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Kurzfassung

Hyperbaumzerlegungen (hypertree decompositions), verallgemeinerte Hyperbaumzerlun-
gen (generalized hypertree decompositions) und auch fraktionelle Hyperbaumzerlegungen
(fractional hypertree decompositions) sind Methoden zum Zerlegen von Hypergraphen,
die sehr erfolgreich für das Beantworten von konjunktiven Anfragen (conjunctive queries)
und für das Lösen von Bedingungserfüllungsproblemen (constraint satisfaction problems)
verwendet werden. Jedem Hypergraph H kann ein Breitenmaß für jede dieser Methoden
zugeordnet werden: seine Hyperbaumbreite (hw(H)), seine verallgemeinerte Hyperbaum-
breite (ghw(H)) und seine fraktionelle Hyperbaumbreite (fhw(H)). Es ist allgemein
bekannt, dass es in polynomieller Zeit möglich ist zu entscheiden, ob hw(H) ≤ k für ein
fixes k gilt. Im Gegensatz dazu ist das Entscheidungsproblem ghw ≤ k für jedes k ≥ 3
NP-vollständig. Die Komplexitätsklasse des Entscheidungsproblems fhw ≤ k für ein fixes
k ist seit über einem Jahrzehnt unbekannt.

Wir zeigen in dieser Arbeit, dass dieses Entscheidungsproblem (fhw ≤ k) für jedes
k ≥ 2 NP-vollständig ist. Mit Hilfe derselben Ideen beweisen wir außerdem die NP-
Vollständigkeit des Entscheidungsproblems ghw ≤ k für k = 2.

Danach suchen wir nach Restriktionen, um die effiziente Berechenbarkeit der verall-
gemeinerten und fraktionellen Hyperbaumbreite eines Hypergraphen zu ermöglichen.
Im Speziellen untersuchen wir Klassen von Hypergraphen, die die beschränkte Kanten-
schnitteigenschaft (bounded edge intersection property), die beschränkte Multikanten-
schnitteigenschaft (bounded multi-edge intersection property (BMIP)), die beschränkte
Gradeigenschaft (bounded degree property (BDP)), und die beschränkte VC-Dimensions-
Eigenschaft besitzen.

Die theoretischen Ergebnisse zu Hyperbaumzerlegungen rücken auch immer mehr in den
Fokus von praxisorientierten Projekten. Aus diesem Grund wird eine Sammlung von
Hypergraphen sowie eine Bibliothek zur Analyse und zur Zerlegung von eben solchen
benötigt.

Wir erfüllen diese Anforderungen in dem wir (i) konkrete Implementierungen von Hyper-
baumzerlegungsalgorithmen, (ii) eine neue, umfassende Benchmark von praxisrelevanten
Hypergraphen, und (iii) HyperBench, ein neues Webinterface zum Abrufen unserer
Benchmarks und unserer Resultate, bereitstellen. Weiters beschreiben wir eine Reihe von
Analysen die mit Hilfe dieser Infrastruktur durchgeführt wurden.
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Abstract

Hypertree decompositions, as well as the more powerful generalized hypertree decomposi-
tions (GHDs), and the yet more general fractional hypertree decompositions (FHD) are
hypergraph decomposition methods successfully used for answering conjunctive queries
and for solving constraint satisfaction problems. Every hypergraph H has a width relative
to each of these decomposition methods: its hypertree width hw(H), its generalized
hypertree width ghw(H), and its fractional hypertree width fhw(H), respectively. It is
known that hw(H) ≤ k can be checked in polynomial time for fixed k, while checking
ghw(H) ≤ k is NP-complete for k ≥ 3. The complexity of checking fhw(H) ≤ k for a
fixed k has been open for over a decade.

We settle this open problem by showing that checking fhw(H) ≤ k is NP-complete, even
for k = 2. The same construction allows us to prove also the NP-completeness of checking
ghw(H) ≤ k for k = 2.

After proving these hardness results, we investigate meaningful restrictions, for which
checking for bounded ghw and fhw is easy. In particular, we study classes of hypergraphs
that enjoy the bounded edge-intersection property (BIP), the more general bounded
multi-edge intersection property (BMIP), the bounded degree property (BDP) and the
bounded VC-dimension.

Given the increasing interest in using such decomposition methods in practice, a publicly
accessible repository of decomposition software, as well as a large set of benchmarks,
and a web-accessible workbench for inserting, analysing, and retrieving hypergraphs are
called for.

We address this need by providing (i) concrete implementations of hypergraph decom-
positions (including new practical algorithms), (ii) a new, comprehensive benchmark of
hypergraphs stemming from disparate CQ and CSP collections, and (iii) HyperBench,
our new web-interface for accessing the benchmark and the results of our analyses. In
addition, we describe a number of actual experiments we carried out with this new
infrastructure.
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CHAPTER 1
Introduction

Conjunctive Queries (CQs) are the most basic and arguably the most important class
of queries in the database world. They correspond to select-project-join queries in
relational algebra and select-from-where queries in SQL. As such they are a prime target
in database research. For this work, we restrict ourselves to the problem of Boolean
CQ Evaluation:

Boolean CQ Evaluation
Input: A CQ Q over a relational schema R, instance I for R

Output: Is there at least one solution of Q over I?

Closely related to Boolean CQ Evaluation is the problem of solving Constraint
Satisfaction Problems (CSPs). Solving CSPs belongs to the most fundamental problems
in Artificial Intelligence. There one asks whether a set of variables can be assigned values,
such that all constraints of the CSP are satisfied.

Formally, the two problems, evaluating a CQ and solving a CSP, are essentially the same.
They correspond to evaluating a first-order formulae using {∃,∧} but disallowing {∀,∨,¬}
as connectives over a set of finite relations. In practice, CQs have often fewer conjuncts
(query atoms) and larger relations, while CSPs have more conjuncts but smaller relations.
Unfortunately, these problems are well-known to be NP-complete (query complexity)
[24].

As it is the case for most intractable problems, there has been an intensive search for
tractable fragments. One such fragment are acyclic CQs. A CQ is acyclic if there is an
appropriate arrangement of the query atoms in form of a tree. A similar notion, tree
decompositions, has been developed for graph-based NP-hard problems. Such problems
become tractable for classes of instances whose corresponding graphs have bounded
treewidth. However, the structure of CQ and CSP instances is better described using a
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1. Introduction

hypergraph rather than a graph. For such, treewidth does not generalize acyclicity, i.e.
there are acyclic hypergraphs which have unbounded treewidth.

A hypergraph H = (V (H), E(H)) corresponding to a CQ (or CSP) Q has as vertex set
V (H) the set of variables occurring in Q and for every atom in Q, E(H) contains a
hyperedge consisting of all variables occurring in this atom. For this work, and from now
on, we shall mainly talk about hypergraphs with the understanding that all our results
are equally applicable to CQs and CSPs.

For hypergraphs various decomposition methods have been developed, in particular,
hypertree decompositions (HDs) [51], the more general generalized hypertree decompositions
(GHDs) [51], and the yet more general fractional hypertree decompositions (FHDs) [58],
and corresponding notions of width of a hypergraph H have been defined: the hypertree
width hw(H), the generalized hypertree width ghw(H), and the fractional hypertree width
fhw(H), where for every hypergraph H, fhw(H) ≤ ghw(H) ≤ hw(H) holds. Definitions
are given in Chapter 2. A number of highly relevant hypergraph-based problems such as
Boolean CQ Evaluation and CSP solving become tractable for classes of instances of
bounded hw, ghw, or, fhw. For each of the mentioned types of hypergraph decompositions
it would thus be most useful to be able to recognize for each constant k whether a
given hypergraph H has corresponding width at most k, and if so, to compute such a
corresponding decomposition. More formally, for decomposition ∈ {HD, GHD, FHD}
and k > 0, the main focus of this work is to consider research questions related to the
following family of problems:

Check(decomposition, k)
Input: hypergraph H = (V,E);

Output: decomposition of H of width ≤ k if it exists and
answer ‘no’ otherwise.

In the first part of this thesis — Chapter 4 — we will investigate the Check(decomposition,
k) problem from a theoretical view, whereas in the second part — Chapter 5 — we will
answer research questions related to hypergraph decompositions in practice. We will now
outline the research questions tackled as part of this thesis.

1.1 Research Questions

The Check(HD,k) problem is known to be in PTime [51] and the Check(GHD,k)
problem is known to be NP-complete for k = 3 and above[53]. However, little has been
known so far about Check(FHD, k). In fact, this has been a long standing open problem.
In their 2006 paper, Grohe and Marx state [57]: “It remains an important open question
whether there is a polynomial-time algorithm that determines (or approximates) the
fractional hypertree width and constructs a corresponding decomposition.” The 2014
journal version still mentions this as an open problem and it is conjectured that the
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1.1. Research Questions

problem might be NP-hard [58]. The open problem is restated in [94], where further
evidence for the hardness of the problem is given by showing that “it is not expressible in
monadic second-order logic whether a hypergraph has bounded (fractional, generalized)
hypertree width”. We will tackle this open problem here:

Research Question 1: Is Check(FHD, k) tractable?

Let us now turn to generalized hypertree decompositions. In [51] the complexity of
Check(GHD, k) was stated as an open problem. In [53], it was shown that testing
ghw(H) ≤ k is NP-complete for k ≥ 3 and, therefore, Check(GHD, k) is NP-complete
for k ≥ 3. For k = 1 the problem is trivially tractable because ghw(H) = 1 just means
H is acyclic. However the case k = 2 has been left open. This case is quite interesting,
because it was observed that the majority of practical queries from various benchmarks
that are not acyclic have ghw = 2 [21, 36], and that a decomposition in such cases
can be very helpful. Our second research question is to finally settle the complexity of
Check(GHD, k) completely.

Research Question 2: Is Check(GHD, 2) tractable?

For those problems which are known to be intractable, for example, Check(GHD, k)
for k ≥ 3, and for those others that will turn out to be intractable, we would like to
find large islands of tractability that correspond to meaningful restrictions of the input
hypergraph instances. Ideally, such restrictions should fulfil two main criteria: (i) they
need to be realistic in the sense that they apply to a large number of CQs and/or CSPs in
real-life applications, and (ii) they need to be non-trivial in the sense that the restriction
itself does not already imply bounded hw, ghw, or fhw. Trivial restrictions would be, for
example, hypergraph acyclicity or bounded treewidth. Hence, our third research problem
is as follows:

Research Question 3: Are there realistic, non-trivial restrictions on hypergraphs
which entail the tractability of the Check(decomp,k) problem for decomp ∈ {GHD,
FHD}?

Where we do not achieve PTime algorithms for the precise computation of a decom-
position of optimal width, we would like to find tractable methods for achieving good
approximations. Note that for GHDs, the problem of approximations is solved, since
ghw(H) ≤ 3 ·hw(H)+1 holds for every hypergraph H [5]. In contrast, for FHDs, the best
known polynomial-time approximation is cubic. More precisely, in [74], a polynomial-time
algorithm is presented which, given a hypergraph H with fhw(H) = k, computes an FHD
of width O(k3). We would like to find meaningful restrictions that guarantee significantly
tighter approximations in polynomial time. This leads to the fourth research question:

3



1. Introduction

Research Question 4: Are there realistic, non-trivial restrictions on hypergraphs
which allow for a PTime computation of good approximations of fhw(k)?

So far we have only asked questions related to theoretical properties of hypergraph
decompositions. Nevertheless, hypergraph decompositions have also found their way into
commercial database systems such as LogicBlox [7, 78, 13, 64, 65] and advanced research
prototypes such as EmptyHeaded [1, 3, 93, 79]. They have also been successfully used in
the CSP area [6, 61, 68].

Even though such practical applications exist, many questions have remained open. For
example, since all algorithms for answering CQs and solving CSPs using HDs, GHDs,
or FHDs depend exponentially on the hw, ghw, or fhw, resp., it is important to have
instances of “low” hw, ghw, or fhw (say ≤ 5). The goal of the second part of this thesis
is to investigate whether real-world CQs and CSPs have exactly this aforementioned
property.

Recently, this has been studied for millions of real-world CQs posed at various SPARQL
endpoints [80, 21]. Their results show that real-world CQs with atoms of arity ≤ 3
(SPARQL queries have at most 3 variables per atom) have very low hw: the overwhelming
majority is acyclic (and therefore hw = ghw = fhw = 1); and almost all of the rest have
hw = 2 (and therefore also ghw = 2). It is, however, not clear if CQs with arbitrary arity
and CSPs also have low hw, ghw, or fhw, say ≤ 5. Ghionna et al. [43] gave a positive
answer to this question for a small set of TPC-H benchmark queries. Hence in the next
research question, we aim to significantly extend this collection of CQs and also add
CSPs from different areas.

Research Question 5: Is there a comprehensive, easily extensible benchmark
of hypergraphs corresponding to CQs or CSPs for the analysis of hypergraph
decomposition algorithms?

Clearly, having an answer to Research Question 5, we can use the existing system for
solving the Check(HD,k) problem [54, 86] to investigate the hw of the hypergraphs
in the newly created benchmark. With these results we will answer our next research
question.

Research Question 6: Is the hypertree width of real-world CQs and CSPs small
enough (say ≤ 5) to allow for efficient evaluation of CQs of arbitrary arity and of
CSPs?

Clearly, since fhw(H) ≤ ghw(H) ≤ hw(H) holds for any hypergraphs, an answer to above
question also implies that fhw(H) ≤ 5 and ghw ≤ 5. Since, as mentioned above, answering
CQs and solving CSPs depend exponentially on these width measures, having lower ghw
and/or fhw might improve practical applications that depend on such decompositions.
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1.1. Research Questions

Unfortunately, apart from exhaustive search over all possible decomposition trees, no
implementations for solving the Check(GHD,k) has been reported yet. For solving
the Check(FHD,k) problem an interesting approach has been very recently presented
in [35]. There satisfiability modulo theories solving (SMT-solving) has been applied to
the Check(FHD, k) problem. Another approach to solve the Check(GHD,k) and/or
Check(FHD,k) problem is to apply the results of Research Questions 3 and 4. First,
having real-world instances at hand, we want to verify if the restrictions found are indeed
realistic:

Research Question 7: Do many instances have the properties that entail the
tractability of the Check(GHD,k) and Check(FHD,k) problem?

Second, we want to turn the theoretical tractability using these restrictions into practical
algorithms. Unfortunately, many times those do not immediately translate. This has also
been the case for the first algorithm solving the Check(HD,k) problem. Only a highly op-
timized implementation called det-k-decomp allowed for an efficient algorithm to solve
the Check(HD,k) problem [54]. We will extend this algorithm to implement a system
that uses the restrictions of Research Questions 3 and 4 to solve the Check(decomp,k)
problem for decomp ∈ {GHD,FHD}, which then gives an answer to the next research
questions.

Research Question 8: Does the tractable fragment of the Check(decomp,k)
problem for decomp ∈ {GHD,FHD} indeed allow for efficient algorithms that work
well in practice?

Research Question 9: What is the generalized and/or fractional hypertree width
of real-world CQs and CSPs?

Finally, our last question revolves around the differences of the different widths. For
instance, we know that hw is always greater than or equal to the ghw and bounded from
above by 3 ·ghw +1. Since, as mentioned above, answering CQs and solving CSPs depend
exponentially on these width measures, ghw might seem by far better than hw. Hence, a
natural question is if the two width measures typically do differ by as much as factor 3.
Furthermore, we will also integrate the results of [36, 72] to also compare the fhw with
hw and ghw and then answer our last question:

Research Question 10: By how much do the different width measures, hw, ghw,
and fhw, differ on real-world CQ and CSP instances?
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1. Introduction

1.2 Main Results
First of all, we have investigated the above mentioned open problem concerning the
recognizability of fhw ≤ k for fixed k. Our initial hope was to find a simple adaptation of
the NP-hardness proof in [53] for recognizing ghw(H) ≤ k, for k ≥ 3. Unfortunately, this
proof dramatically fails for the fractional case. In fact, the hypergraph-gadgets in that
proof are such that both “yes” and “no” instances may yield the same fhw. However, via
crucial modifications, including the introduction of novel gadgets, we succeed to construct
a reduction from 3SAT that allows us to control the fhw of the resulting hypergraphs
such that those hypergraphs arising from “yes” 3SAT instances have fhw(H) = 2 and
those arising from “no” instances have fhw(H) > 2. Surprisingly, thanks to our new
gadgets, the resulting proof is actually significantly simpler than the NP-hardness proof
for recognizing ghw(H) ≤ k in [53]. We thus obtain the following result:

Main Result 1: Deciding fhw(H) ≤ 2 for hypergraphs H is NP-complete and,
therefore, Check(FHD, k) is intractable even for k = 2.

This result can be extended to the NP-hardness of recognizing fhw(H) ≤ k for arbitrarily
large k. Moreover, the same construction can be used to prove that recognizing ghw ≤ 2
is also NP-hard, thus killing two birds with one stone.

Main Result 2: Deciding ghw(H) ≤ 2 for hypergraphs H is NP-complete and,
therefore, Check(GHD, 2) is intractable even for k = 2.

The Main Results 1 and 2 are presented in Section 4.1. These results close some
smouldering open problems with bad news. We thus further concentrate on Research
Questions 3 and 4 in order to obtain positive results for restricted hypergraph classes.

We first study GHDs, where we succeed to identify very general, realistic, and non-trivial
restrictions that make the Check(GHD, k) problem tractable. These results are based
on new insights about the differences of GHDs and HDs and the introduction of a novel
technique for expanding a hypergraph H to an edge-augmented hypergraph H ′ s.t. the
width k GHDs of H correspond precisely to the width k HDs of H ′. The crux here is to
find restrictions under which only a polynomial number of edges needs to be added to H
to obtain H ′. The HDs of H ′ can then be computed in polynomial time.

In particular, we concentrate on the bounded intersection property (BIP), which, for a
class C of hypergraphs requires that for some constant i, for each pair of distinct edges
e1 and e2 of each hypergraph H ∈ C , |e1 ∩ e2| ≤ i. We also look at its generalization, the
bounded multi-intersection property (BMIP), which, informally, requires for a class C of
hypergraphs that for some constant c and some constant i any intersection of c distinct
hyperedges of each hypergraph H ∈ C has at most i elements. We obtain the following
good news, which are presented in Section 4.2.

6



1.2. Main Results

Main Result 3: For classes of hypergraphs fulfilling the BIP or BMIP, for every
constant k, the problem Check(GHD, k) is tractable. Tractability holds even
for classes C of hypergraphs where for some constant c all intersections of c
distinct edges of every H ∈ C of size n have O(logn) elements. Our complexity
analysis reveals that the problem Check(GHD, k) is fixed-parameter tractable
w.r.t. parameter i of the BIP.

The tractability proofs for BIP and BMIP do not directly carry over to FHDs. We
thus consider the degree d of a hypergraph H = (V (H), E(H)), which is defined as the
maximum number of hyperedges in which a vertex occurs, i.e., d = maxv∈V (H) |{e ∈
E(H) | v ∈ E(H)}|. We say that a class C of hypergraphs has the bounded degree
property (BDP), if there exists d ≥ 1, such that every hypergraph H ∈ C has degree ≤ d.
We obtain the following result, which is presented in Section 4.3.

Main Result 4: For classes of hypergraphs fulfilling the BDP and for every
constant k, the problem Check(FHD, k) is tractable.

To get yet bigger tractable classes, we also consider approximations of an optimal FHD.
Towards this goal, we study the fhw in case of the BIP and we establish an interesting
connection between the BMIP and the Vapnik–Chervonenkis dimension (VC-dimension)
of hypergraphs. Our research, presented in Section 4.4 is summarized as follows.

Main Result 5: For rather general, realistic, and non-trivial hypergraph restric-
tions, there exist PTime algorithms that, for hypergraphs H with fhw(H) = k,
where k is a constant, produce FHDs whose widths are significantly smaller than
the best previously known approximation. In particular, the BIP allows us to
compute in polynomial time an FHD whose width is ≤ k + ε for arbitrarily chosen
constant ε > 0. The BMIP or bounded VC-dimension allow us to compute in
polynomial time an FHD whose width is O(k log k).

We then turn our attention also to the optimization problem of fractional hypertree
width, i.e., given a hypergraph H, determine fhw(H) and find an FHD of width fhw(H).
All our algorithms for the Check(FHD, k) problem have a runtime exponential in the
desired width k. Hence, even with the restrictions to the BIP or BMIP we cannot expect
an efficient approximation of fhw if fhw can become arbitrarily large. We will therefore
study the following K-Bounded-FHW-Optimization problem for constant K ≥ 1:

K-Bounded-FHW-Optimization
Input: hypergraph H = (V,E);

Output: if fhw(H) ≤ K: find an FHD F of H with minimum width;
otherwise: answer “fhw(H) > K”.
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1. Introduction

For this bounded version of the optimization problem, we will prove the following result:

Main Result 6: There exists a polynomial time approximation scheme (PTAS;
for details see Section 4.4) for the K-Bounded-FHW-Optimization problem in
case of the BIP for any fixed K ≥ 1.

These last two results answer Research Question 4 and hence conclude Chapter 4 —
“From Theory” — of this thesis. Now, we turn our attention to the computation of
the hw, ghw, and fhw of real-world CQs and CSPs in Chapter 5 — “To Practice”. In
order to get an idea of the hw, ghw, and fhw of various instances of hypergraphs, we
gathered real-world and also randomly generated CQs and CSPs. We translated those
to hypergraphs and made them publicly available on our HyperBench webpage1 (see
Section 5.1). Hence, as our first more practice oriented contribution:

Main Result 7: We created HyperBench, a comprehensive hypergraph benchmark
of initially over 3,000 hypergraphs.

This benchmark is exposed by a web interface, which allows the user to retrieve the
hypergraphs or groups of hypergraphs together with a broad spectrum of properties of
these hypergraphs, such as lower/upper bounds on hw, (multi-)intersection width, degree,
etc. The insights of Section 5.2 on these properties can be summarized as follows.

Main Result 8: The hypertree width of real-world CQs and CSPs is indeed small
enough for most instances. In particular, 1,849 (60%) out of 3,070 instances have
hw ≤ 5.

In Section 5.3 we report on tests with a large number of known CQ and CSP benchmarks
and it turns out that a very large number of instances coming from real-life applications
enjoy the BIP and a yet more overwhelming number enjoys the BMIP for very low
constants c and i.

Main Result 9: The restrictions to BIP, BMIP, BDP, and bounded VC-dimension
are indeed realistic for real-world instances of CQs and CSPs (see Section 5.3).

We then extend the software for HD computation from [54] to also solve the Check(GHD,k)
problem. For a given hypergraph H, our system first computes the intersection width of
H and then applies the ghw-algorithm from Section 4.2, which is parameterized by the
intersection width. We present in Section 5.4 two different algorithms for this problem.

1http://hyperbench.dbai.tuwien.ac.at
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1.3. Structure of the Work

Main Result 10: The efficient algorithms GlobalBIP and LocalBIP solve the
Check(GHD,k) problem and work reasonably well in practice.

However, all algorithms, also the HD-algorithm from [54], are often only able to give
us upper bounds on the real hw and ghw, i.e. for many instances we have that hw ≤ k
or ghw ≤ k, but not that hw > k or ghw > k. This leaves us with many dark spots
on our hw and/or ghw landscape. We therefore make use of a new idea called balanced
separators to classify in particular “no”-instances of the Check(GHD,k) problem, which
immediately entails a “no”-instance of the Check(HD,k) problem.

Main Result 11: For most (60%) CQ and CSP instances hw = ghw of small
width ≤ 6. In only 16 out of 1,406 cases, for which we determined the exact hw
and ghw, we found an improvement of the width by 1.

The theoretical tractability results for the Check(FHD,k) problem in Sections 4.3
and 4.4 cannot be carried over as easily as the results for the Check(GHD,k) problem.
Nevertheless, in Section 5.5 we present an algorithm which solves the Check(FHD,k)
problem in PTime given that the arity of the hypergraph is bounded by a constant. This
restriction is highly relevant since with the emergence of the Semantic Web lots of queries
are nowadays formulated in the SPARQL query language. There all atoms have arity 3,
which makes our new algorithm highly applicable.

Main Result 12: The new algorithm k, r-rank-frac-decomp solves the
Check(FHD,k) for instances of low arity, e.g. SPARQL queries.

Our benchmark contains 70 SPARQL queries and a total of 1,041 other hypergraphs
having arity ≤ 5. For these we run the new k, r-rank-frac-decomp algorithm.

Main Result 13: For instances with low arity (≤ 5) it holds in 265 (10%) out of
1,111 cases that fhw < hw.

We close Chapter 5 in Section 5.6 with a discussion on the differences between hw, ghw,
and fhw. As we have already noticed in Main Result 11, we have only found 16 (0.5%)
out of 3,070 hypergraphs where ghw < hw. For the case of fhw we found 1,271 (41%) out
of 3,070 hypergraphs where fhw < hw.

1.3 Structure of the Work
In Chapter 2 we introduce basic notions and notations used throughout the thesis. We
also review elementary results to be be used in the later chapters.

9



1. Introduction

Chapter 3 discusses the state-of-the-art related to hypertree decompositions. In particular,
we review fundamental results on hypertree decompositions and present most recent
findings on decomposition methods. Furthermore, we relate several more practical works
to our empirical findings.

The main part of the thesis starts with the theoretical aspects of hypertree decompositions
in Chapter 4. In particular, we answer Research Questions 1-4. First, we show the NP-
completeness of the Check(FHD,k) and Check(GHD,k) problem for k = 2 (Main Results
1 and 2). We then prove tractability of the Check(GHD,k) problem for instances having
the BMIP (Main Result 3). Furthermore, we prove tractability of the Check(FHD,k)
problem for instances having the BDP (Main Result 4) and polynomial approximability
for instances having the BIP or BMIP (Main Results 5 and 6).

The practical aspects of hypertree decompositions are then investigated in Chapter 5,
where we answer Research Questions 5-10. First, we present the HyperBench benchmark,
a collection of over 3,000 hypergraphs, that can be used for the analysis of hypertree
decomposition algorithms (Main Result 7). Then, we analyse the hypertree width of these
hypergraphs (Main Result 8) and report on different non-trivial hypergraph properties
(Main Result 9). Given that the BIP is indeed small for most instances, we develop
two algorithms that solve the Check(GHD,k) problem for exactly such instances (Main
Result 10). With a new approach we are then able to determine the exact hw for more
than half of the hypergraphs in our benchmark (Main Result 11). Finally, we present
an algorithm that solves the Check(FHD,k) problem for instances of low arity (Main
Result 12 and 13) and compare the different width measures.

We close this thesis in Chapter 6 with a short summary. We also discuss open issues and
give an outlook towards future work.

This thesis is based on the following publications:

[36] Wolfgang Fischl, Georg Gottlob, Davide M. Longo and Reinhard Pichler. Hy-
perBench: A Benchmark and Tool for Hypergraphs and Empirical Findings. In
Proceedings of PODS 2019. To appear.

[38] Wolfgang Fischl, Georg Gottlob and Reinhard Pichler. General and Fractional
Hypertree Decompositions: Hard and Easy Cases. In Proceedings of PODS 2018,
pages 17-32. ACM, 2018.

[37] Wolfgang Fischl, Georg Gottlob, Reinhard Pichler. General and Fractional Hyper-
tree Decompositions: Hard and Easy Cases (Full version). CoRR, abs/1611.01090,
2016. http://arxiv.org/abs/1611.01090.
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CHAPTER 2
Preliminaries

2.1 Hypergraphs
A hypergraph is a pair H = (V (H), E(H)), consisting of a set V (H) of vertices and a
set E(H) of hyperedges (or, simply edges), which are non-empty subsets of V (H). We
assume that hypergraphs do not have isolated vertices, i.e. for each v ∈ V (H), there is
at least one edge e ∈ E(H), s.t. v ∈ e. For a set C ⊆ V (H), we define edges(C) = {e ∈
E(H) | e ∩ C 6= ∅} and for a set S ⊆ E(H), we define V (S) = {v ∈ e | e ∈ S}. Actually,
for a set S of edges, it is convenient to write

⋃
S (and

⋂
S, respectively) to denote the set

of vertices obtained by taking the union (or the intersection, respectively) of the edges in
S. Hence, we can write V (S) simply as

⋃
S.

For a hypergraph H and a set C ⊆ V (H), we say that a pair of vertices v1, v2 ∈ V (H) is
[C]-adjacent if there exists an edge e ∈ E(H) such that {v1, v2} ⊆ (e \ C). A [C]-path π
from v to v′ consists of a sequence v = v0, . . . , vh = v′ of vertices and a sequence of edges
e0, . . . , eh−1 (h ≥ 0) such that {vi, vi+1} ⊆ (ei \ C), for each i ∈ [0 . . . h− 1]. We denote
by V (π) the set of vertices occurring in the sequence v0, . . . , vh. Likewise, we denote by
edges(π) the set of edges occurring in the sequence e0, . . . , eh−1. A set W ⊆ V (H) of
vertices is [C]-connected if ∀v, v′ ∈W there is a [C]-path from v to v′. A [C]-component
is a maximal [C]-connected, non-empty set of vertices W ⊆ V (H) \ C.

2.2 (Fractional) Edge Covers
LetH = (V (H), E(H)) be a hypergraph and consider (edge-weight) functions λ : E(H)→
{0, 1} and γ : E(H) → [0, 1]. For θ ∈ {λ, γ}, we denote by B(θ) the set of all vertices
covered by θ:

B(θ) =

v ∈ V (H) |
∑

e∈E(H),v∈e
θ(e) ≥ 1


11
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The weight of such a function θ is defined as

weight(θ) =
∑

e∈E(H)
θ(e).

Following [51], we will sometimes consider λ as a set with λ ⊆ E(H) (i.e., the set of
edges e with λ(e) = 1) and the weight of λ as the cardinality of this set. However, for
the sake of a uniform treatment with function γ, we shall prefer to treat λ as a function.

Definition 2.1. An edge cover of a hypergraph H is a function λ : E(H)→ {0, 1} such
that V (H) = B(λ). The edge cover number ρ(H) is the minimum weight of all edge
covers of H. /

Note that the edge cover number can be calculated by the following integer linear program
(ILP).

minimize:
∑

e∈E(H)
λ(e)

subject to:
∑

e∈E(H),v∈e
λ(e) ≥ 1, for all v ∈ V (H)

λ(e) ∈ {0, 1} for all e ∈ E(H)
By substituting all λ(e) by γ(e) and by relaxing the last condition of the ILP above to
γ(e) ≥ 0, we arrive at the linear program (LP) for computing the fractional edge cover
number to be defined next. Note that even though our weight function is defined to
take values between 0 and 1, we do not need to add γ(e) ≤ 1 as a constraint, because
implicitly by the minimization itself the weight on an edge for an edge cover is never
greater than 1. Also note that now the program above is an LP, which (in contrast to an
ILP) can be solved in PTime.

Definition 2.2. A fractional edge cover of a hypergraph H = (V (H), E(H)) is a function
γ : E(H)→ [0, 1] such that V (H) = B(γ). The fractional edge cover number ρ∗(H) of H
is the minimum weight of all fractional edge covers of H. We write supp(γ) to denote
the support of γ, i.e., supp(γ) := {e ∈ E(H) | γ(e) > 0}. /

Clearly, we have ρ∗(H) ≤ ρ(H) for every hypergraph H, and ρ∗(H) can be much smaller
than ρ(H). However, below we give an example, which is important for our proof of
Theorem 4.1 and where ρ∗(H) and ρ(H) coincide.

Lemma 2.1. Let K2n be a clique of size 2n. Then the equalities ρ(K2n) = ρ∗(K2n) = n
hold.

Proof. Since we have to cover each vertex with weight ≥ 1, the total weight on the
vertices of the graph is ≥ 2n. As the weight of each edge adds to the weight of at most 2
vertices, we need at least weight n on the edges to achieve ≥ 2n weight on the vertices.
On the other hand, we can use n edges each with weight 1 to cover 2n vertices. Hence,
in total, we get n ≤ ρ∗(K2n) ≤ ρ(K2n) ≤ n.

12



2.3. HDs, GHDs, and FHDs

2.3 HDs, GHDs, and FHDs
We now define three types of hypergraph decompositions:

Definition 2.3. A generalized hypertree decomposition (GHD) of a hypergraph H =
(V (H), E(H)) is a tuple

〈
T, (Bu)u∈N(T ), (λu)u∈N(T )

〉
, such that T = (N(T ), E(T )) is a

rooted tree, for each u ∈ T the set of vertices Bu ⊆ V (H) and the following conditions
hold:

(1 ) for each e ∈ E(H), there is a node u ∈ N(T ) with e ⊆ Bu;

(2 ) for each v ∈ V (H), the set {u ∈ N(T ) | v ∈ Bu} is connected in T ;

(3 ) for each u ∈ N(T ), λu is a function λu : E(H)→ {0, 1} with Bu ⊆ B(λu). /

Let us clarify some notational conventions used throughout this work. To avoid confusion,
we will consequently refer to the elements in V (H) as vertices (of the hypergraph) and
to the elements in N(T ) as the nodes of T (of the decomposition). Now consider a
decomposition G with tree structure T . For a node u in T , we write Tu to denote the
subtree of T rooted at u. By slight abuse of notation, we will often write u′ ∈ Tu to denote
that u′ is a node in the subtree Tu of T . Moreover, we define V (Tu) :=

⋃
u′∈Tu Bu′ and,

for a set V ′ ⊆ V (H), we define nodes(V ′) = {u ∈ T | Bu ∩ V ′ 6= ∅}. If we want to make
explicit the decomposition G, we also write nodes(V ′,G) synonymously with nodes(V ′).
By further overloading the nodes operator, we also write nodes(Tu) or nodes(Tu,G) to
denote the nodes in a subtree Tu of T , i.e., nodes(Tu) = nodes(Tu,G) = {v | v ∈ Tu}.

