
Towards Improving Monte Carlo Tree
Search for Games with Imperfect

Information
DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Lukas Grassauer, BSc.
Registration Number 01526001

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Ing. Mag.rer.soc.oec. Dr.rer.soc.oec. Horst Eidenberger

Vienna, February 23, 2024
Lukas Grassauer Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Lukas Grassauer, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. Februar 2024
Lukas Grassauer

iii

Acknowledgements

First and foremost, I want to thank my thesis advisor, Professor Horst Eidenberger, for
the invaluable guidance, patience, and for the ongoing encouragement. His advice was
pivotal in determining the course and execution of this work.

Furthermore, I’d like to express my appreciation to my parents, Dr. Andreas Grassauer,
and Dr. Daniela Dörfler, for their continued support, and for believing in me.

My gratitude goes out to all those who listened to my ideas. You shaped this thesis, and
your support has been invaluable.

v

Kurzfassung

Die Monte-Carlo-Baumsuche (mcts, engl. Monte Carlo tree search) ist ein weit verbrei-
teter Suchalgorithmus für Spiele. Bei Spielen mit perfekter Information wurden bereits
beeindruckende Ergebnisse erzielt, und der Algorithmus hat sich als bevorzugte Methode
im anspruchsvolleren Bereich des allgemeinen Spielens herauskristallisiert. Beim allgemei-
nen Spielen müssen Agenten Spiele meistern, ohne deren Regeln vorher zu kennen. Viele
Verbesserungen und Optimierungen für mcts sind jedoch bei Spielen mit imperfekter
(oder versteckter) Information oder beim allgemeinen Spielen nicht verfügbar. Daher
waren Neuentwicklungen für mcts mit dem Fokus auf diese Beschränkungen notwen-
dig. Um die Spielstärke zu verbessern, schlug der Autor dieser Arbeit den neuartigen
Ansatz vor, die Expansionstiefe des Suchbaums zu begrenzen. Der Ansatz erforderte die
Identifizierung einer grundlegenden mcts-Modifikation und ein Mittel zur Konfiguration
der maximalen Expansionstiefe. Anschließend wurde der Ansatz in einem Experiment
quantitativ bewertet. Dazu musste eine Engine implementiert werden, die in der La-
ge ist, allgemeine Spielpartien zu orchestrieren, Spiele mit imperfekter Information zu
interpretieren und eine Reihe von Agenten zu entwickeln. In dieser Arbeit werden die
wichtigsten Details der Engine- und Agentenimplementierungen vorgestellt. Sie präsen-
tiert eine Analyse geeigneter mcts-Modifikationen. Außerdem wird die Verwendung von
Merkmalsextraktion als Mittel zur Konfiguration der maximalen Expansionstiefe unter-
sucht. Abschließend wird über die Ergebnisse zweier Turniere berichtet, die durchgeführt
wurden, um die Veränderung der Spielstärke bei Begrenzung der Expansionstiefe zu be-
werten.

Für die betrachteten Fälle war die Multi-Beobachter-Informationsset mcts (mo-ismcts,
engl. multi observer-information set mcts) die bevorzugte Modifikation. Die Merk-
malsextraktion war hilfreich, aber nicht ausreichend, um den Agenten mit begrenzter
Expansionstiefe zu konfigurieren. Bei diesem Agenten war im Vergleich zum Basis-
agenten ein deutlicher Unterschied in der Spielstärke. Überraschenderweise erreichte
er in einer Variante von Corridor eine um 6, 67% höhere Gewinnrate (10 mehr, von
150 Spielen) im Vergleich zum Basisagenten. Infolgedessen sollte mo-ismcts mit einer
begrenzten Expansionstiefe für Spiele mit imperfekter Information in Betracht gezogen
werden. Es bleibt unklar, ob der Vorteil nur für ausgewählte Spiele gilt oder ob er auf
eine breitere Klasse von Spielen anwendbar ist. Zukünftige Arbeiten werden sich auf die
Klärung dieser Frage und die Weiterentwicklung der Engine konzentrieren.

vii

Abstract

Monte Carlo tree search (mcts) is a commonly used search algorithm for games. Im-
pressive results have been achieved in perfect information games, and the algorithm
emerged as the preferred method within the more challenging field of general game play-
ing, where agents are required to play games without knowing their rules beforehand.
However, many improvements and optimizations for mcts are not available in imperfect
(or hidden) information games or in general game playing. Therefore, new developments
for mcts with a focus on these constraints were necessary. To improve playing strength,
the author of this thesis proposed the novel approach of limiting the search tree’s expan-
sion depth. The approach required to identify a baseline mcts modification and a means
to configure the maximum expansion depth. Subsequently, the approach was quantita-
tively evaluated with an experiment. This required implementing an engine capable of
orchestrating general game playing matches, interpreting imperfect information games,
and a set of agents. This thesis highlights the key details of the engine’s and agent’s
implementations. It presents analysis of suitable mcts modifications. Additionally, it
examines the use of feature extraction as a means of configuring the maximum expan-
sion depth. Finally, the thesis reports on the results of two tournaments, conducted to
evaluate the change in playing strength when limiting the expansion depth.

For the considered cases, multi observer-information set mcts (mo-ismcts) was the
preferred modification. Feature extraction was helpful, but not sufficient for configuring
the agent using limited expansion depth. This agent had a distinct playing strength
compared to the baseline agent. Surprisingly, in the game of the Corridor family, it
achieved a 6.67% higher win rate (10 more, out of 150 matches) compared to the baseline.
As a consequence, mo-ismcts with a limited expansion depth should be considered
for imperfect information games. It remains unclear whether the advantage is only
applicable to the chosen games, or if it applies to a wider class of games. Future efforts
will be focused on addressing this question and further developing the engine.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Research Object . 4
1.4 Outline . 5

2 Background and Literature Review 7
2.1 General Game Playing . 7
2.2 Games as Trees . 19
2.3 Monte Carlo Tree Search . 23

3 Methods 31
3.1 Scientific Approach . 31
3.2 Comparison of Existing Modifications 33
3.3 Feature Extraction for Setting the UCT-Border 34
3.4 Experiment Setup . 35

4 Implementation 39
4.1 Engine . 39
4.2 Tree Data Structure . 44
4.3 Agents . 47

5 Results 53
5.1 Effectiveness of Existing Monte Carlo Tree Search Modifications . . . 53
5.2 Characteristic Features of Games . 59
5.3 Experiment Results . 63

6 Discussion 69

xi

6.1 Monte Carlo Tree Search Extensions 69
6.2 Feature Extraction . 70
6.3 Limited Expansion Depth Agent . 71

7 Conclusion 75
7.1 Summary . 75
7.2 Future Work . 76
7.3 Contributions . 77

List of Figures 79

List of Tables 81

List of Code Listings 83

Acronyms 85

Bibliography 87

CHAPTER 1
Introduction

Games encapsulate complex decision-making processes. They are finite systems with
well-defined metrics that have a long tradition in benchmarking agents. The advance-
ments in the broader category of artificial intelligence (AI) resonate in the field of agent
game playing, which have produced impressive results. Through the improvements made
in hardware and development of new methods, games which deemed to be impossible to
tackle, became accessible. Despite this, the class of games with imperfect (viz. hidden)
information in the context of general game playing (GGP) remain insufficiently explored.
This thesis aims to investigate the use of Monte Carlo tree search (MCTS) for playing
games of this class. Thereby, providing insights in a novel modification of limiting the
expansion depth, and its viability for imperfect information games. The ensuing sec-
tions will outline the motivation for the topic, define the problem statement, detail the
objectives of this research and present the structure of this thesis.

1.1 Motivation
There is a fascination in letting agents play games that reaches back to the dawn of the
computer itself. Alan Turing conceptualized a Chess engine before programming in a
modern sense was possible (see [29]) and a few decades later the topic reached popular
culture, after IBM’s Deep-Blue beat the then-reigning Chess World Champion Garry
Kasparov. Recently, interest peaked again after Lee Sedol lost to DeepMind’s AlphaGo
in the ancient game of Go, an achievement long thought to be impossible. While playing
a specific game is certainly impressive, the field of GGP forces agents to be more adaptive,
as they have to be able to play any game. The leading method for this task is MCTS,
which has received significant attention after the result of the match between Lee Sedol
and AlphaGo.

Games serve as the ideal proving ground for algorithms. They are approachable for a
broad audience, yet rich complexity arises from them. They allow systematic exploration

1

1. Introduction

and evaluation of search methods, pattern recognition and strategy learning. They have
a clear metric of success— win, tie or loss, which is often lacking in other fields.

There is a tight conceptual link between game playing and AI-systems. Such systems
act upon input received from their environment. Games provide low-stakes playground
and benchmark environments. They challenge agents in planning, foresight and decision-
making, features commonly associated with intelligence.

GGP confronts the agent with unknown environments. It requires agents to play games
without human intervention, and without knowing the rules beforehand. Real-world
problems require agents to adapt to the rules of the situation, while staying performant
enough to be able to deal with new constraints. Specialization has to be done ad-hoc or
not at all.

A fascinating class of games are those with imperfect information. These include ele-
ments of hidden information. Think of examples like Poker, where the opponent’s hands
are not known to a player, but also games like Kriegspiel (sometimes called Phantom
Chess), where the moves are not communicated to the opponent. In contrast, are perfect
information games, for example Go, where the whole state is known, and each move is
clearly visible for all players.

Imperfect information games are analogous to problems where not every detail is avail-
able to the agent. Think of the field of medical diagnosis, where critical data about the
patient might be missing. Another example would be financial forecasting, where it is
sometimes in the best interest for some agents to hide their moves to gain an advantage.
Or consider the discipline of autonomous driving, in which many uncertainties arise
naturally— other vehicles and the weather conditions obscure the view of the agent.

The synthesis of playing imperfect information games in a GGP context is a true challenge
for agents. It pushes the methods available today to their limits and serves as a proper
benchmark for performance. It allows measuring if an algorithm is ready for the messy
incomplete data encountered in the real world and can handle unseen as well as unknown
rules.

In the long history of search methods, MCTS has emerged as the most promising method
for both GGP and imperfect information games. It uses a sampling method to replace
a heuristic function, which is often required for other methods to perform well enough.
Additionally, because of the sampling nature of the algorithm, dealing with hidden in-
formation is conceptually only a short leap.

As the hardware improved, results grew became more notable and new avenues and
methods opened up, such as machine learning (ML). As a result, agents using MCTS with
neural nets guiding the search, quickly became the state-of-the-art for solving specific
games, where a heuristic developed with expert-knowledge used to be the best available
method. Many suggested methods remain unexplored and to be evaluated to this day.

Subsequently, the results MCTS produced were impressive. AlphaGo beat Lee Sedol 4:1
using MCTS with two deep neural networks (see Silver et al. [25]). The networks were

2

1.2. Problem Statement

trained by reinforcement learning using self-play. The approach was further demon-
strated to be viable for the games Chess and Shogi in Silver et al. [24]. In principle,
the technique could be used for any game, given that the rules are known beforehand
and sufficient resources are available. Note that these conditions are not met in a GGP
context.

1.2 Problem Statement
In the discipline of GGP, games with imperfect information present a unique challenge.
The combinatorial explosion due to the limited view and the partially observable moves,
necessitates algorithms capable of effectively handling uncertainty, while staying appli-
cable for all and any game. MCTS is a powerful tool for perfect information contexts, and
impressive results have been produced using it as the primary method for game playing.
Without the correct modifications, however, it is not effective when applied to games
with imperfect information. Furthermore, many optimizations and approaches available
normally, are no longer available in a GGP context.

The lack of knowledge in imperfect information games introduces a new quality of com-
plexity. Think of the game Battleship. Battleship is a two-player game where each
player has an arrangement of ships on a grid that are hidden from the opponent. In
turn, each player shoots the enemies’ grid and the other player announces if it was a
hit or a miss. Consider a variant of this game where only one of the player’s ships were
hidden. Certainly, this player would have a significant advantage, as the other player
would be forced to guess, while they themselves could pick off the opponent’s ships
without ever missing. The player with this advantage does not need to consider the
uncertainty. Agents are no longer solely responsible for devising their strategies but are
also required to consider the available data, the potential knowledge of their adversaries,
and the potential adaptation of new information upon its availability.

Prior work has focused on improving MCTS for perfect information contexts, and the
remaining research is divided between GGP and imperfect information games. There is
a significant gap in performance between games with imperfect information and perfect
information scenarios, where impressive results have been achieved. This is especially
apparent in the discipline of GGP, where game-specific knowledge cannot be used to
improve playing strength. However, many of the optimizations carry over and might be
used in the joint context of GGP and imperfect information games. It remains to be
revised and tested which of these optimizations are effective for the joint case.

When playing games with imperfect information, there is a significant increase in com-
plexity, because of the uncertainty about the game’s state. Predictions made about
the state of the game decrease in value as the distance from the current state increases.
The conditionals of the uncertainty compound. As the expansion depth of MCTS is un-
bounded, the procedure fails to deal with this efficiently. This is addressed as by a novel
modification, proposed by the author. This modification sets a limit to the maximum
expansion depth available to MCTS.

3

1. Introduction

A fundamental limitation of playing games without knowing the rules beforehand is
that aids like handcrafted heuristics are not available, or guiding the search with neural
networks trained by reinforcement learning is infeasible. Nonetheless, the literature
suggests different approaches for generating such improvements just-in-time, including
statically analyzing the ruleset and dynamically sampling the games. Both methods
allow extracting characteristic features of the game and can subsequently be used for ad-
hoc heuristics. This approach will also be refered to as feature extraction. Previous work
has not yet produced enough data to test if this approach is also viable for informing the
value of the limit of the expansion depth. By contributing quantitative and qualitative
evaluations, the author intents to firm the use of these approaches.

As GGP and MCTS have been a topic of discussion for a relatively long time, many
implementations exist. There is no agreed standard, and the tooling surrounding is
often outdated. Furthermore, the focus of these tools is more often than not on perfect
information games. Thus, there is no apt implementation of an engine capable of GGP
and imperfect information games. One of the contributions of this thesis is such an
artifact.

1.3 Research Object
The contribution of this thesis is fourfold. Firstly, it surveys the available modifications
for MCTS, while it provides reference implementations for the most important of those.
Secondly, it studies the viability of limiting the expansion depth by experiment. In this
experiment, GGP-agents played against each other using a custom implementation of an
engine ready for imperfect information games. The data resulting from the experiment
serves as the third contribution, while the engine used is the fourth and final contribution
of the thesis.

The available literature presents many modifications of MCTS for games with imperfect
information. Some of those modifications work better than others, and many share their
fundamentals. The author of this thesis aimed to examine the large body of work and
use qualitative analysis on two concrete examples to answer the question of which of the
modifications for MCTS are effective for playing imperfect information games in a GGP
context.

As MCTS is a general method, it can be configured to suite a specific problem. Similarly,
the proposed modification of limiting the maximum expansion depth, can be adapted by
changing where this cap actually is. During the quantitative evaluation of the validity
of this novel approach, the author used static and dynamic feature extraction on two
example games to inform the value of the limit. From this, a suggestion for a more
general method for arbitrary games was extracted. This answered the question of which
features can be extracted from descriptions of imperfect information games to construct
a heuristic to set the maximum expansion depth for the MCTS algorithm.

The metric of success – frequency of wins – is clearly defined in GGP, thus quantitative

4

1.4. Outline

evaluation is relatively accessible. Often, previous work uses running tournaments of
games as experiments to indicate how well a method does. To evaluate how a MCTS-
agent with limited expansion depth compares in benchmarks, the author conducted such
an experiment as a measure of quantitative evaluation. The results show that in special
cases, the approach appears to be viable.

Besides the data produced during the benchmark of the modification, the engine used
for the experiment serves as a workbench for research in playing games. It is writ-
ten in Python using contemporary software engineering principles. Together with the
implementation of agents with effective modifications of MCTS for playing games with
imperfect information and a GGP-orchestrator, it is a comprehensive work environment
for future experiments in this field.

1.4 Outline

This thesis is divided into seven chapters. Chapter 1 motivates the broader topic, states
the fields’ most recent problems, lists the research hypotheses and finally outlines the
thesis. Chapter 2 provides background and reviews the available literature. In chapter 3
a discussion of scientific method is followed by a detailed report of the experiment setup.
An overview of the engine’s and agent’s implementation is provided by chapter 4. The
results of the research can be found in chapter 5, and they are discussed in chapter 6.
Finally, a summary, outlook for future work, and most important contributions are
presented in chapter 7.

Chapter 2 will lay out the necessary theoretical background while summarizing the prior
art. Section 2.1 introduces the elementary principles and the protocol of GGP. Fur-
thermore, it highlights the difference between perfect and imperfect information games
from the context of GGP, and finally introducing the game description language (GDL).
In section 2.2 the necessary definitions and concepts for viewing perfect and imperfect
information games as trees, are introduced. These preliminaries are vital for section 2.3,
which reviews MCTS and the most important modifications for playing imperfect infor-
mation games found in literature.

The scientific methods and experiment setup used in this thesis are discussed in chapter 3.
At first, the overall scientific approach is reviewed in section 3.1, and afterward the
details for the qualitative and quantitative evaluations are laid out. Section 3.2 covers the
comparison of the existing MCTS modifications, while section 3.3 discusses the qualitative
approach for extracting features, that are used to set the maximum expansion depth.
Finally, section 3.4 goes into detail for how the quantitative evaluation was planned and
conducted.

The engine used for the experiment is the primary focus of chapter 4. This chapter
touches upon the most interesting details, namely the overall architecture of the engine,
the interpreter, and the match orchestration in section 4.1, while section 4.2 dives deep

5

1. Introduction

into the tree data structure and section 4.3 outlines implementation details for the agents
themselves.

Chapter 5 reports on the results of the research. The qualitative evaluation of the
existing modifications for MCTS can be found in section 5.1, while the results for the static
feature extraction may be read in section 5.2. The data produced by the experiment is
in section 5.3.

A discussion of the results may be read in chapter 6. The chapter is sectioned according
to the research questions.

Finally, chapter 7 summarizes the thesis, concludes the findings, gives perspectives for
future work, and reviews the most important contributions.

6

CHAPTER 2
Background and Literature

Review

This chapter introduces the required background for tracing the experiment setup (see
section 3.4), to understand the implementation (see chapter 4), and reviews the prior-art.
Section 2.1 gives an introduction to the field of general game playing (GGP). Section 2.2
presents the background and reviews the literature for viewing games as trees in the
context of GGP. The search method Monte Carlo tree search (MCTS) is introduced in
section 2.3.

2.1 General Game Playing
General game playing (GGP) is the challenge of playing games only by their definition,
and no prior knowledge of them. It is a generalization of the field of autonomous com-
puter playing. Through the generalization, the implementation of search algorithm is
less prone to the bias of domain-knowledge. GGP encompasses both perfect and imper-
fect information games. This section of the thesis introduces the general concepts (see
subsection 2.1.1), the commonly used protocol (see subsection 2.1.2), GGP in the con-
text of perfect information (see subsection 2.1.3), as well as imperfect information (see
subsection 2.1.4), and a standardized language for defining games (see subsection 2.1.5).

2.1.1 Elementary Principles
The terminology around games is highly overloaded. To avoid confusion, this subsection
discusses the most important terms and introduces the elementary principles underlying
GGP. The terms are game, action, actor, role, move, turn, ply, history, and match.

The word game is a synonym for its rules. The rules define a deterministic and finite
state machine. A state machine has an internal state that is changed by actions. A state

7

2. Background and Literature Review

History Ply

TurnState

Move

Actor

Match

Game ActionRole

instance of

participates in consists of many

assumes one

does one

consists of one
consists of one

consists of one
consists of one

consists of many

Figure 2.1: An abstract entity-relationship diagram of the term used for games.

is defined by a set of atoms, which are either true or false. Actions are performed by the
actors.

A role is a distinct entity in a game, assumed by an actor. There can be any non-zero,
finite number of roles. In the example of Chess, there are two roles, one role controlling
the white pieces, and the other role controlling the black pieces. Poker may have three
or more roles, a dealer and at least two players.

A move is a pair consisting of a role and an action. Given a state, a move can be legal or
illegal. Not every move is legal in every state, and not all roles can do the same actions
(and by extension the same moves).

The state contains the information which role has to do an action. As a convention, this
paper uses, a role is in control instead of a role has to do an action.

Turns are groups of moves done at the same time. A turn consists of a move from every
role that is in control. Depending on the roles that are in control, a turn can consist of
a single move or multiple moves.

A ply is a state-turn pair. Plies are counted and ordered. The first ply contains the

8

2.1. General Game Playing

initial state and the first turn. The second ply consists of the first turn applied to the
initial state, and so forth.

A series of plies is called a history (see also [20]). This thesis discerns between open and
closed histories. The last state of an open history is not terminal, while a closed history
ends in a terminal state.

A match describes an instance of a game. Therefore, the sentence “Player 𝐴 and Player𝐵 play a match of Chess”, precisely means that two players 𝐴 and 𝐵 use the rules of
the game Chess to play against each other once. This definition reliefs the word game
of the same interpretation. Each match has a history. The history serves as the record.

2.1.2 Protocol
To conduct GGP matches Genesereth, Love, and Pell [10], suggest a protocol. The proto-
col tasks a gamemaster with the mediation of the match. Furthermore, it conceptually
splits a match into four distinct phases and defines how the phases change.

The gamemaster is the matches’ administrator and ensures that no actor has an advan-
tage over other actors by assuming this role. The gamemaster has to keep the canonical
copy of the state (separate to the copies of the actors) and progress it once all actors
made their moves. Furthermore, it keeps the actors informed about the game. An actor
cannot manipulate the state to its advantage, as the gamemaster only allows legal moves.

A match can be in one of four phases, the start-, play-, completed-, and aborted-phase
(see fig. 2.2). During the start-phase, the actors are informed about the game they are
playing. The actors submit their moves during the play phase, which leads to another
iteration of the play-phase or is followed by either transitioning to completed or aborted.
A match is completed if a terminal state is reached, should the match end in any other
way, it is aborted.

Before the match starts, the gamemaster sends to the actors, the rules, the mapped roles
and how much time the actor has to answer in the start phase and how much time per ply
the actor has. Afterward, the actors acknowledge and the main game loop starts. The
rules are usually defined via the game description language (GDL) (see subsection 2.1.5).
The gamemaster initializes the state with the definition given by the rules.

To ensure fair conduct, the gamemaster keeps two clocks per actor, the start clock and
the game clock. The start clock counts down as soon as the gamemaster sends the
message to the agents. It is stopped once the gamemaster receives the acknowledgment.
The game clocks count down during the plies of the main game loop if the player is
in control. If a clock reaches zero, the match is aborted, and the associated actor is
disqualified.

