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Kurzfassung

Lungenkrebs ist weltweit die häufigste und tödlichste Krebserkrankung sowohl bei Män-
nern als auch bei Frauen und stellt die Diagnose und Behandlung vor große Heraus-
forderungen. Die Ätiologie des Lungenkrebses, der überwiegend mit dem Rauchen in
Verbindung gebracht wird, ist ein komplexer Prozess, der durch verschiedene Umwelt-
faktoren wie die Belastung durch Luftverschmutzung beeinflusst werden kann. Er wird
grob in kleinzellige Lungenkarzinome (SCLC) und nicht-kleinzellige Lungenkarzinome
(NSCLC) eingeteilt, die sich unterschiedlich ausbreiten und wachsen. Das Hauptproblem
bei Lungenkrebs ist die späte Diagnose, da die Symptome in der Regel verzögert auftreten.
Dieses fortgeschrittene Krankheitsstadium ist mit den derzeit verfügbaren Therapien
nahezu unheilbar. Diese Therapien beruhen in erster Linie auf der manuellen Erkennung
und Segmentierung von CT-Bildern durch Radiologen. Dieser manuelle Prozess hat jedoch
mehrere Nachteile, darunter der hohe Zeitaufwand und die Schwierigkeit, die Tumorgröße
präzise und zuverlässig zu quantifizieren.

Diese Arbeit untersucht das Potenzial von Deep Learning, insbesondere von Convolutional
Neural Networks (CNNs) und Vision Transformers (ViTs), bei der Segmentierung von
Lungenkrebs. In diesem Zusammenhang befassen wir uns auch mit der damit verbundenen
Aufgabe der Lungensegmentierung. Wir schlagen die Verwendung von CNN-basierten
Modellen und dem ViT-basierten Segment Anything Model (SAM) vor, das kürzlich von
Meta AI mit verschiedenen Konfigurationen (z.B. Netzwerk-Encoder) veröffentlicht wurde.
Das Hauptziel ist es, diese Modelle durch verschiedene Konfigurationen zu optimieren
und ihre Leistung bei verschiedenen Segmentierungsaufgaben zu vergleichen.

Die wichtigsten Ergebnisse zeigen signifikante Unterschiede zwischen CNN-basierten
und ViT-basierten Modellen in verschiedenen Modellkonfigurationen und Datensätzen.
Da SAM menschliche Interaktion (sogenannte "Prompts") verwendet, haben wir die
Auswirkungen von SAM mit und ohne simulierte menschliche Interaktion untersucht.
Darüber hinaus haben wir die Leistung der CNN-basierten und ViT-basierten Modelle für
drei verschiedene Tumorgrößen untersucht, darunter eine kleine, mittlere und große Größe.
Im Allgemeinen zeigen unsere Ergebnisse vielversprechende Leistungsfähigkeiten von
CNN-basierten und ViT-basierten Modellen sowohl für Lungen- als auch für Lungenkrebs-
Segmentierungsaufgaben. CNN-basierte Modelle erreichen den höchsten Dice-Score von
0,975 mit U-Net mit efficientnet-b7 bei der Lungensegmentierung, verglichen mit nur 0,440
mit U-Net mit resnet101 bei der Segmentierung von Lungenkrebs. Bei der Lungenkrebs-

ix



Segmentierungsaufgabe verbessert sich der Dice-Score jedoch drastisch auf einen Wert
von 0,749 bei Verwendung von SAM mit simulierter menschlicher Interaktion. Diese
Ergebnisse könnten bei der künftigen Entwicklung von Software für die Behandlung von
Lungenkrebs im Frühstadium helfen, die auf präzisen Segmentierungsmodellen basiert,
da Radiologen diese Modelle zur präzisen und effektiven Quantifizierung des Tumors
verwenden könnten.



Abstract

Lung cancer, as the most prevalent and deadliest cancer globally among both men and
women, presents significant diagnostic and treatment challenges. The etiology of lung
cancer, predominately linked to smoking, is a complex process that may be influenced
by various environmental factors such as air pollution exposure. It is broadly classified
into small-cell lung carcinomas (SCLC) and non-small-cell lung carcinomas (NSCLC)
that spread and grow differently. Lung cancer’s major issue is late diagnosis since the
symptoms are usually delayed. This advanced stage of the disease is almost incurable
with currently available therapies. These therapies primarily rely on manual CT image
detection and segmentation by radiologists. However, this process suffers from several
limitations including its time-consuming nature and the difficulty to precisely and reliably
quantify tumor size.

This thesis aims to explore the potential of deep learning, particularly Convolutional
Neural Networks (CNNs) and Vision Transformers (ViTs) in lung cancer segmentation.
In this context, we also tackle the associated task of lung segmentation. We propose the
use of CNN-based models and ViT-based Segment Anything Model that was recently
published by Meta AI with various configurations (e.g. network encoders). The primary
objective is to optimize these models through various configurations and benchmark their
performance across different segmentation tasks.

Key findings show significant differences between CNN-based and ViT-based models
across different model configurations and datasets. Since SAM uses prompts, we explored
the impact of SAM with and without simulated human interaction. In addition, we
assessed the CNN-based and ViT-based model’s performance for three different tumor
scales including small, medium, and large scale. Generally, our results demonstrate
promising capabilities of CNN-based and ViT-based models for both lung and lung cancer
segmentation tasks. CNN-based models achieve the highest dice score of 0.975 using
U-Net with efficientnet-b7 on the lung segmentation task compared to only 0.440 using
U-Net with resnet101 on the lung cancer segmentation task. However, the dice score
drastically improves to a dice score of 0.749 using SAM with simulated human interaction
for the lung cancer segmentation task. These findings may help in the future development
of early-stage lung cancer treatment software that is based on precise segmentation
models since radiologists could use these models to quantify the tumor in a precise and
effective manner.
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CHAPTER 1
Introduction

Lung cancer is recognized as the most prevalent cancer and the leading cause of cancer-
related mortality among both men and women, contributing to 18.4% of global cancer-
related deaths in 2018 [BFS+18].

The major etiological factor in approximately 90% of lung cancer is attributed to smoking
and tobacco product usage. However, other factors such as exposure to radon gas,
asbestos, air pollution, and chronic infections may contribute to lung carcinogenesis.
Various inherited and acquired mechanisms of susceptibility to lung cancer have been
proposed. Lung cancer can be classified into two broad histological classes, which grow and
spread differently: small-cell lung carcinomas (SCLC) and non-small-cell lung carcinomas
(NSCLC). Treatment options for lung cancer encompass surgical intervention, radiation
therapy, and targeted therapy. The choice of therapeutic modalities depends on multiple
factors, including the cancer type and stage [LAHYB15].

The majority of patients with lung cancer are diagnosed with advanced disease due
to the delayed manifestation of symptoms during the disease. Unfortunately for those
patients, after the metastases occur, the disease is not curable with the currently available
therapies [PKO+17].
Nowadays, the diagnosis of lung cancer relies on the manual detection and segmentation
of CT images by radiation oncologists. This process suffers from several limitations,
including inter and intra-observer variability, the likelihood of missing small cancer
regions, its time-consuming nature, and the inability to provide precise quantification of
tumors [PIVT+22a].
However, the implementation of deep learning based lung cancer segmentation models has
the potential to help overcome these challenges. The integration of automated detection
and segmentation techniques would have an immediate impact on the clinical workflow
within radiotherapy, leading to more efficient and consistent lung cancer diagnosis
[PKO+17][PIvT+22b][SASL23].
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1. Introduction

In the field of medical imaging, many state-of-the-art machine learning models have
shown promising results in lung cancer segmentation, especially using Convolutional
Neural Networks (CNNs). However, these current approaches still have limitations when
it comes to generalizability, small lesion detection, speed, and efficiency.

To tackle this problem, we propose to implement both CNN-based models and the
recently published Vision Transformer (ViT) based model Segment Anything (SAM) for
lung cancer segmentation [KMR+23] [GWK+15]. The primary objective of this thesis
is to benchmark these models using various configurations (e.g. backbones or model
architectures). We also tackle the task of lung segmentation since it is often one of the
crucial steps in lung cancer segmentation workflows that are implemented in clinical
settings [PIVT+22a].

1.1 Research Questions

This thesis focuses on the following research questions:

1. How does the CNN-based and ViT-based model performance vary across different
datasets?
This research question aims to compare the CNN-based and ViT-based models’
performance on two different datasets, or segmentation tasks, including lung seg-
mentation and lung cancer segmentation. In this work, we only utilize SAM as our
ViT-based model.

2. What is the impact of simulated human interaction with SAM in terms of perfor-
mance?
This research question assesses the impact of simulated human interaction for
fine-tuned SAM compared to SAM without simulated human interaction.

3. How does the CNN-based and ViT-based model performance compare across different
tumor scales?
This research question focuses on evaluating our models across three different tumor
scales including small-scale, medium-scale, and large-scale.

4. What are appropriate strategies to optimize the performance of deep learning models
for the segmentation of thorax CT / lung CT scans?
This research question addresses the appropriate optimization strategies of deep
learning models for lung and lung cancer segmentation. The relevant strategies
include experimenting with different model backbones, model architectures, and
data preprocessing. The appropriateness of the strategies will be based on the
overall performance improvement that includes Dice score and Hausdorff distance
metrics.

2



1.2. Structure of the Thesis

1.2 Structure of the Thesis
This master thesis consists of six chapters, which are organized as follows:

Chapter 2 Background: introduces basics of Machine Learning and Deep Learning.
Subsequently, it gives an overview of Convolutions Neural Network and Vision Trans-
formers’ key components. Furthermore, it explains the evaluation metrics used in this
work. Finally, it provides a short description of Computed Tomography Imaging.

Chapter 3 Related Work: describes the current state-of-the-art related work for both
semantic image segmentation and medical image segmentation tasks. Also, it focuses on
general image segmentation (e.g. major organs) and lung cancer segmentation models.

Chapter 4 Methodology and Experimental Setup: explains the datasets, data-
preprocessing, implementation of CNN-based and ViT-based models, experimental setup,
and training details.

Chapter 5 Results: provides the results for CNN-based and ViT-based models based
on lung segmentation and lung cancer segmentation datasets. In addition, it includes an
in-depth comparison across different tumor scales for both CNN-based and ViT-based
models.

Chapter 6 Discussion and Conclusion: reports key insights and contributions of
the thesis. It also addresses limitations and provides an outlook on future work.
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CHAPTER 2
Background

This chapter describes the relevant theoretical foundations for this thesis. Section 2.1 in-
troduces Machine Learning fundamentals, including supervised learning and unsupervised
learning. Subsequently, Section 2.2, explains Neural Networks and basic optimization
algorithms. Convolutional Neural Networks and Vision Transformers are presented in
Section 2.3 and Section 2.4, respectively. Subsequently, evaluation metrics used in this
work are discussed in Section 2.5. Lastly, basic principles of Computed Tomography (CT)
Imaging are provided in Section 2.6.

2.1 Machine Learning Fundamentals
Artificial Intelligence (AI) refers to technology capable of simulating human intelligence
in tasks such as reading, speaking, and understanding the world. Machine Learning (ML),
a subdiscipline of AI, aims to automatically map the input patterns (e.g. vehicle image)
to the corresponding output values (e.g. truck). Traditional ML requires hand-crafting
features which involve human expertise to select and prepare data for the model, it is
often a time-consuming process. There are two major ML training paradigms, supervised
(Section 2.1.1) and unsupervised (Section 2.1.2), each determined by the nature of the
data and the specific objectives of the given task [Bis06].

2.1.1 Supervised Learning
Supervised learning involves training with n ∈ R labeled examples, where we have a
training set Xtrain = [x1, . . . , xn] and a corresponding target vector ytrain = [y1, . . . , yn].
The predictive model is evaluated on k ∈ R new inputs from a test set Xtest = [x1, . . . , xk],
whereby the ultimate goal is to predict new, unseen labels of data [Bis06]. Supervised
learning is divided into two major tasks: classification and regression. Discrete target
values are predicted using the classification. The classification models can be used in
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2. Background

tasks such as email spam detection (spam or not), while the regression models can be
used for predicting continuous target values. An example of this is predicting housing
prices based on the train data [Sim17].

2.1.2 Unsupervised Learning
In unsupervised learning, also known as self-supervised learning, the task of the ML model
is to learn from unlabeled data. The training set does not include the corresponding
target vector. Generally, the goal is to discover the underlying patterns within the data.
The major tasks include clustering and density estimation. Clustering may be used to
group similar data patterns, whereas density estimation determines the data distribution
[Bis06]. For example, during pre-training, the model discovers the underlying patterns
from unlabeled data and captures useful features.

2.2 Deep Learning
Deep Learning (DL) is a subset of the machine learning field. It is known to perform
well in capturing complex features in high-dimensional data without the requirement
of hand-crafting features [LBH15]. Therefore, it is often used in tasks such as object
detection, speech recognition, and natural language processing. Its major disadvantage is
a requirement for a large amount of training data.

2.2.1 Neural Networks
Neural Networks (NNs), also known as feedforward NNs, represent a foundational concept
in the field of deep learning because they can in theory approximate any mathematical
function, regardless of the complexity [Tur23a].

Consider a three-layer NN, which consists of the following layers: the input layer, the
hidden layer, and the output layer. The input layer receives the raw input data as a
vector x ∈ R.

x = [x1, x2, . . . , xn]T (2.1)

After that, the hidden layer performs a non-linear transformation on the data. This
hidden layer can be denoted as follows:

h = f(W(1)x + b(1)) (2.2)

f(a) = 1
1 + exp(−a) (2.3)

6



2.2. Deep Learning

Figure 2.1: The Multi-layer Perception is the simplest form of Neural Network Architec-
ture. It receives an input vector x to which it adds weights W(1) and bias b(1). Finally,
it utilizes a non-linear activation function to compute output y [RHDN23].

The weight matrix W(1) defines the relationships between input and first hidden layer
using linear transformation, b(1) represents the bias vector, and f(a) is a non-linear
activation function such as sigmoid in this case [Bis06] [Tur23b] [GBC16].

Finally, the output layer takes the output from the hidden layer and transforms it into
the final output. The output layer y is denoted as follows:

y = g(W(2)h + b(2)) (2.4)

where W(2) defines the weights between the hidden layer and the output layer, b(2)

represents the bias for the output vector, and g function is an activation function that is
determined depending on a task. This is also known as Multi-layer Perceptron (MLP)
which is illustrated in Figure 2.1.

Generally, neural networks with multiple hidden layers are considered as deep neural
networks, and they can capture more complex features in the deeper (hidden) layers
[GBC16]. In the training process, each layer’s parameters (W, b) are adjusted to
minimize the error between the predictions ŷ and the ground truth targets y. This is
accomplished using the optimization methods such as gradient descent.

