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Institut für Mechanik und Mechatronik

Wien, März 2024

Tobias Schuster



Eidesstattliche Erklärung

Ich nehme zur Kenntnis, dass ich zur Drucklegung meiner Arbeit unter der Bezeichnung

Diplomarbeit
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Abstract

Controlling a vehicle’s powerslide motion is a challenging control task, which is even

more difficult in the presence of a human driver. While professional rally drivers make

use of the powerslide to minimise stage time, it is rarely seen in normal road traffic for

a good reason. The powerslide is an unstable motion, characterised by large side slip

angles, large longitudinal forces on the rear axle and a steering angle pointing towards

the outside of the turn. The aim of this work is to design a powerslide controller for an

all-wheel drive battery electric vehicle with individually driven front and rear axles and

a human driver in closed-loop using Reinforcement Learning.

Reinforcement Learning, a data-driven optimal control strategy, has gained increasing

attention in recent years, proving to be a powerful tool for controlling dynamic systems,

especially the field of Deep Reinforcement Learning, which involves the integration of

Deep Neural Networks. During the learning process, the network’s parameters are it-

eratively updated in order to best possibly satisfy an optimality criterion. The trained

network is able to approximate complex, nonlinear mappings between input and output

variables that may not be easily captured by traditional controllers.

The intention is to develop an Advanced Driver Assistance System to stabilise the

powerslide by controlling front and rear axle drive torques, while the driver follows a given

circular path solely by steering. This assistance system must account for the behaviour

of a human driver, so the driver model used in simulation is designed accordingly.

vii



Kurzfassung

Die Stabilisierung eines Fahrzeugs im Powerslide ist eine anspruchsvolle regelungstech-

nische Aufgabe, speziell unter Berücksichtigung eines menschlichen Fahrers. Professio-

nelle Rally-Fahrer bewegen ihre Fahrzeuge häufig im Powerslide durch Kurven, um diese

möglichst schnell zu passieren. Im alltäglichen Straßenverkehr wird man diesem Fahr-

manöver hingegen kaum begegnen. Grund dafür ist, dass es sich beim Powerslide um

einen instabilen Fahrzustand handelt, bei dem große Schwimmwinkel, Schräglaufwinkel

und Umfangskräfte an der Hinterachse sowie ein zum Kurvenäußeren zeigender Lenk-

winkel auftreten. Ziel dieser Arbeit ist die Entwicklung eines Powerslide-Reglers, für ein

allradgetriebenes Elektroauto mit einzeln angetriebenen Achsen und einem menschlichen

Fahrer als Teil der Regelstrecke, mit Hilfe von Reinforcement Learning.

Bei Reinforcement Learning handelt es sich um einen Machine Learning Ansatz zur

Regelung dynamischer Systeme, wobei das Regelverhalten mittels datengetriebener Me-

thoden iterativ verbessert werden soll. Speziell der Bereich des Deep Reinforcement

Learnings hat in den letzten Jahren an Bedeutung gewonnen. Hier wird der Regler

durch ein künstliches neuronales Netzwerk repräsentiert, dessen Parameter während des

Trainings schrittweise angepasst werden, um ein Optimalitätskriterium bestmöglich zu

erfüllen. Das trainierte Netzwerk ist in der Lage komplexe, nichtlineare Zusammenhänge

zwischen Eingangs- und Ausgangsgrößen zu approximieren, die klassische Regler nicht

erfassen können.

Ziel ist es, ein Fahrerassistenzsystem zu entwickeln, um den Powerslide zu stabilisieren,

indem die Antriebsmomente der Vorder- und Hinterachse geregelt werden, während der

Fahrer durch entsprechendes Lenkverhalten einer vorgegebenen Kreisbahn folgt. Das

Assistenzsystem muss dabei das Verhalten eines menschlichen Fahrers berücksichtigen,

weshalb in der Simulation ein entsprechendes Fahrermodell verwendet wird.
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1 Introduction

The steady-state powerslide is defined as stationary cornering motion of a vehicle with

large side slip angles, a steering angle pointing towards the outside of the turn and

large longitudinal forces on the rear axle [1]. Stationary cornering is characterised by a

constant trajectory curvature, a constant speed and a constant vehicle side slip angle.

During steady-state regular cornering, the side slip angles remain small, the steering

angle points towards the inside of the turn and primarily lateral tire forces are acting.

This driving state is stable, in contrast to the powerslide. Due to its unstable nature,

the powerslide has to be controlled either by the driver or an active system. Under-

standing and controlling the powerslide is of great interest to the research community,

as it represents a nonlinear edge case of stability and controllability in vehicle dynamics.

Controllability characteristics of the powerslide for both rear-wheel drive (RWD) and

all-wheel drive (AWD) vehicles are addressed by [2]. While steering inputs are primarily

responsible for changing lateral motion variables at regular cornering, the powerslide can

more easily be stabilised by throttle commands. Due to large tire side slip angles on the

rear axle, horizontal tire forces are saturated. The coupling between longitudinal and

lateral tire forces ensures the controllability of the lateral vehicle movement through the

longitudinal tire forces via drive torque inputs [1].

The development of AWD battery electric vehicles (BEVs) offers the opportunity for

new control strategies. While internal combustion engine (ICE) AWD concepts are

characterised by drive trains mechanically linking front and rear axle, these new AWD

BEVs typically comprise two electric motors, driving front and rear axles independently.

Apart from steering inputs and total drive torque, the drive torque distribution between

front and rear axle represents another possibility to influence the powerslide motion.

By addressing controllability and observability criteria of the unstable powerslide mo-

tion, [3] presents different options of stabilising the powerslide, including the drive torque

distribution. In this work, the author also proposes a linear controller, assisting the driver

to stabilise the powerslide by controlling front and rear axle drive torques. The controller

design involves linearising the system around an operating point which includes defining

a steady-state drive torque distribution.
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1 Introduction

1.1 Motivation

Data-driven control has become more and more popular in the past years, with Rein-

forcement Learning (RL) as one promising domain. Similar to a contribution of [3], the

aim of this work is to design an Advanced Driver Assistance System (ADAS) to stabilise

the powerslide in the presence of a human driver. While the author of [3] proposes a

traditional control concept, this work contributes a novel controller based on RL.

The selection of RL as method for addressing this control problem is motivated by

the question if it is feasible to stabilise the powerslide at an a priori unknown steady

state. Traditional control concepts rely on the explicit knowledge of an operating point,

whereas the data-driven approach may work without this information.

Additional aspects justifying RL as control concept include its end-to-end learning

support. In Deep Reinforcement Learning (DRL) the controller is represented by a

Deep Neural Network (DNN). These networks can efficiently extract relevant features

from raw input data without the need for intermediate processing steps. As a con-

sequence, the control engineer does not have to worry about the selection of relevant

controller inputs, as the RL algorithm will eventually detect the relevant information

on its own. In the end, the powerslide is characterised by nonlinear vehicle dynamics

including nonlinear tire behaviour at an unstable driving state. Therefore, controlling

the powerslide is supposed to be an appropriate use case to analyse if the proposed

controller can demonstrate added value compared to traditional controllers.

1.2 Literature

Numerous potential applications for Machine Learning (ML) concepts exist within the

domain of the powerslide. Apart from directly training a controller to stabilise the pow-

erslide, other approaches focus on the possibility of augmenting traditional controllers

with data-driven methods. The majority of literature in this field addresses powerslide

control within the context of autonomous driving.

Using RL, the authors of [4] solved the autonomous powerslide problem. They intro-

duced a framework that combines simulation models with real-world robotics to optimise

control policies. Controlled powerslide manoeuvres are demonstrated on a robotic car.

In [5], a DNN for controlling the powerslide on arbitrary trajectories is trained using

RL. The trained controller is transferred to a RWDmodel car to validate its performance.

The authors consider the autonomous powerslide as the controller is also responsible for

steering inputs.

2



1 Introduction

In [6], the authors propose a hybrid control structure encompassing a Model Predictive

Control (MPC) strategy and a road terrain classifier. Their motivation is to develop a

system able to perform powerslide manoeuvres autonomously in a wide range of scenar-

ios. They use real-world data generated with a test driver in the loop to learn tire friction

properties and powerslide operating points represented as DNNs. These characteristics

are required by the lower-level controller to adjust its behaviour accordingly.

The authors of [7] propose a new family of tire models based on neural ordinary

differential equations [8]. These tire models replace an analytical tire model in an existing

MPC framework to control the autonomous powerslide.

1.3 Structure of this Work

The remainder of this work is structured as follows. In Chapter 2, basics of RL are in-

troduced, while in Chapter 3, theoretical background of model-free RL algorithms, and

especially the mathematical fundamentals of the state-of-the-art model-free RL algo-

rithm, is provided. In Chapter 4, the vehicle model and driver model are presented and

in Chapter 5, the integration of these models into a framework providing a standardised

RL interface is described. In Chapter 6, relevant parts of the RL training procedure are

covered and in Chapter 7, the evaluation of a successfully trained controller is discussed.

In Chapter 8, a summary, a conclusion and an outlook are given.

1.4 Notation

Chapter 2 and Chapter 3 cover theoretical background and algorithmic insights of RL.

This sections outlines some relevant notation utilised in the RL context.

The conditional probability of event A given that event B has occurred, is denoted as

P (A|B). The tilde operator ∼ symbolises sampling from a probability distribution. Let

E [X] denote the expected value of a random variable X. Variables with a circumflex

like x̂ indicate a sample mean to approximate the true value, e.g., x̂ ≈ E [X].

3



2 Reinforcement Learning Basics

This chapter serves as a basic introduction to RL. First, a brief overview of different

ML methods is presented, while Section 2.2 introduces the fundamental ideas and ter-

minology associated with RL. A comparison of RL with optimal control theory is given

in Section 2.3.

2.1 Machine Learning Overview

ML focuses on developing algorithms that enable computers to learn from data in order to

make predictions or decisions. In this context, learning refers to the process of iteratively

adjusting the parameters of some arbitrary function to best possibly satisfy an optimality

criterion. ML algorithms are classified into three categories: Supervised Learning (SL),

Unsupervised Learning (UL) and RL algorithms.

Supervised Learning

The concept of SL is characterised by training on labeled datasets. The goal is to learn a

function that provides a mapping between input data and corresponding output labels.

