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Abstract 
ALS (Airborne Laser Scanning)/Airborne LiDAR (Light Detection And Ranging) is characterized 
by its capability of providing highly accurate and dense 3D point clouds at a city-wide scale. 
Therefore, ALS has been widely used for a variety of applications in urban environments, which 
makes the automatic classification of 3D point clouds a crucial task. Urban environments are a 
complex combination of both built-up and natural objects. Consequently, automatically producing 
highly accurate classification results from ALS point clouds is challenging. The commonly used 
machine learning methods such as Random Forest and Support Vector Machine often lead to noisy 
classification results, since they rely heavily on the input of handcrafted features and lack the 
consideration of spatial context. In order to improve classification performance, the aim of this 
dissertation is to incorporate context into the classification of ALS point clouds. The work in this 
dissertation comprises methodological developments presented in publications I-III, an 
investigation of the cutting-edge deep learning methods, in which contextual features can be 
directly learned in the training phase, presented in publication IV, and an effort on extending 
training data that is presented in publication V. 

Publications I-II propose a high-dimensional tensor-based sparse representation for the 
classification of ALS point clouds. This novel data structure is introduced to keep the handcrafted 
features in their original geometric 3D space, such that the spatial distribution and handcrafted 
features can be considered at the same time. Using only a few training samples, promising 
classification results can be obtained. Publication III develops a label smoothing strategy to refine 
classification results. Without the aid of additional training data, the proposed label smoothing 
strategy can directly learn context information from initial classification results by estimating an 
adaptive neighborhood and a probabilistic label relaxation. Experiments exhibit its strength in 
improving classification accuracy. Publication IV conducts a comprehensive comparison between 
three state-of-art deep learning models, namely PointNet++, KPConv, and SparseCNN, w.r.t. 
classification accuracy, computation time, generalization ability, and the sensitivity to the choices 
of hyper-parameters. Publication V proposes a method to extend training data by selecting the 
most informative samples from the neighborhood of the initial training samples.  

After an overview of the publications, a comparison between all investigated methods is carried 
out on two separate ALS datasets in urban areas. Based on the results, the superior performance of 
the selected deep learning models, especially SparseCNN, is further confirmed. The proposed label 
smoothing also turns out to be advantageous, regardless of the diversity of scenes and point 
densities involved. More importantly, it is independent of different training efforts, which have a 
profound impact on deep learning methods. The works conducted in this dissertation provide 
practical examples and valuable insights into the contextual classification of ALS point clouds. The 
presented studies also show that supervised machine learning, especially deep learning, heavily 
depends on training data. Therefore, the automated generation of training data by active learning 
could be a way to further facilitate the classification of point clouds. 
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Kurzfassung  
Luftgestütztes Laserscanning (Airborne Laserscanning, ALS) / LiDAR (Light Detection And 
Ranging) zeichnet sich durch seine Fähigkeit aus, hochpräzise und dichte 3D-Punktwolken 
großflächig zu erfassen. Daher wird ALS schon lange auch im Bereich städtischer Anwendungen 
eingesetzt. Diese bedingen aber die automatische Klassifizierung von 3D-Punktwolken, und die 
städtische Umgebung ist eine komplexe Kombination aus bebauten und natürlichen Objekten. 
Deshalb ist die automatische Erstellung hochgenauer Klassifizierungsergebnisse aus ALS-
Punktwolken eine wichtige und anspruchsvolle Aufgabe. Die üblicherweise verwendeten 
Methoden des Maschinellen Lernens wie Random Forest und Support Vector Machine führen oft 
zu verrauschten Klassifizierungsergebnissen, da sie stark von „handgestrickten“ Merkmalen 
abhängen und keine Rücksicht auf den räumlichen Kontext nehmen. Um die 
Klassifizierungsleistung zu verbessern, ist es das Ziel dieser Dissertation, den Kontext in die 
Klassifizierung von ALS-Punktwolken einzubeziehen. Die Arbeit in dieser Dissertation umfasst 
Entwicklungen der Methodik, die in den Veröffentlichungen I-III vorgestellt werden. Weiters die 
in der Veröffentlichung IV vorgestellte Untersuchung der hochmodernen Deep-Learning-
Methoden, bei denen die kontextbezogenen Merkmale direkt während des Trainings gelernt 
werden können, und einen Versuch zur Erweiterung der Trainingsdaten, der in der 
Veröffentlichung V vorgestellt wird. 

In den Veröffentlichungen I-II wird eine hochdimensionale, tensorbasierte Sparse-Darstellung zur 
Klassifizierung von ALS-Punktwolken vorgeschlagen. Diese neuartige Datenstruktur wird 
eingeführt, um die manuell festgelegten Merkmale in ihrem ursprünglichen geometrischen 3D-
Raum zu halten, sodass die räumliche Verteilung und die handgestrickten Merkmale gleichzeitig 
berücksichtigt werden können. Schon mit kleinen Trainingsstichproben können so 
vielversprechende Klassifizierungsergebnisse erzielt werden. In der Veröffentlichung III wird eine 
Strategie zur Glättung von Klassenzuordnungen entwickelt, um die ursprünglichen 
Klassifizierungsergebnisse zu verfeinern. Ohne Hilfe zusätzlicher Trainingsdaten kann die 
vorgeschlagene Strategie direkt die Kontextinformationen aus den ursprünglichen Ergebnissen 
durch die Schätzung einer adaptiven Nachbarschaft und probabilistischer Klassenzuordnungs-
Relaxation erlernen. Experimente belegen die Stärke dieser Strategie bei der Verbesserung der 
Klassifizierungsgenauigkeit. In der Veröffentlichung IV wird ein umfassender Vergleich zwischen 
den drei aktuellen Deep-Learning-Modellen durchgeführt, nämlich PointNet++, KPConv und 
SparseCNN, in Bezug auf Klassifizierungsgenauigkeit, Rechenzeit, Generalisierungsfähigkeit 
sowie die Sensitivität in Bezug auf die Wahl der Hyper-Parameter. In der Veröffentlichung V wird 
schließlich eine Methode zur Erweiterung der Trainingsdaten vorgeschlagen, indem die 
informativsten Stichproben aus der Nachbarschaft der ursprünglichen Trainingsstichproben 
ausgewählt werden.  

Nach einem Überblick über die Veröffentlichungen werden alle untersuchten Methoden an Hand 
zweier ALS-Datensätze in städtischen Gebieten verglichen. Die Ergebnisse bestätigen erneut die 
überlegene Leistung der ausgewählten Deep-Learning-Modelle, insbesondere von SparseCNN. 
Die Vorteile der vorgeschlagenen Strategie zur Glättungsmethod von Klassenzuordnungen 
werden ebenfalls nachgewiesen, unabhängig von der vorhandenen Vielfalt an Szenen und 
Punktdichten. Noch wichtiger ist, dass sie unabhängig vom Trainingsaufwand ist, der ja einen 
tiefgreifenden Einfluss auf Deep-Learning-Methoden hat. Die in dieser Dissertation 
durchgeführten Arbeiten liefern praktische Beispiele und wertvolle Einsichten in die kontextuelle 
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Klassifizierung von ALS-Punktwolken. Die vorgestellten Studien zeigen auch, dass das 
überwachte maschinelle Lernen, insbesondere Deep-Learning-Methoden, stark von 
Trainingsdaten abhängig ist. Daher könnte die automatische Erstellung von Trainingsdaten durch 
aktives Lernen ein zukünftiger Weg sein, um die Klassifizierung von Punktwolken weiter zu 
verbessern. 
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1, Introduction 

1.1 Motivation 
Urban environment consists of various artificial and natural objects including roads, buildings, 
trees, vehicles, street lamps, power lines, grass, etc. The geo-information on these objects such as 
spatial distribution and geometric characteristics plays an essential role in guiding public policy 
and resource management for authorities. 

In recent years, many studies have demonstrated that Airborne LiDAR is an effective and efficient 
tool to conduct topographic surveys. Airborne LiDAR can collect a large amount of 3D point clouds 
in a short time by an active distance measurement. In contrast to 2D remote sensing imagery, 
LiDAR point clouds can accurately describe topographic surface in both horizontal and vertical 
directions without effects of relief displacement, with penetration of tree canopy and insensitivity 
to lighting condition. This makes airborne LiDAR an important data source for various 
applications in urban environment, and normally classification of point clouds is a fundamental 
step to extract meaningful information for these applications.  

In the community of remote sensing and photogrammetry, tremendous efforts have been made for 
automated classification of LiDAR point clouds. Researchers have computed effective geometric 
features from LiDAR point clouds to distinguish different objects by their geometric characteristic 
within a local neighborhood. Regarding classifiers, sophisticated machine learning algorithms such 
as Random Forest and Support Vector Machine have been successfully applied to the classification 
of LiDAR points. The current progress has already allowed a relative high degree of automation in 
point cloud classification. However, due to the complexity of urban scenes, it remains difficult in 
achieving highly accurate classification results for LiDAR points. The commonly used machine 
learning methods lack the consideration of context information, and thus often lead to 
inhomogeneous results. Although some studies employed graphical models such as MRF (Markov 
Random Field) and CRF (Conditional Random Field) to introduce context in classification rules, 
the performance still relies heavily on the representation ability of the handcrafted features, as well 
as the way in which adjacency graphs construct. Thus, it is still worth developing new algorithms 
to make the best use of context information, in order to achieve highly accurate classification results 
in urban areas.  

As deep learning has shown superior performance to other machine learning methods in many 
fields, classification of LiDAR points also tends to shift in focus to deep learning. Numerous deep 
learning architectures have been developed and achieved satisfactory results in the classification 
of ALS point clouds. However, only little attention has been paid to the comparison of different 
deep learning networks. To provide better insights of deep learning techniques to the community 
of photogrammetry, a comprehensive comparison of classification performance by different deep 
learning networks requires to be investigated.  

1.2 State-of-the-art 
1.2.1 Methods for classification of ALS point clouds 

The typical approach for classification of point clouds involves three main steps: local 
neighborhood recovery, geometric features estimation and classification. The commonly used 
neighborhood definitions of 3D points are represented by spherical neighborhoods (Lee and 
Schenk, 2002), cylindrical neighborhoods (Filin and Pfeifer, 2005) and a fixed number of nearest 
points (Linsen and Prautzsch, 2001). The constant scale parameters (e.g. searching radius or 
number of nearest neighbors) are often given with respect to prior knowledge of the point clouds 
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in the scene and may vary with  the density and geometric structures. To overcome these 
restrictions, many studies proposed data-driven adaptive neighborhood. For instance, Weinmann 
et al. (2015) selected the optimal number of nearest points by finding the minimal entropy of 
eigenvalues. Demantke et al. (2011) determined the sphere neighborhood size by selecting 
dominated features related to dimensionality (e.g. linear, planar and volumetric) at various sizes.  

Eigen-features derived from a covariance matrix of points within a local neighborhood are the most 
commonly used features for classification of ALS point clouds. The derived eigenvalues can be 
used to compute a range of local 3D shape features that intuitively describe local geometric 
characteristics, such as linearity, planarity and scattering. Such 3D geometric features are 
frequently combined with height-based features, echo-based features and density-based features 
in a classification task. Additionally, features resulted from a 2D neighborhood are considered able 
to provide complementary information for aforementioned features estimated from 3D 
neighborhood. For instance, height difference and density derived from 2D neighborhood are 
particular useful to detect objects with vertical structures.  

A variety of machine learning methods have been applied for automated classification of 3D point 
clouds, such as RF (Random Forests) (Guo, 2011), SVM (Support Vector Machines)  (Mallet, 2011) 
and Bayesian Discriminant Classifiers (Khoshelham, 2013). These classifiers take feature vectors as 
input, which are concatenated by extracted features and are used to represent points. Accordingly, 
sufficient representative points with reference labels are required to train the involved classifier so 
that it is afterwards capable to assign class labels to unseen point clouds. Since many machine 
learning models are publicly available in various software tools, it’s easy to implement them on 3D 
point clouds. However, many respective pointwise classification replies only on the feature vectors 
and lack the consideration of spatial correlations of neighboring 3D points, thus they tend to deliver 
noisy classification results.  

1.2.2 Contextual classification 

Context can be defined as the information or characteristics derived from the surrounding of an 
overserved point, which has been regarded as an important additional information source for 
classification of Earth observation data such as remote sensing images and LiDAR point clouds, 
since objects in the real world are inherently correlated with each other. With the aid of tremendous 
algorithms developed from the field of computer vision, as well as the regular grids that facilitate 
implementations of those algorithms, many advanced methods related to context were firstly 
introduced in the studies of remote sensing images classification. Then some of these methods were 
adapted to LiDAR point clouds. Thus, at the beginning of this section, a brief review of contextual 
classification of remote sensing images is given, followed by a comprehensive review of contextual 
classification of LiDAR point clouds. 

Contextual classification of remote sensing images  

Remote sensing sensors are able to record each image pixel at various wavelengths of the 
electromagnetic spectrum. The spectral characteristics of remote sensing images can provide rich 
input features for most pixel-wise supervised classification algorithms. However with the 
increasing availability of high spatial resolution images, pixel-wise classification that only 
considers spectral features often lead to noisy results and fail to model the complicated geospatial 
structures. Thus, many researchers have proposed to exploit spatial features as a complementary 
source of information to the spectral features. Note that the term context information normally 
refers to spatial information for remote sensing images. 

A straightforward method is to use image filters, which is implemented by using the weighted sum 
of the adjacent pixels in successive windows. By applying well-designed filters, certain texture 
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features or explicit spatial characteristics such as size and shape can be computed from remote 
sensing images. The commonly used filter-based methods include wavelet textures (Myint, 2004), 
gray-level co-occurrence matrix (Pacifici, 2009) and morphological profiles (Pesaresi and 
Benediktsson, 2001). Meanwhile, the object-based image analysis (OBIA), as well as superpixel-
based classification that aims to avoid highly accurate results of object segmentation, are also 
widely used to incorporate spatial information (Zhou, 2009, Vargas, 2015). The basic idea of these 
methods is to group the spatially neighboring pixels into spectrally similar regions and then regard 
these objects as classification entities, so that the intra-class variability of spectral features between 
neighbors can be reduced.  
Context information can also be integrated into classification rules with the assumption that 
neighboring pixels favor correlated class labels. A general framework to model context information 
among pixels is to apply graphical models such as MRF (Li, 2011) and CRF (Zhao, 2017).  
Additionally, the regular grid-like structures of images offer the possibility to consider the specific 
spatial arrangement of class labels as contextual constraints to improve classification performance. 
For instance, the probabilities of class labels can be refined through an iterative relaxation 
processing with a matrix containing compatibility coefficients of class labels (Rodríguez-Cuenca, 
2012), this procedure is often referred to probabilistic label relaxation.  

More recently, Convolutional Neural Network (CNN) has become the most commonly used model 
for remote sensing images (Ma, 2019, Parikh, 2020), as the convolutional kernels are well-suited to 
the intrinsic 2D structure of images. The existing sophisticated architectures proposed in the field 
of computer vision such as  VGG (Simonyan and Zisserman, 2014), ResNet (He, 2016), DenseNet 
(Huang, 2017), have greatly facilitated constructing a task-specific network for remote sensing 
images. Additional efforts have been made to improve recognition accuracy of fine-structured 
objects by designing no-downsampling encoder (Sherrah, 2016), multi-scale aggregation (Liu, 2018, 
Zhang, 2020) and combining features that are learned at multiple resolutions (Maggiori, 2017). 
Compared with benchmark datasets used in computer vision (e.g., ImageNet), the volume of 
available remote sensing datasets with reference labels is quite limited. Thus, many studies have 
focused on transfer learning to enhance deep learning models with limited training samples. As 
ImageNet consists of huge amount of daily natural images that have the similarity with aerial 
images, several studies performed fine-tuning on target remote sensing datasets based on the 
network pre-trained on ImageNet (Marmanis, 2016, Wang, 2017). Moreover, to collect semantic 
labels of remote sensing images with a low cost, some studies embed the semi-supervised 
techniques into deep learning networks to obtain an enlarged annotation dataset from unlabeled 
samples (Han, 2018, Hong, 2020). 

Contextual classification of LiDAR point clouds 

In contrast to remote sensing images, the geometric features that are commonly used in LiDAR 
point clouds already include context at a basic and local scale, since these features are computed 
by a group of neighboring points. As we indicated in previous section, conventional machine 
learning methods such as SVM and RF treat the feature vector of each point independently, which 
often leads to an inhomogeneous classification result due to the lack of spatial correlations. 
Therefore, the context information of LiDAR point clouds needs to be further strengthen. The 
current contextual classification of LiDAR point clouds can be divided into two categories: 
contextual classification based on handcrafted features and deep learning methods. 

Contextual classification based on handcrafted features 

It’s implicit to describe the context between neighboring points in 3D point clouds. Thus, 
handcrafted contextual features are usually extracted at the object level rather than at the point 
level based on task-specific prior knowledge. For instance, Yang et al. (Yang, 2017) considered 
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contextual features as the relative positions, the direction relations and the spatial distribution 
pattern of road facilities. Apparently, the rule-based contextual features are hard to generalize to 
other classification scenes. More commonly, the combination of context and geometric handcrafted 
features is accomplished by segmentation. By grouping spatially neighboring and geometrically 
similar points into homogeneous segments, context of individual points are naturally considered. 
The geometric features of segments can be computed directly base on the points within the 
segments or by taking the average of the features of points. Consequently, the geometric features 
extracted from segments are regarded more representative than point-wise geometric features 
(Vosselman, 2017), and additional features such as area and size can be extracted from segments 
to aid classification (Zhang, 2013).  Nevertheless, the accuracy classification relies on a reliable 
segmentation of point clouds. 

Like remote sensing images, applying graphical models, such as MRF and CRF is a more general 
framework for incorporating contextual information in classification. In the community of 
photogrammetry, most efforts have been made on two aspects: modelling pairwise potentials and 
constructing adjacency graphs. A simple way to build the pairwise potential is to employ the Potts 
model, which favors identical labels in a neighborhood. A penalty term related to label changes 
can be further added into the Potts model, and the penalty is usually measured by the Euclidean 
distance between the features of adjacent nodes (Weinmann, 2015, Wei, 2019). To reduce over-
smoothing, pairwise potentials can also be given by discriminative classifiers, such as linear model 
and Random Forest, as they can deliver the joint probability of class labels of neighboring nodes 
based on the observed interaction features (Niemeyer, 2014). 

Since the adjacency graph determines the extent to which interactions in a local neighborhood are 
considered, the topology of the graph is critical to the classification results. Instead of widely used 
k nearest neighbors within a sphere, Niemeyer et al. (Niemeyer, 2014) employed k nearest 
neighbors in a 2D cylindrical neighborhood, because points with different heights, such as canopy 
and ground points, are expected to give valuable hints for local configuration of classes. Some 
studies (Weinmann, 2015, Landrieu, 2017) used the adaptive neighborhood to select an appropriate 
neighborhood size in case of varying density. However, the contextual information in such a local 
neighborhood is still too restrictive. As a result, wrong predictions will occur at isolated groups of 
points. To incorporate long-range interactions, two types of strategies are developed: constructing 
adjacency graph by using multi-scale neighborhood (Luo and Sohn, 2014) and implementing 
graphical models on segments (Vosselman, 2017).  

Label smoothing is usually regarded as an alternative form of incorporating context in the post-
processing of classification. The commonly used methods for LiDAR points are majority voting or 
other advanced filters, such as Gaussian, bilateral and edge-aware filters that take account of 
features and probabilistic outputs of classifiers and impose inversed weights on neighboring points. 
Besides, label smoothing can be considered from a structured regularization perspective by using 
MRF or CRF models (Landrieu, 2017). 
One major limit of aforementioned methods is that well-designed handcrafted features need to be 
fed into models, and the overall accuracy still heavily relies on the effectiveness of handcrafted 
features. Additional challenges include that context considered in the graphical model is 
determined by the neighborhood definition, and segment-based methods tend to misclassify small 
and thin objects. As a result, more and more studies shift their interest to the end-to-end 
classification implemented by deep learning algorithms, in which handcrafted features are no 
longer required.  
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Deep learning classification 

In deep learning methods, task-specific contextual features can be directly learned from raw point 
clouds by their multilayer non-linear structures. Moreover, successively increasing the receptive 
field size in the later layers enables that context information can be included at a very large scale. 

Compared to the CNN-based (Convolutional Neural Network) classification of remote sensing 
images, studies of deep learning on 3D point clouds, especially on ALS point clouds, have started 
a few years later as CNN is difficult to be implemented directly on irregular 3D point clouds. 
Numerous efforts have been made in the community of computer vision regarding indoor point 
clouds. PointNet is a pioneering network that applies deep learning to an unordered point cloud 
by point-wise encoding and decoding (Qi, 2017). The key idea is to learn features through a 
sequence of MLPs (Multilayer Perceptron) on a group of neighboring points of each individual 
point, then aggregate features by pooling using the maximum or average to achieve order invariant. 
The authors further proposed PointNet++ that applies MLP recursively on a nested partitioning of 
point clouds, such that both local and global context can be considered (Qi, 2017). Then, based on 
the architecture of PointNet++, some extension have been proposed to better explore the 
interactions between neighboring points, such as PointSIFT (Jiang, 2018), PointWeb (Zhao, 2019) 
and DGCNN (Wang, 2019). 

However, input points are flattened in MLPs, which leads in losing inherent spatial distribution of 
neighboring points. Therefore, many studies have considered applying convolutional kernels on 
3D points so that the spatial arrangement of points can be better exploited. The most 
straightforward way is to first convert 3D point clouds into voxels and implement 3D convolution 
operations on 3D grids (Maturana and Scherer, 2015). But this is extremely demanding in terms of 
computation and memory usage for large-scale point clouds with fine voxel resolution. 
SparseCNN solved the inefficiency in a way that it only took non-empty voxels as input, and also 
restricted the output of the convolution to the set of non-empty voxels (Graham, 2018). Apart from 
voxels, various sparse data structures are also employed to apply CNNs to 3D point clouds, such 
as Octrees used in OctNet (Riegler, 2017) and Kd-trees used in KD-Net (Klokov and Lempitsky, 
2017). 

In order to keep the resolution of the original point clouds, several strategies have been developed 
to perform convolution operations directly on unordered 3D point clouds. PointCNN proposed to 
use a transformation matrix that is able to simultaneously weight and permute the input feature of 
local points (Li, 2018). In the works of PointConv (Wu, 2019), SpiderCNN (Xu, 2018) and Flex-
convolution (Groh, 2018), the convolution kernel are regarded as a parametric function of local 3D 
coordinates. In the convolution of images, a kernel, which is represented as a matrix, is slid across 
the image and multiplied with the inputs to extract features. To perform convolution for 3D point 
clouds in a similar manner, some studies constructed the kernel by a set of 3D spatial points that 
define the area where each kernel weight is applied, such as PCNN (Atzmon, 2018), ConvPoint 
(Boulch, 2020) and KPConv (Thomas, 2019). 

In the community of remote sensing and photogrammetry where outdoor point clouds are 
typically considered, not only have the existing deep learning architectures (e.g. PointNet++ and 
SparseCNN) been successfully adapted to ALS point clouds (Schmohl and Sörgel, 2019, 
Winiwarter, 2019), but also extensions and new architectures have been developed to improve 
classification performance on ALS point clouds. For instance, Li et al. (Li, 2020) proposed a 
geometry-aware convolution to learning high-level features from the low-level handcrafted 
features, so that the geometric characteristics can be emphasized. Wen (Wen, 2020) constructed the 
local receptive field by only selecting the directionally constrained nearest neighbors. Li et al. (Li, 
2020) introduced an inverse density function to deal with varying points density. A more 
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comprehensive literature review of deep learning methods for 3D point clouds can be found in the 
Publication IV. 

1.2.3 Application of ALS in urban environment 

ALS technology provides not only the extraordinary ability in collecting highly accurate surface 
elevation measurements over urban areas, but also the capability of penetrating through volume-
scattering objects. With this uniqueness over other remote sensing data, ALS has emerged as a 
powerful technology for a wide range of applications in urban environment. In this section, 
applications are categorized by the dominated objects in urban areas, such as buildings, trees and 
power lines. 

Building-based applications 

As the most pronounced elements of urban areas, buildings information have been involved in a 
variety of activities related to urban planning and resource management. Consequently, buildings 
recognition, extraction and reconstruction have become the hottest topic in ALS point clouds 
processing. Additionally, the 3D point clouds captured by ALS permit accurately estimating 
geometric properties of buildings. More specifically, geometric attributes such as aspect, 
inclination angle and area of each roof plane that are calculated from ALS point clouds, can be used 
for solar potential assessment (Jochem, 2009) and mapping demand of building thermal energy 
(Tooke, 2014). Moreover, the large coverage of ALS allows measuring building density information 
at land lot and urban district scales (Yu, 2010). 

Vegetation-based applications 

Vegetation inventory can provide fundamental information for urban ecosystem and 
environmentally sustainable development. The penetration ability of laser rays and the high spatial 
resolution, especially the vertical accuracy of ALS, have greatly facilitate the measurement of urban 
trees. This can be confirmed in a group of studies of urban green volume estimation (Hecht, 2008), 
leaf area index (LAI) mapping (Alonzo, 2015) and tree condition evaluation (Plowright, 2016). 

Power lines-based applications 

Mapping the power lines is one of the powerful applications of ALS, because such task is labor-
intensive and costly by traditional field-based inspection. An efficient and reliable monitoring of 
power lines and their surroundings are critical for the purpose of maintenance, potential threaten 
evaluation and upgrading. Therefore, a great many of studies of transmission wires extraction and 
pylon localization from ALS point clouds can be found in the literature (McLaughlin, 2006, Sohn, 
2012). ALS can also be used as a complementary information source to area images for the 
management in power lines corridors (Mills, 2010).  

Terrain-based applications 

LiDAR have become the primary technique for producing high resolution DTM in recent years, 
since LiDAR provides an efficient way in acquiring accurate vertical information over a large area. 
The DTM generated from ALS have been used as base maps in many applications, which include 
solar potential analysis (Prieto, 2019), viewshed analysis (Yamagata, 2016), landslide inventory 
(Bernat Gazibara, 2019) and flood-risk mapping (Hung, 2018). The high resolution of the DTM 
allows these analyses to be performed at a finer scale. 

There are many other applications that require semantic 3D geo-information, such as urban wind 
ventilation simulation (Peng, 2017) and urban traffic analysis (Yao, 2011). 
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1.3 Objectives 
In general, the aim of this dissertation is to develop appropriate methods for contextual 
classification of ALS point clouds in urban environment. Since compared to remote sensing images, 
deep learning methods are less investigated for classification of LiDAR point clouds, another 
interest of this dissertation lies in the deep learning methods investigation in classification of ALS 
point clouds. 

1.4 List of Publications 
This dissertation comprises three peer-reviewed journal papers and two peer-reviewed conference 
papers, which include: 

∙ Publication I: Li, N., Pfeifer, N., & Liu, C. (2017). Airborne LiDAR Points Classification 
Based on   Tensor Sparse Representation. ISPRS Annals of Photogrammetry, 
Remote Sensing & Spatial Information Sciences, Spatial Inf. Sci., IV-2/W4, 107–
114. 
 

∙ Publication II:  Li, N., Pfeifer, N., & Liu, C. (2017). Tensor-based sparse representation 
classification for Urban Airborne LiDAR points. Remote Sensing, 9(12), 1216. 
 

∙ Publication III: Li, N., Liu, C., & Pfeifer, N. (2019). Improving LiDAR classification accuracy 
by contextual label smoothing in post-processing. ISPRS Journal of 
Photogrammetry and Remote Sensing, 148, 13-31. 
 

∙ Publication IV: Li, N., & Pfeifer, N. (2021). A Comparison of Deep Learning Methods for 
Airborne Lidar Point Clouds Classification. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, 14, 6467-6468. 
 

