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Abstract
Forecasting citywide traffic congestion on large road networks has long been a
nontrivial research problem due to the challenge of modeling complex evolution
patterns of congestion in highly stochastic traffic environments. Arguing that
purely data-drivenmethods may not performwell for congestion forecasting, we
propose a deepmarked graph processmodel for predicting the congestion indices
and the occurrence time of traffic congestion events for complex signalized
road networks. Traffic congestion is considered as a nonrigorous spatiotempo-
ral extreme event. We extend the traditional point process model by integrating
a specially designed spatiotemporal graph convolutional network. This hybrid
strategy takes advantage of the simple form of the point process model as well
as the ability of graph neural networks to emulate the evolution of conges-
tion. Experiments on real-world congestion data sets show that the proposed
method outperforms state-of-the-art baseline methods, yielding satisfactory pre-
diction results on a large signalized road network with superior computational
efficiency.

1 INTRODUCTION

Traffic congestion is increasing in major cities around the
world, leading to excessive air pollution (Lelieveld et al.,
2015) and negative economic impacts (Sweet, 2014). As
transportation management authorities seek to alleviate
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traffic congestion, there is an urgent need to predict the
occurrence and propagation of traffic congestion using
traffic surveillance data collected by various sensors. Reli-
able and robust congestion prediction models can provide
practical benefits for traffic signal control, traffic flow
guidance, as well as road infrastructure performance
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evaluation and improvement planning (Han et al., 2023;
Yao et al., 2023). They are also beneficial for local residents
to make informed travel decisions.
In recent years, research on the prediction of future

traffic states has proliferated due to the powerful capabil-
ities of modern machine learning methods in capturing
complex spatiotemporal traffic dynamics and dependen-
cies (Tedjopurnomo et al., 2022; Wang et al., 2022). Most
of these studies aim to predict specific traffic param-
eters, such as traffic flow, speed, or travel time. As
variations in traffic parameters tend to exhibit regular
spatial and temporal patterns, the evolution of con-
gestion on signalized urban road networks is highly
volatile, making congestion forecasting a challenging
task.
This study investigates the problem of short-term traffic

congestion prediction for large signalized road networks.
Although some attempts have been made (Kumar &
Raubal, 2021; Gal-Tzur et al., 2022; Mehdi et al., 2022),
significant challenges still remain:

1) Because the traffic environment of signalized road net-
works is highly stochastic, there are complex factors
that cause traffic congestion, including the spatiotem-
poral variation of traffic demand, the capacity of the
roads, the effects of signal control, sudden weather
changes, the occurrence of accidents, and road mainte-
nance. It is difficult to build a comprehensive prediction
model that explicitly accounts for these factors and the
interactions between these possible factors.

2) Traffic congestion is a complex spatiotemporal pro-
cess with constantly changing spatial coverage and
temporal extent. Even at the same location, different
congestion events occurring at different timesmay have
different evolutionary patterns with different durations
due to spillover effects. It remains a challenge to predict
the fine-grained spatiotemporal extent of congestion
events over their duration.

3) Predicting citywide congestion poses profound chal-
lenges. Traffic congestion propagates across connected
road segments and interact with nonlocal traffic, lead-
ing to possible cascading failures in the road network.
Since the propagation and dissipation of congestion
is anisotropic, the evolution of traffic congestion is
heterogeneous in space and time.

Data-driven deep learning–based methods have been
extensively employed for short-term estimation or predic-
tion of traffic parameters. It seems feasible to apply these
established models to predict traffic congestion. Although
many existing data-driven models can discover spatiotem-
poral traffic correlations after being trained on sufficient
data samples, traffic congestion does not necessarily recur

in the same place and time. Therefore, these vanilla mod-
els are difficult to generalize to the entire road network,
which manifests heterogeneous congestion development
patterns in space and time (Jiang et al., 2023; Zheng et al.,
2023). Machine learning–based methods typically require
a large number of samples to address this heterogene-
ity issue, as local road environments (network topology,
road layout, time, weather, and traffic flow characteris-
tics) need to be accounted for. On the other hand, complex
machine learning models present a significant compu-
tational challenge in both training and inference (Pan
et al., 2023), as short-term congestion forecasting is a
time-critical application.
In light of the above issues, we propose a deep marked

graph process (DMGP) model for predicting citywide
traffic congestion events on complex signalized road net-
works. Traffic congestion is considered as a nonrigorous
spatiotemporal extreme event and an event-oriented mod-
elingmethod is developed. By treating congestion as a spa-
tiotemporal event, the event-oriented modeling method
can better describe the propagation and dissipation of con-
gestion events throughout its entire life cycle, whereas
manyprevious studies haveneglected the evolutionary pat-
ternswithin individual congestion events. The evolution of
congestion events is modeled as spatiotemporal processes
occurring in road networks. Instead of using a purely data-
driven deep learning model, we adopt a hybrid strategy
that takes the simple form of the point process model,
in order to avoid including excessive influencing factors
in the modeling of congestion evolution. Therefore, all
congestion events can bemodeled asmarked spatiotempo-
ral processes, taking advantage of their general functional
forms to improve model robustness, generalizability, and
interpretability, all of which are crucial for citywide con-
gestion forecasting, as it is difficult to generalize to a
large road network with a limited number of congestion
samples.
The proposed approach extends the point process model

with the ability to emulate the evolution of congestion
using a congestion embedding network that learns expres-
sive spatiotemporal embeddings of historical congestion
events with specially designed spatial and temporal graph
convolutions, respectively. These embeddings encode the
spatial and temporal evolutionary patterns of congestion,
which are then integrated with the conditional intensity
function of marked spatiotemporal processes to predict
spatiotemporal extent of congestion events and their sever-
ities. The integration of the congestion embedding net-
work with the marked spatiotemporal process model sig-
nificantly improves generalizability and accelerates learn-
ing efficiency through the use of two key inductive biases,
namely, sharing intensity function parameters for city-
wide forecasting tasks and designing unified congestion
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embedding framework for the structured representation of
congestion events. The contributions of this work can be
summarized as follows:

1) A DMGP model is developed for citywide traffic con-
gestion forecasting, being capable of predicting the
congestion severity and occurrence time of each con-
gestion event in an end-to-end deep learning frame-
work.

2) A pattern-aware spatiotemporal graph embedding net-
work is developed to generate spatiotemporal embed-
dings of historical congestion events based on traffic
condition and traffic congestion graphs.