Definition 2.4. A hypertree decomposition (HD) of a hypergraph H = (V (H), E(H)) is
a GHD, which in addition also satisfies the following condition:

(4) for each u ∈ N(T ), V (Tu) ∩B(λu) ⊆ Bu /

Definition 2.5. A fractional hypertree decomposition (FHD) [58] of a hypergraph H =
(V (H), E(H)) is a tuple

〈
T, (Bu)u∈N(T ), (γ)u∈N(T )

〉
, where conditions (1) and (2) of

Definition 2.3 plus condition (3’) hold:

(3’) for each u ∈ N(T ), γu is a function γu : E(H)→ [0, 1] with Bu ⊆ B(γu). /

The width of a GHD, HD, or FHD is the maximum weight of the functions λu or γu,
respectively, over all nodes u in T . Moreover, the generalized hypertree width, hypertree
width, and fractional hypertree width of H (denoted ghw(H), hw(H), fhw(H)) is the
minimum width over all GHDs, HDs, and FHDs of H, respectively. Condition (2) is called
the “connectedness condition”, and condition (4) is referred to as “special condition” [51].
The set Bu is often referred to as the “bag” at node u. Note that, strictly speaking, only
HDs require that the underlying tree T be rooted. For the sake of a uniform treatment we

13
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assume that also the tree underlying a GHD or an FHD is rooted (with the understanding
that the root is arbitrarily chosen).

We now recall two fundamental properties of the various notions of decompositions and
width.

Lemma 2.2. Let H be a hypergraph and let H ′ be a vertex induced subhypergraph of H,
then hw(H ′) ≤ hw(H), ghw(H ′) ≤ ghw(H), and fhw(H ′) ≤ fhw(H) hold.

Lemma 2.3. Let H be a hypergraph. If H has a subhypergraph H ′ such that H ′ is a
clique, then every HD, GHD, or FHD of H has a node u such that V (H ′) ⊆ Bu.

Strictly speaking, Lemma 2.3 is a well-known property of tree decompositions – indepen-
dently of the λ- or γ-label.

2.4 Normal Form for FHDs

In Sections 4.3 and 4.4, we will make use of the fractional normal form (FNF), which
generalizes the normal form of HDs from [51]. We will show here, that we can transform
any FHD into fractional normal form. This transformation follows closely the transfor-
mation of HDs into normal form given in [51]. We will first carry over the definition of
the normal form of HDs to the fractional setting.

Definition 2.6. An FHD F = 〈T, (Bu)u∈T , (γu)u∈T 〉 of a hypergraph H is in fractional
normal form (FNF) if for each node r ∈ T , and for each child s of r, the following
conditions hold:

1. there is exactly one [Br]-component Cr such that V (Ts) = Cr ∪ (Br ∩Bs) holds;

2. Bs ∩ Cr 6= ∅, where Cr is the [Br]-component satisfying Condition 1;

3. B(γs) ∩Br ⊆ Bs. /

We now carry over several properties of the normal form from [51] to our FNF defined
above. An inspection of the corresponding proofs in [51] reveals that these properties
hold with minor modifications also in the fractional case. We thus state the following
results below without explicitly “translating” the proofs of [51] to the fractional setting.

Note that [51] deals with HDs and, therefore, in all decompositions considered there, the
special condition holds. However, for all properties of the normal form carried over from
HDs to FHDs in Lemmas 2.4 and 2.5 below, the special condition is not needed.

Lemma 2.4 (Lemma 5.2 from [51]). Consider an arbitrary FHD F = 〈T, (Bu)u∈T ,
(γu)u∈T 〉 of a hypergraph H. Let r be a node in T , let s be a child of r and let C be a
[Br]-component of H such that C ∩ V (Ts) 6= ∅. Then, nodes(C,F) ⊆ nodes(Ts).

14
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Lemma 2.5 (Lemma 5.3 from [51]). Consider an arbitrary FHD F = 〈T, (Bu)u∈T ,
(γu)u∈T 〉 of a hypergraph H. Let r be a node in T and let U ⊆ V (H) \Br such that U is
[Br]-connected. Then nodes(U,F) induces a (connected) subtree of T .

We will now show that any FHD F of width k can be transformed into an FHD of width
k in fractional normal form.

Theorem 2.1 (Theorem 5.4 from [51]). For every FHD F of a hypergraph H with
width(F) = k there exists an FHD F+ of H in FNF with width(F+) = k.

Remark. The crucial part of the transformation into normal form is to ensure Conditions 1
and 2. Here, the proof of Theorem 5.4 from [51] can be taken over literally because it only
makes use of the tree structure of the decomposition, the bags and the connectedness
condition. Ensuring also Condition 3 of our FNF is easy, because we may always extend
Bs by nodes from B(γs) ∩Br without violating the connectedness condition. To make
these steps more clear, we will give a detailed proof of Theorem 2.1 here. This proof
follows closely the proof of Theorem 5.4 from [51]. Note that it does not change if we
consider GHDs.

Proof. Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an arbitrary FHD of H of width k. We show
how to transform F into an FHD F+ of width k in fractional normal form. The proof
follows closely the proof of Theorem 5.4 from [51].

Assume that there exist two nodes r and s such that s is a child of r, and s violates
any condition of Definition 2.6. If s satisfies Condition (1), but violates Condition (2),
then Bs ⊆ Br holds. In this case, simply eliminate node s from the tree T and attach all
children of s to r. It is immediate to see that this transformation preserves all conditions
of Definition 2.5.

Now assume that Ts does not meet Condition (1) of Definition 2.6, and let C1, . . . , Ch
be all the [r]-components containing some vertex occurring in V (Ts). Hence, V (Ts) ⊆(⋃h

i=1Ci ∪Br
)
. For each [r]-component Ci (1 ≤ i ≤ h), consider the set of nodes

nodes(Ci,F). By Lemma 2.5, nodes(Ci,F) induces a subtree of T , and by Lemma 2.4,
nodes(Ci,F) ⊆ nodes(Ts). Hence nodes(Ci,F) induces in fact a subtree of Ts.

For each node n ∈ nodes(Ci,F) define a new node uCin , and let γ
u
Ci
n

= γn and B
u
Ci
n

=
Bn ∩ (Ci ∪Br). Note that B

u
Ci
n
6= ∅, because by definition of nodes(Ci,F), Bn contains

some vertex belonging to Ci. Let Ni = {uCin | n ∈ nodes(Ci,F)} and, for any Ci
(1 ≤ i ≤ h), let Ti denote the (directed) graph (Ni, Ei) such that uCip is a child of uCiq if
and only if p is a child of q in T . Ti is clearly isomorphic to the subtree of Ts induced by
nodes(Ci,F), hence Ti is a tree as well.

Now transform the FHD F as follows: Delete every node in nodes(Ts) from T , and
attach to r every tree Ti for 1 ≤ i ≤ h. Intuitively, we replace the subtree Ts by a set of
trees {T1, . . . , Th}. By construction, Ti contains a node uCin for each node n belonging
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to nodes(Ci,F) (1 ≤ i ≤ h). Then, if we let children(r) denote the set of children
of r in the new tree T obtained after the transformation above, it holds that for any
s′ ∈ children(r), there exists an [r]-component C ofH such that nodes(Ts′) = nodes(C,F),
and V (Ts′) ⊆ (C ∪Br).

Furthermore, it is easy to verify that all the conditions of Definition 2.5 are preserved
during this transformation. As a consequence, Condition (2) of Definition 2.5 immediately
entails that (V (Ts′) ∩Br) ⊆ Bs′ . Hence, V (Ts′) = C ∪ (Bs′ ∩Br). Thus, any child of r
satisfies both Condition (1) and Condition (2) of Definition 2.6.

Now assume that some node u ∈ children(r) violates Condition (3) of Definition 2.6.
Then we add to Bu the set of vertices B(γu)∩Br. Because vertices in Br induce connected
subtrees of T , and Br does not contain any vertices occurring in some [r]-component,
this further transformation never invalidates any other condition. Moreover, for this
transformation, we only use already covered vertices of γu and therefore do not change
the width of the FHD.

Note that the root of T cannot violate any of the normal form conditions, because it
has no parent in T . Moreover, the transformations above never change the parent r of a
violating node s. Thus, if we apply such a transformation to the children of the root of
T , and iterate the process on the new children of the root of T , and so on, we eventually
get a new FHD F+ =

〈
T+, (Bu)u∈T+ , (γu)u∈T+

〉
of H in fractional normal form.
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CHAPTER 3
State of the Art

3.1 Structural Decomposition Methods

Ever since the NP-completeness of Boolean CQ Evaluation was settled in [24],
tractable fragments have been looked for. The most relevant tractable fragments for us
are those based on structural decomposition methods. There the underlying structure of
BCQs (and also CSPs), which are captured by hypergraphs, is decomposed into a tree
structure. An overview of the structural decomposition methods presented in this section
is given in Table 3.1.

For each of the methods listed in Table 3.1 we are going to discuss three fundamental
properties: (P1) tractable recognizability, which allows us to efficiently compute such a
decomposition, (P2) tractable query answering, which allows us to efficiently answer a
query using such a decomposition, and (P3) generalization of acyclicity, which means
that acyclic queries have bounded width. A 3 indicates in Table 3.1 that the property

(P1) (P2) (P3)
submodular width ? 7 3

fractional hypertree width 7(Sec. 4.1) 3 3

generalized hypertree width 7 3 3

subset based widths 3 3 3

hypertree width 3 3 3

query width 7 3 3

α-acyclicity 3 3 3

tree width 3 3 7

fractional edge cover 3 3 7

Table 3.1: Overview of different widths having the properties (P1)-(P3) listed below
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holds, a 7 that the property does not hold, and a ? that it is not known whether the
property holds. Generalizations of α-acyclicity are stacked on top of each other. As we
will see, tree width and fractional edge covers do not generalize α-acyclicity.

For uniformity with the definitions introduced in Chapter 1, we will deviate in this section
from the standard definitions given in the literature and formulate equivalent ones in the
notation introduced here.

Acyclicity. One of the first concepts in database theory that allows for efficient evalu-
ation of CQs is acyclicity, which was introduced in [14] and, independently, in [45]. A
hypergraph H is acyclic if it has a join tree JT (H) [18].

Definition 3.1. A join tree of a hypergraph H = (V (H), E(H)) is a tuple JT(H) =
〈T, (λu)u ∈ T 〉, s.t. T = (N(T ), E(T )) is a rooted tree and the following conditions hold:

(1 ) for each u ∈ N(T ), λu is a function λu : E(H)→ {0, 1} with weight(λu) = 1

(2 ) for each e ∈ E(H), there is a node u ∈ N(T ) with e = B(λu);

(3 ) for each v ∈ V (H), the set {u ∈ N(T ) | v ∈ B(λu)} is connected in T . /

Intuitively, a join tree arranges all hyperedges of a hypergraph H, s.t. the nodes where a
vertex X ∈ V (H) occurs induce a connected subtree of T . This notion of acyclicity is the
most general one and known as α-acyclicity [33]. The Check(JT) problem can be solved
in linear time [91]. The problem of Boolean CQ Evaluation can be solved for acyclic
queries using Yannakakis’ algorithm in time O(m · r · log r) [97], where m is the number
of query atoms and r the size of the largest database relation relevant to the query.

It is these two properties:

tractable recognizability and (P1)

tractable query-answering (P2)

that made acyclicity a so-called (accessible) “island of tractability” for the query answering
problem [66] — and for equivalent problems, such as conjunctive query containment,
constraint satisfaction problems, the homomorphism problem and so on [49, 46].

Unfortunately, many real-world queries (and also CSPs) are not acyclic. Therefore
efforts have been made to weaken the notion of acyclicity while still retaining the two
previously mentioned important properties. For all these efforts the degree of acyclicity
of a hypergraph is often referred to as its width.

Tree Decompositions. A well-known notion that generalizes acyclicity on graphs is
bounded treewidth, which is based on tree decompositions [82]. Tree decompositions can
be straightforwardly defined for hypergraphs.
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Definition 3.2. A tree decomposition of a hypergraph H = (V (H), E(H)) is a tuple
TD(H) = 〈T,Bu∈T 〉, s.t. T = (N(T ), E(T )) is a rooted tree, for each u ∈ T there is a set
Bu ⊆ V (H) and the following conditions hold:

(1 ) for each e ∈ E(H), there is a node u ∈ N(T ) with e ⊆ Bu;

(2 ) for each v ∈ V (H), the set {u ∈ N(T ) | v ∈ Bu} is connected in T .

The width(TD) of a tree decomposition is maxu∈T |Bu| − 1, i.e. the size of the largest
bag minus 1 and the treewidth tw(H) of a hypergraph H is the minimum width over all
its tree decompositions. /

The Check(TD,k) problem can be solved in linear time [20], hence tree decompositions
can be recognized efficiently. Tree decompositions also allow for tractable query answering.
The Boolean CQ Evaluation problem can be solved for queries having treewidth
bounded by some constant k in time O(m′ ·Dk+1 · logD) [46], where m′ is the number
of vertices of the decomposition tree T , and D is the number of distinct values in the
database. Therefore, tree decompositions have been successfully used for conjunctive
query answering (or, equivalently, CSP-solving) [29, 25, 67].

However, while it is the case that acyclic graphs have tw = 1, it is not the case that acyclic
hypergraphs have tw = 1. For example, consider the family (Hn)n ∈ N of hypergraphs
having n vertices {x1, . . . , xn} and one hyperedge R(x1, . . . , xn). Clearly, for each Hn in
this family of hypergraphs even though acyclic, it holds that tw(Hn) = n− 1. Therefore,
the family (Hn)n ∈ N of hypergraphs has unbounded treewidth. Hence, a third property
is desirable for generalizations of hypergraph acyclicity:

Acyclic hypergraphs have bounded width (P3)

Query Decompositions. A notion that truly generalizes join trees is query decom-
position [25]. There instead of having each node of a join tree labelled by exactly one
hyperedge, we allow for each node to be labelled by multiple hyperedges.

Definition 3.3. A query decomposition of a hypergraph H = (V (H), E(H)) is a tuple
QD(H) = 〈T, (λu)u∈T 〉, s.t. T = (N(T ), E(T )) is a rooted tree and the following conditions
hold:

(1 ) for each u ∈ N(T ), λu is a function λu : E(H)→ {0, 1}

(2 ) for each e ∈ E(H), there is a node u ∈ N(T ) with e ⊆ B(λu);

(3 ) for each v ∈ V (H), the set {u ∈ N(T ) | v ∈ B(λu)} is connected in T .

The width(QD) of a query decomposition is k = maxu∈T weight(λu), i.e. the weight of
the largest edge cover and the querywidth qw(H) of a hypergraph H is the minimum
width over all its query decompositions. /
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It is easy to see that join trees are exactly those query decompositions with width = 1
and hence, acyclic hypergraphs have qw = 1. Additionally, queries having bounded qw
can be evaluated efficiently in polynomial time by using a modified version of Yannakakis’
algorithm [25]. However, the Check(QD,k) problem is NP-complete [51], and therefore
property (P1) is not fulfilled.

(Generalized) Hypertree Decompositions. This is solved by combining the notions
of tree decompositions (a bag Bu for vertices) with query decompositions (a cover λu
for the vertices), which leads to the notions of (generalized) hypertree decompositions
[51, 52], see Definitions 2.3 and 2.4. Queries having (generalized) hypertree width k can
be answered efficiently in time O(n · rk · log r), where n is the number of variables in the
query and r the size of the largest database relation. However, as already mentioned in
Section 1.1, the Check(GHD,k) problem is NP-complete [53], whereas the Check(HD,k)
problem is tractable [51] and a k-width hypertree decomposition can be computed in time
O(m2kn2), where m is the number of atoms and v the number of variables in the query
[47]. Hence, so far, hypertree width is the most relevant generalization of acyclicity, since
it can be recognized efficiently. Additionally, queries (and, equivalently, CSPs) of bounded
hypertreewidth can be answered (resp. solved) efficiently in combined complexity.

Improving the width. Since the hypertree width k is in the exponent of the query
evaluation algorithm, one might ask whether there is a more general notion of hypertree
width that can still be recognized efficiently. In [53] the framework of subset based
decompositions was presented. The basic idea is to also allow subedges for covering the
bags of a tree decomposition. In particular, if we allow all subsets of the hyperedges of H,
the notions of ghw and hw coincide. However, this set might be exponential in the size
of the hypergraph. Therefore, based on this idea, decomposition methods were proposed
that restrict the number of subedges added to the hypergraph. This includes: component
decomposition [53], spread-cut decompositions [27], and greedy hypertree decompositions
[55, 56].

In order to make the Check(GHD,k) and Check(FHD,k) problem tractable we take
in Sections 4.2-4.4 a different approach than the above mentioned methods. Instead
of restricting the decomposition method, we restrict the hypergraphs to have certain
properties. For example, for the case of bounded arity (maximum edge size), using the
results on greedy hypertree decompositions, it is shown in [56] that the Check(GHD,k)
problem is fixed-parameter tractable when parameterized by the arity.

Fractional edge cover and fractional hypertree decompositions. A more radical
approach for improving the width was proposed in [10, 58]. There it was shown that the
size of the output of a query can be bounded by rρ∗(H), where r is the size of the largest
relation in the database and ρ∗(H) is the fractional edge cover number of the hypergraph
H corresponding to the query. Clearly, calculating the fractional edge cover number can
be done in polynomial time, the output bound also gives us an algorithm to efficiently
solve the query answering problem, but there are acyclic queries that have unbounded
fractional edge cover number [58]. For example, consider the class of hypergraphs that
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only have disjoint edges. The (generalized) hypertree width of this class is 1, whereas
the fractional edge cover number is unbounded [58].

Therefore, in [58] the authors proposed fractional hypertree decompositions, see Definition
2.5. The query answering problem still can be solved in polynomial time, and it now
indeed generalizes acyclicity, but, as we will see in Section 4.1, the Check(FHD,k)
problem can not be solved efficiently. However, [74] proposes a polynomial time algorithm
which, given a hypergraph H with fhw(H) = k, computes an FHD of width O(k3).

Submodular width. The most general notion of query acyclicity is submodular width
(sw) [75], which in fact also generalizes fractional hypertree width. Still, this notion has
two weaknesses. First, unlike for hypertree decompositions, tractable query answering
can not be guaranteed. Instead, in [75] Marx shows fixed-parameter tractability in case of
bounded submodular width, where the hypergraph is used as parameter. In addition, the
decompositions used there are not only dependent on the hypergraph of the query but
also on the actual database used. Second, it is not clear how to recognise hypergraphs of
low submodular width.

Summary. In this section we have presented results on different structural decomposition
methods for hypergraphs most relevant to our work. As it is depicted in Table 3.1, all
different width notions that generalize acyclicity can be put into relationship to each
other. It is well known, that for all hypergraphs H the following sequence of inequalities
holds:

sw(H) ≤ fhw(H) ≤ ghw(H) ≤ hw(H) ≤ qw(H).

Still, many different other methods exist, e.g. Biconnected Components [39], Hinge
Decompositions [60], tree projections [83], and so on. A thorough comparison would go
beyond the scope of this work. More details can be found in [48, 50, 46].

3.2 Empirical Results on Hypertree Decompositions

We will now discuss several types of works that are highly relevant to the experimental
evaluation in Chapter 5. The work most closely related is the implementation of HD
computation by the DetKDecomp program reported in [54], which all our algorithms
are built upon. The first implementation of an algorithm to compute a k-width HD
was called opt-k-decomp [47, 71, 86]. Both algorithms are exact and may require too
much time when dealing with large instances. Therefore several heuristic algorithms have
been proposed [84, 90, 77]. Some of them are based on finding tree decompositions (e.g.,
[28, 19]), where then the bags are covered with as few hyperedges as possible [30]. These
methods actually compute GHDs.

The same algorithms via tree decompositions can also be used for finding FHDs of small
width. However, to the best of our knowledge, no actual implementations have been
proposed yet. A different novel approach is taken in [35]. There an efficient encoding
of the check-problem for FHDs to SMT (SAT modulo Theory) was presented. For
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the empirical evaluation of the resulting algorithm the hypergraphs of the Hyperbench
benchmark, to be presented in Section 5.1, were used.

The second important input to our work comes from the various sources [8, 15, 16, 17,
42, 54, 69, 62, 92] which we took our CQs and CSPs from. A detailed description of
those can be found in Section 5.1. Most of those CQs and CSPs have not been analysed
with respect to hypertree width before.

To the best of our knowledge, Ghionna et al. [43] presented the first systematic study of
HDs of benchmark CQs from TPC-H. There they primarily wanted to find out to what
extent HDs can actually speed up query evaluation. They achieved very positive results
in this respect, which have recently been confirmed by the work of Perelman et al. [79],
Tu et al. [93] and Aberger et al. [2, 1] on query evaluation using FHDs. As a side result,
Ghionna et al. also detected that CQs tend to have low hypertree width (a finding which
was later confirmed in [21, 80] and also in our study). In a pioneering effort, Bonifati,
Martens, and Timm [21] have recently analysed an unprecedented, massive amount of
queries: they investigated 180,653,910 queries from (not openly available) query logs
of several popular SPARQL endpoints. After elimination of duplicate queries, there
were still 56,164,661 queries left, out of which 26,157,880 queries were in fact CQs. The
authors thus significantly extend previous work by Picalausa and Vansummeren [80],
who analysed 3,130,177 SPARQL queries posed by humans and software robots at the
DBPedia SPARQL endpoint. The focus in [80] is on structural properties of SPARQL
queries such as keywords used and variable structure in optional patterns. There is one
paragraph devoted to CQs, where it is noted that 99.99% of ca. 2 million CQs considered
in [80] are acyclic.

Many of the CQs (over 15 million) analysed in [21] have arity 2 (here we consider the
maximum arity of all atoms in a CQ as the arity of the query), which means that all
triples in such a SPARQL query have a constant at the predicate-position. Bonifati et al.
made several interesting observations concerning the shape of these graph-like queries. For
instance, they detected that exactly one of these queries has tw = 3, while all others have
tw ≤ 2 (and hence hw ≤ 2). As far as the CQs of arity 3 are concerned (for CQs expressed
as SPARQL queries, this is the maximum arity achievable), among many characteristics,
also the hypertree width was computed by using the original DetKDecomp program from
[54]. Out of 6,959,510 CQs of arity 3, only 86 (i.e. 0.01%�) turned out to have hw = 2
and 8 queries had ¸hw = 3, while all other CQs of arity 3 are acyclic.

For the analysis of CSPs, much less work has been done. Although it has been shown
that exploiting (hyper-) tree decompositions may significantly improve the performance
of CSP solving [6, 61, 63, 68], a systematic study on the (generalized) hypertree width of
CSP instances has only been carried out by few works [54, 68, 87].

To the best of our knowledge, we are the first to analyse the hw, ghw, and fhw of ca.
3,000 CSP instances, where most of these instances have not been studied in this respect
before.
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CHAPTER 4
From Theory

This chapter constitutes the main part of this thesis. We will answer Research Questions
1-4 and provide some new theoretical insights to generalized and fractional hypertree
decomposition. First, we will show in Section 4.1 NP-hardness for the Check(GHD,k)
and Check(FHD,k) problem for k = 2. We will then introduce classes of hypergraphs for
which the problems Check(GHD,k) (in Section 4.2) and Check(FHD,k) (in Sections 4.3
and 4.4) can be solved or at least approximated in polynomial time.

4.1 NP-hardness of Check(decomp, k)

The main result in this section is the NP-hardness of Check(decomp, k) with de-
comp ∈ {GHD, FHD} and k = 2. At the core of the NP-hardness proof is the
construction of a hypergraph H with certain properties. The gadget in Figure 4.1 will
play an integral part of this construction.

Lemma 4.1. Let M1, M2 be disjoint sets and M = M1 ∪M2. Let H = (V (H), E(H))
be a hypergraph and H0 = (V0, EA ∪ EB ∪ EC) a subhypergraph of H with V0 =

a1

a2

b1

b2

c1

c2

d1

d2

M1

M2

M1

M2

M1

M2

Figure 4.1: Basic structure of H0 in Lemma 4.1
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{a1, a2, b1, b2, c1, c2, d1, d2} ∪M and

EA = {{a1, b1} ∪M1, {a2, b2} ∪M2, {a1, b2}, {a2, b1}, {a1, a2}}
EB = {{b1, c1} ∪M1, {b2, c2} ∪M2, {b1, c2}, {b2, c1}, {b1, b2}, {c1, c2}}
EC = {{c1, d1} ∪M1, {c2, d2} ∪M2, {c1, d2}, {c2, d1}, {d1, d2}}

where no element from the set R = {a2, b1, b2, c1, c2, d1, d2} occurs in any edge of E(H) \
(EA ∪ EB ∪ EC). Then, every FHD F = 〈T, (Bu)u∈T , (γu)u∈T 〉 of width ≤ 2 of H has
nodes uA, uB, uC s.t.:

• {a1, a2, b1, b2} ⊆ BuA ⊆M ∪ {a1, a2, b1, b2}

• BuB = {b1, b2, c1, c2} ∪M ,

• {c1, c2, d1, d2} ⊆ BuC ⊆M ∪ {c1, c2, d1, d2}, and

• uB is on the path from uA to uC .

Proof. Consider an arbitrary FHD F = 〈T, (Bu)u∈T , (γu)u∈T 〉 of width ≤ 2 of H. Observe
that a1, a2, b1, and b2 form a clique of size 4. Hence, by Lemma 2.3, there is a node uA in
F , such that {a1, a2, b1, b2} ⊆ BuA . It remains to show that also BuA ⊆M∪{a1, a2, b1, b2}
holds. To this end, we use a similar reasoning as in the proof of Lemma 2.1: to cover
each vertex in {a1, a2, b1, b2}, we have to put weight ≥ 1 on each of these 4 vertices.
By assumption, the only edges containing 2 out of these 4 vertices are the edges in
EA∪{{b1, b2}}. All other edges in E(H) contain at most 1 out of these 4 vertices. Hence,
in order to cover {a1, a2, b1, b2} with weight ≤ 2, we are only allowed to put non-zero
weight on the edges in EA ∪ {{b1, b2}}. It follows, that BuA ⊆M ∪ {a1, a2, b1, b2} indeed
holds.

Analogously, for the cliques b1, b2, c1, c2 and c1, c2, d1, d2, there must exist nodes uB and
uC in F with {b1, b2, c1, c2} ⊆ BuB ⊆ M ∪ {b1, b2, c1, c2} and {c1, c2, d1, d2} ⊆ BuC ⊆
M ∪ {c1, c2, d1, d2}.

It remains to show that uB is on the path from uA to uC and BuB = {b1, b2, c1, c2} ∪M
holds. We first show that uB is on the path between uA and uC . Suppose to the
contrary that it is not. We distinguish two cases. First, assume that uA is on the path
between uB and uC . Then, by connectedness, {c1, c2} ⊆ BuA , which contradicts the
property BuA ⊆ M ∪ {a1, a2, b1, b2} shown above. Second, assume uC is on the path
between uA and uB . In this case, we have {b1, b2} ⊆ BuC , which contradicts the property
BuC ⊆M ∪ {c1, c2, d1, d2} shown above.

We now show that also BuB = {b1, b2, c1, c2}∪M holds. Since we have already established
{b1, b2, c1, c2} ⊆ BuB ⊆ M ∪ {b1, b2, c1, c2}, it suffices to show M ⊆ BuB . First, let T ′a
be the subgraph of T induced by nodes({a1, a2},F) and let T ′d be the subgraph of
T induced by nodes({d1, d2},F). We show that each of the subgraphs T ′a and T ′d is
connected (i.e., a subtree of T ) and that the two subtrees are disjoint. The connectedness
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is immediate: by the connectedness condition, each of nodes({a1},F), nodes({a2},F),
nodes({d1},F), and nodes({d2},F) is connected. Moreover, since H contains an edge
{a1, a2} (resp. {d1, d2}), the two subtrees induced by nodes({a1},F), nodes({a2},F)
(resp. nodes({d1},F), nodes({d2},F)) must be connected, hence T ′a and T ′d are subtrees
of T . It remains to show that T ′a and T ′d are disjoint.

Suppose to the contrary that there exists a node u which is both in T ′a and in T ′d, i.e.,
ai, dj ∈ Bu for some i ∈ {1, 2} and j ∈ {1, 2}. We claim that u must be on the path
between uA and uC . Suppose it is not. This means that either uA is on the path between
u and uC or uC is on the path between u and uA. In the first case, BuA has to contain
dj by the connectedness condition, which we have already ruled out above. In the second
case, BuC has to contain ai, which we have also ruled out above. Hence, u is indeed on
the path between uA and uC . We have already shown above that also uB is on the path
between uA and uC . Hence, there are two cases depending on how u and uB are arranged
on the path between uA and uC . First, assume u is on the path between uA and uB. In
this case, BuB also contains dj , which we have ruled out above. Second, assume u is on
the path between uB and uC . Then BuB has to contain ai, which we have also ruled out
above. Thus, there can be no node u in T with ai, dj ∈ Bu for some i, j and therefore
the subtrees T ′a and T ′d are disjoint and connected by a path containing uB.

As every edge must be covered, there are nodes in T ′a that cover {a1, b1} ∪M1 and
{a2, b2} ∪M2, respectively. Hence, the subtree T ′a covers M = M1 ∪M2, i.e., M ⊆⋃
u∈T ′a Bu. Likewise, T

′
d covers M . Since both subtrees are disjoint and uB is on the path

between them, by the connectedness condition, we have M ⊆ BuB .

Theorem 4.1. The Check(decomp, k) problem is NP-complete for decomp ∈ {GHD,
FHD} and k = 2.

Proof. The problem is clearly in NP: guess a tree decomposition and check in polynomial
time for each node u whether ρ(Bu) ≤ 2 or ρ∗(Bu) ≤ 2, respectively, holds. The NP-
hardness is proved by a reduction from 3SAT. Before presenting this reduction, we first
introduce some useful notation.

Notation. For i, j ≥ 1, we denote {1, . . . , i} × {1, . . . , j} by [i; j]. For each p ∈ [i; j],
we denote by p ⊕ 1 (p 	 1) the successor (predecessor) of p in the usual lexicographic
order on pairs, that is, the order (1, 1), . . . , (1, j), (2, 1), . . . , (i, 1), . . . , (i, j). We refer to
the first element (1, 1) as min and to the last element (i, j) as max. We denote by [i; j]−
the set [i; j] \ {max}, i.e. [i; j] without the last element.

Now let ϕ =
∧m
j=1(L1

j ∨ L2
j ∨ L3

j ) be an arbitrary instance of 3SAT with m clauses and
variables x1, . . . , xn. From this we will construct a hypergraph H = (V (H), E(H)), which
consists of two copies H0, H

′
0 of the (sub-)hypergraph H0 of Lemma 4.1 plus additional

edges connecting H0 and H ′0. We use the sets Y = {y1, . . . , yn} and Y ′ = {y′1, . . . , y′n}
to encode the truth values of the variables of ϕ. We denote by Yl (Y ′l ) the set Y \ {yl}
(Y ′ \ {y′l}). Furthermore, we use the sets A = {ap | p ∈ [2n+ 3;m]} and A′ = {a′p | p ∈
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[2n+ 3;m]}, and we define the following subsets of A and A′, respectively:

Ap = {amin, . . . , ap} Ap = {ap, . . . , amax}
A′p = {a′min, . . . , a

′
p} A′p = {a′p, . . . , a′max}

In addition, we will use another set S of elements, that controls and restricts the ways in
which edges are combined in a possible FHD or GHD. Such a decomposition will have,
implied by Lemma 4.1, two nodes uB and u′B such that S ⊆ BuB and S ⊆ Bu′B . From
this, we will reason on the path connecting uB and u′B.

The concrete set S used in our construction of H is obtained as follows. Let Q =
[2n + 3;m] ∪ {(0, 1), (0, 0), (1, 0)}, hence Q is an extension of the set [2n + 3;m] with
special elements (0, 1), (0, 0), (1, 0). Then we define the set S as S = Q× {1, 2, 3}.

The elements in S are pairs, which we denote as (q | k). The values q ∈ Q are themselves
pairs of integers (i, j). Intuitively, q indicates the position of a node on the “long” path
π in the desired FHD or GHD. The integer k refers to a literal in the j-th clause. We
will write the wildcard ∗ to indicate that a component in some element of S can take
an arbitrary value. For example, (min | ∗) denotes the set of tuples (q | k) where
q = min = (1, 1) and k can take an arbitrary value in {1, 2, 3}. We will denote by Sp the
set (p | ∗). For instance, (min | ∗) will be denoted as Smin. Further, for p ∈ [2n+ 3;m]
and k ∈ {1, 2, 3}, we define singletons Skp = {(p | k)}.

Problem reduction. Let ϕ =
∧m
j=1(L1

j ∨ L2
j ∨ L3

j ) be an arbitrary instance of 3SAT
with m clauses and variables x1, . . . , xn. From this we construct a hypergraph H =
(V (H), E(H)), that is, an instance of Check(decomp, k) with decomp ∈ {GHD, FHD}
and k = 2.

We start by defining the vertex set V (H):

V (H) = S ∪ A ∪ A′ ∪ Y ∪ Y ′ ∪ {z1, z2} ∪
{a1, a2, b1, b2, c1, c2, d1, d2, a

′
1, a
′
2, b
′
1, b
′
2, c
′
1, c
′
2, d
′
1, d
′
2}.

The edges of H are defined in 3 steps. First, we take two copies of the subhypergraph
H0 used in Lemma 4.1:

• Let H0 = (V0, E0) be the hypergraph of Lemma 4.1 with V0 = {a1, a2, b1, b2,
c1, c2, d1, d2}∪M1∪M2 and E0 = EA∪EB∪EC , where we setM1 = S\S(0,1)∪{z1}
and M2 = Y ∪ S(0,1) ∪ {z2}.

• Let H ′0 = (V ′0 , E′0) be the corresponding hypergraph, with V ′0 = {a′1, a′2, b′1,
b′2, c

′
1, c
′
2, d
′
1, d
′
2} ∪M ′1 ∪M ′2 and E′A, E

′
B, E

′
C are the primed versions of the edge

sets M ′1 = S \ S(1,0) ∪ {z1} and M ′2 = Y ′ ∪ S(1,0) ∪ {z2}.

In the second step, we define the edges which (as we will see) enforce the existence of a
“long” path π between the nodes covering H0 and the nodes covering H ′0 in any FHD of
width ≤ 2.
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• ep = A′p ∪Ap, for p ∈ [2n+ 3;m]−,

• eyi = {yi, y′i}, for 1 ≤ i ≤ n,

• For p = (i, j) ∈ [2n+ 3;m]− and k ∈ {1, 2, 3}:

ek,0p =
{
Ap ∪ (S \ Skp ) ∪ Y ∪ {z1} if Lkj = xl

Ap ∪ (S \ Skp ) ∪ Yl ∪ {z1} if Lkj = ¬xl,

ek,1p =
{
A′p ∪ Skp ∪ Y ′l ∪ {z2} if Lkj = xl

A′p ∪ Skp ∪ Y ′ ∪ {z2} if Lkj = ¬xl.