∙ Publication V: Li, N., & Pfeifer, N. (2019). Active learning to extend training data for large 
area airborne lidar classification. International Archives of the 
Photogrammetry, Remote Sensing & Spatial Information Science. Spatial Inf. 
Sci., XLII-2/W13, 1033–1037. 

 

1.4.1 Summaries of the Publications 

Publication I 
This publication proposed a tensor-based sparse representation classification (TSRC) method for 
ALS point clouds classification in urban areas. The inspiration came from a number of studies 
regarded a hyperspectral image as a 3D tensor to jointly take advantages of the spatial and spectral 
information. Regarding sparse representation, it was firstly proposed in signal processing 
applications, and its assumption is that most natural signals can be compactly represented by only 
a few coefficients that carry the most important information in a certain basis or dictionary. In the 
past a few years, the applications of sparse representation have also been successfully extended to 
face recognition and image classification. The sparse representation of an unknown sample is 
expressed as a sparse vector whose nonzero entries correspond to the weights of the selected 
training samples from a structured dictionary, the class label of the test sample is determined by 
the characteristics of the sparse vector. 

This publication introduced a new data structure that represents each point as a 4th-order tensor to 
simultaneously take the spatial distribution and handcrafted features of neighboring points into 
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account. The first three dimensions are generated by a voxel representation of surrounding points 
within a 3D neighborhood, the fourth dimension is the average handcrafted features of points 
within each voxel. Furthermore, this publication presented a sparse representation adapted to the 
high dimensional tensor data. Only a few of training samples are used to learn a structured and 
discriminative dictionary, a sparse tensor can be obtained by projecting a designed 4th-order tensor 
onto the learned dictionary. The points are classified based on the observation that, for points with 
same class labels, the non-zero entries in their sparse tensors usually lie in the same subset.  

The developed approach is evaluated on two tiles of the ALS dataset of Vienna city, and promising 
classification results have been obtained with an overall accuracy of 82%. Given that only 6 training 
points are selected from each class to build the dictionary, thus we considered that it is an overall 
good classification performance.  

This publication developed a novel contextual classification method which integrates local context 
from a perspective of feature projection. The classification results have demonstrated the potential 
of the sparse representation classification based on high dimensional tensors, especially in the case 
that only a few of training samples are available.  

Publication II 

This publication is an extension of the publication I. In this publication, a robust method for 4th-
order tensor representation of 3D points is developed, meanwhile more comprehensive evaluation 
and analysis of the proposed tensor-based sparse representation are conducted in this publication. 
Besides, this publication proposed a method to measure height difference without using a DTM.  

This publication followed the same procedure as proposed in the publication I. For the high-
dimensional tensor representation, global Cartesian coordinates of the neighboring points are 
transformed to the local PCA (Principal Component Analysis) coordinate system before the 
voxelization, such that the planar points can share the same spatial distribution in the tensor 
regardless the orientation. Height difference is an important feature to distinguish ground and 
non-ground points, which is normally calculated between a center points and the lowest point 
found in its neighborhood. In an ideal case, the ground point should be selected as the lowest point 
and have a small height difference. However, the ground points tend to have relatively large height 
differences in the areas with inclined ground. In this publication, the lowest point is found in a 
multiple scale cylindrical neighborhood, and the height difference is determined by a given 
threshold that indicates the minimal value for height difference. 

The evaluation is carried out on 8 tiles of ALS dataset of Vienna city, and is compared with four 
classic machine learning methods, namely K Nearest Neighbors, Decision Tree, Random Forest 
and Support Vector Machine. The results have demonstrated the effectiveness of TSRC, the OAs 
of TSRC are beyond 80% with only 27 training tensors used per class. Compared with other 
classifiers, TSRC has respectable performance in identifying objects with less distinguishable 
features, such as façade. Moreover, a series of experiments of TSRC suggest that the TSRC is barely 
dependent on the neighborhood size of tensor generation and the sparsity level. 

Through the comparison and analysis of the classification results, the effectiveness of TSRC is 
further confirmed. However, we also observed that the improvement in classification performance 
by TSRC is very limited, and the computation time is demanding due to the high dimensionality 
of the tensor representation. 

Publication III 

This publication developed a contextual label smoothing method to improve classification 
accuracy in a post-processing step. A framework of global graph-structured regularization for label 
smoothing was proposed in the study (Landrieu, 2017), and was successfully applied on LiDAR 
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point clouds to refine initial classification results. However, it is difficult to decide a constant 
neighborhood size across the entire scene. Wrong labels remain in some isolated clusters by using 
a small neighborhood size, while a large neighborhood size tends to cause over-smoothing. 
Moreover, in some regions with a poor initial classification, the neighborhood consistency is not 
reliable enough to deduce the correct label interactions. Thus, an improvement of initial 
classification is required to provide sufficient reliable contextual information. 

Under the framework of graphical regularization, this publication developed a strategy to enhance 
effectiveness of label smoothing from two aspects. First, we designed an optimal neighborhood 
that can adaptively select geometry-relevant points from a large initial neighborhood, so that each 
point can collect sufficient long-range interactions without over-smoothing small objects. Second, 
probabilistic label relaxation (PLR) is utilized to improve the initial label probability set according 
to the spatial correlation of class labels, e.g., the points above a vegetation point are likely 
vegetation rather than belonging to other classes. In order to build explicit spatial relationships of 
semantic labels between 3D points, a cylindrical neighborhood that consists of upper neighbors, 
middle neighbors and lower neighbors is used. Then, combined with corresponding neighborhood 
compatibility, the label probabilities of neighboring points iteratively reinforce the weights to each 
class probability of the concerned point. After PLR, the resulting probability values are expected 
to be more consistent with the prior knowledge of neighborhood dependencies. In the end, with 
this optimal graph and the updated label probability set, the final labels can be computed by graph-
structured regularization.  
The contextual label-smoothing approach is evaluated on two independent urban airborne LiDAR 
datasets with complex urban scenes: ALS dataset of Vienna city and the Vaihingen dataset in ISPRS 
3D benchmark. Significant improvement in the classification accuracy is achieved without losing 
the accuracy of small objects (such as façades and cars). The overall accuracy is increased by 7.01% 
on the Vienna dataset and 6.88% on the Vaihingen dataset. Moreover, the strategy proposed in this 
publication effectively solved the aforementioned issues. Most clusters that contain wrong labels 
are correctly classified with the aid of optimal neighborhood, and the refinement of initial label 
probability successfully improve classification performance in regions where correct label 
interactions were missing from the neighborhood. 

The main contribution of this publication is to develop a robust contextual label-smoothing 
approach, which only takes the label probability set and 3D coordinates as input and require a few 
of parameters to define neighborhood size. Furthermore, the neighborhood compatibility 
coefficients are object driven rather than data driven, thus it can also be derived from other sources 
of data in different regions as long as the semantics are consistent. Therefore, this publication is 
particularly valuable for label refinement in urban environment which is characterized by the 
composition of fixed types of objects with specific spatial distributions.  

Publication IV 

This publication conducted a comprehensive comparison between three state-of-the-art deep 
learning architectures: namely PointNet++, KPConv and SparseCNN. PointNet++ is a point-wise 
network, in which features are learned by successive levels of MLPs followed by order-invariant 
pooling operations. In contrast, SparseCNN uses voxels as internal representation and applies 
convolutional operations directly on this regular grid, as CNNs normally specialize in processing 
data that has a grid-like topology. KPConv employs a 3D convolution in which 3D spatial points 
are used as kernel points to carry weights, thus the convolution in KPConv is directly applied on 
3D point clouds without any voxelization. 

Compared to the MLP based networks, CNNs are theoretically considered advantageous, because 
they can exploit the spatial arrangement of points inherently, whereas MLP takes flattened vectors 
as input, which leads to a loss of spatial information. In a nutshell, while the CNNs employed in 
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KPConv and SparseCNN are considered superior to MLPs used in PointNet++, the 3D 
kernerlization in KPConv may be very memory-demanding and the resolution loss by SparseCNN 
may decease classification accuracy. Thus, a deep investigation is required to examine the 
capabilities of the three architectures for classification of ALS point clouds. 

The performances of the three deep learning networks are compared w.r.t. classification accuracy, 
computation time, generalization ability as well as the sensitivity to the choices of hyper-
parameters. In order to conduct a comprehensive comparison, the classification is performed on 
two large-scale ALS datasets with very different application purposes. Overall, PointNet++, 
KPConv and SparseCNN are all superior to the Random Forest that uses the handcrafted features 
computed at multiple scales. Compared to PointNet++ and KPConv, SparseCNN has a better 
classification performance on both two datasets, without high demands for time and memory. 
Moreover, SparseCNN shows a better generalization ability and is less affected by the different 
choices of hyper-parameters. KPConv slightly outperforms PointNet++, especially in the detection of 
small-size objects. 
The results in this publication have proven the effectiveness of the selected deep learning methods, 
but also explored the defects of PointNet++, KPConv and SparseCNN in classification. The findings 
are in accordance with the previous statement that CNNs are more powerful than MLPs for 
semantic classification, as well as the expensive memory cost of KPConv. Additionally, we also 
observed that small objects such as cars and insulators on the power line facilities, can be well 
classified by SparseCNN, this indicates that the resolution loss caused by voxelization has quite 
small impact on the classification results, which is negligible compared to the gains.   

Publication V 

This publication made an effort to automatically extent a small set of training data by label 
propagation. Supervised classification methods rely heavily on the quantity and quality of the 
training data. The training data should provide a full representative of all concerned classes to 
allow the classifier to find the best solution for the given data. However, the generation of training 
data is a difficult and expensive task for large-scale point clouds. Thus, it’s a common problem for 
large amounts of data that only a small amount of reference points can be manually labeled due to 
the limited economical and temporal resources. 

To solve the aforementioned issue, this publication presented an active learning method to 
automatically select new samples whose inclusion in the training set would be beneficial to 
classification performance. By the assumption that the knowledge about class labels from the 
training set can be correctly extended to their well-defined neighborhood, the informative points 
are iteratively selected from the neighborhood of training points to update the training set. 
Experiments have shown that a more homogenous and accurate classification result can be 
obtained by extending training set. A further analysis indicated that, the most informative samples 
are selected from the 1st iteration, whereas samples selected from the later iterations only produce 
slight impact on the classification performance.  

However, new training samples are selected at an individual point level in a local neighborhood, 
as a result, the classification improvement is very limited and is fundamentally impacted by the 
initial amount of training samples. And the diversity of spatial distribution can not be enhanced 
by selecting new training samples only in a local neighborhood. 

 

 

 

10



1.4.2 Author contributions 

∙ Publication I: Design of the study; implementation of algorithms; writing of the final article. 

∙ Publication II: Design of the study; crafting height features; implementation of algorithms; writing 
of the final article. 

∙ Publication III: Design of the study; implementation of algorithms; writing of the final article. 

∙ Publication IV: Design of the study; implementing existing deep learning models on ALS point 
clouds; writing of the final article. 

∙ Publication V: Design of the study; implementation of algorithms; writing of the final article. 
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ABSTRACT: 
 

The common statistical methods for supervised classification usually require a large amount of training data to 

achieve reasonable results, which is time consuming and inefficient. This paper proposes a tensor sparse 

representation classification (SRC) method for airborne LiDAR points. The LiDAR points are represented as tensors 

to keep attributes in its spatial space. Then only a few of training data is used for dictionary learning, and the sparse 

tensor is calculated based on tensor OMP algorithm. The point label is determined by the minimal reconstruction 

residuals. Experiments are carried out on real LiDAR points whose result shows that objects can be distinguished 

by this algorithm successfully. 

 

 

1. INTRODUCTION 

LiDAR point cloud classification in urban areas has 

always been an essential and challenging task. Due to 

the complexity in urban scenes, it is difficult to label 

objects correctly using only single or multi thresholds. 

Thus, research mainly focus on the use of statistical 

method for supervised classification of LiDAR points 

in recent years. Common machine learning methods 

include support vector machine (SVM) algorithm, 

adaboost, decision trees, random forest and other 

classifiers. SVM seeks out the optimal hyperplane that 

efficiently separates the classes, and the Gaussion 

kernel function can be used to map non-linear decision 

boundaries to higher dimensions where they are linear 

(Secord and Zakhor, 2007). Adaboost is a binary 

algorithm, but several extensions are explored for 

multiclass categorization, hypothesis generation 

routines are used to classify terrain and non-terrain area 

(Lodha et al., 2007). Decision trees can be used to carry 

out the classification by training data and make a 

hierarchical binary tree model, new objects can be 

classified based on previous knowledge (Garcia-

Gutierreza et al, 2009) (Niemeyer et al., 2013). 

Random Forest is an ensemble learning method that 

uses a group of decision trees, provides measures of 

feature importance for each class (Guo et al., 2011) 

(Niemeyer et al., 2013), and runs efficiently on large 

datasets.  

Those approaches barely consider the spatial 

distribution of points, which is an important cue for the  

classification in complex urban scenes. Some studies 

have applied graphical models to incorporate spatial 

context information in the classification. Graphical 
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models take neighboring points into account, which 

allow us to encode the spatial and semantic 

relationships between objects via a set of edges 

between nodes in a graph (Najafi et al. 2014). Markov 

network and conditional random field (CRF) are two 

mainstream methods to define the graphical model.  

However, a large amount of training data is necessary 

to obtain the classifier in those statistical studies. 

Anguelov et al (Anguelov et al. 2005) use Associated 

Markov Network (AMN) to classify objects on the 

ground. The study takes 1/6 points as training data and 

achieve an overall classification accuracy as 93%. 

Niemeyer et al (Niemeyer et al. 2014) use 3000 points 

per class to train the CRF model. Seven classes (grass 

land, road, tree, low vegetation, buildings gable, 

building flat, facade) are distinguished based on the 

CRF and the overall accuracy is 83%, which is a fine 

result in complex urban scene. As for statistical 

methods, Im (Im et al. 2008) uses 316 training samples 

(1%) to generate decision trees with an overall 

accuracy of 92.5%. Niemeyer (Niemeyer et al., 2013) 

uses 3000 samples per class to build random forest 

model, the overall accuracy achieves 83.7%. 

Moreover,  Lodha uses half of dataset as training data 

through adaboost algorithm and the average accuracy 

is 92%. As a consequence, classifier training would be 

very time-consuming, especially when Markov 

network or CRF are used as classifier.  

This paper aims to use as few training data as possible 

to achieve effective classification. Therefore, sparse 

representation-based classification is used in this paper. 

Sparse representation-based classification (SRC) is a 

well-known technique to represent data sparsely on the 

basis of a fixed dictionary or learned dictionary. It 

classifies unknown data based on the reconstruction 

criteria. SRC has been successfully applied to the 

processing of signals (Huang and Aviyente 2006) and 

images (Wright et al. 2009). Normally, the dimensional 

data has to be embedded into vectors in traditional 

methods. However, the vectorization breaks the 

original multidimensional structure of the signal and 

reduces the reliability of post processing. Therefore, 

some research formulates high dimensional data SRC 

problem in terms of tensors. Tensor extensions of the 

dictionary learning and sparse coding algorithms have 

been developed, such as Tensor MOD and KSVD for 

dictionary learning (Roemer et al. 2014), tensor OMP 

(Caiafa and Cichocki 2012). Moreover, tensor based 

representation has yielded good performance in high-

dimensional data classification (Renard and 

Bourennane 2009), face recognition(Lee et al. 2015) 

and image reduction (Peng et al. 2014). 

We represent LiDAR point as a 4-order tensor to keep 

feature description in their original geometrical space. 

With few training data, the dictionary is learned based 

on the Tucker decomposition(Kolda and Bader 2009). 

Then, the sparse representation of each point can be 

obtained by projecting the tensor onto dictionaries, 

which is expressed as a sparse tensor whose nonzero 

entries correspond to the selected training samples. 

Thus, the sparse tensors of points that belong to the 

same class should have similar structure. At last, the 

label of unknown points can be predicted by the 

minimum reconstruction residual from sparse tensor 

and dictionaries. 

 

2. LIDAR CLASSIFICATION BASED ON 

SPARSE REPRESENTATION 

2.1 Sparse Representation Classification 

The sparsity algorithm is to find the best representative 

of a test sample by sparse linear combination of 

training samples from a dictionary (Wright et al. 2009). 

Given a certain number of training samples from each 

class, the sub-dictionary ܦ from ݅th class is learned. 

Assume that there are c classes of subjects, and let ܦ = ,[ଵܦ]) ,[ଶܦ] [ଷܦ] ⋯ ([ܦ] which is the overall 

structured dictionary over the entire dataset. Denote by ݕ a test sample, the sparse coefficient ݔ is calculated 

by projecting ݕ  on dictionary ܦ , which is called 

sparse coding procedure.  

SRC use the reconstruction error ݁  associated with 

each class to do data classification. ݔ  is the sparse 

coefficient associated with class ݅ , ݁  is the 

reconstruction error from sub-dictionary in ݅  class. 
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The class label of ݕ is then determined as the one with 

minimal residual. ݁ = ݕ‖ − ݅ ݏݏ݈ܽܿ  ‖ଶݔܦ = [1,2, … , ܿ]      (1) identify(y) = arg min {݁} 

 

2.2 Tensor Representation of Lidar Points 

2.2.1 Preliminaries on tensors 
The tensor is to denote a multidimensional object, 

whose the elements are to be addressed by more than 

two indices. The order of a tensor, also known as modes 

(Kolda and Bader 2009), is the number of dimensions. 

Tensors are denoted as boldface italic capital letters, 

e.g., ; matrices are denoted as italic capital letters, 

e.g., ܣ; vectors are denoted as italic lowercase letters, 

e.g., ܽ.  

The tensor can be transformed into a vector or matrix, 

and this processing is known as unfolding or flattening. 

Given an N-order tensor ࢀ ∈  భ×୍మ×⋯×୍ొ, the n-mode୍܀

unfolding vector of tensor ࢀ  is obtained by fixing 

every index except the one in the mode n (Yang et al., 

2015). The n-mode unfolding matrix is defined by 

arranging all the n-mode vectors as columns of a 
matrix, i.e.,  the n-mode unfolding matrix (ܶ) భ×୍మ×⋯୍షభ×୍శభ⋯×୍ొ,୍୍܀∋ . The n-mode product of a 

tensor ࢀ ∈ ొ୍×⋯×భ×୍మ୍܀  with a matrix ܷ ∈ ×୍܀  is 

denoted by ࢀ ×  and the processing can convert to ,܃

product that each mode-n vector is multiplied to the 

matrix U. so it can also be expressed in terms of unfold 

tensors: 

ࢅ = ࢀ × ⇔ ܃  ܻ =   ()܂ × ܃

The tucker decomposition is a form of higher-order 

principal component analysis. It decomposes a tensor ࢀ ∈ ొ୍×⋯×భ×୍మ୍܀  into a core tensor  భ×మ×⋯×ొ܀∋ multiplied by the matrix ,܃  ,܃ ⋯  ۼ܃

along each mode. The matrix can be considered as the 

principal components in each mode. Since the tensor is 

generated according to the point spatial distribution, 

the principal components in attribute mode are spatial 

connection considered.  ࢀ =  × ܃ × ܃ × ⋯ ×  ۼ܃
 

2.2.2 Tensor representation of Lidar points voxel 
In order to preserve spatial structure and attribution 

information, LiDAR points are represented as tensor 

data. In previous work, the LiDAR data is rasterized 

into feature images. The LiDAR tensor is generated by 

stacking images into 3-order tensor(Li et al., 2016). 

This paper consider each point voxel as a tensor. First 

of all, multiple attributes from raw LiDAR data are 

extracted to form a vector on the point ܘ, then the 3D 

neighborhood of the point ܘ is selected as the voxel 

of point ܘ. After that, the voxel is represented as a 4-

order tensor ࢀ  ∈ ౮×୍౯×୍×୍୍܀  of point ܘ , where I୶, I୷, I, Iୟ  indicate the X,Y,Z coordinates and 

attributes mode, respectively. ܀ is the real manifold. 

Points in this voxel are regarded as entries in the tensor, 
which are arranged as rೣೌ , where ݅௫ =1, … , I୶; i୷ = 1, … , I୷; i = 1, … , I; ݅ = 1, … , Iୟ . The 

voxel size is defined as 1m and tensor size is defined as 10 × 10 × 10 × 10. It means that the voxel is equally 

partitioned as 10 intervals along X,Y,Z coordinate, and 

10 attributes contained in each point. Therefore, the 

entries are the attributes of each point, which are 
accessed via I୶, I୷, I, Iୟ  indices. That means, 

attributes are spatially constrained along local direction 

and implicitly exploited by tensor representation.  

The tensor can be represented in terms of its factors 

using the Tucker model, which is shown as equation 

ࢀ  .(2) ≈ ࢄ ×ଵ ܷ(୶) ×ଶ ܷ(୷) ×ଷ ܷ() ×ସ ܷ(ୟ)     (2) 

Here, U(୶) ∈ ୍౮×౮ , U(୷) ∈ ୍౯×౯ ,  ܷ() ∈ ୍×  , U(ୟ) ∈ ୍×  are the factor matrices and contain the 

basis vectors on X coordinate, Y coordinate, Z 

coordinate and attribute mode. ࢄ ∈  ౮×౯×× is the܀
core tensor, where J୶, J୷, J, Jୟ ≤ I୶, I୷, I, Iୟ , and its 

entries show the level of interaction between the 

different components (Tamara et al., 2007). As such J୶, J୷, J, Jୟ ≤ I୶, I୷, I, Iୟ, the original tensor can be well 

recovered with the core tensor and a few basis vectors 

on each mode. 

Tucker mode can be written as Kronecker 

representation: the two representations are equivalent. 

Let ⊗  denotes the Kronecker product, ݐ  is the 

vectorized version of tensor ࢀ ݔ ,  is the vectorized 
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version of tensor ࢄ . The equal Kronecker 

representation is shown as following: ݐ = ൫ܷ(୶) ⊗ ܷ(୷) ⊗ ܷ() ⊗ ܷ(ୟ)൯(3)     ݔ 

 

2.3 Dictionary Learning 

For a set of LiDAR tensors {ࢀ}ୀଵ  ,where ࢀ  ౮×୍౯×୍×୍ is 4-order point tensor and K is number୍܀∋

of tensors. Dictionaries ܦ = ,୶ܦ] ,୷ܦ ,ܦ [ୟܦ , and ܦ୶, ,୷ܦ ,ܦ ୟܦ  are dictionaries on X coordinate, Y 

coordinate, Z coordinate and attribute mode, 

respectively. Tensor dictionary learning aims to 

calculate the dictionaries ܦ = ,୶ܦ] ,୷ܦ ,ܦ [ୟܦ  and 

sparse tensor {ࢄ}ୀଵ  by following model. 

(‖∙‖ଶdenotes the ݈ଶ −  .(݉ݎ݊

౮,౯,,ܖܑܕ ∑ ࢀ‖ − ࢄ ×ଵ ୶ܦ ×ଶ ୷ܦ ×ଷ ܦ ×ସ ୀୟ‖۹ܦ      

                                   (4) 

The dictionary learning can be performed 

independently for each class to build a sub-dictionary. 

Denoted by ܦ୧୶, ,୧୷ܦ ,୧ܦ  ୧ୟ are sub-dictionariesܦ

associated with class i on X coordinate, Y coordinate, 

Z coordinate and attribute mode, class i =[1,2, … , c]. Let {ܓܑࢀ}୩ୀଵ  be the training tensor set 

from class i, and K is number of tensors belong to 

class i . The sub-dictionaries from each class ܦ୧୶, ,୧୷ܦ ,୧ܦ ౮,౯,,ܖܑܕ :୧ୟ can be learned from modelܦ ∑ ฮࢀ୧୩ − ୧୩ࢄ ×ଵ ୧୶ܦ ×ଶ ୧୷ܦ ×ଷ ୧ܦ ×ସ ୀܓ୧ୟฮ۹ܦ     

                 (5) 

Equation (5) can be solved by the Tucker 

decomposition based on equation (2). 

Every training point tensor ܓܑࢀ from class i is tucker 

decomposed to get the ܷ(୶), ܷ(୷), ܷ(), ܷ(ୟ) , then a 

certain number of basis vectors 

of  ܷ(୶), ܷ(୷), ܷ(), ܷ(ୟ) are added into dictionaries ܦ୧୶, ,୧୷ܦ ,୧ܦ ୧ୟܦ . The final dictionaries ܦ୶, ,୷ܦ ,ܦ  ୟܦ

are described as following, c is the number of classes. ܦ୶ = ,ଵ୶ܦ] ,ଶ୶ܦ … ୷ܦ ;[ୡ୶ܦ = ,ଵ୷ܦൣ ,ଶ୷ܦ … ܦ ;ୡ୷൧ܦ = ,ଵܦ] ,ଶܦ … ୟܦ ;[ୡܦ = ,ଵୟܦ] ,ଶୟܦ …  ;[ୡୟܦ
 

 

 

 

 

 

Algorithm: Tensor OMP 

Require: input point tensor  ࢀ ∈ Rூభ×ூమ×ூయ×ூర , Dictionaries ୶ܦ ∈ ܴூభ×భ ୷ܦ , ∈ ܴூమ×మ , ܦ  ∈ ܴூయ×య , ୟܦ ∈ܴூర×ర, maximum number of non-zeros coefficients k in each mode. 

Output: sparse tensor  ࢄ,  non-zeros coefficients index in sparse tensor (ܯଵ, ,ଶܯ ,ଷܯ  (ସܯ

Step:  

1, initial: ܯ = [∅](݊ = 1,2,3,4), Residual ࡾ = ࢄ ,ࢀ = 0, k=0, ݐ =   (ࢀ)ܿ݁ݒ

2,while ‖ܯ‖ ≤ ݇ do 

3,[݉ଵ, ݉ଶ, ݉ଷ, ݉ସ] = arg [భ,మ,య,ర]ݔܽ݉ หࡾ ×ଵ :)୶்ܦ , ݉ଵ) ×ଶ :)୷்ܦ , ݉ଶ) ×ଷ :)்ܦ , ݉ଷ) ×ସ :)ୟ்ܦ , ݉ସ)ห 
4, ܯ  = ܯ  ∪ [݉ଵ, ݉ଶ, ݉ଷ, ݉ସ]  ( ݊ = 1,2,3,4 ୶ܦܶ .( = ୶ܦ  (:, ଵܯ ୷ܦܶ ,( = ୷ܦ  (:, ଶܯ ܦܶ ,( = ܦ  (:, ଷܯ  ;(ସܯ,:) ୟܦ=ୟܦܶ ,(

ݔ ,5 = arg  ݉݅݊௨ ୟܦܶ)‖ ⊗ ܦܶ ⊗ ୷ܦܶ ⊗ ݑ(୶ܦܶ −  ;ଶଶ‖ݐ

ࢄ ,6 =  ;(ݔ)ࢋࢠ࢙࢘ࢋ࢚
ࡾ ,6 = ࢀ − ࢄ ×ଵ TD1 ×ଶ TD2 ×ଷ TD3 ×ସ TD4 ; 

7, t=t+1; 

8, end while 

9,return ܯ) ,ࢄଵ, ,ଶܯ ,ଷܯ  (ସܯ
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2.4 Tensor Sparse Representation for 

Classification 

The objective of tensor sparse coding is to find a sparse 

representation of a tensor ࢀ with respect to the factors ࡰ on each mode. This means that the sparse coding is 

obtained by solving following optimization model: ࢄܖܑܕ ‖ࢀ − ࢄ ×ଵ ୶ܦ ×ଶ ୷ܦ ×ଷ ୶ܦ ×ସ ୶‖۹ܦ
ୀܓ ‖ࢄ‖ ࢚ ࢚ࢉࢋ࢈࢛࢙   ≤ ଶ‖ࢄ‖ (6)            denotes the ݈ − ݉ݎ݊  of tensor ࢄ , which is 

also considered as the sparsity of tensor ࢄ . The 

problem is presented as minimizing the approximation 

error within a certain sparsity level, which can be 

approximately solved by greedy pursuit algorithms 

such as Orthogonal Matching Pursuit (OMP). Classical 

OMP locates the support of the sparse vector that have 

best approximation of sample data from dictionary. It 

selects the support set by one index at each iteration 

until ܭ atoms are selected or the approximation error 

is within a preset threshold (Chen et al. 2011), where ܭ  is the sparsity. We use the steps of the classical 

OMP algorithm for tensors as it is shown in Algorithm 

TensorOMP. The algorithm is proposed by Caiafa and 

Cichocki (Caiafa and Cichocki, 2012). 

