absolute prediction error of 5 % with the most suitable architectures in

the respective cases can be expected.
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Kurzfassung

Um den Klimawandel zu bekämpfen, investieren Länder auf der ganzen Welt in den Ersatz

von fossilen Kraftwerken durch Stromerzeugung aus erneuerbaren Energiequellen, deren Ver-

fügbarkeit von wechselnden Wetterbedingungen abhängt. Neben der Speicherung von über-

schüssiger Stromerzeugung in elektrischen Speichersystemen muss die Energienachfrage an die

Verfügbarkeit erneuerbarer Energiequellen angepasst werden, um das Gleichgewicht zwischen

Stromerzeugung und -verbrauch im Stromnetz jederzeit aufrechtzuerhalten. Ein Anreiz dafür sind

Echtzeit-Energiepreise. Die Fertigungsplanung kann die Energiekosten als Optimierungskriterium

berücksichtigen, ist jedoch auf Prognosen des Leistungsprofils der einzelnen Fertigungsprozesse

zum Zeitpunkt der Planung angewiesen.

Diese Arbeit schlägt eine datengetriebene Energiemodellarchitektur vor, die ein Leistungsprofil

aus den Prozessparametern generiert. Die Architektur zielt auf diskrete Produktion ab, insbeson-

dere auf Produktionsarten wie Batch-Produktion oder Auftragsproduktion, bei denen Prozesse

mit geringeren Mengen auf anpassbaren Maschinen mit anpassbaren Prozessparametern ablaufen.

Im Gegensatz zu modellgetriebenen Ansätzen lässt sich das vorgeschlagene datengetriebene

Energiemodell leicht an verschiedene Anwendungsfälle anpassen, indem es mit entsprechenden

historischen Daten trainiert wird, und im Gegensatz zu einer einfachen Lookup-Tabelle kann es

zwischen Parameterkombinationen aus den historischen Daten interpolieren.

Es wurden verschiedene Architekturen anhand synthetischer Energiemessdaten basierend auf

einem realen Anwendungsfall der Batteriepackmontage und anhand von Energieverbrauchsdaten,

die in einer Versuchsreihe an einem Industrieroboter aufgezeichnet wurden, getestet. Von den

getesteten Modellarchitekturen zeigten eine Ensemble-Long-Short-Term-Memory-Architektur

und eine Long-Short-Term-Memory-Sequence-to-Sequence-Architektur im Allgemeinen die beste

Vorhersagegenauigkeit, während sich die Neural Network-Architektur als ungeeignet für die

Aufgabe erwies. Insgesamt kann mit den jeweils geeignetsten Architekturen in den entsprechenden

Fällen ein absoluter Vorhersagefehler von 5 % erwartet werden.
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Preface

Parts of this work have been published in

• Simon Howind and Thilo Sauter. “Modeling Energy Consumption of Industrial Processes

with Seq2Seq Machine Learning”. In: 2023 IEEE 32nd International Symposium on

Industrial Electronics (ISIE). IEEE, June 2023. doi: 10.1109/isie51358.2023.10228118.

Section II (State of the Art) from the paper is partly included in Chapter 2 of this thesis, and

parts of Section III (Model Architecture) are included in Chapter 3. Simon Howind conducted

all experiments and wrote the first version of the paper before Thilo Sauter wrote the abstract

and made minor corrections and improvements.
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Chapter 1

Introduction

This thesis explores the deduction of electrical load profiles from production schedules and process

parameters in the manufacturing industry by means of a suitable model architecture. In this

chapter, the motivation behind this work is presented. Subsequently, research questions are

formulated, followed by the proposed approach to answer these questions. Finally, an outline of

the structure of the thesis is given.

1.1 Motivation

Electricity in Europe nowadays is available almost always and everywhere. In international

comparison, the reliability of electricity supply in Europe is very high. It is measured by the

System Average Interruption Duration Index (SAIDI), an index to measure the average disruption

time per customer (for details refer to [E-C22, p. 9]). Austria, for example, had a SAIDI of 44

minutes in 2018 [E-C19, p. 13]. This is approximately ten times less than the United States of

America (USA)’s SAIDI of 470 minutes from 2017 [LH18]. European countries’ 1 SAIDI values

in 2016 ranged from approximately 20 minutes (Switzerland) to approximately 550 minutes

(Romania), but only 2 out of 28 countries exceeded a SAIDI of 400 minutes [Eur18, pp. 20-22].

The high reliability and time-independent tariffs conceal the considerable efforts it takes to

control the electricity grid. To keep the grid frequency stable, consumed and produced power must

be balanced at all times. Traditionally, the flexibility to achieve this balance was located mainly

on the generation side. Fossil fuels like coal and natural gas or uranium, with their high energy

density, proved to be well-suited energy sources to react to long- and/or short-term fluctuations in

electricity consumption independent of external influences. However, the decarbonization of the
1European countries in this context are the 28 countries included in the Council of European Energy Regulators

(CEER) Benchmarking Report 6.1 [Eur18]
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2 Chapter 1. Introduction

energy sector aiming to mitigate climate change and the nuclear phase-out of some countries with

the goal of reducing the risk of a nuclear meltdown increase the importance of renewable energy

sources like wind and solar energy to keep the grid frequency stable. Unlike fossil fuels, these

energy sources are not immanent storages of energy, and due to their dependency on changing

weather conditions, their generation is volatile. The lack of control in renewable electricity

generation poses a challenge to keeping electricity generation and consumption aligned. One

solution to address this challenge is buffering imbalances with Energy Storage Systems (ESSs).

The search for suitable storage media and technologies for renewable energy is still a matter

of ongoing research and prices for ESSs are expected to drop in the future while quality will

increase [Far+22]. So far, however, this approach can be very costly, and limited existing storage

capacity is a problem [ZS15].

To reduce the need for ESSs while still balancing electricity generation and consumption,

measures on the demand side can be taken. Apart from reducing energy consumption overall,

one measure is Demand Side Management (DSM), which “can be defined as the implementation

of policies and measures to control, regulate, and reduce energy consumption” [Gud+12]. With

DSM, some flexibility to keep the balance between power consumption and generation is shifted

to the consumption side by consuming more energy at times of high Renewable Energy Sources

(RES) electricity generation and consuming less energy at times of low RES electricity generation.

With the increasing prevalence of volatile energy sources, the importance of DSM will likely grow

over the next decades [Gud+12]. This also increases the likelihood of incentives to use DSM, for

example in the form of time-dependent electricity tariffs with a smaller time granularity, as, for

example, planned by the German Federal Ministry for Economic Affairs and Energy (German:

Bundesministerium für Wirtschaft, BMWi) [BMWi2015, p. 69].

In this context, the project Factories4Renewables (F4R), conducted under the lead of the

Institute of Computer Technology (ICT) at the TU Wien, investigates methods to adapt

production schedules of factories to time-dependent electricity tariffs. Based on forecasts and

statistical models, the most likely electricity price profile is selected, and the production schedule

is optimized in such a way that the electricity cost is minimized, i.e., more energy is consumed

at times of low electricity prices and vice versa.

A prerequisite for production schedule optimization under energy price and consumption

criteria is the knowledge of the energy consumption down to the lowest level of production planning.

Due to the huge variety of production machines, processes and the complex interdependencies

between production processes with regard to their energy consumption, this proves to be a

complex undertaking.
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1.2 Research Questions

In this thesis, a model will be developed that predicts the energy consumption profile of industrial

processes and production schedules based on process parameters and historical data. The

following research question must be answered:

• What is the most suitable architecture with the smallest prediction error for an energy

model for the context of manufacturing?

The following subquestions need to be answered as well:

• What is the deviation, i.e. the mean square error (MSE), between the prediction and the

real power profile?

• What influence do the parameters of the model have on its MSE?

• What influence does the complexity of the training data have on the MSE of the model?

1.3 Research Strategy

Based on literature research, existing energy consumption prediction methods and suitable model

architectures from other application areas will be collected. Their suitability will be evaluated

with regard to the specific task of predicting individual processes’ energy consumption based on

the process parameters.

A use case will be developed to evaluate the performance of the different architectures. It is

based on the battery assembly of the automotive supplier AVL Austria in Graz2, a partner of the

project F4R. The production process and historical power profiles of the production machines

serve as a basis for generating training data for the energy model. Furthermore, real energy data

from measurements on an Industrial Robot (IR) from an open-research dataset is used.

The suitable model architectures will be implemented and assessed with training data from

the use case based on the prediction error, the required amount of data, and the required time

for training.

1.4 Structure of the Work

The thesis is structured as follows: Chapter 2 gives an overview of the State of the Art concerning

energy considerations in production planning as well as certain machine learning techniques used

for this purpose. Chapter 3 then describes the development and implementation of an energy
2www.avl.com

www.avl.com


4 Chapter 1. Introduction

model architecture and assessment metrics. The experimental setup to test the Energy Model is

described in Chapter 4. Chapter 5 provides the results of the experiments with different model

architectures, followed by a discussion. Finally, Chapter 6 concludes the thesis by summarizing

findings and an outlook to possible future research.

1.5 Support

The presented work results mostly from the R&D project Factory4Renewables, funded in the

KLIEN research program “Energieforschung”, Österreichische Forschungsförderungsgesellschaft

(FFG) grant no. 881136. The goal of F4R is to investigate methods to adapt the production

schedules of factories to time-dependent electricity prices and time-dependent availability of

renewable electricity.

The training of the energy model was conducted on the VSC-5 of the Vienna Scientific

Cluster (VSC), at the time of writing Austria’s most powerful supercomputer. VSC provides

supercomputing capacities to the participating Austrian universities.



Chapter 2

State of the Art

So far, energy considerations in production planning have only played a minor role, e.g., in

cutting peak loads [Bra+21]. This is also reflected in the existing amount of literature about

energy measurements and modeling in manufacturing. The motivation behind previous research

efforts regarding energy consumption in manufacturing industries can be categorized into several

groups: One key factor is reducing energy consumption overall and increasing energy efficiency;

this also includes the development of benchmarks to measure energy efficiency. In recent years,

allocating Carbon Dioxide (CO2) emissions down to the product level has become another driver

for monitoring energy consumption in manufacturing. Finally, the third driver is the urge to

increase the use of RES and the associated adaption of consumption profiles to the availability

of electricity from RES.

Although there are numerous examples of incorporating energy-efficiency or energy cost into

scheduling (be it in manufacturing [Gon+15; Del+16; Bän+21], computing [Bam+16; Che+22]

or even robot kinetics [Her+21]), the methods to assign energy-consumption to single processes or

operations are often not explained in detail. While physical models for the energy consumption

of machine movements (e.g., drilling [Che+14]) or active logic gates [Cha+92] exist, it is not

feasible in most cases to split manufacturing or computing processes into these kinds of atomic

processes to model their energy consumption accurately. For applications with homogeneous

processes and energy consumption patterns, it can be sufficient to use averaged energy profiles

[Gon+15]. However, as the complexity of captured processes increases, more versatile methods

and models are needed.

Literature Review reveals that, as of 2021, the scientific research on “Predicting and Fore-

casting the Electrical Energy Consumption in the Manufacturing Industry” has predominantly

focused on energy efficiency, as opposed to energy flexibility [WW21, p. 9], there are even

5



6 Chapter 2. State of the Art

several literature reviews dedicated to energy efficiency in manufacturing in particular [May+17;

Men+19]. In this context, it is essential to emphasize the difference between prediction and

forecast according to [Box+16]: while prediction derives unknown values from known inputs,

forecasts anticipate future values based on their present values and/or history. In the context

of energy modeling, this corresponds to the difference between predicting energy or load values

at time t from observations (present and past values) of other quantities available at time t as

opposed to forecasting energy or load values at time t + x from observations of the same quantity

at time t [Box+16].

In this chapter, existing methods from the literature dealing with energy consumption

modeling in manufacturing and load forecasting, in particular, are presented separately by

model-driven and data-driven approaches.

2.1 Model-Driven Approaches

Model-driven approaches for forecasting energy consumption rely on explicit mathematical

models based on physical principles and domain-specific knowledge. These models simulate the

relationships within the system. The strengths of model-driven approaches include high accuracy

and interpretability, while weaknesses involve complexity in development, data requirements

(for calibration), reliance on assumptions, and potential computational intensity in application.

Existing research can be categorized into physical models of the energy consumption of very

specific processes or even parts of processes and methods that divide processes into subprocesses

and classify the energy consumption or machines to build subclasses of averaged energy profiles.

2.1.1 Classification of Energy Consumption

The systematic classification of machine energy consumption can be helpful in gaining insight into

a whole factory’s, product’s, or process’ energy consumption and, furthermore, in assessing the

potential for energy savings. It is also necessary for the detailed modeling of energy consumption.

One possible classification is based on the correlation between energy consumption and

number of pieces produced. Supporting processes like cooling/heating, ventilation, or centrifuge

rotation are independent of the number of pieces produced and can make up even more of the

overall energy consumption than actual machining [Gut+06].

A similar yet slightly different classification is the one into direct and indirect energy. The

distinction is made between the energy needed for the production itself (e.g., machining, painting)

and energy needed to “maintain the ‘environment’ in which the production processes are carried
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Table 2.1: Energy consumption classification based on [Gah+16].

Non-processing Energy Demand Processing Energy Demand
Machine turn on Job related

Machine idle Varying job related
Machine setup Machine related

Machine turn off Flexible
Material storage

out” [SR11, p. 260] (e.g., lighting, heating). The direct energy can further be divided into

theoretical energy, i.e., the minimum energy required for a process, and auxiliary energy, i.e.,

energy consumed by supporting processes or “supporting activities and auxiliary equipment for

the process” [SR11, p. 260]. While indirect energy is completely independent of throughput, direct

energy is partly dependent (theoretical energy) and partly independent (auxiliary energy) of

throughput. Likewise, [Gah+16] classifies energy consumption into non-processing and processing

energy consumption but subdivides these categories in more detail (see Table 2.1).

Other methods to categorize manufacturing energy consumption, specifically in machining,

include the energy consumption classifications by abstraction level, machine tool states, and

breakdown by machine tool components, which are “three of the leading classification methods for

energy consumption in machining” [Zha+17, p. 144]. The energy classification into abstraction

levels has three categories: firstly, machine tool level; secondly, spindle level; and finally, process

level [Liu+15, p. 477]. While machine tool level energy consumption is useful for an evaluation

of the overall machine efficiency and more independent of the specific type of production, spindle

level energy is very specific to mechanic processes, depends purely on the motor efficiency, and is

“incomparable to other manufacturing processes” [Zha+17, p. 144]. The process level energy, as

mentioned in [Zha+17], is specific to material removal processes and is the energy needed for the

actual removal. It is independent of the machine tool used and useful for the selection of process

parameters with regard to energy consumption and quality [Zha+17].

The energy classification based on machine tool states is based on two [Kel+12] or three

[BM13] elementary machine states, respectively. [Kel+12] only uses a “BasicState” and a

“CuttingState”, while [BM13] also introduces a “ReadyState” between the “BasicState” and

“CuttingState”. Another possible state classification is based on an idle mode, a run-time mode,

and a production mode [DG04]. Independent of the specific terms and methods to identify

machine states, these classifications all have in common that they allow a temporal analysis of

energy hotspots while implicitly highlighting the tools and parameters to modify in order to save

energy.
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Figure 2.1: FSM with assigned (power, time)-vectors, based on [Le+13],[Shr+14]

Like in [SR11] and [Gah+16], the breakdown by machine tool components distinguishes

between fixed and variable energy with respect to the machine utilization [Zha+17, p. 145].

Furthermore, Li et al. associate the fixed energy with the specific tools that cause the consumption

[Li+11]. This is helpful in identifying the tools most suitable for energy-saving measures.

