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Abstract

Future wireless networks will evolve to integrate communication, localization, and
sensing capabilities. This evolution is driven by emerging application platforms such
as digital twins, on the one hand, and advancements in wireless technologies, on
the other, characterized by increased bandwidths, more antennas, and enhanced
computational power. Crucial to this development is the application of artificial
intelligence (AI), which is set to harness the vast amounts of available data in
the sixth-generation (6G) of mobile networks and beyond. Integrating AI and
machine learning (ML) algorithms, in particular, with wireless localization offers
substantial opportunities to refine communication systems, improve the ability of
wireless networks to locate the users precisely, enable context-aware transmission,
and utilize processing and energy resources more efficiently.

In this dissertation, advanced ML algorithms for enhanced wireless localization
are proposed. Motivated by the capabilities of deep neural networks (DNNs) and
the advancements in massive multiple-input-multiple-output (MIMO) systems, the
dissertation aims to address some of the fundamental limitations of ML-based
localization approaches related to dependability, generalization, and data scarcity.
The dissertation has three main parts, each dedicated to addressing specific challenges
and introducing new algorithms.

The first part of this dissertation focuses on improving the scalability and reliability
of supervised learning techniques for wireless localization. Here, two variational DNN
approaches are presented, designed to overcome the limitations in measuring the
uncertainty of DNN-based position estimates in co-located massive MIMO systems.
Further, this part extends the investigation to assess the localization accuracy in a
distributed antenna system (DAS). It also introduces a strategy for selecting the most
relevant subset of remote radio heads (RRHs) to alleviate the fronthaul overhead
associated with dense wireless network deployments.

The second part of the dissertation is a transition from supervised to unsupervised
learning. This part is concerned with subspace and metric-learning approaches that
can learn low-dimensional channel features. Addressing the challenges related to
data scarcity, this part introduces a contrastive task and a Siamese-based DNN to
learn a four-dimensional channel representation that is useful for wireless localization.
Compared to a base DNN classifier, the proposed method significantly improves
localization performance, particularly in small data and non-line-of-sight (NLOS)
conditions.



iv

Finally, the third part of the dissertation reconsiders the foundational components
and optimization strategies generally used in DNN-based localization methods. It
first introduces a transformer-based model for more robust channel feature learning.
It then builds upon the transformer-based method and proposes a non-contrastive self-
supervised learning (SSL) approach. This part of the dissertation shows how to exploit
the macroscopic and microscopic characteristics of the channel to achieve better
transfer learning across various configuration settings, propagation environments, and
wireless downstream tasks. Moreover, it investigates multiple variants of transformer-
based models and uses multiple evaluation approaches and datasets to assess the
localization accuracy in both co-located massive MIMO systems and a DAS.
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1
Introduction

Since the introduction of the first-generation (1G) of mobile networks, wireless com-
munication has become an integral part of society, revolutionizing how we connect,
access information, and engage in numerous aspects of our lives. The evolution from
1G to state-of-the-art fifth-generation (5G) technology has witnessed remarkable
progress in services, transitioning from basic analog voice communication to high-
speed data transmission, including enhanced mobile broadband (eMBB), massive
machine-type communications (mMTC), and ultra-reliable low-latency communica-
tions (URLLC). As indicated in the mobility report by Ericsson [1], global mobile
subscriptions exceed 8.3 billion in 2023, with an expectation for total mobile data
traffic to experience a threefold increase between 2022 and 2028. The report also
anticipates that the 5G subscriptions will hit 4.6 billion by the end of 2027, making
up more than 50% of all mobile subscriptions, thereby paving the way for a more
interconnected world.

As we look beyond 5G and sixth-generation (6G), the envisioned future comprises
the seamless integration of the physical and digital worlds [2, 3]. As a result, digital
twins will emerge as fundamental platforms for novel applications, facilitating ex-
haustive digital representations of the physical and biological worlds across spatial
and temporal dimensions. Realizing such a vision calls for further enhancements
in wireless network capacity, a reduction in transmission latency, and integrating
high-precision means of localization and sensing. Additionally, utilizing artificial
intelligence (AI)-guided physical layer (PHY) optimization strategies will be crucial in
materializing this vision. More specifically, the capabilities of mobile communications
networks are anticipated to evolve far beyond their present role of connecting indi-
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Localization and Sensing
URLLC

eMBB

AI

mMTC

Figure 1.1: Location-aware and AI-enhanced wireless systems beyond 5G.

viduals or machines. In fact, they will encompass at least two additional categories
of application scenarios [4], namely localization and sensing, and AI, as illustrated
in Fig. 1.1. Wireless localization involves determining the position of an emitter
based on processing the signals at one or more sensory-node receivers. Wireless
sensing is a broader category of additional foreseen wireless system tasks, ranging
from device-free target detection to environment reconstruction and imaging. On the
other hand, AI, in more general terms, incorporates a range of techniques, primarily
machine learning (ML) methods, which allow machines to learn from data and prior
experiences. As such, AI-enhanced communication systems may allow adaptive
data-driven decisions for various signal-processing parts in the communication chain.

Integrating AI with wireless localization presents an opportunity to optimize advanced
communication systems to leverage the surroundings better. This integration can
improve their ability to accurately locate the users, allow context-aware transmission,
and more efficiently utilize processing and energy resources. In this context, the
primary objective of this dissertation is to propose advanced ML algorithms for
enhanced wireless localization.

1.1 Motivation and Scope of the Thesis

Wireless Localization

The capability to wirelessly pinpoint the location of a user equipment (UE) has grown
from a niche service, mainly employed in military contexts, to a possible enabler
supporting various wireless technologies and use cases. The most notable systems for
wireless localization are space-based, specifically global navigation satellite systems
(GNSS) [5,6]. Examples of GNSS include the global positioning system (GPS), which
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is widely relied upon for various commercial and non-commercial applications [7].
Under favourable conditions, this system can yield localization accuracies of a few
meters or even better. However, the quality of service (QoS) rendered by GPS
is substantially compromised in environments that exhibit multipath effects and
severe path loss due to signal blockages, such as those found in densely populated
urban areas and indoors [8, 9]. As a result, efforts to enhance localization services
have extended to ground-based wireless communication systems. Among the most
prominent ground-based systems are those which have undergone advancements
through the evolution of cellular standards [10]. Until early 2000s, research in cellular
localization was largely driven by the need for improved emergency services (e.g.,
E911) [11,12]. Since then, wireless localization methods made substantial progress,
promising horizontal accuracy of less than 150 m, e.g., in fourth-generation long-term
evolution systems (4G-LTE) [13, 14]. New approaches are proposed for different
use cases, such as the internet of things (IoT) [15] and assisted driving [16, 17],
while also serving in different deployment scenarios, such as indoor [18] and outdoor
environments [19].

Despite the advancements in localization research and significant performance im-
provements over the decades, services with meter-level accuracy and very-high
availability requirements are anticipated to be supported in 5G and beyond commu-
nication systems [20]. New use cases impose additional strict requirements regarding
accuracy, availability, and coverage. For instance, augmented reality related services
would require coverage of less than 10 meters, an accuracy of a few centimeters,
and a latency below 20 ms. On the other hand, remote monitoring, asset tracking,
and other IoT related services require less than 10 m accuracy and more than 1
km coverage [20]. Furthermore, most use cases require a guaranteed QoS with
availability ranging from 80% to 99.9% [20]. Next-generation cellular systems are
the most promising candidate to complement GPS to attain the QoS metrics of
the applications and use cases of those mentioned above and similar. Therefore,
enhancing wireless localization performance is a fundamental and continuous research
challenge.

The sensing capability of the network is increasingly recognized as the key driver
for the 6G and the development of smart environments [4]. Such functionality is
anticipated to be useful for a variety of location-aware applications, e.g., autonomous
vehicles [21, 22]. Furthermore, with the research trend towards integrated sensing
and communications (ISAC) [23], networks will leverage location information for
self-optimization to improve efficiency and sustainability. ISAC aims to design joint
systems capable of simultaneously performing communication and remote sensing.
To achieve this, signal processing algorithms should ideally utilize the same signal
or waveform for both sensing and communication tasks. Consequently, it becomes
crucial to develop algorithms that can improve wireless localization and use the same
signal information as for other wireless communication tasks.
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Data-Driven Localization

Localization methods can be divided into two categories: model-based and data-
driven [24]. Model-based techniques require knowledge of the geometric relationship
between the estimated parameters of the received signal and the position of the
transmitter [25]. Therefore, the performance of the existing model-based methods
is heavily degraded when such a relationship is not available, e.g., in non-line-of-
sight (NLOS) or dense multi-path propagation conditions [25–28]. Consequently,
data-driven approaches, specifically ML, have emerged over the years [29]. Among the
various ML approaches, deep neural network (DNN)-based models have demonstrated
exceptional localization accuracy [30–35].

Traditionally, wireless localization methods use derived features of the estimated
channel at the base station (BS), such as signal time of arrival (ToA), angle of
arrival (AoA), received signal strength (RSS), or a combination of them [27,36,37].
Conversely, DNN-based methods prefer utilizing the channel state information (CSI)
in its acquired form [30,31,34,38,39]. The acquisition of CSI is particularly important
for advanced communication systems that use massive multiple-input multiple-
output (MIMO) [40,41]. Hence, CSI is, in general, readily-available for localization.
Massive MIMO, characterized by a large antenna array at the BS, is widely regarded
as the key technology for 5G [42,43] and forthcoming communication systems [44].
Employing a considerable number of antennas enhances the angular resolution of the
received multipath signal, thereby benefiting localization methods [39,45–50].

Massive MIMO systems typically adopt a centralized implementation approach,
wherein the antennas are geometrically co-located at the BS. Another implementation
strategy that has gained research attention involves the utilization of spatially
distributed antennas, notably the distributed antenna system (DAS) [51, 52]. In this
case, a large number of geographically spread out antennas are used by means of
remote radio heads (RRHs) in order to extend the BS antenna ports [52]. Due to
the inherent spatial diversity, DAS can also be favorable for the ML-based wireless
positioning techniques [53,54].

ML-based methods can generally be supervised or unsupervised, depending on
whether labelled training data is necessary. The vast majority of DNN localization
techniques are supervised and constrained to a task-specific feature learning (see Sec.
1.2 for relevant literature), raising concerns, particularly about the ability to work
across diverse scenarios, and adapt in data-scarce environments. Hence, developing
DNN methods that sustain good accuracy and transferability remains an essential
research topic.
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Scope of Work

Motivated by the capabilities of DNNs and the advancements in massive MIMO
systems, we seek to address some of the fundamental limitations of ML-based
localization approaches related to dependability, generalization, and data scarcity.
We propose DNN models that can learn channel parameters useful to infer various
quantities of a wireless network task, particularly: the UE location. More concretely,
the dissertation has three main parts organized into three different chapters, each
dedicated to addressing specific challenges and introducing new algorithms:

• In Chapter 3, we deal with enhancing supervised techniques, such as overcoming
challenges related to dependability and scalability. We consider the uplink
channel estimates at a co-located massive MIMO system and a DAS. We
introduce two variational methods to quantify the uncertainty of DNN-based
position estimates, along with a strategy to determine the most relevant subset
of RRHs for localization.

• In Chapter 4, we transition from supervised learning to approaches that seek
to learn the intrinsic properties of the high dimensional channel estimated
at a massive MIMO BS, especially in situations with limited labelled data.
Addressing the challenges related to data scarcity, we propose a metric-learning
technique to learn channel features, and we also study the effect of NLOS
conditions.

• In Chapter 5, we emphasize the challenges of generalization and transferability
in current supervised and unsupervised approaches. Rethinking the founda-
tional components and optimization strategies generally used in DNN-based
localization methods, we introduce an approach for self-supervised learning of
channel representations. Here, we aim to exploit the macroscopic and micro-
scopic characteristics of the channel to achieve better transfer learning across
various configuration settings and propagation environments.

1.2 Literature Review

1.2.1 Fully Supervised Location Estimates

Numerous works propose supervised training methods, where the utilized channel
features are labelled with location information (e.g., position coordinates of the
target) [31, 34, 38,39,49,55]. These techniques establish a mapping function between
the obtained CSI and the corresponding position coordinates intending to achieve
accurate localization performance on new, unseen data. However, DNN methods for
localization output blind estimates while failing to give any useful information about
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their predictive uncertainty. This differs from well-known probabilistic ML approaches,
e.g., Gaussian process (GP)-based methods, which inherently provide uncertainty
estimates as shown in [54,56,57]. Overconfident incorrect predictions in safety-critical
applications can have tragic consequences; hence, capturing and reasoning about the
uncertainty of estimated positions is fundamental to integrating DNN methods in
wireless localization systems. We discuss and address the dependability of DNN-based
location estimates in Chapter 3.

The majority of data-driven localization methods are proposed for massive MIMO
in a co-located setup. However, the investigation regarding the positioning abilities
of DNN-based methods in a DAS remains limited, with notable exceptions such as
the study in [34]. The works in [53, 54] make use of RSS and ML based on GPs,
while [58,59] investigate other conventional out-of-the-box ML techniques and exploit
different channel information. Previous works evaluate the signal information at
a central unit (CU) from all connected RRHs. However, this approach can lead
to increased fronthaul overhead and computational complexity at the CU, which
presents a scalability challenge in dense wireless network deployments. In Chapter 3,
we present a deep learning method with the capability of RRH subset selection, UE
localization, and uncertainty estimation.

1.2.2 Deep Metric Learning

In general, supervised DNN-based methods excel in any task where extensive labelled
datasets are readily available for training. However, collecting large-scale geo-tagged
channel estimates for different mobile network tasks can be time-consuming, error-
prone, and in many cases, impractical. Consequently, several studies have relied on
conventional dimensionality reduction (DR) techniques [60], and autoencoders (AEs)
[61] for wireless localization [30,62–66]. Such methods essentially attempt to compute
a lower-dimensional channel space in an unsupervised manner, while retaining non-
redundant features and structures or suppress the noise from high-dimensional CSI
acquired at the BS.

Assuming a subset of CSI has labels, its low-dimensional features can either serve
as a reference map [64–66] or input to a task-specific model [30] to derive the final
location of the UEs. The authors in [64–66] aim to capture the CSI manifold and
project it onto, for instance, a two-dimensional channel map (recently known as
channel charting methods [65]). The reference map, in some cases, preserves the local
structure or relative distances between the UEs from which the channel is evaluated.
Provided such maps only yield pseudo-locations, a matching algorithm like k-nearest
neighbors (k-NN) can be utilized to compare a new transmitter’s channel features to
the known locations in the channel chart and approximate its position.

AEs employ neural networks, as hierarchical feature extractors, to obtain the latent
space representation. In general, this is achieved using a reconstruction objective [61].
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Conversely, other DR techniques [60], including manifold learning methods like
multidimensional scaling (MDS), strive to preserve specific metrics, e.g., the pairwise
distances between the CSI obtained at different locations, which can reveal the
inherent geometric relationships in the original data space. A more contemporary
approach, deep metric learning, can combine the feature learning capabilities of
AEs with the metric-preservation flexibility of other manifold-learning techniques.
Methods based on deep metric learning have shown improved performance with
limited training samples in object detection [67], object similarity [68], and clustering
[69]. Approaches motivated by the so-called Siamese networks [70] have been proposed
for wireless channel charting [71]. In Chapter 4, we present a deep metric learning
approach, and assess the impact of NLOS conditions and the training sample size.

1.2.3 Transformer and Self-Supervised Features

The learning capability of DNN-based models depends not only on the optimization
objective but also on the configuration of layers and the organization of such layers
within the neural network architecture. Convolutional neural networks (CNNs)
and multi-layer perceptrons (MLPs) have been the main components of many DNN
models for decades. CNNs are particularly well-suited at processing grid-like organized
signals (e.g., images) [72]. On the other hand, MLPs, consisting of layers of units
in a fully-connected, directed graph-like approach, have been foundational blocks of
DNN models since the 1980s [73].

As the system bandwidth and the number of antenna elements at the BS becomes
larger [74], the dimensionality of CSI also increases. This can pose a challenge
for methods that rely solely on MLPs, such as insufficient number of units in the
input layer. Increasing the units would increase the number of parameters. As
a consequence, the capacity of the model would become higher, and therefore a
more extensive training set is needed. Furthermore, MLPs cannot capture local
correlations [75], e.g., the channel at neighboring antennas or subcarriers, information
that would be common even for hand-feature extractors. Finally, due to their fully-
connected nature, they have no mechanism to ensure invariance with respect to
small-scale variations in the input channel. Hence, they might not be the optimal
choice for channel representation learning or channel-to-location mapping.

Numerous works suggest utilizing CNNs to better capture the channel characteristics
relevant for the channel-to-location mapping [31,35,50]. However, while CNNs are
primarily designed and appropriate for structured signals, they introduce a strong
inductive bias by utilizing fix-sized filters to slice the channel and learn different
portions of the input channel representation.

To cope with the issues of imperfect channel estimates, and other system impairments,
various works suggest the conventional option of hand designing feature extractors for
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more robust models. A common idea in the literature for hand-engineered features
is to leverage the channel transform domains, such as angle, delay or Doppler,
e.g., [49, 76]. However, hand-crafting input features limit the expressive capacity of
DNN models, hence constraining the generalization of learned representations or the
trained model.

In contrast to long-standing approaches, transformer-based architectures proposed
more recently in natural language processing (NLP) [77] and computer vision [78]
adopt the attention mechanism [79]. Consequently, they show greater learning
capacity [80], less inductive bias, and can capture local and wide-range dependencies.
Historically, the attention mechanism was used on top of convolutional feature maps,
which is reflected in recent growing literature in wireless localization [81], or even a
combination with long short-term memory (LSTM) [82]. In Chapter 5, we propose
a transformer-based model and then use it to design a new channel representation
learning method based on a self-supervised paradigm. In contrast to the deep metric
learning, we elaborated in Sec. 1.2.2, the self-supervised learning leverages unlabelled
data as a form of supervision and relies only on multiple views of the same input
signal information. The latter has multiple benefits concerning computational cost
and, more importantly, generalization and transferability.

1.3 Structure and Contributions

In this section, we outline the structure of the dissertation and its main contributions.

Chapter 2 − System Model and Problem Formulation

In the first chapter, we present an overview of the system model, which is the basis
for the contributions detailed in the following chapters. We detail the signal model
for an uplink wireless transmission system. The localization methods we elaborate
on throughout the dissertation consider a multicarrier system and assume that the
receiver, the BS, has many antennas. Finally, we formalize the metrics used to
evaluate the wireless localization performance of the proposed methods.

Chapter 3 − Towards Dependable Location Estimates

We begin the second chapter by addressing the challenges in existing DNN wireless
localization methods that depend on fully-supervised learning. First, we introduce
uncertainty-aware and scalable DNN approaches to measure the uncertainty of their
location estimates when propagation conditions change and a finite number of training
samples is available at a co-located MIMO system. Then, we shift to investigating
the localization accuracy in a DAS. Finally, we extend the uncertainty-aware method
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to incorporate a learning strategy that determines the most relevant subset of RRHs
for localization. The contributions of this chapter are:

• Introduce two variational and scalable DNN approaches for quantifying location
estimate uncertainties.

• Evaluate the performance on publicly available ray-tracing datasets for indoor
and outdoor environments.

• Show that data uncertainty captures NLOS effects, while model uncertainty
enhances the overall reliability.

• Propose a learning-based RRH selection algorithm for end-to-end training with
a discrete set of RRHs.

• Demonstrate that the selection strategy is effective in strong multipath envi-
ronments.

The contributions of this chapter have been published in [83,84]:

[i] A. Salihu, S. Schwarz, and M. Rupp, “Towards scalable uncertainty aware
DNN-based wireless localization,” in 2021 29th European Signal Processing
Conference (EUSIPCO), 2021, pp. 1706–1710.

[ii] A. Salihu, S. Schwarz, and M. Rupp, “Learning-based remote radio head selec-
tion and localization in the distributed antenna system,” in 2022 Joint European
Conference on Networks and Communications & 6G Summit (EuCNC/6G Sum-
mit). IEEE, 2022, pp. 65–70.

Chapter 4 − From Shallow to Deep Metric Learning for Localization

In this chapter, we shift the focus towards the dimensionality reduction of CSI
and unsupervised learning. Here, we aim to obtain a low-dimensional channel
representation, such that transmitters in close proximity are mapped to nearby points
on a manifold. We present a contrastive deep metric learning method that aims to
learn channel features based on a distance metric between two UE locations. The
presented method encourages CSI embeddings of neighboring UEs to be close and
push apart those of non-adjacent ones in terms of a pre-defined distance metric. The
contributions of this chapter are:

• Investigate a classical DR approach for determining the location of a line-of-
sight (LOS) UE from its CSI sensed at a large-antenna array BS.

• Introduce a deep metric-learning method based on a contrastive objective
function for low-dimensional channel representation.
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• Reveal that the absence of a LOS path has little impact on the localization
performance based on simulations.

• Show that the introduced method requires fewer training samples when com-
pared to a fully-supervised DNN method.

The contributions of this chapter have been published in [85,86]:

[i] A. Salihu, S. Schwarz, and M. Rupp,“Semi-supervised localization utilizing CSI
at large antenna array base stations,” in WSA 2020; 24th International ITG
Workshop on Smart Antennas, 2020, pp. 1–5.

[ii] A. Salihu, S. Schwarz, A. Pikrakis, and M. Rupp, “Low-dimensional repre-
sentation learning for wireless CSI-based localization,” in 16th International
Conference on Wireless and Mobile Computing, Networking and Communica-
tions (WiMob). IEEE, 2020, pp. 1–6.

Chapter 5 − Wireless Transformer and Self-Supervised Representa-
tions

In the fifth chapter, we address the limitations of previous work in previous chapters
and aim to provide some foundation work for future wireless channel representation
learning. First, we introduce a transformer-based model that maintains and exploits
the per-subcarrier channel structure in a MIMO-OFDM system. Then, we propose
a non-contrastive self-supervised learning method. The proposed method ingests
channel realizations and aims to transform them into representations that are invariant
to fading and system impairments, such that they may be exploited for positioning
the UE and can achieve transfer learning to different scenarios. The contributions of
this chapter include:

• Propose a transformer model and investigate its localization ability in a fully-
supervised setting.

• Introduce a self-supervised joint embedding model to forsake the dependency
on contrastive examples for wireless channel representation learning.

• Incorporate a learning module to exploit microscopic and macroscopic channel
fading characteristics.

• Investigate the impact of channel transformations on the quality of learned
embeddings.

• Show that the self-supervised model can outperform fully-supervised techniques
in small data regimes, sometimes even with a linear model with negligible
computational complexity.
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• Study the transferability of the method to new environments and other wireless
downstream tasks.

The contributions of this chapter have been published in [87,88]:

[i] A. Salihu, S. Schwarz, and M. Rupp, “Attention aided CSI wireless localization,”
in 2022 IEEE 23rd International Workshop on Signal Processing Advances in
Wireless Communication (SPAWC), 2022, pp. 1–5.