Finally, we need edges that connect H0 and H ′0 with the above edges covered by the
nodes of the “long” path π in a GHD or FHD:

• e0
(0,0) = {a1} ∪A ∪ S \ S(0,0) ∪ Y ∪ {z1}

• e1
(0,0) = S(0,0) ∪ Y ′ ∪ {z2}

• e0
max = S \ Smax ∪ Y ∪ {z1}

• e1
max = {a′1} ∪A′ ∪ Smax ∪ Y ′ ∪ {z2}

This concludes the construction of the hypergraph H. Before we prove the correctness
of the problem reduction, we give an example that will help to illustrate the intuition
underlying this construction.

Example 4.1. Suppose that an instance of 3SAT is given by the propositional formula
ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3), i.e.: we have n = 3 variables and m = 2 clauses.
From this we construct a hypergraph H = (V (H), E(H)). First, we instantiate the sets
Q,A,A′, S, Y , and Y ′ from our problem reduction.

A = {a(1,1), a(1,2), a(2,1), a(2,2), . . . , a(9,1), a(9,2)},
A′ = {a′(1,1), a

′
(1,2), a

′
(2,1), a

′
(2,2), . . . , a

′
(9,1), a

′
(9,2)},

Q = {(1, 1), (1, 2), (2, 1), (2, 2), . . . , (9, 1), (9, 2)} ∪ {(0, 1), (0, 0), (1, 0)},
S = Q× {1, 2, 3},
Y = {y1, y2, y3},
Y ′ = {y′1, y′2, y′3}.

According to our problem reduction, the set V (H) of vertices of H is

V (H) = S ∪ A ∪ A′ ∪ Y ∪ Y ′ ∪ {z1, z2} ∪
{a1, a2, b1, b2, c1, c2, d1, d2} ∪ {a′1, a′2, b′1, b′2, c′1, c′2, d′1, d′2}.
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The set E(H) of edges of H is defined in several steps. First, the edges in H0 and H ′0 are
defined: We thus have the subsets EA, EB, EC , E′A, E′B, E′C ⊆ E(H), whose definition is
based on the sets M1 = S \ S(0,1) ∪ {z1}, M2 = Y ∪ S(0,1) ∪ {z2}, M ′1 = S \ S(1,0) ∪ {z1},
and M ′2 = Y ′ ∪ S(1,0) ∪ {z2}. The definition of the edges

ep = A′p ∪Ap for p ∈ {(1, 1), (1, 2), . . . (8, 1), (8, 2), (9, 1)},
eyi = {yi, y′i} for 1 ≤ i ≤ 3,

e0
(0,0) = {a1} ∪A ∪ S \ S(0,0) ∪ Y ∪ {z1},

e1
(0,0) = S(0,0) ∪ Y ′ ∪ {z2},

e0
(9,2) = S \ S(9,2) ∪ Y ∪ {z1}, and
e1

(9,2) = {a′1} ∪A′ ∪ S(9,2) ∪ Y ′ ∪ {z2}

is straightforward. We concentrate on the edges ek,0p and ek,1p for p ∈ {(1, 1), (1, 2), . . . (8, 1),
(8, 2), (9, 1)} and k ∈ {1, 2, 3}. These edges play the key role for covering the bags of the
nodes along the “long” path π in any FHD or GHD of H. This path can be thought of as
being structured in 9 blocks. Consider an arbitrary i ∈ {1, . . . , 9}. Then ek,0(i,1) and ek,1(i,1)

encode the k-th literal of the first clause and ek,0(i,2) and e
k,1
(i,2) encode the k-th literal of the

second clause (the latter is only defined for i ≤ 8). These edges are defined as follows: the
edges e1,0

(i,1) and e1,1
(i,1) encode the first literal of the first clause, i.e., the positive literal x1.

We thus have

e1,0
(i,1) = A(i,1) ∪ (S \ S1

(i,1)) ∪ {y1, y2, y3} ∪ {z1} and

e1,1
(i,1) = A′(i,1) ∪ S

1
(i,1) ∪ {y

′
2, y
′
3} ∪ {z2}

The edges e2,0
(i,1) and e

2,1
(i,1) encode the second literal of the first clause, i.e., the negative

literal ¬x2. Likewise, e3,0
(i,1) and e

3,1
(i,1) encode the third literal of the first clause, i.e., the

positive literal x3. Hence,

e2,0
(i,1) = A(i,1) ∪ (S \ S2

(i,1)) ∪ {y1, y3} ∪ {z1},

e2,1
(i,1) = A′(i,1) ∪ S

2
(i,1) ∪ {y

′
1, y
′
2, y
′
3} ∪ {z2}

e3,0
(i,1) = A(i,1) ∪ (S \ S3

(i,1)) ∪ {y1, y2, y3} ∪ {z1}, and

e3,1
(i,1) = A′(i,1) ∪ S

3
(i,1) ∪ {y

′
1, y
′
2} ∪ {z2}

Analogously, the edges e1,0
(i,2) and e1,1

(i,2) (encoding the first literal of the second clause,
i.e., ¬x1), the edges e2,0

(i,2) and e2,1
(i,2) (encoding the second literal of the second clause,

i.e., x2), and the edges e3,0
(i,2) and e3,1

(i,2) (encoding the third literal of the second clause,
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i.e., ¬x3) are defined as follows:

e1,0
(i,2) = A(i,2) ∪ (S \ S1

(i,2)) ∪ {y2, y3} ∪ {z1},

e1,1
(i,2) = A′(i,2) ∪ S

1
(i,2) ∪ {y

′
1, y
′
2, y
′
3} ∪ {z2},

e2,0
(i,2) = A(i,2) ∪ (S \ S2

(i,2)) ∪ {y1, y2, y3} ∪ {z1},

e2,1
(i,2) = A′(i,2) ∪ S

2
(i,2) ∪ {y

′
1, y
′
3} ∪ {z2}

e3,0
(i,2) = A(i,2) ∪ (S \ S3

(i,2)) ∪ {y1, y2} ∪ {z1}, and

e3,1
(i,2) = A′(i,2) ∪ S

3
(i,2) ∪ {y

′
1, y
′
2, y
′
3} ∪ {z2}.

The crucial property of these pairs of edges ek,0(i,j) and e
k,1
(i,j) is that they together encode

the k-th literal of the j-th clause in the following way: if the literal is of the form xl (resp.
of the form ¬xl), then ek,0(i,j) ∪ e

k,1
(i,j) covers all of Y ∪ Y ′ except for y′l (resp. except for yl).

Formula ϕ in this example is clearly satisfiable, e.g., by the truth assignment σ with
σ(x1) = true and σ(x2) = σ(x3) = false. Hence, for the problem reduction to be correct,
there must exist a GHD (and thus also an FHD) of width 2 of H. In Figure 4.2, the tree
structure T plus the bags (Bt)t∈T of such a GHD is displayed. Moreover, in Table 4.1, the
precise definition of Bu and λu of every node u ∈ T is given: in the column labelled Bu,
the set of vertices contained in Bu for each node u ∈ T is shown. In the column labelled
λu, the two edges with weight 1 are shown. For the row with label up∈[2n+3;m]− , the entry
in the last column is ekp,0p , e

kp,1
p . By this we mean that, for every p, an appropriate value

kp ∈ {1, 2, 3} has to be determined. It will be explained below how to find an appropriate
value kp for each p. The set Z in the bags of this GHD is defined as Z = {yi | σ(xi) =
true } ∪ {y′i | σ(xi) = false }. In this example, for the chosen truth assignment σ, we thus
have Z = {y1, y

′
2, y
′
3}. The bags Bt and the edge covers λt for each t ∈ T are explained

below.

The nodes uC , uB, uA to cover the edges of the subhypergraphH0 and the nodes u′A, u′B, u′C
to cover the edges of the subhypergraph H ′0 are clear by Lemma 4.1. The purpose of
the nodes umin	1 and umax is mainly to make sure that each edge {yi, y′i} is covered by
some bag. Recall that the set Z contains exactly one of yi and y′i for every i. Hence, the
node umin	1 (resp. umax) covers each edge {yi, y′i}, such that y′i ∈ Z (resp. yi ∈ Z).

We now have a closer look at the nodes u(1,1) to u(9,1) on the “long” path π. More
precisely, let us look at the nodes u(i,1) and u(i,2) for some i ∈ {1, . . . , 8}, i.e., the “i-th
block”. It will turn out that the bags at these nodes can be covered by edges from H
because ϕ is satisfiable. Indeed, our choice of λu(i,1) and λu(i,2) is guided by the literals
satisfied by the truth assignment σ, namely: for λu(i,j) , we have to choose some kj , such
that the kj-th literal in the j-th clause is true in σ. For instance, we may define λu(i,1)
and λu(i,2) as follows:

λu(i,1) = {e1,0
(i,1), e

1,1
(i,1)} λu(i,2) = {e3,0

(i,2), e
3,1
(i,2)}
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u ∈ T Bu λu
uC {d1, d2, c1, c2} ∪ Y ∪ S ∪ {z1, z2} {c1, d1} ∪M1, {c2, d2} ∪M2
uB {c1, c2, b1, b2} ∪ Y ∪ S ∪ {z1, z2} {b1, c1} ∪M1, {b2, c2} ∪M2
uA {b1, b2, a1, a2} ∪ Y ∪ S ∪ {z1, z2} {a1, b1} ∪M1, {a2, b2} ∪M2

umin	1 {a1} ∪A ∪ Y ∪ S ∪ Z ∪ {z1, z2} e0
(0,0), e

1
(0,0)

up∈[2n+3;m]− A′p ∪Ap ∪ S ∪ Z ∪ {z1, z2} e
kp,0
p , e

kp,1
p

umax {a′1} ∪A′ ∪ Y ′ ∪ S ∪ Z ∪ {z1, z2} e0
max, e

1
max

u′A {a′1, a′2, b′1, b′2} ∪ Y ′ ∪ S ∪ {z1, z2} {a′1, b′1} ∪M ′1, {a′2, b′2} ∪M ′2
u′B {b′1, b′2, c′1, c′2} ∪ Y ′ ∪ S ∪ {z1, z2} {b′1, c′1} ∪M ′1, {b′2, c′2} ∪M ′2
u′C {c′1, c′2, d′1, d′2} ∪ Y ′ ∪ S ∪ {z1, z2} {c′1, d′1} ∪M ′1, {c′2, d′2} ∪M ′2

Table 4.1: Definition of Bu and λu for GHD of H.

The covers λu(i,1) and λu(i,2) were chosen because the first literal of the first clause and
the third literal of the second clause are true in σ. Now let us verify that λu(i,1) and
λu(i,2) are indeed covers of Bu(i,1) and Bu(i,2) , respectively. By the definition of the
edges ek,0(i,j), e

k,1
(i,j) for j ∈ {1, 2} and k ∈ {1, 2, 3}, it is immediate that ek,0(i,j) ∪ e

k,1
(i,j) covers

A(i,j) ∪A′(i,j) ∪S ∪{z1, z2}. The only non-trivial question is if λu(i,j) also covers Z. Recall
that by definition, (e1,0

(i,1) ∪ e
1,1
(i,1)) ⊇ (Y ∪ Y ′) \ {y′1}. Our truth assignment σ sets σ(x1) =

true. Hence, by our definition of Z, we have y1 ∈ Z and y′1 6∈ Z. This means that
e1,0

(i,1) ∪ e
1,1
(i,1) indeed covers Z and, hence, all of Bu(i,1) . Note that we could have also

chosen λu(i,1) = {e2,0
(i,1), e

2,1
(i,1)}, since also the second literal of the first clause (i.e., ¬x2)

is true in σ. In this case, we would have (e2,0
(i,1) ∪ e

2,1
(i,1)) ⊇ (Y ∪ Y ′) \ {y2} and Z indeed

does not contain y2. Conversely, setting λu(i,1) = {e3,0
(i,1), e

3,1
(i,1)} would fail, because in this

case, y′3 6∈ (e3,0
(i,1) ∪ e

3,1
(i,1)) since x3 occurs positively in the first clause. On the other hand,

we have y′3 ∈ Z by definition of Z, because σ(x3) = false holds.

Checking that λu(i,2) as defined above covers Z is done analogously. Note that in the
second clause, only the third literal is satisfied by σ. Hence, setting λu(i,2) = {e3,0

(i,2), e
3,1
(i,2)}

is the only option to cover Bu(i,2) (in particular, to cover Z). Finally, note that σ as
defined above is not the only satisfying truth assignment of ϕ. For instance, we could
have chosen σ(x1) = σ(x2) = σ(x3) = true. In this case, we would define Z = {y1, y2, y3}
and the covers λu(i,j) would have to be chosen according to an arbitrary choice of one
literal per clause that is satisfied by this assignment σ. /

To prove the correctness of our problem reduction, we have to show the two equivalences:
first, that ghw(H) ≤ 2 if and only if ϕ is satisfiable and second, that fhw(H) ≤ 2 if and
only if ϕ is satisfiable. We prove the two directions of these equivalences separately.

Proof of the “if”-direction. First assume that ϕ is satisfiable. It suffices to show
that then H has a GHD of width ≤ 2, because fhw(H) ≤ ghw(H) holds. Let σ be a
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umin⊖1

{a1} ∪ A ∪ Y ∪

S ∪ Z ∪ {z1, z2}

u(1,1)

A′
min ∪ Amin∪

S ∪ Z ∪ {z1, z2}

up

A′
p ∪ Ap∪

S ∪ Z ∪ {z1, z2}

u(2n+3,m−1)

A′
(2n+3,m−1) ∪ A(2n+3,m−1)∪

S ∪ Z ∪ {z1, z2}

umax

{a′
1} ∪ A′ ∪ Y ′∪

S ∪ Z ∪ {z1, z2}

uA

{a1, a2, b1, b2} ∪ Y ∪

S ∪ {z1, z2}

uB

{b1, b2, c1, c2} ∪ Y ∪

S ∪ {z1, z2}

uC

{c1, c2, d1, d2} ∪ Y ∪

S ∪ {z1, z2}

u′
A

{a′
1, a

′
2, b

′
1, b

′
2}∪Y ′∪

S ∪ {z1, z2}

u′
B

{b′1, b
′
2, c

′
1, c

′
2}∪Y ′∪

S ∪ {z1, z2}

u′
C

{c′1, c
′
2, d

′
1, d

′
2}∪Y ′∪

S ∪ {z1, z2}

Figure 4.2: Intended path of the GHD of hypergraph H in the proof of Theorem 4.1

satisfying truth assignment. Let us fix for each j ≤ m, some kj ∈ {1, 2, 3} such that
σ(Lkjj ) = 1. By lj , we denote the index of the variable in the literal Lkjj , that is, Lkjj = xlj

or Lkjj = ¬xlj . For p = (i, j), let kp refer to kj and let Lkpp refer to Lkjj . Finally, we define
Z as Z = {yi | σ(xi) = 1} ∪ {y′i | σ(xi) = 0}.

A GHD G = 〈T, (Bu)u∈T , (λu)u∈T 〉 of width 2 for H is constructed as follows. T is a
path uC , uB, uA, umin	1, umin,. . . , umax, u′A, u′B, u′C . The construction is illustrated in
Figure 4.2. The precise definition of Bu and λu is given in Table 4.1. Clearly, the GHD
has width ≤ 2. We now show that G is indeed a GHD of H:

(1) For each edge e ∈ E, there is a node u ∈ T , such that e ⊆ Bu:

• ∀e ∈ EX : e ⊆ BuX for all X ∈ {A,B,C},
• ∀e′ ∈ E′X : e′ ⊆ Bu′X for all X ∈ {A,B,C},

• ep ⊆ Bup for p ∈ [2n+ 3;m]−,
• eyi ⊆ Bumin	1 (if y′i ∈ Z) or eyi ⊆ Bumax (if yi ∈ Z), respectively,
• ek,0p ⊆ Bumin	1 for p ∈ [2n+ 3;m]−,

• ek,1p ⊆ Bumax for p ∈ [2n+ 3;m]−,
• e0

(0,0) ⊆ Bumin	1 , e1
(0,0) ⊆ Bumax ,

• e0
max ⊆ Bumin	1 and e1

max ⊆ Bumax .

All of the above inclusions can be verified in Table 4.1.

(2) For each vertex v ∈ V , the set {u ∈ T | v ∈ Bu} induces a connected subtree of T ,
which is easy to verify in Table 4.1.

(3) For each u ∈ T , Bu ⊆ B(λu): the only inclusion which cannot be easily verified
in Table 4.1 is Bup ⊆ B(λup). In fact, this is the only place in the proof where
we make use of the assumption that ϕ is satisfiable. First, notice that the set
A′p ∪ Ap ∪ S ∪ {z1, z2} is clearly a subset of B(λup). It remains to show that
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Z ⊆ B(λup) holds for arbitrary p ∈ [2n+ 3;m]−. We show this property by a case
distinction on the form of Lkpp .

Case (1): First, assume that Lkpp = xlj holds. Then σ(xlj ) = 1 and, therefore,
y′lj 6∈ Z. But, by definition of ekp,0p and e

kp,1
p , vertex y′lj is the only element of

Y ∪ Y ′ not contained in B(λup). Since Z ⊆ (Y ∪ Y ′) and y′lj 6∈ Z, we have that
Z ⊆ B(λup).

Case (2): Now assume that Lkpp = ¬xlj holds. Then σ(xlj ) = 0 and, therefore,
ylj 6∈ Z. But, by definition of ekp,0p and e

kp,1
p , vertex ylj is the only element of

Y ∪ Y ′ not contained in B(λup). Since Z ⊆ (Y ∪ Y ′) and ylj 6∈ Z, we have that
Z ⊆ B(λup).

Two crucial lemmas. Before we prove the “only if’-direction, we define the notion of
complementary edges and state two important lemmas related to this notion.

Definition 4.1. Let e and e′ be two edges from the hypergraph H as defined before.
We say e′ is the complementary edge of e (or, simply, e, e′ are complementary edges)
whenever

• e ∩ S = S \ S′ for some S′ ⊆ S and

• e′ ∩ S = S′. /

Observe that for every edge in our construction that covers S \ S′ for some S′ ⊆ S there
is a complementary edge that covers S′, for example ek,0p and ek,1p , e0

(0,0) and e
1
(0,0), and so

on. In particular there is no edge that covers S completely. Moreover, consider arbitrary
subsets S1, S2 of S, s.t. (syntactically) S \ Si is part of the definition of ei for some
ei ∈ E(H) with i ∈ {1, 2}. Then S1 and S2 are disjoint.

We now present two lemmas needed for the “only if”-direction.

Lemma 4.2. Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an FHD of width ≤ 2 of the hypergraph
H constructed above. For every node u with S ∪ {z1, z2} ⊆ Bu and every pair e, e′ of
complementary edges, it holds that γu(e) = γu(e′).

Proof. First, we try to cover z1 and z2. For z1 we have to put total weight 1 on the edges
in E0, and to cover z2 we have to put total weight 1 on the edges in E1, where

E0 ={ek,0p | p ∈ [2n+ 3;m]− and 1 ≤ k ≤ 3} ∪
{e0

(0,0), e
0
max} ∪

{{a1, b1} ∪M1, {b1, c1} ∪M1, {c1, d1} ∪M1} ∪
{{a′1, b′1} ∪M ′1, {b′1, c′1} ∪M ′1, {c′1, d′1} ∪M ′1}
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E1 ={ek,1p | p ∈ [2n+ 3;m]− and 1 ≤ k ≤ 3} ∪
{e1

(0,0), e
1
max} ∪

{{a2, b2} ∪M2, {b2, c2} ∪M2, {c2, d2} ∪M2} ∪
{{a′2, b′2} ∪M ′2, {b′2, c′2} ∪M ′2, {c′2, d′2} ∪M ′2}

In order to also cover S with weight 2, we are only allowed to assign weights to the above
edges. Let Si be a subset of S, s.t. S \ Si ⊆ e0

i , where e0
i ∈ E0. Suppose γu(e0

i ) = wi.
Still, we need to put weight 1 on the vertices in Si. In order to do so, we can put at
most weight 1 − wi on the edges in E0 \ {e0

i }, which covers Si with weight at most
1 − wi. The only edge in E1 that intersects Si is the complementary edge e1

i of e0
i .

Hence, we have to set γu(e1
i ) ≥ wi. This holds for all edges e1 ∈ E1. Moreover, recall

that both
∑
e0∈E0 γu(e0) = 1 and

∑
e1∈E1 γu(e1) = 1 hold. Hence, we cannot afford to

set γu(e1
i ) > wi for some i, since this would lead to

∑
e1∈E1 γu(e1) > 1. We thus have

γu(e0
i ) = γu(e1

i ) = wi for every e0
i ∈ E0 and its complementary edge e1

i ∈ E1.

Lemma 4.3. Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an FHD of width ≤ 2 of the hypergraph H
constructed above and let p ∈ [2n+3;m]−. For every node u with S∪A′p∪Ap∪{z1, z2} ⊆
Bu, the only way to cover S ∪A′p ∪Ap ∪ {z1, z2} by a fractional edge cover γ of weight
≤ 2 is by putting non-zero weight exclusively on edges ek,0p and ek,1p with k ∈ {1, 2, 3}.
Moreover,

∑3
k=1 γ(ek,0p ) = 1 and

∑3
k=1 γ(ek,1p ) = 1 must hold.

Proof. As in the proof of Lemma 4.2, to cover z1 we have to put weight 1 on the edges
in E0 and to cover z2 we have to put weight 1 on the edges in E1, where E0 and E1 are
defined as in the proof of Lemma 4.2. Since we have width(F) ≤ 2, we have to cover
A′p ∪Ap ∪ S with the weight already put on the edges in E0 ∪ E1. In order to cover A′p,
we have to put weight 1 on the edges in E1

p , where

E1
p = {ek,1r | r ≥ p} ∪ {e1

max}.

Notice that, E1
p ⊆ E1 and therefore

∑
e∈E1\E1

p
γu(e) = 0. Similar, in order to cover Ap,

we have to put weight 1 on the edges in E0
p , where

E0
p = {ek,0s | s ≤ p} ∪ {e0

(0,0)}.

Again, since E0
p ⊆ E0,

∑
e∈E0\E0

p
γu(e) = 0. It remains to cover S ∪ {z1, z2}. By

Lemma 4.2, in order to cover S, z1 and z2, we have to put the same weight w on
complementary edges e and e′. The only complementary edges in the sets E0

p and E1
p are

edges of the form ek,0p and ek,1p with k ∈ {1, 2, 3}. In total, we thus have
∑3
k=1 e

k,0
p = 1

and
∑3
k=1 e

k,1
p = 1.

Proof of the “only if”-direction. It remains to show that ϕ is satisfiable if H has a
GHD or FHD of width ≤ 2. Due to the inequality fhw(H) ≤ ghw(H), it suffices to show
that ϕ is satisfiable if H has an FHD of width ≤ 2. For this, let F = 〈T, (Bu)u∈T , (γu)u∈T 〉
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be such an FHD. Let uA, uB, uC and u′A, u′B, u′C be the nodes that are guaranteed by
Lemma 4.1. We state several properties of the path connecting uA and u′A, which heavily
rely on Lemmas 4.2 and 4.3.

Claim A. The nodes u′A, u′B, u′C (resp. uA, uB, uC) are not on the path from uA to uC
(resp. u′A to u′C).

Proof of Claim A. We only show that none of the nodes u′i with i ∈ {A,B,C} is on the
path from uA to uC . The other property is shown analogously. Suppose to the contrary
that some u′i is on the path from uA to uC . Since uB is also on the path between uA and
uC we distinguish two cases:

• Case (1): u′i is on the path between uA and uB; then {b1, b2} ⊆ Bu′i . This contradicts
the property shown in Lemma 4.1 that u′i cannot cover any vertices outside H ′0.

• Case (2): u′i is on the path between uB and uC ; then {c1, c2} ⊆ Bu′i , which again
contradicts Lemma 4.1.

Hence, the paths from uA to uC and from u′A to u′C are indeed disjoint. �

Claim B. The following equality holds: nodes(A∪A′,F)∩{uA, uB, uC , u′A, u′B, u′C} = ∅.

Proof of Claim B. Suppose to the contrary that there is a uX (the proof for u′X is
analogous) for some X ∈ {A,B,C}, s.t. uX ∈ nodes(A ∪ A′,F); then there is some
a ∈ (A ∪A′), s.t. a ∈ BuX . This contradicts the property shown in Lemma 4.1 that uX
cannot cover any vertices outside H0. �

We are now interested in the sequence of nodes ûi that cover the edges e0
(0,0), emin, emin⊕1,

. . . , emax	1, emax. Before we formulate Claim C, it is convenient to introduce the
following notation. To be able to refer to the edges e0

(0,0), emin, emin⊕1, . . . , emax	1, e1
max

in a uniform way, we use emin	1 as synonym of e0
(0,0) and emax as synonym of e1

max. We
can thus define the natural order emin	1 < emin < emin⊕1 < · · · < emax	1 < emax on
these edges.

Claim C. The FHD F has a path containing nodes û1, . . . , ûN for some N , such that the
edges emin	1, emin, emin⊕1, . . . , emax	1, emax are covered in this order. More formally,
there is a mapping f : {min	1, . . . ,max} → {1, . . . , N}, s.t.

• ûf(p) covers ep and

• if p < p′ then f(p) ≤ f(p′).

By a path containing nodes û1, . . . , ûN we mean that û1 and ûN are nodes in F , such
that the nodes û2, . . . , ûN−1 lie (in this order) on the path from û1 to ûN . Of course, the
path from û1 to ûN may also contain further nodes, but we are not interested in whether
they cover any of the edges ep.
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Proof of Claim C. Suppose to the contrary that no such path exists. Let p ≥ min be
the maximal value such that there is a path containing nodes û1, û2, . . . , ûl, which cover
emin	1, . . . , ep in this order. Clearly, there exists a node û that covers ep⊕1 = A′p⊕1∪Ap⊕1.
We distinguish four cases:

• Case (1): û1 is on the path from û to all other nodes ûi, with 1 < i ≤ l. By
the connectedness condition, û1 covers A′p. Hence, in total û1 covers A′p ∪ A
with A′p = {a′min, . . . , a

′
p} and A = {amin, . . . , amax}. Then û1 covers all edges

emin	1, . . . , ep. Therefore, the path containing nodes û1 and û covers emin	1, . . . ,
ep⊕1 in this order, which contradicts the maximality of p.

• Case (2): û = û1, hence, û1 covers A′p⊕1 ∪ A with A′p⊕1 = {a′min, . . . , a
′
p⊕1} and

A = {amin, . . . , amax}. Then, û1 covers all emin	1, . . . , ep⊕1, which contradicts the
maximality of p.

• Case (3): û is on the path from û1 to ûl and û 6= û1. Hence, û is between two
nodes ûi and ûi+1 for some 1 ≤ i < l or û = ûi+1 for some 1 ≤ i < l − 1. The
following arguments hold for both cases. Now, there is some q ≤ p, such that
eq is covered by ûi+1 and eq	1 is covered by ûi. Therefore, û covers Aq either
by the connectedness condition (if û is between ûi and ûi+1) or simply because
û = ûi+1. Hence, in total, û covers A′p⊕1 ∪ Aq with A′p⊕1 = {a′min, . . . , a

′
p⊕1} and

Aq = {aq, aq⊕1, . . . , ap, ap⊕1, . . . amax}. Then, û covers all edges eq, eq⊕1, . . . , ep⊕1.
Therefore, the path containing nodes û1, . . . , ûi, û covers emin	1, . . . , ep⊕1 in this
order, which contradicts the maximality of p.

• Case (4): There is a u∗ on the path from û1 to ûl, such that the paths from û1 to û
and from û to ûl go through u∗ and, moreover, u∗ 6= û1. Then, u∗ is either between
ûi and ûi+1 for some 1 ≤ i < l or u∗ = ûi+1 for some 1 ≤ i < l − 1. The following
arguments hold for both cases. There is some q ≤ p, such that eq is covered by
ûi+1 and eq	1 is covered by ûi. By the connectedness condition, u∗ covers

– A′p = {a′min, . . . , a
′
p}, since u∗ is on the path from û to ûl, and

– Aq = {aq, . . . , ap, ap⊕1, . . . amax}, since u∗ is on the path from û1 to ûi+1 or
u∗ = ûi+1.

Then u∗ covers all edges eq, eq⊕1, . . . , ep. Therefore, the path containing the nodes
û1, . . . , ûi, u∗, û covers emin	1, . . . , ep⊕1 in this order, which contradicts the maxi-
mality of p. �

So far we have shown, that there are three disjoint paths from uA to uC , from u′A to u′C
and from û1 to ûN , respectively. It is easy to see, that uA is closer to the path û1, . . . ,
ûN than uB and uC , since otherwise uB and uC would have to cover a1 as well, which is
impossible by Lemma 4.1. The same also holds for u′A. In the next claims we will argue
that the path from uA to u′A goes through some node û of the path from û1 to ûN . We
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û1:
{a1} ⊆ Bû1 û

uA:
S ∪ {z1, z2, a1} ⊆ BuA

û′
ûN :

{a′1} ⊆ BûN

u′A:
S ∪ {z1, z2, a

′
1} ⊆ Bu′

A

(a)

û1:
{a1} ⊆ Bû1 û

uA:
S ∪ {z1, z2, a1} ⊆ BuA

û′
ûN :

{a′1} ⊆ BûN

u′A:
S ∪ {z1, z2, a

′
1} ⊆ Bu′

A

û2 ûN−1

(b)

Figure 4.3: Arrangement of nodes û1, û, û′, and ûN from Claim E (a) and Claim G (b).

write π(û1, ûN ) as a short-hand notation for the path from û1 to ûN . Next, we state
some important properties of π(û1, ûN ) and the path from uA to u′A.

Claim D. In the FHD F of H of width ≤ 2, the path from uA to u′A has non-empty
intersection with π(û1, ûN ).

Proof of Claim D. Suppose to the contrary that the path from uA to u′A is disjoint from
π(û1, ûN ). We distinguish three cases:

• Case (1): uA is on the path from u′A to (some node in) π(û1, ûN ). Then, by the
connectedness condition, uA must contain a′1, which contradicts Lemma 4.1.

• Case (2): u′A is on the path from uA to π(û1, ûN ). Analogously to Case (1), we get
a contradiction by the fact that then u′A must contain a1.

• Case (3): There is a node u∗ on the path from uA to u′A, which is closest to π(û1, ûN ),
i.e., u∗ lies on the path from uA to u′A and both paths, the one connecting uA with
π(û1, ûN ) and the one connecting u′A with π(û1, ûN ), go through u∗. Hence, by the
connectedness condition, the bag of u∗ contains S ∪ {z1, z2, a1, a

′
1}. By Lemma 4.2,

in order to cover S ∪ {z1, z2} with weight ≤ 2, we are only allowed to put non-zero
weight on pairs of complementary edges. However, then it is impossible to achieve
also weight ≥ 1 on a1 and a′1 at the same time. �

Claim E. In the FHD F of H of width ≤ 2 there are two distinct nodes û and û′ in
the intersection of the path from uA to u′A with π(û1, ûN ), s.t. û is the node in π(û1, ûN )
closest to uA and û′ is the node in π(û1, ûN ) closest to u′A. Then, on the path π(û1, ûN ),
û comes before û′. See Figure 4.3 (a) for a graphical illustration of the arrangement of
the nodes û1, û, û′, and ûN on the path π(û1, ûN ).

Proof of Claim E. First, we show that û and û′ are indeed distinct. Suppose towards
a contradiction that they are not, i.e. û = û′. Then, by connectedness, û has to cover
S ∪ {z1, z2}, because S ∪ {z1, z2} is contained in BuA and in Bu′A . Moreover, again by
connectedness, û also has to cover {a1, a

′
1}, because a1 is contained in Bû1 and in BuA

and a′1 is contained in BûN and in Bu′A . As in Case (3) in the proof of Claim D, this is
impossible by Lemma 4.2. Hence, û and û′ are distinct.
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Second, we show that, on the path from û1 to ûN , the node û comes before û′. Suppose
to the contrary that û′ comes before û. Then, by the connectedness condition, û covers
the following (sets of) vertices:

• a′1, since we are assuming that û′ comes before û, i.e., û is on the path from ûN to
u′A;

• a1, since û is on the path from û1 to uA;

• S ∪ {z1, z2}, since û is on the path from uA to u′A.

In total, û has to cover all vertices in S ∪ {z1, z2, a1, a
′
1}. Again, by Lemma 4.2, this is

impossible with weight ≤ 2. �

Claim F. In the FHD F of H of width ≤ 2 the path π(û1, ûN ) has at least 3 nodes ûi,
i.e., N ≥ 3.

Proof of Claim F. First, it is easy to verify that N ≥ 2 must hold. Otherwise, a single node
would have to cover {emin	1, emin, emin⊕1, . . . , emax	1, emax} and, hence, in particular,
S ∪ {z1, z2, a1, a

′
1}, which is impossible as we have already seen in Case (3) of the proof

of Claim D.

It remains to prove N ≥ 3. Suppose to the contrary that N = 2. By the problem
reduction, hypergraph H has distinct edges emin	1, emin and emax. Hence, û1 covers at
least emin	1 and û2 covers at least emax. Recall from Claim E the nodes û and û′, which
constitute the endpoints of the intersection of the path from uA to u′A with the path
π(û1, ûN ), cf. Figure 4.3(a). Here we are assuming N = 2. We now show that, by the
connectedness condition of FHDs, the nodes û and û′ must cover certain vertices, which
will lead to a contradiction by Lemma 4.2.

• vertices covered by û: node û is on the path between uA and u′A. Hence, it covers
S ∪ {z1, z2}. Moreover, û is on the path between û1 and uA (or even coincides with
û1). Hence, it also covers a1. In total, û covers at least S ∪ {z1, z2, a1}.

• vertices covered by û′: node û′ is on the path between uA and u′A. Hence, it covers
S ∪ {z1, z2}. Moreover, û′ is on the path between û2 and u′A (or even coincides
with û2). Hence, it also covers a′1. In total, û′ covers at least S ∪ {z1, z2, a

′
1}.