2.1.2 Finite State Machine (FSM) Models

The state-based classification of energy consumption is closely related to the behavior of manu-

facturing equipment, which can be described with a Finite State Machine (FSM). The appeal

of this model lies in its simplicity and clarity. Several publications have used FSMs to describe

machine states and associate energy consumptions with these states and also state transitions

[Le+13; Shr+14; DV08].

In [Le+13], the authors propose an “FSM energy consumption model” [Le+13, p. 585]

consisting of states and state transitions to model machine behavior (see Figure 2.1). The three

main objectives of their model are to extrapolate from real-time energy measurements to the

current machine state, energy consumption evaluation on the machine level, and energy-efficient

scheduling [Le+13, pp. 585-586]. However, their understanding of energy-efficient scheduling is

to choose the most energy-efficient machine and not the temporal shift of operations on given

machines to influence the energy consumption profile.

With the objective of minimizing energy costs, [Shr+14] propose an FSM-like scheme of

states and state transitions to acquire time-discrete energy profiles of a production process. The

FSM represents the three basic operational states, “processing”, “idle”, and “shutdown”, and the
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possible transitions between these states (including staying in the same state). Each state and

each state transition is assigned a tuple of duration and energy consumption, although how to

determine these values is not described in detail. A mathematical model, consisting of constraints

and an objective function, is presented to solve the scheduling problem while minimizing the

costs of energy consumption [Shr+14].

Dietmair et al. [DV08] described an approach to define machine states based on energy

measurements during machine operation. Peaks and plateaus in the P(t)-diagram are linked

to the corresponding machine states. Together with the state/transition graph of the machine,

predictions about the energy consumption of a certain machine usage can be made. It is stressed

that “a small number of basic measurements during elementary operations” is sufficient to

parameterize the model [DV08, p. 577].

Even though FSMs are not mentioned explicitly in the paper, the EnergyBlocks methodology

[Wei+11] can be used to assign energy consumptions to machine states as so-called “Energy-

Blocks”. These EnergyBlocks are stored in a database and can be strung together to model the

energy consumption of any series of operational states. The methodology allows three differ-

ent perspectives: the equipment perspective (i.e., from a machine point of view), the product

perspective, and the production system perspective. Each perspective allows different forms of

analysis, e.g., the equipment perspective enables the analysis of the energy costs of a machine

and the share of the total consumption, while the product perspective allows the calculation of

product-specific energy costs and also manufacturing times [Wei+11].

Complementary to purely state-based approaches, [LH23] presented a matrix of load cat-

egories with the dimensions process dependency (process-dependent/-independent) and load

type (constant/controlled constant/variable) to disaggregate single machine loads into different

components. Unlike the state-based categorization, this component-based approach also takes

into account internal interdependencies and job characteristics, which enables it to extrapolate

the energy consumption from one job to another. The model also applies a just-in-time method

to determine a job’s energy consumption to take into account not directly process-related energy

consumption based on environmental conditions, which would be neglected when pre-fetching a

job’s energy consumption before scheduling. However, this method is less performant.

2.1.3 Machine Classification

Schmidt et al. [Sch+15] developed a model to determine the energy consumption of any product

on a certain machine. The decision tree depicted in Figure 2.2 is their guideline for dealing with the

huge variety of machines and choosing a suitable strategy for measurement and analysis. Machines
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Figure 2.2: Machine classification according to [Sch+15].

are categorized into four groups according to their complexity, i.e., according to their number

of adjustable parameters and their number of operations. Different strategies for measurement

and analysis are proposed depending on the machine type and additional information about the

consumption profile; these range from average consumption to parameterized energy blocks and

semi-empirical equations. The proposed methodology was applied in a case study at a job-shop

factory producing parts for the electricity grid with 33 machines to derive the specific energy

consumption of 7 products. Also, a factory-wide energy hotspot analysis was carried out.

2.2 Data-Driven Approaches

Data-driven approaches use large data sets to identify patterns and correlations without relying

on predefined models. They employ machine learning algorithms to learn from historical data.

In contrast to model-driven approaches, data-driven methods allow for adaptability to complex
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relationships that may not be easily captured by predefined models. The advantages of data-

driven approaches include flexibility in handling diverse data types and patterns. Still, they can

be at a disadvantage with regard to interpretability, potential overfitting, and reliance on the

quality and representativeness of the training data.

Industry 4.0 and smart factory paradigms have increased the interest in collecting data from

the manufacturing process to leverage the extraction of useful information about operational

efficiency, product quality, predictive maintenance, and overall system optimization. However,

the evaluation of the collected data from sensors and production systems requires effective data

analytics tools and machine learning algorithms to derive meaningful insights for the continuous

improvement of the manufacturing processes. The availability of data about energy consumption

linked with machining data enables research efforts in data-driven prediction models for machine

tool energy consumption [Kum+20]. The data-driven models can either be used to derive present

machine loads from aggregated load measurements or auxiliary machine data, i.e., for prediction,

or to derive future machine loads from past and present load measurements, auxiliary machine

data, and production schedules, i.e., for forecasting.

This section is divided into prediction and forecasting (as defined by [Box+16]) of energy

consumption and power rather than by the different machine-learning algorithms since, in most

existing literature, several machine-learning algorithms are tested at a time to find the most

suitable one.

2.2.1 Prediction Applications

Applications to predict energy consumption in an industrial context can mostly be linked to

non-intrusive load monitoring. Compared to intrusive load monitoring, which relies on sensors

installed at each appliance of which the energy consumption should be measured, non-intrusive

load monitoring relies on information by sensors installed only at the entrance of an electrical

circuit [Liu20]. This implies load disaggregation (to assign the load to the individual appliances),

often including additional parameters like control signals, process step information, or carrying

out algorithm training [See+19].

In [Tan+21], an approach to predict individual machine loads based on the total load of

four machines (laser welding, laser trimming, two ovens) was presented. Six different algorithms

(four Long Short-Term Memory (LSTM)-related, two gradient-boost-related) were trained in

a supervised manner with tuned hyperparameters and ranked according to the mean absolute

error and root mean square error. Interestingly, the two rankings were quite different from one

another, with a light gradient-boosting machine being the best in terms of mean absolute error
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and an ensemble bi-directional LSTM in terms of the root mean square error. Ultimately, the

disaggregated loads were used to predict the activity state and to estimate the production of the

single machines.

In [AB15], an ensemble model of Neural Networks (NNs) and the k-nearest-neighbors (k-nn)

method were applied to predict the energy consumption of manufacturing certain parts on a

machine and to optimize the energy consumption. The k-nn approach was used to identify

the most similar training data to the data presented and to derive local information from that

training data. The approach accounted for uncertainties in the prediction by estimating prediction

intervals instead of points.

Both unsupervised and supervised deep learning were used in [He+20] to extract features

from machinery data and predict the energy consumption of a Computer Numerical Control

(CNC) system for milling and grinding. Unsupervised learning is used for feature extraction

from the raw input data, and a 1-D Convolutional Neural Network (CNN) is used for the energy

prediction. It produced predictions with a lower root mean square error (RMSE) than the three

compared techniques (support vector regression, Gaussian process regression, extreme learning

machine). It is worth noting that the method described in this paper only mentions energy

prediction, even though the used input features (e.g., rotational speed, linear speed, feed rate)

are probably already known at the time of production planning and could, therefore, also be

used for energy forecasting.

Energy prediction can also be used for predictive maintenance based on energy consumption

and to improve the energy efficiency of machinery. In [Ber+22], a state-space representation

together with a Hammerstein modeling for non-linearities was used for online energy modeling,

which also captures long-term drifts in the energy consumption caused by equipment degeneration.

The model is data-driven in so far as it is automatically adapted when the error between the

current consumption and the output of the reference model becomes too big. The approach

was validated in an industrial testbed consisting of spindles, a servomotor for translation, a

pneumatic system, and a cooling system (among others). As inputs, the spindle and servomotor

speeds and the activation/deactivation signals of the cooling and pneumatic system were used.

These devices were the most energy-consuming. The adaptive model doubled the fit rate of the

non-adaptive model (68 % vs. 33 %) [Ber+22].

2.2.2 Forecast Applications

The distinction between energy forecasting and energy prediction in existing literature is often

not made very clear. Most publications even seem to use it interchangeably. This is the reason
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why some sources in this section use the word “prediction”, even though according to the

temporal nature (present vs. future) of the definition by [Box+16], their concepts can be linked

to forecasting.

Much literature exists on time series forecasting of energy consumption in the manufacturing

industry (e.g., [Rib+20; MB18]). However, these examples mostly concern factory-wide energy

consumption or only short-term forecasting. Another distinction has to be made between the

forecasting of vectors (mostly load profiles) and scalar values (mostly the sum of the energy

consumption). While forecasting the scalar energy consumption can be sufficient for ranking

machinery or processes according to their energy intensity, the temporal resolution of these scalar

values is limited to the duration of the processes. Also, the shape of the energy consumption

(fluctuating or even) is omitted.

In [MH20], NNs (both feed-forward and recurrent) were used to forecast the energy con-

sumption of a manufacturing environment as well as the temperature and air humidity of the

manufacturing environment. Even though the models only forecast the entire building’s energy

consumption, manufacturing schedules played a major role in the forecast by determining the

consumed energy for manufacturing itself as well as the released heat from machines, which in

turn had an effect on the energy consumption of heating, ventilation, air conditioning (HVAC)

facilities. Besides, weather conditions like dry bulb temperature, wind speed, and relative

humidity were used. In their case study, the Recurrent Neural Networks (RNNs) exhibited better

results than the feed-forward NNs for the building’s energy consumption forecast (mean absolute

error (MAE) 0.068 vs. 0.097, RMSE 0.040 vs. 0.060).

LSTM-based time series forecasting was used in [MB18] to optimize resource utilization and

energy consumption. The decisions the LSTM could make comprised the next operation to be

performed as well as the machine resource that this operation should be performed on. Decision

criteria were energy, utilization, and time, weighted 60/20/20 %. Each of the N robots on a

shop floor issued a bid on the costs of the next operation offered by the scheduler based on past

operations. The scheduler then made the decision on which robot to schedule the operation on.

However, the pilot implementation did not consider several possible operations and only assumed

scalar values for the energy consumption.

A Random Forest was used in [Bri+21] to forecast the energy demand of CNC milling for lot

size one manufacturing. First, a training part was produced to acquire training data to train a

Machine Learning model. This model then forecasted the energy consumption for the production

of a validation part based only on the numerical control instructions. Each instruction was

broken down into features like the category of operation or go-to positions. Instructions whose
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Table 2.2: Comparison between model-driven and data-driven approaches.

Model-driven approaches Data-driven approaches

Strengths
+ High accuracy
+ Interpretability

+ Adaptability to complex relationships
+ Less reliance on expert knowledge

Weaknesses
- Complexity in development

- Reliance on assumptions
- Interpretability

- Reliance on quality of data

energy consumption was not significantly higher than the idle consumption were ignored. The

output was a scalar value of the energy consumption for a certain instruction. While the Random

Forest performed better on predicting the energy consumption of the movements (0.2 % - 3.3 %

vs. 4.0 % - 18.5 %), the Decision Tree performed better for the spindle and tool change system

prediction (8.9 % - 11.8 % vs. 11.7 % - 46.2 %).

2.3 Concluding Evaluation

The focus of existing research conducted in the area of industrial energy consumption analysis

is on energy efficiency and cutting peak loads rather than energy flexibility. Only very few

publications have dealt with deriving energy consumption from production schedules. While

some model-driven approaches already exist to predict the energy consumption of manufacturing

processes, they have the strategic disadvantages of model-driven approaches: they are tailored to

a certain process, require a deep understanding of the process itself, and are complex to develop.

A summary of the differences between model-driven and data-driven approaches is given in

Table 2.2.

Physical models of the energy consumption of very specific processes or even parts of processes

are too unflexible and require too much development effort for wider application. Also, they

often model the energy consumption on a much lower level than the process level. Averaged

energy profiles per process can be sufficient for processes with non-alternating parameters and

fixed energy profiles.

A more detailed variant of averaged energy profiles are methods that divide processes into

subprocesses and classify the energy consumption or machines to build subclasses of averaged

energy profiles, e.g., by means of an FSM. The development effort of this variant is limited to

defining subprocesses or substates of machines (including their temporal sequence) and averaging

the respective load profiles. However, such models only work with known parameter values and

cannot interpolate between them.
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Existing data-driven approaches often focus on load disaggregation or non-intrusive load

monitoring, i.e., associating load shares from a central measurement point to single machines and

processes using schedule data and process parameters. While certain machine learning algorithms

used for load disaggregation can also be used for load forecasting from process parameters, they

are fundamentally different concepts.

The distinction between prediction and forecasting by [Box+16] proves to be very useful

in this context. However, this terminology is not very common in related work, instead, the

predominant terminological distinction between prediction and forecasting seems to be linked

to certainty and the time horizon (prediction associated with relative certainty and short-term

horizon, forecasting associated with relative uncertainty and long-term horizon).

Existing load forecasting models either forecast the load profile based on the past load profile

or forecast the load profiles on a higher level than the process level, e.g. factory-wide. Also, not

all models forecast a whole load profile but instead just the scalar energy consumption. This way,

if a process overlaps the border between two electricity price time slots, it cannot be determined

what share of the energy consumption must be assigned to which time slot.

2.4 Scientific Value and Novelty of the Proposed Model Type

A research gap exists for data-driven approaches that forecast the electrical load profile of the

single processes of a production schedule. A data-driven approach would have the benefit that

the architecture would be generally applicable and easily adaptable by training the model with

new data. This kind of energy forecast model would benefit efforts to adapt industrial energy

consumption to the availability of renewable energy and fluctuating energy prices by assigning

energy consumption to process steps already at the time of production planning. By having a

pre-determined energy consumption assigned to each process step during production planning,

manufacturers can strategically schedule energy-intensive tasks during periods of abundant

renewable energy or lower energy costs. Moreover, the model facilitates the identification of

energy-intensive stages, allowing for the exploration of alternative materials or processes that

may reduce energy consumption without compromising product quality.





Chapter 3

Energy Model Architecture

This chapter presents the development of a generic Energy Model that is able to generate power

profile predictions for manufacturing processes based on process parameters and which can be

easily adapted to different use cases. First, requirements for the model architecture are defined,

and the advantages of a data-driven model are outlined. After that, requirements are defined for

the historical data that is used for training. Subsequently, the model architectures to be tested

are laid out, followed by their implementations with the Python library Keras (details about

Keras in Section 3.4). And finally, the metrics to assess and compare these model architectures

are explained.

3.1 Requirements for the Model Architecture

As evident from the abundance of existing literature on energy modeling in industrial manufac-

turing, numerous approaches exist to model the energy consumption of production processes with

different focuses and strengths. Therefore, before selecting one approach or several approaches to

compare against each other, it is necessary to clearly define the requirements and desired abilities

for the Energy Model architecture with regard to forecasting the load profile of manufacturing

processes and schedules.

The first requirement for the model architecture is that it be easily adaptable to various

industrial use cases. This means that by simply replacing the historical data and performing

automated procedures, the model should work in a different use case. The second requirement is

that the model can interpolate between parameter values from the historical data. This ensures

that the model also performs well in dynamic and flexible production environments, e.g., with

customizable products or parameterizable machines. Lastly, the third requirement is that the

model encompasses all process-dependent energy consumption, i.e., the energy consumption of all

17
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operations that are performed on the manufacturing machines. This includes idle consumption

since it is not just some constant base load but depends on the timing of scheduled processes and

on the duration of idle periods between processes, particularly for machines requiring standby

mode during interventions. Scheduling processes consecutively followed by a longer idle period

allows for complete machine shutdown during the break and, consequently, a lower idle energy

consumption compared to multiple short idle periods scattered between the processes.