3) The traditional one-dimensional temporal point pro-
cessmodel is extended to a deepmarked spatiotemporal
graph process model by integrating the learned conges-
tion embeddings with the conditional intensity func-
tion of marked spatiotemporal processes, accounting
for stochastic and heterogeneous evolutionary patterns
of traffic congestion in urban road networks.

2 LITERATURE REVIEWAND
RELATEDWORK

2.1 Congestion prediction

Earlier studies on congestion prediction attempt to model
congestion events using well-established mathematical or
microsimulation models (Adeli & Ghosh-Dastidar, 2004;
Ghosh-Dastidar &Adeli, 2006; Zhao et al., 2005). However,
they usually fail to capture citywide congestion dynamics
because strong statistical or mathematical assumptions do
not always hold in complex urban traffic environments on
a large road network (Ma et al., 2015). Due to the wide
availability of traffic surveillance data and the popular-
ity of machine learning algorithms, various data-driven
methods have been proposed to predict the occurrence and
propagation of traffic congestion (Akhtar & Moridpour,
2021). Several attempts have been made to adapt off-the-
shelf deep learning models to congestion prediction tasks
(Kumar & Raubal, 2021), such as stacked long short-term
memory model (Chen et al., 2016; Mohanty et al., 2020;
Yu et al., 2017), deep convolutional neural network (Chen
et al., 2018), deep autoencoder (Zhang, Yao, et al., 2019),
or the integration of recurrent neural network and other
deep learning models (Guo et al., 2021; Ma et al., 2015).
While these deep learning models can capture the traf-
fic correlations in road networks to some extent, they are
not specifically designed to account for the propagation
patterns of traffic congestion and the sparseness of conges-
tion data, thereby yielding inferior prediction results when
traffic dynamics are highly stochastic.

Recently, a few studies have explicitly incorporated
traffic patterns into deep learning models to developed
pattern-aware spatiotemporal prediction models (Di et al.,
2019; Leiser & Yildirimoglu, 2021; Zheng et al., 2023).
While many previous studies did not explicitly model the
evolution of individual congestion events and only pre-
dicted congestion based on regular time intervals (Kumar
& Raubal, 2021), some researchers have considered con-
gestion as spatiotemporally propagating events and have
attempted to perform fine-grained congestion forecasting
using graph embedding (Sun et al., 2022; Wang et al., 2023)
or point process models (Zhu et al., 2022).

2.2 Neural point process models

Temporal point processes provide a powerful mathemat-
ical framework for modeling time-dependent event data
based on parametric intensity functions (Daley & Vere-
Jones, 2003). Given prior knowledge of a random process,
parametric assumptions can be made for a conditional
intensity function to describe the probability of an event
occurring in the near future given a sequence of histori-
cal events. The temporal point processmodel can naturally
predict the occurrence rates of events over time and has
therefore been widely used to model and predict rare
events such as earthquakes (Ogata, 1998), war (Zammit-
Mangion et al., 2012), and crime (Adepeju et al., 2016).
The drawback of classical temporal point process models
is that their strict parametric assumptions do not hold for
some event generative processes. Recently, the integration
of point processmodels and deep learning has experienced
a surge of interest, resulting in a flurry of work on neural
temporal point processes (NTPPs) (Du et al., 2016; Shchur
et al., 2021). By taking the advantage of deep learning to
capture complex hidden temporal propagation patterns,
NTPPs outperform classical point process models in pre-
dictive ability and expressiveness when prior knowledge
is scarce. To better capture complex unseen temporal pat-
terns, Bae et al. (2023) propose to formulate temporal point
processes as attentive neural processes based on a meta-
learning framework. NTPPs can be further extended as
neural spatiotemporal point processes, which can use deep
neural networks (Zhou et al., 2022; Zhu et al., 2020) or
neural ordinary differential equations (Chen et al., 2021)
to parameterize the joint event distribution in both space
and time. Similar to our work, Zhu et al. (2022) use spa-
tiotemporal point processes to predict congestion events.
However, their study was conducted on highway data col-
lected from a limited number of sensors whereas this study
aims to predict citywide congestion for a large urban sig-
nalized road network where traffic dynamics are much
more complex and stochastic.
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ZHANG et al. 1183

F IGURE 1 Propagation of traffic congestion on an urban road network.

2.3 Traffic prediction using deep neural
networks

Short-term prediction of various traffic parameters (flow,
speed, travel time etc.) has long been a well-researched
topic in the transportation and computer science commu-
nities (Vlahogianni et al., 2014). The use of neural networks
for traffic pattern analysis and short-term traffic prediction
has a substantial literature (Jiang & Adeli, 2004; Smith &
Demetsky, 1994; Yun et al., 1998). Over the past decade, the
application of deep learning technique in traffic prediction
has gained momentum. Earlier studies directly applied
off-the-shelf deep learning models to predict specific traf-
fic parameters, such as stacked autoencoders (Lv et al.,
2015) and convolutional neural networks (Ma et al., 2017).
To capture spatiotemporal correlations hidden in traffic
dynamics, hybrid models have been developed that inte-
grate multiple deep learning modules (Yin et al., 2022),
such as deep residual learning (Zhang et al., 2017), hybrid
recurrent convolutional networks (Ke et al., 2017; Lin et al.,
2020), attention convolutional neural networks (Liu et al.,
2018), and deep meta-learning (Pan et al., 2019). Efficient
ensemble deep learning models have been proposed to
predict citywide traffic parameters, yielding robust and
accurate prediction results (Liu et al., 2020; Zhang, Zhou,
et al., 2020).
Since transportation networks can be intuitively mod-

eled as graphs, graph neural networks have been widely
used for citywide traffic forecasting in recent years (Jiang
& Luo, 2022; Rahmani et al., 2023). Intensive efforts
have been made to capture the spatiotemporal depen-
dency or correlation between road intersections or seg-
ments with specially designed graph convolutional net-
works (GCNs), such as, spatiotemporal GCN (Yu et al.,
2018), spatial–temporal graph inception residual network
(Zhang, Cheng, et al., 2019), temporal GCN (Zhao et al.,
2020), spatiotemporal gated graph attention network (Tang

& Zeng, 2022), time-aware multipersistence spatiosupra
GCN (Chen et al., 2022), and graph neural rough dif-
ferential equations (Choi & Park, 2023). We argue that
predicting traffic congestion is more challenging than pre-
dicting regular traffic parameters because the latter can
exploit the regularities of traffic dynamics whereas the
occurrence and evolution of congestion are more volatile.
In addition, traffic congestion is a relatively rare extreme
event that providesmuch fewer training samples than traf-
fic parameter data (e.g., speed or flow), making it difficult
for GCNmodels to generalize. Therefore, the GCNmodels
used in traffic parameter prediction may not perform well
in traffic congestion prediction because congestion should
be considered as a complete event tomodel its propagation
and dissipation patterns (Zhu et al., 2022). Special attention
should be paid to these issues.