Models trained with SL algorithms aim to identify relationships in the data, enabling

them to classify new, unseen data. An application example of SL is visual road sensing

to detect obstacles. In this scenario, the data consists of images with their respective

pixel values (input) and corresponding descriptions of the content (label).

Unsupervised Learning

UL algorithms focus on identifying patterns and uncovering hidden structures within

datasets that have no labels. An example use case of UL could be anomaly detection in

vehicle dynamics. The UL algorithm can identify deviations from normal behaviour by

data from various sensors embedded in the vehicle. Detected anomalies could indicate

potential failures or malfunctions, and therefore enhance vehicle safety.

4



2 Reinforcement Learning Basics

Reinforcement Learning

While SL and UL algorithms learn from static, predetermined datasets, RL algorithms

generate their training data dynamically throughout the training process itself. In an

RL scenario, as shown in Figure 2.1, an agent interacts with an environment, sending

actions and receiving observations and rewards. The primary objective of RL is to train

the agent to successfully accomplish a task within the environment, with the reward

serving as a quality measure of its actions. The agent aims to select actions that lead to

positive outcomes and accumulate as much reward as possible. When the agent receives

a high reward for a particular action or sequence of actions, the associated behaviour is

reinforced, increasing the likelihood of its repetition in similar situations. Through an

iterative process of trial and error, the agent learns to identify the actions generating

the most cumulative reward, and adjusts its behaviour accordingly.

The concept of RL is inspired by the way humans (or animals) learn, including fun-

damental tasks such as walking. When humans learn to walk, they initially lack coor-

dination and balance. Through trial and error, they take small steps, often stumbling

and falling. However, every time they successfully take a step or maintain balance, they

receive positive reinforcement in the form of encouragement from their environment.

Figure 2.1: Basic RL concept.

2.2 Fundamental Ideas and Terminology

This section gives an overview of the fundamental concepts and terminology associated

with RL. For a comprehensive introduction to RL, Sutton and Barto’s book [9] is a

valuable reference. A concise overview of DRL, which involves the integration of DNNs,

is given in [10]. These techniques are especially useful when dealing with continuous

problems. Some ideas of [9] and [10] are summarised in the remainder of this section.

5



2 Reinforcement Learning Basics

RL involves the interaction between two characters: the learner and decision maker

called the agent and everything outside the agent called the environment. Various

forms of environments are possible, including simulated environments, e.g., computer

programs or virtual worlds, where the agent interacts and learns without any direct,

potentially harmful, consequences. Alternatively, the environment can be a real physical

setup, such as a car on a road, where the agent experiences real-world consequences.

Figure 2.2 illustrates the interaction between the agent and the environment, occuring

at discrete time steps. At each time step, the agent receives an observation of the

current state of the environment, selects an action based on its decision-making policy,

and returns it to the environment. In consequence, the environment moves to a new

state and provides feedback to the agent in the form of a reward signal and the next

observation. The agent’s goal is to learn an optimal policy that maximises the cumulative

reward over time. This learning process is driven by a learning algorithm that updates

and improves the agent’s policy based on the received reward.

Figure 2.2: RL interaction loop during training.

Environment and State

The state contains all available information of the environment at any time step t. When

the agent takes an action at in a specific state st, the environment transitions to a new

state st+1. This transition can either be stochastic or deterministic, depending on the

nature of the environment. In a stochastic environment, the identical combination of

states st and actions at can result in different possible next states st+1. This variability

can correspond to disturbances acting on the environment.

The RL problem is commonly modelled as a Markov Decision Process (MDP). In

an MDP the probability of transitioning from one state st to the next state st+1 solely

depends on the current state st and action at, irrespective of the history of states or ac-

tions that led to st. By assuming the Markov property, modelling RL problems becomes

6



2 Reinforcement Learning Basics

simpler, as it eliminates the need to consider the entire history of states and actions,

enabling more efficient learning and decision-making in RL algorithms. The Markov

property is formulated as

P (st+1|st, at) = P (st+1|τ) , (2.1)

where P (st+1|st, at) represents the probability of the environment transitioning to a

specific next state st+1, given the current state st and action at. P (st+1|τ) represents the
probability of transitioning to state st+1 given the entire trajectory τ = {s0, a0, ..., st, at}.

Episode and Epoch, Termination and Truncation

Environments are distinguished based on whether or not they can transition to a terminal

state. In an Atari game, a natural ending is reached, e.g., when the agent either wins or

loses, resulting in the termination of the game. Such tasks are referred to as episodic or

finite-horizon tasks, and the complete sequence from the initial state s0, sampled from

an initial state distribution ρ0, to the terminal state is called episode. In the case of

continuing or infinite-horizon tasks on the other hand, the interaction between agent and

environment has no predefined ending, e.g., process- or robotic control tasks, which do

not have a terminal state. An additional time limit is set to artificially end the episode.

In literature, this time limit is referred to as truncation limit. By preventing the agent

from getting stuck in a never-ending episode, this approach allows to gain more valuable

experience, as the interaction of several episodes is considered in the update process. It

is crucial to distinguish between termination and truncation, as it affects the learning

process. If the episode has truncated, the agent would expect further state transitions

and potential rewards, whereas if the episode has terminated by reaching the terminal

state, no further rewards can be received.

During one training iteration, training data is usually collected by running multiple

episodes. The number of environment transitions used by the agent to learn is deter-

mined by the size of the rollout buffer. One iteration of data collection and learning

update is referred to as an epoch.

Observation Space

The observation is the part of the environment accessible to the agent. It can represent

either the complete state, fully observed, or a subset of it, partially observed, respectively.

The observation space can be discrete or continuous depending on the nature of the

environment. In DRL, states, and therefore observations, are represented as real-valued

vectors or matrices.

7



2 Reinforcement Learning Basics

Action Space

The action space describes the set of all valid actions in a given environment, and it

can either be discrete or continuous. In environments with discrete action spaces, only

a finite number of actions are available to the agent. Examples include Atari games,

where the agent can choose from a limited set of possible moves. Environments with

continuous action spaces on the other hand, allow a wide range of possible actions, often

represented as real-valued vectors, like in robotic control tasks.

The distinction between discrete and continuous action spaces has a significant impact

on the choice of the RL algorithm. Some algorithms rely on discretising the action

space. Applying such algorithms directly to environments with continuous action spaces

requires modifications and adaptations to handle the continuous nature of the actions.

There are also algorithms designed to address continuous action spaces, such as policy

gradient methods, presented in Section 3.2.

Reward Function, Return and Value Function

The reward rt is a single scalar value, the agent receives at each time step t > 0. It is

determined by the reward function

rt+1 = R(st, at, st+1) , (2.2)

i.e., a function of the previous state, the action taken and the state that the environment

arrived at, and serves as feedback to the agent, indicating the quality of its behaviour.

The agent aims to maximise the cumulative reward, known as the return Gt, which is

the total sum of the rewards received from a time step t onwards.

Considering continuing tasks, the summation of rewards over an infinite number of

time steps is problematic, as the sum may not converge to a finite value. To overcome

this issue, an additional discount factor γ ∈ (0, 1) is added to the formulation of the

cumulative reward

Gt =
∞�
k=0

γkrt+k+1 , (2.3)

to ensure that the infinite sum converges. The choice of γ is not only justified from a

mathematical perspective, it also relates the importance of rewards in the near future

relative to those received later. A smaller γ encourages the agent to focus more on

immediate rewards, while a larger γ causes the agent to consider rewards over a longer

time horizon.

8



2 Reinforcement Learning Basics

Having a reliable estimate of the expected return under the current policy is crucial

for the agent. This is referred to as the value, and the mapping from a state to the value

is called value function

V π(s) = E
τ∼πθ

[R(τ)|s0 = s] . (2.4)

This function represents the expected return if the environment is in state s and the

agents acts forever according to policy π. The action-value function

Qπ(s, a) = E
τ∼πθ

[R(τ)|s0 = s, a0 = a] (2.5)

represents the expected return if the environment is in state s, the agent takes an arbi-

trary action a, and then acts forever according to policy πθ.

Policy and Exploration vs Exploitation

The policy π can be described as the agent’s behaviour and represents the mapping

from observations to actions. When dealing with policy-gradient algorithms in DRL,

this policy is a computable function depending on a set of parameters θ, i.e., the weights

and bias of a DNN. These parameters θ are randomly initialised at the beginning and

adjusted during the training via some DRL algorithm to change the agent’s behaviour.

The theoretical background of the policy update process is presented in Section 3.2.

In the case of policy gradient algorithms, the policy is typically stochastic, implying

that actions are selected based on a probability distribution. Assuming a fully observable

environment, i.e., observations are equal to states, and without loss of generality, policy

πθ(a|s) = P (a|s, θ) (2.6)

represents the probability of choosing action a given that the environment is in state s,

subject to the policy parameters θ. In DRL, two kinds of stochastic policies are typically

used, categorical policies for discrete action spaces and diagonal Gaussian policies for

continuous ones. In terms of Gaussian policies, observations are mapped to mean values

and standard deviations of the corresponding actions. The actual action, which is sent

back to the environment, is sampled from this distribution at ∼ πθ(·|st). This kind

of randomness in selecting actions helps the agent to find the right balance between

exploring and exploiting, which is a critical aspect in RL. If the agent only sticks to

what it already knows, it might end up trapped in a situation that seems good but is

not the best.

9



2 Reinforcement Learning Basics

2.3 Reinforcement Learning and Control Engineering

This section gives a brief comparison of RL to optimal control and summarises some

ideas of [11]. RL is an optimisation problem and has similarities with the principle

of optimal control theory. While the objective of both RL and optimal control theory

is similar, namely determining the correct inputs into a system to achieve the desired

system behaviour, they use different methodologies and terminology to represent analo-

gous concepts. Figure 2.3 illustrates a standard control loop comparing optimal control

theory an RL.

Figure 2.3: A comparison of optimal control and RL, adapted from [11]. The classic
control loop involves the computation of a control error serving as an input
to the controller. In RL, the control error is not explicitly calculated, but
intrinsically captured by the DNN.