2.2.2 Optimization
During the training of the neural network, the key step is to adjust the parameters
of the model to minimize the loss function L(ŷ, y), which estimates the cost between
the predictions ŷ and actual targets y. To achieve this, we can use one of the existing
optimization algorithms such as Batch Gradient Descent (BGD), Stochastic Gradient
Descent (SGD), Mini-Batch Gradient Descent, Adaptive Moment Estimation (Adam),
RMSProp, or Momentum [Rud17]. Backpropagation is crucial in neural network training,
it involves a forward pass where inputs generate predictions and a backward pass where
the gradient of the loss function is derived from the output layer back towards the input

7



2. Background

Figure 2.2: Gradient Descent Minimization Process. [GBC16]

layer [Bis06] [Ros21]. In the following, we provide a brief description of the commonly
used optimization algorithms.

Batch Gradient Descent

The Batch Gradient Descent (BGD), also known as steepest descent, is the optimization
method that minimizes the error function, E(W, b) = E(θ), for each parameter’s update
step on the whole training set [Bis06]. Iteratively, for each step r, the algorithm updates
θ = (W, b) towards the minimum, negative gradient ∇E(θ):

θ(r+1) = θ(r) − α∇E(θ(r)), where α > 0. (2.5)

α denotes the learning rate, which is used to determine the step size. Despite its simplicity,
BGD is susceptible to converging on the local minimum rather than finding the global
minimum (Figure 2.2).

For additional information, please refer to Deep Learning Chapter 4 [GBC16].

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) minimizes the error function E(θ) using a single
randomly selected data point from the training set (xi, yi) for each update step. It can
be denoted as:

θ(r+1) = θ(r) − α∇E(θ(r); (xi, yi)), where α > 0. (2.6)

When it comes to large datasets, BGD tends to be inefficient because it recomputes the
gradients for the entire dataset before updating parameters. In contrast, SGD solves this
by updating parameters after each data point, making it faster. Therefore, it usually
converges faster than the BGD. However, SGD has a higher likelihood of missing the
global minimum which makes it more unstable [Rud17].
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2.3. Convolutional Neural Networks (CNN)

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent combines both BGD and SGD by utilizing a subset of p
training examples for a single parameters update step [Rud17]. This approach can be
represented as follows:

θ(r+1) = θ(r) − α∇E(θ(r); (xi:i+p, yi:i+p)), where α > 0. (2.7)

The notation i stands for the starting position, and i + p defines the final position of a
subset from a training set.

Further details are available in Deep Learning Chapter 8 [GBC16].

Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) combines both AdaGrad and RMSProp optimizers
[KB17]. AdaGrad adapts the learning rate according to the frequency of parameter
updates; more frequent means smaller updates and vice versa. On the other hand,
RMSProp uses an adaptive learning rate method that is similar to Adadelta which aims
to reduce the learning rate [Rud17].

2.3 Convolutional Neural Networks (CNN)
Convolutional Neural Networks, also known as CNNs, is a widely spread deep learning
architecture used in various ML tasks such as computer vision, natural language processing,
and speech recognition. LeCun et al. [LBD+89] introduced it in 1989 to classify
handwritten zip code digits. This section describes the basic components of CNNs, which
are visualized in Figure 2.3 [GWK+15].

2.3.1 Convolutional Layer
The convolutional layer uses an input image I of dimension (h x w x d), with an argument
kernel K of dimension (kh x kw x d) , also known as filter, to generate a feature map
(I ∗ K) with a dimension of (h − kh + 1) x (w − kw + 1) [Rag18]. The I height, width, and
depth are denoted as h, w, and d, respectively. Essentially, the kernel matrix is sliding
over the input image matrix, multiplying each corresponding element. Subsequently, an
output matrix is summed and assigned to the feature map (Figure 2.4). Goodfellow el at.
[GBC16] have denoted this for two-dimensional I and two-dimensional K as follows:

C(i, j) = (I ∗ K)(i, j) =
�

h

�
w

I(h, w)K(i − h, j − w) (2.8)

where i and j denote a position within I [GWK+15] [Rag18].
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Figure 2.3: Convolutional Neural Network consists of multiple convolution layers, non-
linear operations, and pooling layers. After the FC layer, softmax is used to determine a
predicted class [GBC16] [VGG24].
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Figure 2.4: Kernel matrix K with dimensions 3x3 sliding over an input image I with
dimensions 7x7 performing convolution. The convolution operation is denoted with an
asterisk. [Exc19]

2.3.2 Non-Linear Operations

Non-linear operations or activation functions are applied to feature maps to capture
nonlinear relationships. For example, Rectified Linear Unit (ReLu) is an important
activation function which can be mathematically expressed as follows:

f(x) = max(0, x) (2.9)

Also, other common non-linear activation functions include leaky ReLu hyperbolic tangent
function (Tanh), Sigmoid, Binary step function, and Softmax. There is no strict rule
when selecting an activation function since it depends on the task. However, ReLu is
generally accepted as a starting point [GBC16].
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2.3.3 Pooling Layer
The pooling layer is generally applied after a convolutional layer to reduce specific input
dimensions using operations such as max pooling, average pooling, or sum pooling which
significantly reduces computational costs. In the most commonly used max pooling
operation, the largest element from each patch of input data is assigned to a feature map.
However, this might lead to a certain information loss [GBC16] [Nan23].

2.3.4 Fully Connected Layer
After extracting the input features, the feature map matrices are flattened into a one-
dimensional vector x which is used as an input for the fully connected (FC) layer. In
the FC layer, each neuron is connected to all neurons of the previous layer. Finally, an
output layer y uses the activation function g (e.g. Softmax) to classify outputs into a
corresponding class [GBC16].

2.3.5 Skip Connections
Skip connections, as their name suggests, allow for skipping one or multiple layers in
the NN. There are deeper CNN-based architectures such as ResNet that include skip
connections to avoid vanishing gradient problems [HZRS15]. During backpropagation,
gradients are used to update an NN’s weights, however, if gradient error becomes very
small in early layers, it leads to a vanishing gradient problem. Therefore, skip connections
are used to tackle this problem by allowing gradients to bypass multiple layers.

2.4 Vision Transformers (ViT)
In 2017, Vaswani et al. [VSP+23] introduced a new network architecture namely Trans-
former (Figure 2.5). The transformer architecture achieved impressive results in the
Natural Language Processing (NLP) field [DBK+21]. However, CNN-based architectures
remained the gold standard when it comes to computer vision tasks. In 2021, Dosovitskiy
et al. [DBK+21] introduced a Vision Transformer based on Self-Attention architecture.
The aim was to extend Transformers to ViT models used for computer vision tasks. On
many image classification tasks, ViT demonstrated the same or better results compared
to state-of-the-art CNNs with fewer computational resources [DBK+21].

2.4.1 Self-Attention
The transformer is based entirely on attention mechanisms, which allows the model to
focus on specific parts of the given input rather than treating each part equally like
CNNs. This is based on single-headed attention, also known as "Scaled-Dot-Product
Attention", which is used to compute an attention vector for each input element. It
consists of query Q, key K, and value V vectors that extract different components from
every input element. Q represents certain information that we want to extract from data,
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Figure 2.5: Transformer Architecture Visualization. The left side represents an encoder
block that consists of positional encoding, a Multi-Head attention layer, and a feed-forward
layer. The right side shows a decoder block, which includes the Masked Multi-Head
Attention layer, Multi-Head attention layer, and Feed Forward layer. Finally, it uses a
Linear layer and Softmax to output the next-token probabilities. [VSP+23]

K is defined as a summary or index for each element, and V contains all information
about the element. This is given as follows:

Attention(Q, K, V ) = softmax


QKT

√
dk

�
V (2.10)

where
√

dk represents a key dimensions.

Moreover, this paper introduces a beneficial "Multi-Head Attention" mechanism that
allows to input multiple elements Q, K, V as multiple weight matrices QW Q

i , KW K
i and

V W V
i . The Multi-Head computation with h parallel attention layers is defined by:
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MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i )

(2.11)

where weight matrices are defined as W Q
i ∈ Rdmodel×dk , W K

i ∈ Rdmodel×dk , W V
i ∈

Rdmodel×dv , and W O ∈ Rhdv×dmodel . Intuitively, the dv and dmodel stands for value and
model dimensions. Multi-Head attention creates multiple attention vectors, enabling
efficient (parallel) context analysis for each word. Unlike Single-headed attention, it uses
multi "heads" to capture a wider range of context and relationships within the data.
Lastly, these attention vectors are concatenated into a single-headed attention vector
which is fed into NN.

2.4.2 ViT Architecture

An overview of the vision transformer architecture is illustrated in Figure 2.6. The
input image is first partitioned into patches (Figure 2.6, bottom left). These fixed-size
patches use positional encoding because it allows for capturing sequence order to ensure
the context of an image. This sequence is normalized for each block using Layernorm
(LN), which stabilizes the training process [WLX+19]. After that, the transformer model
applies the previously explained Multi-Head attention mechanism and a feedforward NN
(Figure 2.6, right). Finally, the MLP head is used now for classifying an object into a
corresponding class such as a bird vs car (Figure 2.6, top left).

2.5 Evaluation Metrics
In the computer vision field, the Dice Similarity Coefficient and Hausdorff distance are
prominent evaluation metrics, especially in the segmentation tasks. On the one hand,
the Dice Similarity Coefficient measures the overlap between predicted and ground-
truth segmentation (Section 2.5.1). On the other hand, the Hausdorff distance offers a
geometric interpretation by measuring the dissimilarity between two given finite point
sets (Section 2.5.2). These metrics can be used for both two-dimensional and volumetric
analysis [ZWB+04] [HKR93].

2.5.1 Dice Similarity Coefficient

Dice Similarity Coefficient (DSC), also known as the F1-score or Dice score, is a statistical
metric used to quantify the similarity between two binary vectors (e.g. image). It can
be also defined as a harmonic mean of precision and recall. Precision is a percentage of
relevant over all retrieved predictions, while recall uses only relevant predictions [Pre24].
Its primary application is to measure the accuracy of a predicted image segmentation
against the ground truth segmentation [ZWB+04] [Dic45]. It is defined as follows:

13



2. Background

Figure 2.6: Vision Transformer Architecture (left) and Transformer Encoder Visualization
(right). ViT partitions an image into patches with positional encoding. These patches
are flattened into a one-dimensional sequence that is fed into the transformer encoder.
The right side visualizes a transformer encoder in detail. Finally, the MLP head outputs
the corresponding class [DBK+21].

DSC = 2|y ∩ ŷ|
|y| + |ŷ| . (2.12)

y represents ground truth segmentation and ŷ the predicted segmentation. The DSC can
range between 0 and 1. If DSC = 0, there is no overlap; 0 < DSC < 1 relates to partial
overlap; DSC = 1 represents perfect overlap between y and ŷ, as visualized in Figure 2.7
[ZWB+04]. DSC can be defined in terms of true positives (TP), true negatives (TN),
and false negatives (FN) as follows:

DSC = 2TP

2TP + FP + FN
. (2.13)

These terms can be expressed in the context of two-dimensional image pixels:

• True Positive (TP): Positive pixel correctly classified.

• True Negative (TN): Negative pixel correctly classified.

• False Positive (FP): Positive pixel incorrectly classified.

• False Negative (FN): False pixel incorrectly classified
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Figure 2.7: This figure provides a graphical representation of the Dice Similarity Coef-
ficient (DSC) metric, which is often used in medical image segmentation. A DSC = 0
implies no overlap, 0 < DSC < 1 includes partial overlap, and DSC = 1 indicates perfect
overlap of y and ŷ.

DSC metric is crucial for the evaluation of both two-dimensional and three-dimensional
images. In addition, it is the most widely adopted metric in evaluating medical image
volume segmentation [TH15b].

2.5.2 Hausdorff Distance
The Hausdorff Distance (HD) is a commonly used metric in computer vision tasks, that
measures the distance between two finite point sets [TH15a]. The directed HD is given
by:

h(U, V ) = max
u∈U

min
v∈V

∥u − v∥ (2.14)

where ||u − v|| is a norm such as L2 or Euclidean distance. It takes the point within
the set U with the maximum distance from any point in V , and computes the distance
from this point u ∈ U to the nearest point v ∈ V [HKR93]. The HD for two point sets,
U = {u1, . . . , un} and V = {v1, . . . , vn}, is given by:
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Figure 2.8: This figure visualizes Hausdorff Distance (HD) that measures the distance
between two finite point sets [TH15a].

H(U, V ) = max(h(U, V ), h(V, U)). (2.15)

Finally, the H(U, V ) takes the maximum of values h(U, V ) and h(V, U). Therefore, it
measures the dissimilarity between two sets by measuring the maximum distance from
a point u ∈ U to any point in set V and the reverse [HKR93]. This is visualized in
Figure 2.8.

2.6 Computed Tomography (CT) Imaging
Computed Tomography (CT) Imaging uses a series of patient X-ray observations from
different angles to capture cross-sectional images or slices (Figure 2.9). These slices
are stacked as a 3D volume image which can show the patient’s internal structures
such as organs, tissues, or lesions. Depending on the CT machine, the tissue thickness
ranges between 1-10 millimeters. Slices or tomographic images contain more information
compared to traditional X-rays [CT224]. CT scans are expressed with Hounsfield units
(HU):

HU =


µmaterial − µwater
µwater


× 1000 (2.16)

where µ represents CT linear attenuation coefficient. The attenuation coefficient measures
the amount of lost energy when a narrow beam of X-rays passes through the material
[CT224] [Hou]. Finally, CT scans are useful for detecting various abnormalities such as
lung cancer which is one of the deadliest cancers [BFS+18].

16



2.6. Computed Tomography (CT) Imaging

Figure 2.9: Computed Tomography (CT) Scanner Schematic Overview. The source
uses X-rays that pass through the body and the detector captures information. Finally,
computer is used to reconstruct and display images [CT224] [sch24].
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CHAPTER 3
Related Work

This chapter describes the current state-of-art solutions for image segmentation, progress-
ing from general medical segmentation (e.g. major organs) to more specific segmentation
tasks. In Section 3.1, we address the semantic image segmentation state-of-the-art re-
search. Section 3.2 describes image segmentation in the field of medicine. We list the
most relevant research for image segmentation tasks for both CNN-based and ViT-based
models. Finally, we provide an overview of state-of-the-art approaches concerning lung
cancer segmentation.

3.1 Semantic Image Segmentation
Semantic image segmentation refers to classifying each pixel of a given image into a
certain class. Humans can perform many of these tasks that involve both detecting
and segmenting objects with relatively little cognitive effort. Interestingly, humans
are even able to perform an image segmentation with unknown objects, for example,
objects within medical X-ray scans, however, these tasks are usually complex, costly, and
time-consuming ([GLGL17], [Jai20]). While the main focus of this work is on medical
image segmentation tasks, this section provides a brief description of semantic image
segmentation work in a broader sense for both CNN-based and ViT-based architectures.