3 METHODOLOGY

3.1 Motivation and definitions

The propagation of traffic congestion in an urban road net-
work is constrained by signalized intersections, exhibiting
strong anisotropic evolution patterns in different direc-
tions.Whenmodeling citywide traffic congestion, we need
to consider nonlocal spatiotemporal traffic correlations
because congestion usually propagates further into the
road network and interacts with traffic in upstream road
links.
As shown in Figure 1, a congestion event is constrained

by traffic from surrounding intersections or adjacent sat-
urated road segments and evolves between signalized
intersections, exhibiting complex evolution patterns. In
Figure 1a, it is shown that a congestion event occurs
at intersection 1 at 18:20, while some road links in the
northeast direction also start to experience congestion.
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Figure 1b shows that the congestion on the northeast-
ern road segments becomes more severe, leading to a
further increase in congestion that develops into a grid-
lock state on these links at 18:25. Figure 1c shows that at
18:30, as the congestion at intersection 1 eases, the grid-
lock state on the northeastern road segments begins to
dissipate and slow-moving traffic can be observed. The
propagation and evolution of a congestion event through-
out its entire life cycle is a complex, nonrigorous spatiotem-
poral dynamic process that interacts with the changing
traffic dynamics in the neighborhood and sometimes with
other congestion events. These interactions give rise to
complex spatiotemporal correlations between congestion
events and the surrounding road environment, making
accurate predictions difficult. This observation inspires us
to develop a spatiotemporal process model to account for
the anisotropy of congestion propagation in space and
time.

Definition 1. Traffic Congestion Event. A traffic con-
gestion event ce describes the occurrence and persis-
tence of congestion states in certain road segments in
a road network , whose nodes N and edges E corre-
spond to intersections and road segments, respectively.
A marked congestion event can be formally defined as
cee = (be, te, me), where be is a Boolean value indicat-
ing whether the road segment e is congested or not.
te is the occurrence time of the congestion event, and
me∈𝕄 (𝕄∈ℝ𝑑 represents the domain of marks) is the
marker vector recording other semantic information of the
event, such as the duration or congestion severity index.
Then, traffic congestion events can be modeled as marked
spatial–temporal processes on ×T (let T > 0 be a time
horizon).

Definition 2. Traffic Congestion Event Sequence. Based
on the above definition, the sequence of historical traf-
fic congestion events on road segment e can be denoted
as 𝑡 (𝑒) = {𝑏𝑡′ , 𝑡

′, 𝑚𝑡′ |𝑡′ < 𝑡}, which is a realization of
a marked spatiotemporal process. Note that events in a
sequence may have variable lengths of duration.

The distribution of traffic congestion events on road seg-
ment e can be characterized by the conditional intensity
function,

𝜆∗[𝑡|𝑡 (𝑒)] = lim
Δ𝑡→0

𝑷𝒓{𝑡𝑒 ∈ [𝑡, 𝑡 + Δ𝑡] |𝑡 (𝑒)}

Δ𝑡
(1)

The conditional intensity function describes the
expected probability of the occurrence of a congestion
event on road segment e at time t, conditional on a given
historical event sequence𝑡(𝑒).

Definition 3. Traffic Condition Graph. A traffic condition
graph (𝒅)𝑡∈{1, 2, …, 𝑇} = (𝑽𝒅, 𝑬𝒅)𝑡 is constructed based on
observed traffic surveillance data at time t to encode traffic
features on the road network. A node 𝑣𝑑 ∈ 𝑽𝒅 (|𝑽𝒅| = 𝑁)

corresponds to the road segment between two signalized
intersections. An edge 𝑒𝑑 ∈ 𝑬𝑑 describes the connectivity
between nodes. (𝑨𝒅)𝑡 ∈ ℝ𝑁×𝑁 is the adjacency matrix of
(𝒅)𝑡. We use 𝒙𝒕(𝑣𝑑) ∈ ℝ𝐹 to denote the F-dimensional
traffic feature vector of node 𝑣𝑑 at time t (e.g., traffic flow
and average speed). The traffic condition of the entire
road network at time t can be represented as 𝑿𝑡 (𝒅) =

[𝒙𝑡(𝑣1), 𝒙𝑡(𝑣2), … , 𝒙𝑡(𝑣𝑁)] ∈ ℝ𝑁×𝐹 .

Definition 4. Traffic Congestion Graph. A traffic conges-
tion graph (𝒈)𝑡∈{1, 2, …, 𝑇}

= (𝑽𝒈, 𝑬𝒈)𝑡∈{1, 2, …, 𝑇}
is con-

structed to represent the traffic congestion events that
occur in the studied road network. At time t, the node set
(𝑽𝒈)𝑡

contains the road segments that are being congested.
(𝑬𝒈)𝑡

is the set of edges describing the potential connectiv-
ity of the congested road segments at time t. If the distance
between two congested road segments is less than a thresh-
old, we consider them to be “connected” in the traffic
congestion graph. Unlike the traffic condition graph, the
adjacency matrix of the traffic congestion graph 𝑨𝒈(𝑡) is
not static because it is used to represent time-varying
correlations between congested nodes. Each element of
𝑨𝒈(𝑡) represents the strength of such a correlation, which
is learnable. Note that i and j are not necessarily directly
connected. In otherwords, if i and j are associatedwith two
different congestion events, each element of 𝑎𝑔(𝑖, 𝑗) quan-
tifies the correlation between the two congestion events.
A feature matrix 𝑿𝒕(𝒈) ∈ ℝ𝑑+1 describes the associated
features of each node in (𝒈)𝑡

, including the occurrence
time and themarked values. Overall, the traffic congestion
graph represents a subgraph of the traffic condition graph
while focusing on the representation of congestion events
and their evolution.