Games may be classified into two types, simultaneous- and non-simultaneous moving
games. Simultaneous moving games include those where more than one player at a time
is in control. On the contrary, non-simultaneous moving games only have exactly one

9

2. Background and Literature Review

Start Play Completed

Aborted

a

¬a

¬t

t

dnf dsq

Figure 2.2: The phases of a match. The filled black state is the entry point, the state with
double borders is the final phase and the red state indicates an error state. The transation𝑎, requires all actors acknowledge in time, 𝑡 is applicable if the state is terminal, dnf
means that some actor failed to submit move in time, while if some actor submitted an
illegal move dsq is applicable.

player in control. In general, every non-simultaneous moving game can be expressed as
a simultaneous moving game by modeling the inaction of the opponents with a null or
no-operation move. The inverse direction is only possible under certain conditions (for
more information see subsection 2.1.3 and subsection 2.1.4).

During the play loop, each actor whose role is in control, must submit a move. If the
move is deemed illegal, the match is aborted. Otherwise, the gamemaster combines all
moves to a turn and applies it to the current state, advancing to the next state. Until a
terminal state is reached, the play loop repeats.

Each role has a goal value associated with it, for every state in the game. The goal value
is either an integer or a null value. The goal values of terminal states have to be integers.
They are synonymous with the utility of the roles. The actor with the highest utility
wins the match.

The match switches to the completed phase if it reaches a terminal state. The gamemaster
uses the rules and the terminal state to calculate the utility for each role. Finally, it
submits the utility to the actors. Afterward, the match has ended.

10

2.1. General Game Playing

2.1.3 Perfect Information Games
Perfect information games describe a class of games without hidden information. There-
fore, every entity involved knows everything that can be known. Each match starts with
a defined initial state. The gamemaster informs every actor about the moves of the other
roles. As the rules are deterministic, the actors may synchronize their state by applying
the turns submitted by the gamemaster. Popular games with perfect information include
Tic-tac-toe, Chess and Go.

The formal specification of an 𝑛-player perfect information game, requires the following
definitions (adapted from [10]):

𝑆 set of all game states𝑠𝑖 ∈ 𝑆 initial state𝑆𝑡 ⊆ 𝑆 terminal states𝑅 = {𝑟1, … , 𝑟𝑛} set of the 𝑛 roles𝐴 set of all actions𝑇 = {{(𝑟, 𝑎) | 𝑟 ∈ 𝑅′, 𝑎 ∈ 𝐴} | 𝑅′ ∈ 2𝑅, 𝑅′ ≠ ∅} set of all turns (2.1)𝑀 = 𝑅 ⨯ 𝐴 set of all movesℓ ⊆ 𝑆 ⨯ 𝑀 legal relation𝑛 ⊆ 𝑆 ⨯ 𝑇 ⨯ 𝑆 next state relation𝑔 ⊆ 𝑆 ⨯ 𝑅 ⨯ (ℤ ∪ {null}) goal relation

Elements of chance, such as dice throws or card draws, are modeled with an additional
role random. This role selects its move randomly and has the lowest possible goal value.
Hidden information cannot be modeled, this requires an extension (see subsection 2.1.4).

Any non-simultaneous game can be translated to a simultaneous one. Without a formal
proof: Add a null or no-operation move to 𝐴 (the set of all actions). Let this move be
called null. The legal relation ℓ is extended by pairs of all roles and null for every state
where the given role is not in control. Furthermore, the turns of the next state relation𝑛, require null from every role that is not in control.

Generally, simultaneous perfect information games cannot be converted to non-
simultaneous games. Simultaneous turns would need to be broken up into sequential
turns. Thus, one player would have the advantage of seeing the opponent’s moves
before having to make their move.

Another example of a simple perfect information game is Nim. Nim was named and
extensively studied by Bouton [3]. It is often used, as it is simple to understand and is
rich in tools for analysis. Nim is a basic alternating two-player game. At the start, there
are a defined number of straws and the goal is to take the last straw. A player may take

11

2. Background and Literature Review

one, two, or three straws from the heap, thereby reducing the number of straws. There
are many versions known, with different sized heaps and additional rules.

To illustrate, consider a variant of Nim with a single heap of five straws. Let this variant
be called 5-Nim. Definition 2.2 characterizes the game, adhering to definition 2.1.

The number of straws is represented as n or n depending on the number of straws 𝑛 and
bold if first is in control or italic if second is in control. The actions are 𝟙, 𝟚, 𝟛 taking1, 2 or 3 straws respectively.

𝑆 = {0, 1, 2, 3, 5} ∪{0, … , 4}𝑠𝑖 = 5𝑆𝑡 = {0, 0}𝑅 = {first, second}𝐴 = {𝟙, 𝟚, 𝟛}ℓ = (𝑆 ∖ {0, 0}) ⨯ (𝑅 ⨯ {𝟙}) ∪(𝑆 ∖ {0, 1, 0, 1}) ⨯ (𝑅 ⨯ {𝟚}) ∪(𝑆 ∖ {0, 1, 2, 0, 1, 2}) ⨯ (𝑅 ⨯ {𝟛})𝑛 = {(5, {(first, 𝟙)}), 4), (5, {(first, 𝟚)}), 3), (5, {(first, 𝟛)}), 2),(4, {(first, 𝟙)}), 3), (4, {(first, 𝟚)}), 2), (4, {(first, 𝟛)}), 1), (2.2)(3, {(first, 𝟙)}), 2), (3, {(first, 𝟚)}), 1), (3, {(first, 𝟛)}), 0),(2, {(first, 𝟙)}), 1), (2, {(first, 𝟚)}), 0),(1, {(first, 𝟙)}), 0),(4, {(second, 𝟙)}), 3), (4, {(second, 𝟚)}), 2), (4, {(second, 𝟛)}), 1),(3, {(second, 𝟙)}), 2), (3, {(second, 𝟚)}), 1), (3, {(second, 𝟛)}), 0),(2, {(second, 𝟙)}), 1), (2, {(second, 𝟚)}), 0),(1, {(second, 𝟙)}), 0), }𝑔 = {(0, first, 1), (0, second, −1),(0, first, −1), (0, second, 1)} ∪(𝑆 ∖ 𝑆𝑡) ⨯ 𝑅 ⨯ 0
To reason about matches, the author of this thesis adapts a notation for histories pro-
posed by Schiffel and Thielscher [20]. Histories are prefixed with a unique identifier,
features states, which are separated by arrows. These arrows represent the turns, la-
beled with moves.

For example, consider a history ℎ starting from the state □ and the roles 𝑟1 and 𝑟2
doing the action 𝑎 and 𝑏 respectively resulting in the state ○. From this state 𝑟1 does

12

2.1. General Game Playing

the action 𝑎 again and this leads to a terminal state △ with the goal values 1 for 𝑟1 and0 for 𝑟2. Therefore, ℎ ∶ □ 𝑟1∶𝑎,𝑟2∶𝑏−−−−−→ ○ 𝑟1∶𝑎−−→ △ | 𝑟1 ∶ 1, 𝑟2 ∶ 0
would compactly represent this history.

As a more concrete example, consider a match of 5-Nim. In this match, first takes one
straw from the heap and second answers by taking another straw from the heap. Finally,
first wins the game by taking the final three straws. Compactly:ℎ𝟙,𝟙,𝟛 ∶ 5

first∶𝟙−−−→ 4
second∶𝟙−−−−−→ 3

first∶𝟛−−−→ 0 | first ∶ 1, second ∶ −1
2.1.4 Imperfect Information Games
Opposed to perfect information games, are imperfect information games, which describe
a class of games with hidden information. Therefore, at least one actor, does not know
everything that can be known. The gamemaster is a clairvoyant observer. The informa-
tion visible to the actors, is defined by the rules. Moves of their opponents are no longer
submitted to the actors. Instead, only the visible parts of the state are shared. An actor
may reconstruct the possible states by applying all legal moves and subsequently com-
paring which states are compatible with the visible information. Popular games with
hidden information include Battleship and Poker.

Formally, a view is a partial state. A partial state only defines an assignment for visible
atoms, all non-visible atoms may be true or false. The union of all partial states may be
total or partial in respect to the actual state.

The formal specification of imperfect information games expands the definition 2.1. The
expansion includes the representation of views. It includes a new relation 𝑣. The relation
maps a partial state to each role and state.𝑣 ⊆ 𝑅 ⨯ 𝑆 ⨯ 𝑉 view relation (2.3)𝑉 is the set of all partial states 𝑉 = {2𝑠 | 𝑠 ∈ 𝑆}. It is the power set of every state in 𝑆.

Imperfect information games introduce a shift of focus from the state to a set of pos-
sible states. In general, the number of possible states is exponential. Therefore, the
computational effort is increased.

Games with imperfect information can be freely translated between simultaneous- to
non-simultaneous-moving formulations. Without a formal proof, the non-simultaneous
moving formulation can be translated akin to perfect information games, where the
non-action is explicitly replaced by a null or no-operation move. Simultaneous moving
formulations may break up turns with multiple substates, where the effect of each move
is not visible to the involved actors.

13

2. Background and Literature Review

To illustrate the formal definition of imperfect information games, consider the game
Phantom-Nim, a variant of Nim where the participants cannot directly see which size
the heap has. Taking more straws than available, leads to a loss. The changes required
for 5-Phantom-Nim, a variant with five initial straws, are listed in definition 2.4. When
a term is omitted, definition 2.2 still applies.

𝑉 = {h, h}𝑣 = (𝑅 ⨯ {0, 1, 2, 3, 5} ⨯ {h}) ∪(𝑅 ⨯ {0, … , 4} ⨯ {h})ℓ = 𝑅 ⨯ 𝐴 (2.4)𝑛 = 𝑛′ ∪ {(2, {(first, 𝟛)}), 0),(1, {(first, 𝟛)}), 0), (1, {(first, 𝟚)}), 0),(2, {(second, 𝟛)}), 0),(1, {(second, 𝟛)}), 0), (1, {(second, 𝟚)}), 0)}
Where 𝑛′ is the next state relation of definition 2.2. A state where first is in control has
the view h and a state where second is in control has the view h.

To illustrate, consider a match of Phantom-5-Nim. A clairvoyant observer sees that at
the first ply first takes one straw, afterward second also only takes one straw, which
first answers with again taking one straw. Finally, second wins the game by taking the
last straws. Therefore, the canonical history for the match is:ℎ𝟙,𝟙,𝟙,𝟚 ∶ 5

first∶𝟙−−−→ 4
second∶𝟙−−−−−→ 3

first∶𝟙−−−→ 2
second∶𝟚−−−−−→ 0 | first ∶ −1, second ∶ 1

However, after the first ply, the possible histories for second are:

ℎ𝟙 ∶ 5
first∶𝟙−−−→ 4ℎ𝟚 ∶ 5
first∶𝟚−−−→ 3ℎ𝟛 ∶ 5
first∶𝟛−−−→ 2

After second made their move, one of three histories may be possible for first.

ℎ𝟙,𝟙 ∶ 5
first∶𝟙−−−→ 4

second∶𝟙−−−−−→ 3

14

2.1. General Game Playing

ℎ𝟙,𝟚 ∶ 5
first∶𝟙−−−→ 4

second∶𝟚−−−−−→ 2ℎ𝟙,𝟛 ∶ 5
first∶𝟙−−−→ 4

second∶𝟛−−−−−→ 1

On the third ply, only three histories are possible for second.

ℎ𝟙,𝟙,𝟙 ∶ 5
first∶𝟙−−−→ 4

second∶𝟙−−−−−→ 3
first∶𝟙−−−→ 2ℎ𝟙,𝟙,𝟚 ∶ 5

first∶𝟙−−−→ 4
second∶𝟙−−−−−→ 3

first∶𝟚−−−→ 1ℎ𝟚,𝟙,𝟙 ∶ 5
first∶𝟚−−−→ 3

second∶𝟙−−−−−→ 2
first∶𝟙−−−→ 1

From the information second received, they can infer that first did not take three straws
from the heap; Otherwise, the match would already be over. The match ends after
second takes the last straws. From the perspective of first, two closed histories are
possible,

ℎ𝟙,𝟙,𝟙,𝟚 ∶ 5
first∶𝟙−−−→ 4

second∶𝟙−−−−−→ 3
first∶𝟙−−−→ 2

second∶𝟚−−−−−→ 0 | first ∶ −1, second ∶ 1ℎ𝟙,𝟚,𝟙,𝟙 ∶ 5
first∶𝟙−−−→ 4

second∶𝟚−−−−−→ 2
first∶𝟙−−−→ 1

second∶𝟙−−−−−→ 0 | first ∶ −1, second ∶ 1
where first cannot know which of those two is the canonical history.

2.1.5 Game Description Language
Game description language (GDL) or sometimes game definition language is a formal
language to describe a deterministic finite state machine. It is used to define a game
more consisely (compare to definition 2.1 and 2.3). It was introduced by Genesereth,
Love, and Pell [10] and subsequently extended by Thielscher [27] to allow for games
with imperfect information. This subsection adapts the definitions of the cited sources.
It reviews the syntax, and gives possible definitions of 5-Nim and Phantom-5-Nim. It
discusses how it is evaluated, and what the advantages of formulating games in GDL are.

The language is logic-based, making its syntax similar to first-order logic. A definition
of a game consists of facts and rules. The facts build the base. They are relations that
hold statically. A rule consists of a head, which is also a relation and a body. The head
holds if the body— a conjunctive clause of relations, holds. Rules can depend on facts,
or on other rules.

The language is a subset of Datalog, which itself is a subset of Prolog [2, 10,
14]. The syntax is commonly in infix (head :- body(1), body(2).) or prefix

15

2. Background and Literature Review

((=> head ((body 1) (body 2)))) notation. This thesis uses the infix notation.
Relations are denoted in the name/arity notation, where name is the name of the
relation and arity the number of arguments of that relation.

Some relations are reserved to describe the components of the game. The relation role/1
defines which entities can do actions. The state has three keywords associated with it,
init/1, true/1 and next/1. The initial state is described by init/1, while the current
state is described by true/1. Valid GDL-definitions require next/1 to only be used in
the head of rules. It indicates which atoms become true in the next state. Frequently,
these rules depend on true/1 and does/2 relations. The moves of the roles during a ply
are considered facts and are added as does/2 relations. The resulting next/1 relations
are the next state’s true/1 relations. The special true(control/1) relation indicates
which players are in control. Accordingly, next(control/1) describes who is in control
in the next ply, and init(control/1) describes which players are in control at the initial
state.

The three relations legal/2, terminal/0 and goal/2, are also reserved, however, unre-
lated to the next state. A move is legal, precisely if the first argument of the relation
legal/2 contains the role, and the second the action. The atom terminal/0 is only true
if the state is terminal. For these states, goal/2 indicates the utility of a role, where the
first argument is the role, and the second an integer value (by convention in the range
of 0 − 100).

In comparison to programming languages, GDL is low-level in scope. The scope explicitly
excludes arithmetic operations. Should arithmetic operations be needed, they have to be
defined via the rules. Mittelmann and Perrussel [18] proposed an extension called GdlZ,
that expands GDL with integer arithmetic. The only higher level relation available is
distinct/2. The relation is true if the two arguments do not unify (viz. are different).

Intentionally, GDL is a compact representation of definition 2.1. The notation is still
transparent while allowing evaluation by an interpreter. Moreover, it is succinct, as all
states do not need to be enumerated.

To illustrate, consider the game of 5-Nim (see definition 2.2). Listing 2.1 defines 5-Nim
in GDL. The roles are defined in line 1. The initial state is defined by lines 3 and
4. The actions are enumerated in line 26 and the legal actions in lines 38 to 41. The
state transition is handled in lines 28 to 36, where 28 to 31 defines that the moves are
alternating and 33 to 36 the effects of taking from the heap. An empty heap leads to
a terminal state, which is defined on line 43. The goal values for non-terminal states
are defined in 45 to 47. The losing conditions are listed in 49 to 51, while the winning
conditions are stated on lines 53-57. Lines 6 to 24 define the arithmetic needed for taking
from the heap.

The style of programming in GDL is as opinionated as any other programming language.
For example, in the lines 46, 50 and 54, it is possible to substitute true(heap(0)) with
terminal. The author of this thesis argues that it should not be, as the goal value does
not actually depend on the completion of the game but the size of the heap. Another

16

2.1. General Game Playing

1 role(first). role(second).
2
3 init(control(first)).
4 init(heap(5)).
5
6 succ(0,1). succ(1,2). succ(2,3).
7 succ(3,4). succ(4,5).
8
9 num(N) :- succ(N,N').

10 num(N') :- succ(N,N').
11
12 plus(S,0,S) :- num(A).
13 plus(A,1,S) :- succ(A,S).
14 plus(A,B',S') :-
15 succ(B,B'),
16 succ(S,S'),
17 plus(A,B,S).
18 plus(B,A,S) :- plus(A,B,S).
19
20 le(A,A) :- num(A).
21 le(A,B) :- lt(A,B).
22
23 lt(A,B) :- succ(A,B).
24 lt(A,C) :- succ(B,C), lt(A,B).
25
26 action(1). action(2). action(3).
27

28 next(control(R)) :-
29 true(control(R')),
30 role(R), role(R'),
31 distinct(R,R').
32
33 next(heap(N)) :-
34 does(R,A),
35 true(heap(N')),
36 plus(N,A,N').
37
38 legal(R,A) :-
39 true(heap(N)),
40 role(R), action(A),
41 le(A,N).
42
43 terminal :- true(heap(0)).
44
45 goal(R,0) :-
46 not true(heap(0)),
47 role(R).
48
49 goal(R,-1) :-
50 true(heap(0)),
51 true(control(R)).
52
53 goal(R,1) :-
54 true(heap(0)),
55 true(control(R')),
56 role(R), role(R'),
57 distinct(R,R').

Listing 2.1: A possible definition of 5-Nim using GDL.

example is the commonly seen redundant pattern to define that the legality of an action
is conditional on the role being in control. The gamemaster only allows roles in control
to submit a move, which makes the inclusion of the clause redunant.

The relation of GDL-definitions and logic programs leads to parallels in how they are
evaluated. Two distinct approaches are possible, forward evaluation and evaluation via
backtracking. Forward evaluation, or sometimes Herbrand interpretation, gathers a set
of true relations, the facts. The set of true relations is expanded by all rules that are true
based on the current true relations. This is done iteratively until a fixpoint is reached.
Backtracking-based evaluation, starts from a relation, the query. All rules compatible
with the query are checked. If a rule’s head unifies with a query, it is compatible. A
relation is supported if there is a compatible rule and the body of this rule is supported.
The backtracking-evaluation picks an untried arbitrary rule, with a compatible head,
and adds it to the query. If everything is properly supported, the initial query is true.

17

2. Background and Literature Review

Should a contradiction occur, the query backtracks until the contradiction resolves. If a
query cannot be supported, it is false.

Both forward and backtracking-based evaluation have relevant use cases. The perfor-
mance is highly dependent on the game. Backtracking is usually better if only a few
relations need to be checked, while it suffers compared to forward evaluation in the con-
trary case. Both can be abstracted and used interchangeably, depending on the usecase.
In fact, successful agents decide which technique they use, based on the task [2, 22, 28].

Defining games in a formal language, allows them to be executed, reasoned about, and
compared to each other. Executing (or playing) the game does no longer need a sepa-
rate implementation, a GDL-interpreter can use the game’s definition to do that. This
generality comes at the cost of computational overhead. Another advantage of this rep-
resentation of games is the formal reasoning that is possible. The definition can be
checked if it satisfies certain requirements. For example, playability, which is the notion
if there is a state where a role cannot move. Another example would be winability, it
requires the existence of a series of moves that results in the winning condition of a role
[11]. Similarly, the differences between games can be highlighted by the differences in
their definitions. If a game is more difficult to play, its definition might include more
relations and rules than a simpler example, or more legal moves are possible in a given
state, which increases the size of the search space.

The formal description of GDL does not allow for games with elements of chance, such
as dice throws or hidden information akin to the hand of other players in a card game.
To address this shortcoming, Thielscher [27] proposed game description language with
imperfect information (GDL-II) (sometimes incomplete instead of imperfect). Since then,
Schiffel and Thielscher [20] expanded the GGP-protocol to accommodate the changes.
GDL-II is evaluated just the same as standard GDL.

GDL-II has only one new relation, sees/2 and a special role called random. A role
perceives a relation, if the relation is the second argument of sees/2 and the role is the
first argument. This relation is the equivalent to the view relation 𝑣 of definition 2.3.
To incorporate elements of chance, the role random chooses arbitrarily from the possible
moves.

Listing 2.2 defines the additional (or changed) rules for Phantom-5-Nim.

The definitions for the two games share most of their rules. Lines 4 to 16 define that
if a role takes more than is available on the heap, they are still in control in the next
round, otherwise the control alternates. Lines 20 to 23 specifies that taking more than
is available from the heap leads to an empty heap. Lines 25 and 26 define which roles
see who is in control (if they are in control). Finally, line 28 expands the legal actions
to all actions.

18

2.2. Games as Trees

1 % Lines 1-26 from 5-Nim
2
3 next(control(R)) :-
4 does(R',A),
5 true(control(R')),
6 true(heap(N)),
7 role(R), role(R'),
8 distinct(R,R')
9 le(A,N).

10
11 next(control(R)) :-
12 does(R,A),
13 true(control(R)),
14 true(heap(N)),
15 lt(N,A).
16
17 % Lines 33-36 from 5-Nim

18 next(heap(0)) :-
19 does(R,A),
20 true(heap(N)),
21 lt(N,A).
22
23 sees(Everyone,control(R)) :-
24 role(R), role(Everyone).
25
26 legal(R,A) :- role(R), action(A).
27
28 % Lines 43-57 from 5-Nim

Listing 2.2: A possible definition of Phantom-5-Nim using GDL.

2.2 Games as Trees
Games can be viewed as trees. This representation lends itself to using tree search
methods. Tree search methods are studied in many fields of computer science. This
section discusses trees in the context of perfect information games (see subsection 2.2.1)
imperfect information games (see subsection 2.2.2) and a common pitfall of tree search
methods called the horizon effect (see subsection 2.2.3).

2.2.1 Perfect Information Games
The following paragraphs review how trees can be used to define games and how they
are used to find the best move. As complete search is infeasible for large enough games,
this subsection also discusses remedies for this limitation, and quantifies a good agent.