[ii] A. Salihu, M. Rupp, and S. Schwarz, “Self-supervised and invariant representa-
tions for wireless localization,” IEEE Transactions on Wireless Communications,
pp. 1–1, 2024.





2
System Model

In this chapter, we describe a massive MIMO system model utilized throughout
this dissertation. First, we illustrate the input-output relationship of the signal
for an uplink transmission involving a single UE and a BS. Next, we elaborate on
the wireless channel model and detail modeling of the uncertainty of the channel
parameters. As we navigate through the chapters, it is relevant to note that the
formulation of the signal model varies depending on the aspect being investigated.
Finally, in this chapter, we define the performance evaluation metrics. The system
model described in this chapter was used in the works published in [87,88].

2.1 System Model

Throughout the dissertation, we consider a massive MIMO uplink system. In Fig.
2.1, we illustrate two scenarios: one showing a centralized antenna setup and the
other demonstrating a distributed antenna configuration. Hence, we either consider
a co-located massive MIMO or a DAS network. For the first one, we consider that a
BS located at b0 = [b0,1, b0,2, b0,3]T is equipped with an array of Nr antenna elements.
For the second case, i.e., DAS, M spread out RRHs (or access points) serve the UEs
in the area. Similarly, RRH m ∈ {1, . . . , M}, positioned at bm = [bm,1, bm,2, bm,3]T ,
has an array of Nm antenna elements, and the total number of antennas in a DAS is
Nr = �M

m=1 Nm. Such a network setup, characterized primarily by the absence of
traditional cell boundaries, resembles what is commonly referred to in the literature as
‘cell-free massive MIMO’ or ‘network MIMO’ [89]. More specifically, we consider that

13
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Figure 2.1: Illustration of the system model as considered in this dissertation when
the scenario employs a) a co-located massive MIMO system or b) a DAS.

the signal between an UE and all active RRHs is available at a CU for joint signal
processing and UE location estimation. We assume that all RRHs are connected via
high-speed fronthaul links to the CU, i.e., synchronization delay between the RRHs
and the CU is considered negligible. Furthermore, we assume that the active UE,
denoted by r ∈ {1, . . . , R}, has a single-antenna placed in three-dimensional space,
i.e., ur = [ur,1, ur,2, ur,3]T denotes the position vector. Lastly, we assume that within
the region of interest (ROI), G objects are located at positions pg = [pg,1, pg,2, pg,3]⊤,
for g ∈ G and G = {1, . . . , G}. These objects may obstruct, reflect, or scatter the
propagated signals between the transmitter and receiver.

2.1.1 Signal Model

We consider orthogonal frequency-division multiplexing (OFDM) transmissions such
that the channel transfer function (CTF) used for localization is sampled over time
(OFDM symbols) and frequency (OFDM subcarriers). Let Nc be the total number of
subcarriers and the sampling interval Tsamp = 1

Bsys
, where Bsys is the system (channel)

bandwidth. We assume that any N ′
c < Nc subcarriers can be used for synchronization

and channel estimation, e.g., pilot subarriers, and may also be utilized for UE position
estimation. We consider that in practice the maximum channel delay τmax is less than
the symbol duration, τmax < Ts. Hence, for the received signal at the BS, denoted
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as yn ∈ CNr×1, corresponding to the subcarrier n ∈ {1, . . . , Nc}, we can write the
input-output relationship as

yn =
�

Ptxh̃nxn + nn . (2.1)

Here, Ptx is the average transmit power, xn is the normalized transmitted signal with
|xn|2 = 1, h̃n ∈ CNr×1 is the channel on subcarrier n, and nn ∼ CN (0, N0WscINr),
where N0 is the noise power spectral density and Wsc is the subcarrier bandwidth.
We assume that the BS is able to estimate the channel vectors {h̃n}∀n through uplink
pilot signals, and can mitigate pilot contamination [90,91]. Finally, we denote the
estimated CSI as hn, including considerations of channel estimation error, which we
discuss in Sec. 2.1.3.

2.1.2 Channel Model

Although the DNN methods proposed and elaborated throughout this dissertation
are data-driven and not tied to a specific channel model, we study the impact
of various propagation factors on the performance of the algorithms on location
estimation. Consequently, it is beneficial to characterize the channel using location-
related parameters like distances and angles for investigation. This is achieved by
employing a geometric channel model [92–94]. More specifically, we use a discrete-
path model commonly applied in ray-tracing tools for channel synthesis, which
involves representing the channel as a superposition of a finite number of propagation
paths between the transmitter and receiver. The propagation path parameters, in this
case, refer to the mean values of the parameters of multiple rays that are combined
in a propagation path ℓ ∈ {1, . . . , Lpath}. Hence, as a general relationship between
the user location and the estimated parameters of the channel for such scenarios, as
illustrated in Fig. 2.1, we consider

h̃n =
Lpath�
ℓ=1

ηℓe
−j2πn∆fτℓΓ (φaz,ℓ, φel,ℓ) . (2.2)

In (2.2), ηℓ and τℓ denote the ℓ−th path’s complex gain and propagation delay
between the r−th UE location and the BS (or m−th RRH). The AoAs in azimuth
and elevation are denoted by φaz,ℓ and φel,ℓ, respectively. Although it is challenging
to argue the resolvability of multiple paths at lower frequencies, and hence their
relationship to the geometry of the environment, in mmWave and beyond, there
is a stronger relationship between the individual received paths and the geometric
information of the channel [28, 95]. Finally, assuming a uniform planar array at the
BS with Nrx and Nrz antenna elements along the x− and z−axis, the expression for
the array response vector for the elaborated example at the receiver can be written
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as
Γ (φaz, φel) = Γz (φel) ⊗ Γx (φaz, φel) , (2.3)

The array steering vectors Γx(·), and Γz(·) are

Γx (φaz, φel) =
�
1, ej 2π

λc
dant sin(φel) sin(φaz), . . . , ej 2π

λc
dant(Nrx −1) sin(φel) sin(φaz)

T
, (2.4)

Γz (φel) =
�
1, ej 2π

λc
dant cos(φel), . . . , ej 2π

λc
dant(Nrz −1) cos(φel)

T
,

with λc = c/fc, where fc being the carrier frequency and c the speed of light, and
dant = λc/2 the antenna element spacing.

2.1.3 Uncertainty Model

In Chapter 5, when we generate synthetic channel data, we consider scenarios in
which a subset of scattering objects vary its position over the time t ∈ {1, . . . , T}
(e.g., moving objects in the environment). Specifically, by fixing the positions of the
receiver and transmitter, we realize time-varying conditions of the environment by
altering the positions of G′ scattering objects, where G′ = |G ′| and G ′ ⊆ G. Thus, we
have

p
(t)
g,i ≜ pg,i + ẘ

(t)
g,i, (2.5)

where ẘg,i is a zero-mean Gaussian noise with variance σ2
ẘ at i−th coordinate.

Moreover, we also introduce objects randomly into the environment, simulating
temporary obstacles, such as a train passing by. Doing so simulates a potential
sudden block of the LOS or other dominant propagation paths. Similarly, we account
for the variations in the position of antennas of the transmitter,

u
(t)
r,i ≜ ur,i + ẇ

(t)
r,i , (2.6)

where ẇr,i denotes a zero-mean Gaussian noise with variance σ2
ẇ at i−th coordinate.

Note that the variations in the position of the scatterers alter the gain, delay and
angle information of the individual multi-bounce NLOS paths, allowing for modelling
the individual path uncertainties that lead to a non-additive distortion model [44].
Moreover, the uncertainty in the position of the antenna allows us to account for the
effect of imperfect channel estimates due to, e.g., lack of perfect synchronization.

Further, we consider that the electromagnetic properties of the scattering objects
change over time, which impacts the amplitude gain of the radar cross section (RCS)
of the scattering objects. We assume that material types can randomly change and
have a permittivity value of ϵκper at time t, where κper is the type of the material [96].
Finally, we also consider atmospheric attenuation in the environment. Therefore, in
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case of a rainy period R, which occurs with probability P (R), we assume additional
attenuation to the line-of-sight (LOS) path [97].

Finally, we denote by H(t)
r a collection of N ′

c subcarriers for r−th user location during
a single-time snapshot, which we write for convenience in a matrix form as

H(t)
r =


h

(t)
1,1 . . . h

(t)
1,N ′

c... . . . ...
h

(t)
1,Nr

. . . h
(t)
Nr,N ′

c

 ∈ CNr×N ′
c . (2.7)

We consistently omit the index t from mathematical expressions as we predominantly
consider a single-realization of the channel (a snapshot) in our algorithms. Similarly,
the index r may also be dropped when it does not particularly influence the discussion
or analysis at hand. Finally, the input to a neural network-based models that we
propose in this dissertation is real-valued; hence we handle complex-valued channel
coefficients by stacking their real and imaginary parts.

2.2 Problem Formulation

In this dissertation, we propose models based on artificial neural networks (NNs).
NNs are computational models largely inspired by the human brain [98]. Another
way of thinking about artificial neural networks is to view them as a set of functions
organized into a hierarchy, often referred to as layers. Each layer consists of numerous
basic computational units that are called neurons [99]. By processing inputs through
these layers, NNs can be trained to learn and recognize non-trivial patterns within
data. Hence, for a given a training dataset composed of {Hr, ur}R

r=1, we can formulate
training of neural network in a supervised settings as

Θ⋆ = arg min
Θ

J(Θ), (2.8)

where the cost function

J(Θ) :=
R�

r=1
L (ur, fΘ(Hr)) . (2.9)

The function L(·) denotes a loss function, and fΘ(Hr) is the mapping function
imposed by a neural network parameterized by Θ. Then, we write the estimated UE
location as �ur = fΘ(Hr).
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2.2.1 Performance Metrics

We assess the performance of the wireless localization task primarily using Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE). MAE is calculated
as

MAE = 1
Rtest

Rtest�
r′=1

∥�ur′ − ur′∥ , (2.10)

where Rtest are the number of locations to be estimated, i.e., the test UE locations.
Similarly, for RMSE, we evaluate

RMSE =

���� 1
Rtest

Rtest�
r′=1

∥�ur′ − ur′∥2 . (2.11)

We also use empirical cumulative distribution (ECDF) and report the 95-th percentile
of the error distribution.





3
Towards Dependable Location Estimates

The design and operation of ML algorithms rely significantly on the training dataset,
which, in turn, is influenced by site-specific factors, including antenna distribution,
hardware imperfections, and the granularity of surveyed locations. Additionally,
the propagation channel can be nonstationary and often unpredictable. Analyzing
and considering all possible situations during training a DNN model presents an
intractable task. Hence, their dependability and scalability remain a key concern
despite deep learning-based localization methods demonstrating improved positioning
performance.

In this chapter, we deal with the challenges of uncertainty estimation of supervised
DNN-based localization methods as well as the scalability issues arising from ultra-
dense deployments of RRHs. The first part of the chapter introduces and evaluates
two scalable, uncertainty-aware DNN-based localization methods. The methods are
designed to measure uncertainty stemming from varying propagation conditions and
the finite number of training samples. Subsequently, the second part of the chapter
extends the functionality of the methods by integrating a neural combinatorial
module. This module aims to select a subset of RRHs deemed most relevant for
wireless localization.

20
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3.1 Base DNN and Uncertainty Information

We begin by considering a straightforward and relatively low-complexity feedforward
neural network, i.e., an MLP shown in Fig. 3.1. Throughout the dissertation, we
will refer to it as the base DNN, as we will use it repeatedly to compare it with the
proposed approaches in this dissertation or as a basis for newly proposed models. In
the following, we set the number of hidden layers to L = 4 and the number of units
for each hidden layer to 650. Selecting the number of hidden layers and units is more
of an experimental decision than one grounded in theory. We make adjustments
often based on empirical performance and the computational considerations. The
standard components (i.e., the input layer and the activation functions) of the fully
connected feedforward MLP require flattened, real-valued inputs, and real-valued.
Hence, in this chapter, we treat the complex-valued channel as two independent real
numbers, and utilize a single subcarrier to maintain a lower complexity of the DNN.
Therefore, the channel for the input layer is h̄r = hn ∈ R2Nr , and n = 1. Selecting
a single subcarrier is typically sufficient representation in presence of strong LOS
path and large coherence bandwidth. In a more pronounced selective fading channel,
averaging over Nc subcarriers can potentially smooth out the effects of deep fading.
However, both approaches inevitably result in information loss. We address this in
Chapter 5 where we consider the whole estimated channel for the models presented.

Next, we define the localization problem as a regression task and the DNN as a
function f

(Base)
Ψb

: R2Nr �→ RD parameterized by Ψb, where we consider D = 2.
Given the input of the DNN is the channel state vector h̄r, we aim to directly map
it to position information, ur ∈ RD. For a training dataset of R sample pairs,
D = {h̄r, ur}R

r=1, the set of optimal parameter values Ψb is learned by minimizing
a given loss function, Lb (·). Usually, the supervised training for the regression is
performed to minimize the sum of squared errors,

Lb(ur, h̄r, Ψb) = E(h̄r,ur)∼D

	���ur − f
(Base)
Ψb

(h̄r)
���2�

, (3.1)

where E(h̄r,ur)∼D is the expected value or average computed over a sampled batch of
training data. Such a DNN-based approach yields fully deterministic neural network
parameters that output only point estimates of the network, i.e., �ur = f

(Base)
Ψb


h̄r

�
.

One can interpret this as outputting the mean of a probability distribution while
disregarding other moments. However, providing precise position estimates for the
UE while including uncertainty information is critical to evaluate the confidence of the
model. Incorporating this information facilitates continuous learning by identifying
and focusing on measurements with higher uncertainty, e.g., importance sampling.
These are highly desired features for localization approaches applied to real-world and
safety-related tasks in railroad transportation, vehicular communications, and assets
tracking, to name a few. Conventional Bayesian neural networks (BNNs) can provide
estimates of the posterior variance on the network weights in a principled manner [100].
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Input Channel 

 Base DNN 

Figure 3.1: A basic MLP, termed as the base DNN in this dissertation. It serves
as a backbone for the methods in this chapter and occasionally as a reference for
comparison throughout the dissertation.

However, they substantially increase the number of parameters, require different
optimization strategies, and become hard to train for large datasets [101]. More
recently, Monte Carlo (MC) sampling techniques have emerged as an alternative
to estimate the uncertainty in the model parameters that can scale for modern
DNNs and large-scale datasets [102–104]. In the following, we aim to formulate a
scalable and variational approach to accurately locate the UE and provide confidence
information while maintaining a low computational complexity.

3.2 LUD: Location and Uncertainty-Aware DNN

Uncertainty predominantly stems from two sources, i.e., data and model uncertainty.
The data uncertainty (also known as aleatoric uncertainty) is mainly related to the
stochastic nature of the wireless signal (e.g., noise and interference) but also to
the propagation environment, such as the availability of LOS and multipath fading.
The latter, the model uncertainty (also known as epistemic uncertainty), results
from unbalances in the training data distribution, e.g., the unpredictable changes in
channel conditions. For instance, a model trained on samples with infrequent cases
of specific channel conditions should exhibit increased model uncertainty compared
to samples that often occurs in the training dataset. Furthermore, regions surveyed
less or not at all during the data collection phase (e.g., an inaccessible room in a
train station) should output higher uncertainty values compared to regions with
abundant training data. Therefore, both types of uncertainty are relevant for wireless
localization. Indeed, we cannot assume the presence of LOS, ensure that the training
dataset covers all possible areas, or anticipate the ambiguous paths the signal may
travel. Hence, we model the DNN to explicitly learn the underlying uncertainty from
the input data. We first acquire data and model uncertainty separately. Finally, we
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also combine both uncertainties to acquire a total confidence score into one end-to-end
model. The model is coined as LUD, i.e., Location and Uncertainty-Aware DNN.

3.2.1 Data Uncertainty

The data uncertainty is a property of the data itself, and we can train the network
to directly output the parameters of a probability distribution. To do so, we use
a Gaussian mixture model (GMM). In this case, LUD model parameterized by Ψ
yields mixtures of normal distributions associated with ur, and conditioned on the
input channel state vector h̄r,

p(ur|h̄r; Ψ) =
Cmix�
c=1

ωΨ,cN

ur; µΨ,c(h̄r), σ2

Ψ,c(h̄r)
�

, (3.2)

where Cmix is the total number of mixture components and, ωΨ,c, µΨ,c, and σ2
Ψ,c

being the mixture weight, means, and variances of the c−th Gaussian mixture,
respectively. We treat x− and y−coordinates of ur as independent and restrict to a
diagonal covariance matrix. Still, arbitrary distributions can be approximated by
using the contribution from multiple mixtures [105,106]. Then, we take a maximum
likelihood perspective (MLE) and aim to learn a model that infers the parameters
µΨ,c ∈ R2 and σ2

Ψ,c ∈ R2 that maximize the likelihood of observing the desired
location, ur. This is achieved by minimizing the negative log-likelihood (NLL) as

Lnll(ur, h̄r, Ψ) :=
R�

r=1
− log

Cmix�
c=1

ωΨ,cN

ur; µΨ,c(h̄r), σ2

Ψ,c(h̄r)
�

. (3.3)

In (3.3), parameters {ωΨ,c, µΨ,c, σ2
Ψ,c}Cmix

=1 become the outputs of the network and
depend on the input channel, h̄r.

The parameters of GMM must satisfy certain constraints, which have to be incorpo-
rated accordingly in the DNN [105]. Therefore, the last layer of the network outputs
the weights, means, and variances as follows. To satisfy �Cmix

c=1 ωΨ,c = 1 and output
the probability values corresponding to the weights of the mixture in the range of
0 ≤ ωΨ,c ≤ 1, the output for this part is modelled with softmax activation as

ωΨ,c =
exp


oω

Ψ,c

�
�Cmix

c′=1 exp

oω

Ψ,c′
� , (3.4)

where oω
Ψ,c corresponds to the input of the activation function of the neuron in the

output layer for this part. Likewise, a softplus activation function is adopted to
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satisfy the variance constraint, i.e., σ2
Ψ,c ≥ 0,

σ2
Ψ,c = log


1 + exp


oσ2

Ψ,c

��
, (3.5)

where oσ2
Ψ,c denote the inputs of the activation function of units for the part of variance.

For the means, we simply model it using an identity function, i.e., µΨ,c = oµ
Ψ,c.

Similarly, oµ
Ψ,c are the inputs of the activation function for each neuron in the output

layer for the means. Motivated from the models based on the mixture of experts
(MoE), where the c−th model is considered an expert for certain input space [107],
we choose the final estimate as the mean �µΨ, and variance �σ2

Ψ, corresponding to the
highest weight mixture, maxc∈Cmix ωΨ,c. Here, �σ2

Ψ corresponds to data uncertainty,
σ2

data = �σ2
Ψ.

3.2.2 Model Uncertainty

While modelling the parameters of a distribution function can capture the data
uncertainty, this does not allow us to gauge model (epistemic) uncertainty, i.e., the
uncertainty over the parameters Ψ. In order to output the confidence of the model,
we next discuss two different approaches.

Monte Carlo with dropout First, we consider a Bayesian perspective similar
to [102–104] to propagate the model uncertainty to the output of the network by
placing a distribution over the parameters of the network. In this case, the goal
is to utilize the posterior distribution p(Ψ|D). We approximate the intractable
distribution with Monte Carlo (MC) based methods [103,108]. We know from [103]
that applying dropout during the test time is equivalent to performing variational
inference with a Bernoulli distribution. This approximation is given as

p(Ψ|D) ≈ q(Ψ; Φ) = Bern(Ψ; Φdrop) , (3.6)

where Φdrop is the dropout rate on the network weights at each layer. Thus, we
perform Smc stochastic forward passes with dropout at test time on the same input.
The mean, as well as the total variance, are evaluated as follows:

�ur = �µ(MCD)
r = 1

Smc

Smc�
s=1

�µΨ(s)


h̄r

�
,

�σ2(MCD)
r,total = 1

Smc

Smc�
s=1

�σ2
Ψ(s)


h̄r

�
� �� ��σ2

data

+ 1
Smc

Smc�
s=1

 �µΨ(s)


h̄r

�
− �µ(MCD)

�2

� �� ��σ2
model

. (3.7)
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In (3.7), �ur = �µ(MCD)
r refers to the mean location estimate with dropout and �σ2(MCD)

r,total

refers to the associated total variance.

Deep ensemble For this MC-based method discussed above, the inference compu-
tation time scales linearly with the number of collected weights, Smc. Therefore, we
also evaluate another effective alternative to estimate the model uncertainty by sam-
pling from an ensemble of Smc different neural networks trained with Smc randomly
initialized sets of weights of the same network architecture. We refer to this as a
LUD with a deep ensemble network (DEN). Similar to the dropout-based approach,
we obtain the empirical mean �µ(DEN) and total variance �σ2(DEN)

total of the distribution of
location estimates. While for training, we require Smc different independent trained
models and sets of parameters to be stored, we only use a single forward pass during
inference.

The variations of the Location and Uncertainty-Aware DNN (LUD) model we detailed
in the last two sections allow us to address different types of uncertainties: they
can specifically address either data-related uncertainty, model-related uncertainty,
or simultaneously account for both. Finally, the two versions of acquiring model
uncertainty allow us to trade between computational complexity and memory, too.

Model Architecture
The network architecture of LUD is depicted in Fig. 3.2. It uses L = 4 hidden
layers from base DNN and ReLU activation functions for layers l = {1, 2, 3, 4}. We
model the output layer as described in Section 3.2.1, which returns �µ(·)

c , �σ(·)
c and�ω(·)

c . The size of the output layer is 5Cmix = 15 units. For LUD with stochastic
dropout approach (MCD), we place the dropout after l = {1, 2, 3} of the network and
search over a grid for Φdrop ∈ {0.05, 0.1, 0.2}. In most instances, a dropout value of
0.1 yields good results for both location and uncertainty estimates, and is therefore
chosen for the presented experiments in the next section. We train the model for 600
epochs with Adam solver [109], batch size of 512 at a fixed learning rate of 10−3, and
early stopping if validation loss is not reduced for 80 consecutive epochs. Weights
are initialized from N (0, 10−2). For the LUD with an ensemble approach for model
uncertainty (i.e., DEN), we train all individual networks for 300 epochs without
dropout, thus faster converge time. However, to regularize the training process, in
addition to early-stopping after 30 epochs, we clip the gradients at a value of 1.0.
Other parameters are kept the same as for MCD.

3.2.3 Datasets and Quality of Estimates

In the following, before describing the simulation results, we first outline the datasets
and metrics used for evaluating the quality of estimates.
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Figure 3.2: Model architecture overview of Location and Uncertainty-Aware DNN
(LUD). During the training, the network learns a full parametric Gaussian mixture
model (GMM) over locations. During the localization phase, the optimal location
estimate is considered from the largest weight mixture with the associated variance.