In control theory, the objective is to design a controller (policy), that maps the ob-

served state feedback (observations) of the plant (environment) together with the refer-

ence signal (part of the reward function) to the best actuator commands (actions). The

controller design can be thought of as a one-time policy update. One common approach

to design an optimal controller is by minimising a cost functional, like in linear-quadratic

regulator (LQR) design. Since cost is the negative of reward, the maximisation of re-

wards, which is the central optimisation objective in RL, is essentially solving the same

problem.

In RL, an algorithm (agent) tries to learn the optimal control behaviour over time, in-

stead of having the designer explicitly solving it. Another difference concerns knowledge

about the system to be controlled: In control theory, a control engineer typically requires

10



2 Reinforcement Learning Basics

a model of the system, including an operating point, to solve the control problem. In

contrast, the RL algorithm learns the right parameters on its own without specific a

priori knowledge of the system dynamics.

In optimal control, the control engineer can influence the system behaviour by adjust-

ing the cost function. Adjusting the weightings to states and inputs in LQR is similar to

reward engineering in RL. However, a key distinction is the arbitrariness of the reward

function. The reward function is not constrained to quadratic functions and can have

any functional form of the current state, previous state, and the action just taken, as

stated in (2.2).
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3 Reinforcement Learning Algorithm

This chapter discusses the theoretical background of the Proximal Policy Optimiza-

tion (PPO) algorithm [12], the model-free RL algorithm used in this thesis. The PPO

algorithm is compatible with DNNs, making it suitable for solving complex problems

with high-dimensional observation and action spaces. Compared to other policy opti-

misation algorithms, like Trust Region Policy Optimization (TRPO) [13], PPO is more

stable during training and does not require extensive hyperparameter tuning. PPO has

demonstrated strong empirical performance across different environments and bench-

mark tasks. At the time of writing this thesis, PPO is the state-of-the-art policy opti-

misation algorithm.

Implementations of popular RL libraries contain a lot of code-level optimisations.

These implementation details dramatically change the agent’s performance [14]. In this

work, the PPO implementation of Stable-Baselines3 (SB3) [15] is utilised.

3.1 Background - Policy Optimisation and Q-Learning

RL algorithms can be categorised by their learning objectives, including policy π, value

function V (s), action-value function Q(s, a) and/or a model of the environment. In

model-free RL, the primary methods are policy optimisation algorithms and Q-Learning

algorithms. Figure 3.1 provides a non-exhaustive overview of the most popular model-

free RL algorithms.

Policy Optimisation

Policy optimisation methods explicitly represent the policy as πθ(a|s). The objective is

to maximise a specific performance measure, J(πθ), which is typically the cumulative

reward. The policy parameters θ are optimised through gradient ascent on the per-

formance objective, ∇θJ(πθ), referred to as the policy gradient. A policy optimisation

algorithm updates the policy solely based on the data collected under the current policy

version, resulting in a reduced sample efficiency compared to other RL algorithms. The

core concept of policy gradients is presented in Section 3.2.

12



3 Reinforcement Learning Algorithm

Figure 3.1: Overview of different RL algorithms, adapted from [10].

Q-Learning

Methods in the family of Q-Learning algorithms aim to estimate the optimal action-value

function by iteratively updating their Q-values. These values represent the expected

return for taking specific actions in specific states. The Q-Learning agent selects the

action with the highest Q-value for the current state

a(s) = argmax
a

Q(s, a) (3.1)

in order to receive the most expected return. During training, actions are selected

according to (3.1) with a probability of 1− ϵ, and randomly selected with a probability

of ϵ, with ϵ ≪ 1. This ϵ-greedy policy helps balancing between exploring unknown

actions and exploiting known ones.

Q-learning algorithms typically learn in an off-policy way, including a replay buffer to

reuse past experience instead of solely relying on the most recent data. The Q-Learning

algorithm updates its Q-values according to

Q(st, at) ← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] , (3.2)

13



3 Reinforcement Learning Algorithm

where α is the learning rate, rt+1 the received reward and γ the discount factor. The

difference between rt+1 + γmax
a

Q(st+1, a) and the expected return Q(st, at) is called

temporal difference. A larger temporal difference leads to a stronger update signal for

the Q-values.

3.2 Policy Gradient

In this section, adapted from [10], the derivation of the policy gradient is presented.

Considering both the policy and the environment as stochastic, the probability for a

single T -step trajectory τ following policy πθ is given by

P (τ |πθ) = ρ0(s0)

T�
t=0

P (st+1|st, at)πθ(at|st) . (3.3)

The product on the right-hand side contains two probability distributions.

• P (st+1|st, at): The probability of the environment to transition to a specific next

state st+1, given that the environment is currently in state st and the agent takes

action at.

• πθ(at|st): The probability of taking a specific action in a given state depending on

the parameters θ.

The expected return of policy πθ is given by

J(πθ) = E
τ∼πθ

[G(τ)] =

�
τ
P (τ |πθ)G(τ) , (3.4)

i.e., the probability of a trajectory τ occurring under policy πθ, multiplied by the return

of this trajectory G(τ), and integrated over all possible trajectories. Since the overall

goal in RL is to find a policy that maximises this return, the central optimisation problem

is formulated as

π∗ = argmax
πθ

J(πθ) , (3.5)

where π∗ represents the optimal policy. The intuition is to alter the policy parameters

θ in order to increase the probabilities of trajectories associated with higher rewards.

This optimisation of the policy parameters is performed using gradient ascent

θk+1 = θk + α ∇θJ(πθ)|θk , (3.6)
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with policy parameters θk and θk+1 before and after the policy update, respectively. The

learning rate α determines how much to change the policy parameters θk in the direction

of the policy gradient ∇θJ(πθ). Applying the gradient with respect to θ to (3.4) yields

∇θJ(πθ) = ∇θ E
τ∼πθ

[G(τ)] =

�
τ
∇θP (τ |πθ)G(τ) . (3.7)

With the well-known log-derivative trick, the gradient of P (τ |πθ) with respect to θ follows

∇θP (τ |πθ) = P (τ |πθ)∇θ logP (τ |πθ) , (3.8)

which gives

∇θJ(πθ) =

�
τ
[P (τ |πθ)∇θ logP (τ |πθ)G(τ)] . (3.9)

In (3.7), the integration of the gradients of probabilities is performed, whereas in (3.9),

the integration considers the probabilities themselves. With this result, the policy gra-

dient itself can be written in expectation form

∇θJ(πθ) = E
τ∼πθ

∇θ logP (τ |πθ)G(τ) , (3.10)

which is crucial in sample-based methods like RL. Proceeding from (3.3), the logarithm

of the probability of a trajectory yields

logP (τ |πθ) = log ρ0(s0) +

T�
t=0

(logP (st+1|st, at) + log πθ(at|st)) . (3.11)

In (3.11), only the last term depends on the policy parameters θ. Thus, taking the

gradient with respect to θ leads to

∇θ logP (τ |πθ) =
T�
t=0

∇θ log πθ(at|st) , (3.12)

and the policy gradient

∇θJ(πθ) = E
τ∼πθ

�
T�
t=0

∇θ log πθ(at|st)G(τ)

�
. (3.13)
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So far, the derivation of the policy gradient considers the true expectation, involving

all possible trajectories. As this is computationally intractable, the expectation is esti-

mated by a sample mean. Based on a finite set of N trajectories D = {τi}1≤i≤N , the

approximate policy gradient yields

∇θJ(πθ) ≈ ĝ =
1

N

�
τ∈D

T�
t=0

∇θ log πθ(at|st)G(τ) . (3.14)

If the policy is represented in a way that allows to calculate ∇θ log πθ(at|st), i.e., differ-
entiable with respect to θ, then the policy gradient is computable and the policy can be

updated.

When taking an update step of the policy gradient according to (3.13), the logarithmic

probabilities of all actions of a specific trajectory τ are changed according to G(τ).

However, actions should only be reinforced based on post-action consequences, as pre-

action rewards are irrelevant. Therefore, the policy gradient can also be expressed as

∇θJ(πθ) = E
τ∼πθ

�
T�
t=0

∇θ log πθ(at|st)Gt

�
, (3.15a)

with the sum of discounted rewards after a point in a trajectory t

Gt =

T�
t′=t

γt
′−tr(st′ , at′ , st′+1) . (3.15b)

Baselines in Policy Gradients

A key property of probability distributions like πθ(at|st) is, that the total probability

across all possible actions yields �
at

πθ(at|st) = 1 . (3.16)

Applying the gradient with respect to θ and using the same trick as in (3.8) leads to

E
at∼πθ

[∇θ log πθ(at|st)] = 0 . (3.17)

An arbitrary function b(st) does not change the expectation in (3.17) and therefore

E
at∼πθ

[∇θ log πθ(at|st)b(st)] = 0 . (3.18)
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The function b(st) is called a baseline and the result in (3.18) allows to modify the

expression of the policy gradient (3.15)

∇θJ(πθ) = E
τ∼πθ

�
T�
t=0

∇θ log πθ(at|st)
�

T�
t′=t

γt
′−tr(st′ , at′ , st′+1)− b(st)

��
, (3.19)

without changing the expectation. A common choice for a baseline is V π(st), the on-

policy value function, which empirically reduces variance in the gradient estimate, lead-

ing to a faster and more stable training process. The advantage function

At = Gt − V π(st) (3.20)

relates the obtained return, as a consequence of the selected action, to the average return

the agent expects. Intuitively, if the agent gets the return that it expects At = 0, it should

feel neutral. In practice, as V π(st) cannot be computed, it has to be approximated,

typically by a DNN Vϕ(st) with parameters ϕ. To represent the value function of the

most recent policy, the value network is updated concurrently with the policy network.

Learning value function Vϕ(st) is a typical SL task with the objective to minimise the

mean square error (MSE) between the output of the value function, i.e., the expected

return, and the actually obtained return Gt

ϕk = argmin
ϕ

E
st,Gt∼πk

�
(Vϕ(st)−Gt)

2
�
, (3.21)

with πk denoting the policy at epoch k. The minimisation of this MSE objective is done

by gradient descent, starting from the value function parameters ϕk−1 of the previous

epoch. A setting like this, where the agent learns a policy and a value function, is called

actor-critic. The policy represents the actor, and the value function criticises the action

by comparing the obtained reward with the expected average reward.