 

In the step 5 of the algorithm, ܶܦ୶, ܶܦ୷, ܶܦ, ܶܦୟ 

correspond to the sub-dictionaries obtained by 

restricting the n-mode dictionaries to the columns 

indicated by indices ܯ.  

3. EXPERIMENT 

3.1 Data description 

We perform the classification on two sections of 

airborne LiDAR dataset of Vienna city. The density of 

datasets mostly range from 8 to 75 points /݉ଶ. The area 

of both dataset is 100 ×100 m. The datasest1 is with 

flat terrain and contains 710870 points. The dataset2 

has more complex environment and 817939 points in 

total. Both datasets contains complex objects like 

buildings with various height and shape, single trees, 

grouped and low vegetation, hedges, fences, cars and 

telegraph poles. In the classification procedure, the 

objects are categorized into 5 classes: open ground 

which is uncovered or not blocked by any objects; 

building roof; vegetation; covered ground which is 

usually under the high trees or building roof; building 

wall. However, in the evaluation session the open 

ground and covered ground are merged into ground to 

achieve the overall ground detection accuracy. 

To build the tensors, the neighborhood threshold is 

defined as 1 meter for selecting points into the voxel, 

then the voxel is represented as a 4-order tensor ࢀ  ଵ×ଵ×ଵ×ଵ. It means that the spatial coordinates of܀∋

the voxel are regularized into a 10 × 10 × 10 cube, 

and 10 attributes are attached on each point. The entries 

are the normalized attribute values and accessed via 

four indices. Fig1 shows the points in the voxel and 

tensor representation by X, Y, Z coordinate indices. 

And the 10 attributes are described as following: 

(1) Relative height. It is a binary value, which is 

defined as 1 if the point height above the threshold, 

otherwise is defined as 0. This is useful for indicating 

ground and non-ground points. 

(2) NormalZ. NormalZ are the normal vectors of local 

planes in Z direction, which are estimated by points in 

a small neighborhood. 

(3)-(5) Eigenvalue1; Eigenvalue2; Eigenvalue3. The 

covariance matrix for the normal vectors is computed 

to find the eigenvalues, which include Eigenvalue1 λଵ; Eigenvalue2 λଶ ; Eigenvalue3 λଷ(λଵ > λଶ > λଷ) .  λଶ  λଷ have low 

values for planar object and higher values for 

voluminous point clouds. Three structure features 

derived from eigenvalues are anisotropy, sphericity and 

planarity, which describe the spatial local points’ 

distribution and defined as following equation 

(Chehata et al., 2009). 

(6) Anisotropy. Anisotropy= (λଵ − λଷ)/λଵ. 

(7) Sphericity. Sphericity= λଷ/λଵ(λଵ-λଷ)/λଵ . 

(8) Planarity. Planarity= (λଶ − λଷ)/λଵ. 

(9) NormalSigma0. The standard deviation of normal 

estimation. The value would be high in rough area and 

low in smooth area. 
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(10) Echo Ratio. the echo ratio is a measure for local 

transparency and roughness. It is defined as 

follows(Höfle et al. 2009) ER = ݊ଷ/݊ଶ × 100 

With ݊ଷ ≤ ݊ଶ , ݊ଷ is the number of neighbors 

found in a certain search distance measured in 3D and nଶୈ is the number of neighbors found in same distance 

measured in 2D. The ER is nearly 100% for flat 

surface, whereas the ER decreases for penetrable 

surface parts since there are more points in a vertical 

search cylinder than there are points in a sphere with 

the same radius. 

 
(a) LDAR ground points visualization in the voxel 

 

(b) LiDAR ground points visualized by 4-order tensor 

form 

Figure 1. Point distribution in voxel and tensor 

3.2 Classification  

The experiments show that the LiDAR tensor can be 

fully recovered with the compressed core tensor 6 ×6 × 6 × 6, which means it needs at least 6 basis vectors 

in each mode and corresponding core tensor for 

reconstruction. Hence, only 6 basis vectors are added 

into each sub-dictionary, and the final dictionary would 

be a 10 × 30 matrix in each mode. 

First of all, the sub-dictionary associated with a specific 

class i is created. Denote by ܦ୶, ,୷ܦ , ܦ -ୟ  the subܦ

dictionary associated with class i on mode X,Y,Z and 

attribute, ݅ ݏݏ݈ܽܿ  = [1,2,3,4,5] . 6 training tensors 

are randomly selected from each class, ࢀ୧୩ donates the 
k-th training tensor in class i, ݇ =1,2…6. Training 

tensor ࢀ୧୩ is decomposed by Tucker model to get basis 
vectors in each mode: ࢀ୧୩ ≈ ୩ܑࢄ ×ଵ ୧ܷ(୶) ×ଶ ୧ܷ(୷) ×ଷ ୧ܷ() ×ସ ୧ܷ(ୟ)         (7) 

The first column in matrix ୧ܷ(୶), ୧ܷ(୷), ୧ܷ(), ୧ܷ(ୟ) is 
added into the corresponding sub-dictionary in each 

mode. Thus, ܦ୶, ,୷ܦ , ܦ ୶ܦ : ୟ can be described asܦ = ቂ ଵܷ(୶)(: ,1), ܷଶ(୶)(: ,1) … ܷ(୶)(: ,1)ቃ 
୷ܦ = ቂ ଵܷ(୷)(: ,1), ܷଶ(୷)(: ,1) … ܷ(୷)(: ,1)ቃ 
ܦ = ቂ ଵܷ()(: ,1), ܷଶ()(: ,1) … ܷ()(: ,1)ቃ 
ୟܦ = ቂ ଵܷ(ୟ)(: ,1), ܷଶ(ୟ)(: ,1) … ܷ(ୟ)(: ,1)ቃ 

And the final dictionary on each mode can be 

represented as following: ܦ୶ = ,ଵ୶ܦ] ,ଶ୶ܦ ,ଷ୶ܦ ,ସ୶ܦ ୷ܦ   [ହ୶ܦ = ,ଵ୷ܦ] ,ଶ୷ܦ ,ଷ୷ܦ ,ସ୷ܦ  ܦ    [ହ୷ܦ = ,ଵܦ] ,ଶܦ ,ଷܦ ସ ܦ  , ୟܦ  [ହܦ = ,ଵୟܦ] ,ଶୟܦ ,ଷୟܦ ,ସୟܦ     [ହୟܦ

3.3 Classification Result And Discussion 

Visual inspection indicates that most objects are 

detected correctly in Fig2. The overall classification 

accuracy is 82% for dataset1 and 80% for dataset2. 

Tab1 and Tab2 are the confusion matrices which 

demonstrates prediction ability of the algorithm on 

various objects.  

Some buildings and trees are extracted from dataset1 

and dataset2 for error points analysis. Fig3(a) and (e) 

indicate that some parts of boundary points in roof in 

dataset2 are misclassified into ground(12.3%), but the 

algorithm performs very well in identifying roofs with 

dataset1, which achieve a high accuracy of 98.3%. 8% 

of vegetation are wrongly predicted as walls in 

dataset1, which is mainly caused by trees with a 

vertical structure or high pruned and trimmed trees (Fig 
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3(c) and (g)). And 6.9% of vegetation are misclassified 

into roofs in dataset1. This usually occurred on low flat 

vegetation which has similar attributes with roofs, 

examples can be found in Fig3 (d) and (f). Wall points 

are usually located in a more complex scenario. In Fig4 

(a) and (e), it is a balcony wall and ends up confused 

with vegetation. In Fig4 (b) and (f), top and bottom wall 

points are labeled as roof and ground due to the close 

location to roof and ground, but middle part of walls 

can obtain correct labels. Thus, this algorithm works 

well in distinguishing objects with clear spatial 

structures. 

Considering that only 30 training points are used, this 

tensor SRC algorithm can achieve an overall good 

performance, especially in roof identification. 

However, high accuracy cannot be obtained in complex 

scene, such as wall boundary identification from roof 

and ground. Since the main part objects could be 

correctly labeled, the error points can be reduced by 

further filtering method. 

 

(a) Dataset1 classification result 

 

(b) Dataset2 classification result 

Figure 2. Classification result 

Table 1. Dataset1 Classification confusion matrix 

Class Ground Roofs Veg Walls 

Ground 89.0% 7.0% 2.2% 1.8% 

Roofs 0.3% 98.3% 1.1% 0.2 

Veg 5.1% 6.9% 79.7% 8.3% 

Walls 17.9% 15.5% 9.7% 57.0% 

 

Table 2. Dataset2 Classification confusion matrix 

Class Ground Roofs Veg Walls 

Ground 79.5% 3.0% 15.3% 2.15% 

Roofs 12.3% 84.3% 3.4% 0% 

Veg 7.5% 2.2% 85.8% 4.6% 

Walls 4.9% 3.8% 20.9% 70.4% 

 
 

Figure 3. Reference and misclassified point in 4 scenes 
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4. CONCLUSION 

A tensor sparse representation classification method 

has been proposed and tested with real airborne LiDAR 

data. The method integrates spatial distribution and 

attributes by tensor representation. Only 6 training 

points from each class are utilized to build the 

dictionary. It achieves an overall classification 

accuracy of 82%. This algorithm has respectable 

performance in distinguishing object with clear shape 

pattern. Further work will focus on the dictionary 

improvement based on dictionary learning algorithm, 

which can distinguish more minor and unambiguous 

objects. 
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Abstract: The common statistical methods for supervised classification usually require a large 
amount of training data to achieve reasonable results, which is time consuming and inefficient. In 
many methods, only the features of each point are used, regardless of their spatial distribution 
within a certain neighborhood. This paper proposes a tensor-based sparse representation 
classification (TSRC) method for airborne LiDAR (Light Detection and Ranging) points. To keep 
features arranged in their spatial arrangement, each LiDAR point is represented as a 4th-order 
tensor. Then, TSRC is performed for point classification based on the 4th-order tensors. Firstly, a 
structured and discriminative dictionary set is learned by using only a few training samples. 
Subsequently, for classifying a new point, the sparse tensor is calculated based on the tensor OMP 
(Orthogonal Matching Pursuit) algorithm. The test tensor data is approximated by sub-dictionary 
set and its corresponding subset of sparse tensor for each class. The point label is determined by the 
minimal reconstruction residuals. Experiments are carried out on eight real LiDAR point clouds 
whose result shows that objects can be distinguished by TSRC successfully. The overall accuracy of 
all the datasets is beyond 80% by TSRC. TSRC also shows a good improvement on LiDAR points 
classification when compared with other common classifiers. 

Keywords: tenor sparse coding; structured and discriminative dictionary learning; feature extraction 
 

1. Introduction 

LiDAR (Light Detection and Ranging) point cloud classification in urban areas has always been 
an essential and challenging task. Before classification, various features are extracted from the raw 
three-dimensional (3D) point cloud, which should be able to distinguish different objects. Due to the 
complexity in urban scenes, it is difficult to label objects correctly using only single or multi feature 
thresholds. Thus, research mainly focused on the use of statistical method for supervised 
classification of LiDAR points in recent years. Common machine learning methods include the 
support vector machine (SVM) algorithm, AdaBoost, decision trees, random forest, and other 
classifiers. Those machine learning methods aim to build a classification rule or probability function 
to determine the label based on the features. SVM seeks out the optimal hyperplane that efficiently 
separates the classes, and the Gaussion kernel function can be used to map non-linear decision 
boundaries to higher dimensions, where they are linear [1]. AdaBoost is a binary algorithm, but 
several extensions are explored for multiclass categorization. The weak hypothesis generation 
routines are combined into AdaBoost algorithm to classify terrain and non-terrain areas in [2]. 
Decision trees can be used to carry out the classification by training data and make a hierarchical 
binary tree model, new objects can be classified based on previous knowledge [3]. Random Forest is 
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an ensemble learning method that uses a group of decision trees, provides measures of feature 
importance for each class [4], and runs efficiently on large datasets.  

However, those approaches barely consider the spatial distribution of points, which is an 
important cue for the classification in complex urban scenes. Some studies have applied graphical 
models to incorporate spatial context information in the classification. Graphical models take 
neighboring points into account, which allow for us to encode the spatial and semantic relationships 
between objects via a set of edges between nodes in a graph [5]. Markov network and conditional 
random field (CRF) are two mainstream methods to define the graphical model. However, a large 
amount of training data is necessary to obtain the classifier in those statistical studies. Anguelov et 
al. [6] use the Associated Markov Network (AMN) to classify objects on the ground. The study takes 
1/6 points as training data and achieve an overall classification accuracy as 93%. Niemeyer et al. [7] 
use 3000 points per class to train the CRF model. Seven classes (grass land, road, tree, low 
vegetation, buildings with gable roof, buildings with flat roof, and facade) are distinguished based 
on the CRF and the overall accuracy is 83%, which is a fine result in a complex urban scene. As for 
statistical methods, Im [8] uses 316 training samples (1%) to generate decision trees with an overall 
accuracy of 92.5%. Moreover, Lodha uses half of dataset as training data through AdaBoost 
algorithm and the average accuracy is 92%. As a consequence, classifier training would be very 
time-consuming, especially when Markov network or CRF are used as classifiers.  

In order to combine spatial distribution and feature information, we suggest using the 
high-dimensional tensor data structure for representing each point (to avoid misunderstandings we 
stress that tensor refers here to a high dimensional data structure, and is not related to the concepts 
of tensor voting or the structure tensor). Normally, the dimensional data has to be embedded into 
vectors in traditional methods. However, the vectorization breaks the original multidimensional 
structure of the signal and reduces the reliability of post processing. Therefore, high-dimensional tensors 
are utilized in several approaches. The high-dimensional tensor means that the elements in the data are 
to be addressed by more than two indices. Tensors have been widely applied to hyperspectral images, 
face images, and video data representation. Renard and Boourennane introduce a hyperspectral image 
representation based on tensors to jointly take advantage of the spatial and spectral information [9]. It 
shows that the spatial projection into a lower orthogonal subspace joint with spectral dimension 
reduction can efficiently improve the classification. In face recognition, the Tensorfaces are proposed by 
Vasilescu et al. to overcome the influence of different factors that are related to facial geometries, 
expressions, head poses, and lighting conditions [10]. The Tensorfaces improve the facial recognition 
rates when compared with the standard eigenfaces. Kuang et al. use a unified tensor model to represent 
the large-scale and heterogeneous data [11]. It shows a great ability of dimensionality reduction by using 
incremental high order singular value decomposition.  

This paper aims to use as few training data as possible to achieve effective classification. 
Therefore, sparse representation-based classification is used in this paper. Sparse 
representation-based classification (SRC) is a well-known technique to represent data by sparse 
linear combination of bases, which are extracted from a fixed dictionary or learned dictionary. It 
classifies unknown data based on the reconstruction criteria. SRC has been successfully applied to 
the processing of signals [12] and images [13]. SRC includes two important parts: sparse coding and 
dictionary learning. Sparse coding is to find a certain small number of base atoms from the 
dictionary for reconstruction raw data. Sparse coding can be solved by Orthogonal Matching Pursuit 
(OMP) [14] , LASSO (least absolute shrinkage and selection operator) [13], or the gradient descent 
algorithm [15]. The dictionary can generally come from two sources: mathematical model-based 
methods and the dictionary learning from training data. The mathematical model-based methods for 
building a dictionary include: Fourier series, wavelets and discrete cosine transform bases [16,17]. 
But, this predefined dictionary is fixed and cannot be adapted according to the dataset. Therefore, 
dictionary learning from the dataset is an optimal choice due to its flexibility for a specific dataset. 
The dictionary learning problem can be solved by the method of optimal directions (MOD) [18], 
K-SVD [19], and the gradient descent algorithm [20]. Furthermore, previous research formulates the 
high dimensional data SRC problem in terms of tensors. Tensor extensions of the dictionary learning 
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and sparse coding algorithms have been developed, such as Tensor MOD and KSVD for dictionary 
learning [21], and tensor OMP [22]. Moreover, tensor based sparse representation has yielded good 
performance in high-dimensional data classification [9], face recognition [23], and image de-noising [24]. 

In this paper, we propose a tensor-based sparse representation classification method for urban 
airborne LiDAR points identification. The main innovations of this paper are summarized below: 

1. A new data structure is introduced to represent each point. To keep the feature description in their 
original geometrical 3D space, the LiDAR points are represented as 4th-order tensors. A point and 
its neighboring points are rearranged by their spatial distribution in the tensor space, meanwhile 
the features of each point in the neighborhood are also attached as the fouth mode of the tensor. In 
this tensor data structure, both spatial and feature information can be used for classification. 

2. A structured and discriminative dictionary set is learned for tensors based on a few samples of 
training data. Firstly, we present a structured and discriminative dictionary learning adapted to the 
high dimensional tensor data. Additionally, the dictionary learning only uses a few samples of 
training data. The dictionary classifier shows better classification ability than other popular 
classifiers (KNN, decision tree, random forest, SVM) when using the same amount of training data.  

Finally, the decision which class a point belong to is based on the minimum reconstruction 
residual from the sub-dictionary and its subset of sparse tensor. The sparse tensor approximation of 
each test tensor can be obtained by projecting the test tensor onto dictionaries, and the sparse tensor 
only has a few nonzero entries that are corresponding to the selected atoms in the dictionary set. We 
expect that the sparse tensors of points belong to the same class have similar structure. At last, the 
label of unknown points can be predicted by the minimum reconstruction residual from each class 
specific sub-dictionaries and the subset of the sparse tensor. 

In the following, we first introduce the tensor generation processing in Section 2. Subsequently, 
the conventional sparse representation classification (SRC) is briefly introduced in Section 3.1. Then, 
the procedure of tensor-based sparse representation classification is written in detail in Section 3.2, 
which includes the sparse coding algorithm for tensor data (in Section 3.2.1), structured and 
discriminative dictionary learning (in Section 3.2.2), and the classification procedure (in Section 
3.2.3). After that, the tensor-based sparse representation classification (TSRC) classification results 
and the comparison with other classifiers are presented in Section 4, followed by a discussion on the 
influence of parameters selection in Section 5. Finally, the major findings of this work are 
summarized in Section 6. 

2. Tensor Representation of LiDAR Points 

2.1. Tensor Notations and Preliminaries 

A tensor is denoting a multidimensional object, whose elements are to be addressed by more 
than two indices. The order of a tensor, also known as modes [25], is the number of dimensions. 
Tensors are denoted as boldface italic capital letters, e.g., 𝑻 ∈ 𝐑𝐼1×𝐼2×⋯×𝐼𝑁; matrices are denoted as 
upright capital letters, e.g., 𝑻 ∈ 𝐑𝐼1×𝐼2 ; vectors are denoted as upright lowercase letters, e.g., t ∈ 𝐑𝐼. 
The element (𝑖1, 𝑖2, ⋯ , 𝑖𝑁) of a tensor 𝑻 is expressed as 𝑡𝑖1,𝑖2,⋯,𝑖𝑁 , where 1 ≤ 𝑖𝑛 ≤ 𝐼𝑁 . The Frobenius 
norm of a tensor 𝑻 is defined as: 

‖𝑻‖𝐹 = √ ∑ ∑ ⋯ ∑ 𝑡𝑖1,𝑖2,⋯,𝑖𝑁 2 𝐼𝑁
𝑖𝑁=1

𝐼2
𝑖2=1

𝐼1
𝑖1=1   

The tensor can be transformed into a vector or matrix, and this processing is known as 
unfolding or flattening. Given an Nth-order tensor 𝑻 ∈ 𝐑𝐼1×𝐼2×⋯×𝐼𝑁, the n-mode unfolding vector of 
tensor 𝑻 is obtained by fixing every index except the one in the mode n [26]. The n-mode unfolding 
matrix is defined by arranging all of the n-mode vectors as columns of a matrix, i.e., the n-mode 
unfolding matrix T(𝑛) ∈ 𝐑𝐼𝑛×𝐼1∙𝐼2∙…∙𝐼𝑛−1∙𝐼𝑛+1…∙𝐼𝑁. The product between two matrices can be extended to 
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the product of a tensor and a matrix. The n-mode product of a tensor 𝑻 ∈ 𝐑𝐼1×𝐼2×⋯×𝐼𝑁 with a matrix U ∈ 𝐑𝐽𝑛×𝐼𝑛  is denoted by 𝒀 = 𝑻 ×𝒏 U ∈ 𝐑𝐼1×𝐼2×⋯𝐼𝑛−1×𝐽𝑛×𝐼𝑛+1⋯×𝐼𝑁 . For the processing, this can be 
converted to the matrix product of U and the unfolded tensor T(𝑛), which is expressed as Equation (1): 𝒀 = 𝑻 ×𝒏 U ⟺ Y(𝑛) = U ×  T(𝑛) (1) 

The Tucker decomposition is a form of higher-order principal component analysis, which can 
be described as Equation (2). It decomposes a tensor 𝑻 ∈ 𝐑𝐼1×𝐼2×⋯×𝐼𝑁  into a core tensor 𝑿 ∈𝐑𝐽1×𝐽2×⋯×𝐽𝑁 multiplied by the matrix U1 ∈ 𝐑𝐽1×𝐼1 ,  U2 ∈ 𝐑𝐽2×𝐼2 , ⋯ U𝑁 ∈ 𝐑𝐽𝑁×𝐼𝑁 along each mode. 𝑿 
is the core tensor, and its entries show the level of interaction between the different components [25]. 
The matrix U1, U2, ⋯ U𝑁 can be considered as the principal components in each mode. If 𝐽1, 𝐽2, ⋯ , 𝐽𝑁 ≤ 𝐼1, 𝐼2, ⋯ , 𝐼𝑁 the core tensor 𝑿 can be considered as a compressed version of the original 
tensor. In the following equations, the ≅ sign means “approximately equal”. 𝑻 ≅ 𝑿 ×𝟏 U1 ×2 U2 × ⋯ ×𝑛 U𝑁 (2) 

Tucker mode can be written as the Kronecker representation, these two representations are 
equivalent. Let ⊗ denote the Kronecker product, and define the vectorization operation on tensors 
as t = vec(𝑻), t ∈ 𝐑𝐼1𝐼2⋯𝐼𝑁 . The vectorization operation stacks all of the columns of the mode-1 
tensor T(1)  in a single vector. Then, given t = vec(𝑻) , x = vec(𝑿) , the equivalent Kronecker 
representation is shown as following: t ≅ (U1 ⊗ U2 ⊗ ⋯ ⊗ U𝑁) ∙ x (3) 

2.2. Tensor Representation of LiDAR Point 

The process of presenting a point p as the tenor 𝑻 is described, as seen in Figure 1. Firstly, the k 
closest neighbors of the point p are found and denoted as point set P. Then global Cartesian 
coordinates of point set P are transformed to the local PCA (Principal Component Analysis) 
coordinate system. The local axes (e1, e2, e3) are defined by the principal direction of variance of the 
point set P based on PCA. The PCA transformation ensures that the first axis e1 has the most 
variation, the second axis e2 has the second-most, and the third axis e3 the least. Therefore, the 
spatial distribution is reflected by the coordinate values in the third axis. Points of volumetric 
structure will have various coordinates in the third axis in the local coordinate system, whereas 
points of local planar surfaces will have consistent coordinates in the third axis. Let 𝑝𝑖  (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) be 
the point in global Cartesian coordinate system, 𝑝𝑒𝑖  (𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖) be the point in local PCA coordinate 
system. The transformation is calculated by: 𝑢𝑖 = e1(𝑥𝑖 − 𝑥0)  𝑣𝑖 = e2(𝑦𝑖 − 𝑦0) (4) 𝑤𝑖 = e3(𝑧𝑖 − 𝑧0)  

where (𝑥0, 𝑦0, 𝑧0)  are the mean coordinates of points within the neighborhood in the global 
coordinate system. 

After that, all points in the local PCA coordinate system are converted into voxel coordinates by 
the following equations: 𝑣𝑖𝑥 = 𝐼𝑛𝑡 (𝑢𝑖 − min(𝑢)∆𝑣𝑥 ) + 1  

𝑣𝑖𝑦 = 𝐼𝑛𝑡 (𝑣𝑖 − min(𝑣)∆𝑣𝑦 ) + 1 (5) 

𝑣𝑖𝑧 = 𝐼𝑛𝑡 (𝑤𝑖 − min(𝑤)∆𝑣𝑧 ) + 1  

where (𝑣𝑖𝑥 , 𝑣𝑖𝑦 , 𝑣𝑖𝑧) represents the voxel index within the voxel array, Int() is the function that rounds 
off the result to the nearest integer, (min(𝑢𝑖) , min(𝑣𝑖) , min(𝑤𝑖)) is the minimum values of (𝑢, 𝑣, 𝑤) 
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and (∆𝑣𝑥 , ∆𝑣𝑦 , ∆𝑣𝑧) indicates the voxel element size. In this paper, ∆𝑣𝑥 = ∆𝑣𝑦 = ∆𝑣𝑧 = 0.2 covering 
a cubic space of 1 m3, which means 𝑣𝑖𝑥 ∈ [1,5]; 𝑣𝑖𝑦 ∈ [1,5]; 𝑣𝑖𝑧 ∈ [1,5], a unique natural number 
ranging from 1 to 5 can be associated to each voxel in X, Y, Z dimensions. Subsequently, the mean 
feature vector of all the points that is assigned to each voxel is set as the voxel value, which is shown 
as in Figure 1. As a result, the center point p with its k nearest neighborhood is represented as a 
4th-order tensor, the entries are accessed by the voxel index and the feature number. Based on this 
data structure, the attribute of each point are regarded as entries in the tensor, which are arranged as 𝑟𝑖1𝑖2𝑖3𝑖4 , where 𝑖1 = 1, … , 𝐼1; 𝑖2 = 1, … , 𝐼2; 𝑖3 = 1, … , 𝐼3; 𝑖4 = 1, … , 𝐼4 , 𝐼1 = 𝐼2 = 𝐼3 = 5 and 𝐼4  equals to 
the number of attribute on each points in our approach. Finally, the point p is described as the 
4th-order tensor 𝑻 ∈ 𝐑𝐼1×𝐼2×𝐼3×𝐼4 , where 𝐼1, 𝐼2, 𝐼3, 𝐼4  indicate the X, Y, Z and attribute mode, 
respectively. In this regard, the spatial distribution and attributions can be simultaneously 
preserved. Each point in the LiDAR dataset is processed as the 4th-order tensor, which is used for 
tensor-based dictionary learning and sparse coding. 

 
Figure 1. The tensor generation from a point cloud set procedure.  