Datasets

In this chapter, we rely on publicly available ray-tracing-based datasets introduced
in [110] to evaluate the localization performance of LUD in a co-located massive
MIMO setup. More specifically, we use CSI acquired from two distinct scenarios that
depict an outdoor and an indoor environment:

1) The outdoor scenario of our interest is denoted as O1_3p5B in [110], and illustrated
in Fig. 3.3. The scenario has users in LOS as well as NLOS. NLOS user locations
are blocked by a metal screen which is placed in front of the BS. Two reflecting
objects, represented in the figure by two other vehicles are also present.

2) The indoor scenario, denoted as I3_2p4 in reference [110], consists a mix of LOS
and NLOS UEs too. An illustration of this scenario is provided in Fig. B.1 of
Appendix B.

We consider Lpath = 5 paths which may include both direct LOS and NLOS compo-
nents, the latter comprising reflected paths, potentially involving multiple bounces
from the buildings in the surrounding. At the BS, we consider a uniform planar array
with Nr = 16 × 8 antenna elements aligned along the x− and y−axis. The region
considered for the outdoors scenario (O1_3p5B) is R800−R1200. R800−R1200 is
the default notation in [110] used to express the rows in a grid layout. Each row has
R′ = 181 user locations, and all users in this region are served by BS named BS−3
in the dataset. Table 3.1 summarizes the simulation parameters.
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Figure 3.3: Illustration of an outdoor scenario considered for evaluation.

Quality of Estimates

The performance of the location estimation is quantified using the RMSE. Further-
more, to assess the quality of the acquired uncertainty estimates, we introduce a
comparative analysis between these estimates and the ground-truth error. Specifi-
cally, we focus on ordering locations defined by the uncertainty estimates (referred
to as ‘confidence’) and compare this with the ordering defined by actual location
estimation errors (referred to as ‘oracle’). The oracle-based ordering, denoted by
RMSEorac represents the RMSE values from the ground-truth data. In contrast, the
confidence-based ordering, denoted as RMSEconf , is derived from the uncertainty
estimates provided by the model. Intuitively, if we remove locations with higher
uncertainty (as indicated by the model), we expect the RMSE of the remaining
locations to be lower, indicating more accurate estimations. Therefore, we evaluate
their difference, i.e., the error between the ordering of locations defined by RMSE
(oracle) and the ordering defined by the uncertainty estimates (confidence),

αRi
= RMSEorac(bRi

) − RMSEconf(bRi
), (3.8)

where bRi
, in this case, represents the fraction of removed locations based on their

ranked uncertainty. A smaller value of αRi
suggests a higher alignment between the

model’s uncertainty estimates and the actual errors.
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Table 3.1: Parameters for the investigated scenarios.

Outdoor scenario
(O3_2p5)

Indoor scenario
(I3_2p4)

Frequency, fc 3.5 GHz 2.4 GHz
Bandwidth, Bsys 20 MHz 20 MHz
BS Number BS−3 BS−2
Number of paths, Lpath 5 5
Subcarriers, Nc 1024 1024
User locations R800−R1200 R1−R1159

Furthermore, to compare the effectiveness of two variations of the LUD method
and the influence of the MC samples, we evaluate the area under the confidence-
oracle curve (AUCO) metric. This metric measures the performance across multiple
thresholds of removed locations and provides an aggregate score. The smaller AUCO
value, the better-acquired uncertainty explains the variations in locations with respect
to RMSE.

Localization Accuracy

Localization accuracy in terms of RMSE for the two approaches and all reference
scenarios is depicted in Fig. 3.4. Both methods can achieve better than 1.5m accuracy
at 90-th percentile in the outdoor scenario, and less than 20cm indoors. We observe
in Fig. 3.4b), 3.4c) that accuracy improves with Smc. Averaging over Smc different
weight configurations has a pronounced positive impact on the overall RMSE. For
the sake of comparison, we also provide results for Smc = 1. This is equivalent to
only estimating σ2

data with the base DNN. DEN variation of LUD outperforms the
MCD one.

Uncertainty Accuracy

We quantify the acquired uncertainty in terms of AUCO as described in Section 3.2.3.
If the estimated uncertainty well represents the variance, removing locations with the
highest uncertainty in the test dataset should lead to a lower RMSE too. Thus, the
confidence curve should be able to capture the variations in the RMSE. The oracle
curve can also be interpreted as the lower bound, or ground-truth on uncertainty
values that can be acquired by the model in a respective dataset. Ideally, both curves
would match.

In Fig. 3.5a we plot normalized RMSEorac and RMSEconf . In Fig. 3.5b we plot the
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Figure 3.4: Localization error for a) indoors and outdoors when Smc = 32. Accuracy
improves for Smc > 1 for both indoors c) and outdoors d) scenarios.
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Figure 3.5: Evaluation of variance based ordering for uncertainty estimation. Example
of confidence and oracle curves a) and error between the confidence and oracle curve
b) for Smc = 32. LUD with DEN can better explain the variations for both large and
small RMSE values.

confidence-oracle error, i.e., the difference between RMSEorac and RMSEconf as in
(3.8). In both figures, we illustrate that a deep ensemble can better capture the
variations in the RMSE. The evaluation in terms of AUCO is depicted in Fig. 3.5c
and Fig. 3.5d for indoor and outdoor scenarios, respectively. We can easily notice
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that the ensemble performs better than stochastic dropout approach, and the gap
becomes more evident as Smc > 4.

The observed inferior performance of the stochastic dropout approach, in contrast
to the ensemble approach, can be attributed to its sensitivity to the dropout rate.
This hyperparameter is a critical aspect of the model’s performance, yet the optimal
selection of the same is challenging. Finally, in Fig. 3.5a, we can observe that by
removing 20% of locations with the highest error, the overall accuracy improves by
80% for an ensemble-based approach in this outdoor scenario.

Impact of Data and Model Uncertainties

In Fig. 3.6, we provide qualitative results for uncertainty estimation for the two cases:
NLOS and out-of-set region. We plot normalized values for the RMSE as well as for
the total uncertainty estimates as evaluated in (3.7). Additionally, in this figure, we
separately plot the data uncertainty and model uncertainty, denoted by �σ2

data and�σ2
model in (3.7).

Specifically, we consider the outdoor scenario, where locations for users behind the
blockage have the highest RMSE; consequently, LUD should output high uncertainty
too. Moreover, our goal is also to understand if model uncertainty can improve our
awareness about out-of-set regions. Therefore, we remove all training samples from a
region marked in a blue rectangle box as the out-of-set region in Fig. 3.6. Likewise,
we expect the LUD to generate high uncertainty score for users in the out-of-set
region during the testing phase.

Finally, we can observe that the data uncertainty is sufficient to capture the error
when users are in deep NLOS, i.e., just behind the blockage. However, out-of-set
cases are more challenging and acquiring model uncertainty enhances the overall
dependability.
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Figure 3.6: The impact of data and model uncertainty estimation in NLOS and
out-of-set case. Lighter-colored regions indicate higher error and uncertainty. The
figure shows the case of LUD with ensemble approach.
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3.3 DAS and RRH Subset Selection

In the first part of this chapter, we focused on evaluating the localization accuracy
in a co-located massive MIMO BS. However, we can apply the same approach to
locate the user from CSI obtained in a DAS. Due to DAS achieving greater spatial
diversity, they can provide substantial advantages for wireless positioning systems.
Hence, in this part, we investigate LUD in a DAS and aim to understand the impact
of NLOS strength. Regardless, a primary limitation of DAS is the necessity for
costly infrastructure to establish connections between RRHs and CU. Moreover,
acquiring signal information from a dense number of RRHs may increase the fronthaul
overhead and computational burden at the CU. Hence, a selection strategy that
leverages CSI solely from the “best” Krsd RRHs out of the total M RRHs is desirable,
with a minimal impact on localization performance. Therefore, after analyzing the
localization performance in a DAS, we investigate whether a learned subset of RRHs
can maintain good localization accuracy. Accordingly, our focus will shift towards
extending the LUD to a learning-based approach capable of RRH subset selection,
combined with user location and uncertainty estimation.

To assess the localization accuracy, we utilized a channel model based on ray-tracing
in the initial portion of this chapter. In contrast, in the remaining part, we model
the signal information within a DAS slightly differently. Since we aim to consistently
evaluate its performance against a co-located antenna setup and gain better control
in understanding the impact of NLOS signal strength, we utilize the channel model
proposed in [111]. The subsequent section will outline the signal information used
for the remaining investigation.

3.3.1 Signal Information in DAS

We consider a distributed antenna system as shown in Fig. 3.7. We assume that
all RRHs are connected via high-speed fronthaul links to the CU, i.e., the delay
between the RRHs and the CU is negligible. Initially, each RRH obtains signal
information from R individual locations during the training phase and forwards it to
the CU. The role of the CU is to process the per-user channel estimates and learn a
subset of Krsd RRHs. Then, throughout the operations phase, the role of the CU
becomes to perform positioning inference of the unknown user transmitter with the
channel information gathered from the subset of RRHs, which are learned during
the preceding phase. Instead of reusing the same geometric channel model and the
signal information detailed in Chapter 2, here we consider that the channel between
the r−th user location and the m−th RRH is [111]

hr,m = αr,m +
G�

g=1
βr,gαg,m , (3.9)
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Figure 3.7: Illustration of the system model considered for RRH selection and user
location estimation in a distributed antenna system (DAS).

where αr,m is the direct line-of-sight (LOS) path, i.e., it describes the propagation
without involving any scattering. The sum term describes the signal over G other
paths that include a scattering event due to the scattering objects placed in the
geographical ROI. As in [111], path coefficients αi,j and βi,j are obtained as:

αi,j = λ
4π∥xi−xj∥ei 2π

λ
∥xi−xj∥,

βi,j = δj√
4π∥xi−xj∥ei 2π

λ
∥xi−xj∥.

(3.10)

The coefficients in (3.10) describe the wave propagation characteristics between
any two elements i and j at their respective positions xi and xj in the ROI. The
scattering event δj captures the electromagnetic properties of the scattering objects,
and λ denotes the carrier wavelength. We assume that scattering objects impose
a random phase-shift, φj, of the signal and have an amplitude gain of γj = |δj|.
The amplitude gain is equal to the square root of the bi-static radar cross section
(RCS) of the scattering object. As shown in [111], it can be related to the Rician
K-factor of the effective multipath channel and, therefore, determines the relative
strength of LOS and NLOS components. Consequently, we are able to model a
more realistic propagation environment that distinguishes from the extreme LOS and
non-line-of-sight (NLOS) cases in order to better understand the performance limits
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of the methods in terms of localization error. The resulting channel model, after
substituting the scattering coefficients (3.10) and assuming γj = γ, ∀j, is given as

hr,m = λ

4π ∥ur − bm∥ei 2π
λ

∥ur−bm∥ + λγ

(4π) 3
2

G�
g=1

u (pg) . (3.11)

The individual sum terms are further expressed as

u (pg) = (∥ur − pg∥ ∥pg − bm∥)−1

× ei(φk+ 2π
λ

(∥ur−pg∥+∥pg−bm∥)).
(3.12)

We maintain a minimum distance between any transmit antenna location and RRH,
∥ur − bm∥ > 0, as well as between any scattering object and RRH, ∥bm − pg∥ > 0.
Finally, for each user r, the CU forms a M × 1 channel vector hr, i.e.,

hr = [hr,1, hr,2, . . . , hr,M ]T ∈ CM×1. (3.13)

3.3.2 Localization Accuracy in DAS

First, we investigate the localization accuracy of LUD in a DAS without any selection
strategy. We setup a scenario where we consider M ∈ {16, 36, 64} RRHs distributed
in a grid configuration within the ROI of 100m × 100m range. An example of
the simulation scenario with M = 64 is depicted in Fig. 3.8. We place G = 100
scattering objects normally distributed in clusters i ∈ {1, 2, 3} with N (µ(i)

g , σ(i)
g ),

where µ(1)
g = [0, −60], µ(2)

g = [60, 0], µ(3)
g = [0, 60], σ(1)

g = [100, 1], σ(2)
g = [1, 100],

and σ(3)
g = [100, 1]. The scenario chosen for our numerical experiments represents a

public space, surrounded on three sides by buildings. The scattering coefficient is
set as γ = {1.2, 3.0} to provide insights on the impact of NLOS components of the
multipath channel. We uniformly sample from R = 49 000 locations in the ROI and
we set the minimum distance ∥ur − bm∥ > 0.5m.

Impact of NLOS

We look into the impact of the number of RRHs as the NLOS components become
stronger. This is shown in Fig. 3.9. We can observe that increasing γ, i.e., the value
of scattering coefficients, the performance degrades in terms of the localization error
for approximately 50% at 90−th percentile in case of M = 16. Naturally, increasing
the number of RRHs improves the overall performance but can also compensate for
the impact of the dominant NLOS components, where the gap of the error at 90−th
percentile is approximately 15% for M = 64.
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Figure 3.8: Simulation setup with M spatially distributed RRHs.

DAS versus Co-located Setup

Next, we compare the localization accuracy of a DAS with centralized massive MIMO,
i.e., M = 64 co-located antennas. In the case of co-located setup, we consider that
antennas are aligned in a circular array with a diameter of 1.5m. As in the first
part of this chapter, the channel vector considered for comparison is �hr ∈ R2Nr . In
Fig. 3.10, we can observe that DAS improves the performance by more than 30%
at 90−th percentile. Further, increasing the number of antenna elements does not
lower the error for the centralized case.

3.3.3 Remote Radio Head Selection

In this section we aim to reduce the computational complexity at the CU by de-
termining which RRHs should be selected while providing accurate and reliable
localization performance. The selection process is fixed and performed once per ROI.
The selected RRHs are used for all the test users over a period of time until the next
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scheduled selection process occurs. We approach this problem in two steps. First, we
describe the developed end-to-end and DNN-based RRH selection method, which we
will refer to as RRH subset selection DNN (RSD). Then, using the subset of RRHs,
we elaborate on how to utilize LUD to estimate the final position of the transmitter
and the uncertainty associated with it. The RRH selection and localization process
is shown in Fig. 3.11. The RSD relies on channel strength information as an input,�hr = |hr|. Similar to the first part of the chapter, the dataset is scaled by dividing
the inputs with the maximum absolute value in it, ∆ = max({|hr,1|, . . . , |hr,M |}R

r=1).

Specifically, our goal is to learn a subset Krsd ⊆ M of spatially distributed RRH
indices of |Krsd| = Krsd, as well as a channel to location mapping function f

(RSD)
Θ :

RKrsd �→ R2, where Θ denotes the parameters (weights) of RSD. Thus, we seek to
minimize the localization error between the estimated �ur = f

(RSD)
Θ (�hr) and the given

location information ur. Formally, our goal becomes to learn the optimal K⋆
rsd and

Θ⋆ such that
{K⋆

rsd, Θ⋆} = arg min
Krsd,Θ

LRSD(ur, �hr, Θ)

= arg min
Krsd,Θ

E
	���f

(RSD)
Θ (�hr) − ur

���2�
.

(3.14)

In (3.14), �hr contains CSI from Krsd selected RRHs. It can be written as

�hr = A�hr , (3.15)

where A ∈ {0, 1}Krsd×M represents a binary selection matrix with k selection-rows
ak, i.e., ak,m = 1 if k ∈ Krsd.

3.3.4 RSD - RRH Sampling and Selection

The RRH selection in (3.14), is a combinatorial optimization problem over the
discrete set Krsd ⊆ M of RRHs. This implies that the number of RRH subsets
grows exponentially with M and Krsd. In addition, implementation difficulties arise
due to the inability to backpropagate over the discrete variables. To circumvent
these difficulties, we rely on a reparameterization approach [112]: instead of directly
optimizing over ak, we relax it by a learnable Krsd−dimensional vector ϕk ∈ RM

+ .
We do so by introducing an RRH selection layer, trained together with the rest of the
network, that utilizes concrete variables [113,114], based on a Gumbel distribution
[115]. In this case, the RRH selection layer controls the intensity of relaxation of the
elements in the binary matrix A, using the layer temperature τ ∈ (0, ∞).

Formally, we begin by defining zk to be a categorical variable over the domain
{1, 2, . . . , M}, which can be represented by a vector of class probabilities πk ∈ RM ,
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Figure 3.11: RRH subset selection DNN (RSD) with a sampling and selection layer
and localization with uncertainty estimation DNN (LUD).

with the role of selecting m−th RRH in k−th row, i.e.,

zk ∼ Cat(πk, M), (3.16)

where the class probabilities are related to vector ϕk as

πk,m = exp ϕk,m�M
i=1 exp ϕk,i

. (3.17)

Using the Gumbel-Max trick [115, 116], we can sample from (3.16) by independently
perturbing ϕk,m with i.i.d. Gumbel noise, gk,m = Gumbel(0, 1). Specifically, we draw
M samples from a uniform distribution and form qk ∼ U(0, 1). Then, we apply the
Gumbel inverse CDF, F −

G (qk). In more detail,

gk = F −
G (qk) = − log(− log(qk)) (3.18)



40 Chapter 3. Towards Dependable Location Estimates

and
z̃k = arg max

m∈{1,2,...,M}
{ϕk,m + gk,m}. (3.19)

The arg max of the respective perturbed probabilities returns a sample from the
original categorical distribution, z̃k

d= zk. Finally, during the forward pass, we can
convert z̃k into a binary vector ak, such that ∥ak∥ = 1 and we write

ak = one_hotM{z̃k}
= one_hotM{arg max

m
{ϕk,m + gk,m}}.

(3.20)

However, in order to allow gradient backpropagation during the training phase, we
need to relax the non-differentiable arg max{·} operation. To do so, we rely on
Gumbel-Softmax [114] and approximate the arg max{·} in (3.19) with a continuous
soft operation, soft maxτ {·}. Then, ak is replaced by

ak = lim
τ→0

exp {τ−1 (ϕk + gk)}�M
m=1 exp {τ−1 (ϕk,m + gk,m)} . (3.21)

As τ → 0, (3.21) smoothly approaches the arg max, and each of the neurons in the
RRH sampling and selection layer outputs one of the selected RRHs. During the
training over a total number of Tepoch epochs, the value of τ decreases exponentially,
and for the t−th epoch, it is given by

τtepoch = τ0 (τe/τ0)tepoch/Tepoch , (3.22)

where τ0 and τe (and τe < τ0) are the user-defined start and end temperature
values, respectively. This enables the end-to-end network to initially explore various
combinations of RRHs, gradually transitioning from a strategy of linearly combining
the outputs of these RRHs to a strategy focused on selecting a particular RRH
as training progresses. The iterative nature of the training process is designed to
continue until a point of convergence is reached, where each unit in the selection
layer consistently selects a single, and unique RRH, k ∈ Krsd.

Operation Phase

During the test time, i.e., the RRH selection process and localization, we drop the
stochasticity of the network and replace the continuous soft maxτ (·) by a discrete
arg max(·). The training as well operation phase of the RSD ∀k ∈ Krsd are further
summarized in Algorithm 1 and Algorithm 2, respectively.
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Algorithm 1 Training RSD

Given: A training dataset D = {hr, ur}R
r=1, number of RRHs to select Krsd,

epochs Tepoch, learning rate α, final temperature τe, start temperature τ0

Build RSD, f
(RSD)
Θ (·), and initialize Θ.

1: for k ∈ {1, 2, . . . , Krsd} do
2: Initialize a M− dimensional vector ϕm ∈ RM

+ .
3: end for
4: for tepoch ∈ {1, 2, . . . , Tepoch} do
5: Compute τ according to (3.22)
6: for k ∈ {1, 2, . . . , Krsd} do
7: Compute ak using (3.20)
8: Set �hr,k = ak

�hr

9: end for
10: Compute the gradients of LRSD w.r.t. Θ and each ϕk.
11: Update the parameters Θ ← Θ − α∇ΘLRSD and ϕ ← ϕ − α∇ϕLRSD
12: end for

Return: Trained f
(RSD)
Θ (·) and learned parameters Θ and ϕ.

Algorithm 2 Using RSD for RRH Selection

Given: A test channel �hr and trained parameters ϕ

1: for k ∈ 1, 2, . . . , Krsd do
2: Compute z̃k = arg maxm ϕk,m

3: Set �hr,k = �hr,z̃k

4: end for

Return: �hr.

RSD Architecture Details

Similar to LUD, RSD employs ReLU for the intermediate non-linear operations.
RSD consists of three intermediate layers, each containing 350 units. It only requires
the channel gain as input, resulting in a smaller number of hidden layers and units.
The number of units in the selection layer is Krsd. For the presented experiments,
a dropout rate of 0.2 was selected. We train RSD for 800 epochs with τe = 0.1
and τ0 = 10.0. For training, we utilize the Adam solver, with a batch size of 512
at a fixed learning rate of 10−3, and an early stopping if the validation loss does
not improve for 80 epochs. The parameters, Θ and ϕ, are initialized with a Glorot
normal initializer [117]. The dataset is split into 0.8 and 0.2 for training and hold-out
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testing, respectively.

To derive the final location estimate, the obtained �hr from RSD is fed into the
subsequent localization and uncertainty aware DNN (LUD), which we discussed in
the first part of this chapter. Given �hr, the second network is parameterized by Ψ
and defined as f

(LUD)
Ψ : RKrsd �→ R4. Knowing from the first part of the chapter, LUD

provides not only estimates of the position but also the uncertainty inherent in the
samples and the model parameters Ψ. Thus, the final location of the transmitter
and its corresponding uncertainty are denoted by �µ and �σ, respectively.

3.3.5 Localization Performance with Learned RRH

To investigate the selection strategy, we evaluate the performance regarding the
localization error for Krsd ∈ {55, 42, 36, 32, 30}. We compare the selection strategy to
a low-complexity approach based on maximum channel gain (CG) at each RRH. In
this case, we define sort maxKrsd(·) operation, which provides Krsd indices of RRHs
matching to the largest channel gain values in descending order, i.e.,

{z′
1, ..., z′

Krsd
} = sort max

Krsd
m∈M

�
r

∥hr,m∥2 . (3.23)

Then, the CU selects �hr,k = �hr,z′
k
, ∀k. In Fig. 3.12, we show the averaged RMSE over

multiple realizations of LUD and provide 95% confidence interval for different |Krsd|.
We see that the proposed selection strategy allows us to learn a subset of RRHs at a
price of a small positioning performance loss. Compared to the straightforward CG
approach, our method has a significant gain, especially when Krsd ≪ M .

To possibly understand how the selection pattern change with Krsd, next we investi-
gated the probability of selecting m ∈ M as we vary the number of selected RRHs
|Krsd|.

Relevance of RRH Positions

An additional advantage of using the RRH selection strategy is that it allows us to
identify and possibly interpret the most relevant positions of the RRHs. This can be
beneficial, especially when it is hard to predict the propagation environment a priori,
and thus no optimal configuration design of RRH positions can be foreseen. Fig. 3.13
depicts the K ′

rsd = 15 most frequently selected RRHs among Krsd ∈ {55, 42, 36, 32, 30}
and γ = 3.0. It can be noticed that the learning strategy consistently selects a
number of RRHs and favours those in corners of the ROI. This suggests that certain
positions of spatially distributed RRHs provide a more diverse view of the propagation
environment and thus have a higher impact on minimizing the localization error
during the selection process.
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Figure 3.12: Localization accuracy for different M and γ = 3.0. As the compression
ratio increases, the performance gain is higher for RSD.