3.1.1 CNN-based Segmentation Models

Generally, Convolutional Neural Networks can automatically extract high-level features
(e.g. objects) and low-level features (e.g. colors) from an image [Jai20]. This has led
to the development of many CNN architectures for semantic image segmentation such
as SegNet [BKC16], U-Net [RFB15], DeepLabv3 [CPSA17], DeepLabv3+ [CZP+18],
PSPNet [ZSQ+17], PAN [LXAW18], FPN [LDG+16], and LinkNet [CC17].
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SegNet uses encoder-decoder architecture for pixel-wise semantic segmentation [BKC16].
Its encoder network with 13 convolutional layers is similar to the VGG16 network [SZ15].
The decoder uses max-pooling to optimize efficiency in terms of memory, however, this
loss of information may lead to worse performance in fine-grained segmentation [BKC16].
The U-Net is prominent encoder-decoder architecture which was initially designed for
medical image segmentation, it uses skip connections which improve capturing of semantic
features (Subsection 3.2.1).

DeepLabv3, an improvement from previous DeepLab versions, uses atrous convolution for
semantic image segmentation that captures multi-scale context [CPSA17]. DeepLabv3+
combines atrous convolution with encoder-decoder architecture which increases the
segmentation quality [CZP+18]. The major disadvantage of DeepLabv3 and DeepLabv3+
is increased computational complexity.

PSPNet is based on a pyramid pooling module for semantic segmentation that effectively
captures global context information. It achieves state-of-the-art results when it comes
to scene parsing [ZSQ+17]. Scene parsing divides an image into multiple segmentation
regions that belong to a certain semantic category such as a building, human, or wall. Also,
previous work applies 3D PSPNet on multi-scale global contextual semantic segmentation
tasks ([FL19], [Wan20]). PAN expands this by combining attention mechanism and
pyramid pooling [LXAW18]. Both of these methods suffer from high computational costs.

There are two excellent methods in similar computer vision tasks, especially object
detection ([GLL19], [WGC+20], [XYZ+19], [LWT+21]). Feature Pyramid Network (FPN)
architecture, which significantly improves feature extraction in multi-scale detection tasks
[LDG+16], and LinkNet that efficiently links the encoder with the decoder [CC17].

When it comes to image classification, some of the most prominent CNN backbones
include ResNet [HZRS15], DenseNet [HLvdMW18], and EfficientNet [TL19]. These
backbones can be also utilized for semantic segmentation tasks since they help extract
useful features.

In 2015, He et al. [HZRS15] demonstrated extended residual nets with up to 152 layers
with relatively low complexity. These achieved first place in several tasks that include
ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation
as a part of ILSVRC & COCO 2015 competitions.

DenseNet, introduced by Huang et al. [HLvdMW18] in 2018, is a network architecture
that connects each layer to every other layer in a feed-forward manner. It was tested
on CIFAR-10, CIFAR-100, SVHN, and ImageNet object recognition tasks, where it
demonstrated substantial improvements over the state-of-the-art at that time while
requiring fewer computing resources.

In 2019, Tan et al. [TL19] achieved first-place accuracy on ImageNet, with their Effi-
cientNet model being 8.4x smaller and 6.1 faster than the previously leading model.
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3.1.2 ViT-based Segmentation Models

In 2017, Vaswani et al. [VSP+23] proposed Transformers, which were initially used for
machine learning translation with state-of-the-art performance in various NLP tasks
[DBK+21]. Generally, large transformer models are pre-trained on large text corpora
and then fine-tuned on a specific task, such as the language representation model BERT
[DCLT19]. In 2021, Dosovitskiy et al. [DBK+21] introduced the Vision Transformer
Model for classification tasks that apply a transformer model architecture directly to
images. This is done by using a sequence of image patches instead of word tokens
(Section 2.4.2). It achieves a similar performance compared to similar-sized EfficientNet
and ResNet models [DBK+21].

Various ViT-based models achieve excellent results on semantic segmentation tasks
such as Segmenter [SGLS21], SegViT [ZTT+22], Swin Transformer [LLC+21], BEiT
[BDPW22], SERT [ZLZ+21], and Trans2Seg [XWW+21].

Segmenter utilizes pre-trained models for image classification, but it is fine-tuned on
semantic segmentation datasets. Its performance significantly drops with smaller datasets
which can be a major limitation [SGLS21]. SegViT introduces the Attention-to-Mask
mechanism that enriches contextual information and improves computational efficiency
[ZTT+22]. Also, it outperforms models that rely on plain ViT backbone. However,
the Attention-to-Mask mechanism requires a large amount of GPU memory that may
not be supported. Swin Transformer employs a hierarchical architecture with a shifted
window scheme, which improves efficiency in a wide range of computer vision tasks such
as semantic segmentation and image classification [LLC+21].

Inspired by BERT [DCLT19] that was designed for natural language processing, BEiT is
a self-supervised vision model. It creates visual tokens from an image that are fed into
the ViT backbone without requiring labeled data [BDPW22]. Nonetheless, it may not
be able to capture certain image elements that are relevant to the task. SERT adopts a
sequence-to-sequence perspective to improve the relationships in semantic segmentation
[ZLZ+21]. Trans2Seg demonstrates an advantage over CNN architectures in terms
of global image context, although, it may lead to worse performance in fine-grained
segmentation [XWW+21].

In this work, we have utilized the ViT-based Segment Anything Model (SAM) introduced
by Kirillov et al. [KMR+23] in 2023. This model was trained on the world’s largest
segmentation dataset (until this date) which includes over 1 billion masks. The SAM
concept is slightly different compared to traditional ML models because it is designed to
be promptable. For instance, humans can create a bounding box, point, or text prompt.
This allows for excellent zero-shot generalization capabilities on unseen data, in some
cases even competitive with prior state-of-art fine-tuned models. However, it requires
human input during inference (Section 4.5) [BMR+20][KMR+23].
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3.2 State-of-the Art: Medical Image Segmentation
In this section, we describe general medical image segmentation, particularly larger
anatomical structures such as organs. This is motivated by our task of lung segmentation
which is a larger target compared to lung cancer segmentation. Lastly, we provide lung
cancer segmentation related work.

3.2.1 Medical Image Segmentation
CNNs are often used when it comes to medical image segmentation such as bones, blood
vessels, and major organs [KJvdS17]. There are many CNN-based architecture variants
such as U-Net [RFB15] or U-Net++ [ZSTL18] that are specifically designed for medical
image segmentation tasks.

We have used the lung cancer dataset from the Medical Segmentation Decathlon (MSD)
[ARB+22], which includes various biomedical segmentation challenges to find the best
model in terms of generalizability. The MSD consists of ten different tasks such as brain,
lung, and pancreas segmentation. Currently, the best-performing model across all ten
MSD tasks is the Swin UNETR model with 76.68% average dice score [TYL+22]. It uses
a Transformer-based U-shaped encoder-decoder architecture that improves global context
in semantic segmentation. Also, Swin UNETR is a 3D VIT-based model pre-trained
on 5,050 CT scans from various organs. There are other leading models on the MSD
leaderboard such as DiNTS [HYR+21], nnUNet [IPK+18], and Model Genesis [ZSS+19].

DiNTS focuses on optimal network topology for 3D medical image segmentation tasks,
while minimizing GPU memory usage [HYR+21]. nnUNet employs a self-adapting
framework that can generalize different 3D medical image segmentation tasks [IPK+18].
Model Genesis is based on self-supervised learning for pre-training, followed by fine-tuning
on medical image segmentation tasks [ZSS+19]. However, this pre-training phase may be
computationally heavy.

For lung segmentation in particular, Skourt et al. [ASEHM18] employed U-Net archi-
tecture that achieved a dice score of 0.9502 on their manually segmented dataset with
a few hundred lung CT scans. Similarly, Jalali et al. [JFR+21] utilized U-Net for lung
CT segmentation, however, they replaced the encoder with ResNet34 network [HZRS15].
Their results surpassed the previously mentioned publication. There are many simi-
lar implementations available for lung segmentation ([HPP+20], [NTBA22], [HCP+23],
[AHL+20], [GML20]). The majority of lung segmentation datasets include X-ray images
([WYB+23], [LLY+22], [Che24]).

There are many available publications that compare CNN-based models and Transformers
([HEO22], [MHSS21], [DSY+22], [SFW+23]). Jia et al. [JBZ+22] explore the efficiency
between U-Net and Transformer-based models in the field of medical imaging, using two
public 3D brain datasets. The results indicate that vanilla U-Net can outperform the
Transformer-based model with only a slight modification. Their research demonstrates
that U-Net is still a highly competitive architecture in medical imaging.
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When it comes to combining CNN-based models and Transformers, research conducted
by Cao et al. [CWC+23] proposes Swin-Unet that is based on Transformer U-shaped
Encoder-Decoder architecture with skip connections. Swin-Unet outperformed both
CNN-based models and combinations of Transformer and CNN-based models for tasks
on multi-organ and cardiac image segmentation. Lan et al. [LCJ+24], propose a BRAU-
Net++ CNN-Transformer network that improves learning of long-range dependency using
self-attention. PMTrans is a Pyramid Medical Transformer that leverages multi-scale
attention and CNN-based feature extraction [ZZ22]. Similarly to BRAU-Net++, it can
efficiently capture long-range dependencies.

ViT-based SAM image encoder relies on masked autoencoder which masks certain input
patches and restores missing pixels [HCX+21]. A SAM fine-tuned for medical images
was implemented by Huang et al. [HYL+24]. They applied SAM on a large COSMOS
1050K dataset that includes various medical objects such as eyeballs, optic nerve, lips,
liver, hip, femur, spleen, and kidney. Fine-tuned SAM for medical images showed
impressive performance in certain anatomical structures such as the humerus, however,
it performed poorly in cases with lower contrast or weak boundaries [ZSJ24]. Also, SAM
with ViT-Huge backbone demonstrated significantly better performance compared to
ViT-Base backbone (smaller version) according to Huang et al. [HYL+24]. Many similar
implementations of SAM-based models have been evaluated on various medical imaging
datasets ([MDG+23a], [HBL+23], [ZL23], [WJL+23]). Interestingly, He et al. [HBL+23]
report that SAM performs significantly worse compared to five state-of-the-art algorithms
for medical image segmentation. Ma et al. [MHL+23] introduced the MedSAM project
that fine-tunes the Segment Anything Model on medical images for binary segmentation.

3.2.2 Lung Cancer Segmentation
Numerous publications use deep learning for lung cancer segmentation ([CWP+19],
[JHS+21], [LDD+18], [WZL+17], [PIVT+22a], [ARB+22], [IPK+18], [PPKS23], [TT23],
[FFC+23]).

Chen et al. [CWP+19] utilize a hybrid segmentation network, based on 2D and 3D CNNs,
which is used for small-cell lung cancer segmentation (SCLC). They use Dice loss to
improve their results on highly imbalanced datasets. Also, 3D CNNs were used for both
detection and segmentation of NSCLC that spreads towards the brain [JHS+21]. Liu et
al. [LDD+18] tackle a problem of lower-quality CT scans and lack of annotated data
by utilizing an object detection neural network for lung nodule segmentation. Central
Focused CNNs can accurately segment lung nodules from different CT scan datasets
with minimal difference [WZL+17].

This thesis was inspired by the Primakov et al. [PIVT+22a] workflow, where they first
isolate lungs and subsequently segment the NSCLC (Figure 3.1). They report that 56% of
radiologists prefer automatic segmentation over manual segmentation. In their approach,
a three-step workflow is proposed. In the first step, image preprocessing is conducted
for each dataset (1414 NSCLC patients), the second step focuses on lung isolation, and
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finally, a 2D U-Net is employed to detect and segment tumors. To improve the model’s
performance, they replaced ReLU activations with Exponential Linear Unit (ELU). The
loss function was defined with combined Dice Similarity Coefficient (DSC) loss and binary
cross-entropy loss.

Furthermore, the MSD [ARB+22] NSCLC dataset, which was utilized in this work,
consists of 3D volumes CT modality for 96 patients. Isensee et al. [IPK+18], introduced
no-new-Net (nnU-Net) that is a self-adapting framework based on 2D and 3D vanilla
U-Nets [PPKS23]. At the time of the MSD challenge, nn-U-Net achieved the best
performance on the phase 1 MSD leaderboard. In addition, nn-U-Net had the highest
mean dice score of 69% on the NSCLC dataset.

A vast majority of lung cancer segmentation methods rely on CNN-based architectures,
but some utilize ViT-based models [TT23]. Fanizzi et al. [FFC+23] implemented
multiple transformer architectures, including pre-trained ViT, Pyramid ViT, and Swin
Transformer for NSCLC segmentation ([DBK+21], [WXL+21], [LLC+21]). Nevertheless,
these attempts did not show any improvement compared to traditional state-of-the-art
CNNs.

Despite this progress in the field of lung cancer segmentation, there remains an opportunity
to further explore the difference between CNN-based and SAM-based models, especially
across different tumor sizes. This work aims to implement and compare CNN-based
models with different backbones, SAM with simulated human interaction, and SAM
without simulated human interaction on lung segmentation and lung cancer segmentation
tasks. Finally, we evaluate the performance on test sets using the Dice Similarity
Coefficient and Hausdorff Distance metrics.
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Figure 3.1: Key steps for fully-automatic non-small cell lung cancer segmentation workflow
proposed by Primakov et al. [PIVT+22a]. It combines both lung isolation and tumor
segmentation tasks.
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CHAPTER 4
Methodology and Experimental

Setup

This chapter describes the data characteristics, data-specific and model-specific data
preprocessing, model design, hyperparameter tuning, model selection, and evaluation.
The overall process overview is given in Section 4.1. The lung segmentation dataset
D1 and lung cancer segmentation D2 are explained in Section 4.2. We explain used
preprocessing and data augmentation techniques in Section 4.3. After that, we describe
CNN-based models and SAM-based models implementation in Section 4.4 and Section 4.5,
respectively. Hyperparameter tuning and model selection are defined in Section 4.6.
Section 4.7 outlines the experimental setup. We describe the training details of our all
models and experiments in Section 4.8.

4.1 Process Overview
In this section, we present the process overview of the thesis (Figure 4.1). In the first
step, we started with data acquisition. After that, we conducted data preprocessing that
varies based on data complexity. In the model development part, we re-implemented
CNN-based and SAM-based models with various backbones and model architectures. In
the last step, we evaluated our models including CNN-based models, SAM with simulated
human interaction (SHI), and SAM without SHI. In addition, we evaluated these models
for three different tumor scales including small, medium, and large.

1. Data Acquisition
This phase required collecting data from various publicly available datasets. We
used the lung segmentation dataset D1 to include a dataset with a larger target.
Regarding the lung cancer dataset, we ended up using the Medical Segmentation
Decathlon lung cancer segmentation dataset D2 [ARB+22] because there was
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Figure 4.1: Key Steps of Process Overview. It starts with data acquisition, subsequently,
we perform data preprocessing that splits the data into training, validation, and test
sets for both dataset D1 and D2. After that, we train CNN-based, SAM with SHI, and
SAM without SHI models on the training set, and evaluate on validation and test sets.
Bounding boxes are denoted as BB. In addition, we evaluate all models on small-scale,
medium-scale, and large-scale tumors.
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a substantial amount of existing literature and implementations available. An
in-depth description of these datasets is given in Section 4.2.