3. Tensor-Based Sparse Representation Classification Methodology 

3.1. Sparse Representation Classification Model 

The sparsity algorithm is to find the best representative of a test sample by sparse linear 
combination of training samples from a dictionary [13]. Given a certain number of training samples 
from each class, the sub-dictionary D𝑖 from 𝑖th class is learned. Assume that there are c classes of 
subjects, and let D = [D1, D2, … , D𝑐] , which is the overall structured dictionary over the entire 
dataset. Denote by y a test sample vector and x the sparse coefficient vector of y, the linear 
representation of y can be written as: y =  Dx (6) 

The sparse coefficient vector x is calculated by projecting y on the dictionary D, which is 
called sparse coding procedure. The sparse coefficient vector x can be obtained by solving the 
following optimization problem: 
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x = arg min୶ ‖x‖0 𝑠. 𝑡. ‖y − Dx‖2 ≤ 𝜀 (7) 

where ‖∙‖0 is the 𝑙0-norm of vector x which defines the number of nonzero elements in x and 𝜀 is 
a pre-specified residual level parameter. The problem in (7) is a nondeterministic polynomial-time 
hard (NP-hard problem) due to the non-differentiability and non-convex nature of the 𝑙0-norm. 
Typical approaches for solving (7) are either approximation of the original problem with 𝑙1-norm 
based convex relaxation [27], or resorting to greedy schemes, such as match pursuit and basis 
pursuit algorithms [28]. The optimization of (7) can also be reformulated as: x = arg min୶ ‖y − Dx‖2 𝑠. 𝑡. ‖x‖0 ≤ 𝑠 (8) 

where 𝑠 is the sparsity level of vector x. By the additional constraint ‖x‖0 ≤ 𝑠, the sparse vector x 
for the test sample y on the dictionary D can be obtained. Based on the class information of 
structured dictionary D, the sparse coefficient vector x can be written as x = [x1, x2, … , x𝑐], where x𝑖 is the subset of the sparse coefficient vector x associated with class 𝑖. Thus, x should be a sparse 
coefficient vector whose entries is zero except those corresponding to the 𝑖th class. According to this 
assumption, the test sample y𝑖 from class 𝑖 can be well represented by a linear combination of the 
sub-dictionary D𝑖 and its corresponding subset of sparse vector x𝑖. 

Sparse representation classification (SRC) uses the reconstruction error ݁𝑖 that is associated 
with each class to perform the data classification. First of all, the sparse representation x of test 
sample y is recovered with respect to the whole dictionary. Then, x𝑖 is extracted from x as the 
subset vector corresponding to the class 𝑖. The test sample is reconstructed by each class specific 
sub-dictionary D𝑖 and its corresponding sparse vector x𝑖. The class label of y is then determined as 
the one with minimal residual. ݁𝑖 = ‖y − D𝑖x𝑖  ‖2 class 𝑖 = [1,2, … , 𝑐] (9) identify(y) = arg min𝑖 {݁𝑖}  

3.2. Tensor-Based Sparse Reperesntation Classification 

When considering the 4th-order tensors that are used in this work, the dictionary set 
(D1, D2, D3, D4) is required to be learned on X, Y, Z, and attribute modes. The sparse coefficient vector x is also extended to a 4th-order sparse tensor 𝑿. After the tensor generation for each point, the 
4th-order tensors are used as the input data. At the beginning, the training tensor samples are 
randomly selected for the dictionary set learning. The dictionary is also composed of several 
sub-dictionaries that are associated with class 𝑖. Subsequently, for the sparse coding, the test tensor 
is projected into dictionaries on each mode to achieve the sparse tensor. This sparse coding is solved 
by TOMP (Tensor-based Orthogonal Matching Pursuit). Then, the test tensor data is recovered by 
the class specific sub-dictionaries and their corresponding subset of the sparse tensor. Finally, the 
label of the test tensor is predicted by the minimal reconstruction errors. The whole procedure is 
shown in Figure 2. 

We use an alternating strategy to solve the dictionary learning problem. It can be divided into 
two sub-problems: updating the sparse tensor 𝑿 by fixing the dictionary set (D1, D2, D3, D4), and 
updating the dictionary set (D1, D2, D3, D4) by fixing the sparse tensor 𝑿, until convergence. As a 
result, the desired dictionary set (D1, D2, D3, D4) and the sparse tensor 𝑿 can be obtained. 
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Figure 2. Tensor-based sparse representation classification procedure. 

3.2.1. Tensor-Based Sparse Coding 

To calculate the sparse core tensor 𝑿 , we use a greedy algorithm TOMP (Tensor-based 
Orthogonal Matching Pursuit) proposed by [22]. Classical OMP locates the support of the sparse 
vector that have the best approximation of sample data from the dictionary. It selects the support set 
by one index at each iteration until 𝑠 atoms are selected or the approximation error is within a 
preset threshold [14], where 𝑠 is the sparsity.  

Given a fouth-order LiDAR point tensor 𝑻 ∈ 𝐑𝐼1×𝐼2×𝐼3×𝐼4 , suppose that the dictionary set 
(D1, D2, D3, D4) is fixed, D1 ∈ 𝐑𝐼1×𝐽1 , D2 ∈ 𝐑𝐼2×𝐽2 , D3 ∈ 𝐑𝐼3×𝐽3 , D4 ∈ 𝐑𝐼4×𝐽4 , 𝑿 ∈ 𝐑𝐽1×𝐽2×𝐽3×𝐽4 is the sparse 
tensor of 𝑻 to be calculated. The objective function is converted to a sparse coding problem with 𝑙0-norm regularization which can be written as: 𝐦𝐢𝐧𝑿𝑘 ‖𝑻 − 𝑿 ×1 D1 ×2 D2 ×3 D3 ×4 D4‖𝑭 

s.t. 𝑥𝑗1,𝑗2,𝑗3,𝑗4 = 0 ∀ (𝑗1, 𝑗2, 𝑗3, 𝑗4) ∉ Γ1 × Γ2 × Γ3 × Γ4 
(10) 

where ‖∙‖𝑭 is the Frobenius norm, Γ𝑛 = [𝑗𝑛1 , 𝑗𝑛2, … , 𝑗𝑛𝑠𝑛] is the subset of 𝑠𝑛 indices of non-zero values 
in the sparse core tensor on mode X, Y, Z and attribute, and thus, denotes all possible combination of 𝑠𝑛 non-zero indices on the four modes. Therefore, the cross product Γ1 × Γ2 × Γ3 × Γ4 is the set of all 
the possible non-zero indices that can appear. Moreover, 𝑠1, 𝑠2, 𝑠3, 𝑠4 represents the X, Y, Z and 
attribute mode sparsity, indicating the number of selected column of each dictionary for the sparse 
representation. The total sparsity of the fourth-order core sparse tensor is denoted by 𝑠 = 𝑠1 × 𝑠2 ×𝑠3 × 𝑠4. Due to the overcomplete dictionary set, the size of the sparse tensor 𝑿 is larger than the 
LiDAR tensors 𝑻. 

Tensor-based Orthogonal Matching Pursuit (TOMP) relies on the equivalence of Tucker model 
and its Kronecker representation. Given t = vec(𝑻), x = vec(𝑿), the following two representations 
are equivalent: 𝑻 ≅ 𝑿 ×1 D1 ×2 D2 ×3 D3 ×4 D4  t ≅ (D4 ⊗ D3 ⊗ D2 ⊗ D1) ∙ x (11) 

where ⊗ is the Kronecker product. Equation (11) is similar to the conventional linear sparse 
representation formulation. Based on this equivalence, if the vectorized version t admits a 𝑠-sparse 
representation over the Kronecker dictionary Dkron = (D4 ⊗ D3 ⊗ D2 ⊗ D1) , then the 4th-order 
tensor 𝑻 ∈ 𝐑𝐼1×𝐼2×𝐼3×𝐼4 also has a sparse representation with respect to the dictionaries D1, D2, D3, D4 
on each mode. In the standard Tucker model, the core tensor usually has smaller size than the data 
tensor and the main objective is to find such a decomposition, which is to compute both the core 
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tensor and the factor matrices. In our approach, the data tensor and dictionaries are known and the 
objective is to calculate the core tensor 𝑿  that can approximately recover the input tensor. 
Additionally, the core tensor 𝑿 is sparse and its size is larger than the data tensor. The TOMP 
algorithm is given in Table 1. 

Table 1. The algorithm for TOMP (Tensor-based Orthogonal Matching Pursuit). 

Algorithm: Tensor OMP 
Require: input point tensor 𝑻 ∈ R𝐼1×𝐼2×𝐼3×𝐼4 , Dictionaries D1 ∈ 𝑅𝐼1×𝐽1, D2 ∈ 𝑅𝐼2×𝐽2, D3 ∈ 𝑅𝐼3×𝐽3 , D4 ∈ 𝑅𝐼4×𝐽4, 
maximum number of non-zeros coefficients 𝑠𝑛 in each mode. 
Output: sparse tensor 𝑿 ∈ 𝐑𝐽1×𝐽2×𝐽3×𝐽4  , non-zeros coefficients index in sparse tensor (Γ1, Γ2, Γ3, Γ4) 
Step:  
1, initial: Γ𝑛 = [∅](𝑛 = 1,2,3,4), Residual 𝑹 = 𝑻, 𝑿 = 0, k = 0, 𝑡 = 𝑣݁𝑐(𝑻) 
2, while ‖Γ𝑛‖0 ≤ 𝑠 do 
3, [𝑗1, 𝑗2, 𝑗3, 𝑗4] = arg 𝑚𝑎𝑥[𝑗1,𝑗2,𝑗3,𝑗4] |𝑹 ×1 D1𝑇(∶, 𝑗1) ×2 D2𝑇(∶ , 𝑗2) ×3 D3𝑇(∶, 𝑗3) ×4 D4𝑇(∶, 𝑗4)| 
4, Γ𝑛 = Γ𝑛  ∪ [𝑗1, 𝑗2, 𝑗3, 𝑗4] (𝑛 = 1,2,3,4). TD1=D1(:, Γ1), TD2=D2(:,Γ2), TD3=D3(:,Γ3), TD4=D4(:,Γ4); 
5, 𝑥 = arg  𝑚𝑖𝑛𝑢 ‖(TD1 ⊗ TD2 ⊗ TD3 ⊗ TD4)𝑢 − 𝑡‖22; 
6, 𝑿 = 𝒕𝒆𝒏𝒔𝒐𝒓𝒊𝒛𝒆(𝑥); 
7 𝑹 = 𝑻 − 𝑿 ×1 TD1 ×2 TD2 ×3 TD3 ×4 TD4; 
8, t = t + 1; 
9, end while 
10, return 𝑿, (Γ1, Γ2, Γ3, Γ4). 

3.2.2. Structured and Discriminative Dictionary Learning 

Dictionary learning aims to build a dictionary that is composed of basis vectors, which can fully 
represent test samples by the sparse coding procedure. Regarding the 4th-order tensor data, the 
dictionary set ( D1, D2, D3, D4 ) on X, Y, Z, attribute mode should be learned. To improve the 
performance of the dictionary learning method, a structured and discriminative dictionary is 
estimated in our approach. Instead of learning a shared dictionary over all the classes, we derive a 
structured dictionary D1 = [D11, D12, … , D1𝑐];  D2 = [D21 , D22, … , D2𝑐]; D3 = [D31 , D32, … , D3𝑐]; D4 =[D41 , D42, … , D4𝑐 ], where D1𝑖 , D2𝑖 , D3𝑖 , D4𝑖  is the class specified sub-dictionary associated with class 𝑖 on 
X, Y, Z, and attribute mode, and 𝑐 is the total number of classes. With such a dictionary set, we can 
use the reconstruction error for classification based on SRC. 

Denote by 𝑻 = [𝑻1,𝑻2, … , 𝑻𝑐] the set of training point tensors, where 𝑻𝑖 is the subset of the 
training tensor samples from class i. Correspondingly, 𝑿𝑖  is the sparse tensor of 𝑻𝑖 over the entire 
dictionary set (D1, D2, D3, D4). Furthermore, 𝑿𝑖  can be represented as 𝑿𝑖  = [𝑿𝑖1, 𝑿𝑖2, … , 𝑿𝑖𝑗 , … , 𝑿𝑖𝑐 ], 
where 𝑿𝑖𝑗 is the subset of sparse tensors corresponding to the class specific dictionary D1𝑖 , D2𝑖 , D3𝑖 , D4𝑖 .  

The initial dictionaries are composed of k leading principal vectors of matrices along each mode 
by Tucker decomposition. Denote by 𝑻𝑖𝑗 the j th tensor from class i, 𝑻𝑖𝑗 is tucker decomposed to get 
the U1, U2, U3, U4, as shown in Equation (12), then the first k number of basis vectors of U1, U2, U3, U4 
are added into dictionaries D1𝑖 , D2𝑖 , D3𝑖 , D4𝑖 . Then, the initial dictionary set is optimized by the 
discriminative dictionary learning model. 𝑻𝑖𝑗 ≅ 𝑿𝑖𝑗 ×1 U1 ×2 U2 ×3 U3 ×4 U4 (12) 

Besides requiring (D1, D2, D3, D4) should have strong reconstruction ability of for each tensor, the 
dictionary set should also own the powerful capability to distinguish tensor samples between 
various classes. Consequently, the discriminative fidelity terms are added to the dictionary learning 
model. Firstly, the dictionary set (D1, D2, D3, D4) should be able to well recover the training tensor set 𝑻, therefore, 𝑻𝐢 ≅ 𝑿𝑖 ×1 D1 ×2 D2 ×3 D3 ×4 D4. Then, since D1𝑖 , D2𝑖 , D3𝑖 , D4𝑖  correspond to the class i, 𝑻𝐢 
is expected to be well recovered by D1𝑖 , D2𝑖 , D3𝑖 , D4𝑖 , but not by D1𝑗 , D2𝑗 , D3𝑗 , D4𝑗 , 𝑗 ≠ 𝑖. This indicates that 𝑿𝑖𝑖  should have some significant entries, such that 𝑻𝐢 ≅ 𝑿𝑖𝑖 ×1 D1𝑖 ×2 D2𝑖 ×3 D3𝑖 ×4 D4𝑖 , meanwhile, the 
entries in 𝑿𝑖𝑗 should be nearly zero, such that ‖𝑿𝑖𝑗 ×1 D1𝑗 ×2 D2𝑗 ×3 D3𝑗 ×4 D4𝑗 ‖𝐹 is small. As a result, 
the dictionary learning model with the discriminative fidelity terms is defined as: 
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argminD1,D2,D3,D4 ∑ (‖𝑻𝐢 − 𝑿𝑖  ×1 D1 ×2 D2 ×3 D3 ×4 D4‖𝐹 + ‖𝑻𝐢 −𝑐𝑖=1𝑿𝑖𝑖 ×1 D1𝑖 ×2 D2𝑖 ×3 D3𝑖 ×4 D4𝑖 ‖𝐹 + ∑ 𝑗 ≠ 𝑖𝑐𝑗=1 ‖𝑿𝑖𝑗 ×1 D1𝑗 ×2 D2𝑗 ×3 D3𝑗 ×4 D4𝑗 ‖𝐹) s.t. ‖𝑿‖0 ≤ 𝑠 

(13) 

Again, c is the number of classes, and the ‖𝑿‖0 ≤ 𝑠 is the sparsity constraint, which means that 
the sparsity of tensor 𝑿 is 𝑠.  

These discriminative tensor dictionaries are learned in an alternating minimization rule, all 
other dictionaries and the sparse core tensors are fixed when learning one certain mode dictionary. 
Namely, D1, D2, D3, D4 are learned independently between each other. To learn the dictionary on a 
certain mode, we update the sub-dictionary D𝑖 class by class. When updating D𝑖, all of the other 
sub-dictionary D𝑗, 𝑗 ≠ 𝑖 are fixed. Then, the objective function can be written as: argminD1𝑖 ,D2𝑖 ,D3𝑖 ,D4𝑖 (‖𝑻 − 𝑿𝑖 ×1 D1𝑖 ×2 D2𝑖 ×3 D3𝑖 ×4 D4𝑖 − ∑ 𝑗 ≠ 𝑖 𝑿𝑗 ×1 D1𝑗 ×2 D2𝑗 ×3 D3𝑗 ×4 D4𝑗𝑐𝑗=1 ‖𝐹 +‖𝑻𝐢 − 𝑿𝑖𝑖 ×1 D1𝑖 ×2 D2𝑖 ×3 D3𝑖 ×4 D4𝑖 ‖𝐹 + ∑ 𝑗 ≠ 𝑖𝑐𝑗=1 ‖𝑿𝑗𝑖 ×1 D1𝑖 ×2 D2𝑖 ×3 D3𝑖 ×4 D4𝑖 ‖𝐹)  

s.t. ‖𝑿‖0 ≤ 𝑠 

(14) 

Mathematically, the tensor equation can be represented in an unfolded form, the following two 
equations are equivalent: 𝑻 ≅ 𝑿 ×1 D1 ×2 D2 ×3 … ×n D𝑛 … ×N D𝑁  𝑻(𝑛) ≅ D𝑛𝑿(𝑛)(D𝑁 ⊗ … ⊗ D𝑛+1 ⊗ D𝑛−1 ⊗ … ⊗ D1)𝐓 

(15) 

where 𝑻(𝑛) is the mode-n unfolding matrix of the tensor 𝑻, 𝑿(𝑛) is the mode-n unfolded matrix of 
the tensor 𝑿 and 𝑛 ∈  [1, 2, 3, 4]. Let D−�̌� = (D𝑁 ⊗ … ⊗ D𝑛+1 ⊗ D𝑛−1 ⊗ … ⊗ D1), Equation (14) can 
be rewritten into its unfolded version as: argminD1𝑖 ,D2𝑖 ,D3𝑖 ,D4𝑖 ‖𝑻(𝑛) − D𝑛𝑖 𝑿𝑖 (𝒏)D−𝑛�̌� − ∑ 𝑗 ≠ 𝑖 D𝑛𝑗 𝑿𝑗(𝒏)D−𝑛�̌�𝑐𝑗=1 ‖𝐹 + ‖𝑻𝐢(𝒏) −D𝑛𝑖 𝑿𝑖𝑖(𝑛)D−𝑛�̌� ‖𝐹 + ∑ 𝑗 ≠ 𝑖𝑐𝑗=1 ‖D𝑛𝑖 𝑿𝑗𝑖(𝑛)D−𝑛�̌� ‖𝐹 𝑠. 𝑡. ‖𝑿‖0 ≤ 𝑠 

(16) 

This is a conversion to a constrained convex quadratic optimization problem, and it can be 
solved by the gradient algorithm in the paper [29]. Figure 3 shows the residuals of objective function 
(13) along dictionary set (D1, D2, D3, D4) updating. 

In this way, dictionaries on the four modes are updated. In the next iteration, these new learned 
dictionaries are used to obtain the new sparse tensor in the sparse coding procedure. As a result, this 
dictionary learning processing alternates between tensor dictionary learning and sparse tensor 
update until a stopping criterion is reached.  

 
Figure 3. The reconstruction residuals of dictionary set of each iteration. 

Residuals

Iteration number
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3.2.3. Tensor-Based Sparse Representation Classifier 

Analogous to SRC, the class label of the test tensor 𝑻𝑘 is determined by the minimal residual: 𝑙𝑎𝑏݁𝑙 = 𝑎𝑟𝑔 min𝑖=1,2,..,𝑐 ݁𝑖  𝑐 = number of classes  

where ݁𝑖 = ‖𝑻𝑘 − 𝑿𝑘𝑖 ×1 D1𝑖 ×2 D2𝑖 ×3 D3𝑖 ×4 D4𝑖 ‖𝐹. 
Given a test tensor 𝑻𝑘, its sparse tensor 𝑿𝑘 over the whole dictionary set (D1, D2, D3, D4) is 

calculated by TOMP, then 𝑿𝑘𝑖  is the subset of sparse tensor corresponding to the D1𝑖 , D2𝑖 , D3𝑖 , D4𝑖  that 
is associated with class i. The test tensor should be well recovered by its corresponding 
sub-dictionary set and subset of sparse tensor, whereas the residual should be large when using 
other sub-dictionary sets and subsets of sparse tensor.  

4. Results 

4.1. Data Description 

We perform the classification on eight real airborne LiDAR datasets of Vienna city. The area of 
each dataset is 100 × 100 m2. The densities of datasets mostly range from 8 to 75 points/m2. Multiple 
echoes were recorded and the point clouds in all of the datasets are fully labeled. The datasets 
contain various kinds of objects, such as: high-rising buildings with balcony, small detached houses, 
single trees, grouped and low vegetation, ground with consistent height, and ground with slopes. In 
the classification procedure, the objects are categorized into five classes: open ground which is 
uncovered or not blocked by any objects; building roof; vegetation; covered ground, which is usually 
under the high trees or building roof; and, façade. 

4.2. Feature Extraction 

A set of 18 features are extracted from 3D LiDAR points, which contains height-based features, 
local plane-based features, penetrability-based features and local shape-based features. The four 
feature groups are detailed hereby. 

4.2.1. Height-Based Features 

1. Height difference. Height difference is measured between the LiDAR point and the lowest 
point found in a multiple scale cylindrical neighborhood. By varying the size of the local 
cylindrical neighborhood, height differences are calculated for each scale. The cylinder radii 
have been set experimentally to 10 m and 2 m, and correspondingly the height differences are 
denoted by Δ𝐻𝑟1 and Δ𝐻𝑟2. The height difference ∆𝐻 is given by: ∆𝐻 = {Δ𝐻𝑟1, Δ𝐻𝑟1 ≥ 𝜆Δ𝐻𝑟2, Δ𝐻𝑟1 ≤ 𝜆   

The threshold 𝜆 = 70% × max (Δ𝐻𝑟1), and the maximum is taken over the Δ𝐻𝑟1  of all the 
points. If the height difference value that is found in the large neighborhood is higher than the 
threshold, then this is considered as the reliable height difference value for this object. Otherwise, 
the objects may be points located on the slope, and the height difference should be calculated in a 
smaller neighborhood. Normally, the ground point should be selected as the lowest point and have a 
low height difference value. However, in the area of inclined ground, the ground points on the slope 
would also have relatively high height difference values for a large neighborhood selection, which 
can be seen in the rectangular area, as marked in Figure 4a. Figure 4a indicates that sloped ground 
areas have the same height difference values with roof points, which will lead to misclassification. 
Therefore, a small neighborhood is more suitable for sloped areas. The height difference values in 
the rectangular area marked in Figure 4b is much more reasonable using the multiple neighborhood 
selection. The ground area in the rectangle in Figure 4b shows a constant height difference values 
with most ground points. Thus, the height difference can be calculated correctly in both sloped and 
flat environments by using multiple neighborhood selections. 
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(a) 

 
(b) 

Figure 4. Height difference feature results: (a) Height difference via constant scale neighborhood;  
(b) Height difference via multiple scale neighborhood. 

4.2.2. Local Plane-Based Features 

For a given 3D point set and its k closest neighbors, the local plane-based features are exploited 
by estimating a local orthogonal regression plane. The local plane-based features contain: 

2–4. Normal vector: Normal X; Normal Y; and, Normal Z. The normal vectors of local planes are 
estimated by k neighbor points, normal X; normal Y; normal Z are the values in X, Y, Z 
direction from the normal vectors.  

5. NormalSigma0: the standard deviation of normal estimation. The value is high in rough 
areas and low in smooth areas. 

6. NormalZSigma0: the standard deviation of Normal Z estimation in a cylindrical 
neighborhood. The value can reflect the penetrability of the object.  

7. Normal planeoffset: the offset between the current point and its local estimated plane. 
8–10. Eigenvalues: Eigenvalue1; Eigenvalue2; and, Eigenvalue3. The covariance matrix used for 

the normal vector computation is decomposed by eigenvalue analysis. This yields Eigenvalue1 λ1; Eigenvalue2 λ2; Eigenvalue3 λ3(λ1 > λ2 > λ3). λ2 λ3 have low values for 
planar object and higher values for voluminous point clouds. 

4.2.3. Echo-Based Features 

11. Echo Ratio: The ER (echo ratio) is a measure for local transparency and roughness. It is defined 
as follows [30]. ER = 𝑛3𝐷/𝑛2𝐷 × 100  

with 𝑛3𝐷 ≤ 𝑛2𝐷, 𝑛3𝐷 is the number of neighbors found in a certain search distance measured in 3D 
and n2D is the number of neighbors found in the same distance measured in two-dimensions (2D). 
The ER is nearly 100% for a flat surface, whereas the ER decreases for penetrable surface parts since 
there are more points in a vertical search cylinder than there are points in a sphere with the same 
radius. 

12. Echo number ratio. The echo number ratio of each point is defined as: Echo number ratio = ݁𝑐ℎ𝑜 𝑛𝑢𝑚𝑏݁𝑟𝑛𝑢𝑚𝑏݁𝑟 𝑜𝑓 ݁𝑐ℎ𝑜݁𝑠 × 100  
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The echo number is q-th echo for a certain pulse. The number of echo is the maximum number 
of echoes that are detected for the pulse to which the echo belongs. The echo number ratio could 
indicate the penetrability of objects.  

4.2.4. Local Shape-Based Features 

The local shape-based features are obtained by the normalized eigenvalues 𝜆𝑖 , which include: 
linearity, planarity, sphericity, anisotropy, omivariance, and eigenentropy. The local shape-based 
features are calculated based on the paper by Niemeyer et al. [7], and are defined as follows: 

13–18. Linearity = λ1−λ2λ1 ; Planarity = λ2−λ3λ1 ; Sphericity = λ3/λ1 

Anisotropy = λ1−λ3λ1 ; Omivariance =√λ1λ2λ33 ; Eigenentropy = − ∑ λ1 ln λ13𝑖=1   

The nearest neighbors are selected for feature extraction, and kf is set to 30. The radius for ER 
and NormalZSigma0 calculation is set to 1 m. After the feature extraction, all feature values are 
normalized to the interval [0,1]. Then, a feature vector of 18 dimensions corresponding to each point 
is obtained through the feature extraction, and attached as the 4th-order of the tensor data. Figure 5 
shows a selection of features extraction results of Dataset 3.  

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. The feature extraction results of Dataset 3: (a) Height difference; (b) NormalZ; (c) 
NormalSigma0; (d) Echo Ratio; (e) Echo number ratio; and, (f) Eigenentropy. 

4.3. Classification Results 

Based on the 18 features described in Section 4.2, we conduct a series of experiments for TSRC. 
Firstly, the general behavior of TSRC is analyzed in Section 4.3.1, then, KNN (k-nearest neighbors), 
DT (Decision Tree), RF (Random Forest), SVM (Support Vector Machine) are used for comparison in 
Section 4.3.2. In each experiment, the training data is randomly selected from the whole dataset, and 
the remaining dataset is used as the test samples. For each class, always the same number of training 
samples is selected. The overall accuracy (OA) is selected to evaluate all of the classifiers.  

4.3.1. Tensor-Based Sparse Representation Classification Results and Discussion 
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For TSRC, all 3D LiDAR points are generated as the fourth-order tensor 𝑻 ∈ 𝐑ହ×ହ×ହ×1଼, which 
means that the points are sampled into 5 × 5 × 5 regular grids in the three-dimensional space, and 
each grid is attached with a 1 × 18 feature vector. The sparsity level is set to 9, and 27 training sample 
tensors are randomly selected from each class to learn the dictionary.  

We conduct the TSRC on the eight real airborne LiDAR datasets. To avoid the biased result, we 
repeated TSRC 10 times on each dataset. Visual inspection indicates that most objects are classified 
correctly in Figure 6. The unlabeled points are objects that do not belong to any class mentioned in 
the Section 4.1, such as fences, cars, power lines, and others. Unlabeled points are not involved in the 
accuracy evaluation. The amount of points in each LiDAR dataset, percentage of training data, and 
mean OA of 10 classification experiments and the standard deviation of OA are summarized in 
Table 2. The overall accuracies of all the datasets are beyond 80%, which are rather good 
classification results when considering that only a few training samples are used. Moreover, the OA 
deviations of all datasets are less than 1%, and OA values of 10 TSRC experiments remain stable for 
all of the datasets. It indicates that the TSRC is barely affected by the training data selection.  

Table 2. The percentage of training samples for all of the datasets. 

Dataset Test Set Training Set Mean OA OA std.dev Data Set 
Test 
Set Training Set Mean OA OA std.dev 

Dataset 1 665,466 0.02% 90.57% 0.77% Dataset 5 365,926 0.03% 82.16% 0.69% 
Dataset 2 452,800 0.02% 91.85% 0.84% Dataset 6 222,702 0.06% 87.03% 0.71% 
Dataset 3 352,318 0.03% 84.98% 0.63% Dataset 7 880,809 0.02% 85.09% 0.91% 
Dataset 4 298,201 0.04% 88.44% 0.89% Dataset 8 320,716 0.04% 87.24% 0.64% 

 
Figure 6. Three-dimensional view of the classification results of eight datasets using TSRC. 