The nodes of a perfect information game’s tree, hold the state and the edges are labeled
with the turns. The tree is rooted in the initial state. From this root node, each possible
move leads to a child node holding the resulting state. The leafs of the game tree hold
the terminal states. This encodes definition 2.1. For an example of a game tree for the
game 5-Nim, see fig. 2.3.

The tree may be used by an agent to calculate the best move. The utility of a move is
equivalent to the role’s utility of the resulting state. Usually, only terminal states have a
defined utility. For non-terminal states, the utility is equivalent to the value of the best
move. Crucially, the value of a move depends on which player is in control. Furthermore,
if a tree is too large, enumerating all non-terminal states might be infeasible. In these
cases, heuristics can be used to approximate the utility.

19

2. Background and Literature Review

5

4 3 2

𝟙 𝟚 𝟛
3 2 1

𝟙 𝟚 𝟛
2 1 0

𝟙 𝟚 𝟛
1 0

𝟙 𝟚
2 1 0

𝟙 𝟚 𝟛
1 0

𝟙 𝟚
0

𝟙
1 0

𝟙 𝟚
0

𝟙
0

𝟙
1 0

𝟙 𝟚
0

𝟙
0

𝟙
0

𝟙
0

𝟙
Figure 2.3: The game tree of 5-Nim. The round and blue nodes denote states where
first is in control and rectangular and red nodes denote states where second is in control.
The top-most node is the initial state and the states with a double border are terminal
states. The edges represent the moves. Fat, blue and dashed edges are actions done by
first. Thin and red edges are actions done by second. The label of the edge represents
the arithmetic operation on the heap.

In a match of a game with perfect information, every player views the same game tree.
Each player may use this tree to find the best move. However, for most games, searching
for the optimal move becomes akin to a search for the needle in the haystack, as game
trees are prohibitively large for non-trivial games. Each state has at least one node,
and each possible move results in a branch. There are too many nodes and branches to
consider for a complete search.

To remedy this limitation, agents build their own tree, called a search tree. Starting
from the root node, the tree is built by expanding nodes. The expansion is done by
calculating every possible follow-up state from the combinations of legal moves. The
states correspond to the nodes and the moves correspond to the edges. Step-by-step, a
subtree of the game tree is built.

A good agent does not only consider more nodes (viz. handles a larger search-tree), but is
also cautious about what parts of the tree are considered. Traditionally, this is done via
heuristics, handcrafted by human-expert knowledge. Recently, these were replaced by
better performing neural networks. They are trained by reinforcement learning, where
the data is generated via self-play [26].

After a ply, the agents never need to ascend the game tree again. The tree is rerooted
after each ply to the current node. As the current node holds all the available information,
nothing is lost by pruning the tree above the current ply level.

20

2.2. Games as Trees

2.2.2 Imperfect Information Games
The trees for perfect and imperfect information games fundamentally differ. The hidden
information introduces the knowledge of a state. Encoding knowledge into the tree
complicates the data structure. This subsection introduces the difference between perfect
and imperfect information game trees, using the running example of Nim. Furthermore,
it discusses the theoretical underpinnings for these differences and how this affects agents
playing against each other.

For games with imperfect information, agents can no longer accurately determine in
which branch of the game tree they are. They cannot observe their opponent’s moves,
and they do not view the full state, therefore, multiple nodes (and by extension states)
need to be considered. Their states are indistinguishable for this player. See this visual-
ized for the game Phantom-5-Nim in fig. 2.4.

A set of states that is indistinguishable by a player is called an information set. This
concept forms the basis of the search tree for games with imperfect information. De-
pending on the assumed state, a move of a player might have different effects. Therefore,
a single move might point to different information sets. To differentiate, they are only
ever meaningful together with the assumed state.

In imperfect information games, multiple different histories are possible. By contrast,
in perfect information games, there is only one history. The current state can be recon-
structed by applying the moves in order. In imperfect information games, moves are
only partially observable, and only a partial state is visible. Therefore, multiple states
may be consistent with the available information.

Histories implicitly describe information sets [23]. An information set is the set of all
states of all indistinguishable histories. Histories are important for navigating the search
tree. They describe which branches need to be taken to reach the current node of the
tree.

Searching games with hidden information requires a new kind of data structure for
search trees. The search tree’s nodes no longer hold one single state, but a set of
indistinguishable possible states— the information set. The edges are labeled with the
assumed state and the moves, as the effect of a turn can differ depending on the actual
state.

In the case some players have different views, their respective search tree differs, contrary
to perfect information games, where full knowledge is assumed. In perfect information
games, a node holds the actual state. While, in imperfect information games, the actual
state is some state of the intersection of each player’s information set.

2.2.3 Horizon Effect in Games
Tree search algorithms are susceptible to problems, that surface as anomalies in playing
strength. One such difficulty is known as the horizon effect. This subsection reviews

21

2. Background and Literature Review

5

4

3

2

𝟙

𝟚

𝟛

3 2 1

𝟙 𝟚 𝟛
2 1 0

𝟙 𝟚 𝟛
1 0 0

𝟙 𝟚 𝟛
0 0 0

𝟙 𝟚 𝟛 0 0 0

𝟙 𝟚 𝟛 1 0 0

𝟙 𝟚 𝟛
0 0 0

𝟙 𝟚 𝟛 0 0 0

𝟙 𝟚 𝟛

2 1 0

𝟙 𝟚 𝟛
1 0 0

𝟙 𝟚 𝟛
0 0 0

𝟙 𝟚 𝟛 0 0 0

𝟙 𝟚 𝟛

1 0 0

𝟙 𝟚 𝟛
0 0 0

𝟙 𝟚 𝟛
Figure 2.4: The game tree of Phantom-5-Nim. The round and blue nodes denote states
where first is in control and rectangular and red nodes denote states where second is in
control. The top-most node is the initial state and the states with a double border are
terminal states. The edges represent the moves. Fat, blue and dashed edges are actions
done by first. Thin and red edges are actions done by second. The label of the edge
represents the arithmetic operation on the heap.

22

2.3. Monte Carlo Tree Search

what the horizon effect is, where the term was coined, and discusses why it is an issue
to keep in mind for games with imperfect information.

The search tree is only a part of the full game tree. At best, it is still sufficient for finding
the optimal move, in the worst case, it produces inaccurate results. These inaccurate
results are caused by the missing information the search is blind to. In some games, these
blind spots can be mitigated by strong heuristics. Still, however accurate the heuristic
is, it is an approximation of the actual utility.

Naturally, an agent using a search tree (that is partial in respect to the full game tree)
has a horizon. Whatever lies beyond this horizon— a good move, a trap laid by the
opponent, might ultimately be opaque for the agent. This phenomenon was first named
by Berliner [1], and is called the horizon effect.

Berliner outlines a negative and a positive horizon effect. Even though the naming
suggests that sometimes the effect is beneficial for playing strength, it usually is not.
The negative horizon effect broadly describes cases where a bad move initially appears
deceptively strong. The move has high heuristic value but due to some kind of downside
that typically only appears after some plies, it is of low utility to the player. In contrast,
the positive horizon effect includes moves that have an upside, that after searching
deeper, reveals an alternative with even greater upside.

While the initial definition of the horizon effect was meant for Chess programs, it de-
scribes a phenomenon found in many fields of artificial intelligence. If the search depth is
limited, unpredictable discrepancies between the actual utility and a heuristic can occur.

The author of this thesis argues that games with imperfect information and high branch-
ing factors have a greater tendency to suffer from the horizon effect. While it has not
been a major focus of previous work, the literature generally agrees [5]. One possible ex-
planation is that the heuristic has even less information to base their evaluation on, and
anything beyond the horizon may be hidden among an exponential number of possible
states.

2.3 Monte Carlo Tree Search
The Monte Carlo tree search (MCTS)-algorithm is a procedure to efficiently generate a
search tree from the rules of a game. It is used for games, and other fields such as
planning, Chemical synthesis and Security [26]. Due to properties of the algorithm,
it is particularly interesting for GGP. Namely, it does not need a heuristic and only
needs the rules of a game to be applicable. In the following subsections, the author
of this thesis reviews the core algorithm and four extensions for games with imperfect
information. Subsection 2.3.1 gives the principles of operation for all MCTS variants. De-
terminizing MCTS is the first discussed simple extension for imperfect information games
(see subsection 2.3.2). Cowling, Powley, and Whitehouse [8] introduce three variants of
information set Monte Carlo tree search (ISMCTS). The first of those three is reviewed
in subsection 2.3.3, the second in subsection 2.3.4, and the last in subsection 2.3.5.

23

2. Background and Literature Review

2.3.1 Principle of Operation
While there are many resources [4, 26] covering the details of MCTS and its modifications,
the implementation of the core principles differ from author to author. This subsection
discusses the most important aspects for implementing MCTS variants and how to con-
figure it for different kinds of games. It spans the four characteristic phases, and goes
into detail for UCT— the primary algorithm for the selection phase. Lastly, it discusses
the susceptibility towards the horizon effect.

MCTS is divided into the four phases, selection, expansion, simulation and backpropa-
gation. During selection, the procedure walks down the tree until a leaf node is met.
The children of this node are linked in the expansion phase, turning the leaf into a
branch. The simulation phase evaluates the node, usually by simulating random plays
starting from the current state. By propagating upwards until the root is reached, the
backpropagation phase updates the tree, thus completing one step of the procedure.

The goal of the selection phase is to determine, which of the available leaf nodes is the
most worthwhile to expand. A leaf node is considered worthwhile to expand, either if
the state of the node has a high valuation or if there is yet high uncertainty about the
state. How these are quantified is dependent on configuration. Selecting nodes with high
valuation is called exploitation, while choosing nodes with high uncertainty is considered
exploration.

The procedure starts at the root node and observes all children. If the current node
is a leaf node, the selection phase ends. Otherwise, each child is assigned a weight.
Considering these weights, a selector decides on a node. Then the procedure iteratively
repeats until a leaf node is reached.

Depending on the game, the selector and the assignment of the weights may be config-
ured, which in turn configures the algorithm’s preference for exploitation or exploration.
Simple selectors include minimum or maximum selectors that always picks the node
with the lowest or highest weight, or random selectors where nodes with higher weight
have a higher probability of selection [7]. A common way to assign weights is the UCT
algorithm introduced by Kocsis and Szepesvári [13].

The UCT algorithm quantifies the degree of exploration and exploitation, by assigning
a value 𝑢 to each node that depends on the valuation and the number of times it has
been valuated in comparison to its siblings and selecting the node with the highest score
[13, 26]. The value for 𝑢 is given by evaluating the function ucb

ucb(𝑛) = 𝑄(𝑛) + 𝐶 ⋅ √ ln 𝑁(𝑛pred)𝑁(𝑛)
where 𝑄(𝑛) is the valuation of the node 𝑛, 𝐶 is the exploration weight— usually decided
empirically, 𝑁(𝑛) is the number of iterations done in 𝑛 and 𝑛pred denotes the parent of
node 𝑛 (see also [26, 6, eq. 2]).

24

2.3. Monte Carlo Tree Search

In the expansion phase, the procedure creates new nodes from the selected leaf node’s
state and links them as children. Thereby, transforming the leaf node to a branch node.
Due to the selection phase, the expansion of the tree is asymmetric. If the weights
and selector of the algorithm prefer exploration, the resulting tree is more shallow and
symmetric, where a high preference for exploitation produces deep and asymmetric trees.

During the simulation phase, the algorithm repeatedly applies random turns to the
state of a node until a terminal state is reached. The terminal state’s utility is then used
as a valuation for the initially selected node. While a single simulation might not be
meaningful, the algorithm repeatedly simulates, thus increasing confidence.

Using simulations as valuations for the nodes divorces the search algorithm from the need
for a heuristic. Heuristics usually estimate the utility for a given state, while simulations
quantify the possibilities of a win. If a state has a high valuation, there exist enough
sequences of moves that result in a win, which indicates a high utility.

In the backpropagation phase, the procedure updates the tree with the information
gained during the simulation phase. It starts at the node chosen during the selection
phase, and uses the link with the parent to walk up the tree. Each node is updated until
the current root is reached. At this point, one iteration of the procedure is completed.

While MCTS is not immune to the horizon effect (see Section 2.2.3), it is far less sus-
ceptible to it. The horizon effect is more likely to occur if the heuristic valuation and
the actual utility of a node differ greatly [1]. As MCTS uses simulations, the heuristic is
gradually improved, mitigating the horizon effect.

2.3.2 Determinizing Monte Carlo Tree Search

On its own, MCTS cannot handle imperfect information games. It assumes the search
to be on a tree with a state per node and a move per edge. The agent, however, has to
handle a multi-edge search tree with multiple possible states in each node and a state-
turn pair as edge label in imperfect information games. A simple extension to handle this
shortcoming is determinizing MCTS. This subsection conceptually reviews the algorithm,
why it ultimately is not suited for imperfect information games in the context of GGP,
and why it is still a considerable alternative for certain games.

Determinizing MCTS dissects an imperfect information game tree into several perfect
information game trees. Starting from the root node, each possible state is assigned as
separate tree. Before an iteration, one of those trees is selected. The results of each
tree are then aggregated. The move with the most visits over all trees is chosen as the
selected move.

As alluringly simple this procedure is, it suffers from a grave weakness, referred to in the
literature as strategy fusion [8]. Strategy fusion describes the phenomenon that averaging
over all possibilities leads to weak playing performance. The weakness surfaces, when
the optimal strategy depends on the fact that the hidden information cannot be known.

25

2. Background and Literature Review

To illustrate, consider the game Mini-Single-Call. Mini-Single-Call is a single-player
game with randomness and hidden information. First, the player has to decide whether
they want to place a bet or fold. If they fold, the utility is +5. If the player bets, they
are dealt a card with one of two equally likely suits, red or black. Without looking at
the card, the caller must decide if they call red or black. Both moves end the game. If
the player calls the same suite as the dealt card, they receive a utility of +10, if they
guess wrongly −10. See fig. 2.5 as an illustration for a game tree.

init

bet

folded
+5

dealt ⋄ dealt ♣

dealt ⋄
called ⋄
+10

dealt ⋄
called ♣
−10

dealt ♣
called ⋄
−10

dealt ♣
called ♣
+10

bet

fold

deal ⋄ deal ♣

call ⋄

call ♣ call ⋄

call ♣

Figure 2.5: The game tree of Mini-Single-Call.

The best move is clearly not placing the bet at the beginning, as this results in a sure+5 utility. Placing a bet on the other hand forces the outcome to be either +10 half of
the time and −10 the other half of the time. The expected utility is 0.

Nonetheless, determinizing MCTS would select to bet, due to strategy fusion. Strategy
fusion occurs because the two determinized trees have the optimal strategy of betting
and then selecting the correct call. When combining the strategies, the branch of betting
seems to be promising a utility of +10. However, as the agent cannot see what card has
been dealt, it is unable to call the correct suit with certainty; therefore the strategy is
suboptimal.

Experiments indicate that determinizing MCTS is still competitive in games where strat-
egy fusion is not a major factor [8]. Determining if a game susceptible to strategy fusion

26

2.3. Monte Carlo Tree Search

is difficult to gauge a-priori. There are methods of indirectly measuring it [16], but this
is impractical for non-trivial games.

A major benefit of determinizing MCTS is the relatively low runtime cost. In comparison
to more sophisticated algorithms (see the subsequent sections) Cowling, Powley, and
Whitehouse [8] report up to more than double the number of iterations per time frame
for certain games. If strategy fusion is not a factor, this may result in better playing
performances if the calculation time is fixed.

2.3.3 Single Observer-Information Set Monte Carlo Tree Search
Single observer-information set Monte Carlo tree search (SO-ISMCTS) is part of the family
of algorithms referred to as ISMCTS [8]. These algorithms abstract the ideas of MCTS to
build information set trees, instead of game trees. This subsection reviews the changes
required to the core MCTS algorithm, namely how the four phases are affected. It then
reviews the advantages and drawbacks, on the topics of playing strength and runtime
cost.

Instead of splitting the information set’s states into the roots of multiple trees, SO-ISMCTS
directly samples the possible states. Starting at the root, the procedure selects one pos-
sible state and only considers edges of the multi-edge tree, where the label is compatible
with the selected state.

A node no longer only has a single state which can be used to valuate it. There are
multiple ways of dealing with this. Cowling, Powley, and Whitehouse [8] suggest deter-
minizing the tree at the root note before each iteration. In this way, the four phases of
MCTS do not need to be altered conceptually.

The agent in control defeminizes the tree by selecting one of the possible states of the
root node. From the root, the edges labeled with pairs of states and moves lead to
the children. Every edge, where the label does not contain this determinization, is
incompatible. Those children with a compatible in-going edge are considered. The
selection process then continues as in the perfect information MCTS.

The selected node is then expanded. In perfect information MCTS this is straight-forward,
as each node only contained a single possible state, the edges corresponded to the turns
and each follow-up state was assigned its child node. The expansion in the new search
tree for imperfect information games is different. As the information set may contain a
prohibitively large number of possible states, it is not tractable to enumerate them all
and consider each state. Instead, only the determinized state is used. When expanding
a node via a determinized state, existing children are either populated or new nodes are
created. A node may be a leaf node in one determinization, but not in another.

The determinization approach ensures that after selecting the appropriate leaf node,
expansion, simulation and backpropagation are done as in perfect information MCTS.

While SO-ISMCTS improves the drawback of not being directly applicable to imperfect
information games, it still suffers from strategy fusion. Fundamentally, SO-ISMCTS does

27

2. Background and Literature Review

not differ greatly from determinizing MCTS. The difference is the accumulation of data.
Determinizing MCTS first splits the information sets into perfect information trees and
later recombines the resulting search trees, while SO-ISMCTS directly operates on the
information set tree. They both produce similar results, however SO-ISMCTS is more
efficient in allocating iterations.

In the experiments done by Cowling, Powley, and Whitehouse [8], SO-ISMCTS is com-
parable to determinized MCTS. In the same number of iterations, it is slightly more
competitive. Its obvious downside is the weak opponent model, which is why it is
weaker than multiple observer-information set Monte Carlo tree search (MO-ISMCTS)
(see subsection 2.3.5).

2.3.4 Single Observer-Information Set Monte Carlo Tree Search with
Partially Observable Moves

Single observer-information set Monte Carlo tree search with partially observable moves
(SO-ISMCTS+POM) is a evolution of the ISMCTS variants introduced by Cowling, Powley,
and Whitehouse [8]. This subsection discusses the differences of SO-ISMCTS+POM and
SO-ISMCTS. Furthermore, it lists the advantages and disadvantages in comparison to
other reviewed MCTS variants, including the performance considerations.

The continuation SO-ISMCTS+POM alleviates some shortcomings of its predecessors. It no
longer differentiates between moves that result in outcomes with the same view. Thereby,
removing the assumption that the opponents moves are fully observable. It no longer
suffers from strategy fusion, while significantly weakening the model of the opponents.

To accurately model partially observable moves, the search tree is extended by distin-
guishing between two kinds of nodes, visible and hidden nodes. Visible nodes represent
plies where the observer is in control, and is updated with the current view of the game
state. Because the observer can distinguish its moves, the edges can be differentiated.
On the other hand, are hidden nodes, where it is opaque to the observer which moves
were made.

The player in control observes the current partial game state and determinizes from the
possible states. Each incompatible edge remains unconsidered. One of the children is
selected. Should this child be a visible node, the selection procedure continues in the
same way. If this child is a hidden node, the selection procedure randomly selects a
compatible edge.

Expansion, simulation and backpropagation are done as in SO-ISMCTS and perfect in-
formation MCTS. Expanding the in the final step selected leaf node is done lazily by
the determinization. Simulation is carried out by random playouts. Backpropagation
aggregates the already present data and amends it with the new result of the simulation.

The advantages of SO-ISMCTS+POM over SO-ISMCTS are minimal. Their playing strength
is similar, where SO-ISMCTS+POM has a tendency to be slightly less competitive at the

28

2.3. Monte Carlo Tree Search

same number of iterations [8]. In games where there is limited interaction between
opponents, the playing strength should be closer to MO-ISMCTS (see subsection 2.3.5).

2.3.5 Multiple Observer-Information Set Monte Carlo Tree Search

The last of three ISMCTS algorithms introduced by Cowling, Powley, and Whitehouse [8]
is multiple observer-information set Monte Carlo tree search (MO-ISMCTS). MO-ISMCTS
solves both the strategy fusion problem of determinizing MCTS and SO-ISMCTS, as well as
the weak opponent model of SO-ISMCTS+POM. This subsection highlights the differences
to the other variants of ISMCTS and reviews the required extensions to the four phases of
MCTS. Lastly, it discusses the performance in comparison to other three reviewed MCTS
variants for imperfect information.

MO-ISMCTS uses an independent search tree, for each observer in the game. Wherever
SO-ISMCTS+POM would assume a random move in the selection phase, MO-ISMCTS in-
stead consults the respective tree, informing the decision. As a consequence, the models
of the opponents are significantly stronger, at the cost of higher complexity.

The phases of selection, expansion and backpropagation need to be carried out con-
currently on all trees, while simulation can be used for all trees. Where the previous
iterations and perfect information MCTS implicitly chose moves by successive selection
of favorable states, MO-ISMCTS constructs turns from the role’s moves, ply by ply. Ex-
pansion is still done on a specific determinization. Each tree grows lazily. The utility is
backpropagated in each tree depending on the role.

In the selection phase, at the start of the iteration, a possible state is determinized by
selecting one from the information set of the current root. This determinization may
be in many indistinguishable histories and seperate branches for each tree, therefore all
non-main trees need to be rerooted. Rerooting requires backtracking up the tree until
the last known state is reached and generating a development that is compatible with
this last known state and the determinization.

After all trees are rooted in the common determinization, the algorithm queries which
roles are in control. Using UCT the most eligible child node for each tree is determined.
Potentially, many edges point to that child. By arbitrarily choosing an edge, the pro-
cedure selects a move for that role. All those moves are collected and combined into a
turn. The turn is used to progress the determinized state. In each tree, the edge that is
compatible with the respective move and the progressed state is used to select the next
node.

After iterating enough times until a leaf node in respect to the determinized state in
the main tree was found, the algorithm transitions into the expansion phase. In the
expansion phase, for every follow-up state of the determinized state is either added to
the information set of an already existing node, or it is the basis of a new child node.
This needs to be done for every tree.

29

2. Background and Literature Review

Simulation via random playouts can be done just as in perfect information MCTS. After
it reaches the terminal state, the utility for every role is extracted (instead of only the
actor’s role).

The utility of each role is backpropagated in each tree. This ensures that the moves in
the selection phase mimic those of strategic opponents.