This combination of requirements cannot be fulfilled with existing energy modeling approaches

from the literature. Finite State Machine (FSM) models [Shr+14; DV08; Wei+11], while being

adaptable to various industrial use cases, cannot interpolate between parameter values from the

historical data. Specific physical models can also handle unprecedented settings but require a lot

of effort to develop, are tailored to a specific application, and are, therefore, hardly adaptable

to various use cases. Data-driven approaches also only exist for specific use cases [Bri+21], to

parameterize model-driven approaches [Ber+22], or for factory-wide energy consumption [MH20].

Therefore, by combining existing approaches from other application domains, a novel Energy

Model has to be developed.

The major decision that has to be made is the one between a model-driven or a data-driven

approach. As described in Chapter 2, the strengths of model-driven approaches include high

accuracy and interpretability. Especially interpretability is an important advantage over data-

driven approaches since it enhances trust and reliability in the model. Moreover, examining the

model’s inner workings enables insights for discovering hidden drivers of energy spikes beyond the

obvious parameters and for the development of scheduling-specific optimization strategies. By

understanding how process timing and process sequence impact energy consumption, production

plans can be adapted to minimize, e.g., idle periods and optimize machine states. Model-driven

approaches also fulfill the requirements of being able to interpolate between known data points

as described above. A model based on principles of physics, thermodynamics, or engineering can

make predictions for scenarios not explicitly present in the training data by using the underlying

mathematical or physical principles that describe the system. Also, idle times can be modeled

just like production processes.

However, with regard to the requirement of adaptability described above, data-driven ap-

proaches have an advantage. Their strengths include flexibility and adaptability; new data

and information can be easily integrated. They require much less domain-specific knowledge

and understanding of the underlying principles. At the same time, they are able to interpolate

between known data points as long as they are not too far apart, which is also the main reason

for not just using historical load profiles without further treatment as a forecast for the load
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Figure 3.1: Schematic load measurement with overlayed process parameters.

profile of processes. Additionally, idle times, as long as they are present in the historical data,

can be treated and modeled like production processes. This makes data-driven models strong

candidates for the given use case, particularly in situations where domain-specific knowledge

may be limited or where the system’s behavior is complex and not fully understood.

3.2 Data Requirements

The training data is required to contain process parameters and the load profile of the process.

Since the temporal sequence of processes and their parameters often influences the power

consumption of a process, the full load profile of a machine, together with machine schedule data

including process parameters, is required. This way, sections of the load profile can be combined

with the corresponding process parameters including information about previous processes or

idle times as schematically depicted in Figure 3.1. This information can be treated as another

parameter of the succeeding process. As far as the Energy Model is concerned, the idle times

and their load profiles can be treated just like normal processes. This way, also idle energy

consumption is covered.

The model receives the process parameters as an input vector and should produce the power

profile of the given process as an output vector. The power profile values are equidistant and

the desired temporal resolution must be determined before training the model. If necessary, the

training power profiles have to be resampled. The variable number of parameters per process,

the variable duration of processes, and, hence, the variable length of power profiles require to

deal with input and output vectors of varying lengths. This can be done either by choosing a

model architecture that can handle variable-length input and output data or by padding the

input and output vectors so that their lengths are equal. For the power profile, padding values
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Figure 3.2: Schematic structure of a Neural Network (left) and a single neuron (right).

just need to be added at the end of a vector; for the process parameter vectors, it is better to

use one column per parameter and add padding values in the columns of the parameters that

are not used. This way, the position of a parameter remains the same and does not need to be

learned by the model.

3.3 Data-driven Model Architectures

The selection of a suitable model architecture plays a crucial role in extracting complex patterns

and dependencies embedded in energy consumption data. This section presents the chosen

data-driven model categories to be tested, each tailored to address specific challenges in load

profile prediction. NNs, known for their adaptability and ability to handle complex relationships,

serve as a benchmark for comparison. RNNs explicitly consider temporal dependencies embedded

in sequential energy data, allowing them to model dynamic patterns and capture long-term

dependencies. Furthermore, Encoder-Decoder Networks, with their ability to process input

sequences and generate output sequences, i.e., sequence-to-sequence (Seq2Seq) data, are well-

suited for tasks like predicting future energy consumption based on historical data. Lastly,

ensemble learning, collectively utilizing multiple models, is introduced as a strategy to improve

predictive performance.

3.3.1 Neural Networks

Neural Networks (NNs) have become very popular in recent years, thanks to their remarkable

ability to learn complex patterns and relationships from data. Inspired by the structure and

function of the human brain, NNs are versatile machine learning models capable of learning
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Figure 3.3: Schematic structure of a Recurrent Neural Network (based on [Agg18, p. 39]).

complex patterns and relationships from data. They are composed of layers of interconnected

nodes, or neurons, that pass information between each other in a hierarchical manner (see

Figure 3.2). Each neuron receives weighted inputs from other neurons, sums these weighted

inputs together with a bias vector, applies a mathematical function (the activation function) to

this sum, and produces an output. Activation functions introduce non-linearity into the network,

which is crucial for learning complex patterns and relationships. The outputs of neurons in one

layer are then passed to neurons in the next layer, and so on. This hierarchical structure allows

NNs to learn complex relationships between data points.

During the training of the NN, the weight vectors and the bias vectors are optimized so as

to minimize the network’s loss function or error metric by iteratively adjusting the values of

the weights and biases using optimization algorithms such as gradient descent. To calculate the

gradient of the loss function with respect to the weights of the connections between neurons,

backpropagation is used. This gradient information is then used by the learning algorithm to

update the weights. NNs have a wide range of applications, including image recognition, natural

language processing, and anomaly detection [Kub17].

3.3.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of artificial neural network that is capable of

learning sequential data. This means that it can be used to model data that has a natural order,

such as text, speech, and time series data. RNNs are able to do this by using feedback loops,

which allow them to incorporate information from previous inputs into their current predictions.

The core of RNNs is the recurrent structure (see Figure 3.3), which allows them to process

sequential data by maintaining a memory of previous inputs. This memory is typically represented

by a set of hidden states h, which are vectors that capture the information from the previous

inputs x. The hidden states are then used to generate the current output y. The weights w are
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the parameters that determine the strength of the connections between the different parts of the

RNN. These weights are learned through a process called backpropagation through time, which

is an extension of the standard backpropagation algorithm that is used to train feedforward

neural networks [Agg18, p. 38f].

An enhancement to the traditional RNN architecture are LSTMs and Gated Recurrent Units

(GRUs). Both architectures address the vanishing gradient problem, which is a common issue

that arises in traditional RNNs when training on long sequences. The vanishing gradient problem

occurs because the error signal that is backpropagated through time becomes exponentially

smaller as it goes back in time. This makes it difficult for the RNN to learn long-term dependencies

in the data.

According to [SB18], LSTMs address the vanishing gradient problem through the implemen-

tation of three multiplicative gates (input gate, forget gate, output gate). These gates control

the information flow within the LSTM cell. The input gate controls the proportion of the current

input (xi) incorporated into the memory cell (ci), the forget gate controls the fraction of the

previous memory cell information (ct−1) retained, and the output gate controls the proportion of

the current memory cell state exposed as the output (hi).

Within the LSTM’s recurrent structure, the forget gate uses the identity function (gradient =

1) as its activation function. This implies that when the forget gate is open, the gradient is

fully transmitted to preceding time steps, enabling the model to learn long-term dependencies
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effectively. The internal structure of an LSTM cell is depicted in Figure 3.4. The LSTM processes

each input (xi) sequentially, updating its memory state (ci) based on the gate values. Following

each update, an output (hi) is generated based on the modified memory state. The gate outputs,

the cell state, and the hidden state are calculated as follows [SB18]:

it = σ(Wixxt + Wihht−1 + bi) (3.1)

ft = σ(Wfxxt + Wfhht−1 + bf ) (3.2)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxxt + Wchht−1 + bc) (3.3)

ot = σ(Woxxt + Wohht−1 + bo) (3.4)

ht = ot ⊙ tanh(ct) (3.5)

where it is the input gate, ft the forget gate, ct the cell state, ot the output gate, and ht the hidden

state. The weight matrices W and biases b are time-independent and are used to parameterize

the connections inside the LSTM cell. While weights represent the strength of connections

between neurons in different layers and are specific to connections between neurons, biases act as

offsets to the weighted sum of inputs reaching a neuron and are applied globally to all neurons

in a layer. The functions σ(x) and tanh(x) are defined as follows:

σ(x) = 1
1 + e−x

tanh(x) = e2x − 1
e2x + 1

(3.6)

Solving the vanishing gradient problem through the described approach allows the LSTM to

learn long-term dependencies in the data, which makes it well-suited for tasks such as machine

translation, text summarization, and speech recognition [PG17].

GRUs are simpler than LSTMs; they do not use a dedicated cell state and control the

information flow to the hidden state with a single so-called reset gate instead of a separate forget

gate and output gate. Moreover, a so-called update gate combines the function of the input

gate and forget gate from the LSTM cell. GRUs have the advantage of being faster to train

than LSTMs and they have been shown to be just as effective in many tasks. With limited

data, GRUs’ parameter efficiency could lead to slightly better generalization. However, as data

availability increases, LSTMs become increasingly powerful. The LSTM, being older and more

widely studied, has benefited from more extensive testing compared to the GRU. Therefore it is

often seen as a safer and more reliable choice, especially for longer sequences and larger datasets

[PG17].
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Variable Input Encoder

Fixed-length
internal vector

Decoder Variable Output

Figure 3.5: Schematic structure of an Encoder-Decoder network [HS23].

3.3.3 Encoder-Decoder Networks

Encoder-decoder architectures are a type of RNN that is commonly used for sequence-to-sequence

tasks, such as machine translation, text summarization, and speech recognition. In an encoder-

decoder architecture, the input sequence is encoded into a fixed-length vector, and then the

decoder uses this vector to generate the output sequence (see Figure 3.5). This structure enables

encoder-decoder architectures to predict data whose input and output vectors have different,

varying lengths. Encoder and decoder can be any RNN architecture, the most prominent

architectures being LSTMs and GRUs. Following the unfolded (i.e., the righthand) RNN

structure in Figure 3.3, the unfolded structure of an encoder-decoder network is depicted in

Figure 3.6 [Sut+14].

First, the inputs are passed one after the other to the input of the encoder, which discards

the outputs. By the time the last input has been processed, the hidden state h (and, in the

case of an LSTM, also the cell state c) is a representation of the input sequence with all its

internal relations and is passed as a so-called context vector to the decoder. The decoder loads

h1 h2 h3 h1 h2 h3 h4 h5

x1 x2 x3 start y1 y2 y3 y4

y1 y2 y3 y4 end

h

Encoder Decoder

Figure 3.6: Unfolded structure of an Encoder-Decoder network (based on [Sut+14]).
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the context vector to its hidden state and, after being passed a start token at the input, produces

the first element of the output sequence. This output is then fed back in a loop to the input of

the decoder, the next output is produced, and so on, until an end token is produced [Sut+14].

To accelerate the training, a method called teacher forcing is applied [Vas19]. This means

that the output loopback to the input of the decoder is interrupted during training. Instead,

the true output values are applied to the decoder input (shifted by one). This means that in

Figure 3.6, the input of the decoder in the second time step would need to be changed from y1

to y1,true and so on.

3.3.4 Ensemble Learning

Ensemble learning is a machine learning technique that combines multiple models to improve

predictive performance. By combining the predictions of multiple models, ensemble learning can

often outperform any single model. There are different techniques for combining multiple models

[SN19]:

Bagging, which stands for Bootstrap Aggregation, trains multiple models on different subsets

of the training data. Each model is then trained on its own subset of data and its predictions

are combined to produce the final prediction. This method helps to reduce the variance of the

model, which can improve accuracy.

Boosting, also known as sequential learning, trains models sequentially. Each model is trained

to focus on the errors of the previous models. This helps to reduce the bias of the model, which

can also improve accuracy. However, boosting cannot address the issue of overfitting.

Stacking, also referred to as blending, combines the predictions of multiple models by training

a meta-learner on the predictions of the base models. Unlike bagging and boosting, which

combine models at the prediction stage, stacking combines models at the learning stage. In

stacking, multiple base models are trained on the original training data, and their predictions

are used to train a meta-learner. The meta-learner learns to combine the predictions of the base

models to produce the final prediction.

3.4 Implementation with Python and Keras

For the implementation of the model architectures mentioned in Section 3.3, the Python library

Keras was used. Keras is a high-level neural network Application Programming Interface (API)

written in Python that provides an interface for building and training deep learning models.

Keras is built on top of TensorFlow, an open-source numerical computation library, and uses
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TensorFlow’s efficient backend for computations while providing a simpler and more intuitive

API for model building.

In the following subsections, the Keras implementations of each model architecture are

described and explained. The different model architecture implementations are all subclasses

of the class “EnergyModel”. They differ only by their constructor (which sets the architecture

name) and the function “build_model”, which defines the Keras model.

3.4.1 Neural Network

The NN architecture consists of a sequential model composed of several dense layers. Each dense

layer employs the rectified linear unit (ReLU) activation function, which introduces non-linearity

into the network, allowing the model to learn complex patterns from the data. The model

architecture is as follows:✞ ☎
1 model = Sequential ( )

2

3 model . add ( Dense ( 256 , kernel_initializer=’normal ’ , input_shape=input_shape ,

→ activation=’relu ’ ) )

4 model . add ( Dense ( 256 , activation=’relu ’ ) ) # Layer 2

5 model . add ( Dense ( 256 , activation=’relu ’ ) ) # Layer 3

6 model . add ( Dense ( 256 , activation=’relu ’ ) ) # Layer 4

7 model . add ( Dense ( output_shape [ 0 ] , kernel_initializer=’normal ’ , activation=’linear ’ ) )

8

9 model . compile ( loss=’mse ’ , optimizer=’adam ’ )✝ ✆
Listing 3.1: Code of Neural Network Model

The input layer (implicitly defined) receives the raw data, represented by a two-dimensional array

(input_shape), where input_shape specifies the number of samples and the number of features,

respectively. The NN comprises four dense layers, each with 256 neurons. Dense layers facilitate

connections between all neurons in one layer and all neurons in the subsequent layer. The ReLU

activation function is applied after each layer. The final dense layer has output_shape[0] neurons

to achieve the desired dimensionality of the output. The linear activation function is applied to

ensure that the output is a real number, as expected for the load profiles.

3.4.2 Recurrent Neural Network

The RNN architecture is implemented as a 2-layer model with dropout layers. Both LSTM and

GRU versions were implemented. In this section, the LSTM version is described, but the LSTM

layer and the GRU layer are interchangeable. The model architecture is as follows:
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✞ ☎
1 model = Sequential ( )

2

3 model . add ( LSTM ( 64 , input_shape=input_shape , return_sequences=True ) )

4 model . add ( Dropout ( 0 . 2 ) )

5 model . add ( LSTM ( 64 , return_sequences=False ) )

6 model . add ( Dropout ( 0 . 2 ) )

7 model . add ( Dense ( output_shape [ 0 ] ) )

8

9 model . compile ( loss=’mse ’ , optimizer=’adam ’ )✝ ✆
Listing 3.2: Code of Recurrent Neural Network Model with LSTM

The first LSTM layer has 64 units (memory cells) and utilizes the return_sequences = True

parameter to maintain the original sequence length. This allows the input sequence to be passed

through subsequent LSTM layers without being truncated. The dropout layer is a regularization

technique that randomly drops a certain percentage (20 % in this case) of neurons during training.

This helps prevent overfitting and improves the generalization of the model. The second LSTM

layer has the same number of units as the first layer and uses the return_sequences = False

parameter to indicate that the output sequence length should be reduced to one value. Another

dropout layer is applied to the output of the second LSTM layer, maintaining the regularization

effect. The final layer is a dense layer with the same number of neurons as the desired output

dimension and a linear activation function.