One of the nodes û1 or û2 must also cover the edge emin. We inspect these 2 cases
separately:

• Case (1): suppose that the edge emin is covered by û1. Then, û1 covers vertex
a′min, which is also covered by û2. Hence, also û covers a′min. In total, û covers S ∪
{z1, z2, a1, a

′
min}. However, by Lemma 4.2, we know that, to cover S ∪{z1, z2} with
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weight ≤ 2, we are only allowed to put non-zero weight on pairs of complementary
edges. Hence, it is impossible to achieve also weight ≥ 1 on a1 and on a′min at the
same time.

• Case (2): suppose that the edge emin is covered by û2. Then, û2 covers vertex
amin (actually, it even covers all of A), which is also covered by û1. Hence, also û′
covers amin. In total, û′ covers S ∪ {z1, z2, a

′
1, amin}. Again, this is impossible by

Lemma 4.2.

Hence, the path π(û1, ûN ) indeed has at least 3 nodes ûi. �

Claim G. In the FHD F of H of width ≤ 2 all the nodes û2, . . . , ûN−1 are on the path
from uA to u′A. For the nodes û and û′ from Claim E, this means that the nodes û1, û,
û2, ûN−1, û′, ûN are arranged in precisely this order on the path π(û1, ûN ) from û1 to
ûN , cf. Figure 4.3 (b). The node û may possibly coincide with û1 and û′ may possibly
coincide with ûN .

Proof of Claim G. We have to prove that û lies between û1 and û2 (not including û2)
and û′ lies between ûN−1 and ûN (not including ûN−1). For the first property, suppose
to the contrary that û does not lie between û1 and û2 or û = û2. This means, that there
exists i ∈ {2, . . . , N − 1} such that û lies between ûi and ûi+1, including the case that û
coincides with ûi. Note that, by Claim E, û cannot coincide with ûN , since there is yet
another node û′ between û and ûN .

By definition of ûi and ûi+1, there is a p ∈ [2n+ 3;m], such that both ûi and ûi+1 cover
a′p. Then, by the connectedness condition, û covers the following (sets of) vertices:

• a′p, since û is on the path from ûi to ûi+1 (or û coincides with ûi),

• a1, since û is on the path from û1 to uA,

• S ∪ {z1, z2}, since û is on the path from uA to u′A.

However, by Lemma 4.2, we know that, to cover S ∪{z1, z2} with weight ≤ 2, we are only
allowed to put non-zero weight on pairs of complementary edges. Hence, it is impossible
to achieve also weight ≥ 1 on a′p and a1 at the same time.

It remains to show that û′ lies between ûN−1 and ûN (not including ûN−1). Suppose
to the contrary that it does not. Then, analogously to the above considerations for û,
it can be shown that there exists some p ∈ [2n+ 3;m], such that û′ covers the vertices
S ∪ {z1, z2, ap, a

′
1}. Again, this is impossible by Lemma 4.2. �

By Claim C, the decomposition F contains a path û1 · · · ûN that covers the edges
emin	1, emin, emin⊕1, . . . , emax	1, emax in this order. We next strengthen this property
by showing that every node ûi covers exactly one edge ep.

Claim H. Each of the nodes û1, . . . , ûN covers exactly one of the edges emin	1, emin,
emin⊕1, . . . , emax	1, emax.
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Proof of Claim H. We prove this property for the “outer nodes” û1, ûN and for the “inner
nodes” û2 · · · ûN−1 separately. We start with the “outer nodes”. The proof for û1 and ûN
is symmetric. We thus only work out the details for û1. Suppose to the contrary that û1
not only covers emin	1 but also emin. We distinguish two cases according to the position
of node û in Figure 4.3 (b):

• Case (1): û = û1. Then, û1 has to cover the following (sets of) vertices:

– S ∪{z1, z2}, since û is on the path from uA to u′A and we are assuming û = û1.
– a1, since û1 covers emin	1,
– a′min, since we are assuming that û1 also covers emin.

By applying Lemma 4.2, we may conclude that the set S ∪ {z1, z2, a1, a
′
min} cannot

be covered by a fractional edge cover of weight ≤ 2.

• Case (2): û 6= û1. Then û is on the path from û1 to û2. Hence, û has to cover the
following (sets of) vertices:

– S ∪ {z1, z2}, since û is on the path from uA to u′A,
– a1, since û is on the path from uA to û1,
– a′min, since û is on the path from û1 to û2.

As in Case (1) above, S ∪ {z1, z2, a1, a
′
min} cannot be covered by a fractional edge

cover of weight ≤ 2 due to Lemma 4.2.

It remains to consider the “inner” nodes ûi with 2 ≤ i ≤ N − 1. Each such ûi has to
cover S ∪ {z1, z2} since all these nodes are on the path from uA to u′A by Claim G. Now
suppose that ûi covers ep = A′p ∪ Ap for some p ∈ {emin, . . . , emax	1}. By Lemma 4.3,
covering all of the vertices A′p ∪Ap ∪ S ∪ {z1, z2} by a fractional edge cover of weight ≤ 2
requires that we put total weight 1 on the edges ek,0p and total weight 1 on the edges ek,1p
with k ∈ {1, 2, 3}. However, then it is impossible to cover also ep′ for some p′ with p′ 6= p.
This concludes the proof of Claim F. �

We can now associate with each ûi for 1 ≤ i ≤ N the corresponding edge ep and write up
to denote the node that covers the edge ep. By Claim G, we know that all of the nodes
umin . . . , umax	1 are on the path from uA to u′A. Hence, by the connectedness condition,
all these nodes cover S ∪ {z1, z2}.

We are now ready to construct a satisfying truth assignment σ of ϕ. For each i ≤
2n + 3, let Xi be the set Bu(i,1) ∩ (Y ∪ Y ′). As Y ⊆ BuA and Y ′ ⊆ Bu′A , the sequence
X1 ∩ Y, . . . ,X2n+3 ∩ Y is non-increasing and the sequence X1 ∩ Y ′, . . . , X2n+3 ∩ Y ′ is
non-decreasing. Furthermore, as all edges eyi = {yi, y′i} must be covered by some node in
F , we conclude that for each i and j, yj ∈ Xi or y′j ∈ Xi. Then, there is some s ≤ 2n+ 2
such that Xs = Xs+1. Furthermore, all nodes between u(s,1) and u(s+1,1) cover Xs. We
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derive a truth assignment for x1, . . . , xn from Xs as follows. For each l ≤ n, we set
σ(xl) = 1 if yl ∈ Xs and otherwise σ(xl) = 0. Note that in the latter case y′l ∈ Xs.

Claim I. The constructed truth assignment σ is a model of ϕ.

Proof of Claim I. We have to show that every clause cj = L1
j ∨ L2

j ∨ L3
j of ϕ is true in

σ. Choose an arbitrary j ∈ {1, . . . ,m}. We have to show that there exists a literal in cj
which is true in σ. To this end, we inspect the node u(s,j), which, by construction, lies
between u(s,1) and u(s+1,1). Let p = (s, j). Then we have A′p ∪Ap ∪ S ∪ {z1, z2} ⊆ Bup .
Moreover, by the definition of Xs, we also have Xs ⊆ Bup . By Lemma 4.3, the only
way to cover Bup with weight ≤ 2 is by using exclusively the edges ek,0p and ek,1p with
k ∈ {1, 2, 3}. More specifically, we have

∑3
k=1 γup(ek,0p ) = 1 and

∑3
k=1 γup(ek,1p ) = 1.

Therefore, γup(ek,0p ) > 0 for some k. We distinguish two cases depending on the form of
literal Lkj :

• Case (1): First, suppose Lkj = xl. By Lemma 4.2, complementary edges must have
equal weight. Hence, from γup(ek,0p ) > 0 it follows that also γup(ek,1p ) > 0 holds.
Thus, the weight on y′l is less than 1, which means that y′l 6∈ B(γup) and consequently
y′l 6∈ Xs. Since this implies that yl ∈ Xs, we indeed have that σ(xl) = 1.

• Case (2): Conversely, suppose Lkj = ¬xl. Since γup(ek,0p ) > 0, the weight on yl is
less than 1, which means that yl 6∈ B(γup) and consequently yl 6∈ Xs. Hence, we
have σ(xl) = 0.

In either case, literal Lkp is satisfied by σ and therefore, the j-th clause cj is satisfied by
σ. Since j was arbitrarily chosen, σ indeed satisfies ϕ. �

Claim I completes the proof of Theorem 4.1.

We conclude this section by mentioning that the above reduction is easily extended to
k + ` for arbitrary ` ≥ 1: for integer values `, simply add a clique of 2` fresh vertices
v1, . . . , v2` to H and connect each vi with each “old” vertex in H. Now assume a rational
value ` ≥ 1, i.e., ` = r/q for natural numbers r, q with r > q > 0. To achieve a rational
bound k + r/q, we add r fresh vertices and add hyperedges {vi, vi⊕1, . . . , vi⊕(q−1)} with
i ∈ {1, . . . , r} to H, where a⊕ b denotes a+ b modulo r. Again, we connect each vi with
each “old” vertex in H. With this construction we can give NP-hardness proofs for any
(fractional) k ≥ 3. For all fractional values k < 3 (except for k = 2) different gadgets
and ideas might be needed to prove NP-hardness of Check(FHD,k), which we leave for
future work.

4.2 Efficient Computation of GHDs
As discussed in Chapter 1 we are interested in finding a realistic and non-trivial criterion
on hypergraphs that makes the Check(GHD, k) problem tractable for fixed k. We thus
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Figure 4.4: Hypergraph H0 from Example 4.2

propose here such a simple property, namely the bounded intersection of two or more
edges.

Definition 4.2. The intersection width iwidth(H) of a hypergraph H is the maximum
cardinality of any intersection e1 ∩ e2 of two distinct edges e1 and e2 of H. We say that
a hypergraph H has the i-bounded intersection property (i-BIP) if iwidth(H) ≤ i holds.

Let C be a class of hypergraphs. We say that C has the bounded intersection property
(BIP) if there exists some integer constant i such that every hypergraph H in C has the
i-BIP. Class C has the logarithmically-bounded intersection property (LogBIP) if for each
of its elements H, iwidth(H) is O(logn), where n denotes the size of the hypergraph
H. /

The BIP criterion is indeed non-trivial, as several well-known classes of unbounded ghw
enjoy the 1-BIP, such as cliques and grids. Moreover, our empirical study in Section 5.3
suggests that the overwhelming number of CQs enjoys the 2-BIP (i.e., one hardly joins
two relations over more than 2 attributes). To allow for a yet bigger class of hypergraphs,
the BIP can be relaxed as follows.

Definition 4.3. The c-multi-intersection width c-miwidth(H) of a hypergraph H is the
maximum cardinality of any intersection e1 ∩ · · · ∩ ec of c distinct edges e1, . . . , ec of H.
We say that a hypergraph H has the i-bounded c-multi-intersection property (ic-BMIP)
if c-miwidth(H) ≤ i holds.

Let C be a class of hypergraphs. We say that C has the bounded multi-intersection
property (BMIP) if there exist constants c and i such that every hypergraph H in C has
the ic-BMIP. Class C of hypergraphs has the logarithmically-bounded multi-intersection
property (LogBMIP) if there is a constant c such that for the hypergraphs H ∈ C ,
c-miwidth(H) is O(logn), where n denotes the size of the hypergraph H. /
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Bu v1, v2, v3, v6, v7, v9, v10
λu e1, e2, e6

Bu v3, v4, v5, , v6, v7, v9, v10
λu e3, e5

Bu v1, v7, v8, v9, v10
λu e7, e8

Figure 4.5: HD of hypergraph H0 in Figure 4.4

Example 4.2. Figure 4.4 shows the hypergraph H0 = (V0, E0) with ghw(H0) = 2 but
hw(H0)=3. (which is from [53], which, in turn, was inspired by work of Adler [4]).
Figure 4.5 shows an HD of width 3 and Figure 4.6 shows GHDs of width 2 for the
hypergraph H0. The BIP and the 3-BMIP of H0 is 1. Starting from c=4, the c-BMIP is
0. /

The LogBMIP is the most liberal restriction on classes of hypergraphs introduced in
Definitions 4.2 and 4.3. The main result in this section will be that the Check(GHD, k)
problem with fixed k is tractable for any class of hypergraphs satisfying this criterion.

Towards this result, first recall that the difference between HDs and GHDs lies in the
“special condition” required by HDs. Assume a hypergraph H = (V (H), E(H)) and an
arbitrary GHD H = 〈T, (Bu)u∈T , (λu)u∈T 〉 of H. Then H is not necessarily an HD, since
it may contain a special condition violation (SCV), i.e.: there can exist a node u, an edge
e ∈ λu and a vertex v ∈ V , s.t. v ∈ e (and, hence, v ∈ B(λu)), v 6∈ Bu and v ∈ V (Tu).
Clearly, if we could be sure that E(H) also contains the edge e′ = e ∩Bu, then we would
simply replace e in λu by e′ and would thus get rid of this SCV.

Example 4.3 (Example 4.2 continued). The GHDs in Figure 4.6 (a) and (b) violate the
special condition in node u since the edge e2 containing vertex v2 is in λu and v2 is in
V (Tu) but not in Bu. Adding

e′2 = e2 ∩Bu = {v2, v3, v9} ∩ {v3, v6, v7, v9, v10} = {v3, v9}

to H0 and replacing e2 with e′2 in λu would repair the SCV at node u of the GHDs in
Figure 4.6. /

Now our goal is to define a polynomial-time computable function f which, to each
hypergraph H and integer k, associates a set f(H, k) of additional hyperedges such that
ghw(H) = k iff hw(H ′) = k with H = (V (H), E(H)) and H ′ = (V (H), E(H) ∪ f(H, k)).
From this it follows immediately that ghw(H) is computable in polynomial time. The
function f is defined in such a way that f(H, k) only contains subsets of hyperedges of
H. Thus, f is a subedge function as described in [53] and a GHD of the same width can
be easily obtained from any HD of H ′. It is easy to see and well-known [53] that for each
subedge function f , and each H and k, ghw(H) ≤ hw(H ∪ f(H, k)) ≤ hw(H). Moreover,
for the “limit” subedge function f+ where f+(H, k) consists of all possible non-empty
subsets of edges of H, we have that hw(H ∪ f+(H, k)) = ghw(H) [4, 53]. Of course, in
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Bu v3, v6, v7, v9, v10
λu e2, e6

Bu v3, v7, v8, v9, v10
λu e3, e7

Bu v1, v2, v3, v8, v9, v10
λu e2, e8

Bu v3, v6, v9, v10
λu e3, e5

Bu v3, v4, v5, v6, v9, v10
λu e3, e5

u′:

u0 = u:

u1:

u2 = u∗:

(a)

Bu v3, v6, v7, v9, v10
λu e2, e6

Bu v3, v7, v8, v9, v10
λu e3, e7

Bu v1, v2, v3, v8, v9, v10
λu e2, e8

Bu v3, v4, v5, v6, v9, v10
λu e3, e5

u0 = u:

u1:

u2 = u∗:

(b)

Figure 4.6: (a) non bag-maximal vs. (b) bag-maximal GHD of hypergraph H0 in
Figure 4.4

general, f+ contains an exponential number of edges. The important point is that our
function f will achieve the same, while generating a polynomial and PTime-computable
set of edges only.

We start by introducing a useful property of GHDs, which we will call bag-maximality.
Let H = 〈T, (Bu)u∈T , (λu)u∈T 〉 be a GHD of some hypergraph H = (V (H), E(H)). For
each node u in T , we have Bu ⊆ B(λu) by definition of GHDs and, in general, B(λu)\Bu
may be non-empty. We observe that it is sometimes possible to take some vertices from
B(λu)\Bu and add them to Bu without violating the connectedness condition. Of course,
such an addition of vertices to Bu does not violate any of the other conditions of GHDs.
Moreover, it does not increase the width.

Definition 4.4. Let H = 〈T, (Bu)u∈T , (λu)u∈T 〉 be a GHD of some hypergraph H =
(V (H), E(H)). We call H bag-maximal, if for every node u in T , adding a vertex
v ∈ B(λu) \Bu to Bu would violate the connectedness condition. /

It is easy to verify that if H has a GHD of width ≤ k, then it also has a bag-maximal
GHD of width ≤ k.

Lemma 4.4. For every GHD H = 〈T, (Bu)u∈T , (λu)u∈T 〉 of some hypergraph H =
(V (H), E(H)), there exists a bag-maximal GHD H′ = 〈T, (B′u)u∈T , (λu)u∈T 〉 of H, such
that H and H′ have the same width.

Proof. Start with a GHD of width k of H. As long as there exists a node u ∈ T and a
vertex v ∈ B(λu) \ Bu, such that v can be added to Bu without destroying the GHD
properties, select such a node u and vertex v arbitrarily and add v to Bu. By exhaustive
application of this transformation, a bag-maximal GHD of width k of H is obtained.

Example 4.4 (Example 4.3 continued). Clearly, the GHD in Figure 4.6(a) violates
bag-maximality in node u′, since the vertices v4 and v5 can be added to Bu′ without
violating any GHD properties. If we add v4 and v5 to Bu′ , then bag Bu′ at node u′ and
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the bag at its child node are the same, which allows us to delete one of the nodes. This
results in the GHD given in Figure 4.6(b), which is bag-maximal. In particular, the vertex
v2 cannot be added to Bu0 : indeed, adding v2 to Bu0 would violate the connectedness
condition, since v2 is not in Bu1 but in Bu2 . /

So from now on, we will restrict ourselves w.l.o.g. to bag-maximal GHDs. Before we
prove a crucial lemma, we introduce some useful notation:

Definition 4.5. Let H = 〈T, (Bu)u∈T , (λu)u∈T 〉 be an GHD of a hypergraph H. More-
over, let u be a node in H and let e ∈ λu such that e \ Bu 6= ∅ holds. Let u∗ denote
the node closest to u, such that u∗ covers e, i.e., e ⊆ Bu∗. Then, we call the path
π = (u0, u1, . . . , ul) with u0 = u and ul = u∗ the critical path of (u, e) denoted as
critp(u, e). /

Lemma 4.5. Let H = 〈T, (Bu)u∈T , (λu)u∈T 〉 be a bag-maximal GHD of a hypergraph
H = (V (H), E(H)), let u ∈ T , e ∈ λu, and e \ Bu 6= ∅. Let π = (u0, u1, . . . , u`) with
u0 = u be the critical path of (u, e). Then the following equality holds.

e ∩Bu = e ∩
⋂̀
i=1

B(λui)

Proof. “⊆”: Given that e ⊆ Bu` and by the connectedness condition, e ∩Bu must be a
subset of Bui for every i ∈ {1, . . . , `}. Therefore, e ∩Bu ⊆ e ∩

⋂`
i=1B(λui) holds.

“⊇”: Assume to the contrary that there exists some vertex v ∈ e with v 6∈ Bu but
v ∈

⋂`
i=1B(λui). By e ⊆ Bu` , we have v ∈ Bu` . By the connectedness condition,

along the path u0, . . . , u` with u0 = u, there exists α ∈ {0, . . . , ` − 1}, s.t. v 6∈ Buα
and v ∈ Buα+1 . However, by the assumption, v ∈

⋂`
i=1B(λui) holds. In particular,

v ∈ B(λuα). Hence, we could safely add v to Buα without violating the connectedness
condition nor any other GHD condition. This contradicts the bag-maximality of H.

Example 4.5 (Example 4.3 continued). Consider root node u of the GHD in Figure
4.6(b). We have e2 ∈ λu and e2 \ Bu = {v2} 6= ∅. On the other hand, e2 is covered
by u2. Hence, the critical path of (u, e2) is π = (u, u1, u2). It is easy to verify that
e2 ∩Bu = e2 ∩ (e3 ∪ e7) ∩ (e8 ∪ e2) = {v3, v9} indeed holds. /

We are now ready to prove the main result of this section.

Theorem 4.2. For every hypergraph class C that enjoys the LogBMIP, and for every
constant k ≥ 1, the Check(GHD, k) problem is tractable, i.e., given a hypergraph H,
it is feasible in polynomial time to check ghw(H) ≤ k and, if so, to compute a GHD of
width k of H.

Proof. Let H = (V (H), E(H)) be an arbitrary hypergraph. Our goal is to show that
there exists a polynomially bounded, polynomial-time computable set f(H, k) of subedges
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of H, such that ghw(H) = k iff hw(H ′) = k with H ′ = (V (H), E(H) ∪ f(H, k)). By our
considerations above, in order to guarantee the equivalence ghw(H) = k iff hw(H ′) = k,
it suffices to construct f(H, k) in such a way that, in every GHD G of H, for every node
u in G, and every edge e ∈ λu, the set f(H, k) contains the subedge e′ = e ∩Bu.

Let H = 〈T, (Bu)u∈T , (λu)u∈T 〉 be a bag-maximal GHD of H, let u ∈ T , e ∈ λu,
and e \ Bu 6= ∅. Let π = (u0, u1, . . . , u`) with u0 = u be the critical path of (u, e).
By Lemma 4.5, the equality e ∩ Bu = e ∩

⋂`
i=1B(λui) holds. For i ∈ {1, . . . , `}, let

λui = {ei1, . . . , eiji} with ji ≤ k. Then e ∩
⋂`
i=1B(λui) and, therefore, also e ∩Bu, is of

the form
e ∩ (e11 ∪ · · · ∪ e1j1) ∩ · · · ∩ (e`1 ∪ · · · ∪ e`j`).

We want to construct f(H, k) in such a way that it contains all possible sets e ∩Bu of
vertices. To this end, we proceed by a stepwise transformation of the above intersection
of unions into a union of intersections via distributivity of ∪ and ∩.

For i ∈ {0, . . . , `}, let Ii = e ∩
⋂i
α=1B(λuα) = e ∩

⋂i
α=1(eα1 ∪ · · · ∪ eαjα). Then I0 = e.

For I1 we have to distinguish two cases: if e ∈ λu1 , then e ⊆ B(λi1) and, therefore,
I1 = I0. If e 6∈ λu1 , then I1 = (e∩ e11)∪ · · · ∪ (e∩ e1j1). In the latter case, for computing
I2, we have to go through all sets (e ∩ e1β) with β ∈ {1, . . . , j1} and distinguish the two
cases if {e, e1β}∩λu2 6= ∅ holds or not. If it holds, then we let (e∩ e1β) in the disjunction
of I1 unchanged. Otherwise we replace it by (e ∩ e1β ∩ e21) ∪ · · · ∪ (e ∩ e1β ∩ e2j2). This
splitting of intersections into unions of intersections can be iterated over all i ∈ {1, . . . , `}
in order to arrive at I` = e ∩

⋂`
i=1B(λui) = e∩Bu, where I` is represented as a union of

intersections.

We formalize the computation of the intersections in I0, . . . , I` by constructing the “
⋃⋂

-
tree” in Algorithm 4.1 “Union-of-Intersections-Tree”. In a loop over all i ∈
{1, . . . , `}, we thus compute trees Ti such that each node p in Ti is labelled by a set label(p)
of edges. By int(p) we denote the intersection of the edges in label(p). The parent-child
relationship between a node p and its child nodes p1, . . . , pjα corresponds to a splitting step,
where the intersection int(p) is replaced by the union (int(p)∩ eα1)∪ · · · ∪ (int(p)∩ eαjα).
It can be proved by a straightforward induction on i that, in the tree Ti, the union of
int(p) over all leaf nodes p of Ti yields precisely the union-of-intersections representation
of Ii.

We observe that, in the tree T`, each node has at most k child nodes. Nevertheless, T`
can become exponentially big since we have no appropriate bound on the length ` of the
critical path. Recall, however, that we are assuming the LogBMIP, i.e., there exists a
constant c > 1, s.t. any intersection of ≥ c edges of H has at most a logn elements, where
a is a constant and n denotes the size of H. Now let T ∗ be the reduced

⋃⋂
-tree, which

is obtained from T` by cutting off all nodes of depth greater than c− 1. Clearly, T ∗ has
at most kc−1 leaf nodes and the total number of nodes in T ∗ is bounded by (c− 1)kc−1.

The set f(H, k) of subedges that we add to H will consist in all possible sets I` that we
can obtain from all possible critical paths π = (u0, u1, . . . , u`) in all possible bag-maximal
GHDs H of width ≤ k of H. We only show that, in case of the LogBMIP, the number of
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Algorithm 4.1: Union-of-Intersections-Tree
input :GHD H of H, an edge e ∈ E(H), critical path π = (u0, . . . , u`) of H
output :

⋃⋂
-tree T`

/* Initialization: compute (N,E) for T0 */
1 N ← {p};
2 E ← ∅;
3 label(p)← {e};
4 T ← (N,E);
/* Compute Ti from Ti−1 in a loop over i */

5 for i← 1 to ` do
6 foreach leaf node p of T do
7 if label(p) ∩ λui = ∅ then
8 Let λui = {ei1, . . . , eiji};
9 Create new nodes {p1, . . . , pji};

10 for α← 1 to ji do label(pα)← label(pα) ∪ {eiα};
11 N ← N ∪ {p1, . . . , pji};
12 E ← E ∪ {(p, p1), . . . , (p, pji)};
13 end
14 end
15 T ← (N,E);
16 end

possible sets I` is polynomially bounded. The polynomial-time computability of this set
of sets is then easy to see. The set of all possible sets I` is obtained by first considering
all possible reduced

⋃⋂
-trees T ∗ and then considering all sets I` that correspond to

some extension T` of T ∗.

First, let m denote the number of edges in E(H), then the number of possible reduced⋃⋂
-trees T ∗ for given H and k is bounded by m ·m(c−1)kc−1 . This can be seen as follows:

we can first construct the complete k-ary tree of depth c − 1. Clearly, this tree has
≤ (c − 1)kc−1 nodes. The root is labelled with edge e. Now we may label each other
node in this tree either by a set of edges which is obtained from the label of its parent by
adding one new edge (in particular, by an edge different from e) to express that such
a node with such a label exists in T ∗ . Or we may label a node (and consequently all
its descendants) by some stop symbol ⊥ to express that T ∗ shall not contain this node.
Hence, in total, we have m choices for the initial

⋃⋂
-tree T0 (namely the edge e labelling

the root) and ≤ m(c−1)kc−1 choices to expand T0 to T ∗.

It remains to determine the number of possible sets I` that one can get from possible
extensions T` of T ∗. Clearly, if a leaf node in T ∗ is at depth < c− 1, then no descendants
at all of this node have been cut off. In contrast, a leaf node p in T ∗ at depth c − 1
may be the root of a whole subtree in T`. Let U(p) denote the union of the intersections
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e2

e2, e3 e2, e7

Figure 4.7:
⋃⋂

-tree of the critical path (u, u1, u
∗) of (u, e2) in Figure 4.6(b)

represented by all leaf nodes below p. By construction of T`, U(p) ⊆ int(p) holds.
Moreover, by the LogBMIP, |int(p)| ≤ a logn for some constant a. Hence, U(p) takes
one out of at most 2a logn = na possible values.

In total, an upper bound on the number of possible sets I` (and, hence, on |f(H, k)|) is
obtained as follows: there are at most m ·m(c−1)kc−1 reduced trees T ∗; each such tree has
at most kc−1 leaf nodes, and each leaf node represents at most na different sets of vertices.
Putting all this together, we conclude that |f(H, k)| is bounded by m ·m(c−1)kc−1 · nakc−1

for some constant a.

Example 4.6 (Example 4.5 continued). The constructed
⋃⋂

-tree of the critical path
(u, u1, u

∗) of (u, e2) in Figure 4.6(b) is given in Figure 4.7. The intersection of unions
e2 ∩ (e3 ∪ e7) is replaced by the unions of the leaf nodes (e2 ∩ e3)∪ (e2 ∩ e7), which yields
the same edge e′2 = {v3, v9} as in Example 4.3. /

We have defined in Section 1.2 the degree d of a hypergraph H. We now consider
hypergraphs of bounded degree.

Definition 4.6. We say that a hypergraph H has the d-bounded degree property (d-BDP)
if degree(H) ≤ d holds.

Let C be a class of hypergraphs. We say that C has the bounded degree property (BDP)
if there exists a constant d such that every hypergraph H in C has the d-BDP. /

The class of hypergraphs of bounded degree is an interesting special case of the class of
hypergraphs enjoying the BMIP. Indeed, suppose that each vertex in a hypergraph H
occurs in at most d edges for some constant d. Then the intersection of d+ 1 hyperedges
is always empty. The following corollary is thus immediate.

Corollary 4.1. For every class C of hypergraphs of bounded degree, for each constant k,
the problem Check(GHD, k) is tractable.

For the important special case of the BIP, the upper bound on |f(H, k)| in the proof
of Theorem 4.2, improves to mk+1 · 2k·i . More specifically, in case of the BIP, the set
f(H, k) becomes

f(H, k) =
⋃

e∈E(H)

( ⋃
e1,...,ej∈(E(H)\{e}), j≤k

2(e∩(e1∪···∪ej))
)
,

i.e., f(H, k) contains all subsets of intersections of edges e ∈ E(H) with unions of ≤ k
edges of H different from e. In case of the BIP, the intersection e ∩ (e1 ∪ · · · ∪ ej) has
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at most i · k elements. Hence, |f(H, k)| ≤ mk+1 · 2k·i holds. We thus get the following
parameterized complexity result.

Theorem 4.3. For each constant k, the Check(GHD, k) problem is fixed-parameter
tractable w.r.t. the parameter i for hypergraphs enjoying the BIP, i.e., in this case,
Check(GHD, k) can be solved in time O(h(i)·poly(n)), where h(i) is a function depending
on the intersection width i only and poly(n) is a function that depends polynomially on
the size n of the given hypergraph H.

4.3 Efficient Computation of FHDs
In Section 4.2, we have shown that under certain conditions (with the BIP and BDP as
most specific and the LogBMIP as most general conditions) the problem of computing a
GHD of width ≤ k can be reduced to the problem of computing an HD of width ≤ k.
The key to this problem reduction was to add subedges which allowed us to repair all
possible special condition violations (SCVs) in all possible GHDs of width ≤ k. When
trying to carry over these ideas from GHDs to FHDs, we encounter two major challenges:
Can we repair SCVs in an FHD by ideas similar to GHDs? Does the special condition in
case of FHDs allow us to extend the HD algorithm from [51] to FHDs?

As for the first challenge, recall from Theorem 4.2 that the tractability of Check(GHD, k)
was achieved by adding polynomially many subedges f(H, k) to a hypergraph H, such
that Bu = B(λu) can be enforced in every node u of a GHD of H. In other words, for
Su = supp(λu), we had Bu =

⋃
Su in case of GHDs. GHDs with this property clearly

satisfy the special condition. We thus reduced the Check(GHD, k) problem to the
Check(HD, k) problem, which is well-known to be tractable [51]. In contrast, for FHDs,
the fractional edge cover function γu at a node u may take any value in [0, 1]. Therefore,
e ∈ supp(γu) (i.e., γu(e) > 0) does not imply γu(e) = 1. Hence, substantially more work
will be needed to achieve Bu =

⋃
Su with Su = supp(γu) also for FHDs.

As for the second challenge, we will encounter another obstacle compared to the HD
algorithm: a crucial step of the top-down construction of an HD in [51] is to “guess” ≤ k
edges with λu(e) = 1 for the next node u in the HD. However, for a fractional cover
γu, we do not have such a bound on the number of edges with non-zero weight. In fact,
it is easy to exhibit a family (Hn)n∈N of hypergraphs where it is advantageous to have
unbounded supp(γn) even if (Hn)n∈N enjoys the BIP, as the following example illustrates:

Example 4.7. Consider the family (Hn)n∈N of hypergraphs with Hn = (Vn, En) defined
as follows:

Vn = {v0, v1, . . . , vn}

En = {{v0, vi} | 1 ≤ i ≤ n} ∪ {{v1, . . . , vn}}

Clearly iwidth(Hn) = 1, but an optimal fractional edge cover of Hn is obtained by the
following mapping γ with supp(γ) = En:
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γ({v0, vi}) = 1/n for each i ∈ {1, . . . , n} and

γ({v1, . . . , vn}) = 1− (1/n)

such that weight(γ) = 2− (1/n), which is optimal in this case. /

Nevertheless, in this section, we use the ingredients from the Check(GHD, k) problem
to prove a similar (slightly weaker though) tractability result for the Check(FHD, k)
problem. More specifically, we shall show that the Check(FHD, k) problem becomes
tractable for fixed k, if we impose the bounded degree property. Thus, the main result of
this section is:

Theorem 4.4. For every hypergraph class C that has bounded degree, and for every
constant k ≥ 1, the Check(FHD, k) problem is tractable, i.e., given a hypergraph H ∈ C ,
it is feasible in polynomial time to check fhw(H) ≤ k and, if so, to compute an FHD of
width k of H.

To prove this result, we tackle the two presented main challenges in reverse order. First,
we will show that every hypergraph H with degree d allows for an FHD F with bounded
support supp(γu) at every node u of F (Lemma 4.6). Second, we will devise a polynomial
subedge function that allows us to repair all possible SCVs of such F with bounded
supp(γu) at every node u (Lemma 4.11).

Bounded Support. First, we show that, for every FHD F of width k of a hypergraph
H of degree ≤ d, there exists an FHD F ′ of width ≤ k of H satisfying the following
important property: for every node u in the FHD F ′, the fractional edge cover γu has
support supp(γ) bounded by a constant that depends only on k and d. For this result, we
need to introduce, analogously to edge-weight functions and edge covers in Section 2.2,
the notions of vertex-weight functions and vertex covers.

Definition 4.7. A vertex-weight function w for a hypergraphH assigns a weight w(v) ≥ 0
to each vertex v of H. We say that w is a fractional vertex cover of H if for each edge
e ∈ E(H), Σv∈ew(v) ≥ 1 holds. For a vertex-weight function w for hypergraph H, we
denote by weight(w) its total weight, i.e. Σv∈V (H)w(v). The fractional vertex cover
number τ∗(H) is defined as the minimum weight(w) where w ranges over all fractional
vertex covers of H. The vertex support vsupp(w) of a hypergraph H under a vertex-weight
function w is defined as vsupp(w) = {v ∈ V (H) |w(v) > 0}. /

For our result on bounded support, we will exploit the well-known dualities ρ∗(H) =
τ∗(Hd) and τ∗(H) = ρ∗(Hd), where Hd denotes the dual of H. To make optimal use
of this, we make, for the moment, several assumptions. First of all, we will assume
w.l.o.g. that (1) hypergraphs have no isolated vertices and (2) no empty edges. In fact
for hypergraphs with isolated vertices (empty edges), ρ∗ (τ∗) would be undefined or at
least not finite. Furthermore, we make the following temporary assumptions. Assume
that (3) hypergraphs never have two distinct vertices of the same “edge-type” (i.e., the
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two vertices occur in precisely the same edges) and (4) they never have two distinct edges
of the same “vertex-type” (i.e., we exclude duplicate edges).