In the experiments done by Cowling, Powley, and Whitehouse [8], MO-ISMCTS is the best
option in the family of ISMCTS. While its runtime performance is comparatively poor,
the stronger opponent model and the ability to search the tree deeply without strategy
fusion offsets its limitations. In some games, the margin is bigger than others, depending
on branching factor, susceptibility to strategy fusion and player interaction.

30

CHAPTER 3
Methods

Autonomous play of imperfect information games in the context of general game playing
(GGP) remains insufficiently explored. A promising family of methods are the Monte
Carlo tree search (MCTS)-algorithms. One objective of this body of research was to survey
the literature on MCTS, and gather the most important variants for imperfect information
games, and GGP. Additionally, this thesis describes a new method in this family, based
on the found variants. When applying MCTS, there are multiple configuration options
available, to accommodate to different use cases. Using methods found in the literature,
the author of this thesis suggests ways of configuring the proposed method, similar to the
known options. To evaluate the method, this thesis describes a tournament, and reports
on a quantitative experiment designed according to this tournament. A dependency of
the tournament is an engine to run games in, and agents to play those games. The author
of this thesis designed, and wrote an engine, and agents informed by similar programs
described by the literature.

Section 3.1 reviews the overall scientific approach, of these objectives. The methodology
of the comparison of existing MCTS modifications is discussed in section 3.2. In sec-
tion 3.3 the focus lies on the path towards configuring the proposed method. Section 3.4
offers the details of the design of the experiment. Finally, chapter 4 is devoted to the
implementation of the engine, and the agents.

3.1 Scientific Approach
The thesis had three research questions. First: Which of the modifications for MCTS
are effective for playing imperfect information games in a GGP context? Second: Which
features can be extracted from descriptions of imperfect information games to construct
a heuristic to set the maximum expansion depth for the MCTS algorithm? Third: How
does a MCTS-agent with limited expansion depth compare in benchmarks?

31

3. Methods

The first research question, led to a literature research, and to a comparative and qualita-
tive evaluation of two concrete games. The literature research started with the extensive
survey papers by Browne et al. [4] and Świechowski et al. [26]. Both papers aimed to
gather and review all available methods, modifications, and applications. From there,
the most relevant publications on the topics of imperfect information games and GGP
became the subject of the literature review. After selecting two games for the experiment
(see section 3.4), the author of this thesis used those games for applying the methods
described in the publications, and comparing them qualitatively.

The survey of the chosen literature focused on the approach that allowed to play imper-
fect information games, and if there are any specific optimizations that ruled the usage
in a GGP context. More specifically for playing imperfect information games, check how
the method mitigates strategy fusion (see subsection 2.3.2), if there have been experi-
ments comparing to other methods, and if there is code available. Some methods are
not usable in a GGP context. These were identified by investigating if the variant relies
on a game specific optimization, and machine learning techniques.

The most promising methods were qualitatively compared using the two example games
Phantom_Connect(4,4,4) and Dark_Split_Corridor(3,4). The two games were also
used for the experiment. The author of this thesis chose them for the qualitative anal-
ysis, because of two reasons. Firstly, they were small enough for manual analysis, but
still rich enough in complexity such that they were not trivial. Secondly, after having
implementing them, he was intimately familiar with the games, and thus being able to
quickly falsify hypotheses by running examples.

The methodology of the qualitative analysis itself, was to use a characteristic state of
each game, then analyze it manually, and finally, infer how the MCTS variants would
evaluate the game state. The variants considered were determinizing MCTS (see subsec-
tion 2.3.2), single observer-information set Monte Carlo tree search (SO-ISMCTS) (see
subsection 2.3.3), single observer-information set Monte Carlo tree search with par-
tially observable moves (SO-ISMCTS+POM) (see subsection 2.3.4), and multiple observer-
information set Monte Carlo tree search (MO-ISMCTS) (see subsection 2.3.5). Focusing
on specific games loses generality of analysis, but greatly simplifies the scope, while be-
ing relatively insightful. Furthermore, it may serve as a stepping stone for more general
analysis in future work.

When configuring the devised method of limiting the expansion depth for MO-ISMCTS,
the choice for the concrete depth is subject to a range of parameters. The author of this
thesis proposes a set of parameters and methods, based on the approaches by Kuhlmann
and Stone [15], Schiffel and Thielscher [21], Clune [6], and Mańdziuk and Świechowski
[17].

The experiment was closely modelled after the quantitative evaluation done by Cowl-
ing, Powley, and Whitehouse [8]. It is a double-round-robin tournament including
self-play with three contestants, a clairvoyant MCTS-agent, an agent using unlimited
depth-MO-ISMCTS, and a limited depth-MO-ISMCTS agent. Each contestant played as

32

3.2. Comparison of Existing Modifications

the first-moving player and the second-moving player, against each other contestant,
including themselves.

The design process of the engine followed an iterative prototype model. Starting from the
elementary data structures, the author aimed to identify the minimal required changes,
such that the features required to conduct the experiment. Before implementing, adding
unit test cases, whenever possible. This is also known as test-driven development.

A goal during the implementation was to reuse as much of existing libraries and projects
as possible to minimize how much code the author had to write, and thus start the
experiment as early as possible. However, due to the scope of the project, the code base
was still sizeable. Naturally, while implementing one part of the engine, insights accrued
during this process, revealed design mistakes, and better alternatives for implementation
details. Thus, a balance was to be kept, between iteratively improving, and striving to
finish.

3.2 Comparison of Existing Modifications
Four variants of MCTS (see section 2.3) are subject to comparison. These are the sug-
gested primary methods for playing imperfect information games [26]. Naturally, their
relative playing strengths differs from game to game. To compare the playing strength,
the author of this thesis used a method of qualitative evaluation, adapted from previous
work [8].

The survey paper by Świechowski et al. [26] identified improvements for MCTS used for
playing imperfect information games. The primary suggested methods were determiniz-
ing MCTS, and three variants of information set Monte Carlo tree search (ISMCTS). All
of them were extensively covered in the publication by Cowling, Powley, and White-
house [8]. Furthermore, the paper features several experiments directly comparing the
methods.

The authors use a small example game to showcase how the different the MCTS variants
work. In the showcase, they chose a particular state, and visualized the search tree for
every algorithm. As a consequence, Cowling, Powley, and Whitehouse [8] highlight the
differences between the search trees, and emphasize the differences in expected outcome.

For this thesis, the author expanded upon the idea of directly comparing the algorithms
with specific examples. Specifically, by considering more complex games. The intended
outcome was a richer analysis of the differences, losing simplicity. However, the goal was
to compare, and not instruct on how the algorithms work.

The chosen games were Phantom_Connect(4,4,4), and Dark_Split_Corridor(3,4).
These were the games used for the experiment. Thus, technical feasibility was the
main consideration. Nonetheless, among the choices of games, the author selected the
games for additional reasons. For a detailed explanation of the games see subsection
subsection 5.1.1 and subsection 5.1.2.

33

3. Methods

By choosing Phantom_Connect(4,4,4), the results of the experiment could be com-
pared directly to those by Cowling, Powley, and Whitehouse [8]. The game is a hidden
information version of Connect that is well understood, while not being trivial.

The author picked Dark_Split_Corridor(3,4) because it features a comparatively wide
decision tree, with a complex state, while still being technically feasible. Furthermore,
the moves are partially visible, leading to indirect player interaction, and incentivizing
knowledge management. These properties indicated an interesting game to analyze the
algorithms on.

The choices for characteristic game states, follow from the histories produced by the
experiment. The matches for Phantom_Connect(4,4,4) ran chronologically before those
of Dark_Split_Corridor(3,4). Unfortunately, 53 of the 450 matches did not record
the history in an easily extractable format. Thus, only 397 histories were available for
Phantom_Connect(4,4,4) for analysis. For Dark_Split_Corridor(3,4) this mistake
was rectified, and the analysis included all 450 histories.

The states were produced by methodical selection of actions, informed by the number of
occurrences in all histories. The number of occurrences is aggregated further upon the
outcome of the match. From this follows for each action a count for all histories for each
ply and for each outcome (first player wins, first player loses, or a tie).

The selection of the moves corresponds to (one of) the most often used move, that
ultimately leads to the most wins for the role in control. This process of selection results
in a history. The history is cut off one ply before the shortest recorded history. The
shortest recorded history for Phantom_Connect(4,4,4) was 7 plies long. The shortest
recorded history for Dark_Split_Corridor(3,4) was 5 plies long. The last state of the
generated history is the characteristic state for that game.

3.3 Feature Extraction for Setting the UCT-Border
The proposed modification of the MCTS is characterized by limiting the maximum ex-
pansion depth. The maximum expansion depth is also called the UCT-border. While
there was no formal analysis on the effect of where exactly the UCT-border is, there
is prior work on the feature extraction in the context of GGP. These features ideally
inform the decision for setting the maximum expansion depth. Furthermore, after suffi-
cient quantitative evidence, this may also pave the way towards a formal investigation
in future work.

The literature includes two approaches, static analysis (sometimes also offline analysis),
and dynamic sampling (sometime also online analysis). The former is discussed in Schif-
fel and Thielscher [21], and Kuhlmann and Stone [15]. The latter is featured in the
publications by Clune [6], and Mańdziuk and Świechowski [17].

Static analysis concentrates on the static information of a game, which may be extracted
via the description. These features are characteristic for a game, and indicative of

34

3.4. Experiment Setup

properties relevant to search. For example, a game with a narrow tree, may only have
a small set of actions. As another example, serves a game with a high number of atoms.
This feature may indicate a complicated state. A more thorough analysis yields more
expressive results. When resources are limited, such as a competitive environment, the
expense may not be justifiable.

Dynamic sampling – another approach – includes sampling states, and doing statistical
analysis upon the recorded states. This is less general, but nonetheless useful in most
cases. For example, counting the number of possible states, given a role’s perspective.
This indicates how much information is actually hidden from this role.

For the value of the maximum expansion depth, two static-, and two dynamic features
were considered. The static features were the size of the state space, and the size of the
action space. The size of the state space may be given an upper bound by counting the
atoms defined by the game description language (GDL) description. The state space is
less or equal to the powerset of atoms. The tightness of the upper-bound varies, and can
be improved by incorporating rules. The size of the action space is the number of actions
defined by the GDL description. The dynamic features were the mean arity (viz. number
of branches of a node) of the game tree, and the average distance to the terminal nodes.

To determine the state- and the action space’s sizes, ground the logic program described
by the GDL description. The set of relations that are arguments of init/1, true/1,
and next/1, form the state space. The set of relations that are the second argument of
legal/2 constitute the action space.

The mean arity of the game tree is approximated by generating random histories, and
counting the number of possible turns at each ply. Starting from the initial state, ap-
ply random turns to the current state until reaching a terminal state. During each
step, record previously unseen non-terminal states into a set. For each state in the set,
calculate the number of unique turns.

Similarly, the average depth is calculated by sampling closed histories, and counting
their length. Starting from the initial state until reaching a terminal state corresponds
to a path from the root- to a terminal node in the game tree. Thus, the number of plies
is equivalent to the depth.

3.4 Experiment Setup
The conducted experiment was a tournament, playing two games, with the implemented
agents as contestants. The tournament was double-round-robin with self-play. Self-
play includes games where two instances of the same agent play against each other.
The selected games were Phantom_Connect(4,4,4), and Dark_Split_Corridor(3,4).
Both games are alternating two player zero-sum games with hidden information. Each
agent played fifty games as first moving-, and fifty games as second moving role, against
each contestant. The number of MCTS iterations were fixed, with an unlimited game
clock time, to remove any influence of implementation details. The contestants were a

35

3. Methods

clairvoyant MCTS agent, a MO-ISMCTS agent without a limited expansion depth, and an
agent using MO-ISMCTS with a fixed expansion depth. The design of the tournament
was informed by Cowling, Powley, and Whitehouse [8].

The mode of double-round-robin with self-play, ensures an equal number of matches for
each agent, and for each role. By balancing the number of matches, statistical com-
parison is more representative. Alternatives to double-round-robin tournaments include
elimination tournaments. Elimination tournaments are well suited for finding the best
agent among the contestants, using a smaller number of games. However, the smaller
number of games makes it more difficult to analyze why the agent is better.

The author of this thesis chose Phantom_Connect(4,4,4) as the first game because it
was also used as a game in the tournament conducted by Cowling, Powley, and White-
house [8]. The conclusions of the paper, served as a point of reference, and verification.
Additionally, the small state- and action space, classify it is a computationally tractable
game.

The second game Dark_Split_Corridor(3,4), is a computationally more intense game.
Furthermore, there seems to be less available literature on it. In contrast to the first
game, it does not feature ties, has a more complicated game state, and features a more
immediate player interaction.

The number of matches played was fifty per game, per role, and per agent. In total, for
each game this equates to 450 matches, and 250 matches per agent (not double counting
the games they played against themselves). The number of games was limited by the
high computational load, and consequentially the required time to run the experiment.

The number of iterations was fixed, while there was no time limit per ply. This enabled
the possibility to run the experiment distributely on multiple machines, while keeping
the results representative.

For both games, the number of MCTS iterations, were chosen as high as possible, while
keeping the total runtime feasible. With Phantom_Connect(4,4,4) the agents applied7500 iterations of MCTS per ply. Dark_Split_Corridor(3,4) due to its more complex
state, and the resulting longer individual iterations, was reduced to 2500 iterations.

The implemented agents were a clairvoyant (viz. cheating) MCTS agent, an unlimited-,
and limited MO-ISMCTS agent. The clairvoyant agent plays with the full game state
in view, instead of a partial view. Therefore, there is no information hidden to it.
Obviously, this leads to a significant advantage. The clairvoyant agent serves as an
upper bound of playing strength. Furthermore, an agent winning, tieing, or losing more
often against the clairvoyant agent is an indication of an advantage or disadvantage in
playing strength. The unlimited agent implemented MO-ISMCTS, and would be directly
compared to the limited counterpart. The limited agent had a set expansion depth of 4
for Phantom_Connect(4,4,4), and 5 for Dark_Split_Corridor(3,4).

The expansion depth depended on the static analysis, dynamic sampling, and most im-
portantly on the histories of the matches conducted by the unlimited agent. These

36

3.4. Experiment Setup

matches were conducted chronologically before the limited MO-ISMCTS agent. The his-
tories showed that the values chosen resulted in lower maximum expansion depth, while
not being too restricted.

37

CHAPTER 4
Implementation

The implementation consists of three modules, the engine, the tree (or node) data struc-
ture, and the agents. The engine is the foundational layer of the implementation. It
covers the elementary data structures, the game description language (GDL)-interpreter
and the match orchestration. The tree data structure is a representation of the dynamic
search tree discussed in section 2.2. The implementation of the three available agents,
apply Monte Carlo tree search (MCTS) onto the tree data structure.

The programming language of choice was Python with type-hints. The targeted versions
included 3.8 up to 3.12. The choice of Python was based on the readability, usage, and
because it’s interpreted rather than compiled, ease of debugging, and introspection. Fur-
thermore, by using libraries for solving logic programs, writing parsers, and orchestrating
multithreading, the scope of the project was more manageable.

4.1 Engine
The engine covers three parts, the elementary data structures, the interpreter, and the
match orchestration. The elementary data structures are modeled after the definition of
GDL. The interpreter uses the elementary data structures to receive and answer requests.
The match orchestration module uses the interpreter to conduct matches. This section
briefly summarizes the most important details for the implementation of the elementary
data structures, the interpreter, and the match orchestration.

4.1.1 Elementary Data Structures
The elementary data structures are organized into a hierarchy of classes (see fig. 4.1),
which closely follow the definitions of GDL. Symbol forms the bottom of the hierarchy. It
is a disjoint union of Primitive, and Relation. One level up is Sentence. A sentence
is either a fact or a rule. It consists of a head and a body. The head is a relation. The

39

4. Implementation

body is a sequence of Literal objects. A literal is a relation and a sign. A sequence
of sentences forms a Ruleset. The design and architecture was informed by the Python
API of the answer set programming (ASP)-solver clingo [12].

Primitive

Variable

+ name str

Number

+ number int

String

+ string str

Relation

+ name str | None

+ arguments Subrelation[]

Symbol

Subrelation

+ symbol Symbol

Sentence

+ head Relation

+ body Literal[]

Literal

+ atom Relation

+ sign Sign

Sign

+ value NOSIGN: 0; NEGATIVE: 1

Ruleset

+ sentences Sentence[]

Figure 4.1: The class hierarchy of the elementary data structures.

The Primitive class is the abstract base class, of Variable, Number and String. A
variable is only a name that may be used instead of any other symbol. A number is a
zero-ary relation, and an integer as name. Finally, a string is also a zero-ary relation,
with any characters as name. Strings are denoted inside quotes to distinguish between
relations and variables. These primitives are the bedrock of the hierarchy. They do not
have arguments, and therefore no children.

The Relation class consists of a name, that is either a str or None and a sequence
of arguments, with the type Subrelation. A relation with no name is a tuple. A
subrelation is a wrapper for either a relation or a primitive. The wrapper class allows a

40

4.1. Engine

type-safe total ordering between all symbols, and to distinguish a top-level relation and
a relation as argument.

Sentences are constructed with the Sentence class, consisting of a head with type Re-
lation and a body, a sequence of elements with type Literal. If the body is empty,
the sentence is considered to be a fact. If the body is non-empty, the sentence is a rule.
Literals are a Relations together with a Sign, which is either positive (i.e., NOSIGN) or
negative (i.e., NEGATIVE).

Finally, an ordered collection of sentences forms a ruleset which is instantiated with the
Ruleset class. In the implementation, Ruleset builds the rule-graph, and from that,
extracts the strongly connected components.

4.1.2 Interpreter
The interpreter uses the definition of a game to fulfill requests. The definition of a game
is given in GDL (see subsection 2.1.5). GDL is a dialect of Datalog, and therefore a
stratified logic program. The interpreter transforms the logic program, depending on
the request, and delegates it to a solver. Then the interpreter processes the solution,
extracts and returns the answer, and thus carries out the request.

The architecture of the interpreter is inspired by Kowalski and Szykuła [14]. The inter-
preter uses the ASP-solver clingo [12], more specifically its Python-API, to solve logic
programs. This approach was first described by Thielscher [28] and later by Möller et al.
[19].

The interpreter has to fulfill static, dynamic, and temporal requests. Static requests are
neither dependent on the state, nor sensitive to actions. These include what roles exist
in the game and what the initial state is. Dynamic requests either depend on the state,
and for one method the actions of the actors. The dynamic requests include, what the
next state is, which role sees what, what the legal moves are, what the goal values for
each role are, whether the state is terminal. Finally, there are two temporal requests,
enumerating all possible histories, and listing all possible states. See fig. 4.2 for the
methods of an interpreter.

The interpreter only considers relevant rules when fulfilling requests, by slicing the origi-
nal GDL definition. The relevant rules are grouped in the strongly connected components
of the rule graph. The rule graph is a directed graph, where nodes correspond to the
signature of a relation, and an edge represents the inclusion in the body of a rule.

Some rules depend on the distinct/2 relation, which holds if its arguments do not
unify. Literals containing the relation are substituted with the ASP binary comparison
(!=)/2 (viz. does-not-equal operator). A backtracking-solver would need to delegate to
the (/=)/2 (viz. does-not-unify operator).

The method for the role request is called get_roles. It answers which roles exist in a
game. The method extracts the rules where the heads are in the same strongly connected

41

4. Implementation

Interpreter

+ get_roles() Role[]

+ get_init_state() State

+ get_next_state(current: State | View, turn: Mapping[Role, Move]) State

+ get_sees(current: State | View) Mapping[Role, View]

+ get_legal_moves(current: State | View, role: Role) Mapping[Role, Set[Move]]

+ get_goals(current: State | View) Mapping[Role, int | None]

+ is_terminal(current: State | View) bool

+ get_developments(record: Mapping[int, State]) Iterator[State[]]

+ get_possible_states(record: Mapping[int, State | View], ply: int) Iterator[State]

Role: Subrelation State: Set[Subrelation]

View

Move: Subrelation

Figure 4.2: The class diagram of the interpreter.

component as the role/1 relation. The solution to the corresponding logic program
contains role/1 relations. Every argument of such a relation is a role. The solvers
answer may be cached.

The request for the initial state, is the interpreter’s get_init_state method. The solver
receives all rules which are relevant in respect to the init/1 relation. In the solution, all
arguments of the init/1 relations form the true atoms of the initial state. The solvers
answer may be cached.

Dynamic requests include an encoding of the state into the logic program. The state is
a set of atoms, representing the atoms that are true in this state. All other atoms are
assumed to be false. The encoding of a state is a series of facts. These facts match the
signature true/1.

The method get_next_state, represents the request for the next state. It takes two
inputs, the current state, and the turn. The solver receives all rules which have the
relation next/1 as head, and their relevant rules. Additionally, the current state is
encoded, and the turn is encoded with does/2 relations. A turn consists of moves,
which are pairs of roles and actions. The role is the first argument of the does/2
relation, while the action is the second. The solution to the logic program contains the
next state encoded with next/1 relations. All other relations in the solution may be

42

4.1. Engine

ignored.

Given a state, the method get_sees returns the views for each role in the game. The
derived logic program includes all rules with the sees/2 relation as head, their relevant
rules, and the encoded state. The solution consists of sees/2 relations where the first
argument corresponds to the roles, and the second to the atom that is visible to the role.
All other relations in the solution are irrelevant.

Similarly, the method get_legal_moves represents the request for the legal moves for
each role in the game, given a particular state. By slicing the GDL definition, such that,
only the relevant rules for all rules with legal/2 are included, and the state is encoded,
the interpreter derives the appropriate logic program. The solution of the logic program
encodes the legal actions of each role in the given state via the legal/2 relation.

To determine if a state is terminal, the interpreter offers the is_terminal method. The
method takes the state as input. The logic program derived from the GDL definition
includes all relevant rules to the terminal/0 relation, as well as the encoded state. If
the solution to the program includes terminal/0 the state is terminal.

Temporal requests model the match as a series of states, as a logic program. This logic
program is called the temporal extension [28]. The temporal extension of a GDL definition
swaps out the init/1, true/1, and next/1 relations for a holds_at/2 relation. The
holds_at/2 relation’s first argument is the atom, while the second argument is the ply
number. It also transforms relations that are relevant in a temporal context by adding
the _at suffix, and adding the ply number as another argument.

The get_developments method is a temporal request, and can enumerate all possible
histories. It takes any number of states paired with their ply number, and returns all
histories that are compatible with the states. The interpreter transforms the original
GDL definition into the temporal version, and encodes the states at their respective ply
with holds_at/2 relations. The resulting logic program has multiple solution. Each
solution represents a history. The state at a given ply of a history is encoded with
holds_at/2.