2. Data Preprocessing
The same data preprocessing was applied to training, validation, and test sets for
each dataset. For the lung segmentation dataset D1, no preliminary preprocessing
was required since it consists of central CT slices. In contrast, the lung cancer
segmentation dataset D2 included non-tumor slices from 3D CT scans which were
filtered to include only 2D positive CT slices to ensure compatibility with SAM,
see Section 4.3.

3. Model Design

• CNN-based Models
• ViT-based Models

– SAM with Simulated Human Interaction
– SAM without Simulated Human Interaction

In this step, we implemented two model architectures, CNN (Section 4.4) and
ViT (Section 4.5). For CNN-based models, we used different network encoders
(backbones) and model architectures, such as ResNet152 with U-Net. We used
the Segment Anything Model with SHI and without SHI. In addition, we used
three backbones for both SAMs including SAM-ViT-Base, SAM-ViT-Large, and
SAM-ViT-Huge. We have trained and evaluated these models on both tasks: lung
segmentation dataset D1 and lung cancer segmentation dataset D2. The focus of
this thesis was on the lung cancer segmentation dataset D2 due to its highly complex
region of interest (ROI). All experiments were conducted on the high-performance
cluster (HPC) of the CIR lab.

4. Hyperparameter Tuning and Model Selection
In Section 4.6, we specify the configurations used for our experiments to ensure
reproducibility. This includes hyperparameters for both CNN-based models and ViT-
based models. CNN-based model hyperparameters consist of model architecture,
network encoder, optimizer, loss function, and number of training epochs. In
contrast, ViT-based model SAM hyperparameters include backbones, bounding
box prompts, and number of training epochs.

5. Evaluation
A validation set is used for hyperparameter tuning to optimize model performance.
Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) metrics were
employed to evaluate model generalization performance on the test sets for both
dataset D1 and dataset D2 (Section 4.7). We conducted an additional in-depth
evaluation in dataset D2, assessing the segmentation performance for different
tumor scales: small, medium, and large.
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Number of central slices 267 (images), 267 (masks)
Size 210 MB
File Type tif (image), tif (mask)
Resolution (in pixels) 512x512

Table 4.1: Data Specifications for D1.

4.2 Dataset Description
In this work, we used two datasets: lung segmentation D1 and lung cancer segmentation
D2. The dataset selection was inspired by Primakov et al. [PIVT+22a] workflow, where
they first isolate lung area and then perform lung cancer segmentation. The datasets
are a collection of both 2D and 3D CT scans, however, we have only utilized the 2D CT
scans due to SAM’s limitations that are explained in Section 4.5.

These two datasets are different in terms of their complexity. While dataset D1 has a
large target (lung), dataset D2 is highly imbalanced with its small region of interest, i.e.
lung cancer. This contrast between different targets gives us a broader sense of model
performance.

4.2.1 Lung Segmentation Dataset D1

The lung segmentation dataset D1 includes manually segmented lung CT scans in both
2D and 3D formats. As previously mentioned, SAM is only compatible with 2D images.
Therefore, we have focused on 2D CT central slices for this work. The dataset was
obtained from Kaggle [Mad17]. We have D1 = {p1, . . . , pj}, j ∈ {1, . . . , 267}, where j
denotes running index of patients (image pairs). Image pairs are defined as pj = {Ij , Mj},
where Ij and Mj represent j-th image and corresponding binary mask, respectively. Each
binary mask consists of 0s for the background and 1s for the target. We have included
dataset specifications in Table 4.1.

The metadata contains features such as lung area pixels, size in mm2, and percentile
density. However, this was not used in this work because we only focused on the image
segmentation task. Additional information such as CT vendors, reconstruction kernels,
patient’s health, annotators, or similar was not available. A single image pair example of
D1 dataset can be seen in Figure 4.2.

4.2.2 Lung Cancer Segmentation Dataset D2

The lung cancer segmentation dataset D2 consists of 96 non-small cell lung cancer
patients with CT volumes from Stanford University. Originally, it was publicly accessible
through TCIA [CVS+13]. However, we have used a preprocessed version from the
Medical Segmentation Decathlon (MSD) challenge [ARB+22] wherein all images were
reformatted from Digital Imaging and Communications in Medicine (DICOM) format to
Neuroimaging Informatics Technology Initiative (NIfTI) images. Unlike dataset D1, only
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4.3. Data Preprocessing

Number of slices 63 (images), 63 (masks)
Number of slices 2 x 17355
Number of positive slices 2 x 1597
Number of negative slices 2 x 15758
Size 6.09 GB
File Type nii.gz (image), nii.gz (mask)
Resolution (in pixels) 512x512

Table 4.2: Data Specifications for D2.

the training folder has ground truth masks available. Thus, we have used 63 NSCLC
patients’ CT volumes and split them into training, validation, and test sets. D2 dataset
CT volumes were performed pre-surgery with a section thickness of less than 1.5mm, a
voltage of 120kVp, an adjustable tube current modulation ranging from 100 to 700mA,
a tube rotation speed of 0.5 seconds, a helical pitch from 0.9 to 1.0, alongside a sharp
kernel for image reconstruction [SAB+19]. The tumor area was manually segmented by
an expert thoracic radiologist using OsiriX software. The basic specifications are listed
in Table 4.2.

This dataset can be denoted as D2 consisting of patient samples pj = {Vj , V Mj}, with
j ∈ {1, . . . , 63} representing the running index of patients, Vj ∈ R3 the image volume
and V Mj ∈ R3 the corresponding binary mask. Each volume consists of i slices, denoted
as si = {Ii

j , M i
j}, where Ii

j represents the image slice and M i
j corresponding binary mask

for the jth patient and ith slice within that volume.

The lung cancer segmentation dataset was particularly interesting due to the complexity
of segmenting a relatively small target (cancer) on a large image frame. Figure 4.3 shows
a single pair example for D2.

4.3 Data Preprocessing
In the initial lung segmentation dataset D1, no preliminary data preprocessing was
required since it only comprised the central slice for each patient’s CT scan.

To ensure comparable outcomes to dataset D1, we have used only the positive slices
(containing tumor) from dataset D2. For each patient pj , we only consider 2D slice
pairs containing a positive label: pairs where �

M i
j > 0, with i denoting the running

index of 2D slices in the 3D volume. Figure 4.3 visualizes small-scale, medium-scale, and
large-scale tumors from dataset D2.

For CNN-based models, we used the original image size [512, 512] for both datasets.
However, due to frequent crashes during training with this size on SAM, we adjusted the
image size to [256, 256] for both datasets.

Regarding image scaling, Ij is resized using the bicubic interpolation algorithm, however,
we use the resize nearest neighbor interpolation algorithm for Mj . The nearest neighbor
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4. Methodology and Experimental Setup

Figure 4.2: Dataset D1 contains a central lung slice from CT scan for each Ij . Therefore,
as each slice contains pixels annotated as lung �

Mj > 0 for patient pj

algorithm is a resampling method that matches the closest pixel value from an original
image to a down-scale image.

4.3.1 Data Augmentation
Similarly, as Primakov et al. [PIVT+22a], we apply data augmentation techniques, on
a training set only, to ensure the robustness of the model. It is an effective method
to improve the generalization of the model by enriching training data [YXZ+23]. This
process applies a series of transformations to an image such as flipping, rotating, and
scaling.

We use a sequential order of transformations, which is listed as follows:

1. Horizontal Flip receives an input xh=0.5 that defines a likelihood to flip the
image horizontally.

2. Vertical Flip similarly as horizontal flip, it receives parameter xv=0.5 to perform
a vertical flipping.

3. Linear Contrast regulates contrast by scaling image pixels within a certain input
range α, in our case uniformly sampled from (0.75, 1.25).

Lcontrast = 127 + α(v − 127) (4.1)

where v denotes a pixel value [aug24].

4. Affine applies the following transformations: translation, scaling, and rotation.
The translation shifts (translates) an image by a parameter t=0.15 on the x-axis
or y-axis, relative to their size. Scaling receives an input range, (0.85, 1.15) in
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4.3. Data Preprocessing

Figure 4.3: Dataset D2 contains lung cancer CT scans. Starting from the top, the first
pair shows a small-scale tumor, the second pair is a medium-scale tumor, and the third
pair displays a large-scale lung cancer slice for patient pi

j .

relative size, to either downscale or upscale an image. Rotation receives a parameter
[−x, x] from uniformly sampled range (-45, 45) that rotates an image.

5. Elastic Transformation is the last transformation in this sequence that applies
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4. Methodology and Experimental Setup

Figure 4.4: Lung cancer pi
j CT scan before and after transformation used for data

augmentation. The transformations include horizontal flip, vertical flip, linear contrast,
and elastic transformation.

image deformations using a displacement field. It was used with default parameters
α and σ which regulate displacement (Figure 4.4).

4.3.2 Data-Specific and Model-Specific Preprocessing
This part addresses both data-specific and model-specific preprocessing methods used in
this work. The reason for data-specific preprocessing is lung segmentation dataset is an
easy target compared to lung cancer segmentation which is very complex to segment due
to its small region of interest. To avoid redundant descriptions, we focused only on the
differences in preprocessing.

1. Lung Segmentation Dataset

There was no preliminary data-preprocessing for dataset D1 since each �
Mj > 0 for

patient pj . In other words, it only includes positive slices that contain the target.
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4.3. Data Preprocessing

A. CNN-based models
We split the dataset into 60% training, 10% validation, and 30% testing sets.

B. SAM-based models
For each image pair pj = {Ij , Mj} we construct a bounding box using the ground truth
as explained in Section 4.5. We replicate the same process for the Segment Anything
Model without human interaction, however, the bounding box is set to match the image
size. This allows us to avoid using ground truth for the Segment Anything Model.

2. Lung Cancer Segmentation Dataset

We have focused on lung cancer-positive slices to compare the CNN model to SAM. As
already noted, SAM is limited to 2D images and must contain the target of interest. For
our experiments, we only extracted original size [512, 512] 2D slices with manual cancer
annotations where �

M i
j > 100.

A. CNN-based models
We included image intensity scaling and data augmentation, however, it was not used in
other settings. The intensity preprocessing function standardizes the intensity range of
the pixel values from a given image. It takes five parameters: image, amin, amax, bmin

and bmax. In the first step, we normalize image intensity values by using amin=-57 and
amax=164 range from MONAI spleen segmentation example [CLB+22][spl24].

Ii
jnorm =

Ii
j − amin

amax − amin
(4.2)

Subsequently, we rescale the normalized image to the desired range from bmin=0 and
bmax=1.

Ii
jnew_range = Ii

jnorm ∗ (bmax − bmin) + bmin (4.3)

Lastly, we implement the clip method to limit the pixel values to the range defined by
bmin and bmax, similar as intensity function from MONAI spleen segmentation example
[CLB+22][spl24].

The dataset is split patient-wise and randomly into 80% training, 10% validation, and
10% testing set, based on the assumption that the training would require more data than
dataset D2 because of its small target size.

B. SAM-based models
We use identical data split from CNN-based models. Everything else is the same as D1
dataset SAM preprocessing.
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4. Methodology and Experimental Setup

Figure 4.5: Triple Block DenseNet with Transition Layers. It receives an input image
and uses convolution for feature extraction. After that, there are three dense blocks with
transition layers that consist of convolution and pooling. Finally, the linear transition
layer outputs a prediction [HLvdMW18].

4.4 CNN-based Models

In this section, we present the CNN-based models applied to both datasets D1 and D2.
This work involves experimenting with different model architectures, backbones (network
encoders), and loss functions. More focus was given to dataset D2 due to its increased
complexity compared to dataset D1. A full list that specifies each configuration used for
CNN-based models is given in Table 4.3.

4.4.1 Encoder Networks

In this work, we have used some of the most prominent backbones including ResNet,
EfficientNet, and DenseNet.

Introduced by He et al. [HZRS15], Residual Networks (ResNets) are known for their
skip connections or residual connections. These connections allow for the training of
deeper networks than previously feasible. ResNets are available in various scales and
depths, such as ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152, where the
number represents the total number of layers. In this work, we used ResNet18, ResNet34,
ResNet101, and ResNet152.

Tan et al. [TL19] introduced EfficientNets that uniformly scale all dimensions of the
network (depth, width, and resolution). The foundational EfficientNet-B0 serves as
a scalable building block for the B1-B7 EfficientNet variants. The model complexity
increases as variants progress from B1 to B7 EfficientNet. EfficientNet-B7 set a new record
in 2020 for accuracy on ImageNet. We only used EfficientNet-B7 in our experiments.

In a Densely Connected Convolutional Network (DenseNet), each layer is directly con-
nected to every other layer in a feed-forward fashion (Figure 4.5). As described by Huang
et al. [HLvdMW18], such a dense connectivity pattern reduces the need for capturing
redundant feature maps, therefore, it improves efficiency. In this work, we’ve only used
the DenseNet121 encoder, which has the lowest number of parameters compared to other
DenseNet encoders such as DenseNet161 or DenseNet169.
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4.4. CNN-based Models

Figure 4.6: U-Net Model Architecture. It consists of four encoders (left side) and four
decoders (right side). The last convolution layer uses an activation function to generate
a prediction for each pixel [RFB15].

4.4.2 Network Architectures
When developing the model for semantic segmentation, it is crucial to experiment with
different model architectures and backbones since the results vary across various tasks
and datasets [Gup23].

In this work, we used four different network architectures for image segmentation including
original U-Net, U-Net++, Feature Pyramid Network (FPN), and Pyramid Scene Parsing
Network (PSPNet). These network architectures can be configured with various encoder
networks or backbones.

U-Net originally consisted of four encoder and four decoder blocks connected in a U-shape
as illustrated in Figure 4.6. Finally, 1x1 convolution with activation function is used to
generate pixel-wise prediction [RFB15].

Furthermore, we applied U-Net++ on the dataset D2. The U-Net++ is an enhanced
version of the U-Net architecture. It is distinguished by re-designed nested and dense
skip pathways which minimize the semantic differences between the feature maps of the
encoder and decoder (Figure 4.7). We decided to use U-Net++ in addition to the U-Net
because it achieves better performance on various medical image segmentation tasks
such as nodule isolation in chest low-dose CT scans, nuclear segmentation in microscopic
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Figure 4.7: U-Net++ Model Architecture. Its encoder and decoder are connected with a
series of nested dense convolutional blocks to minimize the semantic gap [ZSTL18].

Figure 4.8: Pyramid Scene Parsing Network (PSPNet) Model Architecture. (a) The
input image is (b) encoded into a feature map, which (c) is further processed with four
pyramid scales that extract different sub-regions to generate (d) the final prediction
[ZSQ+17].

images, or liver segmentation in abdominal CT [ZSTL18].