Assumptions (1) – (4) can be safely made. Recall that we are ultimately interested in
the computation of an FHD of width ≤ k for given k. As mentioned above, without
assumption (1), the computation of an edge-weight function and, hence, of an FHD of
width ≤ k makes no sense. Assumption (2) does not restrict the search for a specific
FHD since we would never define an edge-weight function with non-zero weight on an
empty edge. As far as assumption (3) is concerned, suppose that a hypergraph H has
groups of multiple vertices of identical edge-type. Then it is sufficient to consider the
reduced hypergraph H− resulting from H by “fusing” each such group to a single vertex.
Obviously ρ∗(H) = ρ∗(H−), and each edge-weight function for H− can be extended
in the obvious way to an edge-weight function of the same total weight to H. Finally,
assumption (4) can also be made w.l.o.g., since we can again define a reduced hypergraph
H− resulting from H by retaining only one edge from each group of identical edges. Then
every edge cover of H− is an edge cover of H. Conversely, every edge cover of H can
be turned into an edge cover of H− by assigning to each edge e in H− the sum of the
weights of e and all edges identical to e in H.

Under our above assumptions (1) – (4), for every hypergraph H, the property Hdd = H
holds and there is an obvious one-to-one correspondence between the edges (vertices) of H
and the vertices (edges) of Hd. Moreover, there is an obvious one-to-one correspondence
between the fractional edge covers of H and the fractional vertex covers of Hd. In
particular, if there is a fractional edge cover γ for H, then its corresponding “dual” γd
assigns to each vertex v of Hd the same weight as to the edge in H that is represented
by this vertex and vice versa.

Note that if we do not make assumptions (3) and (4), then there are hypergraphs H
with Hdd 6= H. For instance, consider the hypergraph H0 with V (H0) = {a, b, c} and
E(H0) = { e = {a, b, c} }, i.e., property (3) is violated. The hypergraph Hd

0 has a unique
vertex e and a unique hyperedge {e}. Hence, Hdd

0 is (isomorphic to) the hypergraph
with a unique vertex a and a unique hyperedge {a}, which is clearly different from the
original hypergraph H0.

To get an upper bound on the support supp(γ) of a fractional edge cover of a hypergraph
H, we make use of the following result for fractional vertex covers. This result is due
to Zoltán Füredi [40], who extended earlier results by Chung et al. [26]. Below, we
appropriately reformulate Füredi’s result for our purposes:

Proposition 4.1 ([40], page 152, Proposition 5.11.(iii)). For every hypergraph H of
rank (i.e., maximal edge size) r, and every fractional vertex cover w for H satisfying
weight(w) = τ∗(H), the property |vsupp(w)| ≤ r · τ∗(H) holds.

By duality, exploiting the relationship ρ∗(H) = τ∗(Hd) and by recalling that the degree
of H corresponds to the rank of Hd, we immediately get the following corollary:
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Corollary 4.2. For every hypergraph H of degree d, and every fractional edge cover γ
for H satisfying weight(γ) = ρ∗(H), the property |supp(γ)| ≤ d · ρ∗(H) holds.

From now on, we no longer need to make the assumptions (3) and (4) above. In fact,
Proposition 4.1 and Corollary 4.2 also hold for hypergraphs that do not fulfil these
conditions as was pointed out above by our considerations on reduced hypergraphs
H−. Moreover, from now on, we exclusively concentrate on fractional edge covers. The
excursion to fractional vertex covers was only needed to make use of Füredi’s result
reformulated in Proposition 4.1 above.

Proposition 4.1 and Corollary 4.2 state bounded support properties for the optimal weight
functions τ∗ and ρ∗. The following lemma allows us to extend the upper bound k · d on
the support of a fractional edge cover γ of width k of a hypergraph H of degree d to the
fractional edge cover γu in every node u of an FHD of width ≤ k of H.

Lemma 4.6. Let H be a hypergraph of degree d and let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be
an FHD of H of width k. Then there exists an FHD F ′ = 〈T, (Bu)u∈T , (γ′u)u∈T 〉 of H of
width ≤ k such that F and F ′ have exactly the same tree structure T and, for every node
u in T , we have |supp(γ′u)| ≤ k · d and, B(γu) ⊆ B(γ′u).

Proof. Let H and F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be as above. For each node u in T , consider
the subhypergraph Hu of H where V (Hu) = B(γu) and E(Hu) = {e ∩ V (Hu) | e ∈
supp(γu)} = {e ∩ B(γu) | e ∈ supp(γu)}. Note that one or more edges from supp(γu)
may give rise to a same edge e′ of Hu, when deleting vertices v 6∈ B(γu) from edges
e ∈ supp(γu). We call all such edges the originators of e′ and denote the set of all
originator edges for e′ by orig(e′).

Now let γ↓u : E(Hu)→ (0, 1] be the edge-weight function which assigns each edge e′ of
Hu weight γ↓u(e′) = Σe∈orig(e′)γu(e), i.e., the sum of all weights by γu of its originators.
Clearly, γ↓u is a fractional edge cover of total weight at most k for Hu. Now take an
optimal fractional edge cover γ∗u for Hu. The total weight of this cannot be greater than
k either. Hence, by Corollary 4.2, supp(γ∗u) ≤ k ·d. Now transform γ∗u into an edge-weight
function γ′u of the entire hypergraph H by assigning for edge e′ of Hu the entire weight of
e′ to only one of its originators, whilst assigning weight 0 to all other originators. Clearly,
the support of γ′u is bounded by k · d and B(γu) ⊆ B(γ′u). Bu is thus covered by B(γ′u),
and the resulting FHD F ′ has all requested properties.

We have now tackled the first challenge of this section by showing that whenever a
hypergraph H has an FHD F of width ≤ k then H also has an FHD F ′ of width ≤ k
such that in each node u of F ′ we have |supp(γ′u)| ≤ k · d. We yet have to overcome the
following obstacle: in the alternating algorithm in [51] for deciding the Check(HD, k)
problem, we guess at every node u of the HD a set Su of edges with |Su| ≤ k such that
the edges in Su get weight 1 by λu and all other edges get weight 0. Hence, we get
B(λu) =

⋃
Su. From this, we determine the bag Bu ⊆ B(λu) via the special condition
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recalled in Definition 2.4, which distinguishes HDs from GHDs. More specifically, let u′
denote the parent of u in the hypertree decomposition and let C denote the vertices in
the edges that have to be covered by some node in the subtree rooted at u. Then we
may set Bu = B(λu) ∩ (Bu′ ∪ C).

In our case, when trying to construct a fractional hypertree decomposition of width ≤ k
for a hypergraph with degree bounded by d, we know by Lemma 4.6 that we may restrict
ourselves to edge-weight functions γu with |supp(γu)| ≤ k · d. Moreover, we can be sure
that B(γu) ⊆

⋃
S with S = supp(γu) holds. However, in contrast to the HD-setting

studied in [51], B(γu) =
⋃
S does in general not hold. Consequently, it is, of course, also

unclear how to determine Bu.

Subedge Functions. We will now provide a solution to both problems: how to determine
B(γu) and how to determine Bu for each node u in an FHD? But before we do this, we
define some useful notation for certain unions and intersections of families of sets.

Definition 4.8. Let S be a family of sets. We define the following further families of
sets.

dS denotes the set-family which consists in all possible unions of an arbitrary number of
sets from S. (Note that | d S| ≤ 2|S|).

diS for an integer i ≥ 1, denotes the set-family which consists in all possible unions of
≤ i sets from S. (Note that | di (S)| ≤ |S|i+1).

eS denotes the set-family which consists in all possible intersections of an arbitrary
number of sets from S. (Note that | e S| ≤ 2|S|).

eiS for an integer i ≥ 1, denotes the set-family which consists in all possible intersections
of ≤ i sets from S. (Note that | ei S| ≤ |S|i+1).

If S and S′ are both families of sets, then S ∩· S′ denotes the pointwise intersection
between S and S′, i.e., S ∩· S′ = {A ∩B |A ∈ S and B ∈ S′}. /

We now establish a bound on the number of possible sets B(γ) that can arise in a
hypergraph for all possible choices of a weight function γ.

Definition 4.9. Let B(H) denote the set of all possible sets B(γ) such that γ is an
edge-weight function of H. For S ⊆ E(H), we denote by B(S) the set of all possible sets
B(γ) where γ(e) > 0 if e ∈ S and γ(e) = 0 if e 6∈ S. That is, S denotes the support of
γ. /

Definition 4.10. An intersection type of a hypergraph H = (V (H), E(H)) (or, simply
a type, for short), is a subset of E(H). For a hypergraph H, T(H) = 2E(H) consists of
all possible types of H. For a type t ∈ T(H), we define its class class(t) =

⋂
e∈t e as the

intersection of all edges in t. The set of all classes of H is denoted by C(H).
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For a class c ∈ C(H) there may be more than one type t with class(t) = c. However
there is only one maximal type, namely {e′ ∈ E(H) | c ⊆ e′}; we denote by type(c) this
unique maximal type. /

Note that T(H) and C(H) depend only on H and not on any edge-weight function.
Moreover, every set B(γ), for whatever edge-weight function, must be equal to the
union of some classes of H. In fact, for any particular edge-weight function γ, the set
B(γ) consists of the union of all sets class(t) for all types t that satisfy γ(t) ≥ 1 where
γ(t) = Σe∈tγ(e). Finally, the inequality |C(H)| ≤ |T(H)| clearly holds. We thus get the
following lemma.

Lemma 4.7. Let H be a hypergraph. Then the following properties hold:

1. If γ is an edge-weight function, then B(γ) ∈ dC(H).

2. B(H) ⊆ dC(H).

3. |B(H)| ≤ 2|C(H)| ≤ 2|T(H)| ≤ 22|E(H)| and all three sets, B, C and T, can be computed
from H in polynomial time if the cardinality of E(H) is bounded by a constant.

The above inclusion B(H) ⊆ dC(H) only gives us an exponential upper bound 22|E(H)|

on the number of possible sets B(γu) at any node u in an FHD. However, by Lemma 4.6,
we may assume w.l.o.g. that |Su| ≤ k · d with Su = supp(γu) holds for every edge-weight
function γu of interest. Hence, we only need to consider polynomially many values for
supp(γu). Moreover, for each Su, there exist only polynomially many possible sets B(γu)
with supp(γu) = Su, i.e. |B(Su)| ≤ 22|Su| . Hence, with Lemma 4.7, the first problem
stated above is essentially solved.

It remains to find a solution to the second problem stated above, i.e., how to determine
Bu for each node u in an FHD of width k? We tackle this problem by again using the
idea of subedge functions as described in Section 4.2 for deriving tractability results
for the Check(GHD, k) problem. A subedge function takes as input a hypergraph
H = (V (H), E(H)) and produces as output a set E′ of subedges of the edges in E(H),
such that E′ is then added to E(H). Clearly, adding a set E′ of subedges does not change
the fhw of H. Below, we shall define a whole family of subedge functions hd,k, which,
for fixed upper bounds d on the degree and k on the fhw, take a hypergraph H as input
and return a polynomially bounded, polynomial-time computable set E′ of subedges of
E(H). Adding these subedges to E(H) will then allow us to define a polynomial upper
bound on the set of all possible bags Bu at a given node u in an FHD of H.

Towards this goal, we follow a similar approach as in the proof of Theorem 4.2. There
we have used the LogBMIP to devise a polynomially bounded subedge function. Here,
we will restrict ourselves to hypergraphs of bounded degree.

There are mainly two issues when trying to adapt the construction from the GHD case.
First, we carry over the notion of bag-maximality from GHDs to FHDs in the obvious
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way: we say that an FHD F is bag-maximal if for each node u of F , for every vertex
v ∈ B(γu) \ Bu, adding v to Bu would violate the connectedness condition. Clearly,
for every FHD 〈T, (Bu)u∈T , (γu)u∈T 〉, a bag-maximal FHD F+ =

〈
T, (B+

u ), (γu)
〉
can be

generated by adding vertices from B(γu) \Bu to bags Bu as long as possible. We may
thus assume w.l.o.g. that our FHD F is bag-maximal.

For the definition of an appropriate subedge function (denoted hd,k to indicate that it
depends on d and k), take a hypergraph H with degree bounded by d ≥ 1 and consider an
arbitrary FHD F of H of width ≤ k. Let u be an arbitrary node in F with edge-weight
function γu and let e ∈ supp(γu) with e ∩B(γu) 6⊆ Bu. As in Section 4.2, our goal is to
define hd,k in such a way that e′ = e∩Bu is contained in hd,k for every edge e ∈ supp(γu)
and every possible bag Bu in F . As a first step towards this goal, we extend the notion
of critical paths from the GHD setting to FHDs.

Definition 4.11. Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an FHD of a hypergraph H. More-
over, let u be a node in F and let e ∈ supp(γu) with e ∩B(γu) 6⊆ Bu. Let u∗ denote the
node closest to u, such that u∗ covers e, i.e., e ⊆ Bu∗ . Then, analogously to Definition
4.5, we call the path π = (u0, u1, . . . , ul) with u0 = u and ul = u∗ the critical path of
(u, e) denoted as critp(u, e). /

The following lemma allows us to characterize the subsets e′ of e needed in the subedge
function hd,k. The proof of Lemma 4.8 can be literally translated from the proof of
Lemma 4.5.

Lemma 4.8. Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be a bag-maximal FHD of a hypergraph
H = (V (H), E(H)), let u ∈ T , e ∈ supp(γu), and e∩B(γu) 6⊆ Bu. Let π = (u0, u1, . . . , ul)
with u0 = u be the critical path of (u, e). Then the following equality holds:

e ∩Bu = e ∩
l⋂

i=1
B(γui)

We want to define the subedge function hd,k such that all subedges appearing on the
right-hand side of above equality. To achieve this while abstracting from the knowledge
of a particular decomposition and from the knowledge of particular edge-weight functions,
we will make two bold over-approximations. First, instead of considering concrete critical
paths, we will consider arbitrary finite sequences ξ = (ξ1, . . . , ξmax(ξ)) of groups of ≤ k · d
edges of H, where each such group represents a potential support supp(γu) at some
potential node u of a potential FHD of H. Clearly, each effective path critp(u, e) for any
possible combination of a decomposition node u and an edge e of any possible FHD F of
H is among these sequences. The second over-approximation we make is that instead
of considering particular edge-weight functions, we will simply consider (a superset of)
all possible supports of ≤ k · d atoms, and for each such support S (a superset of) all
possible sets B(γ), i.e. B(S), that could possibly arise with this support. A support is
simply given by a subset of ≤ k · d edges of H. For each such support, by Lemma 4.7,
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there are in fact no more than 22k·d B(γ)-sets and these are determined by unions of
classes from C(H ′), where H ′ is the subhypergraph of H given by the support. To make
this more formal, we give the following definition. Recall the notion of C (which denotes
the set of intersections of edges contained in some type; in our case, each type consists of
at most k · d edges) from Definition 4.10.

Definition 4.12. Let H be a hypergraph and let ξ = (ξ1, . . . , ξmax(ξ)) be an arbitrary
sequence of groups of ≤ k · d edges of H. For i ∈ {1, . . . ,max(ξ)}, by slight abuse of
notation, we overload the notion of C from Definition 4.10 as follows: we write C(ξi) to
denote the set C(H i

ξ), where H i
ξ is the subhypergraph of H whose edges are the ≤ k · d

edges of ξi and whose vertices are precisely all vertices occurring in these edges.

Let π be a critical path of the form π = (u0, u1, . . . , ul) of some FHD F = 〈T, (Bu)u∈T ,
(γu)u∈T 〉 of H. Suppose that each edge-weight function γu in F has (k · d)-bounded
support. Then we denote by ξπ the sequence ξπ = (ξ1, . . . , ξl) with ξi = supp(γui) for
1 ≤ i ≤ l. /

Our goal is to compute a set of subedges of the edges in E(H) containing all sets of the
form e ∩

⋂l
i=1B(γui) with π = critp(u, e) = (u0, u1, . . . , ul). We may use that each γui

has (k · d)-bounded support. By Lemma 4.7, we know that every possible B(γui)-set is
contained in dC(H), i.e., every possible B(γui) along a critical path π can be represented
as the union of classes (where each class is in turn the intersection of some edges selected
from supp(γui)). Hence, to obtain e ∩

⋂l
i=1B(γui), we need to compute the intersection

of all unions of classes along a critical path π.

Recall that we generalize the support of edge-weight functions γui along a concrete
critical path π in a concrete FHD F of H to sequences ξ = (ξ1, . . . , ξmax(ξ)), where
each ξi is an arbitrary set of ≤ k · d edges from H. As the crucial data structure to
compute the desired intersections of unions of classes, we now define the intersection
forest IF(ξ). This data structure will give us a systematic way to convert the intersections
of unions of classes for all possible sequences ξ into a union of intersections. Intuitively,
each branch (starting at a root) in IF(ξ) represents a possible transversal of the family
{C(ξi)}1≤i≤max(ξ) for some sequence ξ = (ξ1, . . . , ξmax(ξ)), i.e., a transversal selects
one class from C(ξi) for each i ∈ {1, . . . ,max(ξ)}. On every branch, we will then
compute the intersection of the classes selected along this branch. Since each class
is in turn an intersection of edges (namely the edges contained in some type), every
branch in IF(ξ) therefore simply yields an intersection of edges from H. Similar to the
Union-of-Intersections-Tree algorithm presented in Section 4.2, we formalize
the construction of IF(ξ) in the Algorithm 4.2 “Intersection-Forest”. We define
IF(ξ) as a rooted forest such that each of its nodes v is labelled by

• a set of vertices set(v) ⊆ V (H),

• a set of levels levels(v) ⊆ {1, . . . ,max(ξ)},
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Algorithm 4.2: Intersection-Forest
input :A sequence ξ = (ξ1, . . . , ξmax(ξ)) of groups of ≤ k · d edges of a

hypergraph H.
output : IF(ξ)
/* Initialization: create a tree Tc for each c ∈ C(ξ1) */

1 IF(ξ)← ∅;
2 foreach c ∈ C(ξ1) do
3 Nc ← {v}; Ec ← ∅; Tc ← (Nc, Ec);
4 set(v)← c;
5 levels(v)← {1};
6 edges(v)← {e ∈ E(H) | c ⊆ e};
7 mark(v)← ok;
8 IF(ξ)← IF(ξ) ∪ Tc;
9 end
/* Expand and update the trees as follows */

10 for i← 2 to max(ξ) do
11 foreach leaf node v of a tree Tv = (Nv, Ev) ∈ IF(ξ) with

max(levels(v)) = i− 1 and mark(v) = ok do
12 foreach c ∈ C(ξi) do
13 switch set(v) ∩ c do
14 case set(v) ∩ c = ∅ do /* Dead End */
15 mark(v)← fail
16 end
17 case set(v) ∩ c = set(v) do /* Passing */
18 levels(v) = levels(v) ∪ {i}
19 end
20 case set(v) ∩ c ( set(v) do /* Expand */
21 Create a new node v′;
22 Nv ← Nv ∪ {v′}; Ev ← Ec ∪ {v, v′}; Tv ← (Nv, Ev);
23 set(v′)← set(v) ∩ c;
24 levels(v′)← {i};
25 edges(v′)← {e ∈ E(H) | set(v′) ⊆ e};
26 mark(v′)← ok;
27 end
28 end
29 end
30 end
31 end
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• a set of edges edges(v) such that edges(v) = {e ∈ E(H) | set(v) ⊆ e};
in other words, set(v) is a class and edges(v) is its (maximal) type, see Defini-
tion 4.10,

• and a mark mark(v) ∈ {ok, fail }.

The expansion of the trees in Algorithm 4.2 can be seen as follows:

1. Dead End. If for each class c of C(ξi), set(v)∩ c = ∅, then v has no children, and its
mark is set to mark(v) = fail. Intuitively this is a dead end as it cannot be continued
to yield a non-empty intersection of a transversal of the family {C(ξj)}1≤j≤max(ξ).

2. Passing. For each class c of C(ξi) fulfilling set(v) ∩ c = set(v), insert i + 1 into
levels(v). Intuitively, this makes sure the same value set(v) is never repeated on
a branch, and, as a consequence, every child node must have a strictly smaller
set()-component and, thus, at least one more edge in its edges()-label than its
parent (see also Fact 1 in Lemma 4.9 below).

3. Expand. For each class c of C(ξi+1) fulfilling set(v)∩c ( set(v), create a child v′ of v,
and let set(v′) = set(v)∩c, levels(v′) = {i+1}, edges(v′) = {e ∈ E(H) | set(v′) ⊆ e},
and mark(v) = ok. Note that we thus clearly have set(v′) ( set(v) and edges(v) (
edges(v′).

We now define some useful notation for talking about the intersection forest IF(ξ).

Definition 4.13. Let H be a hypergraph and let ξ = (ξ1, . . . , ξmax(ξ)) be an arbitrary
sequence of groups of ≤ k · d edges of H. For 1 ≤ i ≤ max(ξ), let ifleveli(ξ) denote the
set of all nodes v of IF(ξ) such that i ∈ levels(v) and mark(v) = ok. We denote by Fi(ξ)
the collection of all sets set(v) where v ∈ ifleveli(ξ). Finally, let the fringe of ξ be defined
as F(ξ) = Fmax(ξ)(ξ). /

Note that, by definition of IF(ξ), there cannot be any fail node on level max(ξ). Hence,
F(ξ) coincides with the set of all set-labels at level max(ξ), i.e. the leaf nodes v of all
trees in IF(ξ) such that mark(v) = ok. We now establish some easy facts about IF(ξ).

Lemma 4.9. Let H be a hypergraph with degree d and let ξ = ξ1, . . . , ξmax(ξ) be an
arbitrary sequence of groups of ≤ k · d edges of H. Then the intersection forest IF(ξ)
according to the construction in Algorithm 4.2 has the following properties:

Fact 1. If node v′ is a child of node v in IF(ξ), then edges(v′) must contain at least one
new edge in addition to the edges already present in edges(v).

Fact 2. The depth of IF(ξ) is at most d− 1.

Fact 3. Let a = 2k·d. Then IF(ξ) has no more than ad+1 nodes and |F(ξ)| ≤ ad = 2d2·k.
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Proof. The facts stated above can be seen as follows.

Fact 1. Note that we can only create a child node through an Expand operation. This
requires that set(v′) = set(v) ∩ c ( set(v) for some class c ∈ C(ξi). Recall that
c is the intersection of all edges of type(c). Hence, for set(v′) to shrink, type(c)
must contain at least one new edge not yet contained in edges(v), and this edge is
therefore included into edges(v′).

Fact 2. This follows from Fact 1 and the fact that, if H is of degree d, then any
intersection of d+ 1 or more edges is empty.

Fact 3. For each sequence ξ as above, for whatever ξi, the inequality |C(ξi)| ≤ a holds
by Lemma 4.7. Hence, Fact 3 follows from the depth d−1 established in Fact 2 and
the fact that we have at most a such trees, each with branching not larger than a.

This concludes the proof of the lemma.

Recall that we are studying the set of arbitrary sequences ξ = (ξ1, . . . , ξmax(ξ)) of groups of
≤ k ·d edges of H because they give us a superset of possible critical paths π = critp(u, e)
in possible FHDs of H, such that each group ξi of edges corresponds to the support of the
edge-weight function γui at the i-th node ui on path π. The following lemma establishes
that the intersection forests (and, in particular, the notion of F(ξ)) introduced above
indeed give us a tool to generate a superset of the set of all possible sets

⋂l
i=1B(γui) in

all possible FHDs of H of width ≤ k.

Lemma 4.10. Let H be a hypergraph of degree d ≥ 1 and let F be an FHD of H of width
≤ k. Consider a critical path π = (u0, u1, . . . , ul) of FHD F , together with its associated
sequence ξπ introduced in Definition 4.12. We claim that the following relationship holds:

l⋂
i=1

B(γui) ∈ dF(ξπ)

Proof. We show by induction on i that, for every i ∈ {1, . . . , l}, the following relationship
holds:

i⋂
j=1

B(γuj ) ∈ dFi(ξπ)

Base Step. For the base case i = 1, recall that in the Intersection-Forest al-
gorithm, the set F1(ξπ) is initialized to C(ξ1) with ξ1 = supp(γu1). Moreover, by
Lemma 4.7(2), B(H) ⊆ dC(H) and, hence, we have B(supp(γu1)) ⊆ dC(supp(γu1)). In
total, B(supp(γu1)) ⊆ dF1(ξπ) indeed holds.

Inductive Step. Assume for some i < l that
⋂i
j=1B(γuj ) ∈ dFi(ξπ) holds. We show that

the desired relationship also holds for i+1. Clearly,
⋂i+1
j=1B(γuj ) =

⋂i
j=1B(γuj )∩B(γui+1).
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From this, by the induction hypothesis, together with B(γui+1) ∈ B(ξπi+1), and the
inclusion B(ξπi+1) ⊆ dC(ξπi+1), which holds by Lemma 4.7, we obtain:

i+1⋂
j=1

B(γuj ) ∈ Fi(ξπ) ∩· dC(ξπi+1).

By using the distributivity of ∩· over d, we get:

Fi(ξπ) ∩· dC(ξπi+1) = d(Fi(ξπ) ∩· C(ξπi+1)).

Moreover, by the construction of IF(ξπ), we have

Fi(ξπ) ∩· C(ξπi+1) = Fi+1(ξπ).

In fact, the Passing and Expand cases make precisely these intersections when producing
level i+ 1 of IF(ξπ). Therefore, in total, we obtain that

i+1⋂
j=1

B(γuj ) ∈ dFi+1(ξπ)

indeed holds, which settles the inductive step.

The desired subedge function hd,k therefore looks as follows:

Lemma 4.11. Let H be a hypergraph of degree d ≥ 1 and let k ≥ 1. Let the subedge
function hd,k be defined as

hd,k(H) = E(H) ∩· (d2d2·k ed E(H))

Then (for fixed constants d and k), the size of hd,k(H) is polynomially bounded and
hd,k(H) can be computed in polynomial time. Moreover hd,k(H) contains all subedges
e ∩Bu of all e ∈ E(H) for all possible bags Bu of whatever bag-maximal FHD of width
≤ k of H.

Proof. For any sequence ξ, each element of F(ξ) is the intersection of at most d edges.
Moreover, by Fact 3 of Lemma 4.9, |F(ξ)| ≤ ad = 2d2·k holds. Therefore, for all possible
sequences ξ, we have

dF(ξ) ⊆ d2d2·k ed E(H).

Given that d and k are constants, the set d2d2·k ed E(H) is of polynomial size and is
clearly computable in polynomial time from H. By Lemma 4.8 together with Lemma 4.10,
it is then also clear that the subedge function hd,k(H) contains all subedges e ∩Bu for
all possible bags of whatever bag-maximal FHD of width ≤ k of H.
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Deciding the Check Problem for Hypergraphs of Bounded Degree. With the
subedge function hd,k at hand, we have a powerful tool that will allow us to devise a
polynomial-time decision procedure for the Check(HD, k) problem. Towards this goal,
we first observe that adding the edges in hd,k(H) to a hypergraph H allows us to restrict
ourselves to FHDs of a very peculiar form. This form is captured by the following
definition.

Definition 4.14. An FHD F = 〈T, (Bu)u∈T , (γu)u∈T 〉 of a hypergraph H is strict if for
every decomposition node u in T , the equality Bu = B(γu) =

⋃
supp(γu) holds. /

Below we show that, in case of bounded degree, we can transform every FHD of width
≤ k into a strict FHD of width ≤ k.

Lemma 4.12. Let H = (V (H), E(H)) be a hypergraph of degree ≤ d and let F =
〈T, (Bu)u∈T , (γu)u∈T 〉 be an FHD of H of width ≤ k. Suppose that H ′ is obtained from
H by adding the edges in hd,k(H), i.e., H ′ = (V (H ′), E(H ′)) with V (H ′) = V (H) and
E(H ′) = E(H) ∪ hd,k(H). Then H ′ admits a strict FHD F ′ = 〈T, (Bu)u∈T , (γ′u)u∈T 〉 of
width ≤ k.

Proof. Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an arbitrary FHD of H of width ≤ k. W.l.o.g.,
assume that F is bag-maximal. Of course, F is also an FHD of H ′ of width ≤ k. Let
u be a node in F and let e ∈ supp(γu). Suppose that e ∩ B(γu) 6⊆ Bu. We modify
γu as follows: by Lemma 4.11, E(H) ∪ hd,k(H) is guaranteed to contain the subedge
e′ = e∩Bu of e. Then we “replace” e in γu by e′, i.e., we set γu(e′) := γu(e′) + γu(e) and
γu(e) := 0. The FHD F ′ = 〈T, (Bu)u∈T , (γ′u)u∈T 〉 is obtained by exhaustive application of
this transformation step. Clearly, such a transformation step never increases the support.
Moreover, the resulting FHD F ′ is strict.

Our strategy to devise a polynomial-time decision procedure for the Check(FHD, k)
problem is to reduce it to the Check(HD, k) problem and then adapt the algorithm
from [51]. However, this algorithm only finds HDs that are in normal form. Hence, we
also need to ensure a normal form for the FHDs we are going to compute. As we have seen
in Section 2.4 it is easy to carry over the normal form from [51] to the fractional setting.
Indeed, it is shown in Theorem 2.1 that any arbitrary FHD can be transformed into
fractional normal form. We now use the transformations from the proof of Theorem 2.1
to strengthen Lemma 4.12, such that FNF and bounded support can be guaranteed.

Lemma 4.13. Let H = (V (H), E(H)) be a hypergraph of degree ≤ d and let F =
〈T, (Bu)u∈T , (γu)u∈T 〉 be an FHD of H of width ≤ k. Suppose that H ′ is obtained from
H by adding the edges in hd,k(H), i.e., H ′ = (V (H ′), E(H ′)) with V (H ′) = V (H) and
E(H ′) = E(H) ∪ hd,k(H). Then H ′admits a strict FHD F ′ = 〈T, (Bu)u∈T , (γ′u)u∈T 〉 in
fractional normal form of width ≤ k that has (k · d)-bounded support.
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Proof. By Lemma 4.6 there exists an FHD F1 of H whose supports are all bounded by
k · d. Without changing the supports, we can transform this FHD into a bag-maximal
one, and we thus assume w.l.o.g. that F1 is bag-maximal.

Now transform F1 into an FHD F2 of width k · d in FNF , by proceeding according to
the proof of Theorem 2.1 in Section 2.4, which, in turn follows closely the transformation
in the proof of Theorem 5.4 in [51]. Note that this transformation preserves the support
bound of k · d. In fact, the component split made for ensuring condition 1 of FNF can
never lead to a larger support, given that the bags never increase. Ensuring condition 2
results in eliminating nodes from the tree, so nothing bad can happen. Observe that
condition 3, which is B(γs) ∩ Br ⊆ Bs for a child node s of decomposition node r, is
initially satisfied, because the initial FHD F1 is bag-maximal. Observe further that the
splitting of a node (subtree) into several nodes (subtrees) performed to achieve condition 1
of FNF does not destroy the validity of condition 3.

Finally transform the FHD F2 via Lemma 4.12 into a strict FHD F ′ = 〈(T, (Bu)u∈T ,
(γ′u)u∈T 〉 of H ′ of width ≤ k and with (k · d)-bounded support. This strict FHD F ′
is still in FNF. To see this, first note that the tree structure T of the decomposition
and all bags Bu remain exactly the same. Moreover, for whatever set S ⊆ V (H), H
and H ′ have exactly the same [S]-components. This can be seen by recalling from [51]
that two vertices v1, v2 in a hypergraph H are [S]-adjacent if they are adjacent in the
subhypergraph of H induced by V (H) \ S. Hence, [S]-adjacency remains unaltered when
adding subedges.

Given that conditions 1 and 2 of FNF are only formulated in terms of Bu-bags and
[Bu]-components – and all such bags and components are the same for F and F ′ – they
remain valid. Condition 3, which requires that B(γ′s) ∩Br ⊆ Bs for child node s of r, is
now trivially satisfied, because F ′ is strict and, therefore, even B(γ′s) = Bs holds.

The following theorem finally establishes the close connection between the Check(FHD, k)
and Check(HD, k) problems for hypergraphs H of degree bounded by some constant
d ≥ 1. Recall that the edge-weight functions λu in an HD only assign values 0 or 1 to
edges. As in [51], it is convenient to identify λu with a set Su of edges, namely the edges
in E(H) that are assigned value 1. In other words, Su = supp(λu). Moreover, we can
identify a set of edges Su with the hypergraph whose set of vertices is

⋃
Su and whose

set of edges is Su. For given edge-weight function λu with Su = supp(λu), we shall write
Hλu to denote this hypergraph.

Theorem 4.5. Let H be a hypergraph whose degree is bounded by d ≥ 1 and define H ′
as above, i.e., H ′ = (V (H ′), E(H ′)) with E(H ′) = E(H) ∪ hd,k(H). Then the following
statements are equivalent:

1. fhw(H) ≤ k.

2. H ′ admits a strict hypertree decomposition (thus a query decomposition) H =
〈T, (Bu)u∈T , (λu)u∈T 〉 of width ≤ k · d in normal form such that for each decom-
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position node u of H, ρ∗(Hλu) ≤ k holds (i.e., Hλu has a fractional edge cover of
weight ≤ k).

Proof. To prove 1⇒ 2, we use Lemma 4.13 to conclude from fhw(H) ≤ k that there exists
a strict FHD F = 〈T, (Bu)u∈T , (γu)u∈T 〉 of H in fractional normal form of width ≤ k
that has (k · d)-bounded support. The FHD F can be naturally transformed into a GHD
H = 〈T, (Bu)u∈T , (λu)u∈T 〉 by leaving the tree structure and the bags Bu unchanged and
by defining λu as the characteristic function of supp(γu), i.e., λu(e) = 1 if e ∈ supp(γu)
and λu(e) = 0 otherwise. Since F is strict, it follows immediately that the resulting GHD
satisfies the special condition, i.e., H is in fact an HD. Moreover, since F is in (fractional)
normal form, also the HD H is in the normal form from [51].