3.4 Final Remarks

In this chapter, we have discussed the challenges of current DNN-based wireless
localization techniques. Specifically, we have addressed the limitations of supervised
techniques, which neglect to consider the uncertainty stemming from changing
propagation conditions and the lack of sufficient training sample size. We introduced
LUD, a simple yet effective approach that integrates a stochastic, MC-based sampling
approach with a GMM to simultaneously output UE location coordinates, altogether
with data and model uncertainty information. Although the measured uncertainty
does not provide an exact calibrated measure of variance, we showed that the
uncertainty scores of LUD are highly correlated with the actual RMSE values. This
is particularly true for large errors and the deep ensemble approach (i.e., LUD with
DEN). Hence, the obtained measures can still serve as a heuristic for decision-making
and provide relevant insights into the reliability or quality of predictions.

Even though not in the scope of this dissertation, another valuable application of
uncertainty measure discussed in this chapter is its role in importance sampling [118].
In ML community, the foremost application of importance sampling is active learning
that employs an uncertainty-based sampling query strategy [119,120]. Selecting only
channel estimates that the model is least certain to predict, can not only reduce the
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Figure 3.13: The most relevant RRHs in the ROI. a) The occurrence of the most
selected RRHs. b) Actual positions of the K ′

rsd = 15 RRHs.

overall localization error, but also reduce the number of channel estimates required
to label for training or fine-tuning the model. We use the uncertainty-based sampling
query strategy to demonstrate the impact of training samples on localization error in
Appendix B.3.
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While in the first half of the chapter we focused on localization with channel estimates
acquired at a BS with co-located antennas, in the other half we extended the
investigation to DAS. To alleviate the fronhaul capacity constraints, we elaborated a
new approach based on Gumbel extreme-value distribution for selecting a subset of
RRHs, which allows end-to-end learning over a discrete set of RRHs. We show that
the selection strategy comes at the cost of small performance degradation. Finally,
the learned parameters in the RRH selection layer can be further probed to allow the
analysis of the position importance of the RRHs, possibly helping the interpretation
and facilitating design choices.





4
From Shallow to Deep Metric Learning for
Localization

One of the primary challenges in wireless localization with supervised ML models,
notably with the neural networks we discussed in Chapter 3, is the ability to capture
useful discriminatory channel features with limited labelled training data. With the
increased number of antennas and limited training examples, the model can easily
overfit the correlated channel at different antennas, increasing the risk of capturing
irrelevant channel features and making the task of localization harder. Unlike
supervised methods, unsupervised DR techniques can be used to extract the most
relevant features from the CSI without the need for labelled data. Therefore, even
when represented in a lower-dimensional space, the low-dimensional representation of
the esimated channel at a massive MIMO BS should preserve, at least approximately,
its intrinsic properties. For instance, one can employ a shallow DR technique (e.g.,
PCA) that orthogonally decomposes the acquired channel, eliminating redundancies
and mitigating the channel estimation noise by maximizing the variance of the
received signal at the multiple antenna BS. As a result, the obtained low-dimensional
features (latent representation) should be sufficient to capture a channel signature
necessary for positioning the UE. However, many shallow DR approaches assume
that data residing on a low dimensional linear manifold. Such an assumption may
be too strict when considering complex multipath propagation environments and the
impact of other system imperfections.

In this chapter, we discuss DR approaches to obtain a channel representation useful
for positioning UEs. Specifically, we first investigate shallow approaches based

47



48 Chapter 4. From Shallow to Deep Metric Learning for Localization

on principle component analysis (PCA) and iterative scaling. Subsequently, we
propose a metric-learning method using neural networks. In both cases, we seek
to learn channel features reflecting the relative distance between the UEs, given
their estimated channel at the BS. The work described in this chapter is published
in [83,84].

4.1 PCA and Iterative Scaling

PCA PCA is the most widely used technique for lossy data compression or feature
extraction. Hence, we first illustrate the efficacy of the PCA-derived channel subspace
when used to determine the UE location. To do so, let us consider only a single-
path and LOS channel. Then, for a single coherence bandwidth and under LOS
propagation conditions, the received channel vector from an UE position ur acquired
at a massive MIMO BS located at b0 becomes

hr = (∥ b0 − ur ∥)−ρΓ(ϕ) ∈ CNr×1 , (4.1)

where ρ is the path-loss exponent, Γ(ϕ) is the array steering vector for an arbitrary
array geometry. For simplicity in our analysis, we consider an uniform linear array
(ULA). Therefore, we assume that the channel coefficients of hr are considered to be
dependent only on the distance ∥b0 −ur∥ and the direction of arrival ϕ. Consequently,
for a static channel between the UE and the BS with fixed transmit power, the
covariance of the channel is tightly coupled with the location, i.e., the maximum
channel gains can be given by eigenvectors of E[hhH] corresponding to the largest
eigenvalues, where the expectation can be evaluated over the ensemble of different
realizations of h over a specific sub-region or over T different realizations according
to the uncertainty model we introduced in Sec. 2.1.3.

In the following, we assume to have a dataset from R distinct UE locations, and
construct an R × Nr matrix,

Href =


hT

1
hT

2
...

hT
R

 . (4.2)

Our goal is to construct a D-dimensional representation map of locations solely from
the high-dimensional CSI samples. The derived map can be thought of as extracting
a low-dimensional representation of UEs spatial information from their corresponding
high-dimensional channel vectors {hr}R

r=1. The objective of DR is to preserve certain
properties of the data (e.g., variance), while transforming a set of high-dimensional
features into a new set of lower-dimensionality. In our case, we desire to maintain
the distance between two locations in {ur}R

r=1 with the intention that it matches the
pairwise dissimilarity between the representations of the respective channel vectors
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in the D-dimensional map, Z = {zr ∈ RD}R
r=1. To achieve this, we first compute

R̄Href = E{H̄refH̄H
ref} , (4.3)

where H̄ref = Href − 1


1
R

HT
ref1

�T
is the zero-mean sample channel matrix, and 1

is a column vector of ones. In the following, we consider only the magnitude part,
RHref = |R̄Href |. To find the optimal linear transformation that exploits the pairwise
dissimilarity between the channel from R user locations, we can simply maximize
the trace of the sample covariance, i.e.,

maximize
W

tr(WT RHrefW)

subject to WT W = I .
(4.4)

The goal is to find a transformation where the channel vectors corresponding to
different user locations are as distinct as possible, which is achieved by maximizing the
spread (variance) in the transformed space. The optimal weight matrix W ∈ RR×D

contains the columns that are the eigenvectors of RHref corresponding to the largest
eigenvalues. In our case, the low-rank approximation of the channel from R locations
obtained via PCA is actually computed by eigenvalue decomposition on the empirical
covariance matrix R̂Href = UPCAΣUT

PCA, where UPCA are the left singular vectors
of H̄ref and the eigenvectors of R̂Href . Similarly, Σ are the eigenvalues of R̂Href , i.e.,
squared singular values of H̄ref. The low-dimensional map is considered as

ZPCA = [
√

σ1uPCA,1, . . . ,
√

σDuPCA,D], (4.5)

matching the first D largest eigenvalues from {σ1, . . . , σR} with the corresponding
eigenvectors {uPCA,r}R

r=1.

In principle, we can view the error between the original channel matrix Href and its
D−rank approximation as �Nr

i=D+1 σi.

MDS As an optimization problem, PCA is closely related to the so called MDS [121],
or metric MDS. MDS is often considered a manifold-learning method to obtain a
representation map based on the dissimilarities between the points. This is particularly
appropriate when such dissimilarities can, exactly or approximately, be expressed
in terms of the Euclidean distances. Hence, let us consider a distance matrix Cdis,
whose elements

d2
i,j = ∥hi − hj∥2 = (hi − hj)(hi − hj)H (4.6)

are the squared distances between the row channel vectors of Href corresponding to
two UE locations. The distance metric must satisfy the properties of non-negativity,
identity, symmetry, and the triangle inequality. Then, the classical scaling cost
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function is

L(Z) =
R−1�
i=1

R�
j=i+1


d2

i,j − ∥zMDS,i − zMDS,j∥2
�

. (4.7)

Its minimum, once again, can be obtained by the eigendecomposition of Bdis ≊
H̄refH̄H

ref, the elements of which can be evaluated by double-centering Cdis, i.e., by
computing

Bdis = −1
2JCdisJ , (4.8)

where
J = I − 1

R
11⊤ . (4.9)

Therefore, classical scaling, through the process of eigendecomposition and minimizing
the cost function that preserves pairwise distances, implicitly maximizes the variance
in the reduced-dimensional space. This principle of variance maximization aligns
classical scaling with PCA, as in both cases, we seek to represent data in a way that
captures the most significant variance along specific dimensions, which is a widely
recognized relationship between the two [122,123].

MDS with Sammon mapping In addition to using PCA to construct a low-
dimensional map representation by optimizing a convex objective using eigendecom-
position, we next look into an alternative to classical scaling, which is known as
Sammon mapping [124]. Sammon mapping is an iterative, gradient-based, approach
to evaluate a non-convex objective function and is considered a generalization of
metric MDS. In this case, we seek to find an optimal representation by normalizing
the squared-errors using the pairwise distance in the original features space. Hence,
we adapt the cost function defined in (4.7) such that it subsequently assigns weights
to each pair of channel vectors, with the weights being proportional to the inverse of
their pairwise distance di,j,

L(ZMDS) =
R−1�
i=1

R�
j=i+1


d2

i,j − ∥zMDS,i − zMDS,j∥2
�

d2
i,j

. (4.10)

While PCA tends to preserves inter-distances for larger dissimilarities, Sammon
mapping gives a greater degree of importance to inter-distances for smaller ones.

4.1.1 Location Estimation using D-dim Features

The essential idea of localization using DR techniques to construct a low-dimensional
reference map is depicted in Fig. 4.1, when D = 2. For each location {ur ∈ R2}R

r=1,
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Figure 4.1: Overview of UE location estimation from high-dimensional CSI using
dimensionality reduction techniques.

the low-dimensional reference map (i.e., Z-map in Fig. 4.1) has a corresponding
feature vector {zr ∈ RD}R

r=1. These feature vectors can be interpreted as pseudo
locations. However, there is no unique representation of the data in the Z-map
that can gave rise to the actual locations. However, the mapping from locations to
channel vectors is not a bijection; i.e., in a general multipath scenario, there are
many possibilities for creating the same channel vectors from different locations and
propagation environments. Hence, in general, we cannot have a unique backwards
mapping. Furthermore, if we know the reduced feature vectors, this tells us nothing
about the UEs actual values of location coordinates. Therefore, for the purpose of
localization, we consider that a subset of CSI obtained at the BS is from reference
points (RPs), for which we know the true values of location coordinates. During the
localization phase, the constructed low-dimensional features zr′ , from the collected
CSI at the unknown UE location are matched to those of RPs. As a matching
algorithm, we can apply the nearest neighbour search or triangulation to estimate
the final position of the transmitter. Given a new UE appears in the Z-map, we once
again form the distance metric for each r ∈ Rrps as

dzr = ∥zr′ − zr∥ , (4.11)

where Rrps is a set of RP locations. Then, considering nearest neighbour localization,
we choose rNN = arg minr∈Rrps dzr . Finally, the known location with minimum
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distance is selected as the estimated position of the UE, ûr′ = urNN
.

Acquiring the reference map poses a challenge in determining the optimal number
of low-dimensional features, D. In terms of minimum error formulation, using D =
rank(Href) would naturally result in a reconstruction error of zero, i.e., maintaining
all principal components and preserving the variance of the original data matrix Href.
However, this does not necessarily ensure a minimized localization error. Furthermore,
our objective is to attain D ≪ Nr. A straightforward approach to select D is to
quantify the fraction of variance explained by the selected eigenvalues in H̄ref, i.e.,�D

i=1 σi/
�R

i′=1 σi′ . Alternatively, we can directly evaluate the localization error while
sweeping over the value of D. To illustrate the capability of classical DR techniques
in retaining low-dimensional features useful for the localization task, in the following,
we describe a numerical experiment to evaluate the impact of D.

We set up a simple two-dimensional ROI with a layout of 40m × 40m and assume
that the user locations are distributed based on a Poisson point process (PPP)
with the density λr. Hence, the probability of having R users in the plane is
P(R, A) = [λrS(A)]re−λrS(A)/R! [125], where S(A) is the area of the bounded ROI,
A. We place the BS at the origin (0, 0) with respect to y−axis. The BS employs
a large ULA with Nr = 64 equally spaced omnidirectional antennas. The carrier
frequency considered is 3.5 GHz, the pathloss exponent is ρ = 2, and the SNR is
set to 30 dB to account for a channel estimation error. We assume that there are
λr = {0.05, 0.15, 0.30, 0.50} users/m2 and consider 100 randomly selected test user
locations for evaluating the localization error.

In Fig.4.2a, we observe that the performance of PCA improves significantly when
increasing D from 2 to 4, but then for larger D it saturates. On the other hand, the
iterative MDS with Sammon mapping approach, is more robust against the changes
in the dimensionality, maintaining a similar performance irrespective of the value of
D. Yet, the accuracy hardly improves for D > 4. We also investigate the localization
accuracy while varying the density of RPs and keeping D = 4. As one can expect,
and as shown in Fig.4.2b, increasing the density of known locations improves the
localization performance for both PCA and MDS.

4.2 Deep Metric Learning

In the first part of this chapter we discussed shallow metric learning techniques. We
started with PCA as a spectral method. We then illustrated the performance of
an iterative, manifold learning, approach through the use of Sammon mapping cost
function. In this part, we continue the discussion on neural networks in general and
deep metric learning in particular. In contrast to shallow classical metric-learning
approaches, in deep metric learning, we obtain an embedding space using neural
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Figure 4.2: Shallow DR techniques for wireless localization. In (a), the impact of D
is evaluated while λr = 0.5, and (b) shows the performance accuracy with increasing
density of reference locations when D = 4.

networks. Hence, the objective of the DNN becomes to learn a D-dimensional
embedding that discriminates dissimilar point clouds while simultaneously bringing
similar ones closer together. The DNN can map the estimated channel into a metric-
defined subspace. Within this space, any distance metric d(., .) : RD → R can be
applied to match the derived embedding with the closest RP. Furthermore, we can
also incorporate a distance metric-based loss function directly in the embedding
space.

A commonly used DNN architecture for channel subspace representation learning
is the AE [61] (see Sec. 1.2.2). The AE approach consists of encoder and decoder
DNNs, separated by a bottleneck layer in the middle of the two. For instance, if we
consider the real-valued channel hr ∈ R2Nr as input to the encoder, then the encoder
transforms it to an estimate of a D−dimensional embedding in the bottleneck layer,
and the decoder, transforms the embedding back to the input channel, ĥr ∈ R2Nr .
Let us define the estimated reconstruction of input channel as ĥr = f

(AE)
Ψ (hr),

where Ψ are the parameters of the AE-based DNN, i.e., f
(AE)
Ψ (·). Moreover, if the

reconstruction objective is given by the MSE, the squared Euclidean distance,

arg min
Ψ

E
	���hr − f

(AE)
Ψ (hr)

���2�
, (4.12)

and D ≪ 2Nr (also known as under-complete AE [126]), then such an AE is the most
illustrative unsupervised deep learning method for creating a metric-based embedding
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Figure 4.3: Example of ROI S(A) partitioning schemes. (a) shows a grid scenario
with λr = 0.05, and (b) shows the random scenario with λr = 0.05.

space. In general, any hierarchical feature extractor (e.g., a multiple-layer CNN)
that outputs a latent representation with D ≪ 2Nr can be viewed as a non-linear
dimensionality reduction method and a metric-learning approach if trained on a
metric.

Among the most recognized deep metric learning methods are those based on the
Siamese networks [70]. Such methods have been proposed as feature extractors across
different domains, such as feature extractors for images of faces [69]. DNN methods,
founded on Siamese architecture, consist of multiple equivalent networks sharing
identical weights. In this chapter, we introduce an unsupervised, Siamese-based
network for obtaining low-dimensional representations useful for localization, detailed
further in Sec. 4.2.1. However, prior to investigating that, we first formulate a similar
yet supervised approach.

In the following, we consider the multipath channel model introduced in Sec. (2.2).
Before feeding CSI into the DNN, we explicitly calculate the average per antenna
over all subcarriers. Hence, the input channel vector is h̄r ∈ R2Nr . In this context,
we consider a classifier that can learn to separate Rrps locations from which we obtain
the channel by employing the cross-entropy loss,

L(y, h̄, Ψb) = arg min
Ψb

E

−
Rrps�
i=1

yi log f
(Base)
Ψb

(h̄i)
 , (4.13)

estimated over the batch of training examples, and each i ∈ {1, . . . , Rrps} corresponds
to a sub-region with multiple channel realizations, each with varying locations within
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the respective sub-region. In (4.13), f
(Base)
Ψb

is the network architecture of the base
DNN we introduced in Chapter 3, now modified to behave as a classifier rather than a
regressor. More specifically, instead of an identity layer function at the last layer (i.e.,
a linear activation), we use a softmax activation function at the last layer. Hence,
the output values zi = f

(Base)
Ψb

(h̄i) in (4.13) fall within the range of zero to one. These
are the normalized probability scores corresponding to the predicted RP location.
The number of units for the output layer is equivalent to the number of RP locations,
Rrps. On the other hand, the true labels, corresponding to Rrps locations are one-hot
encoded, i.e., yi ∈ {0, 1}Rrps . To formulate the UE localization as a classification
problem, similar to the first part of this chapter, we assume that Rrps locations
{ur ∈ R2}Rrps

r=1 are known in advance (i.e., RPs) and are distributed according to a
PPP with density λr in the ROI. Furthermore, we consider two different partitioning
schemes for the ROI, S(A):

1) First, we divide the ROI into Rrps squares. Each square denotes a region and
determines the system’s resolution, accuracy, as well as overall computational
complexity. We will refer to this partitioning scheme as the grid scenario.

2) The grid scenario allows us to control the number of samples per location for a
more accurate investigation of the performance of our schemes. However, such
a partitioning scheme could be impractical. Therefore, in contrast to the first
scenario, we consider that RPs are distributed based on PPP, and a Voronoi
tessellation is applied to S(A). We refer to this scheme as the random scenario.

The partitioning schemes play a crucial role, particularly for the various mining
strategies essential to the proposed model, which we detail in Section 4.2.1. We will
elaborate more on the motivation in subsequent discussions. An example of the two
partitioning schemes is shown in Fig. 4.3 when λr = 0.05. During the training phase,
we train the classifier using the collected CSI samples taken from arbitrary positions
within the subareas corresponding to Rrps sub-regions. Then, the estimated position
of the UE during the operation phase, ûr′ , is a weighted mean over the Krps highest
predicted probability scores that correspond to known reference point locations,

ûr′ =
�Krps

k=1 zr′,kur′,k�Krps
k=1 zr′,k

. (4.14)

The value of Krps depends on the overall classification accuracy of the network. We
set crps = 2 because the majority of elements of the vector zr′ are zero. Increasing
the value of Krps does not enhance accuracy, thus it is unnecessary to compute the
weighted average over all the predicted scores.
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Figure 4.4: Illustration of the triplet-based DNN model.

4.2.1 Triplet DNN and Contrastive Task

In contrast to the conventional formulation of the problem, i.e., the classification task
for the base DNN network that we detailed in the previous section, we now discuss
the proposed Siamese-based approach to learn a low-dimensional representation of
the CSI, depicted in Fig. 4.4. The number of networks used in a Siamese-based
method can in principle be any; however, it is usually two or three. A Siamese
architecture with three equivalent networks is also called a triplet. Hence, the name
triplet network for the model. Specifically, the network is composed of three branches.
Each of these networks uses the same hyperparameters as the base DNN for the
intermediate computation layers. For the output layer, we use the identity function,
σ(zr) = zr. Moreover, all three branches share the same parameters. Since the
output layer is fixed in terms of the number of units, the numbe of parameters does
not increase with increasing the number of RPs. The goal of the triplet network is to
learn an embedding in the way that the parameters of each network result in the
decrease of variance between the channel obtained within the quantized regions and
increase otherwise. In other words, our goal is to find an objective function that
promotes similarity between the embeddings of two CSI samples acquired from the
same location r ∈ {1, . . . , Rrps} to be more similar while pushing apart embeddings
corresponding to CSI samples from different regions. Therefore, we sample similar
and non-similar CSI; i.e., if two CSI vectors correspond to the same sub-region they
are considered similar; otherwise, they are not similar. For obtaining the triplets,
we consider i ∈ {1, . . . , Rrps} as the anchor node, with corresponding h̄(a)

i . Then,
we sample one neighboring channel realization belonging to the same region, i.e., a
positive sample, h̄(p)

i . Finally, for the negative sample (not similar CSI), we only need
to randomly select a channel vector that does not belong to the same sub-region as
the anchor node, i.e., the negative sample, denoted by h̄(n)

i . For large-scale scenarios
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and/or very high density of RPs, it might not be computationally efficient to sample
all the possible triplets. Therefore, one could sample only a portion of the triplets for
the sake of the training process. Finally, the obtained triplets for training are given
as {(h̄(a)

i , h̄(p)
i , h̄(n)

i )}Rtri
i=1 , where Rtri is the number of triplets providing the triplet

network for training.

Since all three networks illustrated in Fig. 4.4 share the same weights, we implement
the three branches using a single network, the base DNN. During the training phase,
we successively feed the channel realizations within each triplet. Consequently, we
obtain their respective embeddings z(a)

i = fΨ(h̄(a)
i ), z(p)

i = fΨ(h̄(p)
i ), and z(n)

i =
fΨ(h̄(n)

i ). By collecting all the possible triplets from the ROI under investigation, we
then minimize the loss function,

Ltri(z(a)
i , z(p)

i , z(n)
i , Ψ) = arg min

Ψ

Rtri�
i=1

�
∥z(a)

i − z(p)
i ∥2 − ∥z(a)

i − z(n)
i ∥2 + δtri


+

, (4.15)

where δtri enforces a margin between the similar and non-similar pairs, and [.]+ =
max(0, .). Intuitively, incorporating the negative samples in the triplet-loss function
in (4.15) helps the model better distinguish channel estimates between different
subregions. This triplet margin, δtri, is tuned during the training process, and for
most of the experiments presented further below, δtri = 0.2 yields the best results. In
contrast to the direct-classification approach, for the purpose of localization with
the triplet network, we need to store the derived embeddings in addition to the
coordinates of the ground-truth locations in an embedding collector. Storing the
obtained embeddings from the training data is necessary for the direct comparison
of these embeddings with those from the test data, resulting in the final sub-region
classification of the channel. This can be observed as additional overhead for the
storage and computation parts of the system. However, this can be considered
feasible for many modern systems, as well as applications. During the testing phase,
the channel realization of a new UE is passed through the network to obtain an
embedding, zr′ . In this case, given that a new UE appears in the ROI, same as
in the first part of this chapter, we evaluate dzr = ∥zr′ − zr∥. Then, we choose
rNN = arg minr∈Rrps dzr . Finally, the location of the RP corresponding to the most
similar embedding is retrieved and considered as the position of the transmitter,
û′

r = urNN
.