The confusion matrices in Table 3 present the correctness and incorrectness for each class of all 
the datasets. From the confusion matrices and qualification (Figure 7) of the classification, we can see 
that the major confusions occur between open ground and covered ground. 14.44% of open ground 
points are mislabeled as covered ground in Dataset 6, and 8.65% of covered ground points are 
wrongly labeled as ground in Dataset 3. This is caused by the same attributes that open and covered 
ground points share, such as same height difference, roughness, and local shape parameters. 
Moreover, open and covered ground points are easily mixed in the neighborhood when generating 
the tensor. Based on the Table 3, there are 4.45% of open ground points that are wrongly labeled as 
roof in Dataset 3. Some slope areas and low roofs are confused with each other in this site. This is 
due to the same feature values and geometry that they have. However, open and covered ground 
points are scarcely classified to other classes for other datasets. Therefore, the ground points are well 
distinguished from other objects by TSRC, which shows great potential ability for ground filtering. 
As for roof classification result, incorrect points are found essentially on building edges (as seen in 
Figure 7). They are labeled as vegetation, since such points behave similar for many attributes, such 

Covered Ground Roof Vegetation Facade Unlabeled PointsOpen Ground

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Dataset 6 Dataset 7 Dataset 8Dataset 5
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as the low ER values, high NormalSigma0 values, and low planarity. Vegetation are well classified 
with a high accuracy. The error points do not appear on certain classes, they randomly occur in the 
other four classes based on the statistic in Table 3. Finally, the accuracy of façade is relatively low. 
Large numbers of points are labeled as vegetation. They mainly correspond to the façade where 
points are not sufficiently dense and co-planar. Those points will have high local-planar based 
feature values, which behave similarly to vegetation points. Furthermore, some façade points are 
very close to roof and ground, and they are often misclassified due to the neighborhood selection 
used for tensor generation.  

In total, TSRC can lead to a good classification result on the airborne urban LiDAR points with a 
few training data only. Based on the statistic of the number of points per class, the accuracy has no 
direct relevance to the amount of training data. With 27 training samples given in each class, the 
performance remains stable no matter whether dealing with classes with a large or a small amount 
of points. Finally, when compared with the object points, the ground points are most likely to be 
correctly detected by TSRC, which is meaningful for the filtering and generation of DTM (Digital 
Terrain Model). 

Table 3. The confusion matrices for each dataset and number of points per class in each dataset. 
(Error rates above 3% are highlighted by italic type except the mixtures between open ground and 
covered ground). 

 Reference Class 
Predicted 

Class Dataset 
Open 

Ground Vegetation Roof 
Covered 
Ground Facade 

Total 
Points 

Training 
Points 

Open ground 

Dataset 1 89.34% 0.87% 0.97% 8.59% 0.13% 255,835 27 
Dataset 2 90.07% 0.04% 0% 9.86% 0.02% 193,715 27 
Dataset 3 85.3% 1.39% 4.45% 8.83% 0.03% 188,776 27 
Dataset 4 91.69% 1.95% 0.58% 5.68% 0.1% 124,024 27 
Dataset 5 90.11% 0.51% 0.02% 9.31% 0.04% 148,164 27 
Dataset 6 84.59% 0.08% 0.83% 14.44% 0.04% 413,762 27 
Dataset 7 87.68% 0.33% 2.67% 9.09% 0.22% 104,853 27 
Dataset 8 90.53% 0.004% 0.007% 9.06% 0.4% 55,223 27 

Vegetation 

Dataset 1 1.02% 94.21% 1.57% 1.85% 1.35% 157,013 27 
Dataset 2 0.83% 97.16% 1.14% 0.73% 0.15% 148,961 27 
Dataset 3 0.97% 93.03% 3.33% 1.56% 1.11 65,191 27 
Dataset 4 1.53% 94.39% 1.66% 1.41% 1.01% 35,545 27 
Dataset 5 0.24% 97.02% 0.22% 1.22% 1.3% 34,462 27 
Dataset 6 0.98% 93.01% 0.86% 3.48% 1.67% 57,892 27 
Dataset 7 1.16% 93.65% 0.75% 2.19% 2.25% 15,905 27 
Dataset 8 1.09% 92.19% 1.8% 2.34% 2.57% 20,949 27 

Roof 

Dataset 1 0.49% 2.63% 96.13% 0.26% 0.48% 144,671 27 
Dataset 2 0.02% 1.16% 98.55% 0.15% 0.11% 26,430 27 
Dataset 3 1.77% 5.88% 91.42% 0.59% 0.34% 45,955 27 
Dataset 4 0.14% 6.52% 92.86% 0.2% 0.28% 36,137 27 
Dataset 5 0.18% 1.19% 98.14% 0.07% 0.41% 72,738 27 
Dataset 6 0.66% 0.38% 98.41% 0.31% 0.24% 248,716 27 
Dataset 7 0.7% 1.94% 96.05% 0.34% 0.97% 112,417 27 
Dataset 8 0.42% 0.17% 97.9% 0.17% 1.35% 164,376 27 

Covered 
ground 

Dataset 1 4.47% 0.99% 0.16% 94.33% 0 53,491 27 
Dataset 2 1.98% 1.27% 0.01% 96.71% 0.02% 64,778 27 
Dataset 3 8.65% 1.69% 0.81% 88.8% 0.04% 31,373 27 
Dataset 4 5.11% 0.57% 0.02% 94.09% 0.21% 13,910 27 
Dataset 5 7.78% 2.06% 0 90.16% 0.003% 31,186 27 
Dataset 6 1.4% 1.37% 0.24% 96.99% 0.008% 49,481 27 
Dataset 7 3.35% 0.63% 0.14% 95.88% 0 11,000 27 
Dataset 8 4.41% 0.008% 0 95.52% 0.05% 11,127 27 

Facade 

Dataset 1 1.71% 9.61% 4.96% 1.69% 82.02% 13,707 27 
Dataset 2 3.45% 1.89% 1.84% 1.84% 90.97% 6,189 27 
Dataset 3 0.08% 18.77% 0.5% 0.92% 79.73% 4,787 27 
Dataset 4 4.68% 10.52% 0.65% 1.56% 82.60% 2,313 27 
Dataset 5 1.09% 12.01% 10.49% 0.36% 76.06% 37,636 27 
Dataset 6 1.57% 4.14% 8.9% 0.53% 84.85 47,506 27 
Dataset 7 0.94% 6.25% 4.07% 1.01% 87.73% 24,852 27 
Dataset 8 0.76% 5.22% 6.92% 0.25% 86.84% 40,815 27 
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Figure 7. Qualification of the classification over eight datasets. 

4.3.2. Classification Comparison 

For the comparison, the classifiers KNN, DT, RF, and SVM are applied on the eight LiDAR 
datasets. The training data are randomly selected for 10 repetitions of the experiment, and the same 
training datasets are used in the TSRC dictionary learning, the training of the other classifiers, and 
the optimization in each experiments. To find the optimal parameters for KNN, DT, RF, and SVM, 
we built a misclassification rate function for each classifier based on the training dataset, then the 
minimum error rate is searched by parameters optimization, and the best parameters of each classifier 
were selected. The parameters to be optimized for each classifiers are listed in the following.  

KNN: the k nearest neighborhood points, distance computation function. 
DT: the minimum observations on each leaf, the minimum observations in each branch node, 

and the maximum number of branch node splits.  
RF: the number of predictors, and the parameters included for generating the decision tree, 

which contains the minimum observations on each leaf, the minimum observations in each 
branch node, and the maximum number of branch node splits. 

SVM: the kernel function, the kernel size and the box constraint which is the weight of cost 
of misclassification. 

The mean OA and OA standard deviation of 10 experiments for all of the classifiers are 
summarized in Table 4. Based on Table 4, TSRC shows the best performance over all of the datasets 
in terms of mean OA, except for Dataset 1, where RF provides the best results. However, TSRC 
achieves the second best OA and it is just 0.36% lower than the best OA value for this Dataset. As for 
OA deviation, TSRC also has the lowest OA deviation for Datasets 2–8, while the OA deviation of 
TSRC for Dataset 1 is only 0. 09% lower than that achieved by SVM. According to the OA deviation, 
the TSRC is less affected by the training data selection than the other classifiers investigated 

Figure 8 shows the average accuracy per class for all eight datasets when using TSRC and other 
classifiers in 10 repetitions of the experiment. For the ground classification, the TSRC has the best 
accuracy in most cases; however, the accuracy of the TSRC is slightly lower than DT in Dataset 3 and 
lower than DT, RF, and SVM in Dataset 8. The accuracy gap of vegetation classification among 
TSRC, RF, and SVM is narrow for all of the datasets, but the vegetation classification accuracy is 

Dataset 5

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Dataset 6 Dataset 7 Dataset 8
Correct IncorrectUnlabeled
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increased by 14.28% for Dataset 3 and 20.91% for Dataset 4 when compared to KNN. As displayed in 
Figure 8d, the accuracy of roof is significantly improved by TSRC for Dataset 4 and Dataset 5. As for 
covered ground classification, the accuracies of TSRC are significantly higher than that of DT, and 
higher than the accuracy obtained by KNN and RF for most cases. The difference between accuracies 
of TSRC and SVM are small. Additionally, TSRC delivers the best results among all of the classifiers 
for façade classification. The improvement is especially significant in façade detection for Dateset 3 
and Dataset 4, the facades are badly distinguished by the other four classifiers. The accuracy of DT is 
only 51.03% and 43.62%, while the accuracies increase to 79.73% and 84.97% by TSRC. 

KNN directly searches the similar feature vectors from the training data, and all of the 
attributes are used without any selection or weight assignment. Therefore, the classification results 
of KNN are not as good as TSRC. The optimal parameters for DT, RF, and SVM is dependent on the 
large amount of training data and multiple cross validation. Since only a few of training data are 
used to train DT, RF, and SVM in this paper, the classifiers are easily overfitting and biased. The 
classifiers work well for the training points, but it could not lead to a good the classification result for 
a large amount of test points. However, TSRC has better performance than those classifiers by using the 
same amount of training data.  

In a nutshell, the classification results for the eight LiDAR datasets demonstrate the 
effectiveness of TSRC in improving the classification performance, particularly enhancing the façade 
detection accuracy. Since façade points are influenced by their sparse density and mini-structures on 
the wall, and the feature values of façade points are not reliable and yield a bad detection result by 
the feature-based classifiers. Due to the combination of points spatial distribution and feature 
values, TSRC could effectively improve the façade detection accuracy. 

Table 4. Mean overall accuracy (OA) and OA deviation for all dataset using different classifiers. 
Bold values indicate the highest overall accuracy and the lowest standard deviation with the 
respective classifier. 

Dataset 
Mean OA OA std.dev 

TSRC KNN DT RF SVM TSRC KNN DT RF SVM 
Dataset 1 90.57% 84.06% 89.72% 90.93% 90.15% 0.77% 1.07% 0.89% 0.77% 0.68% 
Dataset 2 91.85% 87.88% 87.91% 89.91% 89.20% 0.84% 1.34% 1.94% 1.19% 0.91% 
Dataset 3 84.98% 75.90% 75.72% 77.87% 76.98% 0.63% 1.58% 2.46% 1.81% 1.63% 
Dataset 4 88.44% 82.21% 78.93% 82.25% 83.36% 0.89% 1.53% 2.53% 1.73% 2.17% 
Dataset 5 82.16% 76.68% 74.75% 81.34% 82.07% 0.69% 0.84% 1.83% 2.81% 0.67% 
Dataset 6 87.03% 81.53% 77.85% 82.14% 83.11% 0.71% 1.66% 2.84% 1.72% 1.77% 
Dataset 7 85.09% 81.37% 80.55% 82.10% 80.99% 0.91% 1.70% 2.67% 1.32% 1.61% 
Dataset 8 87.24% 81.52% 76.23% 82.63% 82.48% 0.64% 1.19% 2.48% 1.53% 1.24% 
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(e) (f) 

Figure 8. Accuracy per class comparisons of tensor-based sparse representation classification (TSRC) 
and other classifiers: (a) Overall accuracy; (b) Open ground accuracy; (c) Vegetation accuracy; (d) 
Roof accuracy; (e) Covered ground accuracy; (f) Facade accuracy. 

5. Discussion 

One of our framework’s crucial parts is the tensor reconstruction. The tensor is reconstructed by 
each sub-dictionary and its corresponding subset of the sparse tensor. Then, the class label is 
determined by the minimum reconstruction error. Theoretically, it is possible that there are equal 
reconstruction errors. However, this tie situation never happened in our experiments. Since the 
bases in the sub-dictionary are different between each other, it is very unlikely that a sparse tensor 
contains certain subsets of tensors that could recover the same tensors. Therefore, the tie situation of 
reconstruction errors barely happens.  

Since there are parameters need to set manually in this approach, such as the neighborhood size 
in tensor generation, sparsity level in TOMP, and the number of training data, we conducted a series 
of experiments on how those parameters influence the classification result. This is discussed below. 

5.1. Impact of Neighborhood Size Selection in Tensor Generation 

The impact of KNN neighborhood size in tensor processing on the classification results is 
assessed. The neighborhood size indicates how many points are involved in the tensor generation, 
and it depends on the scale parameter kt (k nearest neighbor points). Therefore, we utilize Dataset 4 
and vary kt values over the interval between kt = 20 and kt = 120 with ∆kt = 20 Dataset 4 contains 
various types of objects, such as slopes, small detached houses, high-rising buildings, low 
vegetation, and high trees, so it is used to test the impact of neighborhood size selection. The 
classification is evaluated by OA and Kappa index in Table 5. 

The OA and Kappa index slightly change by using various kt values, the tendency is similar 
across the open ground, vegetation, roof and covered ground class. Only the façade objects are 
influenced by the kt values; the accuracy of façade is lower when smaller kt values are used, and 
façade accuracy increases when the kt value is larger than 80. In order to achieve the high accuracies 
of all types of objects, kt value is suggested setting in the range of 80–120. We use a kt value of 80 in 
our classification. 

Table 5. Accuracy per class, OA and Kappa index of TSRC for Dataset 4 with different kt values. 

kt 20 40 60 80 100 120 
Open Ground 91.13% 88.62% 92.81% 88.52% 93.07% 90.65% 

Vegetation 85.11% 93.07% 90.13% 91.79% 91.31% 86.91% 
Roof 92.98% 89.35% 91.77% 93.65% 94.08% 92.16% 

Covered ground 93.00% 96.82% 93.37% 97.07% 90.84% 96.45% 
Facade 68.86% 73.93% 78.57% 83.63% 85.38% 93.3% 

OA 86.83% 86.69% 89.27% 87.75% 90.39% 88.39% 
Kappa Index 0.7946 0.7925 0.8327 0.809 0.8502 0.8189 

5.2. Impact of Sparsity Level 

The sparsity level indicates that the number of bases needed to be extracted from the dictionary 
for data reconstruction in the sparse coding processing. As in Section 5.1 Dataset 4, which exhibits 
large variety within each class, is used to test the impact of various sparsity levels on the 
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classification result. The sparsity level 𝑠 is set from 𝑠 = 5 to 𝑠 = 18, as shown in Table 6. The OA 
and Kappa index remain unchanged by using different sparsity level in the TOMP phase, which also 
demonstrates that the classification result is not sensitive to the sparsity level. As the initial value of 𝑠 = 9 is only 0.1% less than the optimal value, this initial value is kept for further experiments. 

Table 6. Accuracy per class, OA and Kappa index of TSRC for Dataset 4 with different sparsity level. 𝒔 5 7 9 11 13 15 17 18 
Open Ground 91.36% 91.76% 92.13% 92.29% 92.43% 91.36% 92.42% 92.52% 

Vegetation 92.44% 92.42% 92.21% 92.06% 91.55% 92.44% 86.67% 85.77% 
Roof 95.44% 95.48% 95.47% 95.70% 95.44% 95.44% 95.76% 95.56% 

Covered ground 95.17% 94.25% 93.73% 93.35% 93.24% 95.17% 92.5% 92.09% 
Facade 86.49% 86.75% 88.7% 88.7% 85.71% 86.49% 81.82% 81.82% 

OA 89.50% 89.69% 89.85% 89.92% 89.94% 89.49% 89.14% 89.01% 
Kappa Index 0.8363 0.8392 0.8418 0.8428 0.8431 0.8361 0.8306 0.8286 

5.3. Impact of Training Data 

Since learning a classifier strongly depends on the given training data, we further consider the 
influence of varying the amount of training data on the classification results. We focus on the impact 
of 10 different amount of training examples, the parameter of training data amount 𝑁𝑡 varies from 𝑁𝑡 = 9 to 𝑁𝑡 = 90, with a step size of ∆𝑁𝑡 = 9. The general behavior of the TSRC and other 
classifiers under various numbers of training samples is analyzed. KNN, DT, RF, and SVM are 
chosen for classification comparison. Again, the LiDAR Dataset 4 is used for classification, which 
contains 352318 points. 

The overall accuracy values are given in Figure 9. Generally, the TSRC performs better than the 
other four classifiers independent of the number of training samples. The overall accuracy tends to 
increase for all of the classification methods. The overall accuracy remains steady from 𝑁𝑡 = 27 to 𝑁𝑡 = 90 by TSRC. Therefore, the training data amount is set as 27 in the classification experiments. 

 
Figure 9. The OA of dataset 3 with different amount of training tensors by different classifiers. 

6. Conclusions 

In this paper, a tensor-based sparse representation classification frame work is proposed for 3D 
LiDAR point cloud classification. In this framework, each point is considered as the fourth-order 
tensor in order to make full use of geometry and feature information. 18 features per point are 
extracted from the 3D LiDAR points, and all features are utilized for classification without any 
feature selection procedure. Based on the Tucker Decomposition, the structured and discriminative 

Overall Accuracy

Amount of training data
9 18 27 36 45 6354 72 9081
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dictionaries along each mode are learned for tensor data classification. Then, the test tensor data is 
projected onto the dictionary set to get its sparse tensor. After that, using different class-specific 
dictionary sets and its corresponding subsets of the sparse tensor to recover the test tensor data, 
meanwhile the residuals per class are determined. Finally, the label of the test tensor is determined 
by the minimal residual. 

A series of experiments of TSRC suggest that the TSRC is barely dependent on the 
neighborhood size of tensor generation and the sparsity level. The TSCR can be successfully 
conducted by using only a few training samples. Based on the eight real airborne LiDAR points 
classification result, the OAs of TSRC are beyond 80%, with only 27 training tensors being used per class. 
Additionally, TSRC achieves a good classification when compared with other classifiers.. TSRC has 
respectable performance in identifying objects with less distinguishable features, such as façade. 
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A Comparison of Deep Learning Methods for
Airborne Lidar Point Clouds Classification

Nan Li , Olaf Kähler, and Norbert Pfeifer

Abstract—The success achieved by deep learning techniques
in image labeling has triggered a growing interest in applying
deep learning for three-dimensional point cloud classification. To
provide better insights into different deep learning architectures
and their applications to ALS point cloud classification, this article
presents a comprehensive comparison among three state-of-the-art
deep learning networks: PointNet++, SparseCNN, and KPConv,
on two different ALS datasets. The performances of these three
deep learning networks are compared w.r.t. classification accuracy,
computation time, generalization ability as well as the sensitivity
to the choices of hyper-parameters. Overall, we observed that
PointNet++, SparseCNN, and KPConv all outperform Random
Forest on the classification results. Moreover, SparseCNN leads to
a slightly better classification result compared to PointNet++ and
KPConv, while requiring less computation time and memory. At
the same time, it shows a better ability to generalize and is less
impacted by the different choices of hyper-parameters.

Index Terms—ALS point clouds, classification, comparison, deep
learning.

I. INTRODUCTION

A LS is one of the most important techniques for data
collection of real-world scenes. Extraction of meaningful

information from ALS point clouds is fundamental for many
applications, which makes the automatic classification of three-
dimensional (3-D) point clouds a crucial task.

For the past years, tremendous progress in the automatic
classification of ALS point clouds has been achieved in the
community of remote sensing and photogrammetry. The general
methods compute a set of handcrafted features for each point
and conduct the automatic classification by means of machine
learning, such as decision tree (DT) [1], support vector machines
(SVM) [2], [3], and random forest (RF) [4], [5]. To achieve
smoother classification results, many studies employ graph-
based models to introduce contextual information [5] or execute
the classification on segments to ensure a local consistency
of predicted labels [6]. Nevertheless, the performance of these
methods still heavily relies on the representation ability of the
handcrafted features and the generalization abilities of machine
learning models are limited due to the shallow architectures.
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In recent years, deep learning (DL) has shown superior per-
formance to other machine learning models across a wide range
of areas, such as speech recognition [7], image semantic seg-
mentation [8], and natural language processing [9]. Unlike other
machine learning approaches, deep learning can directly learn
features during the training process, and this ability of learning
features is considered as the major reason for those outstanding
results. More recently, researchers have also developed various
deep learning architectures for 3-D point cloud classification,
such as PointNet++ [10] and SparseCNN [11]. Considering
the impressive results achieved on indoor point clouds, those
deep learning frameworks are further applied on the outdoor
point clouds in the field of remote sensing and photogrammetry.
Compared to indoor point clouds, outdoor point clouds like
ALS normally contain much larger scale scenes with large size
objects, which leads to a larger data volume. Some studies
[12], [13] utilized DL models derived from the computer vision
field for the ALS classification by using adapted parameters.
Other studies [14], [15] proposed new architectures or built
modified models upon the PointNet architecture, in order to
embed characteristics of ALS point clouds.

However, a firm comparison of DL for the classification of
ALS remains difficult. Most reported results were obtained with
different experimental setups, such as the generation of training
patches in preprocessing, class balancing strategies, and learning
rate schedule [16]. Moreover, the models are mostly trained
and evaluated on the ISPRS Vaihingen 3-D dataset [14], [15],
[17], [18]. Although these benchmark point clouds provide the
possibility for performance comparison of different models, it
only covers a small area with limited diversity in the scenes [12].
Thus, our aim is to present a comprehensive comparison among
three state-of-the-art DL models, namely PointNet++, Spar-
seCNN, and KPConv. Unlike normal comparisons of approaches
that are conducted on only one benchmark, we performed a more
comprehensive comparison on two large-scale ALS datasets
with very different application purposes, and therefore different
semantics. One dataset is the ALS point cloud of Vienna city
and the tiles we use for training and testing in total cover an
area of approximately 9 km2 with different urban scenes. Note
that the tiles used in this article are published on ZENODO
and can serve further as benchmark data for ALS point cloud
classification [19]. Another dataset consists of the ALS point
clouds of power line facilities, which are used for the power line
inspection and management.

Through the inspection of the classification results of two
different datasets and a group of further investigations, this

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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studies reveal the strengths and weaknesses of the selected
networks in the classification of ALS point clouds. To provide
insights into choosing networks and tuning hyper-parameters
for the classification of ALS point clouds, we conducted the
comparison in the following aspects:

1) The accuracy of the classification results achieved on
two different datasets. Here, RF is used as a baseline
machine learning model so that the effectiveness of three
selected architectures can be validated by the classification
performance improvement.

2) The computational cost spent on two datasets. This in-
cludes the GPU memory demands and the computation
time used for preprocessing, training, and evaluation.

3) The generalization ability is assessed on the point clouds
of power line facilities, as this dataset contains point clouds
collected from four different campaigns located in differ-
ent regions and with different acquisition parameters.

4) The sensitivity to the choices of hyper-parameters. Based
on the impacts of different selections of hyper-parameters
on the classification performances, we attempted to find
the crucial parameters for PointNet++, SparseCNN, and
KPConv. Concerning the long training process and the
time budget for performing research, experiments are only
conducted on a subset of the dataset of the power lines
facilities.

The rest of this article is organized as follows: In Section II, we
review the classical methods for ALS point cloud classification
and deep learning models for the classification of 3-D points.
In Section III, we present the principals and implementations
of the three selected models, together with the descriptions of
the two datasets and the evaluation metrics. The experiments
are analyzed in Section IV. Finally, the conclusions are given in
Section V.

II. RELATED WORK

Relevant works of ALS point cloud classification can be
generally divided into two main groups: classification based on
handcrafted features followed by classical machine learning and
classification based on deep learning with learned features. We
will review both groups in the following with a special focus on
deep learning.

A. Classification Based on Classical Machine Learning

The classical approach for the classification of 3-D point
clouds starts with the extraction of handcrafted features and
then utilizes machine learning models to label input points
according to those features. The handcrafted features normally
refer to the geometric features that are generated from a 2-D
or 3-D neighborhood, such as eigenvalue-based features [20],
height features [21], and echo features [22]. A comprehensive
description of handcrafted features derived from 2-D and 3-D
neighborhoods can be found in the work of Weinmann et al. [23].
As for the classifiers, various classical machine learning models
are available for ALS point clouds, such as DT [1], Bayesian
discriminant classifiers [24], SVM [2], [3], Adaboost [25], [26],
and RF [4], [5]. However, those aforementioned methods suffer

from inhomogeneous classification results caused by the unsta-
ble features at the boundaries of objects. To achieve smoother
and more accurate results, some studies make use of the con-
textual information by employing graph-based models, such
as Markov random fields (MRF) [27] and the more frequently
used conditional random fields (CRF) [5], [28], [29]. The main
difference is that CRFs take the local context into account, when
selecting the co-occurrence probabilities of different objects,
whereas MRFs assume a fixed co-occurrence matrix irrespective
of the input context. To incorporate further context from a larger
region, several studies proposed to use a multiscale neighbor-
hood. Luo and Sohn [30] built the adjacency graph by using
two different range parameters. In the work of Jung et al. [31]
three types of the directional neighborhood were included. Since
larger segments of point clouds are considered more capable
of providing representative features for classification tasks than
single points, some studies apply CRF models on such segments.
Niemeyer et al. [32] proposed a two-layer hierarchical CRF
model that consists of a point-based layer and a segment-based
layer. Vosselman et al. [6] first conducted a segmentation on
point clouds, then the interaction features of segments are used
in the CRF model. Regardless of the classification and label
smoothing methods, well-designed handcrafted features need to
be fed into these models, and the overall accuracy (OA) still
mostly depends on the effectiveness of handcrafted features. An
additional challenge for graph-based models and methods based
on segments are small and thin objects, which often tend to be
misclassified.

B. Classification Based on Deep Learning

In contrast to the above, numerous deep learning architectures
have been developed for the classification of 3-D points in the
field of computer vision. Those architectures can be categorized
into three groups: deep learning based on regular representa-
tions, point-wise deep learning by multilayer perceptron (MLP)
and point-wise deep learning by convolution.

1) Deep Learning Based on Regular Representations: These
methods usually use 3-D grids or seek a compact structure to
represent unordered point clouds, so that the classical convo-
lutional neural network (CNN) can be applied on the regular
representations of point clouds. VoxNet [33] applied a 3-D
voxel-based convolution on the voxel grids of point clouds.
Although encouraging results were achieved, this method is
unlikely to scale to large point clouds as the computation and
memory demand grow cubically with the resolution. To address
this inefficiency, SparseCNN [11] took only nonempty voxels as
input, and also restricted the output of the convolution to the set
of nonempty voxels. In this way, the submanifold dilation can
be avoided. Apart from voxels, various sparse data structures
are also employed to apply CNNs to 3-D point clouds, such
as Octrees used in OctNet [34] and Kd-trees used in KD-Net
[35]. Regular representations can also be achieved by projec-
tions or interpolations of input points. Tangent convolution [36]
projected local neighborhoods of points onto a tangent plane
for each point, resulting in a set of tangent images. Then planar
convolutions are performed on each tangent image to compute
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the features of every point. SPLATNet [37] interpolated input
points onto a sparse lattice by means of bilateral convolution
layers (BCLs) [38], [39]. The convolution of BCLs can then
be applied on this sparsely populated lattic and at last learned
features are interpolated back to the original input 3-D points.