The PSPNet architecture creates a feature map from an input image using CNN and
transfer learning, after that it uses a pyramid pooling module (Figure 4.8). The pyra-
mid pooling module captures features using four different pyramid scales, and outputs
concatenated base feature maps as the final global feature [ZSQ+17].

The FPN model stands out with its top-down architecture and lateral connections
that allow for high-level semantic segmentation (Figure 4.9). Its architecture allows
for combining low resolution for semantically weak features, and high resolution for
semantically important features [LDG+16].

Lastly, we have used original U-Net, U-Net++, PSPNet, and FPN in this work [Iak19].
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4.4. CNN-based Models

Figure 4.9: Feature Pyramid Network (FPN) Model Architecture. It takes an input image
to build a feature pyramid for each scale. Its top-down pathway and lateral connections
allow for capturing important semantic features with high resolution [LDG+16].

A hyper-parameter search space overview for our models is available in Table 4.3.

4.4.3 Loss Functions
In this work, we have used Binary cross-entropy and Dice Similarity Coefficient loss
functions.

Our Binary cross-entropy loss was wrapped with a sigmoid function in the last layer
to ensure that predictions are bound between 0 and 1; background or target. The
binary cross-entropy loss measures the difference between predictions and ground truth
segmentation using a pixel-wise comparison. It is given by:

LBCE = − 1
n

n�
i=1

(yi · log(ŷi) + (1 − yi) · log(1 − ŷi)) (4.4)

where n represents the number of pixels in an image. y and ŷ represent ground truth
and predicted segmentation map for each pixel, respectively [TCERPCU23].

Based on the Dice Similarity Coefficient (DSC), explained in Subsection 2.5.1, the Dice
loss maximizes the similarity between the predictions and ground truth segmentation
mask. This loss function is given by:

LDL = 1 − 2|y ∩ ŷ|
|y| + |ŷ| + ϵ

(4.5)

where ϵ = 1 × 10−7 was used for numerical stability. Inspired by Primakov et al.
[PIVT+22a], we combined widely used BCE and Dice Loss. Each of them was equally
weighted in a single loss function. It can be denoted as follows:

LBCE_DL = w1 · LBCE + w2 · LDL (4.6)

where wi represents weights. In our case, this was set to 0.5 for both weight w1 and
weight w2.
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Figure 4.10: Segment Anything Model Key Components. It uses an image encoder to
create image embedding which can be queried by input prompts such as points, box, or
text prompt. In case of an ambiguous prompt, SAM can output more than one mask
[KMR+23].

4.5 SAM-based Models

In the comparative analysis with CNN-based models, we have used the Segment Anything
Model (SAM) that is based on Vision Transformer (ViT) explained in Section 2.4. It
implies being used with prompts including text, points, masks, or bounding boxes. In
our experiments, the ground truth was utilized for SAM with SHI, however, it poses
a challenge for a direct comparison with CNN-based models. Nevertheless, SAM was
fine-tuned without SHI to ensure a fair comparison ([Rog23],[Bha23]). Figure 4.12 shows
the bounding box prompt comparison between SAM with and without SHI.

SAM consists of three key components: image encoder, prompt encoder, or mask encoder
(Figure 4.10). An image encoder uses a pre-trained ViT masked autoencoder [HCX+21]
as a backbone to embed the input image. The prompt encoder may receive four types
of prompts: text, points, masks, and bounding boxes. A lightweight mask decoder
uses self-attention (single input sequence) and cross-attention (combines multiple input
sequences) to combine an image and prompt embedding. After that, it utilizes a dynamic
linear classifier, which automatically adjusts classifier criteria, to output a prediction, or
probability map [KMR+23]. SAM only supports two-dimensional images as an input.

Moreover, there are three SAM backbones available: SAM-ViT-Base, SAM-ViT-Large,
and SAM-ViT-Huge with 91M/308M/636M parameters, respectively. Obviously, the
SAM-ViT-Base is the smallest network and overall performs very close to the SAM-ViT-
Huge according to Kirillov et al. [KMR+23]. Thus, their differences will not be analyzed
in contrast to the CNN’s encoder networks from the section above. We have utilized a
pre-trained SAM model and fine-tuned its lightweight encoder. Furthermore, we have
utilized a loss function that integrates Dice Loss and Cross Entropy Loss which was
already explained in Subsection 4.4.3. Adam was chosen as the optimizer for this task.
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4.5.1 SAM with Simulated Human Interaction
SAM was fine-tuned with simulating human interaction through a bounding box prompt
(Figure 4.11). We have chosen the bounding box type of prompt since it clearly selects
ROI and reduces ambiguity compared to point prompt which often requires multiple
interactions [MHL+23]. In our preliminary analysis, we tried using text prompts, however,
it did not lead to reasonable results. For simulated human interaction, we have calculated
the bounding box (BB) coordinates for a given ground truth segmentation map. Here is
a step-by-step explanation.

For each data point:

1. Based on the ground truth segmentation map compute the coordinates of the
smallest rectangle that encompasses the target structures (defined by non-zero
pixels).

2. To simulate human interaction, add some randomness to the bounding box co-
ordinates. For each coordinate (x_min, x_max, y_min, y_max) sample a
random integer value between 0 and x from discrete uniform distribution. We
utilized x=5 and x=20 to produce random (0, x). These ranges were defined
during our initial analysis since they simulate a more realistic human interaction
scenario. A random integer x needs to be positive to prevent target cutting.

3. Finally, create the bounding box of the segmented object with some added random-
ness randi.

(x_min − rand1, x_max + rand2, y_min − rand3, y_max + rand4) (4.7)

This process of prompting or simulating human interaction is applied for both fine-tuning
the SAM model and segmenting new unseen instances.

4.5.2 SAM without Simulated Human Interaction
SAM without SHI is not the typical application of this model. However, to ensure a
fair comparison with the CNN-based models (Section 4.4), any information leak from
the ground truth must be excluded from the fine-tuning and evaluation step. The
implementation is almost identical to the SAM with SHI, the only difference is that we
used bounding boxes covering the full image as prompt input. For example, if the image
size is 256x256 the BB would be given as follows:

(x_min, x_max, y_min, y_max) (4.8)

(0, 256, 0, 256). (4.9)

Through this method, we can fine-tune the model utilizing all image pixels, unlike SAM
with the SHI approach, where only a small region of the entire image is analyzed.
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Figure 4.11: Key components of Segment Anything Model. The top part, visualizes
SAM with simulated human interaction, while the bottom part visualizes SAM without
simulated human interaction. [KMR+23]

4.6 Hyperparameter Tuning and Model Selection
In this work, we experimented with various models, architectures, and backbones. During
the initial phase, we tried using different loss functions, optimizers, and number of epochs.
Table 4.3 describes the search space for our experiments.

For the lung segmentation dataset D1, we utilized an SGD optimizer at a 0.001 learning
rate and Binary Cross Entropy loss function across all CNN-based models. We used
U-Net model architecture combined with resnet18/34/152 and efficientnet-b7. Also, we
conducted training with 50 and 200 epochs, and the best model was chosen based on the
validation set DSC and HD performance. SAM, both with SHI and without SHI were
trained with 50 epochs and three different backbones including ViT-Base, ViT-Large, and
ViT-Huge. An Adam optimizer set to a learning rate of 1 × 10−5 and the Dice combined
with the Cross Entropy Loss function was employed. SAM with SHI was trained and
evaluated using x=5 and x=20 bounding boxes.

We applied U-Net/U-Net++/FPN/PSPNet model architectures with resnet18/101/152,
efficientnet-b7, and densenet121 network encoders on lung cancer segmentation dataset
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Figure 4.12: The input image (a) and ground truth mask (b) represent an image pair
pj = Ij , Mj from dataset D1. SAM with simulated human interaction has a corresponding
bounding box provided in the bottom left corner (c), while a full-size bounding box from
SAM without simulated human interaction is in the bottom right corner (d).

D2. The AdamW optimizer with a learning rate set to 0.001 and a loss function that
combines BCE and Dice Loss was used across all CNN-based models. We trained CNN-
based models with 100 and 200 epochs. The configuration for SAM with SHI and without
SHI remained consistent with the approach from dataset D1.

These parameters were determined through a series of preliminary experiments and
demonstrated optimal performance based on the validation set.
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Parameter Search Space
CNN Model
Model Architectures U-Net, **U-Net++, **FPN, **PSPNet
Network Encoders resnet18/*34/**101/152, efficientnet-b7, **densenet121
Optimizer *SGD(lr=0.001), **AdamW(lr=0.001)
Loss Function *Binary Cross Entropy (BCE), **Combined BCE and Dice Loss
Number of epochs *50, **100, 200
SAM with SHI
Backbones SAM-ViT-Base, SAM-ViT-Large, SAM-ViT-Huge
Bounding Box Size (in pixels) 5, 20
Number of epochs 50
SAM without SHI
Backbones SAM-ViT-Base, SAM-ViT-Large, SAM-ViT-Huge
Bounding Box (BB) img_dim
Number of epochs 50

Table 4.3: Hyperparameter tuning and model selection search space table. Non-starred
parameters were used for both datasets. A single asterisk parameters were used for
dataset D1, and those with double asterisks for dataset D2. Img_dim represents the full
image dimension.

4.7 Experimental Setup
We used DSC, HD, standard deviation (SD), and 95th percentile (H95th) as quantitative
evaluation metrics in our experiments. Furthermore, we evaluate dataset D2 for each
tumor scale: small, medium, and large. These scales are determined based on training
data distribution.

Dataset D1 and dataset D2 are evaluated on their test sets using DSC and HD metrics.
Additionally, we compute standard deviation (SD), and 95th percentile (H95th), for both
DSC and HD. Both CNN-based and SAM-based models output a probability map as a
prediction, which is converted to a binary segmentation map using a threshold of 0.4 and
0.5 for CNN-based models and SAM-based models, respectively. These thresholds were
determined for each model architecture in preliminary experiments on the validation set.

Dataset D2 positive CT scans were divided into three uniform subgroups based on an
analysis of the training data distribution. The tumor scales are defined as follows:

1. Small Scale Tumor: [� M i
j > 100,

�
M i

j < 500]

2. Medium Scale Tumor: [� M i
j > 500,

�
M i

j < 1500]

3. Large Scale Tumor: �
M i

j > 1500.
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For each tumor scale test set, we evaluated the DSC and HD for CNN-based and SAM-
based models. This approach of evaluating tumors across different scales is widely adopted
in similar research papers such as Primakov et al. [PIVT+22a].

4.8 Training Details
In this work, we conducted our experiments at the HPC cluster of the CIR lab, running
a Linux CentOS operating system with 9 servers. Most of the experiments were done
using a specific server on the HPC cluster with 20 CPU cores, and 6 x GeForce RTX 2080
Ti GPUs with 11GB of RAM with CUDA v11.7. However, we have also used NVIDIA
GeForce RTX 3080 Ti and Nvidia TITAN Xp with 12 GB of RAM from other nodes.
We used Slurm Workload Manager to automatically schedule the experiments efficiently
on the servers.

Python (v3.6.8) was used for CNN models and Python (v3.11.0) for SAM. PyTorch
(v1.10.1) was used as a deep learning framework that supports GPU acceleration
[PGM+19]. For CNN-based models implementation, we utilized Segmentation Mod-
els PyTorch library (v0.3.1) with pre-trained backbones on ImageNet [Iak19].

For tracking the experimental results, we have used Weights&Biases (v0.15.11). We used
the 3D Slicer (v5.2.2) open-source app for MacOS to preview CT scans in NIFTI format.
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CHAPTER 5
Results

This chapter presents results for lung segmentation in Section 5.1, lung cancer segmenta-
tion in Section 5.2, and lung cancer segmentation for small, medium, and large scale in
Section 5.3 for CNN-based models, SAM with SHI and SAM without SHI. Finally, this
section includes both quantitative and qualitative metrics for both dataset D1 and D2
test sets.

5.1 Lung Segmentation Results

In this section, we present results that show a comparison between the performance of
CNN-based and SAM-based models on the lung segmentation dataset D1 test set. We
report mean, H95th, and SD for DSC and HD metrics.

5.1.1 CNN-based Models

An overview of quantitative results across all CNN-based models applied to lung segmen-
tation dataset D1 with mean DSC and mean HD on the test set is provided in Table 5.1.
We can see consistent performance in both DSC and HD for test sets across different
models. The highest DSC was 0.975 using U-Net with efficientnet-b7, and the same
model achieved the lowest HD of 5.859. Moreover, these results demonstrate that there
was no need to explore additional model architectures, given the satisfactory performance
with current configurations.

The training time duration had significant variation from approximately 4 minutes for
U-Net with a ResNet 18 to around 1 hour for U-Net with ResNet 152. In addition, we
report the number of epochs used for CNN-based model training.
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5. Results

DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net efficientnet-b7 50 0.975 0.026 0.054 5.859 3.694 1.539
U-Net resnet18 50 0.975 0.028 0.055 5.907 3.681 1.560
U-Net resnet34 50 0.973 0.030 0.055 6.084 3.503 1.481
U-Net resnet152 50 0.970 0.029 0.063 6.017 3.826 1.739
U-Net resnet152 200 0.974 0.026 0.055 6.020 7.874 3.515

Table 5.1: CNN Model Performance on Lung Segmentation Dataset D1 Test Set.

DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.964 0.057 0.021 4.959 3.253 0.991
sam-vit-large 5 0.961 0.078 0.037 4.936 2.650 0.965
sam-vit-huge 5 0.961 0.065 0.038 4.899 2.481 0.977
sam-vit-base 20 0.966 0.052 0.018 4.805 2.815 0.818
sam-vit-large 20 0.965 0.060 0.019 4.913 2.622 0.862
sam-vit-huge 20 0.957 0.072 0.047 4.954 2.868 0.976

Table 5.2: SAM with SHI Performance on Lung Segmentation Dataset D1 Test Set.

5.1.2 SAM with Simulated Human Interaction
The results presented in Table 5.2 for the lung segmentation dataset D1 showcase the
performance of different SAM backbones with varying bounding box sizes. These results
cannot be directly compared to CNNs since we are already using the ground truth for
the bounding box to simulate human interaction. Therefore, the model’s performance is
partly dependent on initial human input.

The results in Table 5.2 for dataset D1 using SAM show relatively high performance
across all model’s backbones with DSC being 0.957 or greater. The performance across
different backbones remains similar. Also, the model results are consistent for both x=5
and x=20 bounding box sizes.

Moreover, the HD is generally reduced relatively to the results using CNNs in Table 5.1
with an absolute mean difference of 1.06. This suggests that the lungs are captured
better using SAM.