The predicting problem for the citywide traffic con-
gestion event sequence CE can be defined as follows:

𝑪𝑬𝑡→ 𝑡+𝑇𝐸 = 𝜑
(
∪
|𝐸}
𝑒=1 [𝑏𝑒 (𝑡) ,𝑚𝑒 (𝑡)]

|||𝒅,𝒈, ∪
|𝐸}
𝑒=1

𝑡 (𝑒)
]
(2)

where t+T is the prediction horizon, and ∪
|𝐸}
𝑒 = 1

𝑡(𝑒) rep-
resents the entire historical event sequence for all road
segments during the time interval [0, t]. The prediction
task deals with a multitask learning problem, that is, we
simultaneously predict the occurrence of congestion (i.e.,
be) and the marked values of congestion (i.e.,me) for each
segment e on the road network , based on two virtual
graphs, 𝒅 and 𝒈.
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ZHANG et al. 1185

F IGURE 2 Workflow of the proposed deep marked graph process (DMGP) model.

3.2 Methodology overview

A novel spatiotemporal graph process model is proposed
for citywide traffic congestion prediction. The proposed
DMGP is capable of predicting citywide traffic congestion
events on complex signalized road networks. The DMGP
model is based on the classical spatiotemporal point
process model and learns the stochastic evolution and
interaction patterns of congestion events using a specially
designed spatiotemporal graph embedding network that
learns expressive spatiotemporal embeddings of historical
congestion events. The embeddings are integrated with
the conditional intensity function of marked spatiotem-
poral processes for predicting congestion across the entire
road network.
The proposed model is schematically illustrated in

Figure 2. The DMGP model consists of three components:
(1) learning the spatiotemporal embedding of traffic con-
gestion events through an integrated graph embedding
network, (2) constructing the conditional intensity func-
tion for citywide congestion events by incorporating the
learned embeddings, and (3) training the DMGPmodel (or
making predictions when performing inference).
The first component is comprised of two steps:

1) Learning the spatial correlations between road seg-
ments where congestion occurs. Based on the traffic
condition graph and the traffic congestion graph, we
develop a graph embedding network to capture spatial
correlations between upstream and downstream road
segments. Considering the scarcity of congestion event
samples, we develop a novel pattern-aware graph prop-
agation convolutional kernel capable of capturing the
propagation and evolutionary patterns of congestion
across the road network. The kernel learns the struc-

tural dependencies of the road network using the traffic
condition graph and captures the congestion evolution
patterns using the traffic congestion graph, respectively.
For each node of the traffic condition graph 𝒅, the spa-
tial correlation module generates a spatial embedding
vector;

2) Learning the temporal correlations of traffic conges-
tion events. Using the spatial embeddings learned in
the previous step as input, this component continues
to learn the temporal dependencies between the nodes
of the traffic condition graph 𝒅. Based on a tempo-
ral convolutional network (TCN), the temporal module
generates the spatiotemporal embeddings of histori-
cal congestion events, encoding complex spatiotem-
poral propagation patterns of historical congestion
events.

The conditional intensity function (Equation 1) is
extended to accommodate the learned spatiotemporal
embeddings, thereby integrating learned graph structure
information into the spatiotemporal point process model.
This integration can empower the vanilla spatiotempo-
ral point process model with rich knowledge of temporal
dependencies and spatial correlations within and between
congestion events. Then, according to Equation (2), the
modified conditional intensity function can be used to
predict whether congestion events will occur or not, and
to predict the marker values of all nodes in the traffic
condition graph in an autoregressive manner. With the
two graphs, the proposed model not only captures local
congestion evolution patterns but also describes the non-
local interactions between different congestion events. The
details of the spatial embedding, temporal embedding, and
modified conditional intensity function are described as
follows.
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1186 ZHANG et al.

3.3 Embedding spatial correlations
using pattern-aware graph convolution
kernels

The first step of the proposedmethod is to learn the spatial
correlations between road segments when congestion
occurs. Graph convolutions are performed to embed
spatial correlations in the traffic condition graph. The
spatial embeddings are then fed to the temporal embed-
ding module to generate spatiotemporal embeddings of
traffic congestion events. The spatial embedding module
is built based on a GCN, which performs global convo-
lution on the entire traffic condition graph instead of
local convolution on neighboring nodes, because many
congestion events can propagate far away along the road
network.
Specifically, a two-layer GCN (Kipf and Welling, 2017)

at time t that embeds spatial correlations via two convolu-
tional operations can be defined as,

𝑯𝑡 (1) = 𝑨𝒅 𝑿𝑡 (𝒅)𝑾
(0) (3)

𝑯𝑡 (𝑙) = σ
[
�̃�

−
1

2 �̃�𝑑�̃�
−

1

2𝑯𝑡 (𝑙 − 1)𝑾(𝑙−1)
]

(4)

where 𝑯𝑡(𝒍) ∈ ℝ𝑁×𝑧 is the spatial embedding of the lth
layer. 𝑨𝒅 is the adjacency matrix of the traffic condi-
tion graph. �̃�𝑑 = 𝑨𝒅 + 𝑰𝑁 (𝑰𝑁 is the identity matrix).
𝑿𝒕(𝒅) ∈ ℝ𝑁×𝐹 denotes the traffic feature matrix at time
t. 𝑾(0) and 𝑾(𝑙−1) are the learnable weights. (∙) is an
activation function. �̃� is the degree matrix of 𝒅.
With these graph convolution layers, we can incorpo-

rate topological priors into the embeddings of congestion
events using the static adjacency matrix 𝑨𝒅. However,
the evolution of congestion is not only constrained by
the topological structure of the road network but also by
the propagation patterns of congestion. Inspired by recent
pattern-aware event prediction methods (Du et al., 2021;
Zhang & Cheng, 2020; Zhu et al., 2020), the proposed
model explicitly integrates spatiotemporal propagation
patterns into the embeddings of congestion events based
on the traffic congestion graph.
Let the spatiotemporal propagation pattern between two

congestion events located at nodes i and j be 𝜌(𝑖,𝑗) ∈ [0, 1],
which measures the spatiotemporal dependency between
the two congestion events. It is assumed that two conges-
tion events can influence each other if their occurrence
times are close and their temporal variations of congestion
levels are similar. A congestion event may exert an influ-
ence on neighboring upstream road segments and may
also affect on somemore distant road segments. Therefore,
there is no constraint on the spatial dimension when com-