4.2.2 Localization Performance

We evaluate and compare the performance of the triplet network due to the various
factors that influence its ability for position estimation of the UE. First, we investigate
the positioning performance for two different propagation cases, i.e., when the LOS
path is present or absent. We also vary the density of RPs. Afterwards, we study
the ability of the model to work with different distribution scenarios of the RPs
corresponding to the partitioning schemes of Fig. 4.3. Finally, we look into the
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Figure 4.5: The influence of line of sight path and the density of reference point
locations for the base DNN and triplet network architecture.

amount of samples required for training the triplet DNN in contrast to the base one.

For the results obtained via the simulations, the model with the lowest validation
loss from 100 epochs is selected. Furthermore, when LOS is absent, the triplet loss
margin during training is changed to δtri = 10. The dataset is split into 80% and
0.2% for training and testing, respectively. The scenario considered is a 40m × 40m
area, the BS at the origin (0, 0), and users distributed in the far field at a minimum
distance of 20m from the BS. We consider three single-bounce reflected paths, i.e.,
Lpath = 3 NLOS paths, and we set the number of subcarriers to N ′

c = 512.

LOS and Density of RPs

The density of reference point locations is the parameter that determines the desired
positioning accuracy. With the increase of RPs, the system’s ability for higher
accuracy increases, too. However, the presence or the absence of a LOS path in a
multipath channel influences the accuracy of the prediction as well. Consequently,
it limits the accuracy even when a high density of RPs is used. For instance,
the averaging over subcarriers that we apply may result in a loss of fine-grained
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resolution for distinguishing between closely separated locations. Additionally, the
high correlation of channel responses at nearby locations could lead to challenges in
differentiating these locations, limiting the achievable accuracy, especially when the
strong LOS component is absent.

In Fig. 4.5, we show the impact of LOS with the increased density of RPs for both
DNNs, the classifier and the triplet network. When the LOS path is present, the
increase in density of RPs increases the overall estimation performance. Furthermore,
the triplet network outperforms the base DNN classifier when λr > 0.05. However,
when the LOS path is absent, the overall accuracy drops for a higher density of RPs
compared to the case when the LOS path is present.

As we already noted, the drop in accuracy for denser RPs can happen due to the
pre-processing step we apply, i.e., the averaging over subcarriers. In a dense RP
setup, two nearby locations might exhibit identical large-scale parameters, resulting
in highly correlated channels. This can diminish the potential gains in accuracy.
Therefore, more carefully designed mining strategies may be required for denser RP
sampling in case of the triplet network.

Partitioning Schemes

Collecting ground truth under the assumption of a grid scenario, where each square is
a quantized location (a sub-region) and corresponds to one RP, is not very practical.
Thus, in Fig. 4.6, we show that both DNNs, without any hyperparameter changes,
can be trained and provide similar performance when a random scenario is considered
for the investigation of the localization accuracy. We can observe that when the LOS
is present and the low density of RPs, both models can provide an error of less than
10m for grid, as well as random scenario. In contrast, increasing the density of RPs
to λr = 1.0, the triplet-based model outperforms the base DNN classifier in both
random and grid scenarios.

Amount of Training Samples

In Fig. 4.7, we show the simulation results for the number of samples required for
training the base DNN classifier and the triplet-based model. We consider that the
ROI is divided into 1 600 sub-regions. For the grid scenario, this corresponds to one
m2 per sub-region for the scenario of 40m × 40m, which was illustrated in Fig. 4.3.
As we can observe, the triplet network, can provide satisfactory positioning accuracy
even with a relatively small amount of labelled data, i.e., 3 samples /m2 corresponding
to a RP. The triplet network outperforms the classifier at the 80th percentile even
when the latter DNN is trained with almost 10 times the number of samples. This
demonstrates one of the most potent characteristics of metric-learning-based DNN
models in general and Siamese-based neural network architectures in particular.
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Figure 4.6: Triplet network outperforms the base DNN classifier for a high density of
RPs in grid and Voronoi scenarios.

In the forthcoming chapter, we discuss the disadvantages of the triplet network
proposed in this chapter and extend our investigation to a new approach that may
hold the promise of a high-accuracy and practical localization system suitable for
non-static propagation environments typical for wireless communication systems.

4.3 Final Remarks

Developing a machine learning algorithm that allows us to train with as few ground-
truth labels as possible is essential for maintaining high availability. The CSI from
the reference point locations in a dynamic scenario can quickly become outdated.
Therefore, it is necessary to develop the capability to train the model at smaller
time scales, taking into account the temporal characteristics of the environment.
In this chapter, we discussed localization schemes based on subspace learning and
dimensionality reduction techniques applied to high-dimensional channel estimates
available at a massive MIMO BS. Our focus was on the metric-learning formulation
of the DR techniques. Our primary goal was to derive a distance metric or embedding
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Figure 4.7: Localization accuracy as a function of the amount of training samples.

space to discriminate channels across different locations while grouping together
those from similar ones. Initially, we illustrated shallow linear subspace and manifold
learning approaches, and then we introduced a Siamese-based DNN model (i.e., the
triplet network) for channel dimensionality reduction and feature extraction in the
second part of the chapter.

We showed that the triplet network can reduce the high-dimensionality of the CSI
whilst maintaining relative proximity with Krps nearest locations depending on the
density of RPs. Using the neural network and incorporating a distance metric in
the embedding space, we can learn a D = 4 dimensional representation of the
channel, which is sufficient to capture the relevant channel characteristics to reveal
a unique spatial signature of the UE. We showed that the proposed scheme could
provide higher accuracy with fewer training samples when compared to the base
DNN classifier.

In this chapter, we have employed the Euclidean distance as a measure of dissimilarity,
and have assumed partitioning schemes are in place in order to construct both the
contrastive task and the triplet-loss function. Overall, to achieve high localization
accuracy with a reasonable amount of computational memory, discriminating channels
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based on the pairwise distance loss can be challenging. The triplet DNN requires a
careful partitioning scheme, a good triplet mining strategy, and assumes a consistent
variance between the anchor node and positive samples across different quantized
regions corresponding to RPs.





5
Wireless Transformer and Self-Supervised
Representations

The ML methods discussed throughout the dissertation operate directly on the
measurement data, i.e., the raw channel estimates are the input of a DNN model. For
the base DNN classifier discussed in the previous chapter, learning representations
useful for wireless localization often necessitate vast amounts of annotated CSI.
On the other hand, using the proposed triplet network requires mining triplet
pairs for the predefined contrastive task and prior knowledge of the partitioning
schemes of the scenarios. Furthermore, both the classifier and the triplet network
utilize simple feedforward MLPs. Albeit such neural network components have a
straightforward implementation and arguably computational efficiency, they lack the
spatial invariance properties, among other disadvantages more specific to wireless
communication signal design, that we discussed in Chapter 1. As a result, MLPs
can be, for instance, overly sensitive to small-scale channel variations. Hence, in
this chapter, we introduce advanced DNN architectures, and aim at addressing the
limitations of prior works. We first present a transformer-based method for wireless
localization, and subsequently discuss how we extend the supervised model to a
self-supervised learning (SSL) approach. SSL, in general, aims to reduce the extensive
costs of labeled CSI acquisition and to avoid the additional signal-processing overhead
associated with the hand-designed feature extractors or the mining of contrastive pairs.
Our goal in this chapter is to learn compressed channel representations beneficial for
wireless localization and beyond. More specifically, we strive towards general-purpose
channel features invariant to fading and system impairments, that can be transferred
to new environments and are ready to use for different wireless network tasks.

64
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5.1 Wireless Transformer

CNNs have been widely adopted for wireless signals, establishing them as state-
of-the-art neural network blocks of DNN-based methods for wireless localization.
Nonetheless, a fundamental limitation of such CNN-based models is the assumption
of inductive bias on the local spatial structure of the input signal information. This
assumption, inherent to their design (apt for image signals), suggests that they
may be particularly effective at learning wireless channel features in relatively static
environments. In such conditions, stationary regions of the channel can be more
predictable, and the presumption of translation equivariance is more likely to hold
valid. Enforcing a prior is particularly advantageous when data is scarce, allowing
CNNs with fewer parameters to learn efficiently. However, with ample training
data, CNN’s potential might be underutilized. Moreover, the use of convolutional
kernels in CNNs makes them disadvantageous in modeling relationships beyond their
designated receptive field. Methods inspired by [127] can significantly enhance their
receptive field, but often accomplish this by fusing (e.g., pooling) local dependencies.

On the other hand, the introduction of the attention mechanism [79] has inspired
new neural network components, like transformers [77], removing convolutional
and recurrent operations and relying only on the attention to model large-scale
dependencies between input and output. Due to their ability for parallel computations,
transformer-based models are more efficient during training when compared to
convolutional and recurrent counterparts. Hence, they are now widely used in signal
processing for natural language- and computer vision-related tasks. To illustrate,
transformer-based architectures span across various domains, like [78, 128], and
they employ the self-attention to compute a weight value between pairs of input
representations. The attention coefficient reflects the mutual dependency between
the inputs, e.g., correlation. For instance, in NLP, such input representations are
typically words, or parts of it, and are refereed to as word tokens [77]. Similarly, in
computer vision, the inputs are associated with groups of pixels, frequently referred
to as image patches [78,129].

In communication systems based on, e.g., OFDM, the CSI at a massive MIMO BS
offers a detailed representation of the channel’s response across individual OFDM
subcarriers. Hence, we conceptualize subcarriers as input representations to capture
channel variations across frequency, time, and antennas. This motivates us to
consider the self-attention as a neural network processing technique and propose the
wireless transformer (WiT). In the following, we will discuss the main architectural
components of the transformer-based model for wireless localization. An outline of
WiT and its main building blocks is depicted in Fig. 5.1.
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Figure 5.1: Overview of WiT, a transformer-based model. We linearly transform
each subcarrier, add positional encoding, and input the channel representations to
a transformer block that uses the attention mechanism. For channel-to-location
mapping, we average the attended features or use the extra learnable symbol, [LID].

5.1.1 Transformer and Attention

First, let us recall a fully-supervised formulation for positioning the UE from the
obtained channel estimates. As in previous chapters, we formulate the WiT as a
function f

(WiT)
Ψ (·) parameterized by Ψ where, given the input channel Hr, we aim to

learn a set of robust features and directly map them into position coordinates, �ur,
i.e.,

L(ur, Hr, Ψ) = arg min
Ψ

E
	���ur − f

(WiT)
Ψ (Hr)

���2�
. (5.1)

In the previous chapters, we primarily focused on either selecting a single OFDM
subcarrier or averaging over them for inputting to the DNN architecture. However, in
this chapter, we change the perspective. We now view the estimated channel matrix
Hr as a set of N ′

c channel vectors. In the following, we discuss the primary building
blocks of WiT and elaborate on the transformations of input channel representations
as they flow through the architecture.
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Subcarrier Embedding

As stated several times during this thesis, we handle the complex-valued channel
coefficients by stacking their real and imaginary parts. For WiT, as well as other
approaches presented in this chapter, we additionally consider the absolute part.
Hence, the input representation of each subcarrier (after normalization), shown in Fig.
5.1, becomes hn ∈ R1×3Nr . We aim to preserve the per-subcarrier channel structure
and exploit the information that each subcarrier conveys, as well as the interde-
pendencies that exist among them. Individual subcarrier representations undergo a
linear transformation process. More specifically, we apply a linear transformation to
convert subcarriers sequence into linear embeddings, employing a linear layer. This
layer has learnable parameters, E ∈ R3Nr×D, leading to the subcarrier embedding
ei = hiE.

Subcarrier Positional Encoding

A characteristic of the transformer in general and the attention mechanism in partic-
ular, is the permutation equivariance with regards to the subcarrier embeddedings.
Since we use no recurrence or a standard convolutional operator, the model would
treat subcarrier embeddings as a set of unordered representations. However, the
structure of the whole channel, i.e., the arrangement of the subcarriers, can reveal
useful dependencies among frequency-selective subcarriers. Hence, during the training
process, we encode positional information in the learning process to make sense of
the subcarrier’s position in the sequence.

To realize positional encodings, different types of codebooks or pre-defined functions
can be used. For instance, [77] proposes to use fixed, non-parametric periodic
functions, like sinusoidal patterns, to impart absolute position information. In
contrast, learnable positional encodings, for example, enable the model to adjust the
position information during the training process. In this case, we initialize a random
real-valued vector, denoted as gi ∈ R1×D, for each subcarrier index i. Then, given
the input channel, gi is added to the subcarrier embedding ei at position i. Hence,
the input to the transformer block becomes êi = ei + gi.

Location Identification

To incorporate context information for the entire channel, we introduce a unique
symbol, denoted as [LID]. The [LID] serves a purpose similar to the [CLS] token
utilized in the BERT model [130]. This is as another learnable vector, e0, and its
learned representation aims to distill the entire channel’s information from r−th UE
location. Consequently, the total number of input presentations to the transformer
block becomes Cwit = N ′

c + 1.
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The output representation ō0 ∈ RD, corresponding to the input ê0, is then directed to
the task-specific MLP, i.e., the MLP head shown in Fig. 5.1. This embedding is rele-
vant for mapping the compressed channel features to the UE location. Furthermore,
we can utilize only ō0 (i.e., [LID]) for transfer learning to other tasks.

Attention Mechanism

Attention is the main building block of any transformer architecture. There exist
different ways for utilizing the attention mechanism. Later in this chapter, we
will address variations within a transformer architecture, detailing their roles and
computational implications. In case of self-attention, as employed in [77], we consider
three input copies and project them using the same set of weights, Wq = Wk = Wv.
Accordingly, we express the self-attention as

oi =
Cwit�
j=1

exp (αi,j)�Cwit
j′=1 exp (αi,j′)

(ējWv) , (5.2)

where αi,j can be interpreted as the normalized degree of dependency between any
two embeddings corresponding to positions i and j in the input sequence, i.e.,

αi,j = 1√
D

(ēiWq) (ējWk)T . (5.3)

Furthermore, the representation ēi is obtained from the layer normalization of êi, ēi =
LayerNorm(êi; ζ, ι) [131]. The hyperparameters ζ and ι stabilize the distribution of
activations across layers. Overall, the LayerNorm benefits the training by controlling
the mean and variance of individual activations.

The attention mechanism described so far considers a single attention head within
the WiT. However, transformer-based architectures can work with multiple attention
heads simultaneously, i.e., multi-head attention. Each head has its own set of
learnable parameters and operates independently, learning different views of the same
input channel. By default, we will maintain the low-computational complexity by
utilizing a total number of attention heads Hattn = 1 and transformer blocks Hblck = 1.
Nevertheless, throughout the chapter, we will investigate other configurations as well.

MLP

The subcarrier representation ōi is obtained at the output of the transformer block,

ōi = MLP(0) (ôi) + (oi + êi) , (5.4)

where ôi = LayerNorm (oi + êi; ζ, ι), and the MLP(0)(·) is a two-layer feedforward
neural network with D hidden units per layer and non-linear activation functions.
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The LayerNorm parameters, ζ and ι, are learnable parameters representing the scale
and shift that are applied during normalization. Later in this chapter, we will address
further details, including the activation functions.

Additionally, the input to the MLP head (denoted by gΨ(·) in Fig. 5.1), can be ō0
or an averaged embedding over the N ′

c representations. In case of ō0, for instance,
then �ur = gΨ(ō0). For the MLP head, we consider either a single linear-layer or a
three-layer feedforward neural network, which includes two layers with non-linear
activation functions followed by a final channel-to-location (linear) mapping layer.

We explained the main components of WiT, as well as the signal processing flow.
When we refer to WiT, we generally refer to the transformer model trained in a
fully-supervised setting. In Sec. 5.3, WiT serves as the fundamental building block
for the SSL method. However, before elaborating on the new approach, we present
the methodology for collecting CSI based on ray-tracing, used for assessing the
performance of WiT in a dynamic scenario. In particular, we present two synthetic
datasets obtained in two railway scenarios; one relies on a single BS, and the other
assumes a distributed massive MIMO setup.

5.2 Ray-Tracing Datasets for Dynamic Scenarios

For assessing the gains of new ML algorithms and tracking the overall research
progress, standardized datasets are desired. Although datasets derived from actual
measurements are ideal, they are often difficult to obtain across different scenarios or
system configurations. Additionally, the wireless channel is time-varying, and often
non-stationary. The dynamic nature of the propagation environment means that
CSI can quickly become outdated, especially in outdoor vehicular settings. This can
occur due to minor changes, such as a vehicle passing by, or longer-term effects, e.g.,
a new construction site.

Recently, the application of ray-tracing (RT) has become increasingly favored for
site-specific channel realizations [44, 110,132]. The appeal of RT lies mainly in its
deterministic approach to modeling the physical interaction of electromagnetic (EM)
waves with obstacles in the surroundings to characterize the multipath channel in
terms of, e.g., delays, amplitudes, and angles. Consequently, channel realizations
generated through the RT tools inherently guarantee spatial consistency and are a
straightforward approach for constructing datasets for specific real-world scenarios
with varying system configuration parameters.



70 Chapter 5. Wireless Transformer and Self-Supervised Representations

Scenarios

In our work, we develop two dynamic scenarios and obtain channel realizations for
the respective environments. The modeled scenarios are depicted in Fig. 5.2. They
represent two railway tracks in Austria, which we refer to as S- and HB-scenario,
named based on their locations. The ‘S-scenario’ is around the Schwechat area, while
‘HB’ denotes an ROI near the Vienna Central Station (Hauptbahnhof). Advances in
computer graphical processing and the availability of varying geographic information
technology (GIS) databases have made it relatively feasible and easy to create
comprehensive digital models that can well-approximate real-world scenarios. In our
case, initial digital assets encompass mostly buildings imported from OpenStreetMap
(OSM) [133]. We convert the imported OSM data into polyhedrons, or, more generally
speaking, mesh objects, using 3D computer aided design (CAD) tools, such as [134].
We use [134] to design other object shapes (e.g., trains, cars, and vegetation) and,
more importantly, to simulate dynamic scenarios. To realize a dynamic scenario, we
change the position of static objects, e.g., buildings, over T successive realizations
(snapshots), according to the uncertainty model that we introduced in Chapter 2,
Sec. 2.1.3. In addition, we simulate the movement of trains and other vehicles in
the surroundings, assuming a constant speed over predefined trajectories. We then
export T different scenario description files for feeding into the ray-tracing tools.

Ray Traces

To obtain all the multipath related parameters for the S- and HB-scenarios, we
use the available shooting and bouncing ray (SBR) approach with low-angular
separation [135] in the ray-tracing tool from Matlab [136]. We follow a similar
approach for other ray-tracing tools, like BJTU-RT [137]. Scenario model files, ray
parameters, and generated channel realizations are publicly available 1 from both
tools. For the experiments in this dissertation, we use the dataset generated using
the Matlab RT. We simulate the temporal variations of the scenarios by running
T = 200 realizations with altered input geometries, changing the position of the
objects in the environment, varying over different material properties, as well as
imposing stochasticity in the position of the UE antenna. We consider the default
relative permittivity values ϵper,κper for κper ∈ {concrete, brick, metal, wood} [96] and
add the atmospheric attenuation [97,138] in the event of rain with P (R) = 0.3.

We assume that the UE is situated along the predefined railway trajectory and has
an omnidirectional antenna at the initial height of 1.50m. We run RT simulations for
R different UE locations over T different snapshots. For the first scenario, S-scenario,
we consider a single-BS M = 1 and R = 360 different UE locations. For the second
scenario, HB-scenario, we consider a DAS with M = 8 and R = 406. RRHs are
distributed along both sides of the track, as shown in Fig. 5.2b. We assume Nr = 64,

1https://mcg-deep-wrt.netlify.app/deep-wrt/

https://mcg-deep-wrt.netlify.app/deep-wrt/
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fc = 3.5GHz, Lpath = 4, and a system bandwidth of Bsys = 20MHz. We consider
every 16−th subcarrier as active. The height of RRHs and the BS is set to 20m. The
obtained sample size is RT . However, if the received power is less than −130dBm,
we discard such measurement at time t from the RT. By this, we obtain datasets of
size 69 212 and 81 200 samples for S- and HB-scenario, respectively. In Appendix D.1,
we show the RMS delay-spread, τRMS, as well as the RMS angle of arrival spread in
azimuth, φRMS, for a single random UE location over T = 200 time snapshots and
Lpath = 4 strongest paths.

(a) ROI in OSM for S-scenario. (b) ROI in OSM for HB-scenario.

(c) A 3D rendered digital model example for S-scenario.

Figure 5.2: Railway scenarios for constructing ray-tracing channel measurements.
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5.2.1 WiT and Dynamic Scenarios

In this section, we assess the performance gains achieved by WiT operating in the
above-detailed scenarios. For comparison, we use the base-DNN we discussed in the
beginning of Chapter 3. For the sake of consistency, since we are using ReLU and
D = 650 for the base-DNN, we also keep the same activation function and width
for WiT in this evaluation. Specifically, we apply ReLU as a non-linear operation
in both MLPs of WiT: MLP(0) and MLP head. MLP(0) is composed of two linear
layers, with a ReLU operation succeeding each of them. MLP head has two layers as
well, where the non-linearity is applied after the first one. Since ur,3 = 1.50m ∀ r, we
only consider �ur ∈ R2. For the LayerNorm(·), the additive factor ζ = 1.00 and the
multiplicative parameter ι = 0.0001. We train WiT for 1 800 epochs with a batch
size of 512, and we notice that the validation loss does not saturate when trained
for longer epochs. On the other hand, we apply a dropout of 0.1 after each layer
of the base-DNN and early stopping during the training if the validation loss does
not improve for 80 consecutive epochs. The datasets are split into 0.80 and 0.20 for
training and validation, respectively. Finally, we use Adam solver with weight decay,
and we set the initial learning rate to 3 × 10−4.

Base-DNN versus WiT

We first investigate the performance of WiT in S-scenario for T = 1, i.e. a static
environment. To ensure a denser sampling, we reduce the inter-distance between any
two UE locations, ∥ui − uj∥. Hence, this results in a dataset size of 72 000 distinct
labeled channel realizations. In Fig. 5.3a, we show that a substantial improvement in
localization accuracy can be achieved when using WiT compared to the base-DNN.
The gain can be as much as 50%. Similarly, for the dynamic environment and
T = 200, the proposed WiT is much more robust compared to using the raw CSI
and the base-DNN, reducing the localization error by a significant margin.