In the last few years, hybrid models, where a mixture of
voxel-based, projection-based, and point-wise operations are
used to learn features, have been investigated in order to take
advantage of different representations of point clouds. For ex-
ample, PVCNN [40] and SPVConv [41] use a point-voxel fusion
scheme, in which voxels generate large-scale features, while
point-wise MLPs are responsible for preserving fine geometrical
features. FusionNet [42] also works on the point-voxel interac-
tion. It proposes a voxel-based mini-PointNet that directly aggre-
gates features between neighboring voxels and corresponding
points, in this way the complexity in neighborhood search can be
reduced. The hybrid feature fusion module presented in (AF)2-
S3Net [43] focuses on point-based, medium-scale voxel-based,
and large-scale voxel-based features, and it further designs
a unique adaptive feature selection module with feature map
re-weighting in the decoder. Besides point-wise networks and
voxel-wise networks, RPVNet [44] adds a range-based image
network and builds the framework to learn mutual informa-
tion interactions among these three branches. AMVNet [45]
considered the class-prediction uncertainty between different
view’s networks, and these uncertain points are passed into an
extra network to obtain more robust predictions. 3-D-MiniNet
[46] learns a 2-D representation from the raw points through a
projection that extracts local and global information from the
3-D data, and then feeds it to a 2-D fully CNN to generate
semantic predictions.

2) Point-Wise Deep Learning Based on MLP: A second
range of methods employs MLPs on groups of local points
to compute features and then aggregates these features using
a symmetric operation to achieve permutation invariance for
3-D point clouds. This idea was pioneered in PointNet [47],
but the original PointNet lacks a consideration of local features.
Therefore, the authors further proposed PointNet++ [10] that
takes both local and global features into account. Several mod-
ifications or variations based on PointNet or PointNet++ were
developed, such as PointSIFT and PointWeb. Inspired by the
Scale Invariance Feature Transform (SIFT) feature descriptor,
PointSIFT [48] added a series of orientation-encoding units in
the architecture of the PointNet++, in order to combine features
from different orientations. Since the simple max or average
pooling operations used in PointNet++ do not make the best
use of local contextual information, PointWeb [49] formulates an
adaptive feature adjustment module to learn the impact value of
each on other points in the given local region for a better feature
aggregation. SO-Net [50] built a self-organizing map (SOM) to
model the spatial distribution of point clouds, its separate-and-
assemble process is more efficient than the grouping strategy
used in PointNet++ because the SOM explicitly reveals the
spatial distribution of the input point cloud. PointASNL [51]
innovatively designed a local-nonlocal module, in which the key
component is the Point Nonlocal Cell. It allows the computation
of the response of a sampled point as a weighted sum of the

influences of the entire point clouds, instead of just within a
limited neighbor range.

MLP-based techniques normally treat points independently at
a local scale to maintain permutation invariance, and this lacks
the consideration of dependencies between semantic context
and geometric relationships between points. Some studies work
on learning feature relationships in 3-D point clouds, since the
high-level features learned by deep learning can be considered as
category responses, which should have dependencies regarding
to context. SPG [52] first geometrically partitioned the point
cloud into homogenous superpoints, upon which it built a graph
convolution network to learn and pass the contextual information
between adjacent superpoints. Liu et al. [53] proposed a Point
Context Encoding (PointCE) module to learn a set of scaling
factors, so that the network can selectively focus on a few im-
portant intermediate features. Similarly, LAE-Conv [54] learned
the coefficients that represent the importance of neighbors to
the central point by MLP, then aggregates the central point
features as a weighted sum of its neighbors. PointGCR [55]
module aims to capture global contextual information along the
channel dimension by utilizing a graph structure. It automati-
cally generated a neighborhood matrix of the graph convolution
operation, and finally passes the information to capture the
relationship between these channel feature maps. DGCNN [56]
is proposed to incorporate edge convolution layers (EdegConv)
into the PointNet architecture. EdgeConv explicitly constructed
a local graph and learns the relationships between a point and
its neighbors.

Besides the aforementioned research that explores local re-
gions to leverage correlations between unordered points, there
are also some studies that focus on exploiting the geometrical
correlations of the local neighborhood points. RandLA-Net
[57] uses a local spatial encoding unit that explicitly embeds
the x-y-z coordinates of all neighboring points, such that the
corresponding point features are always aware of their relative
spatial locations. RS-CNN [58] aims to learn the relationships
among neighboring points, i.e., the geometric topology con-
straint among points, by stacking multiple MLPs.

3) Point-Wise Deep Learning Based on Convolution: As
an alternative approach, suitable convolutional operations can
be defined, such that they operate directly on unordered point
clouds. To achieve permutation invariance, A-CNN [59] first
ordered input points locally in a clockwise/counterclockwise
manner before feature encoding, then applied a 1-D annular
convolution. PointCNN [60] designed a transformation matrix
for the local input points, which is able to simultaneously weight
and permute the input features. In the works of PointConv [61],
SpiderCNN [62], and Flex-convolution [63], the convolution
kernels are treated as parametric functions of 3-D coordinates.
PointConv [61] approximated the parametric functions by MLP,
and an inverse density scale is added to each point in order to bal-
ance nonuniform point density. SpiderCNN [62] parametrized
the convolution operator as a product of a simple step function
that captures local geodesic information and a Taylor polynomial
that ensures the expressiveness. Flex-convolution [63] used a
linear function to approximate the convolution operator in a 3-D
continuous space. To perform the convolution in a 3-D space,
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some studies employed a set of 3-D spatial points to define
the area where each kernel weight is applied, such as PCNN
[64], ConvPoint [65], and KPConv [66]. PCNN [64] defined a
3-D convolution operator whose weights are carried by a group
of fixed grid points and the weights of grid kernel points are
computed by the radial basis function. ConvPoint [65] defined
the spatial convolutional kernel as a set of 3-D points that are
randomly distributed in a unit sphere, and the impact of kernel
points on raw 3-D points are learned by an MLP. KPConv [66]
proposed a deformable kernel, i.e., weights and the positions of
the kernel points are both learnable so the kernel can be adapted
to different shapes and point densities. FKAConv [67] explicitly
separates the estimation of geometry-less kernel weights and
their alignment to the spatial support of features, and its key idea
is to learn a linear transformation to align the neighboring points
with the grid-like kernel and then perform kernel operation.

4) Deep Learning for the Classification of ALS Point Clouds:
Since the aforementioned architectures are derived from the
computer vision field, the training and evaluation are typically
performed on publicly available indoor point clouds, such as
ShapeNet [68] and ScanNet [69]. For the classification of out-
door point clouds, as typically encountered in the field of re-
mote sensing and photogrammetry, some popular deep learning
models were successfully adapted to ALS point clouds and
achieved satisfactory results, like PointNet++ used by Wini-
warter et al. [13] and SparseCNN used by Schmohl et al. [12].
Yousefhussien [18] utilized the same scheme of combining local
and global information as PointNet, but replaced the MLP-based
architecture with a 1-D fully convolutional architecture. Li [14]
proposed a geometry-aware convolution, which aims to learn
the high-level features from the low-level handcrafted features,
so that the geometric awareness can be emphasized by the prior
knowledge of the neighborhood. To avoid overfitting, Arief [17]
refined a trained PointCNN model by combing the strict pairwise
penalties that are used in the CRF procedure on the unseen data.
To address the challenges of uneven density distribution, Li [70]
introduced a density-aware convolutional module which adds
an inverse density function to reweight the convolutional kernel.
Wen [15] constructed the local receptive field by selecting the
directionally constrained nearest neighbors, then the orientation-
aware features can be aggregated by following the order of
each angular segment when formulating the receptive field. In
the study of [71], handcrafted features were integrated into a
simple neural network model. Contrary to real deep learning, this
approach lacks the ability to learn local features automatically,
and the network is not able to learn more effective features
through optimization in the training step.

In this study, we selected one representative architecture from
each category mentioned above, namely PointNet++, Spar-
seCNN, and KPConv, to present a comprehensive comparison.
Besides the successful performance of these three networks
achieved in indoor point clouds, they also showed powerful
capability in the ALS point cloud classification in the previous
works [12], [13], [71]. PointNet++ is a point-wise network
in which features are learned by successive levels of MLPs
followed by order-invariant pooling operations. In contrast,
SparseCNN uses voxels as internal representation and applies

convolutional operations directly on this regular grid. KPConv
designs a 3-D filter by using 3-D points as kernel points to carry
weights, and the convolution is performed on 3-D point without
any voxelization.

In comparison to MLP based approaches, both point-wise and
voxel-wise convolutional methods are theoretically considered
advantageous, because they can exploit the spatial arrangement
of points inherently, whereas MLP takes flattened vectors as
input, which leads to a loss of spatial information. Voxels pro-
vide a natural way of defining convolution masks. They also
offer much faster lookup of neighboring points compared to
point-wise methods, and the required matrix multiplications are
well suited for implementation on GPUs. However, voxel-wise
methods intuitively suffer from defects in accuracy by predicting
labels only on quantized grids. Instead of voxelization, the
convolutional operators can also be represented as a group of
3-D spatial points with learnable weights in a sphere around the
given point. However, this 3-D kernelization might be memory-
demanding, since all the neighboring points within the sphere are
involved in the convolution. In summary, the CNNs employed
in SparseCNN and KPConv are expected to be superior to MLP
used in PointNet++, while the resolution loss by SparseCNN
may decease classification accuracy and KPConv may have a
difficulty in large-scale dense point clouds. Thus, we conducted
a number of experiments to examine the capabilities of the
different classification approaches for ALS point clouds.

III. METHODS AND MATERIALS

In this section, we introduce the two ALS datasets used for
training and evaluation in Section III-A. The subsequent Sec-
tion III-B briefly reviews the architectures of the PointNet++,
SparseCNN, and KPConv, followed by the training setups for
the investigated models in Section III-C. Finally, we present our
evaluation metrics in Section III-D.

A. Datasets

We evaluate the selected deep learning models on two ALS
LiDAR datasets. The first one is an ALS LiDAR point cloud of
Vienna. The LiDAR system recorded up to 10 echos per emitted
pulse, and the point density within 2-D and 3-D search spaces
is presented in Fig. 1. The point density of first returns is mostly
between 20 and 50 points/m2, and the number of points within
a 3-D sphere of radius 0.5 m is approximately between 10 and
25.

The dataset has been organized into a number of
1270 m × 1020 m tiles (including an overlap of 20 m), from
which we selected 4 tiles for the training and 5 tiles for the
evaluation. The locations of the chosen tiles are presented in
blue and red, respectively, in Fig. 2. Training tiles are situated
in four different districts of Vienna, which contain various land
cover and terrain such that sufficient representative samples can
be provided to the classifiers.

For the evaluation, test tiles with different scenes are consid-
ered. Test tile 1 is characterized by a large wooded area with
significant slopes, along with several spacious detached houses
and a small part of the Danube River. Test tiles 2 and 3 are located
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Fig. 1. Histograms of point density for the Vienna point cloud. (a) Histogram of point counts of first returns in 2-D cells of 1 m2. Cells with point counts more
than 100 pts/m2 are labeled light blue. (b) Histogram of point counts within 3-D sphere with radius of 0.5 m. Point counts higher than 80 are labeled light blue.

Fig. 2. Locations of training and test tiles.

in suburban areas with mixed landscape. Test tile 2 has a large
number of residential houses surrounded by dense trees, areas
of vineyards and a small cemetery. Test tile 3 covers a large area
of agricultural land, along with buildings of different heights.
Test tiles 4 and 5 are located in the center of Vienna, which are
dominated by various historic and tall office buildings.

For the purpose of Vienna city administration, five classes are
considered, namely ground, buildings, vegetation, water, and
others. All common street objects are categorized as others,
such as streetlights, benches, shrubs, cars, construction sites,
and garbage bins. The reference labels are generated semi-
automatically: a rough filtering of main objects is first conducted
by the software “Terrasolid,” and the final classification is refined
by manual labeling. After the label generation, the quality of the
labeling is manually checked. 20 sites of 100 m× 100 m tiles are
manually verified, and the average accuracy of reference labels
is 95%. In this article, only four main classes are used: ground,
buildings, vegetation, and others.

The difficulty of this dataset is the variety of objects within the
classes. Vegetation includes various types of plants such as trees

and shrubs that usually appear around houses, but also grass.
The highest ambiguity is found in the class others.

The second dataset is provided by Siemens and consists of
ALS point clouds of power line facilities. The point clouds cover
four different power line corridors located in different regions,
named Area_1, Area_2, Area_3, and Area_4 respectively, and
they were collected in different measurement campaigns. Again,
we assess the point density by counting the number of points
within 3-D spheres of radius 0.5 m. Places with more than 300
points in such a sphere are excluded from the density statistics
in order to avoid disturbing artifacts caused by flight geometry
deviations, such as variability in aircraft pitch. As shown in
Fig. 3, the densities of the four areas vary from each other,
especially the point density in Area_3 is much lower than in
the other three areas.

Unlike the labeling schema used in the field of land use, the
targets of the power line point clouds are specifically restricted
to four classes, namely (surrounding) environment, conductors
(i.e., the wires), pylons, and insulators (connecting wires and
pylons). This corresponds to the needs for the inspection and
management of the power lines facilities. The surrounding en-
vironment refers to all points that are in a certain range of the
pylons. Other objects such as ground, building, or vegetation
that are far away from pylons, are not considered and eliminated
before the classification task. An example of such labeled point
clouds of power line facilities is shown in Fig. 4. The reference
labels for this dataset are manually generated. The challenges
of this dataset are the specific semantic class definitions, the
variations in terms of point density, shapes of pylons among the
four different areas, and the unbalanced class distribution.

The dataset is split into tiles of 250 m × 250 m and there are
55, 37, 13, and 31 tiles for Area_1, Area_2, Area_3, and Area_4,
respectively. We selected 6 tiles each from Area_1, Area_2, and
Area_4 and 4 tiles from Area_3 for the evaluation, the remaining
tiles are used for training. Thus, there is a total 114 tiles from 4
areas for training, and 22 tiles from 4 areas for the evaluation.

The number of points in the training and test tiles are presented
in Table I for the two datasets. Although fewer tiles are used in
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Fig. 3. Histograms over the number of neighboring points within 3-D spheres of radius 0.5 m for the various areas of the power line data set. The percentage
of points with more than 300 neighbors is also noted. Note the different vertical range used in (c). (a) Area_1, 30.3% points excluded. (b) Area_2, 19.8% points
excluded. (c) Area _3, 0.3% points excluded. (d) Area _4, 21.2% points excluded.

Fig. 4. Labeled point cloud of power line facilities.

TABLE I
NUMBER OF POINTS IN THE TRAINING AND TEST TILES OF THE TWO DATASETS

the Vienna dataset than in the power line facilities dataset for
training and test, much more points are contained in the training
and test tiles of the Vienna dataset compared to the power line
facilities dataset. This is because each tile in the Vienna dataset
covers a much large area than the tiles in the power line facilities
dataset. Consequently, we only selected 9 tiles for the training

and test on the Vienna dataset, as this amount of point clouds is
sufficient to perform deep learning experiments and costs much
less time than using all tiles of the entire city. In terms of the
point numbers and covered areas, the Vienna dataset is much
larger than the ISPRS Vaihingen dataset [72] in which there are
750 000 points for training and 400 000 points for test.

B. Description of PointNet++, SparseCNN, and KPConv

PointNet++, SparseCNN, and KPConv all employ the classic
U-Net structure [73] for semantic classification. U-Net consists
of two parts, the encoding part and a symmetric decoding part.
The encoding part progressively downsamples the input data
so that large context features can be learned by increasing the
receptive field. And then, in the decoding stage, these high-level
features are propagated back to the original resolution of the
input data by upsampling.

In PointNet++, features are computed in a multiresolution
hierarchy by using set abstraction. At each level, the input points
are first subsampled to a set of centroid points (illustrated in
red in Fig. 5) using farthest point sampling (FPS). Then, the
local neighborhood region of each centroid point (dotted circles
in Fig. 5) is constructed by selecting its neighboring points in
the previous abstraction level. Subsequently, MLPs with max or
average pooling is used on these groups of points to extract
new high-level features. Each set abstraction contains fewer
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Fig. 5. Schematic illustration of the feature learning in PointNet++. N0 and
N1 are the number of points in the respective input and output of one hierarchy
level and C0 and C1 are the respective dimensions of feature vectors.

points but has more informative features attached to each point.
Through this subsampling and the increasing neighborhood, the
features in deeper levels can progressively cover and describe
larger areas of the original point cloud [10].

Unlike the point-wise architecture used in PointNet++, Spar-
seCNN [11] is a voxel-based network that rasterizes irregular
point clouds into voxel grids for convolution. In order to avoid
unnecessary computations, SpaseCNN performs the convolu-
tional operations only on active voxels but also restricts the
output of the convolution to a set of active input voxels. Here
active voxels are defined as nonempty voxels where at least
one point is contained. Internally, SparseCNN converts the
convolutional operations to matrix multiplications by building
hash tables for input and hidden layers. To give an example, the
implementation on a slice of voxels is described in Fig. 6, where
active sites are labeled in orange and blue in input and output
layers, respectively. The input layer is stored by a hash table and
a feature matrix Fin. The matrix Fin has a size of a×m, where
a is the number of active sites in the input layer and m is the
number of dimensions of input features. Meanwhile, each row in
the hash table records a tuple of spatial coordinates of an active
site and its corresponding row index in the matrixFin. Likewise,
the output layer also consists of a hash table and a feature matrix
Fout. Each element in Fout is the result of the convolution of
the input active sites that are located in the receptive field of the
corresponding output active site. Since the features of the input
and output active sites are accessed by the index in the matrix
Fin and Fout, an index rule is built as a matrix that records the
indices in Fout and the corresponding indices of active input
sites that are used for convolution in Fin. That is to say, when
an active input site with a row index of indexx is situated at
the spatial spot i in the receptive field of an output active site
with a row index of indexy , a row (indexx, indexy) will be
added to the rule matrix Ri. Thus, for the 3× 3 convolution
kernel, at each spatial location i an index rule matrix Ri is
established, together with a learnable weight matrix Wi of size
m× n , where n is the dimension of output features. In this
manner, at each spatial location i of the kernel, the convolution
is operated as a multiplication of the input feature matrix and
the corresponding weight matrix Wi with learnable parameters.

Note that in the architecture of SparseCNN the convolutional
block also includes pooling and batch normalization, which are

not depicted in Fig. 2 for the sake of simplicity. These act similar
to the subsampling and increasing neighborhood in PointNet++
in the sense of successively increasing the overall receptive field
of voxels in the later layers, i.e., aggregating more and more
complex information over the larger and larger neighboring
context of the input data.

KPConv directly performs 3-D convolution operations on the
raw point clouds without any intermediate representations. In
KPConv, a set of 3-D points is used as kernel points to carry
kernel weights (illustrated in Fig. 7), thus the positions of kernel
points define the area where each kernel weight is applied.

KPConv takes a spherical neighborhood centered on a given
point as input. For each neighboring point, its kernel value is
calculated as a weighted sum of all the kernel weights carried
by the kernel points. The influence of each kernel weight is
defined by a correlation function based on the distance between
the kernel point and the neighboring point. Therefore, the new
representation of the given center point is calculated as the
sum of all the neighboring points’ features multiplied by their
correlation to each kernel point and the corresponding kernel
weight.

The kernel points can be positioned regularly in a sphere
around the given center point, where each kernel point applies
a repulsive force on the others. On the other hand, the positions
of kernel points can also be learned by the network. In this case,
a shift for each kernel point is generated to determine its new
location.

For the architecture of KPConv, a grid subsampling is applied
in each layer, and the convolution radius is doubled in every layer
to incrementally increase the receptive field.

C. Setup of Selected Models

For the implementation of the selected deep learning net-
works, the point clouds are first cut into small patches with
identical amount of points. For PointNet++ and SparseCNN,
each patch contains 80 k points and 600 k points for the power
lines dataset and the Vienna dataset, respectively. However,
for KPConv, fewer points (50 k points) are used to generate
the training patches in order to avoid out of memory (OOM)
problems. Details on the implementation can be found in [13].
For class balancing, only patches that contain all concerned
classes are involved in the training procedure and a weighted
loss function mentioned in the study of [12] is utilized. In
the case of the Vienna dataset classification by KPConv, the
same patch filtering would lead to a very limited number of
training patch due to the small area covered by the patches.
Thus, for the consideration of class balance for KPConv, an equal
number of center points are selected from each class, and 50 k
nearest neighboring points within these center points are further
generated as the training patches. We pass the 3-D coordinates
of point cloud along with two echo attributes (number of returns
and return number) into the networks for semantic classification.
Before training, various hyper-parameters need to be chosen
appropriately for the deep learning algorithms. These include
learning rate schedule, mini-batch size, duration of training, and
architecture variables that determine the network structure such
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Fig. 6. Implementation of the convolution operation in SparseCNN.

TABLE II
PARAMETERS USED IN THE ENCODING OF POINTNET++

Fig. 7. Implementation of the convolution operation in KPConv.

as a number of layers. By default and if not otherwise specified,
we apply a cosine decay learning rate schedule with the default
setting for the three networks. The mini-batch size is set as 2 and
the number of epochs is set as 18 for the training of SparseCNN,
whereas we used the mini-batch size of 1 and 10 training epochs
for the training of PointNet++ and mini-batch size of 1 and 12
epoches for KPConv. Thus the weights will be learned through
more iterations in PointNet++ and KPConv than in SparseCNN.
The encoder stage of PointNet++ contains three levels with
different neighborhood sizes, and the neighboring points are
randomly selected within the given radius. The parameters used
in the encoder stage of PointNet++ are summarized in Table II.
For SparseCNN the voxel size is defined as 8 cm and the encoder
stage is composed of 7 levels with additional residual connec-
tions. For KPConv, the rigid kernel with 15 kernel points and a

grid-subsampling with a grid size of 0.08 m is applied in each
level except for the first level. This means that the convolution
is performed on raw input point clouds. In total 6 levels are used
in the feature encoding of KPConv, and the convolution radius
in each level is 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 m.

For the purpose of comparison, we selected the popular RF
classifier as a baseline. To have as fair a comparison as possible,
handcrafted features at multiple scales are computed for the
RF classifier, so that context information can be included at
multiple scales. For the classification of the Vienna ALS data, the
geometrical features proposed by Weinmann [23] are employed.
The features are computed using multiple KNN (k Nearest
Neighbors) within a 3-D search radius of a maximum of 1 m,
where the value of k is defined as 10, 20, and 30.

As for the power line point clouds, 2-D features derived
from a vertically infinite cylindrical neighborhood are excluded,
as those features cannot separate facility objects right above
the surrounding ground or vegetation from those ground and
vegetation points. Instead, three 2-D features are computed from
a finite cylinder neighborhood, namely point count, height range,
and height variation. The remaining 3-D features are the same
as Weinmann’s features used for Vienna. For the 3-D features,
4 different KNN neighborhood sizes are used: k is 10, 50, 100
within a radius of 0.5 m, as well as k is 100 within a maximum
radius of 1 m. For 2-D features, six different finite cylinder
neighborhood sizes are used: radius of 0.1 m with height of
0.2 and 0.5 m; radius of 0.5 m with height of 0.2, 0.5, and 1.5 m;
and radius of 1 m with a height of 1.5 m.
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TABLE III
AVERAGE AND STANDARD DEVIATION OF RECALL ON THE TEST TILES FROM THE VIENNA DATASET

For both datasets, the same training tiles are used in
PointNet++, SparseCNN, and KPConv. An alternative selec-
tion of training samples had to be used for RF because of limits
on computation time. Here, an equal number of points per class
are selected from each training tile and used for the training,
as spatial continuous samples are not required by RF. For the
Vienna point cloud, 50 000 samples per class are selected from
each training tile for training, thus there is a total of 800 000
samples used for training (4 × 4 × 50 000). For the power lines
point clouds, 50 000 samples per class are selected from each
area for training, and there is a total of 740 648 samples used
for training, since the number of insulator points are fewer than
50 000 in some areas.

Since the deep learning methods take in a larger amount of
training samples and cover larger context than RF, they very
likely have better classification performance compared to RF.
However, the main goal in this paper is not to compare different
machine learning methods, but rather the two selected deep
learning models.

D. Performance Metrics

For the evaluation of each test tile, the metrics recall and
precision are computed for each class separately. Recall is
the proportion of actual positives that is correctly classified.
It expresses the ability of the classifier to identify all relevant
instances. Precision is the proportion of predicted positives that
is truly positive and measures the ability of the classifier not to
predict as positive a sample that is actually negative.

To evaluate the methods on the entire dataset, we compute the
average of recall and precision over all test tiles for each class.
Additionally, the OA is measured as the micro-averaged recall
of all test tiles, where the micro-averaged recall is computed by
aggregating contributions of all classes. Besides, the standard
deviation over these metrics is used to examine performance
variations among the test tiles.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, several classification experiments are pre-
sented based on PointNet++, SpareseCNN, and KPConv as well
as on RF, which is used as a baseline for the comparison. The
classification results are presented and analyzed in Section IV-A.
In addition, the computation time required for each classifier
are given in Section IV-B and the classification uncertainty is
discussed in Section IV-C. Furthermore, we explore the ability of
the selected deep learning networks to generalize to new, unseen
data in Section IV-D. Finally, the impacts of hyper-parameters
of the three deep learning networks are investigated in
Section IV-E.

TABLE IV
AVERAGE AND STANDARD DEVIATION OF PRECISION ON THE TEST TILES FROM

THE VIENNA DATASET

A. Classification Results and Discussion

1) Vienna ALS Point Cloud: For the Vienna ALS dataset,
Tables III and IV provide the averages and standard deviations
of the precision and recall metrics for all test tiles. Comparing
to the results of RF, PointNet++, SparseCNN, and KPConv
can all achieve a better classification performance with an OA
up to 97.13%, 98.12%, and 94.90% respectively. As shown in
Fig. 7, there is much salt and pepper noise in the classification
result by RF, since it only relies on the handcrafted features
which could become unstable at the boundaries of different
objects or areas with lower point densities. The deep learning
networks, especially PointNet++ and SparseCNN, can lead to
a more homogenous classification result. Additionally, all the
selected networks show great advantages in the prediction of
the class vegetation and the accuracy of buildings is also signif-
icantly increased by PointNet++ as well as SparseCNN. The
superior classification results by the selected networks suggest
that deep learning can benefit from the gradually increasing
receptive fields in the feature encoding, so that these high-level
features with surrounding context can be effectively learned
and lead to more accurate predictions, especially for those
objects that are hard to characterize by a set of local geometric
features.

Despite the improvement brought by the deep learning meth-
ods, we also found some defects in each deep learning network.
Compared to SparseCNN and KPConv, PointNet++ has a dif-
ficulty in correctly detecting small objects like the meadow in
the rectangle in Fig. 8(b), and this also leads to a low accuracy
of others. Table V additionally presents the recall of others as
well as the misclassification percentages of each test tile. This
evaluation suggests that both SparseCNN and KPConv can dif-
ferentiate the classes others and ground better than PointNet++,
and by visual analysis, we found that the wrong labeling of others
in PointNet++ mostly occurs at the junction areas between
others objects and ground. One example is shown in Fig. 9,
which presents a part of a playground area from Test tile 2.
Both SparseCNN and KPConv can successfully identify the
small infrastructures [black rectangle in Fig. 9(b) and (c)] with
a height of around 1 m above ground, whereas PointNet++
misclassifies them as ground. This is probably caused by the

72



6476 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 8. Classification results of an area in Test tile 3. (a) Random Forest. (b) PointNet++. (c) SparseCNN. (d) KPConv. (e) Reference.

TABLE V
CORRECT CLASSIFICATION AND MISCLASSIFICATION PERCENTAGES OF OTHERS IN EACH TEST TILE, IN TERMS OF RECALL

large initial neighborhood size used in PointNet++. A radius of
5 m is used by PointNet++ in the first layer, while SparseCNN
and KPConv start with a relatively smaller neighborhood size
with 0.08 and 0.2 m, respectively. Furthermore, in PointNet++
an interpolation using 3 nearest points is added for feature

backpropagation, which could results in an unstable classifica-
tion at the boundaries of objects.