Gaussian Policy

The Gaussian policy is a common stochastic policy for continuous action spaces. It maps

observations to mean actions µθ(s) and standard deviations σθ(s). The actual actions

are sampled from a parameterised normal distribution

πθ(a|s) = 1√
2πσθ

e
− 1

2

�
a−µθ
σθ

�2

. (3.22)
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Typically, the policy is represented as a DNN, so the mean value µθ and the standard

deviation σθ are nonlinear functions of the weights and bias of this DNN. Using calculus

to manually compute partial derivatives is possible since the policy is differentiable, but

cumbersome. Special frameworks, like PyTorch [16] or TensorFlow [17], offer automated

gradient calculations. Like in other ML tasks, a loss function is defined

L = log πθ(at|st)G(τ) , (3.23)

and the computer does the differentiation automatically. The loss function (3.23) is

not a typical loss function like in SL, where it indicates how well the training is going.

A falling loss indicates a successful training, as it describes the difference between the

predicted labels and the true labels. In policy gradient methods, however, there is no

intuition behind the loss function (see Figure 6.4). The only measure, indicating a

successful training, is the average return.

3.3 Proximal Policy Optimisation

This section covers the main ideas of the DRL algorithm PPO, introduced by Schulman

[12]. Summarising Section 3.2, the policy gradient can be written as

ĝ = Êt

�
∇θ log πθ(at|st)Ât

�
, (3.24)

where Êt indicates the empirical average of a finite batch of samples, similar to (3.14),

and Ât the advantage function (3.20). In implementations like SB3 [15], that use auto-

matic differentiation software like PyTorch [16], it is sufficient to construct an objective

function, also called loss function, whose gradient is the estimator of the policy gradient

LPG(θ) = Êt

�
log πθ(at|st)Ât

�
. (3.25)

The policy parameters are updated through gradient ascent (3.6), with the learning rate

α being a measure of how much the policy is changed in parameter space. However,

even a minor change in the parameter space can have a significant impact, as a single

bad policy update step may let the policy performance collapse. In the following epoch,

the trajectories are collected under this bad policy, which can cause the agent to fail

learning by getting stuck in an unusable area of the environment’s state space.
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TRPO [13], the direct predecessor of PPO, uses a special constraint on the size of the

policy update to avoid this kind of collapse.

maximise Êt

�
πθ(at|st)
πθold(at|st)

Ât

�
(3.26a)

subject to Êt

�
D̄KL (πθ(·|st)||πθold(·|st))


 ≤ δ (3.26b)

The surrogate objective in (3.26a) is a measure of how policy πθ performs relative to the

old policy πθold , based on data from the old policy. It approximates the actual perfor-

mance difference and, for reasonably small policy updates, (3.26a) is not much different

than the original objective function (3.25). In fact, differentiating both (3.26a) and

(3.25) gives exactly the same gradient. The innovation is (3.26b), which represents a

constraint in terms of the Kullback–Leibler divergence D̄KL (·||·). This measure, illus-

trated in Figure 3.2, indicates how two probability distributions differ from each other.

The constrained optimisation problem (3.26) ensures that the new updated policy does

not deviate too much from the old policy in terms of action probabilities.

Figure 3.2: Kullback–Leibler divergence D̄KL (·||·) as constraint in TRPO’s optimisation
problem. The Gaussian distributions P , Q1 and Q2, plotted on the left half,
have mean values of µP = 0, µQ1 = 1 and µQ2 = 2, respectively, and an
equal standard deviation of σ = 1. The corresponding graphs of D̄KL (·||·)
are potted on the right half, where D̄KL (P ||P ) aligns with the abscissa.

Despite its theoretical guarantees, TRPO faces practical challenges arising from its

computational complexity of solving a constrained optimisation problem. On the other

hand, PPO is a relatively simple algorithm that includes the extra constraint (3.26b)

directly in the optimisation objective. Schulman introduced two versions of PPO in his

work [12]. The more popular, easier to implement, and empirically better performing

PPO-Clip is discussed here.
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With the probability ratio rt(θ) =
πθ(at|st)

πθold
(at|st) , the objective function of the PPO algo-

rithm can be written as

LCLIP(θ) = Êt

�
min

�
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

��
. (3.27)

Clip range ε determines how much two consecutive policies can differ in terms of ac-

tion probabilities, commonly within the range ε ∈ [0.1, 0.3]. The first term inside the

min-operator in (3.27) is equivalent to TRPO’s objective (3.26a). The second term,

clip (rt(θ), 1− ε, 1 + ε) Ât, is similar to the first, but comprises a clipped version of the

probability ratio rt(θ). It acts as a regularisation mechanism by constraining the policy

updates. The advantage estimate Ât can be both positive and negative, which changes

the effect of the min operator. Figure 3.3 illustrates the objective function (3.27) for a

single time step, called term, as a function of the probability ratio rt(θ). The loss func-

tion LCLIP(θ) is the empirical average of many of these terms. A positive advantage, i.e,

an action achieved a better return than expected, is plotted on the positive ordinate, a

negative advantage, i.e., an action yielded a worse return than expected, is plotted on

the negative ordinate, respectively.

Figure 3.3: PPO’s objective function for a single time step, adapted from [12], with clip
range ϵ = 0.2. When a data sample resides within the (grey) clipping area,
the corresponding gradient is 0, signifying that the sample has no influence
on the policy update process.
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The following combinations of rt(θ) and Ât can occur:

• Ât > 0:

The action produces a better-than-expected return, which is an incentive to in-

crease the probability of it, characterised by a positive gradient. However, when

rt(θ) gets too high, the objective function flattens out and has zero gradient. This

happens, when this action is already much more probable rt(θ) > 1 + ε under the

current policy than it was under the old policy. The objective function is clipped

to ensure that the action update remains within a reasonable range.

• Ât < 0 and rt(θ) < 1− ε:

This case corresponds to a bad action, characterised by a negative advantage, that

is much less probable rt(θ) < 1− ε under the current policy than it was under the

old policy. The clipping mechanism ensures that the probability is not reduced

even further since the gradient is zero in this region.

• Ât < 0 and rt(θ) ≫ 1:

Under the current policy, the probability of taking a bad action, characterised by

a negative advantage, has increased. The negative gradient allows to undo the last

policy update by reducing the probability of such an action again. It is the only

region where the unclipped part of the objective (3.27) has a lower value than the

clipped version and thus gets returned by the min operator.

The final objective function, which is optimised, comprises the clipped PPO objective

(3.27), augmented by two additional terms

LPPO(θ) = Êt

�
LCLIP(θ)− cvfL

VF(θ) + centS[πθ](st)


. (3.28)

The term LVF(θ) represents the MSE value function loss, as stated in (3.21), while

S[πθ](st) denotes an entropy bonus to influence the agent’s exploration behaviour. The

value function coefficient cvf and entropy coefficient cent regularise the importance of

these terms relatively to the clipped PPO loss (3.27).

Implementing PPO Algorithm

The PPO algorithm is relatively easy to implement, i.e., it requires only a few changes

compared to implementing a standard policy gradient (3.25). The pseudocode of PPO,

given in Algorithm 1, gives a brief step-by-step description of how this algorithm works.
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Algorithm 1 PPO, Clipped (adapted from [12])

1: Input: initial policy parameters θ0, initial value function parameters ϕ0

2: for j = 1, 2, . . . do

3: Collect set of trajectories Dj by running πθold in the environment

4: Compute advantage estimates Ât

5: for k = 1, 2, . . . ,K do

6: Evaluate πθ on Dj , compute rt(θ)

7: Compute and optimise surrogate loss L

8: end for

9: θold ← θ

10: end for

The set of trajectories in line 3 contains state-action pairs and rewards. With the latter,

the advantage estimate Ât is computed. On the first iteration of the loop in line 5, the

current policy πθ is the old policy πθold , resulting in a probability ratio of rt(θ) = 1. This

corresponds to the situation illustrated by the red dots in Figure 3.4. The gradient will

increase the probabilities of good actions, and decrease the probabilities of bad actions,

as illustrated in Figure 3.4a and Figure 3.4b, respectively. This results in the updated

version of the current policy πθ. The following iterations through the loop in line 5 are

different. The updated current policy πθ is evaluated on the state-action pairs of the

old policy πθold . Given the state and the action, the probability of that action under

the current policy, as a consequence of the state, is calculated, which is then used to

calculate the probability ratio rt(θ). Depending on the value of rt(θ) and the sign of Ât,

the data point either contributes (no clipping) or does not contribute (clipping) to the

subsequent policy update.

(a) PPO Clip, Ât > 0. (b) PPO Clip, Ât < 0.

Figure 3.4: Plots showing one term of the objective function (3.27) as a function of the
probability ratio rt(θ), for both positive (left) and negative (right) advan-
tages, adapted from [12].
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This chapter introduces the simulation environment, which includes both a vehicle model

and a driver model. First, a brief introduction is provided, followed by the physical

equations to derive an analytical representation of the environment.

4.1 Overview

There are numerous options for modelling a car, depending on the relevant phenomena

that the model needs to describe. The complexity of the model varies based on the level

of accuracy necessary for the particular simulation. Simple quarter-vehicle models are

capable of describing suspension behaviour or the contact between tire and road, while

more complex four-wheel models can account for the interaction between all four wheels

and the vehicle body. Section 4.2 introduces a two-wheel vehicle model comprising a

semi-empirical tire model: the Pacejka Magic Formula [18].

The driver model’s task is to ensure that the vehicle tracks the reference trajectory ac-

curately. Represented by the driver model described in [19], a realistic driver behaviour

is obtained. This model is augmented by incorporating an additional look ahead com-

ponent. In [20], various approaches to this look ahead component are mentioned, and

specifically, the look ahead along the longitudinal axis of the vehicle method is utilised

in this work. The process of developing and tuning the model describing the driver’s

behaviour is outlined in [3]. The results of this process are presented in Section 4.4.

The system dynamics is described as state space model ẋi = f(x,u), where each

state derivative ẋi is an explicit function of the state vector x and input vector u. This

representation, as an initial value problem, enables the use of explicit ordinary differential

equation (ODE) solvers, such as the Runge-Kutta method or the forward Euler method,

to numerically integrate the equations of motion.
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4.2 Vehicle

The two-wheel vehicle model, illustrated in Figure 4.1, describes the relevant lateral

vehicle dynamics of regular cornering and the powerslide. The coordinate system is lo-

cated at the center of mass (COM) of the vehicle. The x-axis aligns with the longitudinal

axis of the vehicle, the y-axis points to the left in relation to the driving direction, and

the z-axis points upwards, following the conventions of a Cartesian right-hand system.