Different from S-scenario, in HB-scenario we have Nr distributed antennas among
M = 8 infrastructure nodes (or RRHs). In Fig. 5.3b, we show the ECDF of the
localization error clearly indicates the superior performance of the proposed WiT. It
can achieve an improvement with a gap exceeding 7m at the 95−th percentile. In
Figs. 5.3c and 5.3d, one can observe the actual versus estimated UE locations on the
trajectories under investigation. For the S-scenario, the first part of the track, i.e.,
the left from the origin, is more prone to prediction errors. This is primarily due to
the more challenging propagation, where no dominant or LOS path exists between
the BS and UE locations. On the other hand, for the DAS case, the most significant
errors occur at the intersection point around the x = −350m and y = −270m, where
the correlation of the estimated channel between very closely spaced UE locations
can be high.
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Figure 5.3: Localization performance of WiT in a) S-scenario and b) HB-scenario.

Finally, in Table 5.1 we present a comparison highlighting the performance differences
between two different approaches of using channel features to feed the MLP head of
WiT, i.e., averaging over the representations versus employing only the special symbol
[LID]. We show that irrespective of the approach, there is an evident performance
gap between WiT and base-DNN in DAS and co-located massive MIMO scenarios.
However, it is also notable that an averaged representation outperforms [LID] case.
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Table 5.1: Summarized Results

S S HB
T = 1 T = 200 T = 200

Method MAE 95−th MAE 95−th MAE 95−th
Base-DNN 1.98 5.16 3.59 8.83 4.13 10.01
WiT [LID] 0.74 1.88 2.36 6.54 1.18 2.83
WiT (avg.) 0.31 0.84 1.70 4.70 0.68 1.61

5.3 Self-Supervised Channel Features

In the preceding sections of this chapter, we discussed a transformer-based model
(WiT) and investigated its performance in dynamic scenarios. We showed that
WiT can exploit the per-subcarrier channel structure and learn more useful channel
features than the base-DNN. WiT predominantly relies on learning the large-scale
channel characteristics by averaging the learned subcarrier representations or using
a unique representation for the entire channel. Nevertheless, the wireless channel
experiences both macroscopic and microscopic fading phenomena. Therefore, unlike
previous investigations, our objective becomes twofold: we seek to explicitly account
for the large-scale variations caused by pathloss and shadowing, as well as the rapidly
varying microscopic fading characteristics primarily caused by multipath.

Furthermore, as previously noted, WiT is a fully-supervised technique capable of
achieving high localization accuracy. However, supervised learning and transformer-
based models are, in general, still limited to scenarios with substantial amount of
training data. Despite the abundance of CSI available at the BS, obtaining tagged
CSI samples for different wireless network tasks and environments is challenging.
Existing DNN approaches typically train and evaluate models separately for each
specific scenario, system configuration setting, and task. The transferability and
adaptability of pre-trained, fully-supervised models remain unknown. Hence, in the
subsequent discussion, we aim to address a fundamental challenge in deep wireless
communications, i.e., learning a compressed channel representation that can be used
to realize varying downstream tasks, such as wireless localization.

More specifically, for the remainder of this chapter, we extend WiT and propose
a SSL method for wireless channel representation learning named SWiT, short for
self-supervised wireless transformer. SSL has received significant research attention
over the years across numerous fields, including NLP [130], speech recognition [139]
and has become among the most promising research areas for computer visual
representation learning [140–142]. To learn useful channel features, SWiT depends
on solving designed pretext tasks (or auxiliary tasks) using only the available CSI.
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In contrast to prior works that rely on metric learning or are based on channel
reconstruction (e.g., AE-alike), we aim to leverage the redundant and complementary
information across different subcarriers. Hence, unlike the mining of triplets discussed
in the previous chapter and forcing to discriminate channels from different sub-regions,
we avoid the necessity of sampling negative pairs and employing a contrastive loss.

Building upon the advantages of self-supervised training, SWiT, unconstrained by
the availability of any type of labeled data, may enable and facilitate several potential
applications in wireless communications, extending beyond the localization task.
Learned channel representations can serve as pseudo locations and aid various tasks,
from beamforming and UE tracking to more user-centric location-based services (LBS).
For instance, by evaluating a distance metric between the points in the feature space,
one can determine if two transmitters are close to a reference location, or a spot.
This can be advantageous for asset or user tracking, assisted indoor navigation, and
targeted advertising, to highlight a few examples.

Formally, our goal for the rest of this dissertation is to learn a channel representation ōr

(i.e., an embedding), using neither labels nor a contrastive objective function. Hence,
let us first construct a backbone neural network architecture that employs a dual
encoder-projector framework. This framework aligns with the overall architectural
and learning paradigm presented in [140,142]. The encoders, represented by fΘ(·)
and fΨ(·), and the projectors, denoted by g′

Θ(·) and g′
Ψ(·), are parameterized by Θ

and Ψ, respectively. Further, assuming two input representations of the same channel
realization, Hr and H(+)

r (e.g., two augmented views), we can write a common SSL
formulation as

{Θ⋆, Ψ⋆} = arg min
Θ,Ψ

LSSL

g′

Θ(fΘ(Hr)), g′
Ψ(fΨ(H(+)

r ))
�

, (5.5)

where LSSL(·) is the SSL loss function, which we will detail later in this section.
Having a set of optimal parameters Ψ⋆, our goal then becomes to fine-tune the
parameters of the encoder fΨ⋆(·) (a.k.a. momentum encoder of the backbone network)
altogether with the MLP head gΦ(·) to learn a mapping function between the channel
Hr and user location information, ur,

{Ψ⋆⋆, Φ⋆} = arg min
Ψ⋆,Φ

LSUP (ur, gΦ(fΨ⋆(Hr)))

= arg min
Ψ⋆,Φ

E
�
∥ur − gΦ(fΨ⋆(Hr))∥2


.

(5.6)

To illustrate the connection with the WiT, it can be easily observed that (5.6) is
equivalent to fine-tuning WiT using the parameters from one of the encoders in (5.5).
This, however, does not incorporate WiT’s default MLP head. Instead, we introduce
a new MLP head during the fine-tuning process. In contrast to the MLP head of
WiT, which can incorporate non-linearities, here we employ a single linear layer MLP
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head. This allows us to ensure that the useful and generalizable representations are
learned by the encoder and not by the complexity of the task-specific head.

Alternatively, in case of linear evaluation, we aim to only train the linear MLP head
on top of the frozen parameters of the encoder fΨ⋆(·), and only update Φ, i.e.,

Φ⋆ = arg min
Φ

LSUP (ur, gΦ(fΨ⋆(Hr))) . (5.7)

Having established our objective and formalized the self-supervised wireless channel
representation learning, we proceed to elaborate on the key components of SWiT.

5.4 SWiT: Self-Supervised Wireless Transformer

The main building blocks of SWiT are depicted in Fig. 5.4. In a nutshell, SWiT
comprises a two-branch DNN, which we denote as online and target networks,
respectively. In most parts, these two networks share the same architectural design.
However, they have different sets of weights. Given a single input channel realization,
we aim to derive a robust channel representation in the presence of perturbations,
which we model as augmentations. To do so, we define Ti(Hr) as the sequential
application of transformations, where each transformation Qa is applied with a certain
probability, P(Qa). Specifically,

Q̃a =
Qa with probability P(Qa),

Identity otherwise ,
(5.8)

and Ti(Hr) =

Q̃

(i)
A ◦ Q̃

(i)
A−1 ◦ . . . ◦ Q̃

(i)
1

�
(Hr). For each i ∈ {1, 2, 3}, Ti represents

a unique combination of transformations occurring sequentially and according to
their predefined probability. To illustrate, in the case of T1, the probability of Qa

occurring can be specifically set to zero. More specifically, the role of the stochastic
augmentation module is to output two views of the channel comprising most of the
subcarriers, i.e.,

{h̄′
n ∈ R3Nr}N ′

cg
n=1 ≜ T1 (Hr) (5.9)

for the first view, and similarly for the second view,

{h̃′
n ∈ R3Nr}N ′

cg
n=1 ≜ T2 (Hr) , (5.10)

where N ′
cg denotes the total number of subcarrier representations after resizing

operation for the respective transformation. We detail the subcarrier selection, and
individual transformations later in Sec.5.4.1. We will refer to these transformed
channels as global views. Similarly, the augmentation module is also designed to
produce Ns random channel views. This involves applying the transformation function
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T3 to a subset of subcarriers. Specifically, we apply T3 repeatedly Ns times, each
time randomly selecting a set of subcarriers and resizing by interpolation to a fixed
N ′

cl representations,
{ĥ′

n ∈ R3Nr}N ′
cl

n=1 ≜ T3 (Hr) . (5.11)
We refer to the respective augmented channels as local views. Given that we derive
one view from the initial channel transformation, T1, another from the application of
T2, and Ns more views from T3, the total number of views for the same input channel
becomes V = 2 + Ns.

Both global and local channel views are processed consecutively through the online
fΘ(·) and target encoder fΨ(·), accordingly producing the corresponding representa-
tions for a single view,

{ōn ∈ RD}Ccg
n=1 := fΨ

�
{h̄′

n}N ′
cg

n=1

�
, (5.12)

where Ccg = N ′
cg + 1 (i.e., including the [LID]), and similarly for the other views.

After obtaining the representations from the encoders, we forward the subcarrier
representations to two distinct projectors, namely, micro-fading and macro-fading
level embeddings learning projectors. By introducing these two new projectors, we
aim to capture better the large-scale channel characteristics along with small-scale,
per-subcarrier features. Finally, we compute the loss on the final embeddings of views
obtained from online and target networks. Prior to explaining the large-scale and
small-scale feature learning components of SWiT, depicted in Fig. 5.4, we provide
further details on the individual stochastic channel transformations.

5.4.1 Stochastic Channel Augmentations

We rely on pretext tasks to learn robust channel representations. We formulate such
tasks with the idea of ensuring that, during the learning phase, the resulting represen-
tations should remain invariant to their augmented views or channel transformations.
Hence, the design of augmentations, or view-selection function Ti(·), is an essential
aspect influencing learned invariances that yield useful channel representations. As we
mentioned in the previous section, the augmentation module’s role is to transform an
input channel realization into a pre-defined number of correlated views. Specifically,
we sequentially apply the following channel transformations. We first apply random
subcarrier selection (RSS) followed by resizing of the grouped subcarriers to a fixed
size, and optionally apply random subcarrier flipping (RSF). Furthermore, we apply
a random gain offset (RGO), followed by a random fading component (RFC), random
sign change (RSC), normalization, and optionally we add Gaussian noise.
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Random Subcarrier Selection (RSS)

As already stated, the networks receive inputs in the form of two global views and Ns

local views. Each of these views comprises a selected number of subcarriers. We select
N ′

ci
= ⌊γci

N ′
c⌋ adjacent subcarriers and, for practical reasons, linearly interpolate to

resize the whole channel to a fixed size Nr × N ′
cg, i.e., N ′

cg subcarrier representations
for the input to the encoders for global views. Similarly, for the local views, we set a
fixed size of Nr × N ′

cl before feeding them to the online and target encoders. Unless
mentioned otherwise, we select γc1 = 0.9, and γc2 = 0.8, for the global views and
γc3 = 0.1 for the local views. We define γc1 , γc2 , and γc3 when constructing T1, T2
and T3. By doing so, i.e., feeding the model with channel views at various scales, we
force the network to learn the relationship between the channel features between the
individual subcarriers and among the representations of the multiple subcarriers.

Random Subcarrier Flipping (RSF)

We optionally apply mirroring, where each subcarrier representation is flipped as

Qa(Hr) = HrPflip , (5.13)

where Pflip has the size of N ′
cg × N ′

cg, with elements

pflipi,j
=

1 if j = N ′
cg − (i − 1)

0 otherwise
. (5.14)

We commonly apply RSF on both global views. For all other Ns views, the probability
of RSF being applied to local views is set to zero.

Random Gain Offset (RGO)

Selecting a subset of subcarriers alone yields representations that may share the
same channel gain distribution between antenna elements at any two subcarriers,
enabling the model to exploit this property and quickly minimize the loss. However,
by doing so, the network may fail to capture generalizable channel characteristics.
To circumvent such a phenomenon, we scale instantaneous channel coefficients by a
constant offset, ξo = 1 ± ξrgo,

Qa(hn,i) = ξohn,i ∀i = 1, . . . , 3Nr . (5.15)

Through experimentation, we found that ξrgo ∼ U(0, 0.1) is sufficient to avoid identical
channel views during the self-supervised training.
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Random Fading Component (RFC)

To achieve robustness due to additional multipath components, we shift the instanta-
neous peak power of the channel. We do so by applying a Rayleigh distribution only
to the absolute part of the transformed view,

Qa(hn,i) = hn,i

σ2
rfc

exp

−h2

n,i/

2σ2

rfc

��
∀i = 2Nr + 1, . . . , 3Nr . (5.16)

Here, we find the scale factor σrfc ∼ U(0.5, 0.6) through experimentation. Further-
more, to help the model improve its ability to handle uncertainty, we apply RFC
only to the second view, denoted as H(2) in Fig. 5.4.

Random Sign Change (RSC)

We randomly negate all real-valued channel coefficients for the second view (i.e.,
H(2)),

Qa(hn,i) = (−1)hn,i ∀i = 1, . . . , 3Nr. (5.17)
This technique can be understood as a form of introducing an adversarial example,
thereby increasing the robustness of the model.

Normalization

We finally post normalize all the channel transformations by dividing real, imaginary
and magnitude parts with their corresponding maximum absolute values, ∆Re =
max(max({|H(Re)

r |}R
r=1)). Similarly, we normalize the imaginary, ∆Im, as well as the

absolute part, ∆Abs.

Gaussian Noise

Also, we occasionally inject additional randomness by adding Gaussian noise to the
normalized channel,

Qa(hn,i) = hn,i + ωn,i , (5.18)
where ωn,i is zero-mean Gaussian noise with variance σ2

Q = 1.0 × 10−7.

In Table 5.2 we present the default augmentations selected for T1(·), T2(·), and T3(·),
along with their corresponding assigned probabilities, P(Qa).
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Table 5.2: Transformation function Ti(·) and P(Qa).

Qa ,P(Qa) T1(·) T2(·) T3(·)
Subcarrier selection (RSS) 1.0 1.0 1.0
Subcarrier flipping (RSF) 0.4 0.4 0.0
Gain offset (RGO) 0.2 0.8 0.0
Fading component (RFC) 0.0 0.1 0.0
Sign change (RSC) 0.0 0.2 0.0
Normalization 1.0 1.0 1.0
Gaussian noise 0.2 0.2 0.0

It is worth clarifying that even though T3 may use stochastic transformations with a
probability set to one, applying it repeatedly to the estimated channel matrix Hr will
not necessarily output identical transformed channels. Given, for instance, γc3 = 0.1,
RSS randomly selects just a few subcarriers. This random selection ensures varied
subcarrier subsets when T3 is applied, resulting in potentially different local views.

5.4.2 Macro-fading Level Representations

We train SWiT in a self-supervised manner, wherein the model is tasked with
predicting channel views that are transformed to reveal different characteristics in the
embedding spaces of both the online and target networks. This approach relies on the
idea that by learning to differentiate and represent such characteristics, the model
achieves a more general understanding of beneficial channel features for wireless
localization and other downstream tasks.

Specifically, the online network processes both local as well as global channel views
(i.e., V = 2 + Ns views) to output the respective embeddings

�z(v′)
0 = exp(ż(v′)

0 χ−1
Θ )�n

j=1 exp(ż(v′)
0,j χ−1

Θ )
, (5.19)

where v′ ∈ {1, . . . , 2 + Ns} has been added to make the index of the channel’s views
explicit. In (5.19), χΘ is a temperature scaler that controls the peak of the output
distribution for the online network. The embeddings ż(v′)

0 are mapped from the global
projector as

ż(v′)
0 = MLP(1)

Θ ◦ νΘ({¯̄o(v′)
n }∀n) , (5.20)

where n spans the range of subcarrier representations, with the total number of
representations being either N ′

cg for global views or N ′
cl for local views. The inter-

mediate function, ν(·), is denoted as attention pooling operation, implemented as
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a transformer block, and ¯̄o(v′)
n ∈ RD is the output from the online encoder. On the

other hand, for the target neural network branch, we evaluate

z̄(v)
0 = exp((̊z(v)

0 − ϵ0)χ−1
Ψ )�n

j=1 exp((̊z(v)
0,j − ϵ0,j)χ−1

Ψ )
. (5.21)

Likewise, χΨ is the temperature scaler for the target model that controls the peak of
the output distribution. Parameter ϵ is used for centering of the ouput distribution,
and we later detail it in Sec. 5.4.3. The embeddings z̊(v)

0 are mapped from the global
projector of the target network as

z̊(v)
0 = sg(MLP(1)

Ψ ◦ νΨ({ō(v)
n }∀n)) , (5.22)

where sg is the stop-gradient operation.

To match the distribution between the embedding outputs of the target and online
networks across different views, we compute the cross-entropy to compare each global
view from the target encoder with any other alternate view from the online encoder,

Lc := − 1
2(V − 1)

2�
v=1

V�
v′ ̸=v

z̄(v)
0 log


z̃(v′)

0

�
. (5.23)

5.4.3 Micro-fading Level Representations

Alongside capturing the channel’s macroscopic fading characteristics, we introduce a
pretext task that can be essential to leverage the small-scale fading of the channel.
To achieve this, we aim to learn subcarrier-level representations, as depicted in the
upper-right part of Fig. 5.4. Specifically, we assume neighboring subcarriers as
positive examples. By doing so, i.e., performing a limited neighborhood search, we
maintain lower computational complexity, as opposed to considering all subcarrier
representations. Therefore, for each embedding ō(v)

i , we first evaluate its correlation
with the representations in its neighborhood {ō(v)

j }j∈Ni
, where Ni is the set of indices

of adjoint subcarrier-representations, |Ni| = Kn, and Kn ≪ N ′
c. We sort the indices

based on the similarity values in the descending order,

N ′
i = sort max

Kn
j∈Ni

ρ

ō(v)

i , ō(v)
j

�
, (5.24)

where

ρ(ō(v)
i , ō(v)

j ) =
⟨ō(v)

i , ō(v)
j ⟩���ō(v)

i

��� ���ō(v)
j

��� (5.25)
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is the measure of similarity, i.e., the correlation between ō(v)
i and embeddings in

its neighbourhood Ni. Finally, we select Kk = |Pi|, where Pi ⊂ N ′
i , represents the

top-k matched indices.

Instead of fusing (e.g., averaging) top-k matched subcarrier-representations, we pass
{ō(v)

j }j∈Pi
to another transformer block, and output a compressed representation

z(v)
NNi

,
z(v)

NNi
:= νΨ({ō(v)

j }j∈Pi
) . (5.26)

We feed the small-scale embeddings through online and target feedforward MLP
networks MLP(2)

Θ (·) and MLP(2)
Ψ (·), respectively. We denote the corresponding em-

beddings as ż(v)
i := MLP(2)

Θ (¯̄o(v)
i ) and z̊(v)

NNi
:= sg(MLP(2)

Ψ (z(v)
NNi

)) , respectively.
Finally, same as we evaluated (5.19) and (5.21) for the macroscopic learning part,
we also evaluate �z(v)

i for the online and z̄(v)
NNi

for the target neural networks of the
microscopic learning part. The loss function for learning the micro-fading channel
characteristics is calculated over all the subcarrier reprentations N ′, where N ′ can
be either N ′

cg or N ′
cl for each view, and is written as

Ls := − 1
V N ′

V�
v=1

N ′�
i=1

z̄(v)
NNi

log

z̃(v)

i

�
. (5.27)

Finally, the total loss function is computed as LSSL := Lc + βLs, where β ∈ [0, 1]
controls the relevance of learning macroscopic fading versus microscopic fading.

Optimization

In general, given the same input channel realization, multi-branch network architec-
tures (e.g., based on Siamese as in Chapter 3) may suffer mode collapse, resulting in
both the target and online networks outputting the same constant, hence, demanding
careful negative pair mining. In our case, we avoid such minima while forsaking the
need for contrastive loss. We rely on expontial moving averaging (EMA) to build
and update the target network parameters as in [140]. Thus, the gradients do not
backpropagate through the target network with Ψ, as shown by the stop-gradient
(sg) operator in Fig. 5.4. Instead, given a target decay rate κ ∈ [0, 1], the set
of parameters Ψ is only updated via the online network after each training step
as Ψ ← κΨ + (1 − κ)Θ . Finally, to further enhance the learning, minimize the
dependency on batch size, as well as batch normalization, we perform sharpening
and centering of the output features distribution, and freeze the target network over
the first epoch, as it is suggested in [142]. More precisely, centering is viewed as
adding a bias term ϵ to the target network, g′

Ψ ◦ fΨ(Hi) ← g′
Ψ ◦ fΨ(Hi) + ϵ , and is
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updated with EMA as

ϵ ← Λϵ + (1 − Λ) 1
B

B�
i=1

g′
Θ ◦ fΘ(Hi) . (5.28)

At the end of training, we only utilize the target encoder, fΨ⋆(·), with learned
parameters Ψ⋆. We outline the overall self-supervised training procedure in Algorithm
1. The self-supervised training details and the evaluation procedure are detailed in
the next section.

Algorithm 1 Self-supervised Training
Given: A dataset of unlabeled channel estimates {Hr}R

r=1, transformation function Ti =
{T1, T2, T3}, the AdamW optimizer, U optimization steps, batch size B, learning rate values {ϖ}U

u=1,
and schedule rates {κ}U

u=1

Build fΘ, fΨ, νΘ, νΨ, MLP(1)
Θ , MLP(2)

Θ , MLP(1)
Ψ , MLP(2)

Ψ , and initialize Θ, Ψ

1: for u ← 1 to U do
2: Sample B ← {Hi}B

i=1
3: for Hi ∈ B do
4: V views according to (5.9), (5.10), and (5.11)
5: ż(v)

0 ← MLPΘ(νΘ(fΘ(Ti(Hi)))) {V views}
6: z̊(v)

0 ← MLPΨ(νΨ(fΨ(Ti(Hi)))) {V views}
7: ż(v)

i ← MLPΘ(fΘ(Ti(Hi))) {V views}
8: z̊(v)

NNi
← MLPΨ(νΨ(fΨ(Ti(Hi)))) {V views}

9: Compute �z(v)
0 and �z(v)

i according to (5.19)
10: Compute z̄(v)

0 and z̄(v)
NNi

according to (5.21)
11: Compute (5.23) for macroscopic and (5.27) for microscopic fading level features
12: Compute L(i)

SSL := Lc + βLs

13: end for
14: ∇Θ ← 1

B ∂L(i)
SSL

15: Update online parameters Θ ← AdamW(Θ, ∇Θ, ϖ)
16: Update target parameters Ψ ← κΨ + (1 − κ)Θ
17: Update centering value according to (5.28)
18: end for

Return: Encoder fΨ⋆(·) and learned parameters Ψ⋆

5.5 Linear Evaluation and Fine-Tuning

Before detailing the evaluation approach, we first describe the datasets and SSL
training details. For the rest of this chapter, we utilize three different types of
datasets to evaluate the performance of self-supervised channel features. These
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datasets represent a range of environments and configuration settings, including
indoors and outdoors, co-located massive MIMO systems, as well as DAS:

1) KUL Dataset - We utilize the ultra dense indoor MaMIMO data pool from [34],
which includes multiple datasets characterized by different antenna configurations
and propagation characteristics, all obtained in a laboratory environment. Specifi-
cally, in our study, we use three datasets: the first with NLOS propagation and a
BS having a uniform rectangular array (KUL-NLOS-URA-Lab), the second with
LOS propagation and a uniform linear array (KUL-LOS-ULA-Lab), and the third
featuring a LOS environment but with a distributed antenna system setup (KUL-
LOS-DIS-Lab). Across all the scenarios, the default configuration parameters are
Nr = 64, N ′

c = 100, fc = 2.61GHz, and the sample size is R = 250 000.