To see 2 ⇒ 1, assume 2 holds with query decomposition H = 〈T, (Bu)u∈T , (λu)u∈T 〉
and assume further that, for each decomposition node u of H, there exists a fractional
edge cover γ′u for Hλu of width ≤ k. In particular, we thus have B(λu) = B(γ′u) = Bu.
Similarly to the proof of Lemma 4.6, we can transform each fractional edge cover γ′u of the
induced subhypergraph Hλu of H ′ into an edge-weight function γu of H by moving the
weights γ′u(e′) of each edge e′ in Hλu to one of its “originator edges” e in H (i.e., an edge e
in H with e′ ⊆ e). By replacing λu with γu, we obtain an FHD F = 〈T, (Bu)u∈T , (γu)u∈T 〉
of width ≤ k of H.

We are now ready to prove the main result of this section:

Proof of Theorem 4.4. By Theorem 4.5, it is sufficient to look for a strict hypertree
decomposition (thus a query decomposition) H = 〈T, (Bu)u∈T , (λu)u∈T 〉 of H ′ of width
≤ d ·k such that for each decomposition node u of H, ρ∗(H ′λu) ≤ k holds. This is achieved
by modifying the alternating algorithm k-decomp from [51] by inserting the following
two checks at each node u:

• if u has a parent r, then
⋃
Su ⊆ B(λr) ∪ treecomp(u) where Su = supp(λu) and

treecomp(u) is defined as the set of vertices which have to appear in Tu and which
do not appear outside Tu. This makes sure that we may set Bu =

⋃
Su without

violating the connectedness condition. Hence, the resulting decomposition is strict.

• ρ∗(H ′λu) ≤ k.

The so modified algorithm clearly runs in ALogSpace = PTime

4.4 Efficient Approximation of FHDs
We now turn our attention to approximations of the fhw. It is known from [74] that a
tractable cubic approximation of the fhw always exists, i.e.: for k ≥ 1, there exists a
polynomial-time algorithm that, given a hypergraph H with fhw(H) ≤ k, finds an FHD
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of H of width O(k3). In this section, we search for conditions which guarantee a better
approximation of the fhw.

Natural first candidates for restricting hypergraphs are the BIP and, more generally, the
BMIP. For the Check(GHD, k) problem, these restrictions guarantee tractability. We
have to leave it as an open question for future research if the BIP or even the BMIP also
guarantees tractability of the Check(FHD, k) problem for fixed k ≥ 1. However, in this
section, we will show that a significantly better polynomial-time approximation of the
fhw than in the general case is possible for hypergraphs enjoying the BIP or BMIP.

4.4.1 Approximation of FHDs in case of the BIP

We first inspect the case of the bounded intersection property. We will show that the BIP
allows for an arbitrarily close approximation of the fhw in polynomial time. Formally,
the main result of this section is as follows:

Theorem 4.6. Let C be a hypergraph class that enjoys the BIP and let k, ε be arbitrary
constants with k ≥ 1 and ε > 0. Then there exists a polynomial-time algorithm that,
given a hypergraph H ∈ C with fhw(H) ≤ k, finds an FHD of H of width ≤ k + ε.

In the remainder of this section, we develop the necessary machinery to finally prove
Theorem 4.6. For this, we first introduce the crucial concept of a c-bounded fractional
part. Intuitively, FHDs with c-bounded fractional part are FHDs, where the fractional
edge cover γu in every node u is “close to an (integral) edge cover” – with the possible
exception of up to c vertices in B(γu).

It is convenient to first introduce the following notation: let γ : E(H) → [0, 1] and let
S ⊆ supp(γ). We write γ|S to denote the restriction of γ to S, i.e., γ|S(e) = γ(e) if e ∈ S
and γ|S(e) = 0 otherwise.

Definition 4.15. Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an FHD of some hypergraph H
and let c ≥ 0. We say that F has c-bounded fractional part if in every node u ∈ T , the
following property holds: Let R = {e ∈ supp(γu) | γu(e) < 1}. Then |B(γu|R)| ≤ c. /

Clearly, for the special case c = 0, an FHD with c-bounded fractional part is essentially a
GHD; in this case, we can simply define λu(e) = 1 if γu(e) = 1 and λu(e) = 0 otherwise,
for every decomposition node u. We next generalize the special condition (i.e., Condition 4
of the definition of HDs) to FHDs. To this end, we define the weak special condition.
Intuitively, it requires that the special condition must be satisfied by the integral part of
each fractional edge cover. For the special case c = 0, an FHD with c-bounded fractional
part satisfying the weak special condition is thus essentially a GHD satisfying the special
condition, i.e., an HD.

Definition 4.16. Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an FHD of some hypergraph H.
We say that F satisfies the weak special condition if in every node u ∈ T , the following
property holds: for S = {e ∈ E(H) | γu(e) = 1}, we have B(γu|S) ∩ V (Tu) ⊆ Bu. /

63



4. From Theory

The proof of Theorem 4.6 will be based on two key lemmas. Consider constants k ≥ 1,
i ≥ 0, and ε > 0, and suppose that we are given a hypergraph H with iwidth(H) ≤ i. We
will show the following properties: if H has an FHD of width ≤ k, then (1) H also has
an FHD of width ≤ k + ε with c-bounded fractional part, where c only depends on k, ε,
and i, but not on the size of H, and (2) we can extend H to a hypergraph H ′ by adding
polynomially many edges, such that H ′ has an FHD of width ≤ k + ε with c-bounded
fractional part satisfying the weak special condition. Theorem 4.6 will then be proved by
appropriately adapting the Check(HD, k) algorithm from [51].

c-bounded fractional part and weak special condition. We start by proving two
lemmas which, taken together, ensure that in case of the BIP, we can transform an
arbitrary FHD into an FHD with c-bounded fractional part satisfying the weak special
condition at the expense of increasing the width by at most ε.

Lemma 4.14. Consider constants k ≥ 1, i ≥ 0, and ε > 0, and suppose that we are
given a hypergraph H with iwidth(H) ≤ i. If H has an FHD of width ≤ k, then it also
has an FHD of width ≤ k + ε with c-bounded fractional part, where c only depends on k,
ε, and i, but not on the size of H. More precisely, we have c = 2ik2 + 4k3i

ε .

Proof. Consider an arbitrary node u in an FHD F = 〈T, (Bu)u∈T , (γu)u∈T 〉 of H and
let γu be an optimal fractional edge cover of Bu with weight(γu) ≤ k. It suffices to
show that there exists a fractional edge cover γ∗u of B(γu) (and, hence, of Bu) with
weight(γ∗u) ≤ k + ε and |B(γ∗u|R∗)| ≤ c for R∗ = {e ∈ supp(γ∗u) | γ∗u(e) < 1}.

We first partition the edges in supp(γu) into “heavy” ones (referred to as Eh) and “light-
weight” ones (referred to as E`). Moreover, we further partition the heavy edges into
“big” and “small” ones (referred to as Ebh and Esh, respectively). For the border between
“heavy” and “light-weight” edges, we could, in principle, choose any value w ∈ (0, 1). To
keep the notation simple, we choose w = 0.5. For the border between “big” and “small”
edges, we have to choose a specific constant d, which will be introduced below. We thus
define the following sets of edges:

E` = {e ∈ supp(γu) | γu(e) < 0.5},

Eh = {e ∈ supp(γu) | γu(e) ≥ 0.5},

Esh = {e ∈ Eh | |e ∩B(γu)| < d}, and

Ebh = {e ∈ Eh | |e ∩B(γu)| ≥ d} with d = 2k2i
ε

This allows us to define the subsets V`, Vs, and Vb of the vertices in B(γu), s.t. V` consists
of the vertices only covered by light-weight edges, Vs consists of the vertices contained in
at least one heavy edge but not in a big one, and Vb consists of the vertices contained in
at least one big heavy edge, i.e.:

V` = {x ∈ B(γu) | ∀e ∈ Eh: x 6∈ e},

Vs = {x ∈ B(γu) | ∃e ∈ Esh with x ∈ e and ∀e ∈ Ebh: x 6∈ e},
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Vb = {x ∈ B(γu) | ∃e ∈ Ebh with x ∈ e}.

Our proof proceeds in three steps. We will first show that V` and Vs are bounded by con-
stants. Vb can in principle become arbitrarily large (cf. edge {v1, . . . , vn} in Example 4.7).
However, we will show that γu can be transformed into γ∗u with weight(γ∗u) ≤ weight(γu)+ε,
s.t. all vertices of Vb are covered by edges of weight 1 in γ∗u.

Claim A. |V`| < c1 with c1 = 2ik2.

Proof of Claim A. Let e ∈ E` and let m = |e∩B(γu)|. We first show that m < 2ik holds,
i.e., the size of light-weight edges is bounded by a constant. (Recall from Example 4.7
that this is, in general, not the case for heavy edges.) Indeed, by e ∈ E`, we know that e
puts weight < 0.5 on each of its vertices. Hence, weight > 0.5 must be put on each vertex
of e∩B(γu) by other edges e′ ∈ E`. In total, the other edges must put weight > 0.5m on
the vertices of e. Now we make use of the assumption that iwidth(H) ≤ i holds, i.e., the
intersection of any two edges of H contains at most i vertices. Hence, whenever γu puts
weight w on some edge e′ 6= e, then e′ puts at most weight iw in total on the vertices in e.
By weight(γu) ≤ k, the edges e′ ∈ E` with e′ 6= e can put at most ik total weight on the
vertices in e. We thus get the inequality ik > 0.5m. In other words, we have m < 2ik.

Now suppose that, for an arbitrary edge in E`, we have γu(e) = w. Then e can put
at most weight mw in total on the vertices in V`. By weight(γu) ≤ k, all edges in E`
together can put at most weight mk on the vertices in V`. By our definition of V`, we
have V` ⊆ B(γu), i.e., each vertex in V` receives at least weight 1. Hence, there can be at
most mk vertices in V`. In total, we thus have |V`| < 2ik2. �

Claim B. |Vs| < c2 with c2 = 4k3i
ε .

Proof of Claim B. First, we show that |Eh| ≤ 2k, i.e., the number of heavy edges is
bounded by a constant. (Recall from Example 4.7 that this is, in general, not the case
for the light-weight edges.) By the definition of Eh, each edge in Eh has weight ≥ 0.5.
By weight(γu) ≤ k, the total weight of the edges in Eh is ≤ k. Hence, there can be at
most 2k edges in Eh.

By Esh ⊆ Eh this implies that also |Esh| ≤ 2k holds. Since |e ∩B(γu)| < d with d = 2k2i
ε

holds for all edges in Esh, we thus have |Vs| < 4k3i
ε . �

Claim C. For every e ∈ Ebh, we have γu(e) ≥ 1− ε
2k .

Proof of Claim C. Let e ∈ Ebh and let e ∩ B(γu) = m with m ≥ 2k2i
ε . Let e′ ∈ supp(γu)

with e′ 6= e. Moreover, since iwidth(H) ≤ i, we have |e′ ∩ e| ≤ i. Hence, if γu(e′) = w,
then e′ can put at most total weight wi on the vertices in e. By weight(γu) ≤ k, all edges
e′ ∈ supp(γu) with e′ 6= e taken together can put at most total weight ki on the vertices
in e. The average weight thus put on each vertex in e ∩B(γu) is at most ki

m . Together
with the condition m ≥ 2k2i

ε , we thus get the upper bound kiε
2k2i = ε

2k on the average
weight put on each vertex in e ∩B(γu) by all of the edges e′ 6= e. Hence, there is at least
one vertex x ∈ e ∩B(γu) for which the total weight of the edges e′ 6= e with x ∈ e′ is at
most ε

2k . Therefore, for x to be in B(γu), γu(e) ≥ 1− ε
2k must hold. �
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Conclusion of the proof of Lemma 4.14. We are now ready to construct the desired
fractional cover γ∗u of B(γu) (and, hence, of Bu):

γ∗u(e) =
{

1 if e ∈ Ebh
γu(e) otherwise

The fractional cover γ∗u has the following properties:

• In γ∗u, the weight of an edge is never decreased compared with γu. Hence, B(γu) ⊆
B(γ∗u) and, therefore, Bu ⊆ B(γ∗u) holds.

• By Claim C, for every edge e ∈ Ebh, we have γu(e) ≥ 1− ε
2k and, thus, γ∗u(e) = 1 ≤

γu(e) + ε
2k . Moreover, in the proof of Claim B, we have shown that |Eh| ≤ 2k (and,

thus, also |Ebh| ≤ 2k) holds. Hence, we have weight(γ∗u) ≤ weight(γu) + ε.

• By the definition of V`, Vs, and γ∗u, we have B(γ∗u|R∗) ⊆ V` ∪ Vs with R∗ = {e ∈
supp(γ∗u) | γ∗u(e) < 1}, since all of the big, heavy edges under γu have weight 1 in
γ∗u. Moreover, by Claims A and B, we have |V` ∪Vs| ≤ c1 + c2 = 2ik2 + 4k3i

ε . Hence,
we also have |B(γ∗u|R∗)| ≤ c1 + c2.

By carrying out this transformation of γu into γ∗u for every node u of F , we thus get the
desired FHD of H of width ≤ k+ ε with c-bounded fractional part for c = 2ik2 + 4k3i

ε

The following lemma shows that, in case of the BIP, the weak special condition can be
enforced without a further increase of the width.

Lemma 4.15. Let c ≥ 0, i ≥ 0, and k ≥ 1. There exists a polynomial-time computable
function f(c,i,k) which takes as input a hypergraph H with iwidth(H) ≤ i and yields as
output a set of subedges of E(H) with the following property: if H has an FHD of width ≤ k
with c-bounded fractional part then H ′ has an FHD of width ≤ k with c-bounded fractional
part satisfying the weak special condition, where H ′ = (V (H), E(H) ∪ f(c,i,k)(H)). More
specifically, f(c,i,k)(H)) = {e′ | e′ is a subedge of some e ∈ E(H) with |e′| ≤ ki+ c}.

Proof. Let H be a hypergraph with iwidth(H) ≤ i and let H ′ and f(c,i,k)(H)) be as
defined above. Moreover, let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an FHD of H (and hence
also of H ′) of width ≤ k with c-bounded fractional part. We assume T to be rooted,
where the root can be arbitrarily chosen among the nodes of T . We have to show that
F can be transformed into an FHD of H ′ of width ≤ k with c-bounded fractional part
satisfying the weak special condition.

We proceed similarly as in the proof of Theorem 4.2 – with some simplifications due
to the assumption of the BIP (rather than the less restrictive BMIP) and with some
slight complications due to the fractional part. Suppose that F contains a violation of
the weak special condition (a weak-SCV, for short), i.e., there exists a node u in T , an
edge e ∈ E(H) with γu(e) = 1 and a vertex x ∈ e ∩ V (Tu), s.t. x 6∈ Bu holds. We write
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(u, e, x) to denote such a weak-SCV. W.l.o.g., we can choose a weak-SCV in such a way
that there exists no weak-SCV for any node u′ below u. We show that this weak-SCV
can be eliminated by appropriately modifying the FHD F of H ′.

By the connectedness condition, e must be covered by some node u∗ ∈ Tu, i.e., u∗ is
a descendant of u and e ⊆ Bu∗ holds. Let π denote the path in T from u to u∗. We
distinguish two cases:

Case 1. Suppose that for every node u′ along the path π with u′ 6= u, we have x ∈ Bu′ .
Then we simply add x to Bu. Clearly, this modification does not violate any of the
conditions of FHDs, i.e., the connectedness condition and the condition Bu ⊆ B(γu)
are still fulfilled. Moreover, the weak-SCV (u, e, x) has been eliminated and no new
weak-SCV is introduced. Finally, note that γu is left unchanged by this transformation.
Hence, the resulting FHD still has c-bounded fractional part.

Case 2. Suppose that there exists a node u′ along the path π with u′ 6= u and x 6∈ Bu′ .
Of course, also u′ 6= u∗ holds, since x ∈ e and e is covered by u∗. We may also conclude
that γu′(e) < 1. Indeed, suppose to the contrary that γu′(e) = 1. Then F would contain
the weak-SCV (u′, e, x) where u′ is below u, which contradicts our choice of (u, e, x).

By the connectedness condition, e ∩Bu ⊆ Bu′ holds and, hence, also e ∩Bu ⊆ e ∩Bu′ .
Moreover, Bu′ ⊆ B(γu′) holds by the definition of FHDs and B(γu′) is of the form
B(γu′) = B1 ∪ B2 with B1 = B(γu′ |R) and B2 = B(γu′ |S) with R = {e ∈ supp(γu′) |
γu′(e) < 1} and S = {e ∈ supp(γu′) | γu′(e) = 1}. Now let S = {e1, . . . , e`} denote the
set of edges with weight 1 in γu′ . Clearly, ` ≤ k, since the width of F is ≤ k. In total,
we have:

(e ∩Bu) ⊆ e ∩Bu′ = e ∩ (e1 ∪ · · · ∪ e` ∪B1) = (e ∩ e1) ∪ · · · ∪ (e ∩ e`) ∪ (e ∩B1).

The first ` intersections each have cardinality ≤ i and the last intersection has cardinality
≤ c by our assumption of c-fractional boundedness. Together with ` ≤ k, we thus have
|e ∩Bu| ≤ ki+ c.

Now let e′ = e∩Bu. We have just shown that e′ is a subset of e with |e′| ≤ ki+ c. Hence,
e′ is an edge in H ′. We can thus modify F by modifying γu to γ′u as follows: we set
γ′u(e) = 0, γ′u(e′) = 1, and let γ′u be identical to γu everywhere else. Clearly, we still
have Bu ⊆ B(γ′u) and also weight(γ′u) ≤ k still holds. Moreover, the weak-SCV (u, e, x)
has been eliminated and no new weak-SCV (u, e′, z) can arise since e′ = e ∩Bu implies
e′ ⊆ Bu. Finally, note that B(γu|R) = B(γ′u|R) and R = {e ∈ supp(γu) | γu(e) < 1} =
{e ∈ supp(γ′u) | γ′u(e) < 1}. Hence, the resulting FHD still has c-bounded fractional part.

To conclude, every modification of F by either Case 1 or Case 2 strictly decreases the
number of weak-SCVs in our FHD. Moreover, the FHD resulting from such a modification
still has c-bounded fractional part. By exhaustively eliminating the weak-SCVs as
described above, we thus end up with an FHD of H ′ of width ≤ k with c-bounded
fractional part satisfying the weak special condition.
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Normal Form of FHDs. In order to adapt the HD algorithm from [51] to turn it
into an FHD algorithm that searches for FHDs with c-bounded fractional part for some
constant c and satisfying the weak special condition, we will again make use of the
fractional normal form introduced in Definition 2.6. Below we argue, similar as in the
proof of Lemma 4.13, that the transformations given in the proof of Theorem 2.1 applied
to an FHD with c-bounded fractional part and weak special condition will result in an
FHD in FNF that also satisfies these two properties.

Lemma 4.16. Let c ≥ 0. For each FHD F of a hypergraph H with c-bounded fractional
part satisfying the weak special condition and with width(F) ≤ k there exists an FHD
F+ of H in FNF with c-bounded fractional part satisfying the weak special condition and
with width(F+) ≤ k.

Proof Sketch. The crucial part of the transformation into normal form is to ensure
Conditions 1 and 2. Here, the proof of Theorem 2.1 can be taken over literally because it
only makes use of the tree structure of the decomposition, the bags, and the connectedness
condition. Ensuring also Condition 3 of our FNF is easy, because we may always extend Bs
by vertices from B(γs)∩Br without violating the connectedness condition. Moreover, the
transformation of HDs in [51] preserves the special condition. Analogously, when applying
this transformation to FHDs (as detailed in Theorem 2.1), the weak special condition is
preserved. Finally, if F has c-bounded fractional part then so has F+. This is due to the
fact that, by this transformation, no set B(γu|R) with R = {e ∈ supp(γu) | γu(e) < 1} is
ever increased.

Suppose that an FHD F = 〈T, (Bu)u∈T , (γu)u∈T 〉 is in FNF. Then, for every node s ∈ T ,
we define treecomp(s) as follows:

• If s is the root of T , then we set treecomp(s) = V (H).

• Otherwise, let r be the parent of s in T . Then we set treecomp(s) = Cr, where Cr
is the unique [Br]-component with V (Ts) = Cr ∪ (Br ∩Bs) according to Condition 1
of the FNF.

We now carry Lemmas 5.5 – 5.7 from [51] over to fractional hypertree decompositions in
fractional normal form. The proofs from [51] can be easily adapted to our setting. We
therefore state the lemmas without proof.

Lemma 4.17 (Lemma 5.5 from [51]). Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an arbitrary FHD
of a hypergraph H in fractional normal form, let u ∈ T , and let W = treecomp(u) \Bu.
Then, for any [Bu]-component C such that (C ∩W ) 6= ∅, we have C ⊆ W . Therefore,
C = {C ′ ⊆ V (H) | C ′ is a [Bu]-component and C ′ ⊆ treecomp(u)} is a partition of W .

Lemma 4.18 (Lemma 5.6 from [51]). Let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an arbitrary
FHD of a hypergraph H in fractional normal form and let r ∈ T . Then, C = treecomp(s)
for some child s of r if and only if C is a [Br]-component of H and C ⊆ treecomp(r).
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Lemma 4.19 (Lemma 5.7 from [51]). For every FHD F = 〈T, (Bu)u∈T , (γu)u∈T 〉 of a
hypergraph H in fractional normal form, |nodes(T )| ≤ |V (H)|.

The next lemma is crucial for designing an algorithm that computes a concrete FHD.
The lemma is based on Lemma 5.8 from [51]. However, the proof in the FHD-setting
requires a slightly more substantial modification of the proof in the HD-setting. We
therefore state the lemma together with a full proof below.

Lemma 4.20 (Lemma 5.8 from [51]). Let c ≥ 0 and let F = 〈T, (Bu)u∈T , (γu)u∈T 〉 be an
FHD in FNF of a hypergraph H such that F has c-bounded fractional part and satisfies
the weak special condition. Further, let s be a node in T and let r be the parent of s
in T . Let R1 = {e ∈ E(H) | γs(e) = 1} and R2 = {e ∈ E(H) | γs(e) < 1}, and let
Bs = B1 ∪B2 with B1 = Bs ∩B(γs|R1) and B2 = Bs ∩B(γs|R2). Finally, let C be a set
of vertices such that C ⊆ treecomp(s). Then the following equivalence holds:

C is a [Bs]-component if and only if C is a [B(γs|R1) ∪B2]-component.

Remark. The crux of the proof of Lemma 5.8 from [51] and likewise of Lemma 4.20 stated
here is the following: by the definition of FHDs, we have Bs ⊆ B(γs|R1) ∪ B2. Hence,
every [B(γs|R1)∪B2]-path is also a [Bs]-path, but the converse is, at first glance, not clear.
However, by the weak special condition, (B(γs|R1)∪B2) \Bs only contains elements from
Br ∩Bs. Moreover, we are assuming that C is a subset of treecomp(s), i.e., it is in the
complement of Br. Hence, [Bs]-paths and [B(γs|R1) ∪B2]-paths actually coincide. From
this it is then straightforward to conclude that, inside treecomp(s), [Bs]-components and
[B(γs|R1) ∪B2]-components coincide.

Proof. Let W = B(γs|R1) ∪B2. We first prove the following Property (4.1), which is the
analogue of Property (1) in the proof of Lemma 5.8 from [51]:

W ∩ treecomp(s) ⊆ Bs. (4.1)

Proof of Property (4.1). By the definition of FHDs, we have Bs ⊆ B(γs|R1) ∪B2 = W .
By the weak special condition, we have B(γs|R1) ∩ V (Ts) ⊆ Bs. By the definition of
treecomp(s), we have V (Ts) = treecomp(s) ∪ (Bs ∩ Br), i.e., also treecomp(s) ⊆ V (Ts)
clearly holds. In total, we thus have:

W ∩ treecomp(s) = (B(γs|R1) ∪B2) ∩ treecomp(s) ⊆

(B(γs|R1) ∩ treecomp(s)) ∪B2 ⊆ (B(γs|R1) ∩ V (Ts)) ∪B2 ⊆ Bs. �

It remains to show for C ⊆ treecomp(s), that C is a [Bs]-component if and only if C is a
[W ]-component. This proof follows the line of argumentation in the proof of Lemma 5.8
from [51] – replacing Property (1) there with our Property (4.1) proved here. For the
sake of completeness, we present a detailed proof of the desired equivalence below.
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Proof of the “only if”-direction. Suppose that C is a [Bs]-component with C ⊆ treecomp(s).
Then, in particular, C ∩Bs = ∅. Hence, by Property (1), we have C ∩W = ∅. This can
be seen as follows: C ∩W ⊆ treecomp(s)∩W ⊆ Bs (the last inclusion uses Property (1)).
Hence, also C ∩W ⊆ C ∩Bs holds. Together with C ∩Bs = ∅, we thus have C ∩W = ∅.

We have to show that C is a [W ]-component, i.e., C is [W ]-connected and C is maximal
[W ]-connected. For the [W ]-connectedness, consider an arbitrary pair of vertices {x, y} ⊆
C, i.e., there exists a [Bs]-path π between x and y. Note that this [Bs]-path π only goes
through vertices in C. Hence, by C ∩W = ∅, π is also a [W ]-path. Hence, C is indeed
[W ]-connected. For the maximality, we simply make us of the relationship Bs ⊆W . This
means that since C is maximal [Bs]-connected, it is also maximal [W ]-connected.

Proof of the “if”-direction. Suppose that C is a [W ]-component with C ⊆ treecomp(s).
By Bs ⊆W , we conclude that the [W ]-connectedness of C implies the [Bs]-connectedness.
It remains to show that C is maximal [Bs]-connected. Clearly, there exists a [Bs]-
component C ′ with C ⊆ C ′. By Lemma 4.17, we have C ′ ⊆ treecomp(s) \ Bs. In
particular, C ′ ⊆ treecomp(s). Hence, by the “only if” part of this lemma, C ′ is a [W ]-
component and, therefore, C cannot be a proper subset of C ′. Hence, C = C ′. Thus, C
is indeed a [Bs]-component.

We have thus shown for C ⊆ treecomp(s), that C is a [Bs]-component if and only if C is
a [W ]-component. This concludes the proof of the lemma.

A PTime algorithm for FHDs with c-bounded fractional part. We now adapt
the HD algorithm from [51] to turn it into an FHD algorithm that searches for FHDs with
c-bounded fractional part for some constant c and satisfying the weak special condition.
By Lemmas 4.14 and 4.15, we know that for any constants k ≥ 1, i ≥ 0, and ε > 0,
there exists a constant c (which only depends on k, i, ε) with the following property:
for every hypergraph H with iwidth(H) ≤ i, if H has an FHD of width ≤ k, then H
also has an FHD of width ≤ k + ε with c-bounded fractional part and satisfying the
weak special condition. Moreover, by Lemma 4.16, the transformation into FNF can be
done in such a way that it does not increase the width and preserves the c-boundedness
of the fractional part and the weak special condition. Hence, in our Algorithm 4.3
“(k, ε, c)-frac-decomp”, we restrict our search to FHDs of width ≤ k + ε in FNF
with c-bounded fractional part and satisfying the weak special condition. Moreover,
throughout the remainder of Section 4.4, we assume that for every edge e in a given
hypergraph H, all subedges e′ of e of size |e′| ≤ ki + c (cf. Lemma 4.15) have already
been added to H.

Let τ be a computation tree of the alternating algorithm (k, ε, c)-frac-decomp. We
can associate with every τ an FHD δ(τ) = 〈T, (Bu)u∈T , (γu)u∈T 〉, called witness tree,
defined as follows: For each existential configuration in τ corresponding to the “guess”
of some sets S ⊆ E(H) and Ws ⊆ V (H) in Step 1 during the execution of a procedure
call f-decomp (Cr,Wr, R), the tree T contains a node s. In particular, at the initial
call f-decomp (V (H), ∅, ∅), the guesses S nad Ws give rise to the root node s0 of T .
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Algorithm 4.3: (k, ε, c)-frac-decomp
input :Hypergraph H.
output : “Accept”, if H has an FHD of width ≤ k + ε

with c-bounded fractional part and weak special condition
“Reject”, otherwise.

1 Function f-decomp (Cr, Wr: Vertex-Set, R: Edge-Set)
2 begin /* (1) Guess */
3 Guess a set S ⊆ E(H) with |S| = `, s.t. ` ≤ k + ε ; /* (1.a) */
4 Guess a set Ws ⊆ (V (R) ∪Wr ∪ Cr) with |Ws| ≤ c ; /* (1.b) */

5 end
6 begin /* (2) Check */
7 Check if ∃γ with Ws ⊆ B(γ) and weight(γ) ≤ k + ε− ` ; /* (2.a) */
8 Check if ∀e ∈ edges(Cr) : e∩ (V (R)∪Wr) ⊆ (V (S)∪Ws) ; /* (2.b) */
9 Check if (V (S) ∪Ws) ∩ Cr 6= ∅ ; /* (2.c) */

10 end
11 if one of these checks fails then Halt and Reject; /* (3) */
12 else
13 Let C := {C ⊆ V (H) | C is a [V (S) ∪Ws]-component and C ⊆ Cr};
14 end
15 foreach C ∈ C do /* (4) */
16 if f-decomp (C,Ws, S) returns Reject then
17 Halt and Reject
18 end
19 end
20 return Accept;

21 begin /* Main */
22 return f-decomp (V (H), ∅, ∅)
23 end

Moreover, there is an edge between nodes r and s of T , if s 6= s0 and r is the node in T
corresponding to the guess of sets R ⊆ E(H) and Wr ⊆ V (H). We will denote Cr by
comp(s), and r by parent(s). Moreover, for the root s0 of T , we define comp(s0) = V (H).

Each node s ∈ T is labelled by Bs and γs as follows. First, we define γs via the mapping
γ, which exists according to the check in Step 2.a:

γs(e) =


γ(e) for e ∈ supp(γ) \ S
1 for e ∈ S
0 otherwise

Note that for the sets S of edges and Ws of vertices guessed in Step 1, we have B(γs) =
(V (S) ∪Ws). As far as the definition of the bags is concerned, we set Bs0 = B(γs0) for
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the root node s0. For any other node s with r = parent(s) and C = comp(s), we set
Bs = B(γs) ∩ (Br ∪ C).

The correctness proof of the (k, ε, c)-frac-decomp algorithm is along the same lines
as the correctness proof of the alternating algorithm for the Check(HD, k) problem in
[51]. We therefore state the analogues of the lemmas and theorems of [51] without proofs,
since these can be easily “translated” from the HD setting in [51] to our FHD setting.

Lemma 4.21 (based on Lemma 5.9 from [51]). Let H be a hypergraph and let k ≥ 1,
ε > 0, and c ≥ 0. If H has an FHD of width ≤ k + ε in FNF with c-bounded fractional
part and satisfying the weak special condition, then the algorithm (k, ε, c)-frac-decomp
accepts input H. Moreover, every such FHD is equal to some witness tree δ(τ) of
(k, ε, c)-frac-decomp when run on input H.

The next three lemmas will help to show the converse: whenever (k, ε, c)-frac-decomp
has an accepting computation, then the corresponding witness tree is an FHD of H of
width ≤ k + ε in FNF with c-bounded fractional part and satisfying the weak special
condition.

Lemma 4.22 (based on Lemma 5.10 from [51]). Let H be a hypergraph and let k ≥ 1,
ε > 0, and c ≥ 0. Assume that (k, ε, c)-frac-decomp accepts input H with an accepting
computation tree τ and corresponding witness tree δ(τ) = 〈T, (Bu)u∈T , (γu)u∈T 〉. Then,
for each node s in T :

(a) if s 6= root(T ), then comp(s) is a [Br]-component with r = parent(s);

(b) for any C ⊆ comp(s), C is a [Bs]-component if and only if C is a [V (S) ∪Ws]-
component.

Lemma 4.23 (based on Lemma 5.11 from [51]). Let H be a hypergraph and let k ≥ 1,
ε > 0, and c ≥ 0. Assume that (k, ε, c)-frac-decomp accepts input H with an accepting
computation tree τ . Let δ(τ) = 〈T, (Bu)u∈T , (γu)u∈T 〉 be the corresponding witness tree
and s ∈ T . Then, for each node u ∈ Ts:

Bu ⊆ comp(s) ∪Bs
comp(u) ⊆ comp(s).

Lemma 4.24 (based on Lemma 5.12 from [51]). Let H be a hypergraph and let k ≥ 1,
ε > 0, and c ≥ 0. Assume that (k, ε, c)-frac-decomp accepts input H with an accepting
computation tree τ and corresponding witness tree δ(τ) = 〈T, (Bu)u∈T , (γu)u∈T 〉. Let
s ∈ T and Cr = comp(s). Then, for every edge e ∈ edges(Cr) and every edge e′ ∈
E(H) \ edges(Cr), we have e ∩ e′ ⊆ Bs.

We are now ready to show that, whenever (k, ε, c)-frac-decomp has an accepting
computation on an input hypergraph H, then the corresponding witness tree is an
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FHD of H of width ≤ k + ε in FNF with c-bounded fractional part and satisfying the
weak special condition. As before, the following lemma can be shown similarly to the
corresponding result in [51].

Lemma 4.25 (based on Lemma 5.13 from [51]). Let H be a hypergraph and let k ≥ 1,
ε > 0, and c ≥ 0. If (k, ε, c)-frac-decomp accepts input H, then H has an FHD of
width ≤ k + ε in FNF with c-bounded fractional part and satisfying the weak special
condition. Moreover, in case of acceptance, every witness tree δ(τ) for H is an FHD F
of H in FNF with c-bounded fractional part satisfying the weak special condition.

The following result follows immediately from the above Lemmas 4.21 and 4.25.

Theorem 4.7. Let H be a hypergraph and let c ≥ 0 and ε > 0. Then,
(k, ε, c)-frac-decomp accepts input (H, c, ε) if and only if H has an FHD of width
≤ k+ ε with c-bounded fractional part and satisfying the weak special condition. Moreover,
in case of acceptance, every witness tree δ(τ) for H is an FHD F of H in FNF with
c-bounded fractional part satisfying the weak special condition.