puting intercongestion dependencies. At time t, 𝜌t (𝑖, j) can
be computed as

𝜌𝑡 (𝑖, 𝑗) =

{
𝑒𝑥𝑝[𝑤𝑡

(
1 −

Δ𝑡𝑖,𝑗

Δ𝑡

)
+ 𝑤𝑚

(
1 −

Δ𝑚𝑖,𝑗

Δ𝑚

)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

if Δ𝑡𝑖,𝑗 < Δ𝑡&Δ𝑚𝑖,𝑗 < Δ𝑚 (5)

where 𝑤𝑡 ∈ [0, 1] and 𝑤𝑚 ∈ [0, 1] are learnable weight-
ing parameters used to modulate the effects of time and
congestion severity (𝑤𝑡 + 𝑤𝑚 = 1). Note that 𝑤𝑡 and 𝑤𝑚

vary with time and pairs of road segments. Δ𝑡 and Δm
are the time and marked value (i.e., congestion sever-
ity) thresholds used to determine if two congestions are
mutually correlated or not. Δ𝑡𝑖,𝑗 and Δ𝑚𝑖,𝑗 are the dif-
ferences in the occurrence time and congestion severity
between two congestion events i and j. According to Equa-
tion (5), large (small) values of 𝜌𝑡(𝑖, 𝑗) indicate strong
(weak) dependencies between i and j.
Based on the definition of the intercongestion depen-

dency 𝜌𝑡(𝑖, 𝑗), we can construct the time-varying dynamic
correlation matrix 𝑨𝒈(𝑡) of the traffic congestion graph
using the intercongestion dependency (i.e., 𝜌(𝑖,𝑗)) as the
elements of 𝑨𝒈(𝑡). Then the spatiotemporal propagation
patterns of all traffic congestion events can be repre-
sented by 𝑨𝒈(𝑡). By integrating the time-varying corre-
lation matrix 𝑨𝒈(𝑡), Equation (4) can be rewritten as a
pattern-aware graph convolutional layer,

𝑯𝑡 (𝑙) = 𝜎

{
[�̃�

−
1

2 �̃�𝑑�̃�
−

1

2 ⊙ 𝑨𝒈 (𝑡)]𝑯𝑡 (𝑙 − 1)𝑾(𝑙−1)

}
(6)

where ⊙ is the Hadamard product. [�̃�−
1

2 �̃�𝑑�̃�
−

1

2 ⊙ 𝑨𝒈(𝑡)]

can be considered as a graph convolution kernel that
characterizes the propagation of congestion. By inte-
grating correlations between congestion events through
graph convolution, the spatial embeddings encode both
static topological constraints and dynamic dependencies
between congestion events, thereby capturing high-level
evolutionary features and improving the generalizability of
the prediction model.

3.4 Capturing sequence correlations
using temporal convolution

After obtaining the spatial embeddings from the traffic
condition graph, we use temporal convolution to cap-
ture the sequence correlations for each node in the traffic
congestion graph, as shown in Figure 3. Typical recur-
rent neural networks are not used due to the gradient
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ZHANG et al. 1187

F IGURE 3 Temporal convolution on spatial embeddings.

vanishing/exploding issue when modeling long sequences
of congestion events. The temporal embedding is per-
formed based on the architecture of the TCN (Bai et al.,
2018). Dilated convolutions are used to extract temporal
correlations from a sequence of congestion events at the
same node. To facilitate the modeling of frequent con-
gestion that may last for a considerable period of time,
we retain the residual blocks in the TCN to enable the
construction of a very deep structure.
For each graph node e in  (i.e., road segment), the

dilated convolution takes the spatial embeddings of the
previous t historical time steps as input and learns com-
prehensive spatiotemporal embeddings,

𝒁𝑡,𝑒 (𝑙) = 𝑅𝑒𝑙𝑢{𝐾(𝑡 − 1)∗𝑇
[
𝑯𝑡,𝑒 (𝑙) ∶ 𝑐𝑒𝑒|0→𝑡

]
(7)

where ∗T denotes the dilated convolution, Relu is an
activation function, and K(𝑡−1) denotes the temporal con-
volution kernel. cee |0→t denotes the sequence of event
vectors (be, te, me) from time 0 to t. 𝑯𝑡,𝑒(𝑙) is the spatial
embedding vector for node e at time t after l layers of spa-
tial graph convolutions. [:] represents the concatenation
operation.
The temporal convolutions are performed only locally,

making it possible for multiple nodes to compute in paral-
lel at the same time. Parallel computing helps to promote
the efficiency of training and inference for congestion
prediction in large road networks.

3.5 Integrating spatiotemporal
embeddings into the conditional intensity
function

After embedding spatial correlations and sequence corre-
lations for eachnode in the traffic condition graph,we inte-
grate the embeddings with the conditional intensity func-

tion to enhance the modeling capability of the vanilla spa-
tiotemporal point process model, which needs to account
for the cumulative influences of historical congestion
events at the same node as well as congestion occurring
at other nodes (e.g., downstream nodes). For each node, its
sequence of congestion events is modeled as amarked spa-
tiotemporal point process. Then, the conditional intensity
function for each node at time t+1 can be written as

𝝀∗
𝑒 (𝑏(𝑡+1),𝒎(𝑡+1)|𝒁𝑡) = exp{𝑾𝑏𝑚[𝑏𝑡 ∶ 𝒎𝑡] + 𝑾ℎ𝑯𝑡 + 𝑾𝑧𝒁𝑡

+𝝀𝟎
𝑒 (𝑡 + 1)} (8)

where𝑾𝑏𝑚,𝑾ℎ,𝑾𝑧 are learnable weighting parameters.
𝑏𝑡+1 is a Boolean variable indicating whether congestion
occurs at time t+1. mt+1 is a marked value vector of
predicted congestion events at time t+1. 𝑾𝑏𝑚[𝑏𝑡 ∶ 𝒎𝑡]

describes the influences of the events that occurs at time
t. 𝑯𝑡 encodes the spatial correlations between the studied
nodes and other nodes. 𝒁𝑡 represents the cumulative
influences of historical congestion events. Note that the
influenced nodes may include themselves, neighboring
nodes, and possible distant nodes. 𝜆0 is a constant back-
ground rate of congestion at time t+1. In the right-hand
terms, e is omitted for brevity. The four weighting terms
represent the influences of the current congestion event
at e and the spatial correlations to other nodes, as well as
the cumulative spatiotemporal influences of congestion
events occurring in the vicinity of the considered node.
The future congestion events at each node (i.e., road

segment) can be predicted, including the probability of
congestion and the marked values.