Similarly, the get_possible_states method may be used to enumerate all possible
states given a collection of views and their ply numbers. Optionally, the method
also takes states with ply numbers. The resulting temporal logic program consists
of holds_at/2 and sees_at/3 rules. Each solution encodes a possible history. The
interpreter extracts the possible solutions by filtering the holds_at/2 relations by ply
number.

4.1.3 Match orchestration

Match orchestration is divided into two modules, the actors, and the general game
playing (GGP)-gamemaster (see subsection 2.1.2 and [10]). The actors are objects defined
by the Actor class. They serve as the interface between the agents and the gamemaster.

43

4. Implementation

The gamemaster is represented by the Match class. It centrally mediates the actors, and
manages the match’s history.

The Actor class serves as the bridge between the gamemaster, and the agent. As a
bridge, there is nearly no business logic, except enforcing disqualification when the game
clocks run out. The gamemaster sends the signals discussed in subsection 2.1.2 via the
methods send_start, send_play, send_stop, and send_abort to notify the agent of
transitions in the match’s phase. The return values of those methods are the respective
answers.

The Match class is the representation of the gamemaster. It has a copy of the ruleset, an
interpreter, a mapping of roles to their actor, the start- and game clocks, and the history.
Once the match is over, the gamemaster also holds a mapping of roles to utilities.

4.2 Tree Data Structure
All implemented agents (see section 4.3) use a specialized tree data structure as a search
tree. The tree data structure is a root node that links to its children. Each node may
link to its parent (except the root node), and to its children (except the terminal nodes).
The implementation consists of two types of nodes, perfect information nodes and infor-
mation set nodes. There are no subtypes to perfect information nodes. There exist two
subtypes of information set nodes, hidden information nodes, and visible information
nodes. Hidden information nodes are for plies where the agent is not in control, while
at visible information nodes the agent makes a move.

4.2.1 Perfect Information Nodes

Perfect information nodes (see subsection 2.2.1) are implemented as a class. The class’
name is PerfectInformationNode and it specifies a mutable stateful object with five
attributes, and four methods. The attributes are named parent, children, state, turn,
and valuation. The methods are called expand, evaluate, develop and trim.

As the name suggests, the parent attribute is a link to the parent of a node. If the
parent is None the node is the (current) root node. The distance from the root node,
also implicitly defines the depth of a node. Generally, the depth of a node is defined to
be parent.depth+1 where the depth of the root is 0.

In the implementation of search trees, the edges correspond to the mutable mapping
children. The mapping’s keys are turns, while its values are the child nodes. The keys
represent the edge’s labels. In perfect information nodes, the mapping is assumed to be
bijective. Therefore, each turn maps to exactly one node, and there is an edge for every
child node.

Each node represents the state of a game, stored in the attribute state. The root node
holds the initial state. The state of a node cannot change— it is immutable.

44

4.2. Tree Data Structure

After a ply, an agent may record the turn in the attribute turn. While not strictly
necessary, it is useful for pruning branches that are no longer relevant. Namely, after
turn is set, all entries in the mapping children with a different key are obsolete.

The attribute valuation stores the current valuation. It is mutable, as the MCTS-
algorithm updates it during its iterations.

The method expand creates the child nodes, links them, and stores the links into chil-
dren. It takes one argument, an interpreter. Using the interpreter, it enumerates each
follow-up state, and the corresponding turn. It creates a PerfectInformationNode with
the followup state as state, for each follow-up state. These nodes are mapped, with the
turns as keys. The expand operation is idempotent.

With the evaluate method, the node is evaluated, thereby setting or updating the
valuation attribute. The method takes three arguments, an interpreter, an evaluator,
and a valuation factory. The evaluator uses the interpreter to produce a utility value
from the state of the node. If the node already has an valuation that is not None, the
propagate method aggregates the utility to the existing valuation. In the other case,
the valuation factory produces a valuation and stores it in the valuation attribute.

During the progression of the game, the agents need to keep the tree up-to-date. The
update process is fairly simple in perfect information games. As the moves are observable,
updating the tree consists of setting the turn value for each node and walking the edges
with the correct turns.

Nodes are updated with the develop method. Calling develop returns the node on a
depth that is equal to the ply number, and for perfect information games, a state that
equals the view— the current state. The method takes three arguments, an interpreter,
the ply number, and the view. With the interpreter’s get_developments method, the
method iterates through all possible histories. For perfect information games, there is
(usually) only one possible history. With the turns generated by the history, the method
walks down the tree until reaching the correct node.

Finally, trim deletes all links to obsolete children. Without the links, the garbage
collector is free to collect the children.

4.2.2 Hidden Information Nodes
Hidden Information Nodes are implemented via the HiddenInformationNode, which is
informed by the concepts discussed in subsection 2.2.2. It is used for plies where the role
of the actor is not in control. The class defines stateful and mutable objects. It has six
attributes role, possible_states fully_enumerated, fully_expanded, parent, and
children. It has three methods: branch, evaluate, and develop.

The attributes of HiddenInformationNode encode the current knowledge of the match.
In role is the role from which perspective the tree is. It is the same value for all nodes
of the tree. The information set of a node is stored in possible_states. It is a set

45

4. Implementation

of states that share the same view. The attribute fully_enumerated is true if the
information set is complete. The attribute fully_expanded is true if, for every possible
state, all possible turns are linked in children. Both parent, and children fulfill the
same function as in the implementation for perfect information nodes.

The mapping children represents the edges to its children, similar to PerfectInforma-
tionNode, however, the mapping is no longer guaranteed to be bijective. Furthermore,
a hidden information node may only have up to two children, a visible child or another
hidden child. As the moves are unobservable, all keys in the mapping point to one of
those two children. The key of an entry consists of the assumed state, paired with the
turn.

To add edges, the method branch takes two arguments, an interpreter and a state of
possible_states. Using the interpreter, the method expands the children map with
an edge per turn and the follow-up state, only for the state in the arguments. If the role
in role is in control in the follow-up state, the visible node is the target. In the other
case, the hidden child is the target.

As there are only two children for hidden information nodes, the develop method for in-
formation set nodes walks down the hidden information children until the depth matches
the last ply. Then, it chooses the visible child node. Should a link not be branched yet,
the method uses arbitrary states from possible_states to reach its target.

4.2.3 Visible Information Nodes
The implementation of the second type of information set node, the class VisibleIn-
formationNode, is also informed by the concepts discussed in subsection 2.2.2. The class
describes a stateful mutable object. Compared to HiddenInformationNode it has two
additional attributes view, and move. Additionally, the children attribute differs. The
class has one additional method, trim.

The attribute view is an optional view during the ply. The attribute is set to None, until
the agent receives the view from the gamemaster. Once it is set, all incompatible states
in possible_states are obsolete. The trim method will later remove these states.

The attribute move is an optional move. It is set after the agent has committed to a
move. All edges that are incompatible become obsolete, once it is set.

The mapping children points from pairs of states (the assumed state), and moves to
children. It is neither guaranteed to be injective, nor surjective. Therefore, two edges
may point to the same node, and not all follow-up states are covered. Other than
HiddenInformationNode, an instance of the VisibleInformationNode class may have
more than two children. Visible children are grouped by the view of the follow-up
states. Therefore, two follow-up states with the same view, are part of the same child’s
possible_state attribute. Hidden nodes are not grouped. Therefore, each move leads
to a different hidden node. Thus, if two edges point to the same hidden child, their
states differ, but not their move.

46

4.3. Agents

As with PerfectInformationNode, trim deletes all links to obsolete children. Without
the links, the garbage collector is free to collect the children.

4.3 Agents
The agents are autonomous players, using MCTS to play games. The agents use the
data structures and algorithms from the previous sections to search for the best move.
The author implemented three types of agents: an agent using MCTS for games with
perfect information, called MCTSAgent; an agent using single observer-information set
Monte Carlo tree search with partially observable moves (SO-ISMCTS+POM), called SO-
ISMCTSAgent; and an agent using multiple observer-information set Monte Carlo tree
search (MO-ISMCTS) called MOISMCTSAgent. This section discusses the architecture used
to implement the agents, as well as each agent separately. The design and implementa-
tion of the agents is informed by Cowling, Powley, and Whitehouse [8].

4.3.1 Architecture

The architecture of the agent’s implementation is based on the composition over in-
heritance design principle. The design principle recommends to use composition over
inheritance, if it can be used instead of inheritance. Consequently, the implementation
is separated into multiple classes that could be aggregated. This decision led to a more
modular code base, and was easier to understand for the author. For an overview, consult
the class diagram in fig. 4.3.

The entry point for an agent is the calculate_move method. The method receives the
numbered ply, the current view and information about the game clock. As the name
suggests, it calculates the next move. How it calculates the move is based on the search
algorithm. The search algorithm for the implemented agents was an adapted form of
MCTS.

Any of the three MCTS-agents is also a tree-agent. Tree agents characteristically contain
two minor- and two major operations. The minor operations are descend and get_-
key_to_evaluation. The major operations are update and search.

The method descend receives a key as input, and is called at the very end of the cal-
culate_move. The key is the label of an edge, prunes all incompatible edges, and if
possible, descends the (main) search tree. The key corresponds to the best move.

The get_key_to_evaluation operation builds a map that points each edge to an eval-
uation. Depending on the agent and type of game, an edge is not necessarily correlated
to only one move. Thus, to evaluate the moves, a calling method has to further process
this mapping.

With the update method, the agent ensures that the tree(s) are up-to-date before they
start the search. The update method receives as input the current ply number and a

47

4. Implementation

Agent

+ prepare_match(role: Role, ruleset: Ruleset, ...) None

+ calculate_move(ply: int, total_time_ns: int, view: View) Move

+ conclude_match(view: View) None

+ abort_match() None

TreeAgent[K, E]

+ descend(key: K) None

+ get_key_to_evaluation() Mapping[K, E]

+ update(ply: int, view: View, total_time_ns: int) None

+ search(search_time_ns: int) None

MonteCarloTreeSearchAgent[K, Tuple[int, float]]

+ step() None

AbstractMCTSAgent[K]

SingleObserverMonteCarloTreeSearchAgent[K]

+ tree Node[float, K] | None

+ selector Selector[float, K] | None

+ evaluator Evaluator[float] | None

MultiObserverMonteCarloTreeSearchAgent[K]

+ trees Mapping[Role, ImperfectInformationNode[float]] | None

+ roles Set[Role] | None

+ selectors Mapping[Role, Selector[float, K]] | None

+ evaluators Mapping[Evaluator[float]] | None

AbstractSOMCTSAgent[K]

MCTSAgent[Turn]SOISMCTSAgent[Move | Turn]

MOISMCTSAgent[Move | Turn]

Figure 4.3: The class diagram for the agents. Protocols (viz. interfaces) are in a light
shade of gray, and with dashed borders. Abstract classes have a darker shade of gray.
Concrete implementation classes are in the darkest shade of gray.

view. The view in perfect information games is the full state. In imperfect information
games, it is only the actual view of the agent.

Finally, in search the agent uses the MCTS-algorithm to progress the search tree. As
input, the method only takes the remaining available time. It repeats iterations of MCTS
until the available time expires.

The MCTS-agent’s calculate_move is shared among all implemented agents. First, cal-
culate_move calls update to get the tree(s) to the latest version. Then, it invokes
search. Afterward, it uses get_key_to_evaluation to map the edges labels to their
evaluation. The mapping is again processed by grouping, and aggregating by move. The
resulting mapping points from a move to an evaluation. From this mapping it is possi-
ble to pick a move, by picking the move with the maximum evaluation. Finally, it calls
descend to trim the tree(s), of all branches that are incompatible with that move.

Both the MCTSAgent-class and SOISMCTSAgent-class inherit from the abstract class Ab-

48

4.3. Agents

stractSOMCTSAgent. An object of type AbstractSOMCTSAgent is defined by a tree, a
selector, and an evaluator. The tree is the search tree (see section 4.2) which MCTS is
applied to. The selector picks a child node from the available children of a node. In
this implementation, it uses the UCT algorithm for selection. The evaluator returns the
utility of a state. In this implementation, it uses random playouts to evaluate a given
state.

The MOISMCTSAgent is characterized by the attributes trees, selectors and evalua-
tors. These three attributes are maps, that point from the role to their respective data
structure. Trees are search trees (see section 4.2). As the UCT value depends on the
valuation of a node, which in turn depends on the role, each selector uses UCT to pick
a child node from a node for their associated tree. Finally, the evaluators do random
playouts from the perspective of the role, to evaluate a given state.

4.3.2 Single Observer-Monte Carlo Tree Search
The abstract base-class AbstractSOMCTSAgent is the foundation of both the MCTSAgent
(for perfect information games) and SOISMCTSAgent (for imperfect information games).
The base-class applies the four phases of MCTS in step. The selector handles the select
phase, the tree itself handles the expand phase, the agent determines the valuation of a
node using the evaluator, and, finally, the tree handles the select phase. MCTSAgent as-
sumes the tree is a perfect information tree (see subsection 4.2.1), while SOISMCTSAgent
assumes an information set tree (see subsection 4.2.2 and 4.2.3).

The method update of AbstractSOMCTSAgent ensures that the tree is up-to-date. It uses
the tree’s develop method to walk to the node that has a depth that corresponds to ply
number. For SOISMCTSAgent, the method uses some time to sample from the possible
states, and add them to the node. This allows more possible states to be available for
the selection phase.

During step, AbstractSOMCTSAgent iterates MCTS-algorithm once. The MCTS-
algorithm (see section 2.3) is divided into the four phases select, expand, simulate and
backpropagate. With the agent’s selector, the step routine iteratively picks child nodes
until it reaches an unexpanded node, which concludes the select phase. The expand
phase uses the state of the node to add children nodes and link them. The same state is
used for the simulation phase. The step routine uses the agent’s evaluator to estimate
a utility for the state. In the backpropagate phase, starting from the expanded node,
the routine updates each node’s evaluation with the utility, and walks up to the parent.
The phase ends after reaching the current root node.

The MCTSAgent overrides descend and get_key_to_evaluation. The method descend
receives a key. The key is the edge’s label. The label for perfect information trees
are turns. Thus, the agent can already walk the tree on non-simultaneous plies. The
operation get_key_to_evaluation maps each possible turn to the evaluation of a node.
The turn is associated with the node 𝑛, if from the current node 𝑐, there is an edge with
the turn as a label on it, that leads to the node 𝑛.

49

4. Implementation

The implementation for step of SOISMCTSAgent slightly differs from MCTSAgent’s. Be-
fore the select phase starts, it picks one of the available possible states. Based on this
state, the selector picks a child. From this child, the method selects another possible
state, and so forth. The method, upon reaching an unexpanded node, expands the tree
based on the last determinized possible state. From there, the method uses the same
implementation as its super class, for simulation and backpropagation.

After a SOISMCTSAgent picked a move (during calculate_move), it calls the descend
method. The method can no longer walk down the tree, as it does not know the ac-
tual state. Therefore, it can only prune incompatible branches. Incompatible branches
include those which do not have the picked move on the label of the edges.

4.3.3 Multiple Observer-Monte Carlo Tree Search
The MOISMCTSAgent uses MO-ISMCTS to find the best move. As the name suggests, it
uses multiple trees, one for each role in the game, to accomplish this goal (see also
subsection 2.3.5). Every role’s tree is inherently linked to their perspective. The tree
that matches the role of the actor’s is synonymously called the main tree.

The MOISMCTSAgent describes a stateful object with three maps, each pointing the roles
in the game to a tree, a selector, and an evaluator. The tree consists of hidden and
visible information nodes. Modelling the available information, and how it is updated,
necessitates this distinction. At hidden information nodes, the agent did (or rather
will) not receive new information. Visible information nodes support incorporating new
information. The former are used for plies where the agent is not in control, while the
latter are used if the agent has to move. Thus, if a role is not in control, the corresponding
node is a hidden node, and it is a visible node if the role is in control. As a consequence,
the trees of each role are shaped differently and contain different information.

When incorporating new information with update, it only updates the main tree. During
the update, the tree’s develop method ensures the current node is at the same depth
as the ply’s number. Furthermore, it guarantees the current node’s possible states are
compatible with the view, discarding any that are incompatible. In the second phase
of update, the method spends some time sampling the space of compatible states and
adding them to the possible states of the node. As with SOISMCTSAgent, this enables
more possible states to be picked during the selection phase.

Conceptually, step describes the four phases of MCTS, more specifically MO-ISMCTS.
It starts by picking one of the possible states, called the determinization. The deter-
minization may only originate from the main tree. Afterward, the interpreter generates
a matching history for the determinization. The history enables synchronization of the
trees to compatible branches. From there, the method applies the role-specific selector
to its matching tree for all roles that are in control. As there is a determinization, and
each role is in control, there is a unique edge in each tree. By extension, there exists a
unique move for each role. These moves are combined into a turn. The turn is applied
to the state. The state together with the moves determine the edges of the trees. This

50

4.3. Agents

is repeated, until the method reaches an unexpanded node, concluding the select phase.
During the expand phase, the procedure expands the main tree’s current node, assuming
the determinization. As a consequence, only edges where the label contains the deter-
minization are added. Each selector simulates a separate playout which is propagated
back to their respective tree.

Each call of step during calculate_move, is significantly pricier, in comparison to
MCTSAgent or SOISMCTSAgent. Therefore, MOISMCTSAgent takes significantly more time
to reach the same number of iterations. However, the procedure overall takes fewer
iterations to provide good moves.

Nonetheless, the implemented agents all feature a common base of implementation. The
common base of implementation, was useful in debugging and for comparison during the
experiment. The results of the experiment are featured in the next chapter, chapter 5.

51

CHAPTER 5
Results

The results include insights due to the analysis and the outcome of the experiment.
First, is a qualitative evaluation of the effectiveness of the four studied Monte Carlo tree
search (MCTS) modifications. Second, follows a review of characteristic features found
for the games Phantom_Connect(4,4,4) and Dark_Split_Corridor(3,4). Third and
final, reports on the results of the experiment run on the same games.

5.1 Effectiveness of Existing Monte Carlo Tree Search
Modifications

To evaluate the effectiveness of determinizing MCTS and of information set Monte Carlo
tree search (ISMCTS), this section contains the case studies for Phantom_Connect(4,4,4)
and Dark_Split_Corridor(3,4). First, the case studies outline the most important
rules and properties of the games. Then, given a characteristic game state, the different
algorithms are considered. For each algorithm, the author of this thesis discusses the
process of calculating the next move, and highlights the differences. Commonly, deter-
minizing MCTS, single observer-information set Monte Carlo tree search (SO-ISMCTS)
and single observer-information set Monte Carlo tree search with partially observable
moves (SO-ISMCTS+POM) end up reaching similar conclusions. However, the convergence
is mostly incidental, and due to the structure of the games.

5.1.1 Case Study Phantom_Connect(4,4,4)

The game Phantom_Connect(4,4,4) is an alternating two-player zero-sum game with
hidden information. It is an instance of the 𝑛, 𝑚, 𝑘-connect family. Those games feature
an 𝑛 × 𝑚 board. Each player marks cells with their initial (usually x and o), where the
first player to mark 𝑘 in a row, column, or diagonal wins the game. The game ends in
a draw if the win-condition is not yet met, but all cells are already marked. Arguably

53

5. Results

the most well known of this family is Tic-tac-toe (Connect(3,3,3)). Some Connect
games feature modifications to their rules, like gravity and phantom. In gravity, a player
only chooses the column, and the mark lands on the lowest not-already marked row. A
famous game in this category is known as 4-Connect (Gravity_Connect(7,6,4)).

The phantom modifier, hides the status of a cell for all players, until they try to mark
it. Once they mark a cell, they either know that it was not occupied before, resulting in
their mark being present, or revealing the other player’s mark. Should a player attempt
to mark an already occupied cell, they may move again. Thus, the variant is no longer
alternating.

The notation for the actions is (𝐶, 𝑅), and the moves are denoted with Role ∶ (𝐶, 𝑅).
The column of the marked cell is denoted with 𝐶 and the row is denoted with 𝑅. The
roles are x (the first-moving player) and o the second-moving player.

The characteristic game state for the case study is in its seventh ply, after the sixth turn
has been played. Eq. 5.1 lists its history. See fig. 5.1 for a visual representation of the
characteristic state.

𝑠0 x∶(1,4)−−−−→ 𝑠1 o∶(4,4)−−−−→ 𝑠2 x∶(4,1)−−−−→ 𝑠3 o∶(1,4)−−−−→ 𝑠4 o∶(3,3)−−−−→ 𝑠5 x∶(3,2)−−−−→ 𝑠6 (5.1)

1 2 3 4

1

2

3

4

next: o

x
x

o
o

x
x

o

o
o

x
x

Figure 5.1: The characteristic game state 𝑠6 for the case study of Phantom_Con-
nect(4,4,4). A cell is either blank, or features up to three marks. The marking
player’s symbol is seen in the center of the cell. The marks below show which player
knows the mark of a cell.

54

5.1. Effectiveness of Existing Monte Carlo Tree Search Modifications

The state 𝑠6 favors x, as o is no longer permitted to make mistakes, to avoid a potential
loss. Acceptable actions include (2, 3), (3, 2), and (4, 1). Both (3, 2), and (4, 1) allow
immediate subsequent moves. Therefore, gaining more information in the process. Thus,
they are both optimal moves.

From the perspective of o, 78 unique states are possible, where 5 (one of which is 𝑠6) of
these feature situations, where a wrong move from o might result in a loss. The board
has 16 cells, 3 cells are known to o, and 5 cells are marked in total, thus 78 = (132) states
are possible. A player cannot distinguish the order in which the opponent marked the
cells, thus 158 = 13!(13−2)! histories lead to the 78 states.

Determinizing MCTS has at least 78 determinized trees, one for each unique state. Until
the algorithm runs out of time or iterations, it chooses one of the trees and applies MCTS.
From each root node, of every tree, the procedure counts the number of iterations of the
child-nodes. The number of iterations is aggregated by the move that lead to the child.
The algorithm returns the move with the highest number of iterations.

Given that in only 5 of the 78 determinized trees— less than 7%, the optimal moves
converge to the acceptable moves, determinized MCTS would probably pick (1, 1) or (2, 2).
The overwhelming number of determinizations are positions where x cannot secure a win
in the next ply. In those positions, (1, 1) or (2, 2) would indeed be beneficial, as o would
be able to secure a win with one more move. Determinized MCTS fails to weight the
threat of losing accordingly.