The front wheels and rear wheels on their respective axle are represented as one wheel.

The COM is located in the plane of the road, ensuring constant vertical tire forces Fz,i

and eliminating dynamic axle load distributions. The model consists of three compo-

nents: front wheel 1○ with rolling radius rfront and reduced moment of inertia Ifront,red,

rear wheel 2○ with rolling radius rrear and reduced moment of inertia Irear,red, and vehicle

body 3○ with dimensions lfront and lrear, total vehicle mass m and moment of inertia

with respect to the vertical axis Iz.

Figure 4.1: Two-wheel vehicle model with independently driven front and rear axle.

The state vector xV and input vector u of the vehicle are defined as follows

xV =
�
β ψ̇ v ωfront ωrear

�T
, (4.1)

u =
�
δ Tfront Trear

�T
. (4.2)

Here, β denotes the vehicle side slip angle, ψ̇ its yaw rate, v the speed of the COM, ωfront

and ωrear the angular speeds of front and rear wheel, δ the steering angle and Tfront and

Trear the drive torques to front and rear axle.
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The equations for the balance of momentum and the balance of angular momentum

regarding the entire system yield

e⃗x1 : m[v̇ cosβ − v(β̇ + ψ̇) sinβ] = Ffront,x cos δ − Ffront,y sin δ + Frear,x , (4.3)

e⃗y1 : m[v̇ sinβ + v(β̇ + ψ̇) cosβ] = Ffront,x sin δ + Ffront,y cos δ + Frear,y , (4.4)

e⃗z1 : ψ̈Iz = (Ffront,x sin δ + Ffront,y cos δ)lfront − Frear,ylrear , (4.5)

where the tire forces Ffront,x, Ffront,y, Frear,x and Frear,y are oriented as illustrated in

Figure 4.1. The equations for balance of momentum for front axle and rear axle lead to

ω̇frontIfront,red = Tfront − rfrontFfront,x , (4.6)

ω̇rearIrear,red = Trear − rrearFrear,x . (4.7)

Rearranging the system of nonlinear first order ODEs, from (4.3) to (4.7), leads to the

explicit expression ẋV = f(xV ,u)

β̇

ψ̈

v̇

ω̇front

ω̇rear


=



−ψ̇ +
Ffront,x sin(δ−β)+Ffront,y cos(δ−β)−Frear,x sinβ+Frear,y cosβ

mv
(Ffront,x sin δ+Ffront,y cos δ)lfront−Frear,ylrear

Iz
Ffront,x cos(δ−β)−Ffront,y sin(δ−β)+Frear,x cosβ+Frear,y sinβ

m
Tfront−rfrontFfront,x

Ifront,red
Trear−rrearFrear,x

Irear,red


. (4.8)

4.2.1 Tires

The tire forces are modelled by the semi-empirical Pacejka Magic Formula [18]. Accord-

ing to the two-wheel vehicle model, the forces acting on the left and right front tires, as

well as the left and right rear tires, are summed up on their respective axes. The tire

model represents the tire forces as a nonlinear function

Fi,x|y = f(Fi,z, si,x, αi, µ) , (4.9)

with vertical tire force Fi,z, tire longitudinal slip si,x, tire side slip angle αi and friction

potential of contact between tire and road µ. Subscript i = {front, rear} indicates front

tire and rear tire, respectively. Both si,x and αi are derived from kinematic relations

between tire and road, illustrated in Appendix A.1.
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4.3 Path

The objective of this section is to obtain a set of equations describing the location of

the vehicle. This is achieved by utilising a curvilinear coordinate system, where the

vehicle’s position and orientation is determined relatively to the reference trajectory.

The coordinate system includes an x-axis aligned with the tangent to the reference

trajectory, a y-axis pointing towards the vehicle’s COM, and a z-axis oriented upwards,

following the conventions of a Cartesian right-hand system.

In the plane, the position of a rigid body is specified by three independent coordinates.

The state vector describing this position

xP =
�
ss sn α

�T
(4.10)

comprises the arc length ss, the lateral distance sn and the angle from the tangent of

the trajectory to the vehicle’s longitudinal axis α . The coordinate system and xP are

illustrated in Figure 4.2.

Figure 4.2: Vehicle’s location and orientation relative to a given path.

Considering the right triangles M02P2 and M01P1, the dynamics of ss and sn can be

expressed as

ṡs = v
cos(α+ β)

1− snκ
, (4.11a)

ṡn = v sin(α+ β) , (4.11b)
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with curvature κ as the inverse of radius R. The difference between the vehicle’s yaw

rate ψ̇ and the rotation of the coordinate system ω2 =
ṡs
R yields the dynamics of α

α̇ = ψ̇ − vκ cos(α+ β)

1− snκ
. (4.11c)

4.4 Driver

Most powerslide controllers described in literature are primarily designed for autonomous

drifting. However, in this thesis, it is essential to consider the presence of a human driver

in the vehicle. This consideration is crucial because the controller, referred to as the

agent, responsible for stabilising the vehicle, must account for the behaviour of a human

driver. In [3], the design process of the driver model is discussed. The controller derived

from this model consists of a feedforward (ff) component and a feedback (fb) component,

with their corresponding contributions δff and δfb to the steering angle δ = δff + δfb of

the vehicle.

4.4.1 Feedforward Controller

The feedforward controller maps the vehicle side slip angle β to the feedforward portion

of the steering angle δff. The signal passes through an additional first-order transfer

function G(s) = 1/(1+Ts), with time constant T . Consequently, an extra state variable,

denoted as xff, is included to represent these controller dynamics within the equations

describing the state space model

ẋff = axff + b(β +∆ff) , (4.12a)

δff = cxff . (4.12b)

In (4.12), the term ∆ff represents a small constant used for mapping the vehicle side slip

angle β to the feedforward steering angle δff. The feedforward controller’s objective is

to ensure that the front wheel remains roughly parallel to the target trajectory of the

vehicle. The constants a, b and c are selected to match the behaviour of the chosen

transfer function.

4.4.2 Feedback Controller

The feedback component of the driver controller, which is implemented as a real Propor-

tional Derivative (PD) controller with dead time, considers the vehicle’s lateral deviation
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from the target trajectory. However, instead of directly accessing the actual lateral dis-

tance sn, the control error is derived from the modified lateral distance s̃n. From the

driver’s perspective, this modified lateral distance s̃n is determined by visually projecting

ahead along the vehicle’s longitudinal axis for a given look-ahead time tlook resulting in a

look-ahead distance xlook = vtlook. By subtracting the steady-state lateral distance s̃n,0

from this projected distance, the driver obtains a measure of the current lateral position

relative to the desired path. These considerations are summarised in Figure 4.3.

Figure 4.3: Driver’s look ahead along the vehicle’s longitudinal axis.

Applying the cosine theorem to triangles 01P̃M and 01P0M in the left and right halves

of Figure 4.3, respectively, leads to the lateral distances

s̃n = R−
�

(R− sn)2 + x2look − 2xlook(R− sn) cos
�π
2
− α

�
, (4.13a)

s̃n,0 = R−
�
R2 + x2look − 2Rxlook cos

�π
2
+ β

�
. (4.13b)

28



4 Modelling

The difference between (4.13a) and (4.13b), denoted as efb = s̃n − s̃n,0, represents the

control error that serves as input to the real PD controller. The feedback controller’s

transfer function is given by

G(s) = KP
1 + TV s

1 + TNs
e−τs , (4.14)

where KP represents the proportional gain, TV and TN are the time constants, and τ is

the dead time. This transfer function characterises the dynamics of the PD controller

used in the feedback component of the driver controller. Transfer function (4.14) can

be transformed into a state space representation by introducing the state variable xfb.

Omitting the dead time component, the state space equations follow

ẋfb =
efb − xfb

TN
, (4.15a)

δfb = KP [xfb +
TV

TN
(efb − xfb)] . (4.15b)

The overall driver state can be summarised to

xD =
�
xff xfb

�T
. (4.16)
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This chapter introduces OpenAI Gym [21], an open-source Python library that serves

as a framework for RL. This library provides a standardised interface for the interaction

between agents and environments and includes a range of pre-built environments that

developers can use to test and benchmark their RL algorithms. Additionally, it facilitates

the creation of custom environments, where RL algorithms can be trained on, as done

in this work. The model described in Chapter 4 is implemented as an Env, a high-level

Python class representing the environment within the RL theory. The DRL algorithm

PPO, covered in Chapter 3, is used to solve the environment, specifically the PPO

implementation of SB3 [15].

5.1 Gym Env Overview

Each environment model implemented as a Gym environment inherits from the abstract

base class for RL environments in the OpenAI Gym library. A Gym environment includes

the methods shown in Figure 5.1, with the first three ( init , reset, step) being

mandatory.

The init method, also known as constructor, is a special method in Python classes

that is automatically called when a class object is created, like env = CustomEnv(...).

This method defines the environment parameters, observation space and action space.

At the beginning of each episode, the reset method is called to reset the environment

to an initial state. The first observation of the episode is then returned to the agent.

The agent and the environment interact through the step method. When the agent

sends an action, the environment transitions to a new state. In return, the environment

provides feedback to the agent, including a new set of observations, the reward and the

information if the episode has ended. The optional render method creates a graphical

visualisation of the environment transitions. The typical use case is the evaluation of

a trained policy. To save computational resources, this method should not be called

during training. The optional close method closes any open computational resource

that was used by the environment, like a rendering used for visualisation.
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class CustomEnv(gym.Env):

def __init__(self, parameters):

def reset(self):

return observation, info

def step(self, action):

return observation, reward, done, info

def render(self):

def close(self):

Figure 5.1: Structure of a Gym environment.

To modify an existing environment without changing the core implementation code,

wrappers offer a suitable solution. To wrap an environment, it must be instantiated

first. Together with possible parameters, this environment is passed to the wrapper’s

constructor wrapped_env = Wrapper(env, parameters). Section 5.3 introduces the

utilised wrappers for the powerslide environment discussed in Section 5.2.