𝑃𝑡+1 [𝑏𝑡+1 = 1|𝝀∗
𝑒 (𝑏𝑡+1,𝒎𝑡+1|𝒁𝑡)]

=
exp[𝑾1𝑡𝝀∗

𝑒 (𝑏𝑡+1, 𝒎𝑡+1|𝒁𝑡) + 𝑩1𝑡]∑2

𝑖 = 1
exp[𝑾𝑖𝑡𝝀∗

𝑒 (𝑏𝑡+1, 𝒎𝑡+1|𝒁𝑡) + 𝑩𝑖𝑡]
(9)

𝒎𝑡+1 = 𝑾𝑚𝑡 𝝀∗
𝑒 (𝑏𝑡+1, ,𝒎𝑡+1|𝒁𝑡) + 𝑩𝑚𝑡 (10)

where𝑾𝑚𝑡, 𝑾1𝑡, and 𝑾𝑖𝑡 are learnableweighting param-
eters and 𝑩1𝑡, 𝑩𝑖𝑡, and 𝑩𝑚𝑡 are bias terms.

3.6 Model training and inference

Let (𝜽𝒃, 𝜽𝒎) be the total loss, which is defined as a joint
loss of two subtasks:

 (𝜽𝒃, 𝜽𝒎) = 𝑚𝑖𝑛
𝜽𝒃,𝜽𝒎

{
𝑙𝑜𝑔𝑃𝑡+1

[
𝑏𝑡+1 = 1 ||𝝀∗

𝑒 (𝑏𝑡+1, 𝒎𝑡+1|𝒁𝑡) ; 𝜽𝒃

]
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

predicting congestion occurrence

+ 𝛽 log 𝑓𝑚

[
𝒎𝑡+1

||𝝀∗
𝑒 (𝑏𝑡+1, 𝒎𝑡+1|𝒁𝑡) ; 𝜽𝒎

]}
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

predicting marked values

(11)
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1188 ZHANG et al.

where 𝛽 is the weight that regulates the contribution of the
two subtasks. 𝑓𝑚(.) is used to compute the cross entropy
loss of themarked value predictions. 𝜽𝒃 and 𝜽𝒎 denote the
learnable parameters of the two subtasks, that is, predict-
ing congestion occurrence and predicting marked values
of congestion events, respectively. These parameters are
specified in Equations (9) and (10).
The pseudocode for the training algorithm is as follows:

ALGORITHM 1 Model training

Inputs: Traffic condition graph 𝒅, traffic congestion graph 𝒈,
historical congestion events𝑡(𝑮𝒈), batch size b, number of
iteration e, loss weight 𝛽

Outputs: optimized 𝜽𝒃, 𝜽𝒎

1. initialize 𝜽𝒃, 𝜽𝒎

2. shuffle training samples
3. for i← 1 ⋯ e :
4. fetch b samples from the training dataset
5. 𝑨𝒈(𝑡) ← {𝒈(𝑡),𝒅(𝑡)} // compute inter-congestion

correlation matrix 𝑨𝒈(𝑡) using Equation (5)
6. 𝑯𝒕← {𝑨𝒈(𝑡),𝒅(𝑡)} //compute pattern-aware spatial

embedding𝑯𝑡 using Equation (6)
7. 𝒁𝑡 ← {𝒈(𝑡),𝒅(𝑡),𝑡(𝑮𝒈(𝑡))} // computer spatio-temporal

embedding 𝒁𝑡 using Equation (7)
8. 𝝀∗

𝑒 ← {𝑯𝒕, 𝒁𝑡} //construct conditional intensity function
using Equation (8)

9. 𝑏𝑡+1,𝒎𝑡+1← {𝝀∗
𝑒 } // predict congestion occurrence & marked

values using Eqs.(9) and (10)
10. 𝜽 = arcmin 1∕𝑏𝜃𝑏,𝜃𝑚

∑𝑏

𝑖=1
(𝑙𝑜𝑔𝑃(𝜃𝑏) + 𝛽𝑙𝑜𝑔𝑓𝑚(𝜃𝑚))

// compute loss
11. compute gradient ∇𝜽

12. 𝜽 ← 𝜽 + ∇𝜽 //update model
13. End

The core of the training procedure (Algorithm 1) is the
construction of the conditional intensity functions for each
road segment. All input data were standardized to a scale
with amean of 0 and a standard deviation of 1. The Apache
Mxnet framework was used to implement the proposed
algorithm. A two-layered GCN (Kipf & Welling, 2017) was
used to embed spatial correlations. The dimensionality of
both the spatial and the comprehensive spatiotemporal
embedding 𝒁𝑡 were set to 64. The temporal convolution
kernel has a size of 1×3. After graph and temporal convolu-
tions, batch normalization was employed to accelerate the
optimization. Sigmoid was used as the activation function.
The loss was optimized for 100 iterations by Adam with a
learning rate of 0.001 and a batch size of 32. Given histori-
cal data for the previous 10 time steps, the task is to predict
the occurrence time and severity level of congestion for the
entire road network of the studied city for the next five time
steps. TCN takes the spatial embeddings of the previous
10 time steps at inputs and learns the comprehensive spa-

tiotemporal embeddings.We performed only one temporal
convolution to produce the comprehensive spatiotemporal
embeddings of historical congestion events. A grid search
was performed using the validation data set to find the best
hyperparameter 𝛽 = 0.1.
Once the model has been trained, it can be used to

predict future congestion, including the occurrence and
marked values of each congestion event in the road net-
work. Figure 4 shows how the learned spatiotemporal
embeddings of congestion events occurring before time
t are integrated with the current embeddings at time t,
and how the integrated embeddings are incorporated into
the conditional intensity function to predict congestion at
time t+1. Note that we separate the embedding of time
t from those at time t+1 because it helps to reduce the
inference time of the spatiotemporal convolutions and to
emphasize the role played by the data of time t. The model
autoregressively predicts future congestion after updating
the traffic condition/congestion graphs and the historical
event sequence.