SO-ISMCTS only features one tree, holding 78 unique possible states. Each history leads to
a separate branch of the tree. The procedure cannot distinguish the correct branch and
thus has to either create a new tree, and discard the previous iterations, or iterate from
the last certain ancestor of the current node. At the start of an iteration, the procedure
assumes a possible state. Next, the algorithm applies the four phases of MCTS, until
the break condition. Until this point, SO-ISMCTS and determinizing MCTS are similar.
However, as there is only one tree, SO-ISMCTS does not need to combine the data into a
single tree. This allows the procedure to potentially reuse the previous iterations.

Nonetheless, despite the gained efficiency, SO-ISMCTS likely performs poorly, as it still
suffers from strategy fusion. Only 5 out of the 78 possible states are similar enough
to the actual state, such that their optimal move coincides with the acceptable moves.
In most of the possible states (1, 1) and (2, 2) is far more likely to lead to a win, than
defending on (2, 3), (3, 2), or (4, 1). Even if the probability is low, SO-ISMCTS fails to
consider the importance of not losing.

The improved SO-ISMCTS+POM also uses only one tree, but addresses a fundamental
weakness over the previous attempts, by removing the assumption that the opponent’s
moves can be observed. Without the assumption, the algorithm differentiates between
hidden and visible nodes. Every non-terminal hidden node only has one or two chil-
dren (see subsection 2.3.4). Ultimately, SO-ISMCTS+POM never needs to throw away the
tree. Starting from 78 possible states, the procedure determinizes a possible state. On

55

5. Results

visible nodes, the usual MCTS selection step ensues. At hidden nodes, the algorithm
determinizes again.

Even though, the impending loss is given algorithmically adequate weight, by aggregating
all possible states in hidden nodes, the algorithm still likely fails to address the threat
because the opponent’s model is reduced to random moves. Given the overwhelming
number of bad moves x could do i.e., not picking (2, 3) to win, it still fails to acknowledge
the threat. However, this is not due to strategy fusion, but due to the high number of
available options for x.

Finally, multiple observer-information set Monte Carlo tree search (MO-ISMCTS) im-
proves the opponent’s model, by once again using multiple trees. Each role (i.e., x and
o), has their dedicated tree. Each tree has visible and hidden nodes, and thus does
not assume observable moves. Instead of sampling a random state at hidden nodes, the
selection continues at the other role’s tree. The benefit is two-fold. Not only is the
opponent’s model more strategic, but also the iterations are efficiently allocated and can
be reused for later plies.

The improved MO-ISMCTS will rank the actions (2, 3), (3, 2), and (4, 1) high. Any other
actions either lead to losses because x will win the diagonal, or x to block o’s attempt
to get the other diagonal.

The analysis shows that MO-ISMCTS has a decisive advantage in a characteristic state
for this game. Additionally, Cowling, Powley, and Whitehouse [8] empirically came to
a similar result. Their explanation is that Phantom_Connect(4,4,4) triggers strategy
fusion, which leads to overly optimistic and pessimistic assumptions. The optimistic
assumption is that the agent can respond to the opponent’s actions perfectly. The
pessimistic assumption is that the opponent can also perfectly respond to the agent’s
move.

All four methods stand to benefit from weighting the possible states. Cowling, Powley,
and Whitehouse [8] agree, and together with opponent strategy modelling, suggest such
an improvement in their outlook.

5.1.2 Case Study Dark_Split_Corridor(3,4)

The game Dark_Split_Corridor(3,4) is an alternating two-player zero-sum game with
hidden information. It is an instance of the 𝑛, 𝑚-corridor family. An 𝑛, 𝑚-split corridor
game is played on two 𝑛 × 𝑚 boards, where each player controls the sole pawn of that
board. The pawn starts in the column with the index ⌊(𝑛 + 1)/2⌋ of the first row. The
pawn is allowed to move to any orthogonally adjacent cell. The player, whose pawn
reaches the last row first, wins. Besides moving the pawn, a player may choose to
construct a barrier between two orthogonally adjacent cells on the opponent’s board.
A pawn cannot cross a barrier. The player may only construct a barrier, if it is still
possible to reach the last row.

56

5.1. Effectiveness of Existing Monte Carlo Tree Search Modifications

The dark variant, hides the barriers from the players’ views, while the pawns’ positions,
are still visible to both players. Should a player attempt to move a pawn such that it
crosses a barrier, the pawn stays put, and the barrier is revealed. Players see revealed
barriers.

There are two classes of actions in dark split corridor, moving and blocking. All moving-
actions are fully observable to the opponent. Actions that block, cannot be differentiated
from one another. As a corollary, both families of actions are distinguishable. Therefore,
a player can judge if the other player moved or blocked.

The notation for the actions are south, west, north, east, denoting the movement, and(𝐶1, 𝑅1), (𝐶2, 𝑅2) denoting the blocks. The coordinates (𝐶1, 𝑅1) and (𝐶2, 𝑅2) ought to
be orthogonally adjacent, and as a convention (𝐶1, 𝑅1) is the cell that is more northwest
than (𝐶2, 𝑅2). The columns are denoted as 𝑎, 𝑏, and 𝑐. Rows are enumerated 1 to 4.

The characteristic game state for the case study is in its fourth ply, after the third turn
has been played. The history is listed in eq. 5.2. Fig. 5.2 offers a visual representation
of the characteristic state.

𝑠0 left∶south−−−−−−→ 𝑠1 right∶south−−−−−−→ 𝑠2 left∶south−−−−−−→ 𝑠3 right∶(𝑏,3),(𝑏,4)−−−−−−−−−→ 𝑠4 (5.2)

a b c a b c

1

2

3

4

P

p

Figure 5.2: The characteristic game state 𝑠4 for the case study of Dark_Split_Corri-
dor(3,4). left is in control, indicated by the double border. The pawns are visible to
both players. The barrier is still hidden to left indicated by the gray color.

57

5. Results

The state 𝑠4 favors left over right. The second-moving role right is forced to respond,
at least until left makes a mistake, then left falls back to the more reactive role. In
an advantageous position, victory is assured, should the disadvantaged role not block.

From the available actions, both moving and blocking are admissible. Given the power of
clairvoyance, moving west, or east is desirable. Realistically, left cannot be sure which
of the available crossings is blocked. Either right bluffed and set the barrier somewhere
unexpected, or it set the barrier at the expected crossing (which is the case in 𝑠4). Thus,
there is a slight chance that calling the bluff and moving south wins the game. However,
in 𝑠4 the move is suboptimal. While it does not lose the game, it forces left to be the
reactive player.

Given the uncertainty, blocking actions could be considered. If right did not bluff, then
moving west or east can be defended with the appropriate (𝑎, 3), (𝑎, 4) or (𝑐, 3), (𝑐, 4)
answer. From there, left needs at least three plies for a victory, while right can win
in two. Eventually, left has to block some crossing as well to increase the distance for
right. If right bluffed, then moving increases the number of plies until victory by one
in the worst case, and right can increase this distance by blocking again. Therefore,
left will need to block to still be able to win.

The available blocking actions can be categorized into non-bluffs and bluffs. The non-
bluffs are (𝑏, 2), (𝑏, 3)— blocking the immediate forward movement, and (𝑏, 3), (𝑏, 4)—
blocking the straightforward path. Therefore, all other options could be included. How-
ever, blocks concerning the first row are riskier, as they may only be useful later in the
game. Thus, as bluffs (𝑎, 2), (𝑎, 3); (𝑎, 2), (𝑏, 2); (𝑎, 3), (𝑎, 4); (𝑎, 3), (𝑏, 3); (𝑏, 2), (𝑐, 2);(𝑏, 3), (𝑐, 3); (𝑐, 2), (𝑐, 3); and (𝑐, 3), (𝑐, 4) are acceptable moves.

As the moves in plies 1, 2 and 3 are fully observable, there are only 15 possible moves,
and by extension only 15 possible histories, one for each potentially blocked crossing.
Due to the symmetry of the game, 12 states have a mirrored equivalence.

An agent using determinizing MCTS considers the 15 possible states as 15 separate trees.
In only one of those south is not the optimal move. Therefore, it is likely that after
aggregating all the iterations from the trees, the procedure picks south. Unfortunately,
the one tree, where the chosen move is suboptimal, corresponds to the real state.

While, the move is suboptimal, not all is lost. Furthermore, south reduces the number
of possible states to 1, which significantly improves the performance of determinizing
MCTS for subsequent turns.

SO-ISMCTS also tracks 15 possible states, managed in a single tree. Due to the assump-
tion, that all moves are fully observable, the procedure is either forced to rebuild the
tree from scratch, or start from above the current root. At this point, the algorithm
randomly determinizes from the possible states. Like with determinizing MCTS only one
of the possible states has south as suboptimal move. The possibility that right blocked,
is judged equal to all other states. As south leads to wins most of the time, it is the
preferred move.

58

5.2. Characteristic Features of Games

In the case of SO-ISMCTS+POM, the same 15 possible states also remain in a single tree.
The model never assumes that a move is visible, allowing to reuse the previous iterations,
from before plies. The algorithm assumes right chose their moves randomly. Therefore,
the algorithm likely will come to the same conclusion as its predecessors. Most of the
moves right could have made, have south as the optimal answer.

This limitation is only partially overcome with MO-ISMCTS. Due to the procedure deter-
minizing at the root node, all states 15 states are equally likely. Thus, south stays the
most promising action. However, unlike the previous methods, MO-ISMCTS spend more
iterations in this part of the tree.

Given the analysis, all methods select the same move south. This move is judged to be
suboptimal, when clairvoyant. However, each method takes different paths to reach the
same conclusion because the actual state is outnumbered by alternatives. Due to the
equal weighting, they hide the more relevant game states. Frank and Basin [9] call this
phenomenon non-locality (also described in [8]).

For this game, all methods would benefit from a more sophisticated weighting of the
possible states. Especially SO-ISMCTS+POM and MO-ISMCTS stand to gain the most,
as they could effectively use the win-ratio of the determinized playouts as weight (or
loss-ratio should the opponent be in control).

5.2 Characteristic Features of Games
The UCT-border is constrained by two boundaries, zero and the lowest depth of the
game. Zero is the minimum, as it is not possible to expand to a depth less than zero.
It is equally impossible to expand beyond terminal nodes. Usually, during a match, an
agent using MCTS will only encounter terminal depth, when the match has progressed
and is close to the end. In the plies before that, the UCT-border is constrained by the
limited resources available to the algorithm. If a proposed limit for the UCT-border is
too low, the effect will be noticeable but likely prohibitively negative. If the limit is set
too high, the tree might not ever be constrained. Finding the correct value is especially
difficult in the context of general game playing (GGP), where the players cannot be fine-
tuned to the games. The only available information remains the description of the game
(static analysis), and sampled states (dynamic sampling).

Four characteristic features of games are the cardinality of the state space, the cardinality
of the action space, the average arity of the game tree, and the average depth of the
terminal nodes. All four features are closely related to the size of the game tree and by
extension the search tree.

5.2.1 Cardinality of State Space
The state space is the set of all possible spaces. The cardinality of the state space serves as
a lower bound for the total number of nodes in the game tree. In the best case, each state

59

5. Results

is mapped to exactly one node. For complex games, it is often impractical to calculate
the exact number of states. In service to brevity, the analysis for both Phantom_-
Connect(4,4,4), and Dark_Split_Corridor(3,4) only attempts to find approximate
upper bounds.

A state of Phantom_Connect(4,4,4) may have a cardinality up to 66. Enumerated by2 control/1 atoms, 32 cell/3 atoms, and 32 revealed/3 atoms. Each of the 66 atoms
that may be included or excluded in a state. Therefore, a first upper bound for the size
of the state space is 266.

A tighter upper bound for the cardinality of the state space is 2 ⋅ 516 ≈ 3.05 × 1011—
significantly less than the naive 266 ≈ 7.37 ⋅ 1019. Of the 66 atoms, 2 atoms describe
which role is in control. The rules dictate that exactly one role is in control. Therefore,
there are only 2 classes of states. The board has 16 cells. For each cell, there are two
atoms. One atom for each role that could potentially mark the cell. There can either be
no mark or one mark of a role (but not of both). Therefore, a cell may have 3 different
states. Finally, a marked cell can be revealed to the opponent, or remain hidden, two
states per marked cell. Unmarked cells cannot be revealed to either player. Thus, a cell
can be in 5 different states. First, not marked, second marked by x and not revealed,
third marked by x and revealed, fourth marked by o and not revealed, and fifth marked
by o and revealed. In total, resulting in 516 board configurations.

The game Dark_Split_Corridor(3,4) has a state consisting of up to 86 atoms. The sum
consists of 2 control/1 atoms, 24 at/2 atoms, 30 border/2 atoms, and 30 revealed/2
atoms. A naive upper bound for the cardinality of the state space is 286.

This upper bound can be reduced to at least 2 ⋅ (6 ⋅ 314 + 3 ⋅ 313 + 3 ⋅ 312)2 ≈ 2.46 × 1015.
The board of the game is split into two separate sub-boards, one sub-board for each
player. On a board, there is exactly one pawn, therefore a sub-board can be in 12
different states. The number of barriers is harder to count exactly, as it is dependent on
the position of the pawn. A crossing can be in three states, the barrier not constructed,
the barrier constructed and not revealed, and the barrier constructed and revealed. Per
sub-board there are 15 crossings. On the last two rows, there has to be at least one
crossing where no barrier is constructed. On the second row, there have to be at least
two empty crossings. Finally, on the first row, at least three crossings remain empty. In
total, each sub-board has 6 ⋅ 314 + 3 ⋅ 313 + 3 ⋅ 312 unique states.

5.2.2 Cardinality of Action Space

The action space is the set of all actions. The cardinality of the action space is an upper
bound for the arity of a single node, and by corollary a bound for the average arity of
the tree.

The action space of Phantom_Connect(4,4,4) is 16. All 16 have the signature cell/2.
One argument for each cell. Each cell may be marked by either player.

60

5.2. Characteristic Features of Games

The action space of Dark_Split_Corridor(3,4) is 19. A pawn may move in four
directions, and there are 15 crossings that may be constructed.

5.2.3 Average Arity
The arity of a state is the number of unique turns. The number of turns depends on the
number of actions. Furthermore, a turn consists only of legal actions from roles in control.
In non-simultaneous moving games, the number of turns is the number of legal actions.
Both Phantom_Connect(4,4,4) and Dark_Split_Corridor(3,4) are non-simultaneous
moving games.

For Phantom_Connect(4,4,4) the average arity is approximately 8.37. The average
arity was estimated experimentally. For the estimation 486, 000 histories were generated.
During generation 8, 002, 496 unique states were recorded. The estimation for the average
arity is the mean number of legal actions.

The average arity of Dark_Split_Corridor(3,4) is approximately 6.61. Similarly to
Phantom_Connect(4,4,4), the average arity was estimated by experiment. The estima-
tion consisted of 354, 000 histories, resulting in 13, 342, 062 unique states. The average
arity was estimated with the mean number of legal actions of these states.

While choosing an action for Phantom_Connect(4,4,4) removes the option for later
plies, the same is not true for Dark_Split_Corridor(3,4). Namely, moving the pawn
is (typically) reversible. Once all barriers are constructed, the legal actions reduce to a
minimum of 1 (moving the pawn in one direction) up to a maximum of 4 (moving the
pawn in all four directions).

5.2.4 Average Depth of Terminal Nodes
The depth of a node is defined by the distance to the root node. The leaf nodes of a
game tree correspond to the terminal states. The distance between the root and a leaf
node is the length of the associated history. Therefore, the average length of histories
corresponds to the average depth of the terminal nodes.

The average depth of terminal nodes for Phantom_Connect(4,4,4) is approximately21.86. The estimate is the arithmetic mean length of 619 801 histories. The theoretical
minimum depth is 7. A game with this depth features x marking a line, o not prohibiting
the line, and o not marking any of the line’s cells. The theoretical maximum depth is32, a draw where every cell is attempted to be marked twice, revealing the whole board
for both roles.

The terminal nodes of the game Dark_Split_Corridor(3,4) have an average depth of43.25. The estimation considered 127 601 histories. The theoretical minimum is 5. This
is a game where left moves down the board in every ply, and right does not block
left in doing so. The theoretical maximum is not finite, as both left and right could
just repeatedly move back and forth, never reaching the last row.

61

5. Results

Phantom_Connect(4,4,4) Dark_Split_Corridor(3,4)|𝑆| ≤ 3.05 × 1011 ≤ 2.46 × 1015|𝐴| 16 19𝑏̄ ≈ 8.37 ≈ 6.61̄𝑑 ≈ 21.86 ≈ 43.25𝑙 4 5
Table 5.1: The extracted numeric features compared for the games Phantom_Con-
nect(4,4,4) and Dark_Split_Corridor(3,4). |𝑆| is the cardinality of the state space.|𝐴| is the cardinality of the action space. 𝑏̄ is the average arity. ̄𝑑 is the average depth
of terminal nodes. 𝑙 is the chosen maximum depth for the experiment (see section 5.3)

5.2.5 Choice of Maximum Depth
The feature evaluation of Phantom_Connect(4,4,4) shows a significantly smaller state
space, and a game tree with slightly more branches, but not as deep, in comparison
to Dark_Split_Corridor(3,4) (see table 5.1). The direct comparison, influenced the
decision for the limited agent’s maximum expansion depth in the experiment (see sec-
tion 5.3).

A tree with a smaller average arity can usually be searched deeper in the same amount
of MCTS iterations. The matchup in the experiment of the unlimited agent against itself
confirmed that. Specifically, the unlimited agent searched deeper for Dark_Split_-
Corridor(3,4) than for Phantom_Connect(4,4,4).

A match’s outcome typically is not decided in the very last move. In most games, after
a key ply, the match’s outcome cannot be changed anymore. The nature of the game
dictates when that ply is, and how long the game continues after that. For example, in
Chess, winning with only a bishop and a knight takes up to 20 plies (i.e., 40 moves),
often times much longer. However, the outcome is inevitable (given no mistakes occur).

Matches of Phantom_Connect(4,4,4) are typically shorter than Dark_Split_Corri-
dor(3,4). This indicates that the tail of moves, where the outcome is inevitable, is
shorter than with Dark_Split_Corridor(3,4). If victory is guaranteed, the match
usually ends soon in Phantom_Connect(4,4,4). By contrast, a match of Dark_Split_-
Corridor(3,4) can already be decided, but 9 plies are still left to be played (given no
player makes mistakes).

Nonetheless, the length of a typical game, together with the average arity (bound by the
cardinality of the action space), is a benchmark for how deep an agent should calculate.
Given the loose connection between size of the state space and the number of the tree’s
nodes, this metric is less meaningful.

The number of iterations the MCTS procedure makes, indirectly limits the depth. To-
gether, with the other metrics, the choice for the maximum expansion depth may be

62

5.3. Experiment Results

done comparatively. This allows to estimate the influence of a changed maximum ex-
pansion depth. For example, to increase the maximum expansion depth, without also
increasing the number of iterations, will likely lead to deeper trees, that are more similar
to a tree searched by unconstrained MCTS. Similarly, decreasing the expansion depth
in comparison to another game, where the average arity was higher, will lead to more
balanced tree, with high average expansion depth.

5.3 Experiment Results
The experiment consisted of two double-round robin tournaments with self-play, where
three MCTS-agents played 450 matches in total. The number of iterations was fixed, while
there was no time-limit. The played games were Phantom_Connect(4,4,4) and Dark_-
Split_Corridor(3,4). All percentages in this section are rounded to two significant
digits.

5.3.1 Results of the Phantom Connect Tournament
The Phantom_Connect(4,4,4) tournament had 450 matches in total, where each of
the three agents played 250 matches. Each agent has 300 results. This is due to the
double-counting of the games with self-play. The three agents were a clairvoyant agent
using MCTS (agent 𝐶), an unlimited MO-ISMCTS agent (agent 𝑈), and an agent using
MO-ISMCTS with a maximum expansion depth of 4 (agent 𝐿(4)). All agents did 7500
iterations per ply. The clairvoyant agent capitalizes upon its advantage, and did not lose
a single game. The unlimited agent is a significantly better player for the role x compared
to the limited agent. For the role o their playing strengths are closer, with a slight
advantage towards the unlimited agent. Table 5.2 shows the result matrix in absolute
numbers. Fig. 5.3 displays the win-, tie-, and loss-rate for both roles. Furthermore, the
figure displays the total number of points, if a win is worth one point, a tie equal to a
half point, and loss is worth no points.

The clairvoyant agent played 250 matches, where in 50 of those matches it played
against itself. It was the strongest player. In total, it won 82 (27.33%), lost none,
and drew 218 (72.67%) of them. As the player moving first, agent 𝐶 won 59 (39.33%)
of the matches, lost none, and tied 91 (60.67%). As the player moving second, it won23 (15.33%), lost none, and drew 127 (84.67%) of the matches. In a direct comparison,
both the unlimited, and the limited agent fared similarly against the clairvoyant agent.
Against 𝑈 , it won 42 (42%), and tied 58 (58%) matches. With 𝐿(4), it won 40 (40%),
and tied 60 (60%) matches.

Of the 250 matches the unlimited agent played, 200 were against other players, and 50
against itself. 𝑈 ’s playing strength was in between 𝐶 and 𝐿(4). Winning 71 (23.67%),
losing 96 (32.00%), and drawing 133 (44.33%) of those 300 results. As the first-moving
player, agent 𝑈 managed to win 62 (41.33%) matches, while losing 18 (12%), and tieing70 (46.67%). Going second, resulted in 9 (6%) wins, 78 (52%) losses, and 63 (42%)

63

5. Results

x-role𝐶 𝑈 𝐿(4)
x o ½ x o ½ x o ½

o-
ro

le
𝐶 0 0 50 0 12 38 0 11 39𝑈 30 0 20 26 3 21 22 6 22𝐿(4) 29 0 21 36 3 11 26 3 21

Table 5.2: The result matrix of the Phantom_Connect(4,4,4) tournament. The cells
describe the total number of distinct outcomes. The horizontal axis denotes the agent
of the x-role (the player moving first). The vertical axis denotes the agent of the o-role
(the player moving second). The subcolumns of the cell’s matrix describe the outcome.
They are written as x (the player moving first won), o (the player moving second won),
and ½ (the match ended in a draw).