As for the performance of KPConv, a large number of building
points, especially the inner parts that are far away from edges,
are misclassified as ground, which can be seen in Fig. 8(d). The
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Fig. 9. Classification results of a playground in Test tile 2. (a) PointNet++. (b) SparseCNN. (c) KPConv. (d) Reference.

Fig. 10. Classification result by KPConv on the subsampled point cloud.

main reason is that KPConv in this case can only include a very
local context to learn features. The largest radius of convolution
of KPConv at the deepest layer is 6.4 m, whereas the largest
receptive field size in PointNet++ and SparseCNN can reach
10 and 51 m, respectively. Moreover, a much smaller area is
covered by each patch used for training in KPConv compared
to PointNet++ and SparseCNN. The radius and the number
of points in each patch are setup in this way to avoid OOM in
KPConv. Therefore, the roof points of which the neighborhood
lacks the contextual information about other objects such as
facade and ground, are easily misclassified as ground. Because
of this, the infrastructures on the mislabeled roofs are wrongly
predicted as others.

To further verify the above-mentioned argument regarding
KPConv, we performed a classification by KPConv on a sub-
set of the Vienna dataset and the point clouds in this sub-
set has been subsampled with a grid size of 0.32 m. In this
way, the patch that contains the same number of points can
include a larger area. Thanks to the more sparse points, the
radius of convolution can be doubled in each layer in KPConv
without causing any OOM problems, to include more global
context. The classification result of the same area with Fig. 8
by KPConv is presented in Fig. 10. By increasing the ranges
of context that the convolution can access, the prediction of
buildings has been greatly improved. Note that the classifica-
tion result may be affected by the insufficient training sam-
ples, since only a subset of the Vienna dataset is used for
training.

The overall best result is delivered by SparseCNN, however,
we observed that it tends to misclassify some ground points as

buildings when there is a sudden height change, like the parking
lot shown in the rectangle in Fig. 8(c). Moreover, since the
receptive field size in SparseCNN can go up to 54 m in the last
layer, the inclusion of large scale context may have a tendency of
error expansions. For example, the object (rectangle in Fig. 11) is
an underground café with a grass roof, which is labeled as ground
in the reference because its roof is seen as a part of the ground.
This object is classified as buildings by all investigated networks,
as suggested by the context that these points rise up sharply
without any transitions (jump edges between different levels
of ground). Based on the prediction of the surroundings of this
object, SparseCNN tends to expand the building points (possible
erroneous points) to a larger area compared to PointNet++ and
KPConv.

2) Power Line ALS Point Clouds: For the power line dataset,
the average classification accuracy over all test tiles is provided
in Tables VI and VII in terms of precision and recall. The three
deep learning networks outperform RF once again, concerning
the average recall and precision on each class, as well as the OA.
RF performs relatively competitive with the three deep learning
networks in the classification of conductors, with the average
difference in the recall at 3.31%, 3.36%, and 3.23% compared
to PointNet++, SparseCNN, and KPConv, respectively. This
is because the linear characteristic of conductors facilitates the
classification. Nevertheless, for the parts of conductors that are
situated below the insulators, RF is inferior to the deep learning
networks as illustrated in Fig. 12.

In accordance with our earlier observation of the Vienna
dataset, we found the same type of erroneous labeling in this
dataset for each classifier. Like the performance on the Vienna
point cloud, RF tends to lead to heterogeneous classification
results when compared to the three deep learning methods.
As for the classification of insulators, the small objects in this
case, PointNet++ performs not as good as the other two deep
learning networks. As shown in Fig. 12, some points at the
boundaries of insulators have been misclassified as conductors
by PointNet++. Due to the error expansion of SparseCNN
mentioned previously, some misclassification as the environment
is also expanded to larger areas with this classifier, whereas we
do not observe this for PointNet++, which achieves a recall of
97.15% in this example in Fig. 12. KPConv faces a difficulty in
the classification of pylons in this example which has a very high
point density. Because of the limited number of input points, the
test patches of this example tile can only cover a relatively small
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Fig. 11. Classification results of an area of an underground café in Test tile 2.

TABLE VI
AVERAGE AND STANDARD DEVIATION OF RECALL OF ALL TEST TILES

TABLE VII
AVERAGE AND STANDARD DEVIATION OF PRECISION OF ALL TEST TILES

Fig. 12. Classification results of a test tile in Area_1 with the recall of pylons and insulators shown.
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Fig. 13. Classification results of a test tile in Area_4.

TABLE VIII
PROCESSING TIME USED ON THE VIENNA POINT CLOUD

TABLE IX
PROCESSING TIME USED ON THE POWER LINE FACILITIES POINT CLOUDS

area, which thus cannot provide sufficient context for KPConv
to learning effective features.

The accurate classification of insulators is the main challenge
in this dataset, therefore another example is presented in Fig. 13
to examine the abilities of the three selected deep learning
methods to detect insulators. In this example, PointNet++
assigns incorrect labels to the insulators with relatively small size
that are located on the lowest crossarm, while both SpareCNN
and KPConv can deliver accurate inference for those insulators
regardless of the difference in size.

B. Computation Time

Tables VIII and IX present the computation time that the
aforementioned four classifiers need for each processing step

on the two datasets. The training tiles are divided into patches
that only cover partial areas of the tiles, so that they can serve
as the input for the deep learning networks. The inference for
PointNet++ and KPConv is implemented on the patches to
avoid OOM. Besides the consideration of memory demand,
PointNet++ requires the similar scales of training and inference
patches in order to keep the point density of training samples
same with that of inference samples in each set abstraction after
FPS. Hence, patches are additionally generated for inference and
a postprocessing step that merges patches into complete tiles
is added for PointNet++ and KPConv. Note that there are 10
training epochs in PointNet++, 12 training epochs in KPConv,
but 18 training epochs in SparseCNN.

The implementations of the deep learning networks and RF,
which we use in our comparison, require, and exploit different
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Fig. 14. Uncertainty distribution. (a) Uncertainty histogram of correctly labeled points. Only bars of values more than 3% are labeled with the numbers. (b)
Uncertainty histogram of incorrectly labeled points.

hardware. The RF experiments were run on a computer equipped
with an AMD Ryzen 7 2700 × (3.70 GHz) processor, 32 GB
RAM, and no GPU was involved for the processing. In contrast,
we use another machine for the deep learning experiments with
AMD Ryzen Threadripper 1900× (3.5 GHz) processor, 512 GB
RAM, and an Nvidia RTX 2080 Ti with 11 GB RAM.

As shown in Tables VIII and IX, the processing of SparseCNN
is much faster than RF and the other two models because the
neighborhood lookup is much more efficient using voxelization
and hash tables. Additionally, this method also demands less
memory than PointNet++ and KPConv. In the case of the power
lines dataset, the memory consumption is 1985 MB, 8809 MB,
8575MB for SparseCNN, PointNet++, and KPConv, respec-
tively. KPConv is more memory-demanding than PointNet++,
and thus KPConv fails when a large number of points is taken
as input.

As for RF, the computation of the handcrafted features ac-
counts for the majority of the processing. This step is especially
time-consuming when large volume point clouds are given. For
the Vienna dataset, the feature computation took around 10 days,
which is even longer than the training time of PointNet++
and makes RF the most time-demanding model among the
four selected classifiers. However, the actual training of the RF
classifier with precomputed features is faster than the training
of the deep learning models. Regarding inference, the fastest
results are achieved by SparseCNN, whereas PointNet++ and
KPConv need the postprocessing for merging, thus they take
patches also takes extra time to achieve the final classification
results.

C. Classification Uncertainty Analysis

Another aspect of machine learning models is their ability
of handling uncertainty, which we assess by analyzing the dif-
ference between the highest and the second-highest posterior
class probabilities [74]. The uncertainty should be capable to
reflect the classification confidence: ideally, a high uncertainty
indicates a high possibility of misclassification, whereas a low

uncertainty implies a correct classification. Accordingly, a high
uncertainty is expected for incorrectly labeled points and a low
uncertainty is expected for correctly labeled points.

Fig. 14 provides the uncertainty histograms of correctly and
incorrectly labeled points for RF and the three deep learning
networks. The histograms are normalized, i.e., for each classifier,
the values of correctly labeled points add up to 100%, and also
the values for the incorrectly labeled points add up to 100%.

The uncertainty histogram of correctly labeled points shows
a clear preference that most of the correctly labeled points also
have a low uncertainty score, especially for the deep learning
models. More than (or close to) 90% of correctly labeled points’
uncertainty is in the range of 0 to 0.2. However, it is hard to
find a dominant range of the uncertainty for the incorrectly
labeled points. In contrast to the two deep learning models,
the misclassified points of RF show a weak but obvious trend
that lower uncertainty correlates with higher misclassification
rates. However, there are no significant differences between the
proportion of high uncertainty (in the range of 0.8 and 1.0) and
the proportions in the other uncertainty ranges. For SparseCNN
a large number of misclassified points (26.9%) have a low
uncertainty (in the range of 0 and 0.2). The statistic of the un-
certainty implies that the three deep learning models, especially
SparseCNN, tend to give slightly over-confident classification
results on the misclassified points compared to RF.

The uncertainty derived from the posterior class probabilities
should enable to identify misclassified or informative points. To
verify this for the aforementioned classifiers, points are selected
by different uncertainty ranges, and the proportion of incorrectly
labeled points is presented in Fig. 15. The plot indicates that
the uncertainty is not informative for identifying misclassified
points from the point-wise classification results. Even for the
points that are selected by a high uncertainty (e.g., 0.9), it
is only a fifty-fifty chance of filtering misclassified points for
the three classifiers. However, from the perspective view of
active learning, those point with high uncertainty should be
informative and helpful for the training refinement. The usage
of the uncertainty needs to be studied further.
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Fig. 15. Proportion of incorrected labeled points.

D. Classification Generalization Ability

The ability of a classifier to generalize describes how well
a model can produce reasonable predictions for samples that
were not encountered in the training dataset. We therefore as-
sess the generalization ability of PointNet++, SparseCNN, and
KPConv using the power lines facilities dataset, which contains
point clouds collected in different areas during four different
flight campaigns. Due to different flight trajectories relative
to the power line, there is a major difference in point density
between these tiles. To examine the generalization ability, only
the tiles of Area_1 are used for the training, then the trained
network is evaluated on tiles from Area_2, Area_3, and Area_4,
respectively.

Fig. 16 shows the OA and the recall per class achieved by the
three deep learning methods. In most novel areas, PointNet++
achieves a comparable classification accuracy with the other two
networks in terms of the three dominant classes (environment,
conductors, and pylons), as well as the OA. But in all test
areas, PointNet++ performs much worse than SparseCNN and
KPConv on the prediction of the class insulators. Compared to
the dominant classes, this class has a smaller object size and
the point clouds are therefore affected more significantly by
variations in point density. There are also more tension insulators
in Area_2 and Area_4 than in Area_3, which are harder to detect
compared to the suspension insulators that are vertically hanging
off the pylons. Thus the accuracy of insulators of those two areas
are worse than for Area_3, despite the point density of Area_3
being much lower than in training Area_1. Additionally, in the
classification results of PointNet++ the prediction of the class
environment in Area_2 is not as good as for the other test areas,
and about 9% below the accuracy achieved by the other two
networks. The reason is probably that a large amount of dense
vegetation appears in Area_2.

In KPConv, a grid-subsampling is implemented in each layer
(except for the first layer), which allows input point clouds to
have a consistent point density in the network. This enables

KPConv to be less impacted by varying density to some extent.
However, KPConv leads to a less accurate classification of
conductors in Area_4, which may be caused by the high density
of the point clouds in Area_4. This also corroborates the findings
of the classification in the Vienna dataset.

Overall, the evaluation on the power line facilities point clouds
indicates that SparseCNN generalizes better than the other two
networks, since the representation of voxels is intrinsically ro-
bust to varying density of points.

Note that the difference of point density has to be in a
reasonable range when the training and test point clouds are
collected from different campaigns. We also attempted to apply
the model trained by the Vienna dataset to the Vaihingen dataset
(ISPRS benchmark), but all models, PointNet++, SparseCNN,
and KPConv, lead to poor classification results on the Vaihingen
dataset, because its point density is much lower than in the used
training dataset. For PointNet++ and KPConv, the points in the
neighborhood used for feature learning changed notably. As for
SparseCNN, a larger voxel size needs to be used to avoid too
many empty voxels on the Vaihingen dataset.

E. Impact of Hyper-Parameters

We next evaluate the hyper-parameters of the methods that
are external to the model. Their values cannot be estimated
by training samples but are set by operators before training.
Thus, apart from the learning rate schedule, mini-batch size, and
epochs, the selections of initial input features or class balance
strategies are also included in the hyper-parameters.

Our experiments to study the impact of hyper-parameters are
focused on a subset of the power line dataset. Since the pylons in
Area_2 are similar to the pylons in Area_1, our subset excludes
the training tiles of Area_2 in order to reduce processing time.
For the evaluation, the subset contains four test tiles of Area_1,
3 test tiles of Area_3, and 4 test tiles of Area_4. Based on
a large number of experiments, we selected four important
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Fig. 16. Accuracy of classification results of three areas.

hyper-parameters to discuss, namely learning rate schedule,
input features, class balance strategies, and architecture.

The baseline configuration is described in Section III and
Table X presents the different configurations of the selected
hyper-parameters, as well as the baseline configuration. In each
experiment, only one type of hyper-parameters changes, the
others are fixed to the baseline configuration.

In the class balance strategies, the filtering of training patches
only selects patches that contain points of all four target classes
as input, the weighted loss function is the same as mentioned in
Section III. For PointNet++, the structure of the architecture is
mainly defined by the selection of search neighborhoods, other
parameters like the MLP structures and pooling are kept con-
stant. Likewise, for SparseCNN, only different numbers of levels
are explored in terms of the architecture, whereas the operators
on each level remain fixed. As for KPConv, the different radius
of convolution and number of levels are investigated.

The accuracy difference is given as the difference in OA
between test configurations and baseline configuration in each
tile. Fig. 17 displays the distributions of accuracy differences
over 11 test tiles by a boxplot based on a five number summary
(minimum, first quartile, median, third quartile, and maximum),
and the average values are depicted by red squares. Besides the
OA differences, Fig. 17 also provides the accuracy differences
of insulators to inspect the impact of the class balancing strate-
gies, another reason is that the prediction of insulators is more
challenging than the other classes and is easier influenced by the
hyper-parameters configurations.

Overall, the accuracy achieved by SparseCNN varies much
less than the accuracy achieved by PointNet++ and KPConv.

Different learning rate decay methods have quite a small im-
pact on PointNet++ regarding to the OA, but they tend to cause
unstable classification performances of insulators. We observed
that the accuracy of insulators drops largely on a few individual
tiles when using constant learning rate or step-based learning rate
decay. For both SparseCNN and KPConv, the constant learning
rate performs worse than the two learning rate decay methods
on the classification of insulators.

Regarding the input features, intensity shows no significant
impact on the performances of the selected deep learning mod-
els. However, the classification accuracy of PointNet++ de-
creases notably when only x,y,z coordinates are used as input.
The largest accuracy reduction for SparseCNN is also found
for insulators when using only x,y,z coordinates. By using only
coordinates as input, KPConv has a similar performance in
the change of insulator accuracy like SparseCNN, where the
maximum insulator accuracy decrease is 3.88% and 2.98% for
KPConv and SparseCNN, respectively.

The class balance strategies have no significant impact on
PointNet++ and SparseCNN based on the average accuracy
differences, however, they have a great influence on KPConv.
Without the filtering of training tiles, the performance by KP-
Conv, especially on the rarest class of insulators drops dramati-
cally on some individual tiles. Using the weighted loss function
only provides very limited help to improve the classification
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TABLE X
DESCRIPTION OF THE HYPER-PARAMETERS

Fig. 17. Accuracy difference of the test tiles to the baseline, presented as box plots (minimum, maximum, first and third quartile, median) and mean value (red
square). Cyan triangles indicate values that are beyond the limits of the x-axis and those values are also labeled. Note the different scales. (a) OA difference. (b)
Accuracy differences of insulators.
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of insulators. As for SparseCNN, the weighted loss function is
particularly helpful in improving the prediction of insulators.
For PointNet++, we observed an accuracy decrease at pylons
in some individual tiles when using the weighted loss function,
where the largest accuracy difference of pylons reaches−13.9%.

For the architectural structures, the results of PointNet++
are obviously impacted by the neighborhood selection, with
a trend to better and more consistent performance with larger
neighborhood areas. SparseCNN also performs better with more
levels in the network, which likewise increases the neighborhood
used for classifying each voxel. These results are consistent with
common knowledge of deep learning in general. Moreover, since
the accuracy difference between the structure using 6-layers and
that of 7-layers is already small, we did not experiment with any
more additional layers. For this dataset, KPConv favors a smaller
convolution radius in order to achieve an accurate detection of
insulators. The improved classification by adding more levels in
the KPConv also accords with an earlier observation regarding
SparseCNN.

In a nutshell, SparseCNN is less impacted by the selection of
hyper-parameters than the other two networks. For PointNet++,
the classification performance is significantly influenced by
input features and architectural structures, and the learning rate
decay methods are important for the feature learning of small
objects, such as insulators. For KPConv, an appropriate class
balance strategy needs to be adapted so that less dominant
classes can be correctly classified in various scenes. For all
the three networks, a more capable model can be trained by
gradually decreasing learning rates and cosine-based decay is a
safe choice, as it has fewer parameters to tune than a step-based
decay. Moreover, echo attributes are helpful to improve the
classification performance for all the mentioned networks.

V. CONCLUSION

This study presented the classification performance of
PointNet++, SparseCNN, and KPConv on two very differ-
ent ALS point clouds and conducted a comparison among
PointNet++, SparseCNN, and KPConv in several aspects.

1) Overall SparseCNN has achieved a better classification
accuracy than PointNet++ and KPConv. PointNet++ has
a less accurate prediction on the objects with small sizes,
like the others in the Vienna point cloud and the insulators
in the power line facilities point clouds. KPConv has a
difficulty in the classification of large-size objects in a
dense point cloud, like the buildings in the Vienna dataset.
Due to the demanding memory usage, only limited number
of points can be fed into KPConv, which leads to a lack of
sufficient contextual information for the features learning
in large-scale datasets. Although SparseCNN may have
a risk of error expansion, it has resulted in the overall
best classification performance. Moreover, SparseCNN
can preserve object boundaries and detail information very
well by using a reasonable small voxel size, although
SparseCNN performs classification on voxels instead of
directly on points.

2) SparseCNN requires much less time and memory than
PointNet++ and KPConv on training and inference.
Compared to RF, SparseCNN improves the efficiency par-
ticularly in the classification processing of large amounts
of point clouds, because handcrafted feature computation
is quite time-consuming for the large-scale point clouds.
The demanding memory usage of KPConv limits the num-
ber of input points, which could further affect its classifi-
cation performance, especially on large-scale dense point
clouds. The uncertainty estimated by the three investigated
classifiers cannot fully reflect how accurate classification
results are.

3) Both SparseCNN and KPConv show better generalization
ability than PointNet++. Specifically, the experiments in
the paper suggested that SparseCNN and KPConv can
achieve a more robust model than PointNet++ regardless
of the point density differences between training and test
point clouds.

4) SparseCNN is less impacted by the different selections of
hyper-parameters than PointNet++ and KPConv judged
by the accuracy differences. For PointNet++, the neigh-
borhood size in each layer needs to be chosen well. For
KPConv, a certain class balance strategy on the generation
of training patches is important, and the weighted loss
function works not very well in improving the accuracy
of less dominant classes. The training of all networks
can both benefit from the learning rate decays and input
features with additional echo attributes.

In summary, the classification results show the great potential
of the deep learning models for classifying ALS point clouds. For
classical machine learning, the input handcrafted features need
to be well designed for the specific classification scenes, whereas
more representative features can directly be learned by the deep
learning models and lead to better classification performance.
The experiments proved that SparseCNN can achieve better
performance at a very efficient runtime in the classification
of ALS point clouds, compared to PointNet++ and KPConv.
KPConv has a slightly better performance than PointNet++ in
the classification of the power line facilities, but it suffers from
the demanding memory usage.

The results are also in line with the statements in Section II that
CNNs are more capable than MLPs in semantic classification
tasks, as the convolution naturally takes spatial connectivity into
account, which is ignored by MLPs. Furthermore, the high clas-
sification accuracy that SparseCNN achieves for small objects
such as cars and insulators, indicate that for ALS point clouds
any losses in accuracy caused by voxelization are negligible.
In fact, the voxelization leads to an improved efficiency, hence
enables the use of more complex architectures and a larger
context radius, and such factors lead to an overall increase in
classification accuracy.

However, for any practical application, a lot of effort has
to be put into investigating the hyper-parameter in order to
choose optimal settings for the deep learning models. The
training of deep learning models heavily relies on sufficient
training samples, thus the Vienna tiles used in this article
are published to provide the benchmark data for the deep
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learning or machine learning classification on ALS point
clouds.
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ABSTRACT: 
 
Training dataset generation is a difficult and expensive task for LiDAR point classification, especially in the case of large area 
classification. We present a method to automatically extent a small set of training data by label propagation processing. The class labels 
could be correctly extended to their optimal neighbourhood, and the most informative points are selected and added into the training 
set. With the final extended training dataset, the overall (OA) classification could be increased by about 2%. We also show that this 
approach is stable regardless of the number of initial training points, and achieve better improvements especially stating with an 
extremely small initial training set. 
 
 

1. INTRODUCTION 

LiDAR (Light Detection And Ranging) automatic classification 
has been an important study topic over years. Supervised 
statistical approaches, such as Support Vector Machines (SVM) 
(Secord and Zakhor, 2007) or Random Forest (Guo et al., 2011) 
have been widely applied and achieved good performance. 
Additionally, to incorporate the spatial contextual information, 
Markov Random Field (MRF) and Conditional Random Field 
(CRF) are successfully used for contextual classification and 
achieve smoother results than the classifications based on 
individual independent features (Niemeyer et al., 2014; 
Shapovalov et al., 2010). This research mostly focuses on site-
specific classification for 3D points at a small scale. Only few 
papers were published on large area LiDAR classification. 
 
Extensive 3D point clouds over large area would result in 
handcrafted features inhomogeneity, making automated points 
cloud classification difficult. This would bring further challenges 
for class separability when only small training data is available. 
Especially, supervised classifiers rely on the quality of the 
labeled training data. The training samples should be fully 
representatives of the class-type statistics to allow the classifier 
to find the correct solution. In the case of large area classification, 
this constraint makes the generation of an appropriate training set 
a difficult and expensive task that requires extensive manual 
interaction.  This is a common problem for classification of large 
amounts of data, and only a small amount of reference points can 
be manual labelled due to the limited economical and temporal 
resources. Therefore, the classification model constructed on the 
collected small training data could show poor generalization 
capabilities when applied to the rest of large amount of data.  
Additionally, manual training set definition is usually done by 
visual inspection of the scene and the successive labeling of each 
sample. This phase is highly redundant as well as time-
consuming. 
 
A solution to the problem of training data extraction is 
represented by semi-automatic active learning methods. Its key 
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idea is to select the samples whose inclusion in the training set 
would be beneficial to the classification performance. And the 
semi-automatic active learning already has shown to be effective 
for hyperspectral image classification. For instance, a 
combination of the SVM classifier is commonly used (Mitra et 
al., 2004; Tan et al., 2014), samples that are close to the hype-
plane are selected into the training dataset. In order to be adaptive 
with any generative classifier, the maximum information gain 
(Rajan et al., 2008) and breaking tie (Luo et al., 2005) can also 
be used to select uncertain samples. A co-training approach 
proposed by (Romaszewski et al., 2016) scored samples by 
combining spatial and spectral features, an optimal training set 
would be learned by iteratively adding new samples with high 
scores. 
 
In this paper, we aim to extend a small set of initial labelled 
samples during a process of label propagation. By adapting an 
optimal neighborhood selection, the knowledge about class 
labels from the training set can be correctly extended to their 
neighborhood. And one most informative point is selected by BT 
(breaking tie) and added into the training set. In this way, we 
extent the training dataset, and automatically label the newly 
added samples.  Compared with original small training set, the 
new extended training set could be more representative for 
features and capable to improve the classification results.  
 
The rest of the paper is organized as follows: Section 2 explains 
our method. Section 3 presents the experiment on real data and 
its results, while Section 4 describes the performance along 
iteration and the impact of the number of initial training points. 
Summaries are provided in Section 5. 
 

2. METHODOLOGY 

Normally, the active learning approach consists of two 
components. The first is the selection of the most useful 
unlabelled samples to the classifier, and the second is how to 
determine the class labels of these new selected samples. In this 
paper, we start with a small set of suboptimal training points. The 
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breaking ties (BT) method (Luo et al., 2005) is applied to sample 
the informative unlabelled points. And the label of selected 
unlabelled point is determined by the spatial similarity. Since the 
class label is highly correlated with spatial similarity of points, 
we could assume that points located in the same neighbourhood 
are likely to have the same label with the center point. After 
adding those informative samples to the training dataset, the 
classification model is forced to focus on conflicting areas and to 
improve its generalization capabilities. The processing sequence 
is as follows: 
 
Step 1: Based on the initial small training dataset, an initial 
classifier is built; 
Step 2: For each training point, finding its’ optimal 
neighbouring points; 
Step 3: The classifier is applied to those neighbouring points, 
and one most informative point is selected by the minimal BT 
value and labelled by the current training point. 
Step 4: Extending training dataset by adding new samples, and 
updating the classifier; 
Step 5: Repeating step 2,3,4, until a maximum iteration number 
is met. Then, the final training set is used to refine the classifier; 
Step 6: Finally, the classifier is used to predict labels for all 
unlabelled points. 
 
The following section 2.1 describe the estimation of the optimal 
neighborhood, and section 2.2 induces the breaking ties 
 
2.1 Label propagation by the optimal neighbourhood 

By taking the advantage of spatial correlation of point cloud, the 
knowledge about class labels of training points can be extended 
to their neighborhood. To guarantee the accuracy of label 
propagation, an optimal neighborhood estimation method is 
applied (Li et al., 2019). The  neighboring points are adaptively 
selected by weighted geometric similarity, so that all neighboring 
points that potentially belong to the same object with the 
concerned points could be included. 
 
Here, the geometric similarity is measured by the angle between 
the normal vectors and point-to-plane orthogonal distances, 
while the weights are determined by the local surface variations 
(σ). To avoid lacking enough neighboring points for non-planar 
points, like vegetation, we assign larger weights to those non-
planar points to increase the geometric similarity with neighbors. 
The weight function is defined in Eq. (1), and neighboring points 
that satisfy Eq. (2) are collected as the optimal neighbors of the 
concerned point: 
 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝0, 𝑝𝑝𝑖𝑖) = � 1 𝑊𝑊𝑖𝑖 𝜎𝜎(𝑝𝑝0) ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎𝑊𝑊𝜎𝜎(𝑝𝑝0) ∙ 𝑊𝑊𝜎𝜎(𝑝𝑝𝑖𝑖) 𝑊𝑊𝑒𝑒𝑒𝑒𝑊𝑊 𝜎𝜎(𝑝𝑝0) > 𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎 (1) 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝0, 𝑝𝑝𝑖𝑖) ∙ 𝑛𝑛𝑛𝑛𝑝𝑝0 ∙ 𝑛𝑛𝑛𝑛𝑝𝑝𝑖𝑖 ≥ cos(𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼) 𝑎𝑎𝑛𝑛𝑎𝑎 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝0, 𝑝𝑝𝑖𝑖) ∙ ห(𝑝𝑝0 − 𝑝𝑝𝑖𝑖) ∙ 𝑛𝑛𝑛𝑛𝑝𝑝0ห ≤  𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 (2) 

 
Where 𝜎𝜎(𝑝𝑝0) is the local surface variation in the point 𝑝𝑝0. 𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎 
is a threshold to determine whether 𝑝𝑝0 may belong to a planar 
object. 𝑛𝑛𝑛𝑛𝑝𝑝  denotes the normal vector of point 𝑝𝑝  and 𝑝𝑝 =[𝑥𝑥𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑧𝑧𝑝𝑝] denotes the 3D coordinates of point 𝑝𝑝. 𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼 is the 
threshold of the normal vector-angle change and 𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑  is the 
threshold of the local point-to-plane orthogonal distance. 
  