5.1.3 SAM without Simulated Human Interaction
It is important to note that SAM is not intended to be used without human interaction or
a full-sized bounding box which has been explained in Section 4.5. The results presented
in Table 5.3 for the lung segmentation dataset D1 using SAM without human interaction
can be directly compared to the CNN-based models approach on D1. The DSC varies
significantly across different SAM backbones compared to CNN-based models. Based on

48



5.2. Lung Cancer Segmentation Results

DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.831 0.285 0.120 7.577 3.379 1.108
sam-vit-large 0.897 0.134 0.091 6.967 3.189 1.153
sam-vit-huge 0.920 0.137 0.075 5.749 3.463 1.254

Table 5.3: SAM without SHI Performance on Lung Segmentation Dataset D1 Test Set.

DSC and HD, SAM with ViT-Huge backbone performs similarly to CNN-based models in
Table 5.1 with a DSC absolute mean difference of 0.091. Lastly, we provide boxplot and
qualitative results that include the best CNN-based and SAM-based models in Figure 5.1
and Figure 5.2, respectively.

Figure 5.1: Boxplot of Two Best Performing Models on Lung Segmentation Dataset D1
Test Set Based on DSC. The orange line indicates the median, and the whiskers extend
DSC values from minimum to maximum.

5.2 Lung Cancer Segmentation Results

In this section, we report the results for the lung cancer dataset D2 test set using CNN-
based models, SAM with SHI, and SAM without SHI. As previously stated, this dataset
is far more complex compared to lung segmentation due to its small target, which is a
common challenge in the field of medical image analysis.

49



5. Results

Figure 5.2: Qualitative Results of Lung Segmentation D1 Dataset Test Set. The input
image (a) and ground truth mask (b) represent an image pair pj = Ij , Mj from dataset
D1. Images (c), (d), and (e) represent the output from the best performing CNN-based
model (UNet/efficientnet-b7), SAM with SHI (SAM/20/Base) and SAM without SHI
(SAMN/Huge), respectively.

5.2.1 CNN-based Models
CNN-based model results for lung cancer segmentation are shown in Table 5.4. The
highest DSC of 0.440 was achieved using U-Net with resnet101. SD is very high across
all models, however, HD results are relatively similar.

The U-Net++ with a single dagger (†) uses data augmentation to improve the model
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DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net resnet152 200 0.428 0.896 0.334 4.651 5.832 1.882
U-Net efficientnet-b7 100 0.387 0.893 0.356 4.740 5.250 1.839
U-Net resnet18 100 0.372 0.888 0.346 4.707 5.680 1.712

U-Net++ efficientnet-b7 100 0.390 0.869 0.347 4.339 4.483 1.489
FPN resnet18 100 0.318 0.850 0.336 4.297 4.262 1.340

PSPNet efficientnet-b7 100 0.289 0.777 0.292 4.613 4.001 1.362
U-Net++ resnet152 100 0.400 0.870 0.351 4.973 7.515 2.296
†U-Net++ resnet152 100 0.234 0.758 0.279 6.865 9.491 3.040

U-Net densenet121 100 0.331 0.818 0.305 5.565 9.095 2.371
††U-Net resnet18 100 0.178 0.707 0.260 4.544 3.980 1.221

U-Net++ efficientnet-b7 200 0.392 0.849 0.319 4.489 4.557 1.476
U-Net resnet101 100 0.440 0.901 0.338 4.605 5.312 1.736

Table 5.4: CNN Model Performance on Lung Cancer Segmentation Dataset D2 Test Set.

results. Also, double-daggered (††) U-Net uses preprocessing with intensity scaling which
is explained in Section 4.3. However, both techniques did not improve the overall score.
In contrast, the model which used intensity scaling had the lowest DSC on the test set.
Moreover, incorporating data augmentation into the model did not achieve increased
robustness, as the standard deviation (SD) is also high.

In Table 5.4, results are not consistent across different configurations. For example,
PSPNet has a much worse DSC of 0.289 compared to U-Net using resnet101 with a DSC
of 0.440. Also, we have achieved worse overall performance compared to the previous task
with lung segmentation dataset D1 in Table 5.1. The FPN model achieved the lowest
HD of 4.297 on the test set indicating the closest alignment between the predicted and
the actual segmentation.

The training of the U-Net++ with ResNet152, alongside data augmentation, required
about 24 hours of training, which is one of the highest in runtime duration.

5.2.2 SAM with Simulated Human Interaction

Results for lung cancer segmentation using SAM with Simulated Human Interaction are
presented in Table 5.5. The results in Table 5.5 are better than in Table 5.4 with a DSC
absolute mean difference of 0.322. SAM with ViT-Base backbone with x=5 bounding
box achieves the highest DSC of 0.749, and the lowest HD of 2.084 on the test set. Also,
x=5 bounding box size improves the model’s robustness compared to x=20 bounding
box size which is expected because the target is larger.
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DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.749 0.552 0.173 2.084 1.748 0.560
sam-vit-large 5 0.733 0.640 0.192 2.097 1.585 0.524
sam-vit-huge 5 0.746 0.656 0.199 2.098 1.810 0.596
sam-vit-base 20 0.656 0.842 0.247 2.266 1.924 0.632
sam-vit-large 20 0.619 0.809 0.253 2.327 1.924 0.651
sam-vit-huge 20 0.612 0.867 0.276 2.389 2.327 0.726

Table 5.5: SAM with SHI Performance on Lung Cancer Segmentation Dataset D2 Test
Set.

DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.053 0.355 0.144 3.427 2.877 0.864
sam-vit-large 0.061 0.3960 0.143 3.526 2.763 0.884
sam-vit-huge 0.113 0.593 0.202 3.267 2.582 0.745

Table 5.6: SAM without SHI Performance on Lung Cancer Segmentation Dataset D2
Test Set.

5.2.3 SAM without Simulated Human Interaction
In this experiment, we present results for the lung cancer segmentation dataset D2 test
set in Table 5.6. The best-performing model was SAM with ViT-Huge backbone which
achieved a very low DSC of only 0.133 on the test set, SAM with ViT-base backbone
and SAM with ViT-Large backbone performed even worse. Also, SAM with ViT-Huge
backbone scored the lowest HD of 3.267 on the test set.

These scores are lower compared to CNN-based with a DSC of 0.440 using U-Net from
Table 5.4 and SAM with SHI with a DSC of 0.749 from Table 5.5.

Finally, we provide boxplot and qualitative results for CNN-based and SAM-based models
in Figure 5.3 and Figure 5.4, respectively.

5.3 Tumor-Scale Based Lung Cancer Segmentation Results
In this section, we provide quantitative results for each tumor scale to assess the CNN-
based, SAM with SHI, and SAM without SHI model performance across three different
tumor scales including small, medium, and large scale test sets. The segmentation
of small-scale tumors proved to be the most difficult task due to the complex target,
SAM with SHI achieved the highest DSC of 0.704, significantly outperforming the best
CNN-based model U-Net++ with efficientnet-b7 that achieved the DSC of only 0.327
(Subsection 5.3.1). The results based on medium-scale tumor improved across all models,
the highest DSC of 0.804 was achieved using SAM with SHI (Subsection 5.3.2). Finally,
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Figure 5.3: Boxplot of Two Best Performing Models on Lung Cancer Segmentation
Dataset D2 Test Set Based on DSC. The orange line indicates the median, and the
whiskers extend DSC values from minimum to maximum.

large-scale tumor results improved for both CNN-based and SAM-based models, where
the best CNN-based model (U-Net/resnet18), SAM with SHI, and SAM without SHI
achieved the DSC of 0.771, 0.868, and 0.336, respectively (Subsection 5.3.3).

5.3.1 Small Scale Lung Cancer
The small-scale tumor was the most complex to segment since it is highly imbalanced.

CNN-based Models Each model from Table 5.7 has lower DSC on a small scale
compared to general results on the test set. U-Net++ achieved the highest DSC of 0.327
on the test set, however, its performance dropped significantly with the usage of data
augmentation to DSC of 0.132 or the usage of intensity scaling to DSC of 0.101. On the
other hand, U-Net with resnet18 that employs intensity scaling achieved the lowest HD
of 4.071.

SAM with Simulated Human Interaction SAM with SHI achieves the highest
DSC of 0.704 using ViT-Huge backbone with bounding box x=5 on the small-scale tumor
test set. Also, the same model configuration achieves the lowest HD of 1.925. These are
reported in Table 5.8.

SAM without Simulated Human Interaction The SAM without SHI using ViT-
Huge backbone achieves the highest DSC of 0.051, and the lowest HD was 2.893 using
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5. Results

Figure 5.4: Qualitative Results of Lung Cancer Segmentation D2 Dataset Test Set. The
input image (a) and ground truth mask (b) represent an image pair pi

j = {Ii
j , M i

j} from
dataset D2. Images (c), (d), and (e) represent the output from the best performing
CNN-based model (UNet/resnet101), SAM with SHI (SAM/5/Base) and SAM without
SHI (SAMN/Huge), respectively.

ViT-Base backbone (Table 5.9).

There is a boxplot provided for the top two models based on DSC for each model
architecture in Figure 5.5.

In summary, the increase of DSC and decrease in HD as tumor scale increases indicates
that all models struggle with smaller targets. A similar trend in performance between
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DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net resnet152 200 0.306 0.879 0.342 4.757 6.722 2.125
U-Net efficientnet-b7 100 0.288 0.868 0.337 4.744 5.570 1.933
U-Net resnet18 100 0.244 0.837 0.312 4.874 5.828 1.897

U-Net++ efficientnet-b7 100 0.327 0.886 0.366 4.122 4.895 1.621
FPN resnet18 100 0.223 0.847 0.319 4.145 4.824 1.340

PSPNet efficientnet-b7 100 0.197 0.776 0.275 4.513 5.800 1.532
U-Net++ resnet152 100 0.273 0.831 0.339 5.294 8.049 2.679
†U-Net++ resnet152 100 0.132 0.606 0.207 6.737 8.594 2.686

U-Net densenet121 100 0.175 0.687 0.234 6.068 9.304 2.773
††U-Net resnet18 100 0.101 0.690 0.224 4.071 2.922 0.994

U-Net++ efficientnet-b7 200 0.322 0.875 0.337 4.428 5.170 1.674
U-Net resnet101 100 0.309 0.828 0.323 4.709 6.022 1.916

Table 5.7: CNN Model Performance on Small Scale Lung Tumor Segmentation Dataset
D2 Test Set.

DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.694 0.684 0.196 1.969 1.793 0.645
sam-vit-large 5 0.690 0.715 0.219 1.966 1.771 0.579
sam-vit-huge 5 0.704 0.743 0.225 1.925 2.207 0.629
sam-vit-base 20 0.621 0.871 0.286 2.040 1.902 0.612
sam-vit-large 20 0.550 0.824 0.274 2.209 2.071 0.725
sam-vit-huge 20 0.564 0.855 0.280 2.266 2.389 0.761

Table 5.8: SAM with SHI Performance on Small Scale Lung Cancer Segmentation Dataset
D2 Test Set.

tumor scales can be seen in the state-of-the-art paper by Primakov et. al [PIVT+22a].
However, their results remain more consistent based on DSC, but they measure the tumor
scales in milliliters (mLs) and perform volumetric DSC evaluation.

5.3.2 Medium Scale Lung Cancer

CNN-based Models The U-Net with resnet101 reaches the highest DSC of 0.601 on
the test set (Table 5.10). The HD values are similar for medium-scale tumors compared
to small-scale tumors with a HD absolute mean difference of 0.559. Also, DSC results for
medium-scale tumors from Table 5.10 are better compared to small-scale tumors from
Table 5.7 with an absolute mean difference of 0.195.
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DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.038 0.336 0.152 2.893 1.540 0.477
sam-vit-large 0.039 0.205 0.137 3.131 2.826 0.818
sam-vit-huge 0.051 0.455 0.141 3.000 2.141 0.656

Table 5.9: SAM without SHI Performance on Small Scale Lung Cancer Segmentation
Dataset D2 Test Set.

Figure 5.5: Boxplot of Two Best Performing Models on Small Scale Lung Cancer
Segmentation Dataset D2 Test Set Based on DSC. The orange line indicates the median,
and the whiskers extend DSC values from minimum to maximum.

SAM with Simulated Human Interaction The highest DSC of 0.804 was reported
using SAM with SHI using ViT-Base backbone with x=5 bounding box size, also the
lowest HD 2.212 was achieved using the same model (Table 5.11). This is an improvement
compared to the best-performing SAM with SHI model applied on a small-scale tumor
dataset with an absolute difference in DSC of 0.100.

SAM without Simulated Human Interaction On the medium-scale tumor test
set, SAM without SHI using ViT-Huge backbone achieved the best performance based
on DSC and HD, with the highest DSC of 0.140 and the lowest HD of 3.662 (Table 5.12).

Similarly, as for small-scale tumors, we include a boxplot in Figure 5.6.

5.3.3 Large Scale Lung Cancer
CNN-based Models The DSC increases drastically for CNN-based models applied
on large-scale tumors compared to results for small-scale and medium-scale tumors with
DSC absolute mean difference of 0.351 and 0.1566, respectively. U-Net with resnet18
and 100 epochs on the test set achieved the best DSC of 0.771 (Table 5.13). Despite
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DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net resnet152 200 0.581 0.649 0.225 4.362 3.954 1.321
U-Net efficientnet-b7 100 0.480 0.892 0.350 4.639 4.627 1.640
U-Net resnet18 100 0.502 0.902 0.315 4.515 3.993 1.411

U-Net++ efficientnet-b7 100 0.418 0.811 0.298 4.801 3.364 1.181
FPN resnet18 100 0.389 0.845 0.315 4.616 3.473 1.311

PSPNet efficientnet-b7 100 0.378 0.773 0.271 4.828 3.341 1.032
U-Net++ resnet152 100 0.539 0.870 0.290 4.510 4.960 1.482
†U-Net++ resnet152 100 0.260 0.644 0.252 6.712 8.325 2.633

U-Net densenet121 100 0.520 0.771 0.253 4.816 4.657 1.359
††U-Net resnet18 100 0.322 0.745 0.273 5.088 3.568 1.117

U-Net++ efficientnet-b7 200 0.441 0.773 0.263 4.635 3.303 1.123
U-Net resnet101 100 0.601 0.860 0.271 4.307 3.805 1.340

Table 5.10: CNN Model Performance on Medium Scale Lung Tumor Segmentation
Dataset D2 Test Set.

DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.804 0.338 0.110 2.212 1.068 0.386
sam-vit-large 5 0.765 0.461 0.144 2.242 1.267 0.419
sam-vit-huge 5 0.779 0.556 0.160 2.265 1.430 0.457
sam-vit-base 20 0.680 0.591 0.193 2.558 1.852 0.581
sam-vit-large 20 0.692 0.644 0.207 2.476 1.584 0.545
sam-vit-huge 20 0.643 0.876 0.291 2.564 2.009 0.699

Table 5.11: SAM with SHI Performance on Medium Scale Lung Cancer Segmentation
Dataset D2 Test Set.

the overall DSC increase, the HD values remain relatively similar to small-scale tumor
results in Table 5.7. Some models even show increased HD (worse performance) on the
test set compared to general results in Table 5.4, such as U-Net with 200 epochs.