0 20 40 60 80 100 120 140

C

U
L(4)

59

62

48

number of wins as x (absolute)
0 20 40 60 80 100 120 140

C

U
L(4)

23

9

6

number of wins as o (absolute)

0 20 40 60 80 100 120 140

C

U
L(4)

91

70

82

number of ties as x (absolute)
0 20 40 60 80 100 120 140

C

U
L(4)

127

63

53

number of ties as o (absolute)

0 20 40 60 80 100 120 140

C

U
L(4)

0

18

20

number of losses as x (absolute)
0 20 40 60 80 100 120 140

C

U
L(4)

0

78

91

number of losses as o (absolute)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

C

U
L(4)

191

137.5

121.5

total points (win = 1, tie = ½, loss = 0)

Figure 5.3: The results for the Phantom_Connect(4,4,4) tournament.

64

5.3. Experiment Results

draws. The direct matchup 𝑈 versus 𝐿(4) favors the former, winning 42 (42%), losing25 (25%), and tieing 33 (33%), out of 100 matches.

The limited agent participated in 250 matches, giving 300 results, due to the 50 matches
against itself. It was the weakest player. Of the 300 results, 54 (18%) are wins, 111 (37%)
are losses, and 135 (45%) are draws. As the player moving first, 𝐿(4) managed to accrue48 (32%) wins, 20 (13.33%) loses, and 82 (54.67%) ties. The results as second-moving
player were 6 (4%) wins, 91 (60.67%) losses, and 53 (35.33%) ties.

The clairvoyant agent seems to converge to optimal play, as in the self-matchup all
played matches resulted in ties. The game Connect(4,4,4) is a known draw [30]. Two
clairvoyant agents playing Phantom_Connect(4,4,4) is isomorphic to two agents playing
Connect(4,4,4). At suboptimal play, spurious non-draws would occur. Furthermore,
both 𝑈 , and 𝐿(4) have similar results against 𝐶, even though their playing strengths
differ in the direct comparison. This suggests, that 𝐶 is as strong as possible. Otherwise,
it would fare distinctly against each of its opponents.

Notably, 𝑈 has a higher win-rate than 𝐶 as x. 𝑈 could capitalize 𝐿(4)’s weakness better
than 𝐶. One possible explanation is the wrongly made pessimistic assumption. The
clairvoyant agent assumes that any move can be countered, while the unlimited agent
models the lack of knowledge the limited agent has.

The direct comparison of the unlimited agent 𝑈 and the limited agent 𝐿(4) shows that
the former is stronger as the x-role. When 𝑈 assumed the x-role, it won 36 (72%), lost3 (6%), and drew 11 (22%) out of 50 matches. Against the same opponent, 𝐿(4) achieved
only 26 (52%) wins, the same number of losses— 3 (6%), and 21 (42%) ties.

The playing strength of 𝑈 and 𝐿(4) for the o role is relatively similar, with an advantage
for the unlimited agent. 𝑈 managed to win twice as often, totaling 6 (12%) matches,
losing only 22 (44%) matches, and tieing 22 (44%) matches, in comparison to the mir-
rored case. While playing against itself, the outcome is identical to the 𝐿(4) versus𝐿(4) matchup. A possible explanation for the identical outcome, is the relatively weak
playing performance of 𝐿(4) as x.

The experiments done by Cowling, Powley, and Whitehouse [8] bear similar results.
However, the paper omitted exact numbers of the experiment, [8, fig. 9] shows that the
cheating UCT (equivalent to clairvoyant MCTS) is equally matched against itself, and
winning most of the games against MO-ISMCTS (equivalent to unlimited MO-ISMCTS).
Furthermore, when weighting ties as half-wins, the win percentage suggests about 60%,
which is slightly more than indicated in [8, fig. 10]. The win percentage of 𝑈 with about45% is also slightly lower than the indicated value in the same figure. In comparison to
the experiment done in this thesis, the number of games was significantly higher, with
a total number of matches at 37 880.

65

5. Results

5.3.2 Results of the Dark Split Corridor Tournament

The Dark_Split_Corridor(3,4) tournament featured 450 matches. As with the Phan-
tom_Connect(4,4,4) tournament, each agent played 250 matches, which leads to 300
results, due to double counting the self-play matches. The contestants were the clair-
voyant MCTS agent (denoted as 𝐶), an unlimited agent using MO-ISMCTS (abbreviated
with 𝑈), and a limited expansion depth MO-ISMCTS (denoted as 𝐿(5)). The maximum
expansion depth of 𝐿(5) was 5. The agents did 2500 iterations per ply. The clairvoy-
ant agent was the strongest player, as expected. However, the advantage was not as
clear-cut as with Phantom_Connect(4,4,4). Surprisingly, the limited agent won the
direct comparison against the unlimited agent, assuming the left-role (the first-moving
role). Furthermore, 𝐿(5) was able to accrue more wins moving first, compared to 𝑈 ,
when playing against 𝐶. Playing as the right-role, the advantage turns the other way
around, and 𝑈 beat 𝐿(5). The result matrix is shown in table 5.3. The win and loss-rate
for both roles is visualized in fig. 5.4, as well as the total number of points, if a win is
worth one point, and loss is worth no points.

The clairvoyant agent was featured in 250 matches, resulting in 300 results, due to the
double counting in self-play matches. Of the three, it was the strongest agent. The total
number of wins was 219 (73%), while it lost 81 (27%) of the times. Moving first, it won134 (89.33%) matches, while losing 16 (10.67%) out of 150 matches. Of the three agents,
it was the strongest as left. Moving second, it won 85 (56.67%) and lost 65 (43.33%)
matches, making it the only agent with a positive win rate for this role. As expected,
this agent was the strongest when assuming the right-role. Going first, in the direct
matchups, the most formidable opponent was itself, with 40 (80%) wins and 10 (20%)
losses. Both against 𝑈 and 𝐿(5) it achieved identical results, winning 47 (94%) games
and losing only 3 (6%).

The unlimited agent contested in 250 matches, totaling 300 results. It won 114 (38%)
matches and lost 186 (62%). As the first-moving player, it was the sole agent that lost
more often than not. With 73 (48.67%) wins and 77 (51.33%) losses, it was the weakest
first-moving player. Going second, 𝑈 manages to clutch 41 (27.33%) of the wins, while
losing 109 (72.67%). This slots it as the second best of the agents, considering only the
right-role. In direct matchups, when moving first, 𝐶 was the strongest opponent, with
a win-lose ratio of 10 ∶ 40 (20%). Against itself, it won 29 (58%) and lost 21 (42%)
matches. Finally, against 𝐿(5) the tally was 34 (68%) wins and 16 (32%) losses. Going
second, it was beat substantially by 𝐶, with only 3 (6%) wins and 47 (94%) losses for 𝑈 .
In the matchup against itself, it won 21 (42%) and lost 29 (58%) matches. Surprisingly,𝐿(5) was a stronger opponent, with 17 (34%) wins and 33 (66%) losses out of 50 matches
for 𝑈 .

The limited agent also contested in 250 matches, totaling 300 results. Marginally, 𝐿(5)’s
win rate was the second best, with 117 (39%) wins versus 183 (61%) losses. When
assuming the left role, 83 (55.33%) of the played matches were wins, and 67 (44.67)
losses, making it the second-best agent when moving first. As the second-moving player,

66

5.3. Experiment Results

left-role𝐶 𝑈 𝐿(5)
left right left right left right

ri
gh

t-
ro

le 𝐶 40 10 10 40 15 35𝑈 47 3 29 21 33 17𝐿(5) 47 3 34 16 35 15

Table 5.3: The result matrix of the Dark_Split_Corridor(3,4) tournament. The cells
describe the total number of distinct outcomes. The horizontal axis denotes the agent
of the left-role (the player moving first). The vertical axis denotes the agent of the
right-role (the player moving second). The subcolumns of the cell’s matrix describe
the outcome. They are written as left (the player moving first won), and right (the
player moving second won),

0 20 40 60 80 100 120 140

C

U
L(5)

134

73

83

number of wins as left (absolute)
0 20 40 60 80 100 120 140

C

U
L(5)

85

41

34

number of wins as right (absolute)

0 20 40 60 80 100 120 140

C

U
L(5)

16

77

67

number of losses as left (absolute)
0 20 40 60 80 100 120 140

C

U
L(5)

65

109

116

number of losses as right (absolute)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

C

U
L(5)

219

114

117

total points (win = 1, loss = 0)

Figure 5.4: The results for the Dark_Split_Corridor(3,4) tournament.

67

5. Results

it loses to both 𝐶 and 𝑈 with a win-loss ratio of 34 ∶ 116 (22.67%). The direct comparison
shows it to be an apt agent for the left role, winning 15 (30%) and losing 35 (70%)
matches against 𝐶. Against 𝑈 it won 33 (66%) times and lost 17 (34%) matches. Playing
against itself yielded similar results; 𝐿(5) won 35 (70%) matches and lost 15 (30%).

The data suggests, that in contrast to Phantom_Connect(4,4,4), the clairvoyant agent
did not yet converge towards optimal play. Currently, the game of Dark_Split_Cor-
ridor(3,4) lacks formal analysis. However, assuming the first-moving player has the
advantage, at optimal play, 𝐶 should have a perfect win rate. Especially in the case
against 𝑈 and 𝐿(5), where 𝐶 solely has perfect information.

With the parameters set, 𝐿(5) is surprisingly a better first-moving player than 𝑈 . Not
only does it win the direct matchup, but also win more often against the superior clairvoy-
ant agent. While it was able to eke out an advantage as first-moving, it is approximately
by the same margin weaker in the second-moving case.

The results do not provide an obvious explanation for why 𝐿(5) is better when moving
first. A discussion featuring an interpretation and the implications continues in the next
chapter, specifically section 6.3.

68

CHAPTER 6
Discussion

The contributions of this thesis cover three topics, that coincide with the three research
questions. First is a comparison of the extensions for Monte Carlo tree search (MCTS)
for games with imperfect information in the context of general game playing (GGP)
available in the literature. Second is a suggestion of what features of a game may be
useful for determining the depth of a limited expansion depth MCTS algorithm, and how
those features may be quantified. Third and final is an evaluation of a limited expansion
depth algorithm using an experiment.

6.1 Monte Carlo Tree Search Extensions
Of the considered MCTS modifications for imperfect information games in the context of
GGP, multiple observer-information set Monte Carlo tree search (MO-ISMCTS) was the
most apt extension. MO-ISMCTS is a part of the information set Monte Carlo tree search
(ISMCTS) family. It mitigates the issues of strategy fusion and non-locality. Furthermore,
both weighting the possible states, and more sophisticated modelling of the opponent,
are powerful suggestions for improving the method further.

The results show, in line with Cowling, Powley, and Whitehouse [8], MO-ISMCTS is
an effective extension for playing imperfect information games in the context of GGP.
MO-ISMCTS is a designated algorithm for games with hidden information. Furthermore,
it does not require game-specific heuristics to approximate the next best move. Yet,
it is not perfect. The case study of Dark_Split_Corridor(3,4) showed, that without
further modifications, the best move does not always coincide with the likely chosen
move. Furthermore, while the opponent model of MO-ISMCTS is certainly stronger than
that of single observer-information set Monte Carlo tree search with partially observable
moves (SO-ISMCTS+POM), it is an area of improvement. Nevertheless, MO-ISMCTS suffers
less from strategy fusion and non-locality, while keeping a strong enough opponent model.

69

6. Discussion

When building an agent capable of GGP with imperfect information, MO-ISMCTS should
be considered as the primary search algorithm. Previous research focused on either GGP
(with perfect information) or games with hidden information. Work that assumes both
is sparse. These results demonstrate that MO-ISMCTS is the most effective expansion of
MCTS for a wide class of applications.

Due to the evaluation on specific examples, the comparison of the existing MCTS methods
usable for imperfect information games in the context of GGP is lacking generalizabil-
ity. The chosen games are both relatively simple two-player games. The differences
in the algorithms are possibly not as pronounced as with more complex examples. Cer-
tainly, the differences would be greater in games with more than two roles (especially for
MO-ISMCTS). However, the chosen games are important representatives. Furthermore,
their relative simplicity allows for a clear analysis.

The list of considered MCTS methods was not exhaustive. There are alternative ap-
proaches available. Most can be categorized by determinization and information set
approaches. Many resort to multiple paradigms—hybrid approaches. The goal was to
represent their base variants by focusing on determinizing MCTS, and the three instances
of ISMCTS.

Finally, the aspect of computational cost viability was left out of scope entirely. Cowling,
Powley, and Whitehouse [8] report that MO-ISMCTS is computationally pricier, while
producing better results. Analysis covering such a scope would have hindered the brevity
of this thesis. Overall, the issue can and should be considered separately, and does not
at all affect the playing strength.

While MO-ISMCTS is indeed a good base-expansion of the MCTS algorithm fit for games
with imperfect information in the context of GGP, it is still not ideal. Avenues for future
research include the improvement of MO-ISMCTS with better opponent modelling, and
more sophisticated probabilistic analysis in respect to the possible states. Moreover,
future research may aim to further develop the other available approaches.

Furthermore, in future research, these methods should be additionally validated and
their difference quantified. As a first suggestion, the author of this thesis recommends
tournaments. Tournaments lend themselves to direct comparison, even though they
are computationally intensive endeavors. They are easy to replicate, and emphasize
differences in playing strength. Quantifying playing strength is difficult qualitatively.

6.2 Feature Extraction
The features obtained by dynamic sampling, and static analysis, as applied in the prior
art, characterize a game. This characterization lends itself to heuristically determining
where the UCT-border at a given number of MCTS iterations might be. The discussed
features were the cardinality of the state space, the cardinality of the action space,
estimate the average arity, and estimate the average depth of terminal nodes.

70

6.3. Limited Expansion Depth Agent

The underlying assumption for extracting features directly from game descriptions was
that these are characteristic enough to determine a value for the maximum expansion
depth for a limited MCTS agent. This assumption was confirmed by applying two meth-
ods from the prior art, static analysis and dynamic sampling. Static analysis was useful
in providing lower and upper bounds for features related to the game tree’s size. Their
result was less meaningful, but computationally cheap. Dynamic sampling is an easy to
apply method, but computationally intensive. Furthermore, while the values are more
directly applicable, they might be sensitive to biases in the sampling method, and may
require a substantial sample size to be meaningful.

Static analysis and dynamic sampling are methods previously used by Kuhlmann and
Stone [15], Schiffel and Thielscher [21], Clune [6] and Mańdziuk and Świechowski [17], to
generate ad-hoc heuristics for playing games in a GGP context. The qualitative evaluation
of using these methods to set the maximum expansion depth, built on the existing use-
case and extended the idea. The methods can be used for configuring search methods,
especially in the context of GGP. The configuration may span not only the maximum
expansion depth in the case of the limited UCT-border agent, but also the exploration
parameter in a general MCTS agent.

Beyond the scope of this thesis was to quantify how good the features extracted from
the game were at heuristically suggesting the value for the limit of the expansion depth
for the limited agent. Given that the ultimiate decision for the limit in the experiment
was not only based on the extracted features, there was no direct quantitative evaluation
of the method. Nonetheless, as the scope was restricted to the initial viability of the
method, this limitation was not confounding.

Feature extraction via static analysis and dynamic sampling seems promising. Further
research is needed to establish the viability of the approach in an ad-hoc scenario. An
ad-hoc scenario might be a tournament with an unlimited agent and a limited expansion
depth agent that can adjust the UCT-border according to the game and the phase of
the game.

Another area of interest is to explore other features extractable by static analysis or
dynamic sampling. A promising feature, not yet considered, is the number of possible
states. The number of possible states is an important factor for ISMCTS. More possible
states likely require more iterations to accurately estimate the expected utility of a node.

In addition, more qualitative analysis on the feature extraction is necessary. Feature
extraction was proposed as a mechanism for generating heuristics for GGP. Thus, it is
mainly discussed in a quantitative setting and sufficient theoretical evaluation is still
lacking.

6.3 Limited Expansion Depth Agent
The experimental data shows that limiting the maximum expansion depth for games
with imperfect information, in the context of GGP, can have a negative and surprisingly

71

6. Discussion

also a positive effect. Specifically, in the example of Phantom_Connect(4,4,4) the effect
was decisively negative, whereas with Dark_Split_Corridor(3,4) there was a positive
effect when moving first. The positive effect was not present when assuming the second-
moving role.

The outcome of the Phantom_Connect(4,4,4) tournament contradicts the hypothesis
that limiting the expansion depth has a positive effect on playing strength. The agent
with a limited UCT-border was severely disadvantaged. This was measurable in the tally
of the direct matchup, as well as the aggregated points.

The Dark_Split_Corridor(3,4)-tournament’s results show that in certain conditions,
it can be beneficial to reduce the maximum expansion depth of an agent using MO-ISMCTS.
Surprisingly, the positive effect was only present when the agent was assuming the first-
moving role. The results indicate that as the second-moving role, the limited expansion
depth had a negative effect.

The results of the experiment do not fit with the theory that a deeper search tree is
strictly better. One of the reasons why MCTS is lauded, is that it refrains from exploring
parts of the tree that are less promising. This allows to produce deeper trees, while
remaining accurate. Previous research has focused on increasing the depth MCTS can
foray into. The results of the experiment demonstrate that in certain conditions this
might be counterproductive.

There are multiple possible explanations for why the limited agent surpassed the uncon-
strained agent in Dark_Split_Corridor(3,4). One such explanation would be, that due
to the relatively low number of MCTS iterations, the search tree of the unconstrained
agent was too optimistic, placing too much weight on parts of the search tree which
are still highly uncertain due to the hidden information. Due to the fixed UCT-border,
the uncertainty was better accounted for, as each expansion step compounds the unpre-
dictability of the future (what move will my opponent make) with the ambiguity of the
hidden game state.

Perhaps, each game has an associated characteristic curve, parameterized by the ex-
ploitation parameter and the number of MCTS iterations. The curve indicates in how
many cases the algorithm converged to the actual best move, given a maximum ex-
pansion depth. Three possible families of curves might exist. The simplest case is a
monotonically increasing curve; The farther the algorithm can look ahead, the better
the playing strength. In fig. 6.1 an example of such a curve is labeled Monotonically
Increasing. The global optimum for the expansion depth is the maximum height of the
game tree. The second case describes all curves with peaks and troughs, until there is
again a global optimum at the maximum height of the game tree. An example curve
is labeled Non-Monotonically Increasing in fig. 6.1. The third case would be all curves
where the global optimum does not reside with the maximum height of the game tree.
See fig. 6.1, for an example; The curve is labeled Early Peak.

Possibly, Dark_Split_Corridor(3,4) with the chosen iterations and exploration pa-
rameter has a characteristic curve belonging to the second or third family. More data

72

6.3. Limited Expansion Depth Agent

0 2 4 6 8 10 12 14 16 · · · D
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expansion depth

Pl
ay

in
g

st
re

ng
th

Monotonically Increasing
Non-Monotonically Increasing
Early Peak

Figure 6.1: The hypothesized three families of game characteristic curves. A curve is
parameterized by the exploration parameter, and the number of MCTS iterations. The𝑥-axis quantifies the expansion depth. Left is zero, on the very right is the depth of
the game tree 𝐷. The 𝑦-axis quantifies an abstract notion of playing strength—the
probability that the chosen move coincides with the best move.

is required to confirm the hypothesis of game characteristic curves is applicable. Fur-
thermore, if this hypothesis is not rejected, additional evidence if Dark_Split_Cor-
ridor(3,4) indeed has a game characteristic curve of the family Non-Monotonically
Increasing or Early Peak.

One of the tournaments’ limiting factor was the number of matches per matchup. With50 matches per matchup, is certainly on the lower end for permitting a correlation be-
tween playing strength and performance in a tournament. This was mitigated by includ-
ing the clairvoyant agent as an overwhelmingly stronger opponent. In both tournaments,
the non-clairvoyant agent which achieved overall better results also fared better against
the clairvoyant agent. This permits drawing the conclusions with a lower number of
matches.

The restricted number of iterations for the Dark_Split_Corridor(3,4) limits the gen-
eralizability of the results. Without more data it is impossible to confirm if the limited

73

6. Discussion

expansion depth agent has an advantage because of the game, the number of iterations,
or other factors such as a better rate of convergence at the chosen exploitation parame-
ter. However, in tournaments and real-world scenarios, the number of iterations is most
likely suboptimal. In these situations, it may then be beneficial to limit the expansion
depth.

Future studies should not only include the tournaments with different games and more
matches per matchup. Ideally, these tournaments would vary the exploration parameter
among agents, as well as their number of iterations and the maximum expansion depth.
Therefore, allowing to quantify the impact of these parameters.

74

CHAPTER 7
Conclusion

This research aimed to examine Monte Carlo tree search (MCTS) as a search method
for games with imperfect information in the context of general game playing (GGP).
The thesis pursued three goals. First was to identify effective modifications for MCTS
for GGP in hidden information scenarios. Second, was to suggest a set of features that
could inform the maximum depth of a limited expansion depth MCTS variant, as well
as examining a method for evaluating these features. Third and final, was to conduct a
quantitative evaluation of an agent using said MCTS variant. The quantitative evaluation
required the implementation of an engine, capable of orchestrating GGP matches and in-
terpreting the standard description language, game description language with imperfect
information (GDL-II).

7.1 Summary
Drawing upon a large body of work in a literature review, and a qualitative analysis
using concrete examples, this thesis provided the relevant background for imperfect
information games and GGP. Furthermore, it compared the variants determinization
MCTS, and information set Monte Carlo tree search (ISMCTS). As MCTS is a commonly
used method for GGP, the goal was to find and verify the most promising variant of
MCTS for imperfect information games in the context of GGP. In accordance with the
hypothesis, the results indicated that determinizing MCTS is not an ideal extension,
while from the family of ISMCTS, multiple observer-information set Monte Carlo tree
search (MO-ISMCTS) was the most promising method for imperfect information games in
the context of GGP.

By reusing a method found in literature, this thesis provided a concrete way of determin-
ing a set of features, useful for characterizing games, without prior knowledge about the
game. The characterization of the game hinted at the size of the game tree. The size of
the game tree subsequently influenced the value for the maximum depth of the limited

75

7. Conclusion

expansion depth MO-ISMCTS algorithm used by an agent in the experiment. Priorly, the
method was used for generating heuristics for search methods, without any game-specific
knowledge, which was why it was also applicable for this use case.

The limited expansion depth MO-ISMCTS variant was shown to have an advantage only
when moving first in a game with a more complex state, but fewer possible moves. The
agent was evaluated against an overwhelmingly stronger clairvoyant MCTS agent, and
a baseline unconstrained expansion depth MO-ISMCTS agent using two tournaments. In
the tournament for the game Phantom_Connect(4,4,4)—a variant of the game Tic-
tac-toe on a 4 × 4-board, where the players do not see the marks of their opponents,
the limited expansion depth agent was disadvantaged. In the other tournament for the
game Dark_Split_Corridor(3,4), where both players race towards a finish line, and
may be obstructed by invisible barriers placed by the opponent, the limited expansion
depth agent achieved an about 6.67% (10 out of 150 matches) higher win rate as the
first-moving player.