3.4.3 Sequence to Sequence Model

Just as for the RNN architecture, the Seq2Seq Model was also implemented as both an LSTM

and a GRU version. The LSTM implementation is based on the description in the Keras blog

[Cho23] and is as follows:✞ ☎
1 # Models for training

2 encoder_inputs = Input ( shape=(None , input_shape [ 1 ] ) )

3 encoder = LSTM ( 64 , return_state=True )

4 encoder_outputs , state_h , state_c = encoder ( encoder_inputs )

5 encoder_states = [ state_h , state_c ]

6

7 decoder_inputs = Input ( shape=(None , output_shape [ 1 ] ) )

8 decoder_lstm = LSTM ( 64 , return_sequences=True , return_state=True )

9 decoder_outputs , _ , _ = decoder_lstm ( decoder_inputs , initial_state=encoder_states )

10 decoder_dense = Dense ( output_shape [ 1 ] , kernel_initializer=’normal ’ , activation=’

→ linear ’ )

11 decoder_outputs = decoder_dense ( decoder_outputs )

12
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13 model = Model ( inputs =[ encoder_inputs , decoder_inputs ] , outputs=decoder_outputs )

14 model . compile ( loss=’mse ’ , optimizer=’adam ’ )

15 self . model = model

16

17 # Models for inference

18 encoder_model = Model ( encoder_inputs , encoder_states )

19 decoder_state_input_h = Input ( shape=(64 , ) )

20 decoder_state_input_c = Input ( shape=(64 , ) )

21 decoder_states_inputs = [ decoder_state_input_h , decoder_state_input_c ]

22 decoder_outputs , state_h , state_c = decoder_lstm (

23 decoder_inputs , initial_state=decoder_states_inputs )

24 decoder_states = [ state_h , state_c ]

25 decoder_outputs = decoder_dense ( decoder_outputs )

26 decoder_model = Model (

27 [ decoder_inputs ] + decoder_states_inputs ,

28 [ decoder_outputs ] + decoder_states )

29 encoder_model . compile ( loss=’mse ’ , optimizer=’adam ’ )

30 decoder_model . compile ( loss=’mse ’ , optimizer=’adam ’ )✝ ✆
Listing 3.3: Code of Seq2Seq Model with LSTM

To apply teacher forcing during the training, the inputs and connections between encoder and

decoder LSTM differ between training and inference. The upper half of the Python code describes

the connections for training, and the lower half describes the connections for inference. The

encoder input is a vector with a length equal to the number of features. This means that all

features are passed to the encoder in a single time step. Theoretically, it would also be possible

that the features would be passed one after the other in several time steps. However, since

there is no temporal relation between the process parameters, this would be detrimental to the

performance of the model.

The encoder itself is an LSTM with 64 units. While the internal state is passed to the output

because it is forwarded to the decoder, the actual encoder output is discarded. During training,

the decoder takes as input the desired output sequence shifted by one (teacher forcing), the start

token is the value −2. The decoder, just like the encoder, is an LSTM with 64 units which passes

the internal state to the output. However, “return_sequences” is set to True to return the full

sequence of outputs (instead of just the last one). This is because the output sequence of the

decoder is actually used and not discarded like the output sequence of the encoder. Also, the

initial internal state is set to the internal state passed by the encoder. The output sequence of

the decoder is then passed to a Dense layer to process the output of the decoder. The training

model takes the parameter sequence (encoder input) and the shifted output sequence (decoder

input) as inputs and is trained to produce the unshifted output sequence (power profile). Both
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input and output training sequences must be padded to have the same length.

For inference, the input sequence can be padded but does not necessarily need to be. The

output sequence can either be inferred until the model returns the first padding value or for a

specified number of times (e.g. until the maximum length is reached). In the second case, a

well-trained model returns padding values after the actual output sequence has been returned.

Here, the second case is implemented for compatibility reasons with the other model architectures.

To remove the teacher forcing, the encoder model is configured to take a parameter sequence as

input and to return its internal state. This internal state is passed to the decoder as its initial

state. When receiving an input, the decoder returns an output and its internal state. The output

is passed to a Dense layer, and the internal state is passed back into the decoder. Because the

inference process actually involves two models, a manual inference function is created which

produces a prediction sequence which is as long as the maximum profile duration:

✞ ☎
1 def predict ( self , input_data ) :

2 # Encode and normalize input data

3 input_data = self . _preprocess_input_data ( input_data )

4 input_data = input_data [ self . parameter_sequence_encoded ] . values . astype ( np . float 3

→ 2 )

5 input_data = np . reshape ( input_data , ( 1 , 1 , len ( self . parameter_sequence_encoded ) )

→ )

6

7 encoder_model = self . model [ ’encoder_model ’ ]

8 decoder_model = self . model [ ’decoder_model ’ ]

9

10 # Generate internal state from input

11 state_for_decoder = encoder_model . predict ( input_data , verbose=0 )

12

13 # Start token to initiate decoder output

14 target_seq = np . zeros ( ( 1 , 1 , 1 ) )

15 target_seq [ 0 , 0 , 0 ] = - 2 .

16

17 prediction = [ ]

18 # Produce a prediction sequence as long as the maximum profile duration

19 for i in range ( self . max_time_series_length ) :

20 load_profile_element , h , c = decoder_model . predict ( [ target_seq ] +

→ state_for_decoder , verbose=0 )

21 prediction . append ( load_profile_element )

22

23 # Update target sequence and states

24 target_seq = np . zeros ( ( 1 , 1 , 1 ) )

25 target_seq [ 0 , 0 , 0 ] = load_profile_element

26 state_for_decoder = [ h , c ]

27
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28 # Reshape the prediction to remove the extra dimension

29 prediction = np . reshape ( prediction , ( 1 , - 1 ) )

30

31 # Unnormalize each prediction value with the time series scaler

32 scaler = self . scalers [ ’time_series ’ ]

33 prediction = scaler . inverse_transform ( prediction )

34

35 return prediction✝ ✆
Listing 3.4: Code of Seq2Seq inference method with LSTM

After receiving the parameter sequence and passing the internal state of the encoder to the

decoder, the decoder output is initiated with the start token −2. In the inference loop, after

every cycle, the internal state and the last output are fed back into the decoder until the desired

output sequence length (maximum process duration) is reached.

3.4.4 Parameter-Based Ensemble Learning

The ensemble model is a parameter-based ensemble model of several instances of the RNN LSTM

architecture. The model is chosen based on any categorical parameter, e.g., the recipe ID, so

each model specializes in the load profile forecasting of one process type only. This way, the

most decisive parameter of the load profile shape does not have to be learned by the model

anymore and the model can rather focus on the detailed parameter dependencies. The choice of

the architecture of the single model is arbitrary, it just needs to be compared against its “single

model” counterpart. The following listing presents the implementation of the parameter-based

ensemble model:✞ ☎
1 # Input layer for all features

2 input_layer = Input ( shape=input_shape , name=’input_features ’ )

3

4 # Split the input into recipe ID features and other features

5 recipe_id_features = input_layer [ : , : , : self . number_of_recipe_ids ]

6 other_features = input_layer [ : , : , self . number_of_recipe_ids : ]

7

8 # Create lists to store model layers for each recipe ID

9 model_layer_lstm 1 = [ ]

10 model_layer_dropout 1 = [ ]

11 model_layer_lstm 2 = [ ]

12 model_layer_dropout 2 = [ ]

13 model_layer_output = [ ]

14

15 for i in range ( self . number_of_recipe_ids ) :

16 model_layer_lstm 1 . append ( LSTM ( 64 , return_sequences=True , name=f’

→ lstm_layer1_recipe_id_ {i}’ ) ( other_features ) )
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17 model_layer_dropout 1 . append ( Dropout ( 0 . 2 , name=f’dropout1_recipe_id_ {i}’ ) (

→ model_layer_lstm 1 [ i ] ) )

18 model_layer_lstm 2 . append ( LSTM ( 64 , return_sequences=False , name=f’

→ lstm_layer2_recipe_id_ {i}’ ) ( model_layer_dropout 1 [ i ] ) )

19 model_layer_dropout 2 . append ( Dropout ( 0 . 2 , name=f’dropout2_recipe_id_ {i}’ ) (

→ model_layer_lstm 2 [ i ] ) )

20 model_layer_output . append ( Dense ( output_shape [ 0 ] , name=f’output_recipe_id_ {i}’ ) (

→ model_layer_dropout 2 [ i ] ) )

21 model_layer_output [ i ] = K . expand_dims ( model_layer_output [ i ] , axis=1 )

22

23 # Concatenate all the model_layer_output tensors

24 concatenated_output = Concatenate ( axis=1 ) ( model_layer_output )

25

26 # Reshape recipe_id_features to match the shape of concatenated_output (for later

→ multiplication )

27 recipe_id_features_reshaped = Reshape ( target_shape=(self . number_of_recipe_ids , 1 ) ) (

→ recipe_id_features )

28

29 # Use Multiply layer to perform element -wise multiplication

30 multiplied_output = Multiply ( ) ( [ concatenated_output , recipe_id_features_reshaped ] )

31

32 # Sum along the second axis to select the appropriate output

33 selected_output = K . sum ( multiplied_output , axis=1 )

34

35 model = Model ( inputs=input_layer , outputs=selected_output )

36 model . compile ( loss=’mse ’ , optimizer=’adam ’ )✝ ✆
Listing 3.5: Code of Parameter-Based Ensemble Model with LSTM

The input layer receives the input data as a tensor, including both recipe ID features and other

features. Then, the input data is split into two parts: recipe ID features and other features.

Recipe ID features are used to identify the corresponding model instance, while other features

are used for forecasting the load profile. In a for loop, lists are filled to store the recurrent and

dense layers for each recipe ID. Layer names are assigned to simplify debugging. The model

architecture for each recipe ID follows the RNN LSTM architecture described in Section 3.4.2,

but only the non-recipe-ID features are passed to the input of the single models. Also, an

additional layer after the final dense layer of each model expands the output tensors from each

recipe ID along the first axis. This way, the list model_layer_output contains individual output

tensors for each recipe ID, which can be concatenated in the next layer to form one big tensor of

the shape (number_of_recipe_ids, length_of_output_profile) for the output of all models.

The tensor with the recipe IDs is also reshaped, so both tensors can be multiplied. The recipe

ID tensor is one-hot-encoded, i.e., the column of one categorical parameter is converted to one

column for each value of this parameter, and the columns of the values are set to “0” or “1”
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depending on the categorical parameter value of the respective line. Due to the one-hot encoding,

this multiplication isolates the output vector of the corresponding recipe ID, i.e., all other tensor

elements are multiplied with zero. The summation along the first axis, therefore, produces the

output vector of the corresponding recipe ID in the desired shape.

3.5 Evaluation Metrics

To assess the performance of the different model architectures, suitable metrics have to be defined

before conducting the experiment. However, the model performance also depends on the training

data. To test the model performance in different scenarios with different training data, metrics

to assess the complexity of training data have to be determined as well. This section introduces

and discusses various metrics for evaluating the performance of the different model architectures

and the complexity of the data to be predicted.

3.5.1 Classification of Training Data

The most obvious metric for the training data is the number of samples. Since the data is

augmented with Gaussian noise, the augmentation factor and the standard deviation of the noise

are also relevant. Another relevant metric is the number of values to be predicted. It is defined

by the process duration divided by the defined temporal resolution and can be directly deducted

from the dataset.

Correlations between process parameters and the power profile are measured with the distance

correlation coefficient for numerical parameters and the correlation ratio for categorical parameters.

The distance correlation coefficient dCor measures the dependence between two variables by

analyzing the distances between data points in each variable. Unlike Pearson correlation, it does

not assume a linear relationship and can effectively identify more complex patterns [Szé+07].

However, it is more computationally expensive. The calculation of dCor involves calculating the

distances between all pairs of data points for each variable, centering the data to remove the

influence of overall shifts in the data, and comparing the variations in distances between data

points of one variable with the variations in distances between data points of the other variable.

For details about the calculation of dCor refer to [Szé+07]. The values of dCor range from 0 to

1 and indicate the strength of a linear or non-linear relationship, higher values suggest a stronger

connection.

Since the categorical parameters do not have an order, their correlation with the power

profiles must be measured with the correlation ratio η, which compares the variance of the



3.5. Evaluation Metrics 33

numerical variable within each category of the categorical variable to the variance over the whole

dataset [Ric11]:

η = x nx(yx − y)2

x,i(yxi − y)2 (3.7)

In this equation, x is the specific category of the categorical parameter and i is the sample.

A greater correlation ratio indicates that the variance within categories of the numerical variable

is smaller than over the whole dataset, suggesting a stronger association between the categories

and the numerical variable.

In order to quantify the distance between values in the test dataset and values in the training

and validation dataset for a continuous numerical parameter, a relative average distance (RAD)

is introduced, a metric which provides insights into the interpolation difficulty and gaps present

in the parameter space. It is defined by the average absolute difference between each parameter

value in the test dataset and the closest value of the same parameter in the training or validation

dataset, i.e., the average “gap” between the test and the training/validation dataset, divided by

the range of parameter values:

RAD =
1
N

N
i=1 minj∈M |xi − yj |

pmax − pmin
(3.8)

where:

• N is the total number of data points in the test dataset

• M is the set of indices for training and validation data points

• xi is the i-th parameter value in the test dataset

• yj is the j-th parameter value in the training or validation dataset (whichever is closer to

xi)

• pmin and pmax are the minimum and maximum value of the respective parameter

By employing the average absolute difference instead of the median, the RAD metric gives

more weight to potential outliers in the parameter space. This choice is intentional to highlight

situations with sparse data coverage, even if a majority of test points have good coverage. Such

cases can pose significant challenges for machine-learning models in interpolation tasks.

The pendant of the RAD for several dimensions (i.e., parameters) is the average minimal

Euclidean distance dmin of each test data sample to any training or validation data sample, which

is calculated as follows:

dmin = 1
N

N

i=1

M
min
j=1

D

k=1
(xk

i − yk
j )2 (3.9)
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In this formula:

• N is the number of test data samples.

• M is the number of training or validation data samples.

• D is the number of dimensions (parameters).

• xk
i represents the k-th dimension of the i-th test data sample.

• yk
j represents the k-th dimension of the j-th training or validation data sample.

To compare dmin for scenarios with a different number of dimensions, it has to be normed by the

number of dimensions:

∥dmin∥ = 1√
N

dmin (3.10)

This metric can be used to quantify the distance of test samples from training and validation

samples and, hence, the interpolation difficulty of a particular dataset for the model.

The complexity of the dataset regarding the included parameter dependencies is difficult to

quantify. In this study, the approach will be to list the number of dependencies of each kind as

listed in the dependency configuration file of a dataset. However, there is no metric for which

kind of dependency introduces the most complexity to the data, it can only be deduced from the

resulting MSEs of models that were trained with datasets with different kinds of dependencies.

3.5.2 Model Performance Assessment

On the one hand, the model performance can be assessed with the duration of training (in

seconds). On the other hand, given the numerical nature of the data to be predicted, the

prediction quality can be measured with the MSE on the validation dataset:

MSE = 1
n

n

i=1
(yi − ŷi)2 (3.11)

where n is the number of samples in the validation dataset, yi is the true value of the target

variable for the i-th sample, and ŷi is the predicted value of the target variable for the i-th

sample.
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Experimental Setup

This chapter describes the setup to prove the concept of the Energy Model and to compare

different architectures against each other. First, the use case of AVL’s Battery Innovation Center

(BIC) with its manufacturing processes is presented, followed by the training data acquisition

through real data from AVL’s BIC and through a synthetic data generator. Subsequently,

the data preparation methods for effective and efficient training are outlined, and finally, the

parameters for training the models are detailed.