SAM with Simulated Human Interaction The best-performing model based on
both DSC and HD was SAM with SHI using ViT-Base backbone with x=5 bounding
box size. It achieved a DSC of 0.868 and HD of 2.293 (Table 5.14).

SAM without Simulated Human Interaction We report results for large-scale
tumors using SAM without SHI in Table 5.15. SAM using ViT-Huge backbone achieved
the highest DSC of 0.336 and the lowest HD of 3.481.

Lastly, we provide a boxplot for the best-performing models based on DSC for CNN-based
and SAM-based models in Figure 5.7.
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DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.082 0.435 0.140 3.930 2.230 0.697
sam-vit-large 0.038 0.314 0.101 4.006 1.898 0.667
sam-vit-huge 0.140 0.600 0.220 3.662 2.103 0.671

Table 5.12: SAM without SHI Performance on Medium Scale Lung Cancer Segmentation
Dataset D2 Test Set.

Figure 5.6: Boxplot of Two Best Performing Models on Medium Scale Lung Cancer
Segmentation Dataset D2 Test Set Based on DSC. The orange line indicates the median,
and the whiskers extend DSC values from minimum to maximum.
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DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net resnet152 200 0.718 0.433 0.163 4.930 4.239 1.664
U-Net efficientnet-b7 100 0.725 0.421 0.163 5.058 4.479 1.807
U-Net resnet18 100 0.771 0.324 0.114 4.269 3.116 1.113

U-Net++ efficientnet-b7 100 0.707 0.341 0.123 4.219 3.051 1.131
FPN resnet18 100 0.697 0.333 0.128 4.232 3.278 1.246

PSPNet efficientnet-b7 100 0.591 0.378 0.123 4.550 2.749 1.034
U-Net++ resnet152 100 0.759 0.272 0.094 4.431 3.248 1.232
†U-Net++ resnet152 100 0.300 0.696 0.296 7.913 7.317 2.566

U-Net densenet121 100 0.720 0.290 0.109 4.792 2.166 0.806
††U-Net resnet18 100 0.198 0.589 0.229 5.806 3.637 1.235

U-Net++ efficientnet-b7 200 0.685 0.324 0.110 4.410 2.754 1.044
U-Net resnet101 100 0.756 0.343 0.134 4.925 4.056 1.537

Table 5.13: CNN Model Performance on Large Scale Lung Tumor Segmentation Dataset
D2 Test Set.

DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.868 0.130 0.045 2.293 1.096 0.338
sam-vit-large 5 0.854 0.127 0.039 2.333 0.691 0.235
sam-vit-huge 5 0.857 0.159 0.052 2.487 1.229 0.434
sam-vit-base 20 0.763 0.223 0.074 2.561 0.902 0.352
sam-vit-large 20 0.756 0.315 0.106 2.488 1.079 0.348
sam-vit-huge 20 0.760 0.280 0.091 2.508 1.267 0.455

Table 5.14: SAM with SHI Performance on Large Scale Lung Cancer Segmentation
Dataset D2 Test Set.

DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.047 0.204 0.094 4.643 1.851 0.658
sam-vit-large 0.235 0.450 0.149 4.131 2.284 0.699
sam-vit-huge 0.336 0.738 0.229 3.481 2.582 0.792

Table 5.15: SAM without SHI Performance on Large Scale Lung Cancer Segmentation
Dataset D2 Test Set.
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Figure 5.7: Boxplot of Two Best Performing Models on Large Scale Lung Cancer
Segmentation Dataset D2 Test Set Based on DSC. The orange line indicates the median,
and the whiskers extend DSC values from minimum to maximum.
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CHAPTER 6
Discussion and Conclusion

This chapter highlights the main insights from the thesis in Section 6.1. Contributions
are listed in Section 6.2. Subsequently, we describe limitations in Section 6.3. Finally,
future work and conclusions are provided in Section 6.4.

6.1 Key Findings
The research questions originally presented in Chapter 1 are revisited in this section,
with a focus on key discoveries from the results.

How does the CNN-based and ViT-based model performance vary across
different datasets?

Although we attempted to design a robust model that achieves similar performance
on both datasets D1 and D2, there is still a significant gap between segmenting small
and larger targets in terms of task complexity according to Antonelli et al. [ARB+22].
Therefore, the same model may perform worse for highly complex targets such as NSCLC
compared to lung targets.
In the case of CNN-based architectures, as outlined in Table 5.1 and Table 5.4, the highest
DSC was 0.975 using U-Net with efficientnet-b7 on D1 dataset, compared to 0.440 using
U-Net with resnet101 on D2 dataset, thereby demonstrating a significant performance
variation between the datasets. Consistently across all evaluated models, we observed
this disparity in performance when comparing the results of the lung segmentation task
D1 to the lung cancer segmentation task D2, with the latter yielding lower DSC scores.
We hypothesize that this is related to two factors: target size and complexity of the
task. Regarding the former, it is known that the size of the target lesion may have a
substantial effect on the metric value [RET+21]. In particular, a smaller structure will
more likely lead to a lower DSC due to its definition [RET+21]. Regarding the task
complexity, segmenting the lung is a significantly easier task compared to detecting
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and segmenting lung cancer. Lung cancer detection and segmentation involves precise
localization of the lesion which can be in different shapes and appearances. In addition,
this task entails differentiation between lesions and non-pathological structures that are
visually similar. Regarding the lung cancer segmentation D2 dataset, it is important
to note that these results cannot be directly compared to Primakov et al. [PIVT+22a]
because we were measuring DSC and HD for each slice, whereas they use 3D CNNs with
volumetric metrics.

We achieved the lowest HD distance score of 5.859 and 5.749 with CNN-based and SAM
without SHI, respectively. These findings indicate minimal difference between these two
models. We conjecture that the larger target size contributes to stabilizing the HD score.

SAM with SHI achieves the highest DSC of 0.966 on D1, which is lower compared to
the CNN-based model despite utilizing the ground truth with SHI which even makes it
an unfair comparison. The reason for this may be related to bounding box shape which
is not ideal since we have two separate targets with background in-between. This is
reflected in the qualitative results, especially in the 4th row of Figure 5.2, where SAM
with SHI segments background in-between lungs as a target. However, SAM with SHI has
almost 2× improvement on D2 dataset (DSC of 0.749), compared to the best performing
CNN-based model, indicating that the bounding box around the tumor simplifies the
segmentation task (Table 5.2 and Table 5.5). We hypothesize that a bounding box around
a small target tackles the issue of distinguishing between lesion and non-pathological
structures which eases the segmentation task since we provide a preliminary ROI to the
model. It is known that bounding box prompts and fine-tuning SAM for specific targets
increases the SAM performance.

As reported in Table 5.3 and Table 5.6, SAM without SHI achieves a maximum DSC of
0.920 on D1, which is still a competitive result compared to CNN-based models. SAM
without SHI only achieves a DSC of 0.113 in D2 (lung cancer segmentation). This is
reflected in boxplots, where we depict the two best performing CNN-based, SAM with
SHI, and SAM without SHI models for dataset D1 and D2 (Figure 5.1, Figure 5.3).
Unlike SAM with SHI which utilizes a ground truth for SHI, SAM without SHI offers
a fair comparison to previously mentioned CNN-based models because ground truth is
not used as input during inference. This indicates that ViT-based model SAM is worse
compared to CNN-based models, especially when it comes to small targets like NSCLC,
aligning with the conclusion of Huang et al. [HYL+24]. This may be partly explained by
the fact that SAM was not supposed to be used without any input or prompt [KMR+23].

What is the impact of simulated human interaction with SAM in terms of
performance?

A performance impact with SHI is relatively limited on dataset D1, SAM with SHI
achieves 0.966 as the highest DSC compared to 0.920 using SAM without SHI (Table 5.2
and Table 5.3). In contrast, when it comes to highly imbalanced dataset D2, SAM with
SHI performs significantly better compared to SAM without SHI. This is reported in
5.5 and Table 5.6, where the best SAM with SHI and without SHI achieve a DSC of
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0.749 and 0.113, respectively. Regarding lung segmentation dataset D1, simulated human
interaction does not have such an impact because the lung is considered a larger target.
We assume that the entire image can be seen as a bounding box when it comes to lung
segmentation target due to its size, therefore we have results similar to SAM with SHI.
This is particularly reflected in the qualitative results where the model slightly over-
segments the target, but it keeps up with the lung structure (Figure 5.2). However, SAM
without SHI does not output any reasonable prediction for each example in qualitative
results (Figure 5.4). In addition, this aligns with other studies that show that SAM fails
in situations with smaller targets, low contrast, irregular shapes, or weak boundaries
[ZSJ24].

How does the CNN-based and ViT-based model performance compare across
different tumor scales?

To further enrich the model’s comparison, we conducted an evaluation stratified by tumor
scale explained in Section 4.7, ranging from small to large tumor size. Regarding the
small-scale tumor, the highest DSC was 0.327 using U-Net++ with efficientnet-b7, 0.704
using SAM with SHI, and 0.051 using SAM without SHI. This small-scale tumor set can
be seen as the most challenging task to segment due to extremely small targets, thus it
is reasonable to receive such low numbers, especially for SAM without SHI (Table 5.7,
Table 5.8, Table 5.9). However, SAM with SHI increases DSC for small-scale tumors
since the bounding box scales the size of the target which simplifies the segmentation
task for the SAM model. This is visible in qualitative results, where we compare two
best-performing models based on architectures with boxplot (Figure 5.5).

The performance across all CNN-based models improved on medium-scale tumors, the
DSC results range from 0.260 (U-Net++/resnet152) to 0.601 (U-Net/resnet101), which
is almost 2× an improvement compared to the small-scale best performance model
(Table 5.10). The SAM with SHI and without SHI achieve smaller increase compared to
CNN-based models, where the highest DSC is 0.804 and 0.140, respectively (Table 5.11,
Table 5.12). We hypothesize that the DSC improvement on CNN-based and SAM-based
models is related to the larger target compared to small-scale tumors. This aligns with
Reinke et al. [RET+21] conclusion, where the larger structures achieve the higher DSC.
We provide qualitative results for two best-performing models on a medium-scale dataset
(Figure 5.6).

U-Net with resnet18 model evaluated on large-scale tumors achieved the highest DSC of
0.771, which is by far the best performance for the lung cancer segmentation task with
CNN-based models (Table 5.13). The model with the same configuration using intensity
scaling, U-Net with resnet18, achieved the worst result of only 0.198 DSC on large-scale
tumors. SAM with SHI and without SHI achieved DSC of 0.868 and 0.336, respectively
(Table 5.14, Table 5.15). Similarly, as for medium-scale models, we assume that the larger
target simplifies the segmentation task and increases the DSC [RET+21]. We provide
visualization of these results in Figure 5.7. Finally, we achieved the best results with
large-scale tumor datasets for each model configuration compared to previous models
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on either small-scale, medium-scale, or all-scale tumors. It has been evident that SAM
achieved a higher performance towards larger objects according to Mazurowski et al.
[MDG+23b]. Depending on the tumor size different CNN-based model configurations
seem to be optimal.

What are appropriate strategies to optimize the performance of deep learning
models for the segmentation of CT scans?

In the preprocessing phase, we used data augmentation, which did not increase nor
stabilize the CNN-based model’s results. In fact, U-Net++ with resnet152 was one of the
best-performing models that achieved a DSC of 0.400. However, the same configuration
using data augmentation achieved only a DSC of 0.234, which was the 2nd worst result
across all CNN-based models. This was the opposite effect compared to other studies
where the robustness and accuracy of the model improved with data augmentation
([RGC+21], [LFSM24], [SKK+23]). We hypothesize that the lung cancer dataset D2
lacked a sufficient number of CT scans, and hence, increasing the dataset size is crucial
for the effectiveness of this method [PIVT+22a].

In addition, data augmentation increased the training time significantly from ∼8 hours
without data augmentation to ∼24 hours. We hypothesize that the longer time until
convergence is due to the higher variability between each image’s target. For example,
target size may vary significantly compared to training without data augmentation that
uses scaling. However, this makes it harder for a model to learn the features that identify
the tumors with smaller sizes.

Also, intensity scaling (U-Net/resnet18) did not contribute to improving the model’s
performance since it had the worst DSC of only 0.178 compared to all other models,
as reported in Table 5.4. Therefore, we did not proceed with using data augmentation
and intensity scaling for SAM models. However, in the study where they used PET/CT
scans with the DynUNet model for tumor segmentation, intensity scaling increased the
DSC [HMS23]. The reason for this discrepancy might be related to the DynUNet model,
which unlike the original U-Net uses strided convolutions instead of max-pooling for
downsampling.

Experimenting with different model architectures and configurations led to a clear increase
in performance, especially for dataset D2. In CNN-based models, this difference can
be seen with PSPNet using efficientnet-b7 which achieves only 0.289 DSC compared to
U-Net using resnet101 with 0.440 DSC. The SD is very high for all CNN-based models
which indicates challenges with particular slices, as reported in Table 5.4.

In dataset D1, U-Net with efficientnet-b7 significantly outperformed SAM without SHI
and a ViT-Base backbone, achieving a DSC of 0.975 compared to SAM’s range of 0.831
to 0.920. Unlike SAM without SHI, CNN-based models demonstrated minimal variance
in performance, with DSC ranging from 0.970 to 0.975 and minimal SD (Table 5.3 and
Table 5.1). CNN-based models outperform SAM models in lung segmentation tasks,
indicating that SAM models heavily rely on the bounding box. This difference between
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CNN-based and SAM models is less prominent with larger targets compared to smaller
targets with weaker boundaries, which aligns with Zhang et al. [ZSJ24] conclusion.

SAM with SHI performed well on both datasets D1 and D2. Regarding dataset D1, the
best performing SAM with SHI model was using ViT-Base backbone and BB set to
x=20, achieving DSC of 0.966 (Table 5.2). The BB set to x=5 generally performed worse
compared to the BB set to x=20. The results for dataset D2 were ranging from 0.612
to 0.749 DSC using SAM with SHI ViT-Base backbone and BB set to x=5 (Table 5.5).
These findings highlight the importance of BB settings, especially when it comes to
smaller targets such as lung cancer. For instance, BB set to x=5 significantly scales up
the tumor and simplifies the segmentation task. Also, SD is very low using the best
performing model for dataset D2. CNN-based model, SAM with SHI, and SAM without
SHI outputs are visualized in Figure 5.2 and Figure 5.4. Based on Figure 5.2, we observe
that SAM without SHI has more noise compared to other models. Also, it is visible that
the CNN-based model is over-segmenting on dataset D2 in Figure 5.4.