4 EXPERIMENTAL RESULTS

4.1 Data

The study area is located in Xi’an City, China, which has a
population of nine million. Figure 5 shows the city’s arte-
rial road network, which consists of 2957 road segments.
The congestion index (the ratio of free flow speed over
actual speed) and average speed data for each road seg-
ment were collected from AutoNavi, which is a leading
web mapping and navigation company in China, with a
granularity of 10 min for the entire year of 2018. Missing
data were imputed based on a gated generative adver-
sarial network model (Zhang et al., 2022), which jointly
models the spatiotemporal correlations between road seg-
ments using a specially designed attentional mechanism
and improves the consistency between the imputed data
and the overall data distribution through two subdiscrim-
inators. According to a recently released standard (“road
congestion evaluation metrics”) (TMRI & Tongji, 2020),
a congestion event is identified based on the difference
between the actual traveling speed and the limited speed.
When the average traveling speed falls below the speci-
fied speed threshold, a congestion event occurs. Based on
the actual speed, congestion events can be categorized into
three levels: light, medium, and severe congestion. Con-
gestion event data were collected for all road segments
to build historical congestion event sequences. Traffic
condition and congestion graphs were then constructed
according to the definitions in Section 3.1. Speed data
were used to construct traffic feature vectors for the graph
nodes.
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ZHANG et al. 1189

F IGURE 4 Autoregressive prediction of congestion.

F IGURE 5 Road network in Xi’an City. Road segments are
rendered in four colors to indicate different levels of congestion
(severe congestion, medium congestion, light congestion, and free
flow).

All experiments were conducted on a desktop machine
with a 3.7 GHz Intel R© i7-9700K processor, 32 GB of mem-
ory, and an Nvida GeForce RTX R©2080 Ti graphics card.
The data set was split into training (60%), validation (10%),
and test (30%) data sets.

4.2 Baselines

Five baseline models were selected for comparison. One
baseline is a classical time series model, two baselines are
point process models, and the remaining two are typical
spatiotemporal GCNs.
Details of these baselines are as follows:

1. autoregressive integratedmoving average (ARIMA;Box
and Jenkins, 1970), which is a classical time-series
model;

2. self-attentive Hawkes process (SAHP; Zhang, Lipani,
et al., 2020), which uses a self-attention mechanism
to integrate historical event information into the con-
ditional intensity function. The attention mechanism
captures only temporal evolutionary information,while
spatial correlations are not modeled;

3. transformer Hawkes process (THP; Zuo et al., 2020),
which integrates the transformer with the Hawkes
process to capture both long-term and short-term
interevent dependencies;

4. attention-based spatial–temporal graph convolutional
network (ASTGCN; Guo et al., 2019), which uses spa-
tiotemporal attention and spatiotemporal graph con-
volutions to explicitly model the dynamics of traffic
flows;

5. dynamic spatial–temporal aware graph neural network
(DSTAGNN; Lan et al., 2022), which relies on dynamic
spatial–temporal graphs to better capture complex
spatial–temporal correlations in road networks through
an enhancedmultihead attentionmechanism andmul-
tiscale gated convolution.

In addition to the above baselines, three variants of the
proposedmodel were tested to evaluate the contribution of
the different components.

1. DMGP(S): the temporal embedding component
is removed. The purpose of testing this variant is
to evaluate the benefits of sequence correlation
modeling.

2. DMGP(T): the graph convolutional layer is removed.
The testing of this variant is to evaluate the con-
tribution of spatial correlation embedding in
capturing heterogeneous propagation patterns of
congestion;

3. DMGP(G): the time-varying correlation matrix 𝑨𝒈(𝑡) is
not included in Equation (6), whichmeans that pattern-
aware capability is not realized in the GCN.
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1190 ZHANG et al.

TABLE 1 Performance comparison of predicted congestion severity index during weekday peak-hours.

Horizon Metrics ARIMA DSTAGNN SAHP THP ASTGCN DMGP (S) DMGP (T) DMGP (G) DMGP
1 MAE 0.27 0.25 0.31 0.29 0.27 0.28 0.24 0.21 0.16

RMSE 0.68 0.53 0.64 0.61 0.56 0.59 0.53 0.45 0.35
MAPE (%) 15.41 14.05 17.18 16.08 14.80 15.07 13.02 11.11 8.70

2 MAE 0.30 0.26 0.31 0.30 0.29 0.28 0.25 0.22 0.19
RMSE 0.76 0.53 0.64 0.62 0.57 0.60 0.54 0.49 0.43
MAPE (%) 16.99 14.43 16.90 16.06 16.07 15.15 13.08 11.38 10.52

3 MAE 0.32 0.26 0.33 0.30 0.29 0.29 0.25 0.23 0.22
RMSE 0.81 0.54 0.66 0.63 0.57 0.61 0.55 0.51 0.47
MAPE (%) 18.01 14.64 17.58 16.17 16.20 15.47 13.15 12.09 11.67

4 MAE 0.33 0.27 0.33 0.30 0.30 0.29 0.25 0.25 0.24
RMSE 0.82 0.55 0.67 0.65 0.57 0.62 0.56 0.55 0.51
MAPE (%) 18.31 14.82 17.59 16.18 16.24 15.36 13.19 12.98 12.59

5 MAE 0.34 0.28 0.33 0.31 0.29 0.29 0.26 0.25 0.23
RMSE 0.83 0.56 0.67 0.66 0.57 0.64 0.57 0.54 0.53
MAPE (%) 18.57 15.43 17.43 16.04 15.68 15.22 13.66 12.84 12.84

TABLE 2 Performance comparison of predicted congestion severity index during weekend peak-hours.

Horizon Metric ARIMA DSTAGNN SAHP THP ASTGCN DMGP (S) DMGP (T) DMGP (G) DMGP
1 MAE 0.30 0.25 0.32 0.31 0.28 0.30 0.25 0.19 0.15

RMSE 0.81 0.53 0.67 0.64 0.56 0.62 0.54 0.41 0.33
MAPE (%) 18.71 13.63 16.71 16.50 15.15 15.74 13.29 10.17 8.27

2 MAE 0.33 0.25 0.32 0.31 0.30 0.30 0.26 0.20 0.18
RMSE 0.87 0.54 0.68 0.65 0.57 0.63 0.56 0.45 0.40
MAPE (%) 20.06 13.56 16.63 16.30 16.26 15.66 13.42 10.53 9.84

3 MAE 0.35 0.25 0.33 0.32 0.30 0.31 0.26 0.22 0.20
RMSE 0.92 0.54 0.70 0.66 0.57 0.64 0.57 0.49 0.44
MAPE (%) 20.89 13.43 17.09 16.38 16.34 15.92 13.35 11.55 10.86

4 MAE 0.36 0.25 0.33 0.31 0.30 0.31 0.26 0.25 0.22
RMSE 0.94 0.55 0.71 0.68 0.58 0.66 0.57 0.53 0.48
MAPE (%) 21.25 13.31 16.90 16.39 16.38 15.78 13.25 12.69 11.79

5 MAE 0.37 0.26 0.34 0.32 0.29 0.31 0.27 0.23 0.23
RMSE 0.95 0.56 0.72 0.71 0.58 0.69 0.58 0.53 0.52
MAPE (%) 21.60 13.82 16.94 16.20 15.74 15.77 13.75 11.53 12.09

4.3 Results

4.3.1 Quantitative evaluation

The following performance metrics were used in the
experiments.