4.1 Use Case 1: AVL Battery Innovation Center

AVL is the world’s largest private and independent company specializing in developing propulsion

systems with internal combustion engines, as well as measurement and testing technology. The

Powertrain Engineering division focuses on the research, design, and development of various

propulsion systems aimed at reducing fuel consumption, pollutant emissions, and noise while

enhancing vehicle performance. An integral part of this division is the Battery Innovation Center

(BIC) (overview shown in Figure 4.1), which offers customers to assemble battery cells to battery

packs, from one-off prototypes to runs of several hundred pieces, with comprehensive monitoring

of defined quality characteristics [AVL]. The BIC is used for research and development by

advancing production engineering, gripper development, production logistics, quality assurance

processes, and cell handling investigations. It adopts a Twin Factory approach, utilizing digital

twins for both product and process and a function-oriented process control. This also includes

energy metering of all machines and tracking single product parts with bar codes, making it

possible to assign energy consumption and CO2 emissions to products. The production line

follows the matrix production approach and is capable of processing three different cell types

(cylindrical, pouch, and prismatic). It comprises the stations stacking (assembling individual cells

35
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Figure 4.1: Overview of AVL’s BIC [Mei+23].

into a configured arrangement), welding (laser welding), gluing, packing (arranging individual

battery cells within a casing), and quality control. Apart from quality control, all steps are

carried out by robotic stations. While the BIC does not offer serial production itself, the speed

of the individual production steps corresponds to large-scale production of 10,000 pieces/year

[AVL], making it suitable for process optimization of serial production processes.

4.1.1 AVL Energy Data

Energy data from AVL’s BIC are available for the gluing station (11th December 2021–19th

November 2022), the stacking station (1st February 2022–11th November 2022) and the welding

station (1st February 2022–8th February 2022 and 13th May 2022–20th May 2022). The times

with missing energy data are caused by development works on the data processing and the

machines themself, since the BIC was inaugurated only in September 2021.

The Energy Data is an extract from a Structured Query Language (SQL) database, exported

to an Excel file by AVL and converted to comma-separated values (CSV) for compatibility

reasons. It contains as columns the machine name, the active and reactive power of all three

phases separately, the energy meter readings of active and reactive energy in- and outflow (all

three phases combined), the longitudinal and transverse voltages, the currents of the single

phases, the cos(ϕ) of the phases, and the timestamp. Data points are recorded at intervals of 20

seconds.

The process data are distributed across two files, “pse_segment” and “pse_pro”. The file

“pse_segment” contains the columns described in Table 4.1, and the columns of “pse_pro” are

described in Table 4.2. There is a third table called “pse_rule” (the “id_pse_rule” columns in

“pse_segment” and “pse_pro” reference to this table) which is not available and which defines
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Table 4.1: Columns of the file “pse_segment”.

Column Name Description
id Identity

id_pse_rule Identity of table pse_rule
name Station name

group_name Sub-Station Name
starttime Processing start time
endtime Processing end time

s_state Status of the line (1= latest entry,
2= same record with newer date exists)

Table 4.2: Columns of the file “pse_pro”.

Column Name Description
id Identity

id_pse_rule Identity of table pse_rule
id_pse_segment Identity of table pse_segment

name Variable name (also includes start and end)
value Value

value_type Data type of value

each component that has been processed in the system (see Table 4.3). In essence, “pse_rule”

defines a whole component, “pse_segment” tracks it across the different stations and substations,

and “pse_pro” records measured values for the respective sub-stations.

To get a process data overlay over the energy data like in Figure 3.1, the start and end times

of a “pse_rule” (i.e., the first and last “pse_segment” with the same “pse_rule_id”) are relevant,

since they mark the timestamps of a component being processed at a certain station. Processing

timestamps at sub-stations (in “pse_segment”) would be an alternative, however, energy is only

measured at a station level and therefore cannot be traced to the single sub-stations. To get the

process parameters (mainly from “pse_pro”), the lines of “pse_pro” and “pse_segment” have to

be linked along the column “id_pse_segment”. Relevant process parameters for the stacking

station include duration (starttime - endtime in “pse_segment”), recipe, voltage, force_1_N,

force_2_N, position and klt_position (variables from “pse_pro”). “Voltage” is the voltage

measured when testing the battery pack after stacking, “position” is the position in the batch,

and “klt_position” is the position of the small load carrier (“Kleinladungsträger” - KLT in

German) containing the parts. Relevant process parameters for the gluing station include duration

(starttime - endtime in “pse_segment”), contour_number, recipe_nr_glue, and glue_repetitions
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Table 4.3: Columns of the file “pse_rule”.

Column Name Description
id Identity

rule_code Serial number of the component
(cell, cartridge, stack, etc...)

starttime Processing start time

endtime End time of processing (is only set after all
sub-stations have been completed)

data_version Change index of the data of the component
(is increased by 1 with each writing action)

(variables from “pse_pro”). Depending on how interdependent the processes are with regard to

their load profiles, possibly also the parameters of the preceding process can be included.

To assess the interdependency of processes, the similarity of the load profiles of processes with

the same parameters can be examined. If the load profiles of processes with the same parameters

differ more than a certain threshold, it indicates that the load profile of the process is influenced

also by the preceding process. This method, of course, requires that all relevant parameters are

captured and included in the parameter list. Otherwise, the difference in load profiles could also

derive from such an unobserved parameter.

Since the “endtime” column of “pse_segment” is NULL in most cases, the end time of a

“pse_rule” has to be derived from the “endtime” parameter of the last “pse_segment” belonging

to the respective id_pse_rule to be able to calculate the duration of a process. Also, the start and

end times of a process are needed to assign certain parts of the load measurement to the process.

Since typically several components are processed simultaneously at the single sub-stations in

the BIC, overlapping time spans occur. In this case, the power consumption of the respective

overlapping period is distributed equally across the involved processes.

The data processing is shown in the example of the stacking station. After combining the

process parameters from the two files “pse_segment” and “pse_pro” as described before, a

table with one row per pse_rule_id and the columns “station”, “pse_rule_id”, “starttime”,

“endtime”, “duration”, “rejected”, “order_number”, “recipe”, “position”, “force_1”, “force_2”,

“voltage”, and “klt_pos”. The duration is calculated by subtracting the start time from the end

time and the parameter “rejected” is a boolean value which is set based on the condition that a

pse_segment with the name “REJECT” exists. The reason for a reject is most often too low

a measured voltage at the test substation. The other values are taken directly from the file

“pse_pro”.
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Figure 4.2: Load profile of stacking station with process data overlay.

Figure 4.3: Timeline of process data and energy data.

Figure 4.2 illustrates how certain parts of the power profile are assigned to pse_rule_ids

(hereafter called processes) with their start and end times. The power profiles are calculated by

adding the phase power of all three phases from the energy data and also include equidistant

time stamps. Figure 4.3 shows for which time spans energy data and process data are available.

It becomes apparent that only in a limited time span process data as well as energy data exist.

This is one reason for which the process data is required to be filtered to be useful (analyzed in

Figure 4.4), the other two reasons being that the process output was rejected (this means that

no process parameters are saved) and that the process was started on one day and finished on

another day, indicated by a process duration greater than 1 hour (otherwise, also idle energy

consumption during the night would be included in the process power profile). The share of valid

and invalid process data is shown in Figure 4.4(a), and the reasons for the invalidity of process

data are depicted in Figure 4.4(b). Missing energy data is the major reason for the high number

of invalid process data in the data set, followed by too long processes and rejected processes.

Interestingly, it is hardly the sole reason for the invalidity that the process was rejected or that

it was too long; these two phenomena occur mostly in combination with other reasons.

Figure 4.5 shows the analysis of the distribution of process parameters across the valid process

data in the form of boxplots. The energy-relevant process parameters include recipe, force_2,
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Figure 4.4: Analysis of valid and invalid process data.

position, and klt_pos. Not included are force_1 (always 0) and voltage (measured voltage during

testing, therefore not known a priori). The boxplots in Figure 4.5(a) show the distribution of all

parameters across the valid data and are grouped by the two types of recipes that occurred in

the process data, “P-12 10fach” and “LB-63-X”. While recipe “LB-63-X” only has 5 valid samples

and is therefore not representative, the wide range of the parameter values for recipe “P-12

10fach” becomes apparent. To analyze how repeatable, i.e. predictable, the duration and energy

consumption of a process are, samples with the same parameter values are analyzed. Figure 4.5(b)

shows the distribution of the process duration and energy consumption for recipe “P-12 10fach”

with identical other parameter values (force_2 = 2, position = 19, klt_position = 11). Despite

these identical parameter values, there is still a considerable range in the duration (ca. 40 %

of the minimum value) and the power consumption (ca. factor 3 of the minimum value). The

low sample number of 3 samples in Figure 4.5(b) does not undermine the conclusion that if

there is such a range in the energy consumption, there must be parameters affecting the energy

consumption that are not captured. AVL’s energy data is, therefore, not directly usable as

training data for the Energy Model.

4.1.2 Synthetic Energy Data Generation

The ability of the Energy Model to accurately predict energy consumption patterns is directly

linked to the complexity of the training data. Even with real data available, the limits of

the Energy Model with regard to the complexity of the training data need to be tested. The

complexity of the training data results from the number and nature (linear/non-linear) of relations
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between process parameters and the resulting load profile, as well as from the number of data

points to be predicted. The number of data points to be predicted, i.e., the length of the load

profile, depends on the maximum process duration on the one hand and on the defined temporal

resolution on the other hand. To assess the model’s performance under varying data complexity

scenarios, a data generator is developed to produce synthetic datasets.

The foundation for all generated data is a predefined factory setup, consisting of a certain

machine and production step configuration, which is based on AVL’s BIC. The machine configu-

ration is represented by a file that details the available amount of each machine type, and the

production step configuration is represented by a so-called recipes file that outlines the step ID,

the step name, the product ID, the required machine type, and operator ID for this step, the

duration, and the prerequisites, i.e., the production steps, which need to be completed before the

respective step. Additionally, supplementary parameters with their types (numerical/categorical,

discrete/continuous) and their ranges are given.

The data generator first generates a specified number of parameter sets that are plausible

according to the machine file and recipe file. The distribution of the parameter values is random.

A special case is the idle consumption of machines, which is represented by its own recipe ID

but not mentioned in the recipe file. The duration can be anything up to the duration of the

longest process; the previous recipe ID (possibly also idle) depends, just like for the other recipe

IDs, on the machine type and which other processes are possibly executed on it. In the second

step, load profiles for the given parameter sets are generated. The basis for the load profiles is a

profile shape file that indicates the production step ID and name, the basic shape of the load

profile as a list of equidistant points, the interpolation method (padding/nearest neighbor), and

dependencies on parameters.

There are four possible ways in which a parameter can influence the load profile:

• Height dependency: a factor by which the load profile is multiplied (stretch along the

y-axis).

• Offset dependency: a constant offset that is added to the profile (shift along the y-axis).

• Repetition dependency: the profile repeats itself for a number of cycles.

• Profile dependency: the shape of the profile itself depends on a parameter.

Theoretically, there is also a fifth possibility, which is that a parameter could influence the

duration of a production step. However, manufacturing planning requires the duration to be

known a priori; and in the recipe representation, a different duration would result in a separate

recipe ID. Therefore, this kind of dependency can be ignored.
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Dependencies are represented as a list of Python dictionaries that have two or three keys:

the parameter name and either a so-called “factor_dict”, i.e., another dictionary with parameter

values and the corresponding value of the dependency (mainly for categorical parameters), or a

“min_factor” and “max_factor” which are linearly assigned to the whole observed range of a

numerical parameter in the parameter set. The effect of the factor depends on the column of the

dependency, e.g., a factor of an offset dependency would indicate the offset that is added to the

basic profile shape, whereas the factor of a repetition dependency would indicate the number

of repetitions of the basic profile shape. Profile dependencies can only contain a “factor_dict”,

which defines the basic profile shape depending on a certain parameter.

Based on the parameters of each parameter set, the basic profile shape is selected and the

relevant dependencies are applied. After the dependency application, the synthetic load profile

is stretched or compressed to the desired duration as indicated by the parameter set. This

duration is given as a multiple of the defined temporal resolution, i.e., the number of data points

of the load profile. Stretching is conducted by evenly inserting Not a Number (NaN) values in

the profile and applying the indicated interpolation method while compressing is conducted by

evenly deleting data points of the load profile. It is possible that, due to compressing the load

profile to the desired length, certain characteristics of the load profile are not as clearly visible

anymore, e.g., if you compress a profile with 10 repetitions to a length of 7, the whole number of

repetitions is not visible anymore. This effect is not unique to the synthetic data but can also

occur in real data (caused by a low sampling rate of energy measurements), it is an effect of the

chosen temporal resolution. After the creation of the final load profile, the profile is padded with

a value of −1 (which cannot be mistaken for a regular load profile value) to ensure that the load

profile has a consistent length and can be processed seamlessly by the model.

Despite the synthetic nature of the generated data, it should have some relation to the real

data from AVL’s BIC. Therefore, the sequence of process steps, their duration, and the profile

shape are based on real energy data. The configuration of the sequence of process steps and their

duration is listed in Table 4.4. The names, sequence, and duration of the process steps are taken

directly from the real use case, as well as the additional parameter “batch size”. An exception to

this is the transports between the stations, which in reality are done manually while they are

simulated as Automated Guided Vehicles (AGVs) in the energy data which need to be charged

after each transport. The parameter “welding temperature” for laser welding is introduced to

get a continuous numerical parameter that affects the power profile. The parameter value range

is chosen on the basis of melting points of materials that can be processed with laser welding

[Dun21]. Batch size and welding temperature are applicable only to a subset of recipe IDs. The
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respective parameter column for instances of other recipe IDs is therefore filled with the invalid

value “-1”. Also, a column “has_parameter_[. . . ]” is created for these parameters to simplify

training. This column is either “0” or “1”, depending on whether the parameter exists for the

recipe ID of the respective instance.

The duration of the process steps varies between 15 and 45 minutes. Given a defined temporal

resolution of 1 minute, this means that the load profiles have a length of 15 to 45. While the

durations of normal process steps are multiples of 15 minutes, the duration of the idle time of a

machine in between two process steps is arbitrary. However, to adhere to the maximum process

duration, idle times that are longer than the maximum process duration are split into several

process steps in the training data and also later when inferring load profiles from a schedule.

The machine list as compared to the real BIC, which only has one machine of each type, is

extended by several instances of most machine types (see Table 4.5) to be able to simulate load

profile dependencies on the machine instance, e.g., older machines which consume more energy

than modern ones.

The basic profiles and parameter dependencies are detailed in Appendix A, Tables A.1–A.4.

They comprise the basic profiles and interpolation methods as well as height, repetition, and

profile dependencies. Offset dependencies are not defined. The basic profiles (listed in Table A.1)

are created based on the shapes and values visible in AVL’s real energy data. These shapes can

be described as stair steps of different levels with occasional spikes in them. In any case, no

complex forms, such as sawtooth functions or polynomial functions, are visible in the real energy

data.

The parameter dependencies are defined without regard to the real energy data. The only

purpose is to test the capabilities and limits of the Energy Model to capture such possible

dependencies. Nevertheless, every dependency is defined with a plausible cause and effect in

mind. For all transport processes, height dependencies are defined with the preceding recipe

ID as the parameter, simulating that the AGVs do not charge after every transport and that

the charging profile also depends on the preceding transport in this case. Height dependencies

are also defined for welding (depending on the welding temperature), gluing (depending on the

preceding duration, simulating possible necessary warm-up of the glue), and idle time (depending

on the machine). Repetition dependencies are defined for stacking, welding, gluing, packing, and

the quality check with the batch size as the parameter. Profile dependencies are only defined for

idle time with the machine as the parameter, simulating different times until standby.

To test the Energy Model on training data of varying complexity, data sets with different

combinations of the mentioned parameter dependencies are generated. The other decisive factor
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Table 4.5: Machine Configurations

machine_id machine_type amount
0 stacking_robot 6
1 welding_robot 4
2 gluing_robot 4
3 packing_robot 4
4 testing_station 2
5 trolley 8

for the complexity of the training data is the number of predicted data points, i.e., the duration of

the process steps (assuming a fixed temporal resolution). Even though the durations vary across

the recipe IDs anyway, the Energy Model is not inherently tested on training data with diverse

load profile lengths since load profiles of different lengths are padded to have the same length.