In an effort to support GDL-II and orchestrate matches of GGP-agents, one of the contri-
butions of this thesis is an integrated game engine capable of these features. The engine
supports loading GDL-II definitions, and provides an interpreter interface for agents. In-
cluded in the engine are agents using MCTS. The agents use the interpreter to manage
their search trees, and calculate the next best move. This thesis reviews the implemen-
tation of the engine, to make it more accessible to learn from. Ultimately, the goal was
to shape future revisions and iterations.

7.2 Future Work

While this thesis provides an introduction into the usage of MCTS for imperfect infor-
mation games in the context of GGP, there remain many insufficiently explored topics.
These topics include the combination of modifications, and application of extension-
specific optimizations. Specifically for MO-ISMCTS, its authors hypothesize a benefit
when applying opponent modelling, and probability weighting of the possible states (see
[8]). Experiments are needed to quantify the effects of these suggested improvements.

After the promising initial evaluation of static analysis and dynamic sampling for feature
extraction, further research is necessary. Future studies could address other features
(e.g. the number of possible states). Furthermore, to determine the viability of the
approach, a more in-depth analysis of the computational cost remains open. Likewise,
finding specific counter examples where the characterization via feature extraction is
misleading, may help to improve and refine the method.

This thesis showed that the limited expansion depth MCTS variant can play better in
specific games. This ultimately leads to the question for which class(es) of games this is
also true. Furthermore, future research could consider why there is such a big difference
between moving first and moving second. Moreover, it remains to be validated whether

76

7.3. Contributions

there is an ideal limit given a range of parameters, such as characterizing information
about the game, the number of MCTS iterations, and data about the opponent.

The engine serves as an iterative prototype influenced by previous similar efforts. While
the performance was acceptable, it is still far from optimal. The literature provides a
plethora of unexplored optimizations for evaluating GDL, and improving the computa-
tional speed of the tree data structures. Future versions may improve the throughput of
the engine to greatly increase the number of matches that are economical to run.

7.3 Contributions
The engine and its Python interface, implemented as part of the experiment, pave the
way towards an improved ecosystem in the field of GGP. Similar predecessors use Java as
an implementation language, making it difficult to embed with commonly used artificial
intelligence (AI) packages. Most of those packages are meant to be used via Python, one
of the most widely used languages in AI and machine learning (ML). Therefore, it was
chosen as the implementation language of the engine, facilitating its usage in the context
of AI and ML.

This thesis offers a novel approach of limiting the expansion depth of MO-ISMCTS. More-
over, the data provides initial evidence that the approach is indeed viable. An experiment
revealed an unexpected conditional advantage in a specific game. This challenges the
often times implicit made assumption, that MCTS always benefits from a deeper search
tree. The approach together with the engine form the main contributions to the research
topic of GGP, and the broader field of AI.

77

List of Figures

2.1 An abstract entity-relationship diagram of the term used for games. . . . 8
2.2 The phases of a match. The filled black state is the entry point, the state with

double borders is the final phase and the red state indicates an error state.
The transation 𝑎, requires all actors acknowledge in time, 𝑡 is applicable if
the state is terminal, dnf means that some actor failed to submit move in
time, while if some actor submitted an illegal move dsq is applicable. . . . 10

2.3 The game tree of 5-Nim. The round and blue nodes denote states where first
is in control and rectangular and red nodes denote states where second is in
control. The top-most node is the initial state and the states with a double
border are terminal states. The edges represent the moves. Fat, blue and
dashed edges are actions done by first. Thin and red edges are actions done
by second. The label of the edge represents the arithmetic operation on the
heap. 20

2.4 The game tree of Phantom-5-Nim. The round and blue nodes denote states
where first is in control and rectangular and red nodes denote states where
second is in control. The top-most node is the initial state and the states
with a double border are terminal states. The edges represent the moves.
Fat, blue and dashed edges are actions done by first. Thin and red edges
are actions done by second. The label of the edge represents the arithmetic
operation on the heap. 22

2.5 The game tree of Mini-Single-Call. 26

4.1 The class hierarchy of the elementary data structures. 40
4.2 The class diagram of the interpreter. 42
4.3 The class diagram for the agents. Protocols (viz. interfaces) are in a light

shade of gray, and with dashed borders. Abstract classes have a darker shade
of gray. Concrete implementation classes are in the darkest shade of gray. 48

5.1 The characteristic game state 𝑠6 for the case study of Phantom_Con-
nect(4,4,4). A cell is either blank, or features up to three marks. The
marking player’s symbol is seen in the center of the cell. The marks below
show which player knows the mark of a cell. 54

79

5.2 The characteristic game state 𝑠4 for the case study of Dark_Split_Corri-
dor(3,4). left is in control, indicated by the double border. The pawns
are visible to both players. The barrier is still hidden to left indicated by
the gray color. 57

5.3 The results for the Phantom_Connect(4,4,4) tournament. 64
5.4 The results for the Dark_Split_Corridor(3,4) tournament. 67

6.1 The hypothesized three families of game characteristic curves. A curve is
parameterized by the exploration parameter, and the number of MCTS iter-
ations. The 𝑥-axis quantifies the expansion depth. Left is zero, on the very
right is the depth of the game tree 𝐷. The 𝑦-axis quantifies an abstract
notion of playing strength—the probability that the chosen move coincides
with the best move. 73

80

List of Tables

5.1 The extracted numeric features compared for the games Phantom_Con-
nect(4,4,4) and Dark_Split_Corridor(3,4). |𝑆| is the cardinality of the
state space. |𝐴| is the cardinality of the action space. 𝑏̄ is the average arity.̄𝑑 is the average depth of terminal nodes. 𝑙 is the chosen maximum depth for
the experiment (see section 5.3) . 62

5.2 The result matrix of the Phantom_Connect(4,4,4) tournament. The cells
describe the total number of distinct outcomes. The horizontal axis denotes
the agent of the x-role (the player moving first). The vertical axis denotes
the agent of the o-role (the player moving second). The subcolumns of the
cell’s matrix describe the outcome. They are written as x (the player moving
first won), o (the player moving second won), and ½ (the match ended in a
draw). 64

5.3 The result matrix of the Dark_Split_Corridor(3,4) tournament. The cells
describe the total number of distinct outcomes. The horizontal axis denotes
the agent of the left-role (the player moving first). The vertical axis denotes
the agent of the right-role (the player moving second). The subcolumns of
the cell’s matrix describe the outcome. They are written as left (the player
moving first won), and right (the player moving second won), 67

81

List of Code Listings

2.1 A possible definition of 5-Nim using game description language (GDL). . . 17
2.2 A possible definition of Phantom-5-Nim using GDL. 19

83

Acronyms

GGP general game playing

MCTS Monte Carlo tree search

AI artificial intelligence

ML machine learning

GDL game description language

GDL-II game description language with imperfect information

ISMCTS information set Monte Carlo tree search

SO-ISMCTS single observer-information set Monte Carlo tree search

SO-ISMCTS+POM single observer-information set Monte Carlo tree search with par-
tially observable moves

MO-ISMCTS multiple observer-information set Monte Carlo tree search

ASP answer set programming

85

Bibliography

[1] Hans Berliner. “Some Necessary Conditions for a Master Chess Program”. In: Pro-
ceedings of the 3rd International Joint Conference on Artificial Intelligence. Inter-
national Joint Conference on Artificial Intelligence. Vol. 3. Aug. 20, 1973, pp. 77–
85.

[2] Y. Bjornsson and H. Finnsson. “CadiaPlayer: A Simulation-Based General Game
Player”. In: IEEE Transactions on Computational Intelligence and AI in Games
1.1 (Mar. 2009), pp. 4–15. issn: 1943-068X, 1943-0698. doi: 10 .1109/TCIAIG.
2009.2018702. url: http://ieeexplore.ieee.org/document/4804731/ (visited on
01/10/2023).

[3] Charles L. Bouton. “Nim, A Game with a Complete Mathematical Theory”. In: The
Annals of Mathematics 3.1/4 (1901), p. 35. issn: 0003486X. doi: 10.2307/1967631.
JSTOR: 1967631. url: https://www.jstor.org/stable/1967631?origin=crossref
(visited on 12/07/2023).

[4] Cameron B. Browne et al. “A Survey of Monte Carlo Tree Search Methods”. In:
IEEE Transactions on Computational Intelligence and AI in Games 4.1 (Mar.
2012), pp. 1–43. issn: 1943-068X, 1943-0698. doi: 10.1109/TCIAIG.2012.2186810.
url: http://ieeexplore.ieee.org/document/6145622/ (visited on 01/11/2023).

[5] Paolo Ciancarini and Andrea Gasparro. “Priority Level Planning in Kriegspiel”.
In: Entertainment Computing - ICEC 2012. Ed. by Marc Herrlich, Rainer Malaka,
and Maic Masuch. Vol. 7522. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 333–340. isbn: 978-3-642-33541-9 978-3-642-33542-6. doi: 10.1007/978-3-642-
33542- 6_29. url: http://link.springer.com/10.1007/978- 3- 642- 33542- 6_29
(visited on 11/30/2023).

[6] James Clune. “Heuristic Evaluation Functions for General Game Playing”. In:
AAAI. AAAI. Vol. 7. 2007.

[7] Rémi Coulom. “Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search”. In: Computers and Games. Ed. by H. Jaap Van Den Herik, Paolo Cian-
carini, and H. H. L. M. Donkers. Red. by David Hutchison et al. Vol. 4630. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 72–83. isbn: 978-3-540-75537-1
978-3-540-75538-8. doi: 10.1007/978-3-540-75538-8_7. url: http://link.springer.
com/10.1007/978-3-540-75538-8_7 (visited on 11/20/2023).

87

https://doi.org/10.1109/TCIAIG.2009.2018702
https://doi.org/10.1109/TCIAIG.2009.2018702
http://ieeexplore.ieee.org/document/4804731/
https://doi.org/10.2307/1967631
http://www.jstor.org/stable/1967631
https://www.jstor.org/stable/1967631?origin=crossref
https://doi.org/10.1109/TCIAIG.2012.2186810
http://ieeexplore.ieee.org/document/6145622/
https://doi.org/10.1007/978-3-642-33542-6_29
https://doi.org/10.1007/978-3-642-33542-6_29
http://link.springer.com/10.1007/978-3-642-33542-6_29
https://doi.org/10.1007/978-3-540-75538-8_7
http://link.springer.com/10.1007/978-3-540-75538-8_7
http://link.springer.com/10.1007/978-3-540-75538-8_7

[8] P. I. Cowling, E. J. Powley, and D. Whitehouse. “Information Set Monte Carlo Tree
Search”. In: IEEE Transactions on Computational Intelligence and AI in Games
4.2 (June 2012), pp. 120–143. issn: 1943-068X, 1943-0698. doi: 10.1109/TCIAIG.
2012.2200894. url: http://ieeexplore.ieee.org/document/6203567/ (visited on
12/21/2022).

[9] Ian Frank and David Basin. “Search in Games with Incomplete Information: A
Case Study Using Bridge Card Play”. In: Artificial Intelligence 100.1-2 (Apr. 1998),
pp. 87–123. issn: 00043702. doi: 10.1016/S0004-3702(97)00082-9. url: https://
linkinghub.elsevier.com/retrieve/pii/S0004370297000829 (visited on 12/09/2022).

[10] Michael Genesereth, Nathaniel Love, and Barney Pell. “General Game Playing:
Overview of the AAAI Competition”. In: AI Magazine 26.2 (2005), pp. 62–72. doi:
10.1609/aimag.v26i2.1813.

[11] Giuseppe De Giacomo, Yves Lesperance, and Adrian R Pearce. “Situation Calculus
Game Structures and GDL”. In: (2016), p. 9.

[12] Roland Kaminski et al. How to Build Your Own ASP-based System?! Nov. 5,
2021. arXiv: 2008.06692 [cs]. url: http://arxiv.org/abs/2008.06692 (visited on
09/29/2022). preprint.

[13] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Planning”. In:
Machine Learning: ECML 2006. Ed. by Johannes Fürnkranz, Tobias Scheffer, and
Myra Spiliopoulou. Red. by David Hutchison et al. Vol. 4212. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 282–293. isbn: 978-3-540-45375-8 978-3-540-
46056-5. doi: 10.1007/11871842_29. url: http://link.springer.com/10.1007/
11871842_29 (visited on 11/16/2023).

[14] Jakub Kowalski and Marek Szykuła. “Game Description Language Compiler Con-
struction”. In: AI 2013: Advances in Artificial Intelligence. Ed. by Stephen Crane-
field and Abhaya Nayak. Red. by David Hutchison et al. Vol. 8272. Cham: Springer
International Publishing, 2013, pp. 234–245. isbn: 978-3-319-03679-3 978-3-319-
03680-9. doi: 10.1007/978-3-319-03680-9_26. url: http://link.springer.com/10.
1007/978-3-319-03680-9_26 (visited on 01/02/2023).

[15] Gregory Kuhlmann and Peter Stone. “Automatic Heuristic Construction in a Com-
plete General Game Player”. In: AAAI. Vol. 6. 2006, pp. 1457–62.

[16] Jeffrey Long et al. “Understanding the Success of Perfect Information Monte Carlo
Sampling in Game Tree Search”. In: Proceedings of the AAAI Conference on Ar-
tificial Intelligence 24.1 (July 3, 2010), pp. 134–140. issn: 2374-3468, 2159-5399.
doi: 10.1609/aaai.v24i1.7562. url: https://ojs.aaai.org/index.php/AAAI/article/
view/7562 (visited on 01/02/2023).

[17] Jacek Mańdziuk and Maciej Świechowski. “Generic Heuristic Approach to General
Game Playing”. In: SOFSEM 2012: Theory and Practice of Computer Science. Ed.
by Mária Bieliková et al. Vol. 7147. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 649–660. isbn: 978-3-642-27659-0 978-3-642-27660-6. doi: 10.1007/978-

88

https://doi.org/10.1109/TCIAIG.2012.2200894
https://doi.org/10.1109/TCIAIG.2012.2200894
http://ieeexplore.ieee.org/document/6203567/
https://doi.org/10.1016/S0004-3702(97)00082-9
https://linkinghub.elsevier.com/retrieve/pii/S0004370297000829
https://linkinghub.elsevier.com/retrieve/pii/S0004370297000829
https://doi.org/10.1609/aimag.v26i2.1813
https://arxiv.org/abs/2008.06692
http://arxiv.org/abs/2008.06692
https://doi.org/10.1007/11871842_29
http://link.springer.com/10.1007/11871842_29
http://link.springer.com/10.1007/11871842_29
https://doi.org/10.1007/978-3-319-03680-9_26
http://link.springer.com/10.1007/978-3-319-03680-9_26
http://link.springer.com/10.1007/978-3-319-03680-9_26
https://doi.org/10.1609/aaai.v24i1.7562
https://ojs.aaai.org/index.php/AAAI/article/view/7562
https://ojs.aaai.org/index.php/AAAI/article/view/7562
https://doi.org/10.1007/978-3-642-27660-6_53
https://doi.org/10.1007/978-3-642-27660-6_53

3-642-27660-6_53. url: http://link.springer.com/10.1007/978-3-642-27660-6_53
(visited on 01/10/2023).

[18] Munyque Mittelmann and Laurent Perrussel. “Game Description Logic with Inte-
gers: A GDL Numerical Extension”. In: Foundations of Information and Knowledge
Systems. Ed. by Andreas Herzig and Juha Kontinen. Vol. 12012. Cham: Springer
International Publishing, 2020, pp. 191–210. isbn: 978-3-030-39950-4 978-3-030-
39951-1. doi: 10.1007/978-3-030-39951-1_12. url: http://link.springer.com/10.
1007/978-3-030-39951-1_12 (visited on 01/06/2023).

[19] Maximilian Möller et al. “Centurio, a General Game Player: Parallel, Java- and
ASP-based”. In: KI - Künstliche Intelligenz 25.1 (Mar. 2011), pp. 17–24. issn: 0933-
1875, 1610-1987. doi: 10.1007/s13218-010-0077-4. url: http://link.springer.com/
10.1007/s13218-010-0077-4 (visited on 11/08/2023).

[20] S. Schiffel and M. Thielscher. “Representing and Reasoning About the Rules of
General Games With Imperfect Information”. In: Journal of Artificial Intelligence
Research 49 (Feb. 14, 2014), pp. 171–206. issn: 1076-9757. doi: 10.1613/jair.4115.
url: https : / / www . jair . org / index . php / jair / article / view / 10862 (visited on
01/02/2023).

[21] Stephan Schiffel and Michael Thielscher. “Automatic Construction of a Heuristic
Search Function for General Game Playing”. In: Department of Computer Science
(2006), pp. 16–17.

[22] Stephan Schiffel and Michael Thielscher. Fluxplayer: A Successful General Game
Player. 2007. url: https://www.aaai.org/Papers/AAAI/2007/AAAI07-189.pdf
(visited on 12/29/2022).

[23] Michael Schofield and Michael Thielscher. “General Game Playing with Imperfect
Information”. In: Journal of Artificial Intelligence Research 66 (Dec. 13, 2019),
pp. 901–935. issn: 1076-9757. doi: 10.1613/jair.1.11844. url: https://jair.org/
index.php/jair/article/view/11844 (visited on 12/30/2022).

[24] David Silver et al. Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm. Dec. 5, 2017. arXiv: 1712.01815 [cs]. url: http:
//arxiv.org/abs/1712.01815 (visited on 11/01/2023). preprint.

[25] David Silver et al. “Mastering the Game of Go with Deep Neural Networks and
Tree Search”. In: Nature 529.7587 (Jan. 28, 2016), pp. 484–489. issn: 0028-0836,
1476-4687. doi: 10.1038/nature16961. url: http://www.nature.com/articles/
nature16961 (visited on 01/09/2023).

[26] Maciej Świechowski et al. “Monte Carlo Tree Search: A Review of Recent Modifi-
cations and Applications”. In: Artificial Intelligence Review (July 19, 2022). issn:
0269-2821, 1573-7462. doi: 10 . 1007 / s10462 - 022 - 10228 - y. url: https : / / link .
springer.com/10.1007/s10462-022-10228-y (visited on 12/01/2022).

89

https://doi.org/10.1007/978-3-642-27660-6_53
http://link.springer.com/10.1007/978-3-642-27660-6_53
https://doi.org/10.1007/978-3-030-39951-1_12
http://link.springer.com/10.1007/978-3-030-39951-1_12
http://link.springer.com/10.1007/978-3-030-39951-1_12
https://doi.org/10.1007/s13218-010-0077-4
http://link.springer.com/10.1007/s13218-010-0077-4
http://link.springer.com/10.1007/s13218-010-0077-4
https://doi.org/10.1613/jair.4115
https://www.jair.org/index.php/jair/article/view/10862
https://www.aaai.org/Papers/AAAI/2007/AAAI07-189.pdf
https://doi.org/10.1613/jair.1.11844
https://jair.org/index.php/jair/article/view/11844
https://jair.org/index.php/jair/article/view/11844
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature16961
http://www.nature.com/articles/nature16961
http://www.nature.com/articles/nature16961
https://doi.org/10.1007/s10462-022-10228-y
https://link.springer.com/10.1007/s10462-022-10228-y
https://link.springer.com/10.1007/s10462-022-10228-y

[27] Michael Thielscher. “A General Game Description Language for Incomplete Infor-
mation Games”. In: Proceedings of the AAAI Conference on Artificial Intelligence
24.1 (July 4, 2010), pp. 994–999. issn: 2374-3468, 2159-5399. doi: 10.1609/aaai.
v24i1.7647. url: https://ojs.aaai.org/index.php/AAAI/article/view/7647 (visited
on 12/30/2022).

[28] Michael Thielscher. “Answer Set Programming for Single-Player Games in General
Game Playing”. In: Logic Programming. Ed. by Patricia M. Hill and David S.
Warren. Vol. 5649. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 327–
341. isbn: 978-3-642-02845-8 978-3-642-02846-5. doi: 10.1007/978-3-642-02846-
5_28. url: http://link.springer.com/10.1007/978-3-642-02846-5_28 (visited on
01/09/2023).

[29] Alan M. Turing. “Chess”. In: Computer Chess Compendium. Ed. by David Levy.
New York, NY: Springer New York, 1988, pp. 14–17. isbn: 978-1-4757-1970-3 978-
1-4757-1968-0. doi: 10.1007/978-1-4757-1968-0_2. url: http://link.springer.com/
10.1007/978-1-4757-1968-0_2 (visited on 10/30/2023).

[30] J.W.H.M. Uiterwijk and H.J. Van Den Herik. “The Advantage of the Initiative”.
In: Information Sciences 122.1 (Jan. 2000), pp. 43–58. issn: 00200255. doi: 10.
1016/S0020-0255(99)00095-X. url: https://linkinghub.elsevier.com/retrieve/pii/
S002002559900095X (visited on 01/18/2024).

90

https://doi.org/10.1609/aaai.v24i1.7647
https://doi.org/10.1609/aaai.v24i1.7647
https://ojs.aaai.org/index.php/AAAI/article/view/7647
https://doi.org/10.1007/978-3-642-02846-5_28
https://doi.org/10.1007/978-3-642-02846-5_28
http://link.springer.com/10.1007/978-3-642-02846-5_28
https://doi.org/10.1007/978-1-4757-1968-0_2
http://link.springer.com/10.1007/978-1-4757-1968-0_2
http://link.springer.com/10.1007/978-1-4757-1968-0_2
https://doi.org/10.1016/S0020-0255(99)00095-X
https://doi.org/10.1016/S0020-0255(99)00095-X
https://linkinghub.elsevier.com/retrieve/pii/S002002559900095X
https://linkinghub.elsevier.com/retrieve/pii/S002002559900095X

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Research Object
	Outline

	Background and Literature Review
	General Game Playing
	Games as Trees
	Monte Carlo Tree Search

	Methods
	Scientific Approach
	Comparison of Existing Modifications
	Feature Extraction for Setting the UCT-Border
	Experiment Setup

	Implementation
	Engine
	Tree Data Structure
	Agents

	Results
	Effectiveness of Existing Monte Carlo Tree Search Modifications
	Characteristic Features of Games
	Experiment Results

	Discussion
	Monte Carlo Tree Search Extensions
	Feature Extraction
	Limited Expansion Depth Agent

	Conclusion
	Summary
	Future Work
	Contributions

	List of Figures
	List of Tables
	List of Code Listings
	Acronyms
	Bibliography