2.2 Sample selection by BT 

The BT technique is focused on the diversity of the unlabeled 
samples, which is obtained by the minimum difference between 
the two highest posterior class probabilities. The more a point 

shows a similar posterior probability between the two most 
probable classes, the more it is uncertain and thus capable of 
providing useful information if added to the training dataset (Tuia 
et al., 2011). Thus the BT value of point 𝑝𝑝𝑖𝑖 is formed by Eq.(3): 
 BT(𝑝𝑝𝑖𝑖) = max𝑐𝑐∈𝐶𝐶 ൫𝑃𝑃(𝑒𝑒𝑖𝑖 = 𝑐𝑐|𝑝𝑝𝑖𝑖)൯ − max𝑐𝑐∈𝐶𝐶\𝑐𝑐+൫𝑃𝑃(𝑒𝑒𝑖𝑖 = 𝑐𝑐|𝑝𝑝𝑖𝑖)൯ (3) 

Where 𝑃𝑃(𝑒𝑒𝑖𝑖 = 𝑐𝑐|𝑝𝑝𝑖𝑖) probability for class prediction 𝑒𝑒𝑊𝑊 of a point 𝑝𝑝𝑖𝑖, 𝑐𝑐 ∈ 𝐶𝐶 corresponds to one class 𝑐𝑐 among the 𝐶𝐶 possible 

classes, and 𝑐𝑐+ = max𝑐𝑐∈𝐶𝐶 ቀ𝑃𝑃൫𝑒𝑒𝑊𝑊 = 𝑐𝑐ห𝑝𝑝𝑊𝑊൯ቁ is the most probable 

class for point 𝑝𝑝𝑖𝑖. 
 

After finding all optimal neighboring points for one training 
point, the point minimizing Eq.(3) is then taken and labeled by 
the current, certain training point. The procedure is implemented 
for all training points and repeated for several times, the final 
selected labeled training points are used to refine the classifier. 
 

3. RESULTS 

3.1 Datasets 

The point cloud we used was a fully labelled airborne LiDAR 
dataset of Vienna, Austria. The selected area is 1270×200 m2, 
and the average density is about 50 points/m2. This area 
represents a complex urban scene, including a mixture of high 
and low vegetation, high-rise and small detached houses, and flat 
and sloped ground. Five domain classes were categorized for the 
Vienna dataset: ground, vegetation, roofs, façades and others that 
include fences, cars, street lights, power lines and so on.  
To get an impression of the dataset, the percentage distribution 
of each class in the dataset are shown in Table. 1. 
 

Class Percentage 
Ground 53.70% 
Vegetation 26.72% 
Roofs 14.04% 
Facades 1.54% 
Others 4.00% 

Table 1. Percentage distribution of each class in the dataset 
 
3.2 Experiment setup and results 

We used the random forest (RF) as the probabilistic classifier. 
For the optimal neighbourhood estimation, the spherical 
neighbourhood with radius of 2m was used for initial 
neighbouring points searching. Then the optimal neighbouring 
samples are selected by weighted geometric similarity and 
labelled by its neighbouring labelled training point. The initial 
number of training points is 100 per class, and the iteration was 
empirically set as 3 to extend the training data. 
 
Figure. 1 shows the classification results using initial training 
dataset, extended training dataset and the reference dataset. From 
visual inspection, a more smooth classification result is achieved 
after training dataset extension. For instance, as shown in the 
marked area A in Figure. 2, more points are correctly classified 
as ground after the active learning, whereas those points are 
wrongly labelled as others in the initial training dataset. Another 
notable change appears in the marked area B in Figure. 2. There 
is a large amount of points misclassified as vegetation by the 
initial classification. After the active learning, most of those 
points’ labels are changed into façades, this situation could be 
explained by a small error in the reference data (seen in the 
Figure. 2(c)). 
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From the Table. 2, the OA (overall) accuracy was increased by 
1.7% after the active learning of training points. A relatively 
significant improvement was achieved for the class of vegetation 
and others, 4.00% and 3.37%, respectively. However, the 
accuracy of façade has dropped to 74.14% using the extended 
training dataset. 13.36% façade points are misclassified as 
vegetation which is 6.31% higher than the initial classification, 
and a few of façade points (2.41%) are misclassified as roofs 
since they are easily mixed up over the conjunctions of roofs and 
façades.  
 
 

Class Initial 
accuracy 

Accuracy 
after active learning 

OA 84.24% 85.98% 
Ground 88.60% 89.35% 
Vegetation 79.74% 83.73% 
Roofs 81.82% 84.85% 
Façades 84.59% 74.14% 
Others 64.06% 67.37% 
Table 2. Accuracy comparison of classification using initial 

training set and extended training set 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 1. The classification results. (a) using the initial training dataset; (b) using the extended training dataset; (c) the reference 

labelled data.    
 

   
(a) (b) (c) 

 
Figure 2. Detailed comparison of classification results. (a) using the initial training dataset; (b) using the extended training dataset; 

(c) the reference labelled data. 
 
 

4. DISCUSSIONS 

To access the stability of this active training data learning 
method, we started with different amounts of training dataset, 
which includes 10,100 and 1000 initial training points per class, 
respectively. Each experiment was repeated 3 times. The 
accuracy changes along the iterations are shown in Figure. 3, 
which are the average accuracy and its standard deviation over 3 
experiments.  

 
Compared to the initial classification results, the OA accuracies 
were all increased after the active learning (seen in Figure. 3(a)). 
Notably, the significant overall accuracy improvement was 
achieved by the smallest set of initial training data of 10 samples 
per class. It gained 5% higher OA accuracy than initial 
classification, while 2.4% and 1.5% OA increase for initial 
training points of 100 and 1000 per class, respectively. The 
representativeness of the extremely small training set is usually 
lacking strongly, thus the effect of adding new informative 
samples would be notable when it was started with a poor initial 
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classification result. While the models trained by 100 and 1000 
samples per class are already decent, the improvement would 
become moderate when the amount of the initial training set is 
raised. Also due to the incompleteness of small initial training set 
of 10, the variation is relatively larger than the other two initial 
training sets. 
 
We also observed that the accuracy would be immediately 
improved by extending the training data in the 1st iteration, and 
the accuracy only has slight changes over iterations besides the 
accuracy of façade. It means that the samples that are selected 
during the first extension are the most informative and could be 
effective to increase classification ability, whereas other samples 
from the rest of iterations may have very similar feature vectors 
with samples that already exist in the training set. Therefore, they 
could not provide more useful information to achieve better 
accuracy. This is caused by the local neighbourhood we used for 
label propagation. However, the trend of accuracy change of 

façade is different from the others. Façade points tend to be 
misclassified into vegetation during this active learning 
procedure. Since generally the optimal neighbourhood favours 
points that are located in the same plane, vegetation points that 
lie in the same vertical plane would have similar feature vectors 
with the vertical façade points. Iteratively including those 
vegetation points into training dataset would lead to the 
confusion with façade. 
 
Another interesting finding is that the performance of active 
learning would be fundamentally impacted by the initial amount 
of training samples. The accuracy with 100 initial training points 
per class reached 84.5% after 6 iterations, meanwhile the total 
number of training points per class is 1600. This result is still not 
as good as the initial classification accuracy using random 1000 
training samples at first. But it is comparable to the classification 
by initial training samples of 300 per class (84.04%). 
 

  
(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Figure 3. The trend of accuracy changes over iterations. (a) overall accuracy; (b) ground accuracy; (c) vegetation accuracy; (d) roofs 
accuracy; (e) façades accuracy; (f) others accuracy. 
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5. SUMMARY 

We proposed an effective active learning method to 
automatically extend training points. Classification accuracy was 
increased by using the extended training dataset, which was 
significant especially starting with an extremely small set of 10 
labelled points per class. An optimal training dataset would be 
achieved by a few of iterations. The reasonable amount of 
training samples also keep the classifier learning efficient. Due 
to the limitation of initial training sample, an exploration for 
initial samples selection will be considered in the further 
research. 
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3,  Classification performance comparison of the investigated 
methods 

Different contextual point-wise classification methods have been developed or explored in the 
Publication I-IV. Therefore, the focus in this chapter is on a performance comparison of the 
classification methods investigated in the published papers, which include the tensor-based sparse 
representation classification (denoted by TSRC) proposed in the Publication I & II, the contextual 
label smoothing strategy (denoted by Label-Smoothing) proposed in the Publication III, and the 
deep learning networks (PointNet++, SparseCNN and KPConv) investigated in the Publication IV. 

3.1 Test data 
The comparison is conducted by using two datasets. The first one is the ALS dataset of Vienna, 
which has been organized into a number of 1270m×1020m tiles. The elaborate description about 
the ALS dataset of Vienna, such as the point density, can be found in the Publication IV. The 
selected tiles are the same as that used in the Publication IV, which contains 4 training tiles and 5 
test tiles. The considered classes are ground, vegetation, building and others which includes common 
street objects such as street lights, cars and shrubs. 

The second dataset is the ALS dataset of Vaihingen, which is a part of ISPRS 3D labeling benchmark. 
The used training and test point clouds are the same as described in the ISPRS 3D points 
benchmark. Six classes are considered in this task, namely ground, cars, fences, roofs, façade and 
vegetation. Compared to the ALS dataset of Vienna, the ALS dataset of Vaihingen has a smaller 
volume and lower point density. 

3.2 Setup 
Random Forest is used as a baseline here, which is also used as the initial classification input for 
Label Smoothing. The Random Forest classification results of the Vienna dataset and the Vaihingen 
dataset are collected from the Publication III and the Publication IV, respectively. 

The experiment of TSRC is only conducted on the Vienna dataset. To build the classifier, 50 training 
samples per class are randomly selected from the 4 training tiles. The handcrafted features and 
geometric parameters employed by TSRC are described in the Publication II. However, considering 
the demanding inference time required by TSRC, only a small part (317.5 m × 255 m) of a tile of the 
Vienna dataset is used for evaluation. 

For Label Smoothing, the same parameters setting is used on the two datasets (the Vienna and 
Vaihingen dataset), and the details can be found in the Publication III. As mentioned previously, 
its initial classification input is provided by the Random Forest classification result. 

For the three deep learning methods, the classification results of the Vienna dataset are collected 
from the Publication IV, where the training and test setup is also presented. For the experiment of 
the Vaihingen dataset, PointNet++ and SparseCNN use the same setup, such as the data 
preparation and the configuration of hyper-parameters, as that used for the Vienna dataset, 
respectively. For KPConv, the same configuration of hyper-parameters is used, however, fewer 
points (25k) are used to generate the training and test patches to avoid Out of Memory (OOM) for 
the Vaihingen dataset, compared to that (50k) used for the Vienna dataset. Because the Vaihingen 
point clouds has a lower point density than the Vienna point clouds, the area of each patch 
generated from the Vaihingen dataset is accordingly larger than the Vienna dataset, when the patch 
contains the same amount of points. Due to the grid-subsampling procedure used in each layer of 
KPConv, the number of subsampled points is determined by the grid-size and the area of the input 
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patch. That is, with a fixed grid-size, the number of input instances becomes larger when the input 
patch covers a large area. Therefore, using the same amount of points to generate input patches for 
the Vaihingen dataset leads to OOM. 

3.3 Results 
3.3.1 Vienna dataset 

Fig. 1 shows the classification results by the aforementioned methods. Tab. 1 and Tab. 2 present 
the classification accuracy in terms of recall and precision, respectively. TSRC leads to the least 
accurate classification result, but also is the most time-consuming method among all concerned 
classifiers. As a post-processing method, Label-Smoothing proves to be a very effective method for 
improving classification accuracy. It achieves a close classification performance to PointNet++ and 
SparseCNN, and even delivers a better result in the classification of building, compared to KPConv. 
SparseCNN achieves the best overall classification performance by a narrow margin. 

Despite of the inferior performance of TSRC, the amount of training samples used by TSRC is much 
less than that by other approaches. The number of training samples used by each approach is listed 
in the following: 

 TSRC: 50 training samples per class are selected, total 200 points are used for learning. 
 Random Forest: 20000 training samples per class are selected, total 80000 points are used 

for learning. 
 Label-Smoothing: requires no additional training samples and takes a probabilistic 

classification result as input. 
 PointNet++, SparseCNN and KPConv: use four tiles for learning and the number of points 

is 447,208,684. 
Tab. 1 Recall on the test region from the Vienna dataset  (the best accuracy in each category is in red) 
Methods Ground (%) Vegetation (%) Buildings (%) Others (%) OA (%) 

Random Forest 98.11 90.00 92.84 79.37 93.99 
TSRC 97.36 90.13 83.31 64.50 90.20 

Label Smoothing 98.96 91.20 98.15 80.53 96.43 
PointNet++ 99.17 94.78 95.78 72.69 96.17 
SparseCNN 99.67 95.91 99.19 79.48 98.02 

KPConv 99.79 96.13 80.10 79.06 91.61 
 

Tab. 2 Precision on the test region from the Vienna dataset  (the best accuracy in each category is in red) 
Methods Ground (%) Vegetation (%) Buildings (%) Others (%) OA (%) 

Random Forest 98.89 91.29 97.50 48.62 93.99 
TSRC 93.37 85.61 98.23 38.16 90.20 

Label Smoothing 98.52 98.66 98.76 55.74 96.43 
PointNet++ 94.45 98.54 98.33 81.52 96.17 
SparseCNN 98.05 98.50 98.85 85.98 98.02 

KPConv 87.31 97.65 99.00 64.42 91.61 
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(a) Random Forest with 

multiscale handcrafted 
features 

(b) TSRC (c) Label Smoothing 

   
(d) PointNet++ (e) SparseCNN (f) KPConv 

 
(g) Reference 

 
Fig. 1: Classification results of the test region. 

Thanks to the small amount of training samples needed by TSRC, the learning of TSRC classifiers 
only costs a few minutes. However, it demands a long time for inference, because each point has 
to be represented as a four-dimensional tensor and be projected into the dictionary in order to 
compute the label-relevant sparse tensor. For the 317.5 m × 255 m test region, TSRC has spent 
around 4 days to finish the classification. Thus, it’s not very feasible to apply TSRC on a large-scale 
point cloud. Additionally, the inferior result by TSRC suggest that, the proposed high-dimensional 
tensor is not an optimal strategy to explore the local spatial distribution. 

Thus, Label-Smoothing and the selected deep learning methods are further compared on a large-
scale point cloud, which is an entire test tile that covers a 1270m×1020m area and locates in the 
center of Vienna. Tab. 3 and Tab. 4 show the recall and precision of the classification results, and 
Tab. 5 presents the computation time for each individual step of all considered methods. In 
accordance with the results shown in the previous small area, Label Smoothing shows the 
effectiveness in improving classification performance and achieves a comparable result with the 
three selected deep learning methods. The less accurate classification of others by PointNet++ 
indicates that, the class boundaries tend to be not well preserved for the small-size objects with a 
low point density, and another example is the misclassified meadow presented in the Publication 
IV. As for KPConv, it has a difficulty in delivering correct labels for large-size objects. As seen in 
Fig. 1(f), a large area of building is wrongly classified as ground by KPConv, due to the limited 
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convolution radius considered in KPConv. The best performance is again achieved by SparseCNN 
regarding to the OA and accuracy of individual class. 

Regarding the running time, the inference by the deep learning models are faster than the Label 
Smoothing. Note that the implementations of the deep learning models and Label Smoothing 
require and use different hardware. Label Smoothing was implemented in Matlab and run on a 
computer equipped with an AMD Ryzen 7 2700X (3.7GHz) processor, 32 GB RAM and particularly 
no GPU was involved for the processing. While, another machine was used for deep learning 
experiments with AMD Ryzen Threadripper 1900X (3.5 GHz) processor, 512 GB RAM, and an 
Nvidia RTX 2080 Ti with 11 GB RAM, and most computation is done by GPU. However, one benefit 
of Label Smoothing is that it requires no additional reference data and training processing.  

Tab. 3 Recall on the test tile from the Vienna dataset  (the best accuracy in each category is in red) 
Methods Ground (%) Vegetation (%) Buildings (%) Others (%) OA (%) 

Random Forest 98.07 88.69 91.75 82.35 93.19 
Label Smoothing 99.27 89.75 96.66 81.86 95.99 

PointNet++ 98.86 95.92 97.39 73.41 96.88 
SparseCNN 99.08 96.58 98.74 83.77 98.02 

KPConv 99.68 96.74 86.58 82.13 92.70 
 

Tab. 4 Precision on the test tile from the Vienna dataset  (the best accuracy in each category is in red) 
Methods Ground (%) Vegetation (%) Buildings (%) Others (%) OA (%) 

Random Forest 98.70 84.31 98.20 47.92 93.19 
Label Smoothing 97.97 95.54 98.99 55.53 95.99 

PointNet++ 95.55 97.97 98.51 82.62 96.88 
SparseCNN 98.39 98.30 98.62 84.32 98.02 

KPConv 88.92 95.55 99.21 59.40 92.70 
 

Tab. 5 Computation time on the test tile from the Vienna dataset 
Methods training inference merge 

Label Smooth 0 h 18.0 h 0 h 
PointNet++ 158.4 h 5.5 h 1.9 h  
SparseCNN 82.8 h 9 min 0 h 

KPConv 88.1 h 1.2 h 2.5 h 
 

3.3.2 Vaihingen dataset 

Except TSRC, Label Smoothing and the selected deep learning networks are further applied on the 
second dataset, the ALS dataset of Vaihingen. The main aim of this experiment is to find out 
whether the selected deep learning methods can keep their advantageous when only limited 
training samples are available.  

Tab. 6 and Tab. 7 shows the classification accuracy in terms of recall and precision, respectively. A 
part of the classification result is presented in Fig. 2. All the investigated methods achieve a better 
classification performance than Random Forest, regarding OA. Label Smoothing demonstrates its 
effectiveness in avoiding over-smoothing of minority classes, such as cars and fences, which, 
however, are largely misclassified by the three deep learning methods, especially by PointNet++ 
and SparseCNN. 

Compared to their performance on the Vienna ALS point clouds, all the three deep learning 
networks deliver a less accurate classification result on the Vaihingen dataset. Whereas, the 
classification improvement by Label Smoothing is more significant than that obtained on the 
Vienna dataset. In addition, PointNet++ shows a more serious defect in correctly identifying small-
size objects on the Vaihingen dataset, compared to the Vienna dataset. An example is illustrated in 
Fig. 2, the cars are barely detected by PointNet++. Like the result on the Vienna dataset, KPConv 
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tends to misclassify points of roofs as ground, because of the small convolution radius used in the 
architecture. In both datasets, SparseCNN outperforms the other method in general. However, the 
accuracy of the minority classes, such as cars, fences and façade, is unsatisfactory, which is even 
worse than that obtained by Random Forest.  

For the three deep learning methods, even though a weighted loss function is used in the training 
to emphasis minority classes, the classification performance in the minority classes (cars and fences) 
of the Vaihingen data is much inferior to that (classification of others) in the Vienna dataset. This 
may suggest the importance of sufficient training data and that the impact of adding weights in 
loss functions is limited.  

We published the part of the Vienna dataset used in the Publication IV in Zenodo 
(http://doi.org/10.5281/zenodo.4777087), which can serve as the training dataset for further studies. 

Tab. 6: Recall of the Vaihingen dataset from ISPRS benchmark (the best accuracy in each category is in red) 

Methods 
Ground 

(%) 
Cars 
(%) 

Fences 
(%) 

Roofs 
 (%) 

Façade  
(%) 

Vegetation 
(%) 

OA  
(%) 

Random Forest 86.14 64.43 52.99 82.30 52.59 70.27 79.32 
Label Smooth 92.57 63.51 46.01 93.23 56.80 82.42 86.52 

PointNet++ 93.49 13.46 2.24 86.98 48.46 89.71 87.44 
SparseCNN 92.08  36.46 28.67 93.82 64.40 88.42 89.43 

KPConv 92.40 44.42 18.70 85.96 61.82 87.95 87.24 
 

Tab. 7 Precision of the Vaihingen dataset from ISPRS benchmark  (the best accuracy in each category is in red) 

Methods 
Ground 

(%) 
Cars 
(%) 

Fences 
(%) 

Buildings 
(%) 

Façade 
(%) 

Vegetation 
(%) 

OA 
(%) 

Random Forest 97.13 15.58 42.58 88.36 39.50 62.29 79.32 
Labelsmooth 95.35 37.68 50.87 93.34 53.03 74.55 86.52 
PointNet++ 94.08  83.72 61.03 95.00 64.67 69.12 87.44 
SparseCNN 96.85  51.60 31.68 95.10 58.86 76.69 89.43 

KPConv 95.64 63.74 36.84 91.96 57.54 71.75 87.24 
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Fig. 2 Classification results of the Vaihingen dataset 
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3.4 Discussion 
Based on the aforementioned experiments, a brief discussion of investigated methods is presented 
in the following. 

3.4.1 TSRC 

TSRC attempts to consider the spatial distribution and the handcrafted features of neighboring 
points simultaneously by the high-dimensional tensor representation. However, it turns out less 
effective than a Random Forest model that uses multiscale handcrafted features as inputs for the 
purpose of classification considering context.  

Nevertheless, numerous studies in the field of remote sensing regard hyperspectral images as 3D 
tensors to jointly consider spatial and spectral features for dimensionality reduction, by which a 
classification improvement is achieved (Renard and Bourennane, 2009). The regular girds of 
images provide a natural structure for the 3D tensor representation, which also lies perfectly in the 
mathematic framework of 3D tensor data.  

For irregular 3D points, it’s especially implicit to define a high-dimensional tensor to represent 
their spatial arrangement in 3D space. The descriptor used in TSRC contains comprehensive 
information of spatial distribution and handcrafted features of points within a neighborhood, but 
also leads to high-degree complexity. High-degree of complexity usually increase the capability of 
models, a typical example is a deep learning architecture which usually comprises a large number 
of learnable parameters (could be millions). Correspondingly, a large amount of training data is 
required to learn such a great deal of parameters. Moreover, the achievements of deep learning 
methods are also attributed to the developed hardware, GPU, since it enables finishing the 
computation in a reasonable time.  

As for TSRC, its less effective classification results may suggest that the sparse projection over the 
dictionary generated from only a few of training samples has limited capability for learning 
representative features from the highly complex tensors. Additionally, it is infeasible for TSRC to 
select a large amount of samples to reconstruct the spare representation, as the sparse coding is an 
iterative processing and thus is very time-consuming. Another fundamental argument for the 
unsatisfactory results could be whether the high-dimensional tensor is a convincing descriptor to 
include the local context.   

3.4.2 Label Smoothing 

Label Smoothing has proven to be an effective post-processing strategy to refine initial labels. Label 
Smoothing starts from a prior and probabilistic classification result, which can be both a strength 
and a weakness at the same time. The major advantage is that only little knowledge for 
constructing neighborhood is required, no further effort of reference data needs to be setup. This 
enables the Label Smoothing to be easily performed on large-scale point clouds and be independent 
of classes. Additional prior information about the spatial distribution pattern of classes can 
facilitate the processing of the Label Smoothing. However, the context information is computed by 
a well-defined neighborhood and initial classification probabilities. As a result, the classification 
improvement is limited by the initial classification results. If a poor initial classification results with 
high confidence is produced on a large region, wrong labels may not be corrected by the Label 
Smoothing.  

3.4.3 PointNet++, KPConv and SparseCNN 

The experiments have confirmed the outstanding capability of PointNet++, KPConv and 
SparseCNN for classifying point clouds. In comparison to MLP based networks, CNN based 
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networks are theoretically considered advantageous, as they can take the spatial arrangements of 
3D points inherently into account, whereas the spatial information is ignored in MLP based 
methods. The results by the three networks are also in accordance with this statement. SparseCNN 
that employs a voxel-wise CNN achieves the best classification performance in both dataset, 
KPConv that conducts a point-wise convolution delivers a slightly better classification accuracy 
than PointNet++, especially in separating small-size objects. Additionally, some empirical 
knowledge is gained through the experiments: 

For PointNet++, the geometric parameters such as neighborhood radius and number of neighbors 
need to be carefully selected and vary in different scenarios. For instance, the geometric parameters 
for indoor point clouds are set very differently from that for outdoor point clouds.   

KPConv shows a great potential for implementing point-wise convolution. However, it suffers 
from the demanding memory consumption, which leads to OOM problem when a large 
convolution radius is used for dense point clouds. Thus, the number of points in each input patch 
needs to be adjusted according to the point density, in order to avoid OOM. 

Regarding SparseCNN, the voxels provide a natural way to apply convolution on 3D point clouds. 
The most issues of PointNet++ and KPConv, such as the dependency of geometric parameters in 
PointNet++ and the memory usage in KPConv, have been solve by using SparseCNN. As a result, 
it provides the best classification accuracy, while requiring less running time and memory. The 
resolution loss caused by voxelization can be negligible compared to the gains. However, the 
satisfactory classification performance relies on a large amount of available training data.  
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4,  Conclusions 
Context is an important information to improve classification performance. SparseCNN is a 
particular effective model to incorporate context, meanwhile it is efficient in terms of running time 
and memory consumption. KPConv has a slightly better classification performance than 
PointNet++, especially on small-size objects. However, KPConv suffers from a demanding memory 
usage, so only limited neighboring points can be included in the convolution of KPConv. The lack 
of long-range context interactions leads to an unsatisfactory classification on large-size objects. The 
findings about the deep learning networks are also in line with the statement, that CNNs are 
superior to MLPs for semantic classification tasks, as CNNs can exploit the spatial arrangement 
inherently, which is ignored by MLPs. 

An alternative strategy is the Label Smoothing. Although it is a two-step processing and less 
efficiency compared with an end-to-end classification scheme, it achieves satisfactory and even 
comparable classification results with PointNet++ and KPConv. Unlike the deep learning models, 
it requires no large volumes of training data and is independent of varying point densities in 
diverse scenarios. Label Smoothing proves to be an advantageous and feasible strategy to refine 
initial labels at large scales. Moreover, deep learning methods managed to learn effective task-
specific context features directly from raw input data, but researchers often criticize their 
multilayer non-linear structures for being “black box” and being not traceable. In contrast, in Label 
Smoothing, the neighborhood and the compatibility coefficients that are used to derive context 
information have clear physical meanings, which are much easier to setup compared with the 
hyper-parameters in deep learning methods.  

Context as discussed in this dissertation only refers to the surrounding characteristics in terms of 
data itself. This assists classification to a limited extent. Context cannot explain cases where the 
elements are classified by their functions rather than by their appearances, such as the land use 
mapping. The functions can be hardly deduced by their surrounding context. Additionally, the 
attributes that are collected by sensors determine what type of context information can be learned 
from point clouds, for examples, road surface markings, can not be identified without additional 
color or spectral attributes. 

A future perspective relates to investigation of training data. It’s no doubt that the quality of 
reference labels of training data is essential to achieve a well-behaved model. However, a few of 
erroneous labels are inevitably produced by manual or semi-supervised classification. We found 
that the deep learning methods as well as Random Forest are capable to handle the erroneous labels 
to some extent. In that sense, it is more important for evaluation data to have a highly accurate 
labelling, compared to the training data, in order to provide a reliable accuracy assessment. 
Correspondingly, a more robust methodology for accuracy assessment may become a further topic, 
for example, using the confidence of parameters estimation during the training rather than 
evaluating the accuracy after the classification . In addition, since the dependency of large amounts 
of training data, it is well worth spending efforts on actively learning training data.  
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