This means that datasets with varying load profile temporal resolutions have to be created to

assess the influence of the load profile length. In the Ensemble Learning LSTM architecture, the

number of inner models for the experiments based on the synthetic data is determined by the

number of recipe IDs, so there is one model for each recipe ID.

4.2 Use Case 2: Industrial Robot

The described Energy Model works best for fully automated processes due to their regular

patterns and clearly defined parameters. IRs play a significant role in automating production

lines and are, therefore, a good example to test the Energy Model on. In [Gad+21], the authors

present a series of experiments that record the energy consumption of an IR when performing

different test procedures. The results are published as an open research dataset [Gad+20]. The

following use case description and data analyses are based on [Gad+21].

4.2.1 Measurement Setup

The IR model used in the series of experiments is the “KUKA KR210 R2700 Prime”, a six-

axis industrial robot with a weight of 111 kg and a high payload capacity of up to 210 kg (see

Figure 4.6). The exact experimental setup is detailed in [Gad+21]; in the following, just the

most important specifications are described. The supplied voltage and current to the robot are

measured on all three lines, and the electrical power is calculated by multiplying the voltage with

the current on each line and adding the resulting power flow of each line. The raw measurement

has a high sample rate of 40 kHz, which is necessary to capture the pulsating power flow through

the diode rectifier. To reduce the amount of data and required computational effort, the raw
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Figure 4.6: KUKA KR210 R2700 Prime (from data sheet [KUKA20]).

power data is post-processed to filter the impulsive effect (without changing the amount of energy)

and to reduce the sample rate to 300 Hz. In addition to the power measurements, mechanical,

electrical, and thermal quantities of the robot are recorded with monitoring software provided

by KUKA. However, this data can be discarded for testing the Energy Model since it is not a

parameter of the operation (and therefore known in advance) but only recorded during runtime.

Since the energy consumption of the IR is affected by the temperature of the oil in the reducers,

which is linked to the viscosity of the oil, the oil temperature is recorded with a thermocouple.

4.2.2 Experiment Series Execution

Each experiment is defined by 7 input parameters: number of axes involved, type of motion –

Point-to-Point (PtP) or linear, velocity parameter, acceleration parameter, brake closing delay,

payload applied to the end-effector, and system temperature. There are three types of experiment

series conducted, each varying different parameter values during the series:

A) Concurrent motion of 6 axes at quasi-constant temperature

B) Motion of axis 1 at quasi-constant temperature

C) Motion of axis 1 at increasing temperature

The parameter value sets are shown in Table 4.6. Within an experiment series, two experiments

were conducted for each possible parameter value combination, one from the defined starting

point to the endpoint and one in the reverse direction. While linear motions are defined in the

Cartesian space, PtP motions are defined in the joint space, i.e., the movement of each joint is

defined. The brake closing delay, also known as brake reaction time, refers to the time it takes

for the brakes to fully engage after receiving a signal to do so. This delay can have a significant

impact on the energy consumption of a system since the IR continues to consume energy for
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Table 4.6: Experiment parameter value sets.

Experiment Series Axes Involved Motion Type Brake Closing Delay Payload Type
A 6 [linear, PtP] [1, 20] s Load [1, 2, 3]
B 1 PtP 10 s Load [1, 2, 3]
C 1 PtP 10 s Load [1, 2, 3]

Experiment Series Acceleration Parameter Temperature

A [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] m/s2 (linear)
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100] % (joint) ∼ 45 °C

B [1, 2, 5, 10, 25, 50, 75, 100] % ∼ 45 °C
C 50 % [22.0, . . . , 49.7] °C

Experiment Series Velocity Parameter

A [0.17, 0.34, 0.51, 0.68, 0.85, 1.02, 1.19, 1.36, 1.53, 1.70] m/s (linear)
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100] % (joint)

B [1, 2, 5, 10, 25, 50, 75, 100] %
C 50 %

movement even though it is decelerating. The acceleration and velocity parameter units also

differ between these motion types: the parameters for linear motions are given in m/s and m/s2,

respectively, and the parameters for PtP motions are given in % of the maximum allowable

values. All three experiment series were conducted with three types of payload: no external load

(load 1), a beam weighing 66 kg (load 2), and a beam weighing 133 kg (load 3). For the details of

the center of mass, the orientation of the principal inertia axis in the center of mass, and the

principal mass moment of inertia, please refer to [Gad+21].

To keep a quasi-constant temperature in experiment series A and B, a cyclic motion was

performed in a warm-up phase (taking several hours) until the system temperature (both oil

and actuators) stabilized. Then, one experiment with a specific set of parameter values was

conducted. After each experiment, the system temperature was brought back to the original

value with a short warm-up (taking approximately 1 minute) to mitigate the influence on the

temperature of the experiments themself.

The experiment data are published as a Matlab file. For further use, the relevant data is

extracted and converted to a CSV file with Python. The columns of the CSV file for every

experiment series are shown in Table 4.7. The interval between the energy measurements is

reduced by calculating the average power in the respective time frame. Different versions with

different sampling rates are created for each experiment to evaluate the influence of the output

vector length on the forecast accuracy.
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Table 4.7: Columns of the CSV files with the extracted data for each experiment series.

Experiment Series A Experiment Series B Experiment Series C
motion_direction motion_direction motion_direction

load_type load_type load_type
velocity velocity velocity

acceleration acceleration acceleration
duration duration duration

motion_type oil_temperature oil_temperature
brake_delay

time_series_value_0 . . . x time_series_value_0 . . . x time_series_value_0 . . . x

4.2.3 Parameter Influence on Energy Consumption

The authors of [Gad+21] also provide several analyses of parameter influences on the energy

consumption and power profile of the motion execution. The graphics are replicated and shown

in Figure 4.7. In Figures 4.7(a) and 4.7(b), three different power profiles of motions with varying

payloads for a 1-axis motion and a 6-axes motion, respectively, are shown. It is visible that the

power peaks, caused by the acceleration, are far more dependent on the load type than the more

constant parts of the power profile, associated with constant movement.

In Figures 4.7(c) and 4.7(d), the influences of varying velocity and acceleration parameter

values, respectively, on the power profile are shown. A greater velocity parameter value increases

the power peak as well as the more constant part but shortens the duration of the motion.

A greater acceleration parameter value, on the other hand, also increases the power peak but

shortens only the duration of the power peak, while the duration of the complete motion remains

almost unchanged.

In Figure 4.7(e), power profiles of a 1-axis motion with varying oil temperatures are depicted.

With increasing oil temperature, the whole power profile is compressed by an almost constant

factor. However, the higher the oil temperature, the smaller the marginal decrease in power

consumption. The reason for this behavior can be seen in Figure 4.7(f), which shows the

simultaneous development of the oil temperature and the measured friction torque over several

experiments of experiment series C. With increasing oil temperature, the friction torque decreases

significantly due to the decreasing oil viscosity.

In [Gad+21], the authors also show that a brake delay of 1 s compared to 20 s can lead to

energy savings of up to 25 %, depending on the other motion parameters. In summary, it can be

observed that each of the captured parameters from Table 4.7 (except for the motion direction)

has a characteristic influence on the performance profile of the robot motion which the Energy
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(a) Influence of payload on power profile (1 axis motion).
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(b) Influence of payload on power profile (6 axes motion).
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(c) Influence of velocity on power profile.
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(d) Influence of acceleration on power profile.
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Figure 4.7: Influence of various parameters on the power profile of the IR motion.
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Model must be able to model. The number of inner models in the Ensemble Learning LSTM

architecture for the experiments based on the IR dataset is determined by the number of load

types, i.e., there is one model for each load type.

4.3 Data Preprocessing

To improve the performance of the Energy Model architectures, a range of preprocessing methods

are applied to the training data before training the architectures. To distinguish between input and

output values, the data columns have a prefix of either “parameter_” or “time_series_value_”. To

further distinguish between numerical and categorical input parameters (the output/load profile

values are only numerical), the parameter columns have another prefix of either “numerical_” or

“categorical_”.

First, the datasets are divided into a training, a test, and a validation dataset with a share of

70/20/10 %. This way, overfitting is prevented by evaluating the models already during training

on a different dataset (the test dataset) and evaluating the final model on yet another dataset

(the validation dataset). When splitting the dataset, special attention is put on not having two

identical parameter vectors (input) in two different datasets. Also, some numerical parameter

value ranges of the welding temperature are excluded from the training and test data and only

included in the validation dataset, to be able to assess the capability of the different architectures

to cope with unknown parameter values by interpolating between known parameter values.

Then, the training dataset is augmented to some extent by adding Gaussian noise with a

standard deviation of 5 W to the output values, i.e., the load profile values. The input values,

i.e. the process parameter values, remain unchanged. This way, scarce training data can be

multiplied without risking too much overfitting.

The categorical process parameters (recognizable by their column name prefix) are encoded

with one-hot-encoding to make them processable for the Energy Model architectures. Furthermore,

since many machine learning algorithms, especially those involving optimization techniques like

gradient descent, converge faster when the features are on a similar scale, the numerical values

(both the numerical process parameters and the load profile values) are scaled with a MinMax

scaler to the interval [−1, 1].

Finally, to ensure that the data is presented in a format that the model can effectively process,

the input vectors are reshaped to the suitable dimensions. The shape follows the format [batch

size, number of time steps, input features]. Since there is no temporal relation between the input

parameters, the final shape is [number of samples, 1, number of process parameters].
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4.4 Training Parameters

The Energy Models are trained on nodes of the VSC with two AMD EPYC 7713 (Milan)

processors (64 cores operating at 2GHz and 512 GB memory) and two NVIDIA A100 Graphics

Processing Units (GPUs) (40GB memory) [VSC5]. To prevent overfitting, the MSE is used as

the loss function; the stopping condition is a minimal improvement of the validation MSE of

10−6 (on the scaled data), with the patience set to 30 epochs. The maximum number of epochs

is set to 500. To update the weights during training, the Adaptive Moment Estimation (ADAM)

optimizer is used. To reduce the risk of getting stuck in a local minimum while also fine-tuning

the model weights, a cyclical learning rate scheduler is set up. The initial learning rate is 10−4,

the maximum learning rate is 10−1, the step size is 2 epochs, the mode is “triangular2”, i.e., the

learning rate is scaled according to

f(x) = 1
2x−1 (4.1)

where x is the number of cycles (batches). With such a learning rate scheduler, the learning rate

does not decrease monotonically but instead oscillates between the initial and maximum learning

rates, allowing the model to explore different regions of the training area and potentially escape

local minima. In the end, the model with the best validation MSE is saved and used.



Chapter 5

Experimental Results

This chapter presents the evaluation results of six machine learning architectures for manufacturing

load forecasting. The architectures are evaluated on both synthetic and real-world datasets from

the use cases described in Chapter 4. First, the architectures are compared with the default

datasets of the AVL BIC use case (synthetic dataset) and the Industrial Robot (IR) use case

(real-world dataset). Thereafter, the key factors driving forecast accuracy, training efficiency,

and inference speed are explored by analyzing the influence of the amount of training data,

augmentation, and feature characteristics like profile length, feature sparsity, and embodied

parameter dependencies in the load profile. The chapter concludes with a discussion of the results

with regard to the real-world applicability of the model architectures.

5.1 Architecture Comparison on Complete Synthetic Dataset

The first experiment is dedicated to comparing the different model architectures on a synthetic

dataset based on the AVL BIC use case. The dataset is created based on the dependencies

listed in Tables A.1–A.4. The number of total samples is set to 1000 (more on this choice

in Section 5.3). The dataset is split into training, validation, and test datasets with a ratio

of 70/20/10 %. The normalized average minimal Euclidean distance ∥dmin∥ between the test

dataset and the training/validation datasets of the normalized parameter samples according

to Equation 3.10 is 0.063. Training and validation datasets are augmented by a factor of 5 by

adding Gaussian noise (µ = 0 W, σ = 5.0 W) to the power profiles. This accounts for potential

measurement noise in real-world data and acts as a form of regularization, helping to prevent

overfitting by introducing additional data variability.

The distribution of recipe IDs in the respective datasets is shown in Figure 5.1. As can be

seen from the figure, the share of recipe IDs is not equal across the datasets for all recipe IDs

53
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Figure 5.1: Percentage of recipe IDs in the training, validation, and test datasets.
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Figure 5.2: Correlation between parameters and power profile of the synthetic dataset.

(although for most recipe IDs it roughly is). However, this does not impair the validity of the

split since also, in reality, the share of executed recipe IDs might vary over the lifetime of a

factory, which is the same as a different distribution within the training/validation dataset and

the test dataset.

In Figure 5.2, the correlation between parameters and power profile of the synthetic dataset

is shown. The correlation (explanation of dCor and η in Section 3.5) is calculated between

all process parameters and both the average power and the energy of the power profile. The

strongest correlation can be observed for the recipe ID and the machine, which is also linked to

the recipe ID. The weakest correlation is observed between the power profile and the preceding

duration. The correlations for the average power and the energy are very similar.

In Figure 5.3, t-SNE plots for the input (process parameter) and output (power) values of

the synthetic dataset are shown (Figure 5.3(a) and 5.3(b), respectively). It strikes the eye that
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Figure 5.3: t-SNE plots of the input and output values of the synthetic dataset.

most recipe IDs’ input values form a clearly defined group, unlike the ones from recipe ID -2

(idle), whose input values are scattered across the whole map. This is due to the variety of

possible machines, durations, and preceding processes for the idle time. It can also be seen that

recipe IDs 4 (gluing) and 6 (packing) have similar input values, as well as recipe IDs 1, 3, 5,

7 (transport processes between stations), and 8 (quality check). It is not surprising that the

transport processes have similar input values. The similarity between the input values of the

gluing and the packing process could possibly be explained by the identical duration and batch

size range. The welding process, which also has the same duration and batch size range, also

has the additional parameter “welding temperature” and, therefore, forms a distinct group in

the t-SNE plot. Most recipe IDs’ power values do not vary a lot, which can be seen from the

tight groups (sometimes even only one spot) in Figure 5.3(b). The recipe IDs with the biggest

variety in power profiles are -2 (idle), 2 (welding), 4 (gluing), 6 (packing), and 0 (stacking). The

idle time has the widest variety in duration, which leads to a wide variety of profiles. Welding,

gluing, packing, and stacking processes are the processes that have a repetition dependency on

the batch size and, therefore, vary more than other processes with other profile dependencies.

Figure 5.4 shows the distribution in the dataset of process durations, which is important

for the ratio between power and padding values, and the distribution of power values, which is

important to evaluate MSE values. The durations are distributed quite evenly between 1 minute

and 45 minutes, the mean of the power values is 558.8 W. While the median value is shown for

both distributions, the mean value is only shown for the power values due to its importance for

judging the MSE.
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Figure 5.4: Distributions of duration and power values within each experiment series.

Figure 5.5 shows the training history of the Ensemble LSTM architecture as an example. The

training history includes the training loss (MSE), the validation loss (MSE), and the learning

rate for each epoch of the training on logarithmic scales. The cyclical learning rate pattern that

oscillates between the minimum and the decreasing maximum is clearly visible. The training loss

value decreases more monotonically than the validation loss value, and from around epoch 35,

the training reaches the state of overfitting, i.e., the model performs significantly better on the

training dataset than on the validation dataset. It can also be seen that the loss values of both

training and validation often increase temporarily with an increasing learning rate, but perhaps

to the benefit of escaping a local minimum.

The training results and parameters that form the basis for comparing the different model

architectures are three-fold: The MSEs with and without padding values are shown in Figure 5.6.

The training durations are shown in Figure 5.7. And finally, the inference duration is compared

in Figure 5.7. The comparison of MSEs shows that the RNN and Seq2Seq architectures are

pretty much on par, with the Seq2Seq architecture performing slightly worse than the others.