5.2 PowerslideEnv

The implemented structure of the PowerslideEnv is visualised in Figure 5.2. To en-

sure the readability of the code, the model’s individual parts, discussed in Chapter 4,

pose an own class. These classes are instantiated in the init method of the main

class, with the relevant parameters passed to their constructors, as shown by the dashed

lines in Figure 5.2. During environment transitions, represented by the step method,

these classes interact with the main class, as illustrated by the solid lines in Figure 5.2.

In Driver, the lateral deviation (4.13) and the steering angle (4.15) are calculated.

Class Tire Forces calculates the input variables (A.1)-(A.6) for the Pacejka Magic For-

mula [18] (4.9), which is implemented in Pacejka Tire.
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Figure 5.2: Implementation structure of the PowerslideEnv class.

5.2.1 init - Method

This function is automatically called when an object is created from the PowerslideEnv

class. It takes the following arguments:

def __init__(self, start_mode, track, beta_target, render_mode):

The start_mode argument specifies whether the vehicle starts in the regular cornering

mode or powerslide mode at the start of an episode. With the argument track the range

of possible track conditions is determined, including the road radius R and the friction

potential µ. The argument beta_target sets the range of possible target side slip angles

of the vehicle. The Boolean render_mode argument indicates whether rendering is on

or off.

In the PowerslideEnv constructor, all parameters of vehicle, tire, driver are set, and

the simulation settings are initialised. The ODE solver’s step size ∆tsolver = 0.001 s

ensures accurate numerical integration while the controller’s step size ∆tcontroller = 0.01 s,

which corresponds to the step method, aligns with the electronic control unit (ECU)
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sampling rate on the real-world test vehicle. A single call to the stepmethod corresponds

to ten calls of the ODE solver.

Further, the set of valid actions and observations is defined. In Gym, these mathemat-

ical sets are referred to as spaces and every Gym environment must have the attributes

action_space and observation_space. The Box space is used for continuous actions

and observations. This space does not only specify the dimensions of actions and obser-

vations, but also defines the lower and upper bounds for each individual element. The

action_space is determined based on the electric drive of the test vehicle. Considering

a maximum available drive torque of 3000Nm on the front axle and 4000Nm on the rear

axle, this space is defined as

low_acts = np.array([0, 0])

high_acts = np.array([3000, 4000])

self.action_space = spaces.Box(low=low_acts, high=high_acts) .

The lower limit of 0Nm indicates that the agent cannot apply any brake torques. The

observation_space, similar to the action_space, is selected based on the test vehicle,

specifically the sensors available in the vehicle. It consists of the state vector of the

vehicle (4.1), the steering angle δ and the vehicle side slip angle reference signal. The

values for the corresponding lower and upper bounds, given in Appendix A.2, are chosen

reasonably. Their numerical impact on the training is discussed in Section 5.3.

5.2.2 reset - Method

This method is called to bring the environment back to an initial state, typically after an

episode has ended. New tuples of path radius R, friction potential µ and target vehicle

side slip angle βtarget are set. For exploratory reasons, the initial speed is selected

randomly within a reasonable range and the other states are calculated referring to a

steady state of regular cornering or powersliding according to the start_mode argument.

This results in the environment’s initial state vector comprising vehicle states (4.1), path

states (4.10) and driver states (4.16)

x =
�
β ψ̇ v ωfront ωrear ss sn α xff xfb

�T
. (5.1)

The initial observation, which is returned to the agent, is a subset of (5.1) augmented

by the vehicle side slip angle reference

o =
�
β ψ̇ v ωfront ωrear δ βtarget βinter

�T
, (5.2)
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where βtarget denotes the steady-state powerslide vehicle side slip angle and βinter the

predefined curve of how to reach βtarget. Starting from the initial side slip angle β, βinter

describes a ramp function with a slope of −35 ◦/4 s terminating at βtarget. The slope’s

value is derived from expert knowledge.

5.2.3 step - Method

The step method represents the interaction between agent and environment. Accord-

ing to its policy, the agent sends an action, as reaction to the previous observation, to

the environment. The environment transitions to a next state consequently and pro-

vides feedback to the agent, consisting of the next observation, the immediate reward,

a termination signal and possible additional information:

def step(self, action):

return observation, reward, done, info .

The termination of the episode can be caused either when the vehicle leaves the track

or when its side slip angle is out of range.

• |sn| > sn,max: The vehicle deviates from the reference path by a distance greater

than sn,max.

• |β − βinter| > βdev,max: The vehicle side slip angle β deviates from the side slip

angle reference βinter by more than βdev,max.

If one of these conditions is met, the step method will return done=True. This early

termination of the episode prevents the agent from exploring areas of the state space

that would contribute irrelevant training data to the policy update process.

5.2.4 render - Method

This optional method helps evaluating a policy. Figure 5.3 shows a snapshot of the

render method. The current location and orientation of the vehicle according to the

path and the reference vehicle side slip angle can be observed.
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Figure 5.3: Screenshot of environment rendering. The lines in front of the vehicle indicate
its side slip angle tracking behaviour. Path tracking is symbolised by the line
behind the vehicle.

5.2.5 Powerslide-Reward

The shape of the reward function R, specifies the desired behaviour of the agent. The

vehicle should track the reference side slip angle while following a reference path. Thus

the reward function

R (β, sn) =

2�
i=1

wiRi = wslipRslip (β) + wpathRpath (sn) , wi ∈ [0, 1] (5.3)

is defined as a weighted sum of the reference vehicle side slip angle tracking and the

trajectory following reward Rslip and Rpath, respectively. Rslip is assigned a higher

weight, empirically wslip = 0.75. Reward terms Ri are defined as bell-shaped functions

Ri = exp
�−ci∆

2
i

�
, (5.4)

with shaping parameters ci, vehicle side slip angle tracking error ∆slip = β − βinter and

path following error ∆path = sn. As illustrated in Figure 5.4, reward function R > 0 and

the gradient ∇R exists and is finite. High |∆i| result in vanishing gradients, however

these situations are avoided by terminating the episode as stated in 5.2.3. At every

time step t, the reward rt = R (βt, snt) is positive, encouraging the agent to prolong the

episode.
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Figure 5.4: Reward function R penalising vehicle side slip angle tracking error ∆slip and
path following error ∆path.

5.3 Wrappers

Wrappers provide a convenient way for modifying an existing environment implementa-

tion, without changing the codebase. Besides a Reward Wrapper customising the reward

function, the environment described in Section 5.2 is wrapped by the following two.

TimeLimit Wrapper

If none of the termination conditions described in Section 5.2.3 is ever fulfilled, the

episode would last forever. The TimeLimit wrapper truncates the episode when a maxi-

mum number of steps is reached. The reason for truncation and the important difference

to termination is discussed in Section 2.2.

NormaliseSpace Wrapper

For numerical reasons, it is recommended that the inputs and outputs of a DNN have sim-

ilar magnitudes, typically within the range [−1, 1]. In Section 5.2.1, the action_space

and observation_space define the numerical bounds of the individual actions and ob-

servations. According to these bounds, the NormaliseSpace wrapper scales the original

observation of the environment and rescales the network output.
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This chapter covers the relevant parts of the RL training procedure. It includes the

initialisation of environment and agent, as well as the monitoring of the training process.

Computational resources of the Vienna Scientific Cluster (VSC) accelerated the training

processes, and thus had a major impact on this work.

6.1 Training Setup

To optimise performance, training data is collected from 40 environments running in

parallel. Provided by SB3 [15], a wrapper called SubprocVecEnv distributes each en-

vironment into its own process. This results in a notable speedup, especially for com-

putationally complex environments like the PowerslideEnv, described in Section 5.2.

Practice guidelines from SB3 [15] mention, that the number of environments should not

exceed the number of logical computing cores, for performance reasons. Since the train-

ing is carried out on the VSC, sufficient cores are available. Applying the TimeLimit

wrapper, described in Section 5.3, the truncation limit of each environment is set to 4000

steps which corresponds to a maximum episode length of 40 s. This is long enough to

see if the agent is able to stabilise the powerslide.

Initialising the agent involves configuring it with a set of hyperparameters. A set that

performed successfully is given in Appendix A.3. Further, the network architecture of

the actor and critic network are defined. While the dimensions of the input and output

layer are determined by the observation space and action space, respectively, the number

and size of the hidden layers can be adjusted. A Multilayer Perceptron (MLP) with 3

hidden layers, each consisting of 16 neurons resulting in more than 700 parameters to

be tuned, has demonstrated good results, as shown in Chapter 7.

6.1.1 Callbacks

Callbacks are functions that are called on specific events during training. SB3 [15]

provides a set of useful callbacks and also allows the creation of custom callbacks. Two

callbacks utilised in this work are outlined in the following.
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EvalCallback

Included in the callback collection of SB3, this callback periodically evaluates the per-

formance of an agent in a separate evaluation environment. In contrast to the training

period, where actions are sampled stochastically from Gaussian distributions, the evalu-

ating period is characterised by actions that are selected deterministically, i.e., the mean

vales of the Gaussian distributions.

By aligning the evaluation frequency with the epoch length, the evaluation occurs

after each policy update. During evaluation, the average sum of rewards obtained under

the current policy is calculated. Whenever this result surpasses the previous highscore,

the policy undergoing evaluation is saved as the new best model.

TensorBoardCallback

TensorBoard is a visualisation toolkit provided by [17] that can monitor the training

progress in real-time. By default, training variables such as the losses of the policy

gradient and the value function, frames, i.e., number of observations per second, and

information about the rollout, like the mean episode length and the mean sum of rewards,

are displayed. The toolkit can also be used to monitor further variables by applying a

customisable callback. Some of the resulting graphs are discussed in Section 6.2.

6.2 Training Process

For documentation and traceability purposes, essential information of the current train-

ing and its associated environment is saved at the beginning of the training, e.g., the

hyperparameters, reward function and observation space. This helps to keep track of

the changes made between different training sessions. Once training has started, its

progress can be tracked by a TensorBoard session. To initiate this session, the following

command must be executed in the command line interface:

tensorboard --logdir_spec NAME1:PATH/TO/FOLDER, NAME2: ...