It remains to establish the Ptime membership of our algorithm. Again, we can easily
carry over the corresponding tractability result from Lemma 5.15 in [51]. The crux of
the proof in [51] is that all data structures involved in the alternating algorithm fit into
logspace. In total, our alternating algorithm (k, ε, c)-frac-decomp has to maintain the
following 6 data structures: the input parameters Cr, Wr, and R of procedure f-decomp
and the local variables S, Ws, and the component C of the next recursive procedure call.
In the alternating algorithm in [51], only 4 data structures are needed, which correspond
to Cr, R, S, and C in our setting. The data structures Wr and Ws are only used in
our algorithm. However, these are just sets of constantly many vertices. Hence, they
can of course also be stored in logspace. The rest of the proof arguments can then be
easily carried over from [51]. When it comes to the complexity of the checks in step 2,
we additionally have to solve a linear program in our algorithm, which can also be done
in Ptime (or on an ATM using logspace). We thus get:

Lemma 4.26 (based on Lemma 5.15 from [51]). The alternating algorithm
(k, ε, c)-frac-decomp can be implemented on a logspace ATM.

Theorem 4.6, now follows immediately by putting together Lemmas 4.14, 4.15, and 4.16,
Theorem 4.7, and Lemma 4.26.

A polynomial time approximation scheme for finding optimal FHDs. Recall
the definition of the K-Bounded-FHW-Optimization problem from Section 1.2, i.e.:
given a hypergraph H, we are interested in fhw(H), but only if fhw(H) ≤ K. We will
now show that, with the alternating algorithm (k, ε, c)-frac-decomp at our disposal,
we are able to give a polynomial time absolute approximation scheme (PTAAS) for the
bounded optimization problem. More precisely, we aim at an approximation algorithm
with the following properties:
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Definition 4.17 (PTAS [12, 96]). Let Π be an (intractable) minimization problem with
positive objective function fΠ. An algorithm Alg is called an approximation scheme
for Π if on input (I, ε), where I is an instance of Π and ε > 0 is an error parameter, it
outputs a solution s such that:

fΠ(I, s) ≤ (1 + ε) · fΠ(I, s∗)

where s∗ is an optimal solution of I, i.e. for all other solutions s′ of I it holds that
fΠ(I, s∗) ≤ fΠ(I, s′).

Alg is called a polynomial time approximation scheme (PTAS), if for every fixed ε > 0,
its running time is bounded by a polynomial in the size of instance I. /

In our case we can even achieve something slightly better. As seen in Definition 4.17,
the error of the solution given by an approximation scheme is relative to the optimal
value of the optimization problem. Clearly, it would be preferable, if the gap between the
solution returned by the approximation scheme and an optimal solution has an absolute
bound (i.e., not depending on the optimal value). This leads to the following definition
of absolute approximation schemes:

Definition 4.18 (PTAAS). Let Π be an (intractable) minimization problem with positive
objective function fΠ. We say that algorithm Alg is an absolute approximation scheme
for Π if on input (I, ε), where I is an instance of Π and ε > 0 is an error parameter, it
outputs a solution s such that:

fΠ(I, s) ≤ fΠ(I, s∗) + ε

where s∗ is the optimal solution of I, i.e. for all other solutions s′ of I it holds that
fΠ(I, s∗) ≤ fΠ(I, s′).

Alg is called a polynomial time absolute approximation scheme (PTAAS), if for each
fixed ε > 0, its running time is bounded by a polynomial in the size of instance I. /

Note that every PTAAS is also a PTAS, since for any ε > 0 it holds that fΠ(I, s∗) + ε ≤
(1 + ε) · fΠ(I, s∗), provided that fΠ(I, s∗) ≥ 1. Actually, we can assume w.l.o.g. that this
is indeed the case [12]. We now show that, in case of the BIP, the K-Bounded-FHW-
Optimization problem indeed allows for a PTAAS (and, hence, for a PTAS):

Theorem 4.8. For every hypergraph class C that enjoys the BIP, there exists a PTAAS
for the K-Bounded-FHW-Optimization problem.

Proof. By Theorem 4.6, there exists a function find-fhd (H, k, ε, i) with the following
properties:

• find-fhd takes as input a hypergraph H with iwidth(H) ≤ i and numbers k ≥ 1,
ε ≥ 0;

74



4.4. Efficient Approximation of FHDs

Algorithm 4.4: FHW-Approximation
input : hypergraph H with iwidth(H) ≤ i, numbers K ≥ 1, ε ≥ 0
output : approximation of fhw(H), i.e., FHD F with width(F) ≤ fhw(H) + ε if

fhw(H) ≤ K
/* Check upper bound */

1 if not (F = find-fhd (H, K, ε, i)) then
2 return fails ; /* fhw(H) > k */
3 end
/* Initialization */

4 L = 1;
5 U = K + ε;
6 ε′ = ε/3;
/* Main computation */

7 repeat
8 if F ′ = find-fhd (H, L+ (U − L)/2, ε′, i) then
9 U = L+ (U − L)/2 + ε′;

10 F = F ′;
11 end
12 else
13 L = L+ (U − L)/2;
14 end
15 until U − L < ε;
16 return F ;

• find-fhd returns an FHD F of H of width ≤ k + ε if such exists and fails
otherwise (i.e., fhw(H) > k holds).

• find-fhd runs in time polynomial in the size of H, where k, ε, and i are considered
as fixed.

Then we can construct Algorithm 4.4 “FHW-Approximation”, which uses find-fhd
as subprocedure. We claim that FHW-Approximation is indeed a PTAAS for the K-
Bounded-FHW-Optimization problem. First we argue that the algorithm is correct;
we will then also show its polynomial-time upper bound.

As for the correctness, note that the algorithm first checks if K is indeed an upper bound
on fhw(H). This is done via a call of function find-fhd. If the function call fails,
then we know that fhw(H) > K holds. Otherwise, we get an FHD F of width ≤ K + ε.
In the latter case, we conclude that fhw(H) is in the interval [L,U ] with L = 1 and
U = K + ε.
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The loop invariant for the repeat loop is, that fhw(H) is in the interval [L,U ] and the
width of the FHD F is ≤ U . To see that this invariant is preserved by every iteration
of the loop, consider the function call find-fhd (H, L+ (U − L)/2, ε′, i): if this call
succeeds then the function returns an FHD F ′ of width ≤ L+ (U − L)/2 + ε′. Hence,
we may indeed set U = L + (U − L)/2 + ε′ and F = F ′ without violating the loop
invariant. On the other hand, suppose that the call of find-fhd fails. This means that
fhw(H) > L+ (U − L)/2 holds. Hence, we may indeed update L to L+ (U − L)/2 and
the loop invariant still holds. The repeat loop terminates when U − L < ε holds. Hence,
together with the loop invariant, we conclude that, on termination, F is an FHD of H
with width(F)− fhw(H) < ε.

It remains to show that algorithm FHW-Approximation runs in polynomial time w.r.t.
the size of H. By Theorem 4.6, the function find-fhd works in polynomial time w.r.t.
H. We only have to show that the number of iterations of the repeat-loop is bounded by a
polynomial in H. Actually, we even show that it is bounded by a constant (depending on
K and ε, but not on H): let K ′ := K + ε− 1. Then the size of the interval [L,U ] initially
is K ′. In the first iteration of the repeat-loop, we either set U = L + (U − L)/2 + ε′

or L = L + (U − L)/2 holds. In either case, at the end of this iteration, we have
U − L ≤ K ′/2 + ε′. By an easy induction argument, it can be verified that after m
iterations (with m ≥ 1), we have

U − L ≤ K ′

2m + ε′ + ε′

2 + ε′

22 + · · ·+ ε′

2m−1

Now set m = dlog(K ′/ε′)e. Then we get

K ′

2m ≤
K ′

2log(K′/ε′) = K ′

(K ′/ε′) = ε′.

Moreover, ε′ + ε′

2 + ε′

22 + · · ·+ ε′

2m−1 < 2ε′ for every m ≥ 1. In total, we thus have that,
after m = dlog(K ′/ε′)e iterations of the repeat loop, U − L < 3ε′ = ε holds, i.e., the loop
terminates.

4.4.2 Approximation of FHDs in case of the BMIP

We now present a polynomial-time approximation of the fhw for classes of hypergraphs
enjoying the BMIP. Actually, the approximation even works for slightly more general
classes of hypergraphs, such that hypergraph classes with BMIP constitute a familiar
subcase. For this, we will combine some classical results on the Vapnik-Chervonenkis
(VC) dimension with some novel observations. This will yield an approximation of the
fhw up to a logarithmic factor for hypergraphs enjoying the BMIP. We first recall the
definition of the VC-dimension of hypergraphs.

Definition 4.19 ([85, 95]). Let H = (V (H), E(H)) be a hypergraph and X ⊆ V (H) a
set of vertices. Denote by E(H)|X the set E(H)|X = {X ∩ e | e ∈ E(H)}. The vertex
set X is called shattered if E(H)|X = 2X . The Vapnik-Chervonenkis dimension (VC
dimension) vc(H) of H is the maximum cardinality of a shattered subset of V (H). /
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We now provide a link between the VC-dimension and our approximation of the fhw.

Definition 4.20. Let H = (V (H), E(H)) be a hypergraph. A transversal (also known
as hitting set) of H is a subset S ⊆ V (H) that has a non-empty intersection with every
edge of H. The transversality τ(H) of H is the minimum cardinality of all transversals
of H.

Clearly, τ(H) corresponds to the minimum of the following integer linear program: find
a mapping w : V → {0, 1} which minimizes Σv∈V (H)w(v) under the condition that
Σv∈ew(v) ≥ 1 holds for each hyperedge e ∈ E.

The fractional transversality τ∗ of H is defined as the minimum of the above linear
program when dropping the integrality condition, thus allowing mappings w : V → R≥0.
Finally, the transversal integrality gap tigap(H) of H is the ratio τ(H)/τ∗(H). /

Recall that computing the mapping λu for some node u in a GHD can be seen as
searching for a minimal edge cover ρ of the vertex set Bu, whereas computing γu in
an FHD corresponds to the search for a minimal fractional edge cover ρ∗ [58]. Again,
these problems can be cast as linear programs where the first problem has the integrality
condition and the second one has not. Further, we can define the cover integrality gap
cigap(H) of H as the ratio ρ(H)/ρ∗(H). With this, we state the following approximation
result for fhw.

Theorem 4.9. Let C be a class of hypergraphs with VC-dimension bounded by some
constant d and let k ≥ 1. Then there exists a polynomial-time algorithm that, given a
hypergraph H ∈ C with fhw(H) ≤ k, finds an FHD of H of width O(k · log k).

Proof. The proof proceeds in several steps.

Reduced hypergraphs. As in Section 4.3, Proposition 4.1, we consider, w.l.o.g., only
hypergraphs H that satisfy the following 4 conditions: (1) H has no isolated vertices and
(2) no empty edges. Moreover, (3) no two distinct vertices in H have the same edge-type
(i.e., the two vertices occur in precisely the same edges) and (4) no two distinct edges in
H have the same vertex-type (i.e., we exclude duplicate edges). Hypergraphs satisfying
these conditions will be called “reduced”.

Dual hypergraphs. Given a hypergraph H = {V,E), the dual hypergraph Hd = (W,F )
is defined as W = E and F = {{e ∈ E | v ∈ e} | v ∈ V }. We are assuming that H is
reduced. This ensures that (Hd)d = H holds. Moreover, it is well-known and easy to
verify that the following relationships between H and Hd hold for any reduced hypergraph
H, (see, e.g., [32]):

(1) The edge coverings of H and the transversals of Hd coincide.

(2) The fractional edge coverings of H and the fractional transversals of Hd coincide.

(3) ρ(H) = τ(Hd), ρ∗(H) = τ∗(Hd), and cigap(H) = tigap(Hd).
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VC-dimension. By a classical result (see [31, 22]), for every hypergraphH = (V (H), E(H)),
we have

tigap(H) = τ(H)/τ∗(H) ≤ 2vc(H) log(11τ∗(H))/τ∗(H).

Moreover, in [9], it is shown that vc(Hd) < 2vc(H)+1 always holds. In total, we thus get

cigap(H) = tigap(Hd) ≤ 2vc(Hd) log(11τ∗(Hd))/τ∗(Hd)
< 2vc(H)+2 log(11ρ∗(H))/ρ∗(H).

Approximation of fhw by ghw. Suppose that H has an FHD
〈
T, (Bu)u∈V (T ), (λ)u∈V (T )

〉
of width k. Then there exists a GHD of H of width O(k · log k). Indeed, we can find such
a GHD by leaving the tree structure T and the bags Bu for every node u in T unchanged
and replacing each fractional edge cover γu of Bu by an optimal integral edge cover λu
of Bu. By the above inequality, we thus increase the weight at each node u only by a
factor O(log k). Moreover, we know from [5] that computing an HD instead of a GHD
increases the width only by the constant factor 3.

One drawback of the VC-dimension is that deciding if a hypergraph has VC-dimension
≤ v is intractable [89]. However, Lemma 4.27 establishes a relationship between BMIP
and VC-dimension. Together with Theorem 4.9, Corollary 4.3 is then immediate.

Lemma 4.27. If a class C of hypergraphs has the BMIP then it has bounded VC-
dimension. However, there exist classes C of hypergraphs with bounded VC-dimension
that do not have the BMIP.

Proof. [BMIP ⇒ bounded VC-dimension.] Let c ≥ 1, i ≥ 0 and let H be a hypergraph
with c-miwidth(H) ≤ i. We claim that then vc(H) ≤ c+ i holds.

Assume to the contrary that there exists a set X ⊆ V , such that X is shattered and
|X| > c+ i. We pick c arbitrary, pairwise distinct vertices v1, . . . , vc from X and define
Xj = X \ {vj} for each j. Then X = (X1 ∩ · · · ∩ Xc) ∪ {v1, . . . , vc} holds and also
|X| ≤ |X∗|+ c with X∗ ⊆ X1 ∩ · · · ∩Xc.

Since X is shattered, for each 1 ≤ j ≤ c, there exists a distinct edge ej ∈ E(H) with
Xj = X ∩ ej . Hence, Xj = X \{vj} ⊆ ej and also X∗ ⊆ e1∩ e2∩ · · ·∩ ec holds, i.e., X∗ is
in the intersection of c edges of H. By c-miwidth(H) ≤ i, we thus get |X∗| ≤ i. In total,
we have |X| ≤ |X∗|+ c ≤ i+ c, which contradicts our assumption that |X| > c+ i holds.

[bounded VC-dimension 6⇒ BMIP.] It suffices to exhibit a family (Hn)n∈N of hypergraphs
such that vc(Hn) is bounded whereas c-miwidth(Hn) is unbounded for any constant c.
We define Hn = (Vn, En) as follows:

Vn = {v1, . . . , vn}

En = {Vn \ {vi} | 1 ≤ i ≤ n}
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Clearly, vc(Hn) ≤ 2. Indeed, take an arbitrary set X ⊆ V with |X| ≥ 2. Then ∅ ⊆ X
but ∅ 6= X ∩ e for any e ∈ En. On the other hand, let c ≥ 1 be an arbitrary constant and
let X = ei1 ∩ · · · ∩ ei` for some ` ≤ c and edges eij ∈ En. Obviously, |X| ≥ n− c holds.
Hence, also c-miwidth(Hn) ≥ n− c, i.e., it is not bounded by any constant i ≥ 0.

In the first part of Lemma 4.27, we have shown that vc(H) ≤ c + i holds. For an
approximation of an FHD by a GHD, we need to approximate the fractional edge cover
γu of each bag Bu by an integral edge cover λu, i.e., we consider fractional vs. integral
edge covers of the induced hypergraphs Hu = (Bu, Eu) with Eu = {e ∩Bu | e ∈ E(H)}.
Obviously, the bound vc(H) ≤ c+ i carries over to vc(Hu) ≤ c+ i.

Corollary 4.3. Let C be a class of hypergraphs enjoying the BMIP and let k ≥ 1. Then
there exists a polynomial-time algorithm that, given H ∈ C with fhw(H) ≤ k, finds an
FHD (actually, even a GHD) of H of width O(k · log k).
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CHAPTER 5
To Practice

In the previous chapter we investigated generalized and fractional hypertree decomposi-
tions from a theoretical view. For practical purposes it is important to have hypergraphs
of low fractional or generalized hypertree width. In this chapter we are going to answer
Research Questions 5-10.

In order to answer these questions we will first present a collection of hypergraphs
converted from real-world and synthetic CQ and CSP instances in Section 5.1. In
Section 5.2 we will determine the hypertree width of all our instances. We will then
investigate in Section 5.3 whether the hypergraph properties (BIP, BMIP, VC-dim, BDP)
that allow for efficient computation of generalized and fractional hypertree decompositions
are indeed small on our benchmark instances. In Section 5.4 we will present novel
algorithms for determining the generalized hypertree width. These algorithms are based
on the tractability results given in Section 4.2. For fractional hypertree decompositions we
will give in Section 5.5 an algorithm that determines the exact fractional hypertree width
in case of bounded rank. We close this chapter in Section 5.6 with a short conclusion
and comparison of the different widths.

5.1 HyperBench: A Benchmark of Hypergraphs
Our benchmark contains 3,070 hypergraphs, which have been converted from CQs and
CSPs collected from various sources. Out of these 3,070 hypergraphs, 2,918 hypergraphs
have never been used in a hypertree width analysis before. The hypertree width of 70
CQs and of 82 CSPs has been analysed in [54], [17], and/or [21]. An overview of all
instances of CQs and CSPs is given in Table 5.1. They have been collected from various
publicly available benchmarks and repositories of CQs and CSPs. In the first column,
the names of each collection of CQs and CSPs are given together with references where
they were first published. In the second column we display the number of hypergraphs
extracted from each collection. The hw of the CQs and CSPs in our benchmark will be
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Benchmark No. instances hw ≥ 2

C
Q
s

SPARQL[21] 70 (out of 26,157,880) 70
LUBM[16, 59] 14 2
iBench[16, 8] 40 0
Doctors[16, 42] 14 0
Deep[16] 41 0
JOB (IMDB) [70] 33 7
TPC-H [15, 92] 33 1
SQLShare [62] 290 (out of 15,170) 1
Random [81] 500 464

C
SP

s Application [11] 1,090 1,090
Random [11] 863 863
Other [54, 17] 82 82

Total: 3,070 2,580

Table 5.1: Overview of benchmark instances

discussed in detail in Section 5.2. To get a first feeling of the hw of the various sources,
we mention the number of cyclic hypergraphs (i.e., those with hw ≥ 2) in the last column.
When gathering the CQs, we proceeded as follows: of the huge benchmark reported
in [21], we have only included CQs, which were detected as having hw ≥ 2 in [21]. Of
the big repository reported in [62], we have included those CQs, which are not trivially
acyclic (i.e., they have at least 3 atoms). Of all the small collections of queries, we have
included all.

Below, we describe the different benchmarks in detail:

• CQs: Our benchmark contains 535 CQs from four main sources [15, 16, 21, 62] and
a set of 500 randomly generated queries using the query generator of [81]. In the
sequel, we shall refer to the former queries as CQ Application, and to the latter
as CQ Random. The CQs analysed in [21] constitute by far the biggest repository
of CQs – namely 26,157,880 CQs stemming from SPARQL queries. The queries
come from real-users of SPARQL endpoints and their hypertree width was already
determined in [21]. Almost all of these CQs were shown to be acyclic. Our analysis
comprises 70 CQs from [21], which (apart from few exceptions) are essentially the
ones in [21] with hw ≥ 2. In particular, we have analysed all 8 CQs with highest
hw among the CQs analysed in [21] (namely, hw = 3).

The LUBM [59], iBench [8], Doctors [42], and Deep scenarios have been recently
used to evaluate the performance of chase-based systems [16]. Their queries were
especially tailored towards the evaluation of query answering tasks of such systems.
Note that the LUBM benchmark [59] is a widely used standard benchmark for the
evaluation of Semantic Web repositories. Its queries are designed to measure the
performance of those repositories over large datasets. Strictly speaking, the iBench
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5.1. HyperBench: A Benchmark of Hypergraphs

is a tool for generating schemas, constraints, and mappings for data integration tasks.
However, in [16], 40 queries were created for tests with the iBench. We therefore
refer to these queries as iBench-CQs here. In summary, we have incorporated all
queries that were either contained in the original benchmarks or created/adapted
for the tests in [16].

The goal of the Join Order Benchmark (JOB) [70] was to evaluate the impact of
a good join order on the performance of query evaluation in standard RDBMS.
Those queries were formulated over the real-world dataset Internet Movie Database
(IMDB). All of the queries have between 3 and 16 joins. Clearly, as the goal was to
measure the impact of a good join order, those 33 queries are of higher complexity,
hence 7 out of the 33 queries have hw ≥ 2.

The 33 TPC-H queries in our benchmark are taken from the GitHub repository
originally provided by Michael Benedikt and Efthymia Tsamoura [15] for the work
on [12]. Out of the 33 CQs based on the TPC-H benchmark [92], 13 queries were
handcrafted and 20 randomly generated. The TPC-H benchmark has been widely
used to assess multiple aspects of the capabilities of RDBMS to process queries.
They reflect common workloads in decision support systems and were chosen to
have broad industry-wide relevance.

From SQLShare [62], a multi-year SQL-as-a-service experiment with a large set of
real-world queries, we extracted 15,170 queries by considering all CQs (in particular,
no nested SELECTs). After eliminating trivial queries (i.e., queries with ≤ 2 atoms,
whose acyclicity is immediate) and duplicates, we ended up with 290 queries.

The random queries were generated with a tool that stems from the work on
query answering using views in [81]. The query generator allows 3 options:
chain/star/random queries. Since the former two types are trivially acyclic, we only
used the third option. Here it is possible to supply several parameters for the size
of the generated queries. In terms of the resulting hypergraphs, one can thus fix the
number of vertices, number of edges and arity. We have generated 500 CQs with 5
– 100 vertices, 3 – 50 edges and arities from 3 to 20. These values correspond to the
values observed for the CQ Application hypergraphs. However, even though these
size values have been chosen similarly, the structural properties of the hypergraphs
in two groups CQ Application and CQ Random differ significantly, as will become
clear from our analysis in Section 5.3.

• CSPs: In total, our benchmark currently contains 2,035 hypergraphs from CSP
instances, out of which 1,953 instances were obtained from xcsp.org (see also [11]).
We have selected all CSP instances from xcsp.org with less than 100 constraints
such that all constraints are extensional. These instances are divided into CSPs from
concrete applications, called CSP Application in the sequel (1,090 instances), and
randomly generated CSPs, called CSP Random below (863 instances). In addition,
we have included 82 CSP instances from previous hypertree width analyses provided
at https://www.dbai.tuwien.ac.at/proj/hypertree/; all of these stem
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from industrial applications and/or further CSP benchmarks. We refer to these
instances as other CSPs. Out of the 82 instances 61 were already used as a
benchmark for the HD-computation in [54]. These 61 instances are split into
15 CSP instances from DaimlerChrysler, 12 CSP instances from Grid2D, and 24
CSP instances from the ISCAS’89 benchmark on circuits. The 82 instances also
include 35 instances used in the MaxSAT Evaluation 2017 [17]. There a MaxSAT
encoding was created to determine the ghw of each of the hypergraphs. During
the competition 7 out of the 35 instances were solved. We refer to the resulting 82
hypergraphs as “other CSPs”. In our analysis, we keep them separated from the
instances in the “CSP Application” and “CSP Random” category mentioned above
because of the different provenance and for the sake of comparability with previous
evaluations of hypergraph decomposition algorithms.

CSP Other

CSP Random

CSP Application

CQ Random

CQ Application

0% 25% 50% 75% 100%

1−10 11−20 21−30 31−40 41−50 >50

Vertices

0% 25% 50% 75% 100%

1−10 11−20 21−30 31−40 41−50 >50

Edges

0% 25% 50% 75% 100%

1−5 6−10 11−15 16−20 >20

Arity

Figure 5.1: Hypergraph Sizes

Our HyperBench benchmark consists of these instances converted to hypergraphs. In
Figure 5.1, we show the number of vertices, the number of edges and the arity (i.e., the
maximum size of the edges) as three important metrics of the size of each hypergraph.
The smallest are those coming from CQ Application (at most 10 edges), while the
hypergraphs coming from CSPs can be significantly larger (up to 2993 edges). Although
some hypergraphs are very big, more than 50% of all hypergraphs have maximum arity
less than 5. In Figure 5.1 we can easily compare the different types of hypergraphs, e.g.
hypergraphs of arity greater than 20 only exist in the CSP Application class; the other
CSPs class contains the highest portion of hypergraphs with a big number of vertices
and edges, etc.

5.1.1 Web tool

The hypergraphs in the benchmark and the results of the analyses of these hypergraphs
can be accessed via a web tool, which is available at http://hyperbench.dbai.
tuwien.ac.at. There we have uploaded 3,070 hypergraphs together with over 5,518
HDs and the output of over 16,585 further algorithm runs, where no HD of desired
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Figure 5.2: HyperBench web tool: available at

width was found (either because a lower bound on the width was established or the
algorithm timed out). For example, in the screenshot in Figure 5.2 the results for the
CSP instance “Kakuro-easy-015-ext.xml.hg” are displayed. The hypertree width of the
instance is calculated according to the list of HDs at the bottom of the screenshot. For
this instance we have several algorithm runs, some of which led to a HD, some did not
(“HD not found”). With these we were able to pinpoint that hw = ghw = 4 holds. All
instances can be explored in such a way.

Additionally, we allow the user to browse, download and inspect hypergraph categories
presented in this work. In the near future, we will also provide a search interface to
download instances having specific properties (e.g. hw < 5 or BIP < 3, etc.) and to
contribute to the benchmark by uploading hypergraphs, which are then analysed and
incorporated into our HyperBench benchmark.

5.1.2 System and Test Environment.

In [54], an implementation (called DetKDecomp) of the hypertree decomposition algo-
rithm from [51] was presented. We have extended this implementation and built our
new library (called NewDetKDecomp) of tools and algorithms upon it. This library
includes the original hw-algorithm from [54], the tool hg-stats to determine properties
described in Section 5.3 and the algorithms to be presented in Sections 5.4 and 5.5. The
library is written in C++ and comprises around 8,500 lines of code. The code is publicly
available in GitHub at http://github.com/TUfischl/newdetkdecomp.

To solve the linear programs (LPs) for computing fractional covers in our algorithm
in Section 5.5, we use the COIN-OR Linear Programming Solver (CLP) version 1.16
from https://projects.coin-or.org/Clp. We have chosen CLP over other open-
source LP solvers based on very promising empirical results reported in [41].

All the experiments reported in this paper were performed on a cluster of 10 workstations
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each running Ubuntu 16.04. Every workstation has the same specification and is equipped
with two Intel Xeon E5-2650 (v4) processors each having 12 cores and 256-GB main
memory. Since all algorithms are single-threaded, we were allowed to compute several
instances in parallel. For all upcoming runs of our algorithms we set a timeout of 3600s.

5.2 Hypertree Width
We have systematically applied the hw-computation from [54] to all hypergraphs in the
benchmark. The results are given in Table 5.2 with their graphical representation given
in Figure 5.3. In our experiments, we proceeded as follows. We distinguish between the
five groups of hypergraphs as in Figure 5.4. For every hypergraph H, we first tried to
solve the Check(HD, k) problem for k = 1. In case of CQ Application, we thus got 454
yes-answers and 81 no-answers. The number in each bar indicates the average runtime
to find these yes- and no-instances, respectively. Here, the average runtime was “0” (i.e.,
less than 1 second) in both cases. For CQ Random we got 36 yes- and 464 no-instances
with an average runtime below 1 second. For all three groups of CSP-instances, we only
got no-answers with an average runtime below 1 second.

In the second round, we tried to solve the Check(HD, k) problem for k = 2 for all
hypergraphs that yielded a no-answer for k = 1. Now the picture is a bit more diverse:
73 of the remaining 81 CQs from CQ Application yielded a yes-answer in less than 1
second. For the hypergraphs stemming from CQ Random (resp. CSPs), only 68 (resp.
95) instances yielded a yes-answer (in less than 1 second on average), while 396 (resp.
1932) instances yielded a no-answer in less than 7 seconds on average and 8 CSP instances
led to a timeout (i.e., the program did not terminate within 3,600 seconds).

This procedure is iterated by incrementing k and running the hw-computation for all
instances, that either yielded a no-answer or a timeout in the previous round. For
instance, for queries from CQ Application, one further round is needed after the second
round. In other words, we confirm the observation of low hw, which was already made
for CQs of arity ≤ 3 in [21, 80]. For the hypergraphs stemming from CQ Random (resp.
CSPs), 396 (resp. 1940 )instances are left in the third round, of which 70 (resp. 232)
yield a yes-answer in less than 1 second on average, 326 (resp. 1415) instances yield
a no-answer in 32 (resp. 988) seconds on average and no (resp. 293) instances yield a
timeout. Note that, as we increase k, the average runtime and the percentage of timeouts
first increase up to a certain point and then they decrease. This is due to the fact that,
as we increase k, the number of combinations of edges to be considered in each λ-label
(i.e., the function λu at each node u of the decomposition) increases. In principle, we
have to test O(nk) combinations, where n is the number of edges. However, if k increases
beyond a certain point, then it gets easier to “guess” a λ-label since an increasing portion
of the O(nk) possible combinations leads to a solution (i.e., an HD of desired width).

To answer Research Question 6 of Section 1.1, it is indeed the case that for a big number
of instances, the hypertree width is small enough to allow for efficient evaluation of CQs
or CSPs: all instances of non-random CQs have hw ≤ 3 no matter whether their arity is
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Figure 5.3: HW analysis (labels are average runtimes in s)
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CQ Application
k yes no timeout

1 454 (0) 81 (0) 0
2 73 (0) 8 (0) 0
3 8 (0) 0 0

CQ Random
k yes no timeout

1 36 (0) 464 (0) 0
2 68 (0) 396 (0) 0
3 70 (0) 326 (32) 0
4 59 (0) 167 (544) 100
5 54 (0) 55 (610) 158

10 206 (5) 0 7
15 7 (0) 0 0

CSP Application
k yes no timeout

1 0 1090 (0) 0
2 29 (0) 1061 (0) 0
3 116 (0) 802 (736) 143
4 283 (18) 62 (707) 600
5 231 (13) 0 431

10 261 (0) 0 170
15 12 (0) 0 158
25 118 (0) 0 40
50 40 (0) 0 0

CSP Random
k yes no timeout

1 0 863 (0) 0
2 47 (0) 816 (1) 0
3 111 (0) 602 (1319) 103
4 39 (42) 160 (1332) 506
5 136 (59) 0 530

10 530 (0) 0 0

CSP Other
k yes no timeout

1 0 82 (1) 0
2 19 (0) 55 (219) 8
3 5 (0) 11 (1257) 47
4 5 (0) 2 (943) 51
5 6 (0) 1 (0) 46

10 24 (0) 0 23
15 6 (1) 0 17
25 7 (10) 0 10
50 5 (0) 0 5
75 4 (0) 0 1

Table 5.2: HW of instances with average runtime in s
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Figure 5.4: Hypergraph Properties

bounded by 3 (as in case of SPARQL queries) or not; and a large portion (at least 1027,
i.e., ca. 50%) of all 2035 CSP instances have hw ≤ 5. In total, including random CQs,
1,849 (60%) out of 3,070 instances have hw ≤ 5, for which we could determine the exact
hypertree width for 1,453 instances; the others may even have lower hw.

5.3 Hypergraph Properties

In Sections 4.2 – 4.4 several invariants of hypergraphs were used to make the Check(GHD, k)
and Check(FHD, k) problems tractable or, at least, easier to approximate. We thus
investigate the following properties (cf. Definitions 4.2, 4.3, 4.6, and 4.19):

• Deg: the degree of the underlying hypergraph

• BIP: the intersection width

• c-BMIP: the c-multi-intersection width for c ∈ {3, 4}

• VC-dim: the VC-dimension
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CQ Application
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0 0 0 118 173 10
1 2 421 348 302 393
2 176 85 59 50 132
3 137 7 5 5 0
4 87 5 5 5 0
5 35 17 0 0 0
6 98 0 0 0 0

CQ Random

i De
g

BI
P

3-
BM

IP
4-
BM

IP
VC

-d
im

0 0 1 16 49 0
1 1 17 77 125 20
2 15 53 90 120 133
3 38 62 103 74 240
4 31 63 62 42 106
5 33 71 47 28 1
6 382 233 105 62 0

CSP Application

i De
g
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P

3-
BM

IP
4-
BM

IP
VC

-d
im

0 0 0 596 597 0
1 0 1030 459 486 0
2 596 59 34 7 1064
3 1 0 1 0 26
4 1 0 0 0 0
5 2 0 0 0 0

>5 490 1 0 0 0

CSP Random
i De

g

BI
P

3-
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IP
4-
BM

IP
VC

-d
im

0 0 0 0 0 0
1 0 200 200 238 0
2 0 224 312 407 220
3 0 76 147 95 515
4 12 181 161 97 57
5 8 99 14 1 71

>5 843 83 29 25 0

CSP Other

i De
g

BI
P

3-
BM

IP
4-
BM

IP
VC

-d
im

0 0 0 1 6 0
1 0 7 36 39 0
2 1 36 23 16 51
3 5 29 20 21 26
4 19 10 2 0 0
5 4 0 0 0 0

> 5 53 0 0 0 0

Table 5.3: Hypergraph properties
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The results obtained from computing Deg, BIP, 3-BMIP, 4-BMIP, and VC-dim for the
hypergraphs in the HyperBench benchmark are shown in Table 5.3 with their graphical
representation given in Figure 5.4.

Table 5.3 has to be read as follows: In the first column, we distinguish different values of
the various hypergraph metrics. In the columns labelled “Deg“, “BIP“, etc., we indicate
for how many instances each metric has a particular value. For instance, by the last row
in the second column, only 98 non-random CQs have degree > 5. Actually, for most CQs,
the degree is less than 10. Moreover, for the BMIP, already with intersections of 3 edges,
we get 3 -miwidth(H) ≤ 2 for almost all non-random CQs. Also the VC-dimension is at
most 2.

For CSPs, all properties may have higher values. However, we note a significant difference
between randomly generated CSPs and the rest: For hypergraphs in the groups CSP
Application and CSP Other , 543 (46%) hypergraphs have a high degree (>5), but nearly
all instances have BIP or BMIP of less than 3. And most instances have a VC-dimension
of at most 2. In contrast, nearly all random instances have a significantly higher degree
(843 out of 863 instances with a degree >5). Nevertheless, many instances have small
BIP and BMIP. For nearly all hypergraphs (838 out of 863) we have 4 -miwidth(H) ≤ 4.
For 5 instances the computation of the VC-dimension timed out. For all others, the
VC-dimension is ≤ 5 for random CSPs. Clearly, as seen in Table 5.3, the random CQs
resemble the random CSPs a lot more than the CQ and CSP Application instances.
For example, random CQs have similar to random CSPs high degree (382 (76%) with
degree > 5), higher BIP and BMIP. Nevertheless, similar to random CSPs, the values for
BIP and BMIP are still small for many random CQ instances.