The ensemble learning LSTM architecture based on the recipe ID performs best, its prediction

MSE is better than the single RNN architectures by a factor of almost 10. Its MSE of 345.1 W2

compared to the mean power value of 558.8 W means that it achieves an average prediction error
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Figure 5.5: Training history of the Ensemble LSTM model.

of approximately 19 W, which is substantially lower than the mean power itself (3.3 %). The NN

makes by far the worst predictions, the predictions from the test set reveal that the predictions

by the NN are all identical, independently from the input parameters. A closer inspection of

the consistent prediction vector indicates that it is the average of all power profiles from the

training dataset, i.e. the NN does not learn the underlying relationships in the training data.

This can be caused by an insufficient model complexity (e.g., too few layers or neurons) or by

an inappropriate architecture. Since the MSE also does not improve with up to 40 layers, it

can be concluded that the NN is not appropriate for predicting power profiles just from process

parameters. The NN architecture has the strategic disadvantage to the RNN architectures in

that it does not model any relationship between the output values, so each power value has to
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Figure 5.6: MSE of the different model architectures.
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Figure 5.8: Inference durations of the different model architectures.

be determined just based on the input parameters, which leads to very complex functions.

Comparing the values of the prediction MSE with and without padding values in Figure 5.6

shows that the complete MSE including padding values is slightly better for all architectures, i.e.,

the padding values are predicted better than the power values. This is not surprising since the

padding values are the most regular values in the power vectors. The factor between the MSE

with and without padding values is roughly 2 for most architectures; for the NN, it is roughly

1.5, and for the Seq2Seq model with GRUs, it is roughly 1.2.

The training durations (see Figure 5.7) vary between 23.5 s for the NN and 939.1 s for the

ensemble learning architecture. There is no clear relation between training duration and accuracy:

the accuracy of the RNN and Seq2Seq architectures are similar, while their training durations

differ by a factor of roughly 10. The training duration seems to depend more on the model

architecture. Likewise for the inference durations (see Figure 5.8): while most models’ inference

durations are around 0.1 s or below, the inference durations of the Seq2Seq models are around

2 s. The longer inference duration of the Seq2Seq architectures can be explained by the recurrent
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nature of the inference process with encoder and decoder, and the less efficient inference with

explicit Python code than with the efficient Tensorflow backend.

In conclusion, the ensemble learning architecture with models for each recipe ID seems to be

most appropriate for use cases where the recipe ID is the most decisive parameter for the power

profile, while the NN architecture is utterly inappropriate.

5.2 Architecture Comparison on Industrial Robot Dataset

The second experiment is dedicated to comparing the different model architectures on the datasets

from all three experiment series of the IR use case as described in Section 4.2. The number of

total samples for the different experiment series is 2400 (experiment series A), 384 (experiment

series B), and 1200 (experiment series C). The datasets are split into training, validation, and

test datasets with a ratio of 70/20/10 %. The normalized average minimal Euclidean distances

∥dmin∥ between the test dataset and the training/validation datasets of the normalized parameter

samples according to Equation 3.10 are 0.016 (experiment series A), 0.055 (experiment series

B), and 0.0015 (experiment series C). Training and validation datasets are augmented by a

factor of 5 with Gaussian noise (µ = 0 W, σ = 5.0 W). The three datasets from the different

experiment series differ mainly in the varying parameters (see Table 4.6). Also, the durations of

the motions are distributed differently (due to varying velocity and acceleration parameters).

These distributions are depicted in the boxplot in Figure 5.9(a) (note the logarithmic scale).

While all motions of experiment series C have an identical duration of 7.45 s, the motion durations

of experiment series A and especially experiment series B vary widely within [1.4, 17.7] s and

[4.0, 346.4] s, respectively, due to varying acceleration and velocity parameters. On the one hand,

a longer maximum duration means longer sequences to predict, on the other hand, a wide variety

in durations means that shorter sequences have many padding values, sometimes even more

than real values. In this experiment, all datasets have a temporal resolution of 500 ms, which

results in sequence lengths of 37, 686, and 16 for experiment series A, B, and C, respectively.

The distributions of power values are shown in Figre 5.9(b), the mean values are 1319.7 W for

experiment series A, 532.5 W for experiment series B, and 1161.5 W for experiment series C.

In Figure 5.10, the correlations between parameters and the power profile of all experiment

series of the IR dataset are shown. As for the synthetic dataset, the correlation (explanation of

dCor and η in Section 3.5) is calculated between all process parameters and both the average

power and the energy of the power profile. In experiment series A, the parameter with the

strongest correlation to the average power is the motion duration, while the parameter with the
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Figure 5.9: Distributions of duration and power values within each experiment series.

strongest correlation to the consumed energy is the motion direction, followed by the motion

duration. The reason for the correlation between the consumed energy and the motion direction

in experiment series A is that the start and end points have different y coordinates and, therefore,

different potential energy; hence, in experiment series B and C (360° rotation of one axis), there

is barely any correlation with the motion direction.

In both experiment series A and B there is quite a difference between the correlations with

the average power and the correlations with the consumed energy. In some cases, e.g., velocity

and acceleration, the correlation with the average power is higher since higher acceleration and

velocity imply faster movements and, therefore, higher power values, though for a shorter time,

which is why the correlation with the consumed energy is lower. For the duration, the relation

between average power correlation and consumed energy correlation is the reverse in series A

and series B. This might be because, in experiment series B, one joint just performs a circular

motion, and the acceleration only plays a role in the very beginning of the motion, while in

experiment series A, six axes are moved, and a higher acceleration plays a role throughout the

motion. The source of the correlation between the oil temperature and the average power and

energy consumption in experiment series C is visible from the negative correlation between the

oil temperature and friction in Figure 4.7(e).
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Figure 5.10: Correlation between parameters and power profile of the IR dataset.
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Figure 5.11: Complete MSE of the different model architectures.
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Figure 5.12: MSE without padding values of the different model architectures.

Just like in Section 5.1, the training results and parameters to compare the different model

architectures are the following three: The MSEs with and without padding values are shown

in Figure 5.11 and 5.12, respectively. The training durations are shown in Figure 5.13. And

finally, the inference duration is compared in Figure 5.14. For all model architectures, the

MSE (as shown in Figure 5.11) is highest for experiment series A and lowest for experiment

series C, except for the Seq2Seq architectures. The cause of sequence is the decreasing variety of

parameters and, hence, also the decreasing variety of power profiles. The Seq2Seq architectures

have considerable difficulties handling the long sequences of experiment series B. Also, the

GRU-Seq2Seq architecture has a much higher MSE than its LSTM counterpart, except for

experiment series C. The MSE without padding values (see Figure 5.12) in this case is a better

metric to compare the architectures since the effect of a wide variety of durations and long

padding sequences at the end of some sequences is not included in the metric. Just like for

the synthetic dataset, the MSE without padding values is higher for most model architectures,

except for the GRU-Seq2Seq architecture in experiment series B, which indicates that the main
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Figure 5.13: Training durations of the different model architectures.
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Figure 5.14: Inference durations of the different model architectures.

driver for the exceptionally high MSE including padding values are the padding values. The

LSTM-Seq2Seq architecture is the best-performing architecture for experiment series A (MSE

without padding: 3598.4 W2, hence average prediction error 60.0 W, 4.5 % of the mean power

value) and C (MSE without padding: 375.3 W2, hence average prediction error 19.4 W, 1.7 %

of the mean power value), while the regular LSTM-RNN architecture has the lowest MSE for

experiment series B (MSE without padding: 5783.7 W2, hence average prediction error 76.1 W,

14.3 % of the mean power value).

The variety in training durations across the experiment series and architectures (see Fig-

ure 5.13) is smaller than for the synthetic dataset, and the durations are generally shorter;

they range from 15.4 s to 342.5 s. There is no clear trend in the training durations depending

on the experiment series; however, for all architectures apart from the Seq2Seq architectures,

the training takes the longest for experiment series A and the shortest for experiment series

B, which correlates with the number of training samples. The inference duration is more or

less constant across the experiment series for all architectures except the Seq2Seq architectures,
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Table 5.1: Parameters of the synthetic energy dataset. Parameters with a “∗” character are
linked to the recipe ID.

Parameter Name Number of Possible Values Applicable Recipe IDs
Recipe ID 10 −2, [0 . . . 8]

Machine according to Table 4.5
any from Table 4.5

[0 . . . 8]
−2

Duration ∗
[0 . . . max_duration]

[0 . . . 8]
−2

Preceding Recipe ID
2
5
10

0, 2, 4, 6, 8
1, 3, 5, 7

−2
Preceding Duration [0 . . . max_duration] −2, [0 . . . 8]

Batch Size 5 0, 2, 4, 6, 8
Welding Temperature [500 . . . 1500] 2

whose inference duration is extremely sensitive to the profile length. Again, as for the synthetic

dataset, the reason for this might be the manual inference in a for loop due to the custom model

instead of the efficient Tensorflow backend.

5.3 Influence of Number of Samples

Before setting up a series of experiments to test the influence of the number of training samples

on the model architecture, a reasonable number of total samples has to be determined based on

the number of possible parameter combinations. The synthetic dataset contains the parameters

listed in Table 5.1. The parameters with a “∗” character are linked to the recipe ID. Likewise, the

preceding duration is linked to the preceding recipe ID but since the preceding recipe ID can be

“-2” (idle, i.e., arbitrary duration) for all recipe IDs, the preceding duration can be arbitrary. For

recipe IDs [0, 2, 4, 6, 8], the preceding recipe ID can either be the same as recipe ID (because they

can only be run on that specific machine type) or “-2”. For recipe IDs [1, 3, 5, 7], the preceding

recipe ID can be either “-2” or any recipe ID of the set [1, 3, 5, 7], since these are run on the same

machine type. Finally, depending on the machine type, the preceding recipe ID for recipe ID “-2”

can be any recipe ID.

Considering only the discrete and not the continuous values (i.e., not the welding temperature,

the preceding duration, and the duration of recipe ID “-2”), the theoretical number of parameter

combinations per recipe ID is

NID = nmachines · ndurations · nprec. IDs · nbatch_sizes (5.1)
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Table 5.2: Values for the number of training, validation, and test samples for the experiment
series with a varying number of training samples.

Experiment Training Samples Validation Samples Test Samples
1 700 (70 %) 200 (20 %) 100 (10 %)
2 650 (65 %) 186 (19 %) 164 (16 %)
3 600 (60 %) 171 (17 %) 229 (23 %)
4 500 (50 %) 143 (14 %) 357 (36 %)
5 400 (40 %) 114 (11 %) 486 (49 %)
6 200 (20 %) 57 (6 %) 743 (74 %)

Substituting the numbers of machines, durations, preceding recipe IDs, and batch sizes for each

recipe ID with the values from Table 5.1 yields

NID=−2 = 28 · 1 · 10 · 1 = 280

NID=0 = 6 · 1 · 2 · 5 = 60

NID={1,3,5,7} = 8 · 1 · 5 · 1 = 40

NID={2,4,6,8} = 4 · 1 · 2 · 5 = 40

Hence, the total theoretical number of parameter combinations is

N = NID=−2 + NID=0 + 4 · NID={1,3,5,7} + 4 · NID={2,4,6,8} = 600 (5.2)

To also account for the continuous parameter values, the number of samples is set to 1000 for

the source power profile dataset (without duplicate sets of parameter values). To train the model

with different numbers of samples, this source dataset is split with varying ratios into training,

validation, and test datasets. To keep the ratio between the training and validation dataset

constant, the ratios with a given number of training samples Ntrain are calculated as follows:

rtrain = Ntrain
1000 · 100 %

rval = rtrain · 20
70

rtest = 100 % − rtrain − rval

(5.3)

The values of the number of training samples for the different training runs are given in Table 5.2.

Figure 5.15 shows the prediction MSE for all model architectures over the varying number of

samples, Figure 5.16 shows the prediction MSE without padding values. Surprisingly, a bigger
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Figure 5.15: Complete MSE of the model architectures with varying number of samples.
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Figure 5.16: MSE without padding of the model architectures with varying number of samples.

number of samples only has a significant effect on the resulting MSE for the ensemble learning

architecture. The MSE of the other architectures only decreases minimally with a growing

number of samples. An explanation for this might be that each model of the ensemble learning

architecture only gets a fraction of the training samples, so the single models profit more from the

increase in samples. A growing number of samples also presents the “monolithic” architectures

with more seemingly complementary information, i.e., the same parameter value might have

different implications for the profile if the meaning of one parameter value depends on another

parameter value (e.g., the preceding recipe ID has different implications depending on the current

recipe ID). Compared to that, the single models of the ensemble architecture get pre-sorted

samples with fewer dependencies and can learn from them more quickly.

5.4 Influence of Augmentation

To examine the influence of different augmentation parameters on the model accuracy, the

synthetic dataset with 1000 samples is split into training, validation, and test datasets with a

ratio of 70/20/10 %, and the training and validation datasets are augmented with Gaussian noise

(µ = 0) with varying standard deviations (σ = [0.0, 2.0, 5.0, 10.0] W). Also, the factor by which

the data is augmented varies (f = [1, 2, 4, 8]), f = 1 meaning that the number of samples remains
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Figure 5.17: Complete MSE (in W2) of the architectures with varying augmentation parameters.
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the same. One scenario is created for each combination of the augmentation parameters σ and f .

However, there is one exception: since f = 1 means that the dataset remains unchanged and σ = 0

means that samples are just duplicated, which would just distort the stopping condition (minimal

improvement of the validation MSE of 10−6) by duplicating data to extend each epoch, no scenarios

for the combinations (f, σ) ∈ [(1, 2.0 W), (1, 5.0 W), (1, 10.0 W), ((2, 0.0 W), (4, 0.0 W), (8, 0.0 W)]

are created. For visualization purposes, the MSE values for these combinations are copied from

the scenario with (f, σ) = (1, 0.0 W).

The resulting prediction MSEs are presented as mesh plots for each architecture in Figure 5.17.

Except for the NN, a clear tendency is visible for a lower MSE with more augmentation. While

the exact value of the standard deviation σ does not have too big an influence in most examples,

an increasing augmentation factor in the tested range decreases the prediction MSE. This is

because the standard deviation would only have a detrimental effect on the MSE if σ2 > MSE.

However, even the lowest MSE value (285.2 W2, Ensemble LSTM architecture) is greater than

the biggest σ2 (100 W2).

5.5 Influence of the Profile Length

The influence of the profile length on the model prediction accuracy is tested by resampling the

power series of experiment series A from the IR use case with different temporal resolutions. As

explained in Section 4.2, the resampling method does not distort the total energy consumption.

The values for the temporal resolutions are [100, 150, 250, 500, 750, 1000] ms, which is equivalent

to profile lengths of [19, 25, 37, 72, 119, 178]. The datasets are split into training, validation, and

test datasets with a ratio of 70/20/10 %. Training and validation datasets are augmented by a

factor of 5 with Gaussian noise (µ = 0 W, σ = 5.0 W).

Figure 5.18 and Figure 5.19 show the complete prediction MSE and the MSE without padding,

respectively, for varying profile lengths. For the majority of the tested architectures, the MSE

only slightly increases with an increasing profile length, while for the Seq2Seq architectures, the

increase of the MSE is more drastic (for GRU-Seq2Seq even more than for LSTM-Seq2Seq).

However, the Seq2Seq architectures’ MSEs also start from a lower level. For the GRU-Seq2Seq

architectures, two surprising observations can be made: first, there is an exception to the growing

MSE tendency for a profile length of 119, which is likely due to coincidentally good training, and

second, the MSE with padding values is higher than the one without padding values for a profile

length of 37, which suggests that the padding values are predicted worse than the power values

in this example, and is likely a consequence of coincidentally bad training.
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Figure 5.18: Complete MSE of the model architectures with varying profile lengths.
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Figure 5.19: MSE without padding of the model architectures with varying profile lengths.
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Figure 5.20: Training duration of the model architectures with varying profile lengths.
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Figure 5.21: Inference duration of the model architectures with varying profile lengths.
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Figure 5.20 shows the training duration of the model architectures with varying profile lengths,

which does not seem to depend on the profile length. Just the training duration of the Ensemble

LSTM architecture seems to increase with longer profiles.