2) S and HB Dataset - Recalling their key characteristics, the S-200 and HB-
200 datasets, detailed earlier in Sec. 5.2, represent ray-tracing based channel
realizations in two railway scenarios, each with T = 200 snapshots. The S-scenario
has M = 1 node and R = 69 212 samples, whereas the HB-200 scenario comprises
M = 8 nodes and R = 81 200 samples. For both datasets we keep Nr = 64,
fc = 3.5GHz, number of paths G = 4, and N ′

c = 32.

3) WILD Dataset - We utilize the WILD-v2 dataset [35]. This dataset consists
of CSI samples from two similar-looking indoor environments, denoted as Env-1
and Env-2. Each environment is 40m × 20m in size, and there are R = 28 000
and R = 5 000 samples, respectively. In both scenarios, there are M = 6, and
fc = 5.21GHz, N ′

c = 234, Nr = 24. For testing, we use 4 000 samples from
Env-1 and 1 000 samples from Env-2, forming a combined test set of Rtest = 5 000.
However, we only use Env-1 for pre-training and fine-tuning.

(a) MLP head.

G

G

(b) MLPs for local and global projectors.

Figure 5.5: (a) Task-specific MLP-head and (b) projector DNNs useful for SWiT.
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Self-supervised Training Details

For both online and target network components, i.e., fΦ(·), fΨ(·), νΦ(·), and νΨ(·),
we adopt the architectural details from the WiT model as presented at the beginning
of this chapter, except for the MLP head. The base configuration includes one
transformer block Hblck = 1 and a single attention head Hattn = 1. Since [78] has
become a quasi-norm among modern transformer-based models across the fields,
we follow their approach, and our implementation of the encoder in SWiT uses a
dimensionality of D = 384, different from our past preference of D = 650 in WiT.
The LayerNorm parameters are ζ = 1 and ι = 0.0001. We set Ns = 8, N ′

cg = 36,
N ′

cl = 16, Kn = 6, and Kk = 3. Training SWiT typically involves several hundred
epochs, with a common setting of about 500 epochs using a batch size of B = 512.
However, certain scenarios and tasks show satisfactory performance with significantly
fewer epochs, around 45 − 50, and a reduced batch size of B = 256 in a single GPU
works well. Given the significant time complexity involved, we train SWiT using a
downsampled version of the datasets, roughly 10 − 25% of a KUL dataset.

As a solver, we use AdamW [143] with a cosine schedule for the learning rate, ϖ,
without restarts and a linear warm-up for 10 epochs, and fix β = 0.1. The base
learning rate is ϖbase = 1.5×10−4 and updates as ϖ ≜ ϖbaseB/256. When employing
a single GPU to train SWiT, there might be a need to recalibrate weight decay and
learning rate parameters, depending on the dataset size and number of iterations
(i.e., the batch size). The target network updates use κbase = 0.994 updated with
κ ≜ 1 − (1 − κbase ) (cos(πu/U) + 1)/2. We use weight decay scaled from 0.04 to
0.5, set χΨ = 0.04, χΘ = 0.1, and Λ = 0.9. During the first epoch, the target
network is frozen. The MLPs for local and global projectors are constructed with
four layers, where the initial two are linear layers followed by GeLU non-linearity and
comprise 1 024 units each. We observe that removing one of these first two layers does
not diminish performance; in fact, it may even accelerate convergence, particularly
evident in training on the KUL dataset. The third layer is a linear bottleneck with
256 neurons, and the last layer (i.e., the linear expander) has 25 000 neurons for
MLP(1)(·) and 1 024 neurons for MLP(2)(·). For the reference, task-specific MLP
head and the MLPs for the projectors are depicted in Fig. 5.5.

After the models are trained, we evaluate the performance of the learned representa-
tions using the standard evaluation protocol in ML for SSL. Specifically, we conduct
linear evaluation and fine-tuning of the trained models to assess the usefulness of
learned channel features for UE location estimation. Additionally, we extend our in-
vestigation to examine the models’ transferability across various propagation settings
and their applicability to other predictive tasks, e.g., pathloss estimation.
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Linear Evaluation Approach

For linear evaluations, we train a linear regressor, gΦ : RD �→ RDout , (or a classifier)
on top of the frozen features from fΨ⋆(·), as denoted in (5.7). In the case of the
regressor and the localization task, Dout = 2, i.e., location coordinates, since ui,3
is a constant value in the datasets we utilize. For a just evaluation, we apply no
augmentations during the fine-tuning, and if not mentioned otherwise, we report
the accuracy on N ′

c = 32 subcarriers. We commonly apply normalization, although
learned embeddings are less sensitive to first-order statistics. For linear regressor,
we train a one-layer MLP for 500 epochs with B = 128 and AdamW with a fixed
ϖ = 3 × 10−4. Alternatively, one can use the SGD with ϖ = 0.03. We also assess
the quality of embeddings with a non-parametric method, i.e., the weighted nearest
neighbor classifier (k-NN). Similarly, we freeze the pre-trained model fΨ⋆(·), and then
compute and store the channel representations. Then, we apply k-NN to match the
features of the input channel, and report top-1, and when relevant, top-5 accuracy.
The top-1 accuracy is calculated as the proportion of correct predictions over total
predictions and top-5 accuracy allows the model to output the five most likely
predictions.

Fine-Tuning Evaluation Approach

We evaluate the performance of the embeddings by fine-tuning the models with
labeled samples. More specifically, we add a randomly initialized MLP head with a
hidden linear layer on top of the encoder, gΦ : RD �→ RDout , initialize the backbone
(i.e., the target encoder) with our pre-trained weights, and train gΦ ◦ fΨ⋆(H). We use
B = 512, ϖ = 3 × 10−4, and AdamW with default parameter values. Like in linear
evaluation setup, the accuracy is reported on 32 subcarriers after normalization. Since
our method is batch normalization-free, it is worth noting that during the testing, we
use B = 1. While we use no labels for self-supervised training, during the fine-tuning
and supervised evaluation we apply stratified sampling without replacement.

5.5.1 Localization and Spot Estimation

In Fig. 5.6, we present the performance analysis with varying numbers of training
samples, based on the datasets described in the earlier section. This evaluation
encompasses three distinct setups, i.e., when employing a linear regressor, fine-tuning
the SWiT target encoder, and training a fully-supervised model with randomly
initialized weights, i.e., WiT. For the data regimes, we use R = {1 000, 5 000, 10 000}
for training and Rtest = 5 000 without replacement for testing. For ease of reference,
these configuration setups are labeled in the reporting figures and tables as ‘Lin.’,
‘Fin.’ and ‘Sup.’, respectively. As can be seen from the figure, the pre-trained models
outperform the fully-supervised case in all three data regimes. We observe that when
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a very small amount of training samples is available, in certain conditions, we can
outperform the fully-supervised training even with a linear regressor. This behavior
is especially observed in Figs. 5.6a and 5.6f, i.e., for KUL-NLOS and WILD-v2
datasets. Furthermore, to illustrate the impact of normalization, for instance, in Fig.
5.6a, we show that the linear regressor trained on self-supervised embeddings is more
robust than fully-supervised encoder without normalization when R = 1 000.

Spot Estimation

We investigate spot-localization, i.e., the ability of the model to cluster correlated
channel representations while preserving the spatial neighborhood. To do so, we
consider KUL, S-200, and HB-200 datasets. Since datasets in KUL are obtained from
a scenario that is divided into four sub-regions, we consider �Cspot = 4 spots. On the
other hand, for S-200 and HB-200 datasets, we have �Cspot = 360 and �Cspot = 406,
respectively. Spot localization can be especially beneficial in NLOS for the BS to
perform context-aware beamforming and user tracking. For instance, the observed
channel embedding may be compared with a reference spot embedding to detect
the user and with a prior channel realization to track a moving user, all without
needing actual location coordinates. In Table 5.3, we can read that embeddings from
SWiT encoder can achieve near perfect accuracy for KUL datasets. This evaluation
procedure clearly indicates that the pre-trained model yields remarkably better
representations compared to embeddings of a randomly initialized WiT.

Table 5.3: Random weights versus SWiT.

KUL-NLOS KUL-LOS KUL-LOS-DIS S-200 HB-200

Method ↑ Top-1 ↑ Top-1 ↑ Top-1 ↑ Top-1 ↑ Top-5 ↑ Top-1 ↑ Top-5

Random 23.7 3.59 4.13 0.296 1.545 0.27 1.25
SWiT 99.99 99.99 99.99 18.70 52.38 37.38 82.85

In Fig. 5.7, in the interest of visualization, we depict the computed two-dimensional
t-SNE [144] embeddings of the individual datasets of KUL. We can easily observe
that for the LOS propagation conditions, randomly initialized WiT and pre-trained
models can yield qualitatively equal. However, when in NLOS, SWiT significantly
improves the quality of representations. Each color in the figures represents a class
(i.e., a spot).

In Appendix D.2, we present two-dimensional t-SNE embeddings of a merged KUL
dataset, which combines CSI samples from LOS and NLOS datasets, highlighting
the model’s ability to differentiate between spots and propagation environments.
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(a) KUL-NLOS-URA-Lab.
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(b) KUL-LOS-ULA-Lab.
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(c) KUL-LOS-DIS-Lab.

100 101 102

4Yu− u4 [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

Sup. R = 1 000

Lin. R = 1 000

Fin. R = 1 000

Sup. R = 5 000

Lin. R = 5 000

Fin. R = 5 000

Sup. R = 10 000

Lin. R = 10 000

Fin. R = 10 000

(d) S-200 co-located.
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(e) HB-200 DIS.
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Figure 5.6: Direct localization with self-supervised channel features.
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(a) NLOS Random. (b) LOS Random. (c) LOS-DIS Random.

(d) NLOS SWiT. (e) LOS SWiT. (f) LOS-DIS SWiT.

Figure 5.7: Two-dimensional t-SNE embeddings for the individual datasets.

Other Works

There has been a great amount of DNN-based localization techniques proposed
over the years. Regardless, no such approach operates on self-supervised channel
features. Nonetheless, we compare the localization performance of our method to
the reported results of the selected techniques by [81]. From Table 5.4, we can
observe that SWiT alongside randomly initialized WiT has a better performance
compared to other works. Considering that our method can operate only on N ′

c = 32
subcarriers and demands a reduced training duration, it offers a substantial advantage
in computational efficiency. Furthermore, we outperform some localization techniques
in small data regimes whilst training only a linear regressor on frozen parameters.
For this evaluation setup, we use Rtest = 5 000.
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Table 5.4: Localization error in [mm].

R = 1 000 R = 5 000 R = 10 000
Method ↓ MSE ↓ MSE ↓ MSE
Sun19 [49] 866.14 533.94 392.13
Arnold19 [38] 785.42 322.67 204.54
Chin20 [145] 660.77 248.25 118.75
Bast20 [34] 826.42 483.28 356.61
MHSA22 [146] 702.96 351.104 243.07
Wang18 [55] 1098.27 728.89 626.95
Hoang20 [39] 820.75 463.94 342.99
AAResCNN [81] 598.96 193.65 108.34
WiT 427.057 190.588 112.502

Ours:
SWiT + Linear 570.42 467.6 459.08
SWiT + Fine-tuning 366.90 156.96 88.45

5.5.2 Transfer Learning

Throughout this dissertation, we have introduced models with the capability to
achieve satisfactory localization accuracy in a specific environment. The motivation
behind proposing SWiT, however, extends beyond such relatively straightforward
approaches. We aim to investigate whether SWiT can learn more general-purpose
channel features. To understand whether we learn useful macroscopic along with
microscopic channel characteristics, we assess the transferability of the model across
multiple datasets, environments, propagation conditions, and other wireless tasks.
To do so, we use the pre-trained SWiT on the KUL-NLOS-Lab dataset and apply
linear evaluation and fine-tuning on other datasets. Moreover, we apply learned
representations to a relatively easy task, i.e., pathloss prediction. In this case, we
compare it to the performance of transfer learning a fully-supervised model trained for
wireless localization. Notwithstanding our goal to solve localization, this comparative
analysis indicates that SWiT is a promising method to learn channel features that
are useful for estimating other wireless communication tasks.

Transfer Learning to Other Datasets

We report the evaluated transferability of the pre-trained model to other datasets in
Table 5.5, when R = Rtest = 5 000 samples. We can observe that despite noticeable,
and sometimes even significant, variations in localization performance, overall, one can
pre-train a model only on a single dataset while achieving relatively good localization
performance across all environments and antenna configuration setups. For instance,
a model trained only in the KUL-NLOS-URA dataset can achieve the same spot
estimation performance on other KUL datasets and yields less than 2% degradation
in top-1 accuracy for S and HB datasets. Additionally, models trained on ray-tracing
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channels (synthetic data) can sufficiently transfer learning to realistic environments.
For example, the models trained on S and HB environments can achieve similar
linear location estimates when evaluated on the KUL-LOS-DIS dataset.

Table 5.5: Transferability across different datasets for localization and spot estimation.

KUL-NLOS-URA KUL-LOS-ULA KUL-LOS-DIS S-200 HB-200

Classifier:
Top − 1 Top − 1 Top − 1 Top − 1 Top − 5 Top − 1 Top − 5

KUL-NLOS-URA 99.84 99.98 99.82 16.1 44.34 20.68 53.58

KUL-LOS-ULA 98.86 99.98 99.43 17.12 46.16 17.8 49.18

KUL-LOS-DIS 99.10 99.98 99.82 13.04 40.14 20.4 56.14

S-200 99.12 99.96 99.52 17.69 47.64 12.1 35.74

HB-200 99.48 99.98 99.52 12.08 38.24 21.05 56.14

Linear Regression:
MAE 95−th MAE 95−th MAE 95−th MAE 95−th MAE 95−th

KUL-NLOS-URA 453.894 908.275 282.673 611.641 274.468 567.503 15.64 49.53 23.922 56.047

KUL-LOS-ULA 582.721 1098.16 321.528 669.007 286.267 590.466 16.702 49.18 27.82 67.53

KUL-LOS-DIS 557.30 1080.42 267.887 573.141 281.402 596.043 18.068 50.48 27.68 63.269

S-200 551.957 1068.88 278.177 584.959 273.491 565.191 14.56 51.67 37.24 78.422

HB-200 549.967 1065.52 273.01 582.07 277.331 569.638 18.69 50.140 26.25 63.500

Transfer Learning to Other Wireless Tasks

Next, we evaluate the transferability of supervised and self-supervised models to a
task different from localization, i.e., pathloss prediction. In Table 5.6, we show the
evaluation performance regarding the ability of a fully-supervised approach, trained
on wireless localization, to transfer learning to pathloss prediction. This is denoted in
Table 5.6 as ‘Transfer-learning (Linear)’. As can be observed, the supervised model
trained for channel-to-location mapping cannot transfer well to pathloss prediction.
On the other hand, a model trained with a linear pathloss prediction head on top of
the frozen features (i.e., ‘SWiT+Linear’ in Table 5.6), can achieve accuracy similar
to the fully-supervised model trained on the same task (i.e., ‘Fully-Supervised’ in
Table 5.6). For this evaluation, we split the whole S-200 dataset into 0.8 for training
and 0.2 for evaluation and testing.
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Table 5.6: Transfer Learning for path-loss prediction in [dB].

S-200
Method ↓ MAE ↓ 95−th
Fully-Supervised 5.917 18.493
Transfer-learning (Linear) 16.08 31.682
SWiT+Linear 6.594 18.426

5.5.3 Transformations and Fading Characteristics

We have previously reiterated the significance of the channel transformation function,
or view selection, in facilitating the learning of invariant and robust channel features.
Moreover, we also noted the importance of relying on exploiting small-scale channel
features to improve the performance. In the following, we touch upon these two
aspects of this work and examine different configuration setups to understand the
impact better.

Impact of Channel Transformations

In Table 5.7, we show the results of an ablation study regarding the impact of channel
transformations discussed in Sec. 5.4.1. We assess the performance by removing a
transformation from the set Q. More precisely, T (1)

aug corresponds to the complete
set of augmentations. When we use T (2)

aug , it matches the subset without RSF, T (3)
aug

indicates the subset without flipping and RGO. Further, when T (4)
aug , we add no

fading component, i.e., we remove RFC too. Finally, for T (5)
aug , we use only RSS and

normalization. In general, we observe that channel transformations slightly degrade
the performance when assessed in KUL datasets for R = Rtest = 5 000. However, we
observe improvements in the HB-200 scenario, and further gains can be emphasized
when larger training dataset sizes are used during the fine-tuning. Overall, we can
achieve high-quality self-supervised channel representations while unconstrained on
the view selection function.

Relevance of Fading Characteristics

In Table 5.8, we show the relevance of learning macroscopic versus microscopic
channel characterisitcs. To do so, we investigate the accuracy while varying β =
{0.0001, 0.1, 0.3, 0.5, 0.7, 0.9}. We use R = Rtest = 5 000, and for the linear regression
case, we train the linear head for 500 epochs. We can observe that relying on
large-scale channel features is more relevant for the localization task, with the best
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Table 5.7: Impact of channel transforms, Taug(·).

KUL-NLOS-URA HB-200 KUL-NLOS-URA HB-200

Classification: Regression:
Top − 1 Top − 1 Top − 5 MAE 95−th MAE 95−th

T (1)
aug 99.64 21.12 56.16 445.2 901.0 23.22 57.05

T (2)
aug 99.83 18.66 53.24 446.537 908.679 23.92 58.90

T (3)
aug 99.76 19.46 52.9 435.319 864.965 23.60 58.66

T (4)
aug 99.72 20.18 54.06 429.302 857.742 23.54 57.26

T (5)
aug 99.96 20.08 53.94 420.821 833.4 24.11 57.38

performance achieved when the value of β lies in the range between 0.1 to 0.3.
Performance degrades as we start to weight equally the loss for two learning tasks.

Table 5.8: Impact of β.

.

KUL-NLOS-URA

β ↑ Top-1 ↓ MAE ↓ 95−th
0.0001 99.86 452.287 903.783
0.1 99.86 442.602 879.146
0.3 99.88 437.764 879.534
0.5 99.86 455.951 905.976
0.7 99.84 452.186 900.442
0.9 99.80 458.57 920.516

5.6 WiT Variants

In general, the main goal of WiT is to maintain and exploit the per-subcarrier channel
structure through a transformer architecture. However, as the channel can also be
represented over space and frequency, it is reasonable to explore alternative slicing
strategies to feed the sequence of resulting slices (a.k.a tokens) into a transformer
block. One motivation for investigating alternative slicing strategies is to incorporate
the temporal dynamics of the environment into the learning process. By accounting
for multiple geo-tagged channel estimates obtained over time from the same location
and capturing dependencies between different tokens, we can improve the accuracy
and robustness of the model. Further, we can take advantage of a prior knowledge
on antenna array configuration. For instance, dividing the array into sub-arrays
commonly helps to reduce the spatial correlation between the sub-arrays, which
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benefits the learning of the underlying patterns between the resulting representations.
Among multiple investigated designs, in this part, we show results for three most
promising architecture choices which are illustrated in Fig. 5.8 and explained below.
For the results that are depicted in Fig. 5.8, we train the models for 1 800 epochs
on R ≈ 55 000 samples and report the normalized validation error (NMSE) in dB.
We note that different models demand varying input information, leading to distinct
training sample sizes; hence, cross-comparison may be considered unfair.

WiT-E-TF

Here, we aim to exploit the temporal variations of the environment by stacking
T channel matrices obtained from the same location and viewing the channel as
Hr ∈ CNr×N ′

c×T . Despite stacking multiple channel matrices to leverage temporal
channel realizations, the fundamental input channel representation to the design
remains hi ∈ R1×3Nr . Again, this representation denotes a single-time snapshot.
However, the computational burden increases as we aim to utilize the temporal
variations by considering T snapshots. Specifically, considering T representations
would require Cwit = (N ′

cT +1) computations, instead of Cwit = (N ′
c +1) we defined in

self-attention in Sec. (5.1.1). To address this issue, we propose to employ a factorized
dual-attention approach, resulting in a reduction of computational complexity to
(N ′

c + T + 2) per input channel vector representation. This is achieved by considering
and learning separate sets of weights, {W(1)

q , W(1)
k , W(1)

v } (denoted as ‘Attention -
Time Samples’ in Fig. 5.8a), for the first attention, and {W(2)

q , W(2)
k , W(2)

v } (i.e.,
‘Attention - Subcarriers’ in Fig. 5.8a) for the second attention within a transformer
block. The attention is first evaluated for the i−th subcarrier over T channel
realizations, resulting in an embedding �oi. Subsequently, to obtain oi, we pass
LayerNorm(�oi + êi; ζ, ι) to the second attention. Attention is evaluated as in equation
(5.2). In Fig. 5.8b, we show the performance while varying T = {4, 8, 12, 16}, and
keeping the number of subcarriers constant, N ′

c = 32. While the localization accuracy
improves compared to T = 8 (i.e., S32/T8), it starts to degrade for T > 8. However,
we note that as we increase T , the available training dataset size is reduced too,
hence, resulting in unjust comparison. Nevertheless, we consider S32/T8 model as a
favorable tradeoff between the computational complexity and the performance.

WiT-E-AF

In contrast to the aforementioned time-frequency separated attention approach, here
we view the channel as Hr ∈ CN ′

c×1×Nr , and we further slice subcarriers into S parts
for each antenna element, resulting in an input representation vector hi ∈ R1×3N ′

c/S.
We depict antenna-frequency separated attention in Fig. 5.8c, where �oi and oi are
obtained similar to that described in WiT-E-TF. The localization performance is
shown in Fig. 5.8d for Nr = {4, 8, 16}, and S = 8. This design choice performs poorly
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for co-located antennas, whilst gains are clearer in distributed antenna systems as
Nr > 4.