To conclude, for the proposed properties, in particular BIP/BMIP and VC-dimension,
most hypergraphs in our benchmark (even for random CQs and CSPs) indeed have low
values.

5.3.1 Correlation Analysis.

Finally, we have analysed the pairwise correlation between all properties. Of course, the
different intersection widths (BIP, 3-BMIP, 4-BMIP) are highly correlated. Other than
that, we only observe quite a high correlation of the arity with the number of vertices
and the hypertree width and of the number of vertices with the arity and the hypertree
width. Clearly, the correlation between arity and hypertree width is mainly due to the
CSP instances and the random CQs since, for non-random CQs, the hw never increases
beyond 3, independently of the arity.

A graphical presentation of all pairwise correlations is given in Figure 5.5. Here, large,
dark circles indicate a high correlation, while small, light circles stand for low correlation.
Blue circles indicate a positive correlation while red circles stand for a negative correlation.
In [38], we have argued that Deg, BIP, 3-BMIP, 4-BMIP and VC-dim are non-trivial
restrictions to achieve tractability. It is interesting to note that, according to the
correlations shown in Figure 5.5, these properties have almost no impact on the hypertree
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Figure 5.5: Correlation analysis.

width of our hypergraphs. This underlines the usefulness of these restrictions in the sense
that (a) they make the GHD computation and FHD approximation easier [38] but (b)
low values of degree, (multi-)intersection-width, or VC-dimension do not pre-determine
low values of the widths.

5.4 GHW Computation
In Section 4.2, it is shown that the Check(GHD, k) problem becomes tractable for fixed
k ≥ 1, if we restrict ourselves to a class of hypergraphs enjoying the BIP. As our empirical
analysis with the HyperBench has shown (see Section 5.3), it is indeed realistic to assume
that the intersection width of a given hypergraph is small. We have therefore extended
the hw-computation from [54] by an implementation of the Check(GHD, k) algorithm
presented in Section 4.2, which will be referred to as the “ghw-algorithm” in the sequel.
This algorithm is parametrized, so to speak, by two integers: k (the desired width of a
GHD) and i (the intersection width of H).

The key idea of the ghw-algorithm is to add a polynomial-time computable set f(H, k) of
subedges of edges in E(H) to the hypergraph H, such that ghw(H) = k iff hw(H ′) = k
with H = (V (H), E(H)) and H ′ = (V (H), E(H) ∪ f(H, k)). Tractability of
Check(GHD, k) follows immediately from the tractability of the Check(HD, k) problem.
Recall that the set f(H, k) is defined as

f(H, k) =
⋃

e∈E(H)

( ⋃
e1,...,ej∈(E(H)\{e}), j≤k

2(e∩(e1∪···∪ej))
)
,
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Table 5.4: Comparison of GHW algorithms w. avg. runtime (s)

hw → GlobalBIP LocalBIP BalSep
ghw total yes no yes no no

3→ 2 310 - 128 (537) - 195 (162) 307 (12)
4→ 3 386 - 137 (2809) - 54 (2606) 249 (54)
5→ 4 427 - - - - 148 (13)
6→ 5 459 13 (162) - 13 (60) - 180 (288)

i.e., f(H, k) contains all subsets of intersections of edges e ∈ E(H) with unions of ≤ k
edges of H different from e. By the BIP, the intersection e ∩ (e1 ∪ · · · ∪ ej) has at most
i · k elements. Hence, for fixed constants i and k, |f(H, k)| is polynomially bounded.

5.4.1 “Global” Implementation

In a straightforward implementation of this algorithm, we compute f(H, k) and from this
H ′ and call the hw-computation from [54] for the Check(HD, k) problem as a “black
box”. A coarse-grained overview of the results is given in Table 5.4 in the column labelled
as “GlobalBIP”. We call this implementation of the ghw algorithm “global” to indicate
that the set f(H, k) is computed “globally”, once and for all, for the entire hypergraph.
We have run the program on each hypergraph from the HyperBench up to hypertree
width 6, trying to get a smaller ghw than hw. We have thus run the ghw-algorithm
with the following parameters: for all hypergraphs H with hw(H) = k (or hw ≤ k and,
due to timeouts, we do not know if hw ≤ k − 1 holds), where k ∈ {3, 4, 5, 6}, try to
solve the Check(GHD, k − 1) problem. In other words, we just tried to improve the
width by 1. Clearly, for hw(H) ∈ {1, 2}, no improvement is possible since, in this case,
hw(H) = ghw(H) holds.

In Table 5.4, we report on the number of of instances where we solved the Check(GHD,k−
1) problem for hypergraphs with hw = k. As before, we set a timeout of 1 hour.
For instance, for the 310 hypergraphs with hw = 3 in the HyperBench, the “global”
computation terminated in 128 cases (i.e., 41%) when trying to solve Check(GHD, 2).
The average runtime was 537 seconds. All 128 cases were “no” answers, i.e. these
hypergraphs have ghw > 2 and therefore these 128 hypergraphs of our benchmark have
ghw = hw = 3. For the 386 hypergraphs with hw = 4, the “global” computation
terminated in 137 cases (i.e., 35%) with average runtime 2809 when trying to solve the
Check(GHD, 3) problem. The algorithm did not terminate in one hour for any of the 427
hypergraphs with hw = 5. Only for hypergraphs with hw = 6, the “global” computation
returned a generalized hypertree decomposition of width 5. This was the case for 13
out of 459 (i.e., 2.8%) hypergraphs with an average runtime of 162 seconds. Overall, it
turns out that the set f(H, k) may be very big (even though it is polynomial if k and i
are constants). Hence, H ′ can become considerably bigger than H. This explains the
frequent timeouts in the GlobalBIP column in Table 5.4.
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5.4.2 “Local” Implementation

Looking for ways to improve the ghw-algorithm, we closely inspect the role played by
the set f(H, k) in the proof of Theorem 4.2. The definition of this set is motivated
by the problem that, in the top down construction of a GHD, we may want to choose
at some node u the bag Bu such that x 6∈ Bu for some variable x ∈ B(λu) ∩ V (Tu).
This violates condition (4) of Definition 2.4 (the “special condition”) and is therefore
forbidden in an HD. In particular, there exists an edge e with x ∈ e and λu(e) = 1.
The crux of the ghw-algorithm in Section 4.2 is that for every such “missing” variable
x, the set f(H, k) contains a subedge e′ ⊆ e with x 6∈ e′. Hence, replacing e by e′ in λu
(i.e., setting λu(e) = 0, λu(e′) = 1 and leaving λu unchanged elsewhere) eliminates the
special condition violation. By the connectedness condition, it suffices to consider the
intersections of e with unions of edges that may possibly occur in bags of Tu rather than
with arbitrary edges in E(H). In other words, for each node u in the decomposition, we
may restrict f(H, k) to an appropriate subset fu(H, k) ⊆ f(H, k).

The idea behind the construction of f(H, k) is to assume the existence of a GHD D of
desired width ≤ k and to transform D into an HD. Of course, if D is an HD, then we
are done. So suppose that in some node u of D, condition 4 (= the “special condition”)
of Definition 2.4 is violated. This means that λu contains some edge e, such that some
vertex x ∈ e occurs in V (Tu) for the subtree Tu rooted at u but not in Bu. Now f(H, k)
is constructed in such a way that it contains an appropriate subedge e′ ⊆ e, such that
(1) x 6∈ e′ and (2) replacing e in λu by e′ still satisfies condition 3 of Definition 2.3. We
can be sure that all of e is contained in Bu′ for some descendant node u′ of u. Moreover,
by the connectedness condition, all vertices in e ∩Bu must occur in Bv for every node v
along the whole path from u to u′. It is thus shown in Section 4.2 that the only subedges
e′ ⊆ e relevant for healing a special condition violation at node u are those obtained
from intersecting e with edges in some bag λv on the path from u to u′. At every node u,
we can therefore replace the “global” set f(H, k) of subedges by a “local” set fu(H, k),
where we intersect each edge e in λu only with edges that have to be covered yet in
the subtree below u (i.e., the [Bu]-component Cu) or which at least have a non-empty
intersection with some edge in Cu.

The results obtained with this enhanced version of the ghw-computation are shown
in Table 5.4 in the column labelled “LocalBIP”. We call this implementation of ghw-
computation “local” because the set fu(H, k) of subedges of H to be added to the
hypergraph is computed separately for each node u of the decomposition. Recall that
in this table, all calls to the ghw-algorithm are recorded that finished within one hour.
Interestingly, for the hypergraphs with hw = 3, the “local” computation performs
significantly better (namely 63% solved with average runtime 162 seconds rather than
41% with average runtime 537 seconds). In contrast, for the hypergraphs with hw = 4, the
“global” computation is significantly more successful. For hw ∈ {5, 6}, the “global” and
“local” computations are equally bad. A possible explanation for the reverse behaviour
of “global” and “local” computation in case of hw = 3 as opposed to hw = 4 is that the
restriction of the “global” set f(H, k) of subedges to the “local” set fu(H, k) at each node
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u seems to be quite effective for the hypergraphs with hw = 3. In contrast, the additional
cost of having to compute fu(H, k) at each node u becomes counter-productive, when the
set of subedges thus eliminated is not significant. It is interesting to note that the sets of
solved instances of the global computation and the local computation are incomparable,
i.e., in some cases one method is better, while in other cases the other method is better.

5.4.3 Balanced Separators

As we have seen so far, both “global” and “local” ghw-computation have not found a
single instance of hw ≤ 5 that has a smaller ghw. Unfortunately, also the number of
instances where the ghw-computation did not terminate is high (e.g., 100% for instances
where hw = 5). However, the results for hw ∈ {2, 3, 4} suggest that for many of the
hypergraphs with hw ≤ 6 it is indeed the case that ghw = hw. Therefore, we will look
for a method to especially characterize “no”-instances for the Check(GHD,k) problem.

We propose a completely new approach, based on so-called “balanced separators”. The
latter are a familiar concept in graph theory [34, 88] – denoting a set S of vertices of a
graph G, such that the subgraph G′ induced by V (G) \ S has no connected component
larger than some given size, e.g., α · |V | for some given α ∈ (0, 1). In our setting, we may
consider the label Bu at some node u in a GHD as separator in the sense that we can
consider connected components of the subhypergraph H ′ of H induced by V (H) \ Bu.
Clearly, in a GHD, we may consider any node as the root. So suppose that u is the root
of some GHD.

In addition, we know from Theorem 2.1, that we can transform any HD, GHD, or FHD
in such a way that every subtree rooted at a child node ui of u contains exactly one
connected component Ci of the subhypergraph H ′ induced by V (H) \ Bu. For our
purposes, it is convenient to define the size of a component Ci as the number of edges
that have to be covered at some node in the subtree rooted at ui in the GHD. We thus
call a separator u “balanced”, if the size of each B[u]-component Ci is at most |E(H)|/2.
The following observation is immediate:

Proposition 5.1. In every GHD, there exists a node u such that Bu is a balanced
separator.

Proposition 5.1 can be easily turned into an algorithm to detect “no”-instances for the
Check(GHD,k) problem. First observe that the size of Bu can be unbounded. Hence,
guessing a set of vertices as a balanced separator is not an option. Since in every GHD
Bu ⊆ B(λu) holds, we can restrict ourselves to guessing k edges. This suffices since if
there does not exist a λu, such that B(λu) is a balanced separator then there does not
exist a Bu, such that Bu ⊆ B(λu) is a balanced separator. Hence, whenever we are not
able to find for a hypergraph H a set S ⊆ E(H) of k edges, such that

⋃
S is a balanced

separator, we can be sure that there does not exist a GHD of width k for H. A formal
description is given in Algorithm 5.1.
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Algorithm 5.1: BalSep
input :Hypergraph H.
output : “Accept”, if H has a balanced separator S ⊆ E(H) of size k

“Reject”, otherwise.
1 begin
2 Guess a set S ⊆ E(H) with |S| = k ; /* (1) Guess */
3 if S is a balanced separator then /* (2) Check */
4 return Accept;
5 else
6 return Reject;
7 end
8 end

Clearly, Algorithm 5.1 is sound and complete for checking if there exists a balanced
separator of size k. Since the check if a separator is balanced can be done in linear time,
the next theorem is immediate.

Theorem 5.1. BalSep is correct and runs in time O(nk).

By combining Theorem 5.1 with Proposition 5.1 we get the following corollary.

Corollary 5.1. Let H be a hypergraph and let k ≥ 1. If the algorithm BalSep outputs
“Reject” then H does not allow for a GHD of width ≤ k.

In Table 5.4 we compare the output of Algorithm 5.1 with the “global” and “local”
ghw-computation. Notice that the BalSep algorithm only outputs negative answers. It
is indeed the case that the algorithm detects quite fast that a given hypergraph does
not have a balanced separator of desired width. For hypergraphs with hw = 3 this is the
case in 307 (99%) out of 310 instances. As we increase k, the performance deteriorates,
due to k in the exponent of the running time of our algorithm. For hypergraphs with
hw = 6, only 180 (39%) out of 459 instances are solved. Still, for negative instances the
balanced separator approach performs best.

5.4.4 Empirical results.

We now look at Table 5.5 and its graphical representation in Figure 5.6, where we report
for all hypergraphs with hw ≤ k and k ∈ {3, 4, 5, 6}, whether ghw ≤ k − 1 could be
verified. To this end, we run our three algorithms (“global”, “local”, and “balanced
separators”) in parallel and stop the computation, as soon as one terminates (with answer
“yes” or “no”). The numbers on the bars in Figure 5.6 and in parentheses in Table 5.5
refer to the average runtime needed by the fastest of the three algorithms in each case.
A timeout occurs if none of the three algorithms terminates within 3,600 seconds. It
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Figure 5.6: GHW analysis (labels are average runtimes in s)
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is interesting to note that in the vast majority of cases, no improvement of the width
is possible when we switch from hw to ghw: in 98% of the solved cases and 57% of all
instances with hw ≤ 6, hw and ghw have identical values. Actually, we think that the
high percentage of the solved cases gives a more realistic picture than the percentage
of all cases for the following reason: our algorithms (in particular, the “global” and
“local” computations) need particularly long time for negative instances. This is due
to the fact that in a negative case, “all” possible choices of λ-labels for a node u in
the GHD have to be tested before we can be sure that no GHD of H (or, equivalently,
no HD of H ′) of desired width exists. Hence, it seems plausible that the timeouts are
mainly due to negative instances. This also explains why our new BalSep algorithm
(see Algorithm 5.1), which is particularly well suited for negative instances, has the least
number of timeouts.

Overall there is no big difference between the different hypergraph categories. The only
hypergraphs that have a smaller generalized hypertree width are instances of the CSP
categories. It also appears that the “CSP Random” instances are easier to solve than the
“CSP Application” instances (66% solved vs. 48% solved, resp.).

We conclude this section with a final observation: in Figure 5.3 and Table 5.2, we had
many cases, for which only some upper bound k on the hw could be determined, namely
those cases, where the attempt to solve Check(HD, k) yields a yes-answer and the
attempt to solve Check(HD, k − 1) gives a timeout. In several such cases, we could get
(with the balanced separator approach) a no-answer for the Check(GHD, k− 1) problem,
which implicitly gives a no-answer for the problem Check(HD, k − 1). In this way, the
alternative approach to the ghw-computation is also profitable for the hw-computation:
for 827 instances with hw ≤ 6, we were not able to determine the exact hypertree width.
Using our new ghw-algorithm, we closed this gap for 297 instances; for these instances
hw = ghw holds.

To sum up, we now have a total of 1,778 (58%) instances for which we determined the
exact hypertree width and a total of 1,406 instances (46%) for which we determined the
exact generalized hypertree width. Out of these, 1,390 instances had identical values for
hw and ghw. In 16 cases, we found an improvement of the width by 1 when moving from
hw to ghw, namely from hw = 6 to ghw = 5. In 2 further cases, we could show hw ≤ 6
and ghw ≤ 5, but the attempt to check hw = 5 or ghw = 4 led to a timeout. Hence, in
response to Research Questions 9 and 10, hw is equal to ghw in 45% of the cases if we
consider all instances and in 60% of the cases (1,390 of 2,308) with small width (hw ≤ 6).
However, if we consider the fully solved cases (i.e., where we have the precise value of hw
and ghw), then hw and ghw coincide in 99% of the cases (1,390 of 1,406).
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CQ Application
hw → ghw yes no timeout

3→ 2 0 8 (0) 0

CQ Random
hw → ghw yes no timeout

3→ 2 0 70 (29) 0
4→ 3 0 48 (65) 11
5→ 4 0 30 (41) 24
6→ 5 0 29 (655) 40

CSP Application
hw → ghw yes no timeout

3→ 2 0 116 (7) 0
4→ 3 0 173 (66) 110
5→ 4 0 32 (9) 199
6→ 5 8 (41) 29 (458) 74

CSP Random
hw → ghw yes no timeout

3→ 2 0 111 (0) 0
4→ 3 0 38 (0) 1
5→ 4 0 86 (4) 50
6→ 5 9 (221) 121 (47) 141

CSP Other
hw → ghw yes no timeout

3→ 2 0 4 (14) 1
4→ 3 0 3 (120) 2
5→ 4 0 0 6
6→ 5 1 (2) 1 (2) 6

Table 5.5: GHW of instances with average runtime in s

5.5 FHW Computation

Unfortunately, for the Check(FHD,k) problem the theoretical tractability results can not
be easily translated into practical algorithms. There is however one class of hypergraphs
for which this is possible. In this section we will focus on classes of hypergraphs having
the Bounded Rank Property (BRP) (or, Bounded Arity Property).

Definition 5.1. We say that a hypergraph H has the r-bounded rank property (r-BRP)
if arity(H) ≤ r holds.

Let C be a class of hypergraphs. We say that C has the bounded rank property (BRP) if
there exists a constant r such that every hypergraph H in C has the r-BRP. /

For every hypergraph whose arity is bounded by some constant r the following lemma is
immediate:

Lemma 5.1. Let H be a hypergraph whose arity is bounded by some constant r. Then
for every (fractional) edge weight function γ for H satisfying weight(γ) = k, the property
B(γ) ≤ r · k holds.
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Algorithm 5.2: k, r-rank-frac-decomp
input :Hypergraph H.
output :An FHD F of H with width ≤ k, if it exists,

“Reject”, otherwise.
1 Function k, r-fdecomp(CR: Vertex-Set, BR: Vertex-Set)
2 Guess a set W ⊆ V (H) of r · k elements at most; /* (1) Guess */

3 begin /* (2) Check */
4 Check if ∃γ with W ⊆ B(γ) and weight(γ) ≤ k; /* (2.a) */
5 Check if ∀e ∈ edges(CR) : e ∩BR ⊆W ; /* (2.b) */
6 Check if W ∩ CR 6= ∅; /* (2.c) */

7 end
8 if one of these checks fails then Halt and Reject; /* (3) */

9 Let C := {C ⊆ V (H) | C is a [W ]-component and C ⊆ Cr};
10 foreach C ∈ C do /* (4) */
11 if k, r-fdecomp (C,W ) returns Reject then
12 Halt and Reject
13 end
14 end
15 return Accept;

16 begin /* Main */
17 return k, r-fdecomp (V (H), ∅)
18 end

We can use the previous lemma to provide an algorithm for solving the Check(FHD,k)
for hypergraph classes having the BRP.

Theorem 5.2. For every hypergraph class C that has bounded rank, and for every
constant k ≥ 1, the Check(FHD,k) problem is tractable, i.e., given a hypergraph H ∈ C ,
it is feasible in polynomial time to check fhw ≤ k and, if so, to compute an FHD of width
k of H.

Proof Sketch. The algorithm k, r-rank-frac-decomp that checks for a given hyper-
graph H with arity r if fhw ≤ k is given in Algorithm 5.2. The algorithm is based on
the alternating algorithm k-decomp solving Check(HD,k) problem presented in [51]
and on the alternating algorithm (k, ε, c)-frac-decomp given in Algorithm 4.3. The
idea of our modified algorithm is, to guess instead of a set S of k edges (and a set of Ws

vertices in Algorithm 4.3), a set W of k · r vertices. This set of vertices corresponds to a
Bu set of a possible FHD of H.

The correctness of the algorithm follows from Lemma 5.1, i.e. for every FHD F =
〈T, (Bu)u∈T , (γu)u∈T 〉 of width ≤ k it holds that in each node u ∈ T , it is the case that
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|B(γu)| ≤ r · k and, since Bu ⊆ B(γu), also |Bu| ≤ r · k. Hence, our algorithm finds
every FHD F of width ≤ k and, by the same ideas as in the proof of Lemma 4.25, every
computation tree can be turned into an FHD F .

It remains to establish PTime membership of our algorithm. Here the arguments follow
closely those of the proof of Lemma 4.26. There, we argued that we can easily carry
over the corresponding tractability result from Lemma 5.15 in [51]. For this we first
show that all our data structures fit into logspace. The sets BR and W are just sets
of constantly many vertices, and hence storable in logspace by using indices of vertices.
The variables CR and C of Algorithm 5.2 correspond to the exact same variables of the
alternating algorithm in [51]. Hence, by using the same arguments, they fit into logspace
as well. The rest of the tractability proof can then be easily carried over from the proof
of Lemma 4.26 and Lemma 5.15 in [51]. Especially remember, that for the checks in
Step 2 of k, r-rank-frac-decomp, we also have to solve a linear program, which can
also be done in PTime. Hence, the alternating algorithm k, r-rank-frac-decomp is
in PTime.

Empirical Analysis. For our empirical analysis we have implemented the
k, r-rank-frac-decomp algorithm. From the HyperBench benchmark we have se-
lected all hypergraphs with arity ≤ 5 and hw ≤ 6. For all instances we tried to
improve the width by 0.5, i.e. for hypergraphs with, for example, hw = 4 we called the
k, r-rank-frac-decomp algorithm with k = 3.5. The results are given in Table 5.7
with their graphical representation given in Figure 5.7.

In total we selected 1,111 hypergraphs for our analysis. Out of these instances 265
(24%) hypergraphs have an fhw smaller than the hw. For 115 (10%) instances the
k, r-rank-frac-decomp algorithm was not able to find a FHD with width hw − 0.5.
Hence, we can conclude that for these “no”-instances the real fhw ∈ (hw − 0.5, hw]. For
the remaining instances (731, i.e. 66%) the k, r-rank-frac-decomp algorithm did not
terminate.
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Figure 5.7: Results of FHW computation with k, r-rank-frac-decomp (labels are
average runtimes in s)
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CQ Application
hw → fhw yes no timeout

2→ 1.5 26 (0) 39 (0) 1
3→ 2.5 0 7 (1434) 0

CQ Random
hw → ghw yes no timeout

2→ 1.5 4 (0) 12 (40) 1
3→ 2.5 6 (0) 0 14
4→ 3.5 4 (0) 0 14
5→ 4.5 2 (0) 0 8
6→ 5.5 1 (0) 0 6

CSP Application
hw → ghw yes no timeout

2→ 1.5 0 29 (6) 0
3→ 2.5 0 1 (374) 68
4→ 3.5 13 (70) 0 203
5→ 4.5 65 (117) 0 99
6→ 5.5 23 (62) 0 41

CSP Random
hw → ghw yes no timeout

2→ 1.5 0 7 (1275) 0
3→ 2.5 87 (0) 0 0
4→ 3.5 0 0 0
5→ 4.5 16 (256) 0 114
6→ 5.5 17 (245) 0 145

CSP Other
hw → ghw yes no timeout

2→ 1.5 0 19 (197) 0
3→ 2.5 0 1 (129) 2
4→ 3.5 0 0 3
5→ 4.5 0 0 6
6→ 5.5 1 (88) 0 6

Table 5.6: FHW of instances with average runtime in s

5.6 Comparison of Different Width Measures

We conclude this chapter with a summary of the results and a comparison of the different
width notions, in particular the difference of hw and fhw. We will combine the results
presented here, with the results of [36, 72]. There we presented two algorithms for the
Check(FHD,k) problem based on fractionally improved hypertree decompositions. A
fractionally improved hypertree decomposition is computed from a hypertree decomposition
where in each node the integral edge cover is substituted by a fractional edge cover.
Based on this idea two algorithms were presented [36]:

• The simplest way to obtain a fractionally improved (G)HD is to take either a GHD
or HD as input and compute a fractionally improved (G)HD. To this end, the
algorithm visits each node u of a given GHD or HD and computes an optimal
fractional edge cover γu for the set Bu of vertices. This algorithm is simple and
computationally inexpensive, provided that one can start off with a GHD or HD that
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was computed before. Clearly, this approach is rather naive and the dependence on
a concrete HD is unsatisfactory. Therefore the more sophisticated second algorithm
is described next.

• The algorithm FracImproveHD has as input a hypergraph H and numbers
k, k′ ≥ 1, where k is an upper bound on the hw and k′ the desired fraction-
ally improved hw. We search for an FHD D′ with D′ = SimpleImproveHD(D) for
some HD D of H with width(D) ≤ k and width(D′) ≤ k′. In other words, this
algorithm searches for the best fractionally improved HD over all HDs of width
≤ k. Hence, the result is independent of any concrete HD.

The results from the previous sections together with the results from [36] are gathered
and can be retrieved on our HyperBench website (see Section 5.1). From these results we
derive for each hypergraph upper and lower bounds for the hw, ghw, and fhw. For this
we also make use of the well known inequality: fhw ≤ ghw ≤ hw, i.e. an upper bound
for the hw automatically gives us an upper bound for the ghw and for the fhw; a lower
bound for the fhw automatically gives us a lower bound for ghw and for the hw.

Remark. The way our experimental analyses are conducted in the previous sections, we
often have that solving the Check(HD,k − 1) (or Check(GHD,k − 1), resp.) problem
did not terminate, whereas solving Check(HD,k) (or Check(GHD,k), resp.) problem
terminated. For such cases we have that hw ≤ k (ghw ≤ k, resp.), but not that hw > k−1
(ghw > k − 1, resp.). Hence, we are often not able to match lower and upper bounds. In
numbers, for all 3,070 hypergraphs the lower bounds do not match the upper bounds for
1,408 (46%) instances in case of hw, 1,544 (51%) instances in case of ghw, and for 2,581
(84%) instances in case of fhw. For fhw the remaining 489 instances are those, which are
acyclic, i.e. they have fhw = 1.

We therefore compare in the upcoming paragraphs computed and derived upper bounds
of hw, ghw, and fhw. In order to make these paragraphs more accessible for the reader,
we will simply talk about hw, ghw, and fhw, neglecting the fact that the real hw, ghw,
and fhw might be smaller. If this is not the case (i.e. matching lower bounds exist) we
will explicitly state it in the text.

Let us first compare hw with ghw, which is visualized in Figure 5.8. The charts can be
read as follows: on the x-axis we have the computed hw in increasing order and on the
y-axis the computed ghw in increasing order. A dot is drawn if there is an instance that
has hw equal to the value on the x-axis and ghw equal to the value on the y-axis. The
colour of the dot corresponds to the hypergraph category and the size to the number of
instances having the corresponding combination of hw and ghw. The top two charts show
all instances, the bottom two charts only instances where hw ≤ 6. The left two charts
show instances in non-random hypergraph categories, i.e. the “CQ Application”, the
“CSP Application”, and the “CSP Other” category. The right two charts show instances in
random hypergraph categories, i.e. the “CQ Random” and the “CSP Random” category.
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Figure 5.8: Comparison of hw vs. ghw

First notice that the CQ instances have lower hw and ghw than the CSP instances (in
both non-random and random categories). But altogether, the differences between hw
and ghw are marginal. There were only 16 instances were the ghw is smaller than the
hw. All these instances are from the CSP categories and have hw ≤ 6 and ghw = 5.
Unfortunately, we were not able to solve the Check(HD,5) problem for these instances.
This means, that it is still possible that these instances have hw = ghw = 5. Before we
look at the more interesting hw vs. fhw comparison, note that these 16 instances have
not been solved with any of the fhw algorithms.

The comparison of hw against fhw is shown in Figure 5.9. The top left chart shows that
hypergraphs in the “CSP Other” category have the greatest difference in hw and fhw (by
up to 20). For the other non-random categories, “CQ Application” and “CSP Application”
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5. To Practice
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Figure 5.9: Comparison of hw vs. fhw

the improvement by our fhw algorithms is at most 1 for hypergraphs with hw ≤ 6. Hence,
for non-random hypergraphs of low width, computing an FHD instead of an HD might
not justify the exponential blow-up in computation. Also notice the CQs where hw = 2
and fhw ≤ 1.5. A closer inspection of these CQs reveals that they stem from querying
a triangle, i.e. for example the query A(X,Y ) ∧B(Y,Z) ∧ C(Z,X). In total there are
430 (25%) out of 1,707 non-random instances where it holds that fhw < hw. The charts
for random queries show a completely different picture. The largest improvement by
computing an FHD instead of an HD for random queries is just 5.7. However, in total
there are 841 (62%) out of 1,363 instances that have lower fhw than hw. Counting both
together we have 1,271 (41%) instances out of all 3,070 where the fhw is lower than the
hw.
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CHAPTER 6
Conclusion

6.1 Summary
In this work, we have settled the complexity of deciding fhw(H) ≤ k for fixed constant
k ≥ 2 and ghw(H) ≤ k for k = 2 by proving the NP-completeness of both problems.
This gives negative answers to two open problems. On the positive side, we have
identified rather mild restrictions such as the BDP (i.e., the bounded degree property),
BIP (i.e., the bounded intersection property), LogBIP, BMIP (i.e., the bounded multi-
intersection property), and LogBMIP, which give rise to a PTime algorithm for the
Check(GHD, k) problem. Moreover, we have shown that the BDP ensures tractability
also of the Check(FHD, k) problem. For the BIP, we have shown that an arbitrarily
close approximation of the fhw in polynomial time exists. In case of the BMIP, we have
proposed a polynomial-time algorithm for approximating the fhw up to a logarithmic
factor. As our empirical analyses show, these restrictions are very well-suited for instances
of CSPs and, even more so, of CQs, i.e. hypergraphs stemming from such instances have
low degree, iwidth(, ) etc.

For these empirical analyses we have gathered more than 3,000 hypergraphs stemming
from real-world and randomly generated CQs and CSPs. We have seen that these
instances indeed have low hw, which is important, since all algorithms answering CQs
and solving CSPs using HDs, GHDs, or FHDs depend exponentially on the hw, ghw,
or fhw, resp. The reduction of the ghw-computation problem to the hw-computation
problem in case of low intersection width turned out to be more problematical than
the theoretical tractability results had suggested. Even the improvement by “local”
computation of the additional subedges did not help much. However, with the help of
balanced separators we were able to find many instances for which it holds that ghw > k
for some k. With these insights at hand, we have found out, that, most surprisingly,
the discrepancy between hw and ghw is much lower than expected. Theoretically, only
the upper bound hw ≥ 3 · ghw + 1 is known. However, in practice, when considering
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6. Conclusion

hypergraphs of hw ≤ 6, we could show that in 53% of all cases, hw and ghw are simply
identical. Moreover, in all cases when one of our implementations of ghw-computation
terminated on instances with hw ≤ 5, we got identical values for hw and ghw. For solving
the Check(FHD,k) problem we have developed a novel algorithm that has a runtime
polynomial for instances of bounded arity. With this algorithm we have shown that for
instances with arity ≤ 5 in 265 cases it holds that fhw < hw.

6.2 Future Work
We plan to explore several further issues regarding the computation and approximation
of the generalized and fractional hypertree width. We find the following tasks particularly
urgent and/or rewarding.

• Does the special condition defined by Grohe and Marx [58] lead to tractable
recognizability also for FHDs, i.e., in case we define “sc-fhw(H)” as the smallest
width an FHD ofH satisfying the special condition, can sc-fhw(H) ≤ k be recognized
efficiently?

• Our tractability result in Section 5 for the Check(FHD, k) problem is weaker than
for Check(GHD, k). In particular, for the BIP and BMIP, we have only obtained
efficient approximations of the fhw. It is open if the BIP or even the BMIP suffices
to ensure tractability of Check(FHD, k). And if not, we should at least search for
a better approximation of the fhw in case of the BMIP. Or can non-approximability
results be obtained under reasonable complexity-theoretic assumptions?

• So far, we have only implemented the ghw-computation in case of low intersection
width. In Section 4.2, tractability of the Check(GHD, k) problem was also proved
for the more relaxed bounded multi-intersection width. Our empirical results in
Figure 5.4 show that, apart from the random CQs and random CSPs, the 3-multi-
intersection is ≤ 2 in almost all cases. It seems therefore worthwhile to implement
and test also the BMIP-algorithm.

• Our new approach to ghw-computation via “balanced separators” proved quite
effective in our experiments. However, further theoretical underpinning of this
approach is missing. The empirical results obtained via balanced separators suggest
that the number of balanced separators is often drastically smaller than the number
of arbitrary separators. We want to determine a realistic upper bound on the
number of balanced separators in terms of n (the number of edges) and k (an upper
bound on the width).

• Finally, we want to further extend the HyperBench benchmark and tool in several
directions. We will thus incorporate further implementations of decomposition
algorithms from the literature such as the GHD- and FHD computation in [76] or
the polynomial-time FHD computation for hypergraphs of bounded degree given in
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6.2. Future Work

Section 4.3. Moreover, we will continue to fill in hypergraphs from further sources
of CSPs and CQs. For instance, in [1, 23, 43, 44] a collection of CQs for the
experimental evaluations in those papers is mentioned. We will invite the authors
to disclose these CQs and incorporate them into the HyperBench benchmark.

• Very recently, a new, huge, publicly available query log has been reported in
[73]. It contains over 200 million SPARQL queries on Wikidata. In the paper,
the anonymisation and publication of the query logs is mentioned as future work.
However, on their web site, the authors have meanwhile made these queries available.
At first glance, these queries seem to display a similar behaviour as the SPARQL
queries collected by Bonifatti et al. [21]: there is a big number of single-atom queries
and again, the vast majority of the queries is acyclic. A detailed analysis of the
query log in the style of [21] constitutes an important goal for future research.
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