Figure 5.21 shows the training duration of the model architectures with varying profile lengths.

While the inference duration of most model architectures is independent of the sequence length,

the inference duration of the Seq2Seq architectures strongly depends (linearly) on the length of

the sequence to be predicted because, due to the differing training and inference architecture,

they use a custom inference loop instead of the efficient Tensorflow backend.

5.6 Influence of Training Data Sparsity

One of the prime reasons for a dedicated energy model instead of a lookup table with historical

data is the ability to interpolate between parameter values. To test this ability, the dataset

of experiment series C of the IR use case is split into training, test, and validation datasets

according to the parameter “oil temperature”. Temperature values present in the test dataset

are not present in either the training or the test dataset. After determining the samples for the

test dataset, the remaining samples are split randomly with a ratio of 78/22 % into training and

validation data to preserve the ratio between the number of training and validation samples from

previous experiments (70/20 %). The varying parameter to test the interpolation capability of the

model architectures is the gap between known temperature values from the training data, which

ranges from 1 °C to 5 °C in steps of 1 °C. Figure 5.22 illustrates the distribution of temperature

values across training, validation, and test data in the different scenarios. The relative average

distance (RAD) introduced in Section 3.5 for the different scenarios is 1.2 % (∆T = 1 °C), 1.7 %

(∆T = 2 °C), 5.0 % (∆T = 3 °C), 3.7 % (∆T = 4 °C), and 10.0 % (∆T = 5 °C). The main reason

for the fluctuations in the RAD despite a monotonically increasing ∆T is the varying range of

test set values at the end of the whole parameter range. This effect can be seen in Figure 5.22:

the range of test set temperature values down from 50 °C varies also relative to ∆T .

To assess the MSE predictions with interpolation, they have to be compared to the power

profile from the closest parameter combination. For this purpose, for each sample from the

test set, the MSE between the power profile of the test sample and the power profile of the

closest sample from either the training or validation set (i.e., the closest temperature value and

identical other parameter values) is calculated and an average MSE of such a naive lookup table

is calculated.

Figure 5.23 shows the complete prediction MSE with varying parameter gaps in the training
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Figure 5.22: Distribution of the temperature values across training, validation and test set for
different models.

and validation data of the model architectures and the hypothetical naive lookup table, both

over ∆T (Figure 5.23(a)) and over the RAD (Figure 5.23(b)). The MSE without padding values

is not evaluated because, in experiment series C from the IR use case, all power profiles have an

identical length. For all model architectures, the curve of the MSE follows a similar shape as

the naive lookup table, whose MSE surprisingly does not just grow with bigger parameter value

gaps: it rises slightly from ∆T = 1 °C to ∆T = 2 °C, before falling to ∆T = 4 °C, and more or

less sharply rising at ∆T = 5 °C. An exception to this rule is the LSTM-Seq2Seq architecture,

whose MSE rises monotonically from ∆T = 1 °C to ∆T = 4 °C, before slightly dropping again at

∆T = 5 °C. The curve shape over the RAD is also not continuous. The reason for the surprising

shape of the MSE curve of the naive lookup table is probably that the lookup table just chooses

the closest temperature value, while for non-linear relations between parameter value and power

profile, a different profile can be more similar, e.g., the function value of f(x) = x2 of x = 5 is

closer to x = 2 than to x = 7. For ∆T = 1 °C, no model architecture is better than the naive

lookup table; for ∆T = 2 °C, all model architectures are better, and for the other values of ∆T ,

only some model architectures are better.

Overall, more model architectures perform worse than the naive lookup table. Nevertheless,

in cases with non-linear parameter dependencies of the power profile, the architectures can

still outperform a naive lookup table. Therefore, especially in cases when the exact non-linear

dependency is not known, which might be used to improve the lookup table, it can still be
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Figure 5.23: Complete MSE of the model architectures with varying parameter gaps.
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worthwhile to prefer machine learning over a lookup table. The model architectures that perform

most consistently better than the naive lookup table on this interpolation task are the LSTM-RNN

and the Ensemble LSTM.

5.7 Influence of Parameter Dependencies

Different synthetic datasets are created for all combinations of height, repetition, and profile

dependencies (including no dependencies at all) to assess which dependencies are most challenging

for the model architectures and how the architectures compare to each other on the single

dependency combinations. For each dependency combination, the respective dependencies, as

described in Section 4.1.2 and in Tables A.2–A.4, are either switched on or off for the data

generation and 1000 samples are generated. The datasets are split into training, validation, and

test datasets with a ratio of 70/20/10 %. Training and validation datasets are augmented by a

factor of 5 with Gaussian noise (µ = 0 W, σ = 5.0 W).

Figure 5.24(a) shows the MSE for the different dependency combinations and model archi-

tectures. The following ranking is based on the median of the MSEs to exclude outliers from

the ranking. It can be seen that the scenario with only profile dependencies yields the highest

model accuracy, closely followed by the scenario with no dependencies at all. Actually, there is

only the profile dependency for idle consumption, so the difference between the profiles without

any dependencies and the profiles with just profile dependencies is not really big. Next up

are repetition dependencies and then the combination of profile and repetition dependencies.

The fifth combination in the row is the scenario with height dependencies, followed by the

combination of height and profile dependencies. The last combinations are the combination of

all dependencies and, roughly on par, the combination of height and repetition dependencies.

A general tendency towards a higher MSE with more dependencies can be observed, but there

are single dependencies that seem to pose more difficulties for the model architectures than

combinations of other dependencies. The most complicated dependencies to predict in this

experiment are the height dependencies, then the repetition dependencies, and lastly the profile

dependencies. The profile dependencies are also inherently tested with the recipe ID, except for

the Ensemble LSTM, which has a separate model for each recipe ID.

The training durations of the architectures for different dependency combinations are shown

in Figure 5.24(b). Ensemble LSTM and the Seq2Seq architectures are (apart from combined

height and repetition dependencies) the three architectures with the longest training duration.

The NN generally has the shortest training duration but also has the highest prediction MSE.
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5.8 Discussion

Having conducted a series of tests to find the characteristics of the model architectures, conclusions

about the strengths and weaknesses of each architecture can be drawn. The NN architecture

proved to be unsuitable for predicting power profiles from process parameters alone. It lacks

the capability of modeling temporal relationships between the values of the power profile

and the relations between each single power value and the process parameters apparently are

too complicated for the NN to capture. Both classic RNN architectures exhibited similar

characteristics: a good prediction accuracy (rarely the best, but consistently in the middle field

of the tested architectures) which proved to be relatively independent of the profile length, short

training durations, and an inference duration which was independent of the profile length. The

ensemble version of the LSTM-RNN showed even better prediction accuracy in cases when one

categorical parameter had a disproportionate influence on the power profile compared to the

other parameters. However, it needed more training data because it was split into several models

and the training took longer (factor 2–10). Of the Seq2Seq architectures, the LSTM version

showed better prediction accuracy than the GRU version. For the basic synthetic dataset and

the dataset from the IR use case, the prediction accuracy was among the two best, except for

experiment series B from the IR use case. This is an example of the major weakness of the

Seq2Seq architectures: the prediction accuracy decreases with a growing profile length. In the

conducted experiment, the accuracy decreased quite drastically up to a profile length of roughly

80, and after that, the decrease in accuracy was similar to the other scenarios.

The real-world applicability of this type of model depends on the available data, the required

accuracy, the complexity of the processes, and their adaptability. If a process does not have

any parameters to configure or runs on a specialized machine and is always the same, like

in continuous production or mass production, it is sufficient to use historical load profiles as

forecasts and not necessary to develop a dedicated energy model. This type of energy model aims

at discrete production types like batch production or job production which run on adaptable

machines with adaptable process parameters. If the underlying physical processes can be easily

modeled or the model must be so accurate that it justifies the increased development effort, a

physical model is to be preferred. However, if processes have many varying parameters, historical

data is available, and the prediction error does not need to be much lower than 5 %, the proposed

energy model is a suitable method to forecast the load profile of a process before execution.





Chapter 6

Conclusion

This thesis proposed a novel data-based energy model architecture to predict the power profile of

manufacturing schedules and processes prior to their execution. The targeted application area is

discrete production, more specifically, production types like batch production or job production,

with processes of smaller quantities that run on adaptable machines with adaptable process

parameters.

The tested machine-learning architectures were a Neural Network (NN), the Recurrent Neural

Network (RNN) types Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU),

an ensemble learning model consisting of one LSTMs model for each category of a specified

categorical parameter, and sequence-to-sequence (Seq2Seq) models with LSTMs and GRUs.

Of these architectures, the Ensemble LSTM architecture and the LSTM-Seq2Seq architecture

generally showed the best prediction accuracy while the NN proved to be unsuitable for the task.

A weakness of the Seq2Seq architectures is their dependency on the profile length regarding the

prediction accuracy and the inference duration.

The interpolation performance of the architectures depends more on the nature of the

parameter dependency than on the parameter value gaps in the training data. In some tested

cases, just taking the historical profile with the most similar parameters yielded better results

than the machine-learning models, in other cases, all architectures except for the NN performed

better than this lookup table. The architectures that exhibited a high interpolation accuracy

most consistently were the LSTM-RNN and the Ensemble LSTM.

Training data augmentation with Gaussian noise was shown to be effective for all model

types, i.e., the prediction MSE was lower with augmented training data. The augmentation

factor had a bigger influence on the resulting accuracy than the standard deviation of the noise.

The parameter dependencies of the power profile that were the most challenging for the model

77
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architectures to capture and predict were height dependencies, then repetition dependencies,

and lastly profile dependencies. Altogether, an absolute prediction error of 5 % with the most

suitable architectures in the respective cases can be expected.

Following this work, the next step would be a real-world application in a manufacturing

context, for example in schedule optimization to minimize energy costs in markets with real-

time pricing. An energy model of the proposed architecture can give a forecast of the energy

consumption of each process and the processes can be scheduled according to their energy

consumption in cheap (energy-intensive) or more expensive (less energy-intensive) time slots. In

a specific use case, it could also be tested how much the prediction accuracy could be improved

with hyper parameter tuning. In the context of the growing research field of Explainable

Artificial Intelligence (XAI), further development of the proposed architectures could contribute

to drawing conclusions from the captured dependencies about energy-efficient scheduling and

energy hotspots.
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Appendix A

Synthetic Data Configuration

Here, the exact profile configurations for the synthetic data generation are shown. Table A.1 lists

the interpolation method and basic profile for each recipe ID. The interpolation method indicates

whether the “pad” or “nearest” method was used to fill in missing values. The “pad” method

replicates the value of the last available element before the gap, while the “nearest” method

uses the value closest to the missing value, regardless of its location. The other tables list all

the configured dependencies (except for offset dependencies, which were not configured): Height

dependencies (Table A.2), repetition dependencies (Table A.3) and profile dependencies (Table

A.4). The application of this configuration is described in detail in Section 4.1.2.

Table A.1: Basic profile configuration for synthetic data generation.

recipe_id step_name interpolation_
method profile

0 stacking nearest [750, 900]

1 stacking_
to_welding nearest [0, 0, 0, 0, 0, 0, 0, 0, 900]

2 welding nearest [500, 500, 650, 500, 500, 650, 500, 500, 650]

3 welding_
to_gluing nearest [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 900]

4 gluing pad [500]

5 gluing_
to_packing nearest [0, 0, 0, 0, 0, 0, 900]

6 packing nearest [200, 500, 200, 500, 200]

7 packing_
to_quality nearest [0, 0, 0, 0, 0, 0, 0, 900]

8 quality pad [340]
-2 Idle pad [1]
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Table A.2: Height dependencies configuration for synthetic data generation.

Recipe ID Step Name Height Dependencies
0 stacking –

1 stacking_
to_welding

[{’parameter_name’:
’parameter_categorical_preceding_recipe_id’,
’factor_dict’: {1: 1, 3: 1.1, 5: 0.9, 7: 1, -2: 1}]

2 welding
[{’parameter_name’:

’parameter_numerical_welding_temperature’,
’min_factor’: 1, ’max_factor’: 2}]

3 welding_
to_gluing

[{’parameter_name’:
’parameter_categorical_preceding_recipe_id’,
’factor_dict’: {1: 1, 3: 1.1, 5: 0.9, 7: 1, -2: 1}}]

4 gluing

[{’parameter_name’:
’parameter_numerical_preceding_duration’,

’min_factor’: 1, ’max_factor’: 5},
{’parameter_numerical_batch_size’,

’min_factor’: 1, ’max_factor’: 5}]

5 gluing_
to_packing

[{’parameter_name’:
’parameter_categorical_preceding_recipe_id’,
’factor_dict’: {1: 1, 3: 1.1, 5: 0.9, 7: 1, -2: 1}}]

6 packing –

7 packing_
to_quality

[{’parameter_name’:
’parameter_categorical_preceding_recipe_id’,
’factor_dict’: {1: 1, 3: 1.1, 5: 0.9, 7: 1, -2: 1}}]

8 quality –

-2 Idle

[{’parameter_name’:
’parameter_categorical_machine’,

’factor_dict’: {’stacking_robot_0’: 440,
’stacking_robot_1’: 440, [...],

’welding_robot_0’: 380,
’welding_robot_1’: 380, [...],

’gluing_robot_0’: 280,
’gluing_robot_1’: 280, [...],

’packing_robot_0’: 200,
’packing_robot_1’: 200, [...],

’testing_station_0’: 220,
’testing_station_1’: 220,

’trolley_0’: 0, ’trolley_1’: 0, [...]}}]
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Table A.3: Repetition dependencies configuration for synthetic data generation.

Recipe ID Step Name Repetition Dependencies

0 stacking
[{’parameter_name’:

’parameter_numerical_batch_size’,
’min_factor’: 1, ’max_factor’: 5}]

1 stacking_
to_welding –

2 welding
[{’parameter_name’:

’parameter_numerical_batch_size’,
’min_factor’: 1, ’max_factor’: 5}]

3 welding_
to_gluing –

4 gluing
[{’parameter_name’:

’parameter_numerical_batch_size’,
’min_factor’: 1, ’max_factor’: 5}]

5 gluing_
to_packing –

6 packing
[{’parameter_name’:

’parameter_numerical_batch_size’,
’min_factor’: 1, ’max_factor’: 5}]

7 packing_
to_quality –

8 quality
[{’parameter_name’:

’parameter_numerical_batch_size’,
’min_factor’: 1, ’max_factor’: 5}]

-2 Idle –
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Table A.4: Profile dependencies configuration for synthetic data generation.

Recipe ID Step Name Profile Dependencies
0 stacking –

1 stacking_
to_welding –

2 welding –

3 welding_
to_gluing –

4 gluing –

5 gluing_
to_packing –

6 packing –

7 packing_
to_quality –

8 quality –

-2 Idle

[ {’parameter_name’: ’parameter_categorical_machine’,
’factor_dict’: {’stacking_robot_0’: [1, 1, 1, 0, 0],

’stacking_robot_1’: [1, 1, 0, 0], [...],
’welding_robot_0’: [1, 1, 0, 0],

’welding_robot_1’: [1, 0, 0], [...],
’gluing_robot_0’: [1, 1, 0, 0],

’gluing_robot_1’: [1, 1, 0, 0], [...],
’packing_robot_0’: [1, 0, 0],

’packing_robot_1’: [1, 0, 0], [...],
’testing_station_0’: [1, 0, 0],

’testing_station_1’: [1, 0, 0], [...],
’trolley_0’: [0], ’trolley_1’: [0], [...]}}]
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