After execution, accessing the provided link below will open the TensorBoard session:

TensorBoard 2.14.0 at http://localhost:6006/ (Press CTRL+C to quit)

6.2.1 Training Metrics

In this section, training metrics from two different training sessions are compared and

discussed. The first training session, denoted as T1 and represented by the green colour,
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is successful, while the second, denoted as T2 and represented by the blue colour, does

not achieve satisfactory results. Both training sessions are initialised under identical

conditions, including the same reward function, hyperparameters, and other relevant

settings, with the sole exception being the difference in the number of hidden layers. In

training T1, an MLP with 3 hidden layers is trained, while in training T2, the number

of hidden layers is 2. The number of neurons per layer remains identical at 8 and the

Exponential Linear Unit (ELU) function serves as activation function. The figures in

this section illustrate some of the metrics provided by TensorBoard. These metrics are

plotted against the number of environment steps, where the distance between two points

along the abscissa corresponds to the size of the rollout buffer.

Training Success

The graphs in Figure 6.1 provide an overview of the training success. While training T1

shows improvement over time, the progress of training T2 is poor. The maximum episode

length in the powerslide environment is constrained by the truncation limit of 4000 steps.

With the weightings wi of the reward function (5.3) satisfying
�

wi = 1, the reward per

time step is limited to the range [0, 1]. Consequently, the average episode length is

an upper bound to the average return. The RL algorithm PPO demonstrates stable

learning behaviour, as the learning curve does not collapse, once high average returns

are received.

Figure 6.1: Average length and achieved cumulative reward per episode. The rollout
period with stochastic actions is shown on the left and the evaluation period
with deterministic actions on the right.

During evaluation, as shown in the right half of Figure 6.1, the agent typically performs

better compared to the rollout period, shown in the left half of the same figure. This

difference arises due to the fact that during the rollout period, the agent explores by
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randomly sampling actions from a Gaussian distribution, whereas during evaluation, it

exploits the best known actions, represented by the mean values of the same distribution.

For the successful training T1, the increase in the sum of rewards until environment step

2 × 107 is primarily due to the rising episode length. All evaluations from that step

onwards share the same episode length of 4000. The increasing performance, expressed

by the sum of rewards, from then on is the result of a better tracking performance

regarding the vehicle side slip angle β and the path sn according to the reward function

(5.3).

Agent and Environment

While Figure 6.1 gives a general overview of the training progress, it does not offer

insights into the agent’s behaviour or the corresponding responses of the environment.

To address this issue, additional information is provided by Figure 6.2 and Figure 6.3.

Importantly, these graphs present average values over an entire rollout, the temporal

behaviour cannot be visualised using TensorBoard. To illustrate an episode over time,

a separate evaluation, provided in Chapter 7, is necessary.

Figure 6.2 illustrates the mean drive torques of front axle (left) and rear axle (right).

The first values of the plots are located in a similar region. Caused by the initialisation of

the MLP’s parameters, the untrained MLP outputs action values close to 0. According

to the NormaliseSpace wrapper provided in Section 5.3, the action values around 0

are transformed to the mean values of the corresponding action space bounds given in

Section 5.2.1. Therefore, the initial values of Tfront and Trear are located in the proximity

of 1500Nm and 2000Nm, respectively. In the case of the successful training T1, the mean

values of Tfront and Trear decrease during the training process while those of training T2

remain at higher levels.

Figure 6.2: Average drive torques T∗ applied to front axle (left) and rear axle (right)
during the rollout period.
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According to the reward function (5.3), the goal is to track the reference vehicle side

slip angle, here βtarget = −35◦, while also keeping the lateral distance to the path sn

minimal. Figure 6.3 presents the corresponding mean values. While both trainings

initially show similar tracking performance due to similar agent behaviour, training T1

better fulfils the criteria than training T2 as the training progresses. Without looking

at the temporal behaviour during one episode, the agent’s behaviour in training T2 can

be interpreted as follows: The vehicle side slip angle is increased in absolute terms, as

shown in the left graph of Figure 6.3. However, compared to the successful training

T1, Figure 6.2 reveals that the applied drive torques are relatively high, which results

in an increased vehicle speed. At a higher speed, it is impossible to follow the path,

and the vehicle leaves the track to the outside. The right graph of Figure 6.3 illustrates

the vehicle’s average location. Every episode starts with the vehicle near to the middle

of the track |sn| < 0.25m. Negative values of sn correspond to mean vehicle position

outside the middle of the track.

Figure 6.3: Average vehicle side slip angle β (left) and location sn (right) during rollout
period.

Other Training Metrics

Apart from measuring the training success and monitoring the agent’s and environment’s

behaviour, it is important to consider additional metrics. The left graph in Figure 6.4

gives insights in how fast the training is running. It represents the average number of

observations the agent receives per second, averaged over an entire update step, which

consists of generating experience by interacting with the environment, updating MLP

parameters, and evaluating the current policy. The difference between training T1 and

training T2 arises due to the evaluation phase. As shown by the right graph of Figure

6.1, an episode of training T1 lasts longer than one of training T2, leading to in increase

of the overall policy update tiem of training T1.
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In SL, a decreasing loss indicates a successful training, as the loss typically corresponds

to the MSE of the actual DNN output compared to the target output. The loss function

is defined on a fixed data distribution, which is independent of the parameters to be

optimised. This is different toRL, where data is generated by the most recent policy.

Therefore, there is no intuition behind the loss function when dealing with RL, as the

loss does not measure the performance. The right graph in Figure 6.4 shows the result

of PPO’s objective function (3.28).

Figure 6.4: Average number of observations per second that the agent receives during
rollout period (left) and result of the objective function (right).
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In this chapter, the evaluation of a successfully trained agent is discussed. For this

purpose, the trained policy network is tested in different scenarios, including variations

of the target vehicle side slip angle and initial conditions in Section 7.1, as well as driver

and friction potential variations in Section 7.2. According to the evaluation callback

described in Section 6.1.1, the best policy during training is taken to perform these

tasks. Appendix A.4 provides an illustration of the policy in the closed control loop.

The agent was trained on a circular path with radius R = 60m and friction potential

µ = 0.21. Any plot in this chapter demonstrates the performance of the same policy

network, which is an MLP consisting of 3 hidden layers, each with 16 neurons per layer

and ELU activation function. An illustration of the MLP is given in Appendix A.5,

and the utilised set of training hyperparameters is provided in Appendix A.3. In the

remainder of this chapter, side slip angle refers to the vehicle side slip angle.

7.1 Target Side Slip Angle and Initial Condition Variation

To evaluate the policy performance, the control behaviour regarding two different target

side slip angles, each with two different initial speeds, is analysed. Table 7.1 summarises

these 4 scenarios. The target side slip angles stated there fall outside the range of

target side slip angles during training, where they were constrained to [−42 ◦,−28 ◦].
The results are plotted in Figure 7.1. Regardless of the initial conditions, the vehicle

settles at the same steady state for a target side slip angle βtarget = −45 ◦, represented
by scenarios S1 and S2. Except for scenario S4, the policy manages to stabilise the

powerslide at the desired side slip angle βtarget.

βtarget = −45 ◦ βtarget = −25 ◦

v0 = 20 km/h Scenario S1 Scenario S3

v0 = 34 km/h Scenario S2 Scenario S4

Table 7.1: Summary of 4 different evaluation scenarios. The scenarios differ in terms of
the target side slip angle βtarget and the initial speed v0.
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Figure 7.1: Evaluation scenarios comprising different target side slip angles βtarget and
initial conditions v0. The plots include side slip angle β together with the
reference side slip angle βref, drive torques T∗ as actions applied by the agent,
speed v, lateral distance to the path sn and steering angle δ. Scenarios S1
and S2 with βtarget = 45 ◦ are plotted on the left half, while scenarios S3
and S4 with βtarget = 25 ◦ are plotted on the right half.
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Figure 7.2 illustrates the handling diagram, visualising the side slip angle β and nor-

mal acceleration an. Comparing the two steady states, illustrated by the crosses with

scenarios S1 and S2 converging at β = −45 ◦ and scenario S3 at β = −25 ◦, respectively,
reveals, that the latter has a lower normal acceleration an, and therefore a lower vehicle

speed, which is also evident in the plots in the third row of Figure 7.1. The starting point

of scenario S4 and its target end point, which is also the end point of scenario S3, are

characterised by almost identical normal accelerations. Since the agent can only apply

positive drive torques to the axles to increase the side slip angle in absolute terms, the

two objectives expressed by the reward function (5.3) are conflicting. It is not possible to

track the reference side slip angle while also following the path appropriately. Further,

the agent has no access to the current lateral distance to the path sn, only indirectly

by the driver’s reaction on the steering wheel. As a result, the vehicle gets too fast and

consequently leaves the track to the outside.

The plotted steady states, illustrated by the black lines in Figure 7.2, correspond to

a fixed drive torque distribution γ = (Trear)/(Tfront + Trear) = 0.81. The drive torque

distributions at the steady states of scenarios S1 and S2 at β = −45 ◦ and scenario S3

at β = −25 ◦, respectively, are slightly different. For this reason, the end points in the

plot deviate a little from the dash-dotted line.

Figure 7.2: Handling diagram illustrating side slip angle β and normal acceleration an.
The plotted steady states of powerslide and regular cornvering correspond
to a stationary cornering with drive torque distribution γ = 0.81, radius
R = 60m and friction potential µ = 0.21. Scenarios S1 and S3, as well as S2
and S4 share identical initial conditions.
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7.2 Driver and Friction Potential Variation

While Section 7.1 examines the performance of the trained policy network, this section

discusses its limitations. During training, data was collected under consistent track con-

ditions, with radius R = 60m, friction potential µ = 0.21 and a single driver model.

The performance of the policy is now evaluated using different driver model parameters

and different friction potentials µ, and compared to the standard setting the agent en-

countered during training. Table 7.2 and Table 7.3 summarise these different situations.

Compared to the standard driver D0 utilised during training, Driver D1 is characterised

by an increase steering bandwidth, while driver D2’s steering bandwidth is reduced.

Figure 7.3 illustrates the control behaviour for driver variations and friction potential

variations. In any non-standard case (D1, D2, F1, F2) the policy fails to stabilise the

vehicle at a steady powerslide state.

standard driver D0

increased steering bandwidth D1

reduced steering bandwidth D2

Table 7.2: Summary of driver varia-
tions.