WiT-E-UPA

We also attempt to leverage the prior knowledge on the alignment of antenna elements
in an array structure or clusters of RRHs. For the co-located antennas, we do so
by viewing the channel as Hr ∈ CNrz ×Nrx ×N ′

c , where Nrz denotes the number of
antenna elements aligned along the height of the array and Nrx along its width.
Further, we consider P = P1P2 sub-arrays, where P1 and P2 are the slicing factors
across height and width of the array, respectively. The flattened patch for the i−th
subcarrier results in an input representation vectors hi ∈ R1×3 Nrz

P1
Nrx
P2 . We depict

UPA attention design in Fig. 5.8e. Similar to the above elaborated designs, we first
evaluate the attention for the channel vector at each sub-array over all subcarriers,
then process the attended representation through second attention to evaluate over
other sub-arrays. For DAS, we consider P different clusters each having M/P adjoint
RRHs, i.e., RRHs within a particular cluster are in closer physical distance compared
to those in other clusters. The performance is shown in Fig. 5.8f for P = {2, 4, 8},
and S = 8. As we can observe, the performance improves in a co-located scenario
with P > 2, but it degrades with increasing number of clusters of RRHs in the case
of DAS.

5.6.1 Number of Parameters

Table 5.9: Input representation and the number of parameters.

.

S-200
Model ↓ MAE ↓ 95−th ↓ Par. (×106)

WiT-E-TF S32/T8 1.46 4.29 4.78
WiT-E-AF S8/A16 4.33 13.01 4.66
WiT-E-UPA S8/P8 1.79 4.45 4.67
WiT [LID] [87] 2.36 6.54 2.67
WiT-L [LID] 1.45 3.78 4.41

SWiT+Fine-tuning 1.98 5.66 1.86

In our work, we set up single-headed transformer blocks to trade-off between model
complexity and expressivity. However, we acknowledge that overparameterization
could improve the model’s performance considerably. In Table 5.9, we compare the
performance among the proposed approaches in this work for the best performing
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Figure 5.8: WiT variants and achievable performance.
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models. Furthermore, we also show the number of trainable parameters for each
model, with only the parameters for the encoder and linear MLP head shown for
‘SWiT+Fine-tuning’. Considering the results from the above discussed investigation,
we show that incorporating time information improves localization performance
for both co-located and DAS. Nevertheless, this increases the number of trainable
parameters compared to WiT. Thus, to understand the impact of computational
complexity, we increase the depth of the WiT (denoted by ‘WiT-L’ in the Table 5.9),
i.e., increase the number of transformer blocks to Hblcn = 3, each having Hattn = 6
and D = 128. By doing so, the number of parameters becomes comparable to WiT-E
models, and the accuracy improves (even surpasses them). Moreover, in Table 5.9, we
also compare the self-supervised approach proposed in this work (i.e., ‘SWiT+Fine-
tuning’). We see that it has lower computational complexity and performs on par
with fully-supervised approaches, and even better in some instances. Finally, in Table
5.10, we provide additional information useful to quantify the time consumption.
In addition to the inference and training throughput, measured in iterations per
second, we have also included an estimate of a more hardware-independent metric,
such as the number of floating points (FLOPs). For SWiT, we calculate the FLOPs
during the propagation of a global channel view (i.e., ‘SWiT - global view’ in Table
5.10). SWiT alone is not utilized during the testing phase; hence, no value is shown
in the respective column of Table 5.10. In the case of the linear approach (i.e.,
‘SWiT+Linear’), we evaluate operations for the linear head. We note that the
computational overhead of deploying and fine-tuning SWiT at the base station (or
central unit) can be significant and lead to poor real-time performance. Therefore, for
applications in mobile networks, we seek to further enhance the model’s performance
only with a linear head, which may hold more practical value.

Table 5.10: Time complexity of SWiT.

↓ FLOPs ↑ Training [iter/sec] ↑ Testing [iter/sec]

SWiT - global view 1.28×109 1.13 -
SWiT + Fine-tuning 0.06×109 16.02 443.66
SWiT + Linear 768 456.21 1183.60

5.7 Final Remarks

In this chapter, we first addressed the issue related to the sensitivity of CSI (e.g., to
small variations in the surroundings), which poses a significant challenge for basic
DNN architectures, such as those relying on MLPs, in learning useful channel features
for wireless localization. Hence, we proposed a transformer-based model, WiT. WiT
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demonstrates learning more robust channel features and, consequently, shows better
localization performance, even in scenarios dominated by strong multipath. We then
extended WiT and proposed SWiT, a joint-embedding self-supervised method for
wireless channel representation learning. We crafted SWiT to learn invariant and
compressed channel representations from macroscopic and microscopic fading channel
characteristics. We showed that our proposed framework could outperform other
state-of-the-work localization techniques in small-data regimes, even under a linear
evaluation approach. Additionally, we discussed how the pre-trained model on one
dataset could be used to assess performance for spot estimation in other datasets
from different environments or system configurations. Moreover, we found that the
learned representations are transferable to other wireless downstream tasks. For
instance, we were able to achieve highly accurate pathloss predictions using only a
linear MLP head.

Furthermore, we proposed multiple variants of transformer-based models and evalu-
ation approaches. Consequently, an essential consideration emerges regarding the
optimal selection of a particular variant based on specific application requirements.
We showed that linear models (i.e., single linear MLP heads) demonstrate similar
localization accuracy as other much more complex methods in scenarios with minimal
data. Such low-complexity models trained on smaller datasets can be beneficial in sce-
narios where centralized processing poses challenges, like latency and communication
overhead. Hence, it is desirable to enhance the performance of models with a single
linear head to remain competitive even with larger datasets. When sufficient training
data is available and computational complexity is not a constraint in situations
demanding higher performance, one might consider various WiT flavors trained in a
fully supervised setting or fine-tune the encoder based on available information and
desired localization accuracy.

The transformer-based methods proposed in this chapter are specifically tailored for
OFDM-based wireless systems, including present-day cellular and WiFi. However, the
transferability of the representations to other wireless systems or waveforms remains a
challenge. In principle, applying the method, e.g., on top of the delay-Doppler channel
representation relevant for orthogonal time frequency space (OTFS) modulation [147],
should also be possible. Nevertheless, potential issues with generalizing learned
representations may arise due to variable subcarrier spacing settings in standardized
5G and 6G mobile networks.





6
Conclusion and Outlook

Wireless networks are predominantly acknowledged for their communication capabili-
ties, with the added potential for localization and sensing increasingly recognized
recently by the research community. Historically treated as distinct from mainstream
communication research, wireless localization is now being considered among the
most critical tasks for the next generation of mobile networks. As we progress towards
6G, the increase in antennas at the BS and the shift to higher frequencies is expected
to play a crucial role in further improving the accuracy and reliability of advanced
wireless networks for localization. Concurrently, integrating AI approaches will
improve mobile network services and seamlessly merge communication and sensing
capabilities.

Achieving precise localization from raw channel measurements, e.g., CSI in massive
MIMO systems, necessitates advanced techniques that go beyond traditional mod-
els and signal processing techniques. This is particularly true when dealing with
multipath channels and noisy measurements or when the system’s nonlinear signal
characteristics are either unknown or intractable. Therefore, data-driven approaches
are a promising direction for modeling the complex, non-obvious relationships between
the received signal information and the UE position.

The main contribution of this dissertation is the development and investigation of
advanced deep learning algorithms for wireless localization, with a specific focus on
uplink CSI acquired at a massive MIMO system. Below, we summarize the main
findings and contributions of this dissertation.
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6.1 Summary of Contributions

The first part of the dissertation focused on supervised learning for wireless lo-
calization. In Chapter 3, we addressed the challenge of measuring the confidence
of estimates obtained by existing DNN-based wireless localization methods. We
proposed and investigated two variational DNN approaches for quantifying the un-
certainty of location estimates in a co-located massive MIMO system. We showed
that modeling the DNN output as a mixture of Gaussians is suitable to acquire the
uncertainty due to the changes in propagation conditions. Applying MC with dropout
as a stochastic regularization technique during inference or utilizing an ensemble
approach improves the ability of the DNN model to identify out-of-set regions, i.e.,
regions from where the model has not previously encountered any training data. We
found that an ensemble of trained DNN models significantly improves the localization
performance compared to solely utilizing the stochastic dropout approach.

In Chapter 3, we also investigated the localization performance in a DAS. We showed
that increasing the number of RRHs improves the overall performance but can also
compensate for the impact of the dominant NLOS components. We then extended
the uncertainty-aware DNN method to incorporate a learning strategy that can be
employed to identify and select a subset of the most relevant RRHs. We demonstrated
that while the selection strategy results in performance degradation compared to
using the complete set of RRHs, it still outperforms a heuristic approach based solely
on maximum channel gain.

The second and third parts of the dissertation were dedicated to learning compressed
channel features. In Chapter 4, we transitioned from supervised to unsupervised
learning. To exemplify the localization performance of shallow feature extractors,
we investigated a linear subspace and a manifold learning approach. Subsequently,
we introduced a metric-learning DNN method for learning low-dimensional wireless
channel features. We introduced a contrastive task to train a Siamese-based DNN that
can discriminate wireless channel embeddings across different locations while grouping
those from similar ones. We then demonstrated that a four-dimensional channel
representation is satisfactory for capturing the relevant channel characteristics and
revealing a unique UE spatial signature. The metric-learning approach we elaborated
on in this chapter demonstrated good performance gains even in small data regimes
and when only NLOS signal paths exist.

In Chapter 5, we introduced a transformer-based method and a non-contrastive
self-supervised approach for learning channel representations. We showed that the
transformer-based model learns more robust channel features and performs better
localization compared to a base DNN, even in scenarios dominated by strong multi-
paths. We then crafted a non-contrastive approach to learn invariant and compressed
channel representations from macroscopic and microscopic fading channel character-
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istics. We also revealed that we can outperform other state-of-the-work localization
techniques in small-data regimes and NLOS conditions, sometimes even with a model
composed of a single-linear layer. We found that the learned representations are
transferable to other wireless downstream tasks beyond localization. Finally, we
investigated multiple variants of transformer-based models and evaluation approaches.
We showed that incorporating channel measurements at different times improves
localization performance for both co-located massive MIMO and a DAS at the cost
of computational complexity.

6.2 Open Issues and Possible Future Works

Channel models and datasets ML algorithms rely on scenario-specific datasets
to acquire the statistical knowledge required for making predictions. Similar to other
fields where there exist standardized datasets, such as UCI [148], comprehensive and
standardized channel measurements have become necessary for validating wireless
localization performance of different models in a variety of scenarios and propagation
settings. In this dissertation, we relied on either actual measurements taken from
real-world environments or synthetic data. However, the need within the research
community for a unified and standardized training and testing datasets is essential
for enabling fair comparisons and tracking progress in wireless localization research.

Achieving high localization accuracy in specific datasets is just one aspect of the ML
research; comprehending how different propagation conditions, channel estimation
error, and hardware impairments (e.g., phase noise and mutual coupling) affect
performance is equally important. For instance, in this dissertation, we utilized
established channel models like the geometric model outlined in Chapter 2, Sec. 2.1.2
to generate synthetic data in simulated scenarios. This approach helped us examine
the influence of LOS availability. Furthermore, in Chapter 3, Sec. 3.3, a shift to an
alternative channel model was necessary to assess the impact of NLOS strength on
localization accuracy. Consequently, it is crucial to have advanced simulators, such
as [149,150], to interface with ML libraries and be less computationally demanding.
This would facilitate more extensive simulations of industry-standard communication
systems, enabling a better understanding of the limitations and practical application
of the algorithms proposed in this dissertation.

Performance bounds and evaluation approaches For model-based wireless
localization methods, it is common to derive fundamental performance bounds,
such as those based on Fisher information or the Cramér-Rao bounds, which offer
theoretical limits on the accuracy of the estimators. However, deriving such bounds for
DNN-based methods presents a challenge, primarily due to the intractable complexity
and the lack of explicit mathematical formulations that relate inputs to outputs.
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In Chapter 3, Sec. 3.2, we introduced the data and model ambiguity, suggesting
that measures of uncertainty can serve as effective heuristics for understanding
performance limitations under different system configuration setups. However, such
measures are very sensitive to hyperparameter choices. A notable example in this
chapter, is the need for meticulous tuning of dropout rates in stochastic dropout
methods, which significantly influences the reliability of confidence measures derived
from the model. Hence, developing more principled approaches and formal methods
for evaluating and monitoring the performance of DNN methods is necessary.

Similarly, in Chapter 5, we proposed an evaluation methodology for SSL models, a
new research direction in wireless communications, specifically in wireless localization.
As SSL gains more attention in our field, motivated by its success in NLP and
computer vision, it is essential to maintain the linear evaluation approaches to
assess the quality of learned channel features for foundation models. Furthermore,
it is important to distinguish between SSL, particularly non-contrastive learning
methods, and other approaches like meta-learning, contrastive metric-learning, or
autoregressive models. Such clarity will benefit the development of foundational
models that can be applied to various wireless tasks, and aligning the DNN-based
wireless research with the broader advancements in the machine learning community.
Therefore, similar to [151], a comprehensive yet specific survey of SSL in wireless
communications can be valuable.

Channel transformations and transferability To train the SSL method pre-
sented in Chapter 5, we developed pretext tasks and channel transformations, resulting
in useful channel embeddings for wireless localization. However, the effectiveness of
the proposed transformations in enhancing robustness and the quality of channel
representations may vary across different datasets and lacks formal motivations.
Therefore, a future research direction involves a more rigorous investigation into
the impact of these channel transformations, particularly across diverse datasets.
While there have been some efforts in the direction of theoretical understanding
of the learning dynamics of non-contrastive SSL methods, such as [152,153], their
findings do not necessarily extend to different optimization objectives, including
varied loss functions and pretext tasks, nor do they directly apply to the wireless
signal information used in this dissertation.

The potential for issues in generalizing learned representations arises with the variable
subcarrier spacing in 5G and 6G networks. In Chapter 5, we also showed that
obtained channel representations can be used for other wireless downstream tasks,
such as pathloss prediction. An interesting future work is investigating whether these
representations can be useful for CSI feedback. Hence, a more comprehensive study
is necessary to validate the generalization capabilities in varied subcarrier spacing,
other wireless tasks, and waveforms.
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Computational complexity The computational overhead of deploying and fine-
tuning the transformer-based models at the BS can be significant. In Chapter 5, we
showed that single-head linear models demonstrate localization accuracy similar to
other, much more complex methods in scenarios with minimal data. In the future,
we desire to enhance the performance of such models to remain competitive even
with larger datasets, which may hold more practical value for applications in mobile
networks.

Codebase and reproducibility To facilitate the reproducibility and benchmark-
ing of various models proposed in this dissertation, we plan to unify and compile the
codebase into a software package. This will ensure that researchers and practitioners
can easily access, experiment with, and build upon the proposed methods. The
codebase will be made publicly available 1. Currently, the logs and separate codebases
are accessible in a shared folder, which can be found at 2.

1https://github.com/ars205/nextlocai
2https://drive.google.com/drive/folders/1KmfHXVbz0AwwilCLdJZrIjHOVZDPX1ej?

usp=drive_link

https://github.com/ars205/nextlocai
https://drive.google.com/drive/folders/1KmfHXVbz0AwwilCLdJZrIjHOVZDPX1ej?usp=drive_link
https://drive.google.com/drive/folders/1KmfHXVbz0AwwilCLdJZrIjHOVZDPX1ej?usp=drive_link




A
System Model

A.1 Notations and Symbols in Chapter 2

Table A.1: A short description of the most relevant symbols.

Symbol Description
Nr Number of antenna elements at the base station
M Number of remote radio heads (RRHs)
bm Position of m-th RRH
R Number of single-antenna user locations
ur Position of r-th user location
G Number of scattering objects in the region of interest (ROI)
pg Position of g-th scattering object
P Average transmit power
xn Normalized transmitted signal on subcarrier n

h̃n Channel vector on subcarrier n
nn Noise vector on subcarrier n
N0 Noise power spectral density
hn Estimated channel state information on subcarrier n
Lpath Number of propagation paths
ηℓ Complex gain of ℓ-th path
τℓ Propagation delay (ToA) of ℓ-th path
φaz,ℓ Angle of arrival (AoA) in azimuth of ℓ-th path
φel,ℓ Angle of arrival (AoA) in elevation of ℓ-th path
∆f Subcarrier spacing
ax Array steering vector along x-axis
az Array steering vector along z-axis
λc Wavelength of carrier frequency
fc Carrier frequency
c Speed of light
d Antenna element spacing
T Time
ẘg,i Zero-mean Gaussian noise term with variance σ2

ẘ

ẇg,i Zero-mean Gaussian noise with variance σ2
ẇ

Hr Matrix of subcarrier vectors for r-th user location
Θ Parameters of the neural network
J(Θ) Cost function of the neural network
L(·) Loss function of the neural network
fΘ(Hr) Mapping function of the neural network
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B
Towards Dependable Location Estimates

B.1 Indoor Scenario in Chapter 3

Below is the illustration of indoor scenario considered for evaluating the LUD for
indoor environments. Similar to the outdoor scenario, UEs can be in LOS or NLOS.

BS NLOSLOS

Figure B.1: Indoor scenario considered in Chapter 3.
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B.2 Notations and Symbols in Chapter 3

Table B.1: A short description of the most relevant symbols.

Symbol Description
L Number of hidden layers
M Number of RRHs
h̄r Real-valued input channel to DNN
D Dataset with (h̄r, ur)
Ψb Parameters the base DNN
Ψ Parameter for LUD
Cmix Total mixtures
ωΨ,c Mixture weight fo c-th Gaussian
µΨ,c Mean for c-th Gaussian
σ2

Ψ,c Variance for c-th Gaussian
oω

Ψ,c Input to last mixture layer�µΨ Final mean�σ2
Ψ Final variance�σ2
Ψ Data uncertainty

Smc Forward stochastic passes or ensemble
Φdrop Dropout rate
αRi

Error between oracle RMSE and confidence RMSE
bRi

Fraction of removed locations
αr,m LOS path coefficient between r and m
hr,m Channel coefficient between r and m
βr,g Scattering coefficient between r and g
φj Random phase-shift at scattering object
γ Scattering coefficient values
Krsd Number of selected RRHs
Θ Parameters of RSD�hr CSI from RRHs (or input to LUD which Stefan says does not make sense)
A Selection matrix
zk Categorical variable
πk Probability scores for zk

gk Gumbel noise
ϕk Parameters in selection layer
τtepoch Temperature value at epoch
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B.3 Importance Sampling for Active Learning

In this section, we illustrate the application of model uncertainty in importance
sampling (IS) for fine-tuning LUD with a deep ensemble network (DEN) discussed
in Chapter 3. First, let us denote by Dini = {(hi, ui)}Rini

i=1 the initial training dataset
comprising channel estimates and corresponding location labels. We also define an
unlabeled data pool of channel estimates as Dunl = {hj}Runl

j=1 . After the initial training,
the ensemble model evaluates Dunl to compute the uncertainty measure �σ2

model for
each sample. Then, we apply the query strategy QIS, that selects PIS samples with
the highest position uncertainty output values. These samples are labeled with
their true locations to form a new dataset DIS = {(hr′ , ur′)}PIS

r′=1. Moreover, we
removed the selected samples from the unlabeled data pool to ensure they are not
reselected in future iterations, Dunl ← Dunl \ DIS. Finally, we create a combined
dataset Dnew = Dini ∪ DIS, and fine-tune DEN.

In Fig. B.2, we show the impact of IS for training DEN with Rini = 25 000 and
PIS = 20 in an active learning loop for O1_3p5B dataset [110]. Compared to a
random sampling strategy (RAND), DEN, with the uncertainty-based query strategy
explained above, shows consistent improvements.

DEN
RAND

# number of samples, PIS = 20

Figure B.2: Importance sampling for active learning.



C
Shallow and Deep-Metric Learning

C.1 Notations and Symbols in Chapter 4

Table C.1: A short description of the most relevant symbols.

Symbol Description
ZPCA Low-dimensional map for PCA
σi Singular values associated with PCA
uPCA,i Eigenvectors corresponding to the singular values in case of PCA
Cdis Distance matrix used in MDS
Bdis Matrix obtained by double-centering Cdis in MDS
ZMDS Low-dimensional map for MDS with Sammon mapping
Rrps Set of reference point (RP) locations
dzr Distance metric in the Z-map to each RP location
rNN Nearest RP based on the minimum Eucledian distance
λr User density value used in partitioning schemes
Rrps Number of sub-regions for triplet mining
Krps RPs with highest probability score
h̄(p)

i Positive sample in the triplet network
h̄(n)

i Negative sample in the triplet network
Rtri Number of triplets for training in the triplet network
Ltri Triplet loss function in the Siamese-based approach
δtri Triplet margin used in the loss function
z(a)

i , z(p)
i , z(n)

i Embedding of the anchor, positive, and negative sample
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D
Self-Supervised Representations

D.1 S-scenario discussed in Chapter 5

Below we plot the RMS delay-spread, τRMS, as well as the RMS angle of arrival spread
in azimuth, φRMS, for a single random UE location over T = 200 time snapshots and
Lpath = 4 strongest paths.
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(a) An example of RMS delay spread.
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(b) An example of RMS angle of arrival spread in azimuth

Figure D.1: Delay- and angle-spread at ur over T = 200 time snapshots.
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D.2 t-SNE Embeddings for Combined Dataset
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(a) Random.
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(b) SWiT.

Figure D.2: Two-dimensional t-SNE embeddings for a combined dataset.
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D.3 Notations and Symbols in Chapter 5

Table D.1: A short description of the most relevant symbols.

Symbol Description
fΘ(·) and fΨ(·) Online and target encoders.
LSSL(·) SSL loss function.
gΦ(·) MLP head.
gi Positional encoding.
Wq, Wk, Wv Attention weights.
oi Embedding after the attention operation.
αi,j Attention coefficient.
êi Input to the transformer block.
ζ and ι Layer norm hyperparameters.
κper Types of materials for RT.
ōi Subcarrier output (target encoder or WiT).
Q Set of stochastic transformations.
Ti(·) Channel transformation function.
h̄′

n, h̃′
n, ĥ′

n Transformed subcarrier views.
N ′

ci
Selected subcarriers for respective transformations.

V Number of channel views.
D Dimensionality of ōi (or ¯̄oi).
C Total subcarrier embeddings (including ō0).
γci

Ratio factor of selected adjacent subcarriers.
N ′

cg, N ′
cl Embeddings to encoders for global and local views.

Pflip Permutation (flipping) channel matrix.
Ns Number of local views.
ξrgo Random gain offset.
σrfc Fading component scaling factor.
ωn,i, σ2

Q Gaussian noise hyperparameters.�z(v)
0 , �z(v)

0 , z̄(v)
0 , z̄(v)

NNi
Final channel representations from the projectors.

ν(·) Attention pooling operation.
χ(·) Temperature scaling for target or online encoders.
ϵ Centering of the output embedding.
Kn Subset of nearby subcarriers from Ni.
ρ(·, ·) Correlation of nearby subcarriers.
β Loss function scaling hyperapameter.
B Batch size.
ϖbase Base learning rate.
P Number of sub-arrays.
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