6.2 Contribution
The primary contributions of this thesis are outlined as follows:

• The implementation of CNN-based and ViT-based models with a range of con-
figurations, including ViT-based SAM with and without SHI, as referenced in
Table 4.3.

• An in-depth analysis of CNN-based and ViT-based model’s performance across
different tumor scales.

• Investigating the impact of SHI with fine-tuned Segment Anything Model for
different tasks including lung segmentation and lung cancer segmentation.

• Conducting direct comparisons between CNN-based and ViT-based models with
various configurations for both lung segmentation and lung cancer segmentation
datasets.

6.3 Limitations
In this work, we have faced several major obstacles and limitations. Firstly, at the time
of this research, SAM was designed only for 2D image segmentation with a positive
target that needs to be prompted. This prevented us to implement and explore 3D CNN
models since the results would be incomparable. Therefore, our focus was narrowed
down to positive 2D slices that include lung segmentation and non-small cell lung
cancer segmentation. This approach introduced another limitation, where we could not
compute volumetric DSC like Primakov et al. [PIVT+22a], making our outcomes hardly
comparable to results from other prominent papers.
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Another major obstacle with SAM was its limitation regarding model fine-tuning. Initially,
SAM was designed to be a zero-shot model, but we used an "unofficial" way to fine-tune it
for this task [Rog23] [Bha23]. Since SAM was published only very recently (05.04.2023),
there was a lot of development done in parallel to our work. For example, MedSAM from
Ma et al. [MHL+23] was not utilized since it was published after the coding phase of
this thesis was finalized.

Finally, larger datasets are crucial for NSCLC segmentation, given that pre-trained
backbones are unfamiliar with this type of complex target. For example, Primakov et
al. [PIVT+22a] collected 10 datasets for lung cancer segmentation, which included over
60.000 unique slices. Although comparisons between 2D and 3D volumetric DSC are not
straightforward, our DSC results were lower on the NSCLC dataset D2. However, we
achieved state-of-the-art results on dataset D1, likely because the target was larger.

6.4 Future Work and Conclusion
This thesis investigates various deep learning models, particularly CNN-based and
SAM models in the context of lung segmentation and lung cancer segmentation which
are important tasks in clinical treatments. Additionally, we investigate the impact of
simulated human interaction with the Segment Anything Model.

Our comprehensive analysis revealed differences in performance based on DSC and HD
between CNN-based, SAM with SHI, and SAM without SHI, especially with small targets
such as NSCLC. When it comes to the lung segmentation task, CNN-based models
demonstrated superior performance (Table 5.1). However, the CNN-based model’s
performance dropped significantly on the lung cancer segmentation task (Table 5.4).
SAM with SHI using ViT-Base backbone substantially improved the overall score (Table
5.5). These findings demonstrated the significant positive impact of prompt-based
interaction, especially when it comes to smaller and more complex targets.

Since SAM with SHI demonstrated excellent performance on NSCLC dataset D2, it
opens a possibility for radiologists to utilize software in which they can roughly annotate
detected tumors, which will be then precisely measured by SAM. Except that, it would be
interesting to see the performance of a more complete processing pipeline that combines
the detection and segmentation models for NSCLC. In this approach, we would be able
to compute volumetric DSC that would be comparable to other state-of-the-art papers
like Primakov et al. [PIVT+22a]. Also, an implementation of 3D CNN-based models
would be valuable, especially comparing them to ViT-based 3D segmentation models.

It would be particularly interesting to combine different CNN-based model configurations
for different tumor scales. According to our results, U-Net with resnet18 would be
ideal for larger tumor targets, while for smaller targets, we could utilize U-Net++ with
efficientnet-b7.

Expanding the dataset is key for further research on NSCLC segmentation because it
will make our models more robust according to Primakov et al. [PIVT+22a], where they
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combined 10 NSCLC datasets (only some were publicly available). Ideally, we would
have a fully automated pipeline for lung segmentation and NSCLC segmentation, similar
to Primakov et al. [PIVT+22a] with initial lung isolation, which combines strengths of
CNN-based, SAM with SHI, and SAM without SHI models that are evident from our
results.

In conclusion, this thesis shows promising capabilities of CNN-based, SAM with SHI,
and SAM without SHI for different segmentation tasks. However, further research is
needed that involves combining different model configurations and increasing the dataset
size, especially for the lung cancer segmentation task.
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CHAPTER 7
Appendix

We report results for lung segmentation dataset D1, lung cancer segmentation dataset
D2, small-scale lung cancer segmentation, medium-scale lung cancer segmentation, and
large-scale lung cancer segmentation for CNN-based, SAM with SHI, and SAM without
SHI models. These results include only validation sets. They cover configuration details,
and evaluation metrics including mean DSC and HD. Also, we report H95th and SD.
The highest DSC and lowest HD are highlighted for each table.
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DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net efficientnet-b7 50 0.979 0.024 0.008 6.149 3.294 1.139
U-Net resnet18 50 0.980 0.023 0.007 5.976 2.397 0.817
U-Net resnet34 50 0.980 0.021 0.007 6.108 2.737 0.894
U-Net resnet152 50 0.981 0.025 0.008 5.999 3.464 1.094
U-Net resnet152 200 0.980 0.025 0.009 6.068 3.334 1.065

Table 7.1: CNN Model Performance on Lung Segmentation Dataset D1 Validation Set.

DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.968 0.053 0.020 4.598 2.367 0.786
sam-vit-large 5 0.966 0.066 0.022 4.828 2.306 0.753
sam-vit-huge 5 0.968 0.043 0.019 4.660 2.492 0.825
sam-vit-base 20 0.968 0.035 0.019 4.713 2.060 0.657
sam-vit-large 20 0.966 0.058 0.021 4.828 2.157 0.806
sam-vit-huge 20 0.966 0.053 0.021 4.743 2.387 0.885

Table 7.2: SAM with SHI Performance on Lung Segmentation Dataset D1 Validation
Set.

DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.801 0.416 0.129 7.731 3.897 1.198
sam-vit-large 0.906 0.184 0.056 6.899 3.728 1.341
sam-vit-huge 0.922 0.139 0.052 5.729 3.614 1.141

Table 7.3: SAM without SHI Performance on Lung Segmentation Dataset D1 Validation
Set.
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DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net resnet152 200 0.649 0.897 0.276 3.961 3.550 1.068
U-Net efficientnet-b7 100 0.697 0.912 0.280 3.846 3.295 1.016
U-Net resnet18 100 0.694 0.557 0.202 3.860 3.563 1.123

U-Net++ efficientnet-b7 100 0.745 0.519 0.184 3.601 3.557 1.102
FPN resnet18 100 0.674 0.899 0.275 3.821 3.516 1.078

PSPNet efficientnet-b7 100 0.698 0.903 0.243 3.788 3.678 1.163
U-Net++ resnet152 100 0.679 0.914 0.239 3.875 3.466 1.041
*U-Net++ resnet152 100 0.361 0.864 0.334 6.046 9.010 3.119

U-Net densenet121 100 0.562 0.889 0.314 4.365 3.277 1.022
**U-Net resnet18 100 0.397 0.783 0.295 4.786 4.721 1.355
U-Net++ efficientnet-b7 200 0.727 0.444 0.167 3.804 3.521 1.134

U-Net resnet101 100 0.666 0.890 0.261 3.843 3.240 1.035

Table 7.4: CNN Model Performance on Lung Cancer Segmentation Dataset D2 Validation
Set.

DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.846 0.195 0.065 2.282 2.049 0.630
sam-vit-large 5 0.827 0.246 0.085 2.337 2.191 0.626
sam-vit-huge 5 0.792 0.433 0.126 2.426 2.071 0.627
sam-vit-base 20 0.781 0.457 0.178 2.475 2.828 0.798
sam-vit-large 20 0.722 0.918 0.247 2.595 2.438 0.756
sam-vit-huge 20 0.715 0.605 0.204 2.596 2.267 0.688

Table 7.5: SAM with SHI Performance on Lung Cancer Segmentation Dataset D2
Validation Set.

DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.186 0.852 0.326 3.703 3.367 1.150
sam-vit-large 0.217 0.746 0.274 3.658 2.747 0.879
sam-vit-huge 0.158 0.810 0.303 3.818 3.353 1.157

Table 7.6: SAM without SHI Performance on Lung Cancer Segmentation Dataset D2
Validation Set.
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DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net resnet152 200 0.387 0.853 0.342 3.782 3.046 0.944
U-Net efficientnet-b7 100 0.427 0.865 0.364 3.494 2.455 0.759
U-Net resnet18 100 0.586 0.864 0.292 3.204 2.443 0.786

U-Net++ efficientnet-b7 100 0.633 0.869 0.249 3.001 2.117 0.685
FPN resnet18 100 0.404 0.816 0.326 3.493 2.326 0.750

PSPNet efficientnet-b7 100 0.511 0.824 0.317 3.135 2.236 0.692
U-Net++ resnet152 100 0.508 0.802 0.301 3.283 0.491 0.157
*U-Net++ resnet152 100 0.158 0.781 0.256 6.573 11.535 4.356

U-Net densenet121 100 0.227 0.746 0.261 4.275 2.490 0.945
**U-Net resnet18 100 0.209 0.610 0.253 3.936 2.363 0.808
U-Net++ efficientnet-b7 200 0.622 0.865 0.235 3.034 1.873 0.643

U-Net resnet101 100 0.417 0.823 0.323 3.395 1.876 0.670

Table 7.7: CNN Model Performance on Small Scale Lung Cancer Segmentation Dataset
D2 Validation Set.

DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.802 0.193 0.064 1.773 1.035 0.349
sam-vit-large 5 0.779 0.235 0.077 1.824 0.821 0.295
sam-vit-huge 5 0.706 0.487 0.159 1.987 1.585 0.470
sam-vit-base 20 0.705 0.7994 0.227 2.012 1.585 0.541
sam-vit-large 20 0.533 0.847 0.319 2.321 2.191 0.733
sam-vit-huge 20 0.590 0.840 0.273 2.300 2.049 0.626

Table 7.8: SAM with SHI Performance on Small Scale Lung Cancer Segmentation Dataset
D2 Validation Set.

DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.053 0.645 0.187 2.864 1.369 0.397
sam-vit-large 0.014 0.080 0.041 3.221 1.909 0.595
sam-vit-huge 0.013 0.043 0.056 2.871 1.369 0.411

Table 7.9: SAM without SHI Performance on Small Scale Lung Cancer Segmentation
Dataset D2 Validation Set.
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DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net resnet152 200 0.744 0.454 0.127 4.085 3.921 1.196
U-Net efficientnet-b7 100 0.799 0.301 0.096 4.021 3.563 1.136
U-Net resnet18 100 0.718 0.361 0.118 4.252 3.835 1.180

U-Net++ efficientnet-b7 100 0.782 0.377 0.116 3.900 4.065 1.229
FPN resnet18 100 0.776 0.473 0.136 4.000 3.921 1.247

PSPNet efficientnet-b7 100 0.754 0.464 0.142 4.104 4.270 1.292
U-Net++ resnet152 100 0.727 0.491 0.157 4.154 3.796 1.126
*U-Net++ resnet152 100 0.377 0.839 0.310 6.531 9.589 3.160

U-Net densenet121 100 0.673 0.707 0.206 4.510 3.699 1.112
**U-Net resnet18 100 0.496 0.790 0.276 4.934 3.698 1.222
U-Net++ efficientnet-b7 200 0.769 0.325 0.095 4.008 3.954 1.187

U-Net resnet101 100 0.756 0.464 0.121 4.088 3.592 1.179

Table 7.10: CNN Model Performance on Medium Scale Lung Cancer Segmentation
Dataset D2 Validation Set.

DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.846 0.174 0.055 2.465 2.191 0.654
sam-vit-large 5 0.826 0.241 0.083 2.539 2.140 0.673
sam-vit-huge 5 0.810 0.269 0.094 2.583 1.873 0.660
sam-vit-base 20 0.783 0.442 0.153 2.682 2.850 0.918
sam-vit-large 20 0.772 0.321 0.165 2.753 2.391 0.818
sam-vit-huge 20 0.733 0.396 0.133 2.727 2.391 0.758

Table 7.11: SAM with SHI Performance on Medium Scale Lung Cancer Segmentation
Dataset D2 Validation Set.

DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.317 0.871 0.387 3.659 3.338 1.094
sam-vit-large 0.318 0.776 0.300 3.653 2.960 0.882
sam-vit-huge 0.298 0.826 0.369 3.799 3.179 1.014

Table 7.12: SAM without SHI Performance on Medium Scale Lung Cancer Segmentation
Dataset D2 Validation Set.
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DSC HD
Model Backbone Epochs mean H95th SD mean H95th SD
U-Net resnet152 200 0.851 0.105 0.039 3.831 1.375 0.557
U-Net efficientnet-b7 100 0.889 0.072 0.028 3.910 2.300 0.740
U-Net resnet18 100 0.839 0.106 0.038 3.690 1.845 0.704

U-Net++ efficientnet-b7 100 0.882 0.107 0.052 3.707 1.730 0.650
FPN resnet18 100 0.862 0.138 0.043 3.810 2.008 0.694

PSPNet efficientnet-b7 100 0.891 0.066 0.024 3.942 2.021 0.755
U-Net++ resnet152 100 0.871 0.194 0.061 4.048 1.760 0.623
*U-Net++ resnet152 100 0.700 0.872 0.306 5.259 7.111 2.334

U-Net densenet121 100 0.867 0.130 0.048 3.944 1.386 0.528
**U-Net resnet18 100 0.409 0.768 0.248 6.134 4.670 1.577
U-Net++ efficientnet-b7 200 0.791 0.205 0.098 4.712 1.946 0.638

U-Net resnet101 100 0.855 0.110 0.035 3.827 1.662 0.643

Table 7.13: CNN Model Performance on Large Scale Lung Cancer Segmentation Dataset
D2 Validation Set.

DSC HD
Model Bounding Box mean H95th SD mean H95th SD

sam-vit-base 5 0.912 0.051 0.018 2.587 1.278 0.388
sam-vit-large 5 0.907 0.063 0.019 2.595 1.062 0.332
sam-vit-huge 5 0.878 0.076 0.026 2.690 1.080 0.329
sam-vit-base 20 0.896 0.081 0.028 2.642 1.178 0.367
sam-vit-large 20 0.881 0.125 0.042 2.597 1.062 0.418
sam-vit-huge 20 0.865 0.139 0.081 2.707 1.152 0.361

Table 7.14: SAM with SHI Performance on Large Scale Lung Cancer Segmentation
Dataset D2 Validation Set.

DSC HD
Model mean H95th SD mean H95th SD

sam-vit-base 0.034 0.093 0.032 5.143 1.674 0.560
sam-vit-large 0.258 0.646 0.235 4.358 2.590 0.788
sam-vit-huge 0.003 0.0164 0.007 5.364 1.403 0.473

Table 7.15: SAM without SHI Performance on Large Scale Lung Cancer Segmentation
Dataset D2 Validation Set.
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