µ = 0.21 F0

µ = 0.19 F1

µ = 0.25 F2

Table 7.3: Summary of friction poten-
tial µ variations.

By steering aggressively, driver D1 tries to minimise the lateral distance to the path sn.

This leads to oscillations of the side slip angle β that the policy can not account for.

The evaluation stops as the side slip angle β gets out of bounds. On the other hand,

driver D2 reacts too slow to follow the path. The policy manages to track the side slip

angle reference, but the lateral distance to the path sn becomes too large.

The evaluation results of friction potential variations are plotted on the right half

of Figure 7.3. A higher friction potential µ (F2) leads to a slower changing side slip

angle β. Also the lateral distance to the path sn remains smaller in the first 10 seconds.

However, as the deviation of the the side slip angle β compared to the reference gets

too high, the policy reacts by applying drive torques to the rear axle. This results also

in a higher speed and the vehicle consequently leaves the track to the outside. A lower

friction potential (F1) on the other hand, leads to a slightly faster changing side slip

angle β compared to the standard setting (F0). Due to lower lateral forces, the vehicle

also leaves the track to the outside.
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7 Results

Figure 7.3: Analysis of robustness through variations of the driver behaviour and friction
potential µ. The plots include side slip angle β together with the reference
side slip angle βref, drive torques T∗ as actions applied by the agent, speed v,
lateral distance to the path sn and steering angle δ. The left half shows
different driver behaviours (D1 increased, D2 slower dynamics than D0). The
right half compares different friction potentials F1 (µ = 0.19), F2 (µ = 0.25)
and F0 (original µ = 0.21).
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8 Summary and Conclusion

In this work, a powerslide controller for an AWD BEV, with individually driven front

and rear axles and a human driver in closed-loop using RL, is designed. While the driver

follows a given circular path solely by steering, the ADAS stabilises the powerslide by

controlling the absolute drive torque and the drive torque distribution between front and

rear axle. The controller, represented by a DNN, is trained in a simulated environment,

where a two-wheel vehicle model and a driver model, approximating human driver be-

haviour, are considered. The control strategy is based on the reward function, similar

to a cost function in optimal control. To save computational time, the training process

took place on the VSC.

The results of this work indicate that the ADAS is able to stabilise the vehicle’s

powerslide motion in the presence of a human driver. Unlike traditional control concepts

that rely on (the linearisation around) an operating point, the data-driven approach

does not require any prior knowledge of the system dynamics in principal. It is noted,

that the steady-states of regular cornering are used for the selection of the vehicle’s

initial conditions, as randomly selecting vehicle states independently of each other would

provide artificial non-physical driving situations. Another key difference to traditional

controllers concerns the choice of controller inputs. Any measurement that may have an

impact on the control strategy can be passed as an observation to the DNN. The RL

algorithm will detect the relevant information on its own.

Varying target vehicle side slip angles and changing initial conditions during training

increase the controller’s generalisation capabilities. The trained controller is able to

stabilise the vehicle’s powerslide at side slip angles that were not targeted during training.

Despite these promising results, there is still room for improvement. While generalisation

can be observed regarding the target vehicle side slip angles, the controller’s adaption

to changing road conditions and driver types is limited.

This work also covers the theoretical background and mathematical fundamentals of a

popular DRL algorithm. However, there is no guarantee that the practical application of

such an algorithm to a specific problem will succeed. Many aspects can affect the training

success, most notably the reward function as part of the central optimisation problem.
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8 Summary and Conclusion

While the set of hyperparameters clearly has an impact on training, also less apparent

settings, like the observation and action scaling or the maximum number of time steps

of an episode, can result in an unsatisfactory control behaviour. Identifying the effects

of varying training setup combinations is cumbersome, as even identical settings lead to

different controllers due to the stochastic nature of the training process. Similar to the

agent’s trial-end-error strategy of finding the most effective actions, the ML engineer’s

task is to determine the best possible training settings.

8.1 Outlook

A diversification of the training in terms of driver and road conditions may lead to a

better generalising controller and increase robustness. This is particularly important as

the next step is to evaluate the ADAS on a real vehicle. Transferring the performance

of a controller trained in a simulated environment to a real-world environment may

face challenges. The DNN was trained on synthetically generated data and has never

encountered real noisy measurements.

Another critical aspect of a real car is potential dead time in the control loop. Just

adding dead time to the training process is not assumed to work, as it breaks the assump-

tion underlying the MDP. This issue could probably be tackled by more sophisticated

recurrent neural network (RNN) architectures, e.g., Long Short Term Memory (LSTM)

networks. With their ability to memorise patterns from long sequences of data, LSTM

networks can potentially learn to compensate for dead time in the control loop.

Further work could also focus on stabilising the powerslide not only on circular paths,

but also on arbitrary trajectories. This would include a controlled transition from the

powerslide back to regular driving.

Incorporating real-world measurements into the training process could further the

enhance controller performance. While a real-world RL system poses potential safety

issues due to deploying untrained or partially trained and therefore potentially unsafe

DNNs to a vehicle, offline RL could be the way to go.
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A Appendix

A.1 Tire Slip Kinematics

The tire longitudinal slip

si,x = −vi,x − ωiri
vi,x

(A.1)

is defined as the negative wheel slip velocity of the contact point vi,x−ωiri divided by the

longitudinal speed component of the wheel centre vi,x. The tire side slip angle, denoted

as αi, is defined as angle from the tire plane to the velocity vector of the wheel centre.

Subscript i = {front, rear} indicates front tire and rear tire, respectively. The derivation

of si,x and αi is illustrated in Figure A.1.

Trigonometric identities of the right triangles RDP and DFP lead to

tan(αrear) =
lrear − v/ψ̇ sinβ

v/ψ̇ cosβ
=

lrearψ̇

v cosβ
− tanβ , (A.2)

tanλ =
lfront + v/ψ̇ sinβ

v/ψ̇ cosβ
=

lfrontψ̇

v cosβ
+ tanβ , (A.3)

where λ is an auxiliary angle. Since the vehicle body is rigid, the components of the

velocities v and vi, pointing in the direction of the vehicle’s longitudinal axis, must be

equal

v cosβ = vfront cosλ = vrear cosαrear , (A.4)

with vi representing the speed of the front axle and rear axle, respectively. These axle

speeds are obtained by combining (A.3), (A.4) and vi,x = vi cosαi

vfront,x = v(cosβ cos δ + (sinβ + lfrontψ̇/v) sin δ) , (A.5a)

vrear,x = v cosβ . (A.5b)

The results from (A.5) substituted into (A.1) yield the required tire longitudinal slip.
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Figure A.1: Tire slip kinematics during regular cornering.

With αfront = δ − λ, (A.2) and (A.3), the tire side slip angles follow

αfront = δ − arctan

�
lfrontψ̇

v cosβ
+ tanβ

�
, (A.6a)

αrear = − arctan

�
− lrearψ̇

v cosβ
+ tanβ

�
. (A.6b)

The results of the tire kinematics (A.1), (A.5) and (A.6) serve as input to the tire force

model (4.9).
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A.2 Observation Space of PowerslideEnv

Description Symbol Lower Bound Upper Bound Unit

Vehicle side slip angle β −π/2 π/2 rad

Yaw rate ψ̇ −π/3 π/3 rad/s

Speed of COM v 5 15 m/s

Angular speed of front wheel ωfront 10 60 rad/s

Angular speed of rear wheel ωrear 10 60 rad/s

Steering angle δ −0.9 0.9 rad

Steady-state vehicle side slip angle βtarget −π/2 π/2 rad

Reference side slip angle βinter −π/2 π/2 rad

Table A.1: Numeric values for the bounds of the observation space.

A.3 PPO Hyperparameter Set

Hyperparameter Value

learning rate 2× 10−4

n steps 10240

batch size 5120

n epochs 5

gamma 0.9999

gamma lambda 0.98

clip range 0.2

clip range vf None

normalize advantage True

ent coef 2× 10−6

vf coef 0.75

max grad norm 0.6

use sde True

sde sample freq 128

target kl None

Table A.2: Example hyperparameter setting of SB3’s PPO. Their description can be
found on https://stable-baselines3.readthedocs.io/en/master/modules/ppo.
html#parameters.
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A.4 Deep Neural Network in Closed Control Loop

After training an agent in an RL setting, the DNN representing the policy can be used

as a standalone controller. As the DNN parameters do not change anymore, the reward,

as central part of the training process, is now disregarded, and also the value function

is not required anymore. This phase in development, where capabilities learned during

training are put to work, is called inference. Figure A.2 visualises the closed control

loop. Compared to standard control loops, the control error is not explicitly calculated,

but intrinsically captured by the DNN.

Figure A.2: DNN in closed control loop after training. The vehicle state and the reference
vehicle side slip angle serve as input to the controller.

A.5 Multilayer Perceptron and Activation Function

This section illustrates the network architecture of the DNN evaluated in Chapter 7, an

MLP consisting of 3 hidden layers each with 16 neurons per layer and ELU activation

function. The size of the input layer and output layer are determined by the size of

the observations space and action space, respectively. Figure A.3 visualises the working

principle of the MLP.

Figure A.3: MLP consisting of 3 hidden layers each with 16 neurons per layer. For
numerical reasons, the architecture comprises scaling of observations and
rescaling of actions.
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Observations are scaled before entering the MLP and the network outputs are rescaled

accordingly. Highlighted by the orange asterisk in Figure A.3, this single neuron is

exemplarily detailed in Figure A.4. The calculus in a neuron is represented by linear

operations followed by a nonlinear activation function. Summarising the neurons of one

layer simplifies calculus. The forward pass through one layer can be reduced to a matrix-

vector multiplication and a vector-vector summation. The ELU activation function

f(x) =

x if x ≥ 0

α(exp(x)− 1) if x < 0
(A.7)

adds nonlinearity to the computation, required to approximate arbitrary functions. The

hyperparameter α affects the saturation behaviour and is typically set to a small positive

value. For this work the default value of α = 1 was used.

Figure A.4: Operating principle of a single neuron inside an MLP. The outputs of the
previous layer’s neurons are multiplied with individual weightings wi and
summed up including a bias b. The result is passed through the ELU acti-
vation function before being forwarded to the neurons of the next layer.
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