4.3.2 Congestion severity index

The congestion severity index is predicted as the marked
value of the proposed model. To measure the prediction

performance, we used three commonly used error mea-
sures, including themean average error (MAE), root mean
square error (RMSE), and mean average percentage error
(MAPE).

4.3.3 Occurrence time of congestion events

Predicting whether a congestion event will occur at a
given time can be considered as a binary classification
problem. Therefore, the F1 score and the area under the
receiver operating characteristic curve (AUC) were used as
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ZHANG et al. 1191

TABLE 3 Performance comparison of predicted occurrence
times during weekday peak-hours.

Prediction horizon
1 2 3 4 5

F1 score ARIMA 0.88 0.87 0.86 0.86 0.86
DSTAGNN 0.89 0.89 0.89 0.88 0.88
SAHP 0.65 0.64 0.59 0.57 0.59
THP 0.73 0.71 0.70 0.68 0.67
ASTGCN 0.89 0.89 0.87 0.87 0.85
DMGP(S) 0.74 0.72 0.71 0.68 0.67
DMGP(T) 0.87 0.87 0.86 0.86 0.85
DMGP(G) 0.89 0.88 0.87 0.85 0.86
DMGP 0.92 0.90 0.88 0.87 0.86

AUC ARIMA 0.85 0.84 0.83 0.83 0.83
DSTAGNN 0.85 0.85 0.84 0.84 0.83
SAHP 0.70 0.70 0.65 0.65 0.67
THP 0.76 0.75 0.75 0.74 0.73
ASTGCN 0.88 0.88 0.87 0.86 0.83
DMGP(S) 0.78 0.77 0.76 0.74 0.73
DMGP(T) 0.85 0.84 0.84 0.84 0.83
DMGP(G) 0.87 0.85 0.84 0.81 0.84
DMGP 0.91 0.88 0.87 0.85 0.84

TABLE 4 Performance comparison of predicted occurrence
times during weekend peak-hours.

Prediction horizon
1 2 3 4 5

F1 score ARIMA 0.86 0.86 0.85 0.85 0.84
DSTAGNN 0.89 0.90 0.89 0.89 0.89
SAHP 0.75 0.76 0.74 0.73 0.76
THP 0.76 0.74 0.72 0.69 0.66
ASTGCN 0.87 0.87 0.86 0.86 0.85
DMGP(S) 0.76 0.74 0.73 0.70 0.67
DMGP(T) 0.89 0.89 0.88 0.88 0.87
DMGP(G) 0.91 0.90 0.89 0.87 0.88
DMGP 0.93 0.91 0.90 0.89 0.88

AUC ARIMA 0.83 0.82 0.82 0.81 0.81
DSTAGNN 0.86 0.86 0.86 0.86 0.84
SAHP 0.72 0.72 0.67 0.67 0.69
THP 0.79 0.78 0.77 0.75 0.73
ASTGCN 0.85 0.85 0.85 0.84 0.84
DMGP(S) 0.79 0.78 0.78 0.76 0.74
DMGP(T) 0.88 0.88 0.87 0.87 0.86
DMGP(G) 0.90 0.88 0.87 0.85 0.86
DMGP 0.92 0.90 0.89 0.87 0.86

performance evaluation criteria. The values of both met-
rics range from 0 to 1. High values of F1 score and AUC
indicate better performance. Since the traffic data were
collected at a granularity of 10 min, the length of the pre-
diction horizon is a multiple of 10 min, that is, from 10 to
50 min.
The first test was to evaluate the performance of the pro-

posed prediction model against the ground truth data for
two different scenarios: weekday peak-hours and weekend
peak-hours. The results of the next five time steps, includ-
ing themarked congestion severity indices and occurrence
times, are reported in Tables 1–4, which indicate that (1)
the proposed DMGPmodel provides the bestMAE, RSME,
and MAPE metrics for congestion severity indices in all
scenarios; (2) the proposed model outperforms the base-
lines and its variants in predicting the occurrence times
in most cases; (3) the overall performance of the weekend
peak-hours is superior to that of the weekday peak-hours,
which can probably be attributed to the large variability
of traffic flow on weekdays; and (4) the DSTAGNN model
has the best performance among all the baselines due to
its ability to capture dynamic spatiotemporal correlations
in the traffic data. ARIMA fails to capture complex con-
gestion patterns and performed the worst in predicting
congestion severity indices. The worst data-driven model
is SAHP, which relies only on the attention mechanism for
temporal modeling and neglects historical temporal corre-
lations as well as spatial correlations. THP, which uses an
attention mechanism to model both spatial and temporal
correlations, outperforms SAHP. However, it is inferior to
ASTGCN because it does not account for the topological
structure of the road network as ASTGCN does.
For all models in Tables 1 and 2, the errors for the

short-term predictions (horizon = 1 or 2) are generally
lower than those for the medium- and long-term fore-
casts (horizon = 3, 4 or 5), which can be expected since
traffic states with high forecasting horizons are challeng-
ing to model. Compared to the weekday peak-hours, the
DMGP model performs slightly better for the weekend
peak-hours, probably because extremely heavy congestion,
which is challenging to predict, is less likely to occur on
weekends.
We further compare the error distributions of DMGP

and two competitive baselines for all road segments. As
Figure 6 shows, the error distribution of DMGP is consis-
tently smaller than that of the two baselines for different
predictive horizons, demonstrating its robustness under
different traffic conditions.
As shown in Tables 3 and 4, the predictions results of

the congestion occurrence time are similar to those of the
congestion severity index: The accuracies of all the mod-
els gradually decrease with the increase of the prediction
horizon, and the results for weekdays are slightly worse
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1192 ZHANG et al.

F IGURE 6 Distributions of prediction errors for the
congestion severity index during the weekend peak-hours.

TABLE 5 Performance comparison of predicted congestion
severity indices on weekdays at different congestion levels (MAPE,
%).

Light Medium severe
1 3 5 1 3 5 1 3 5

THP 10.60 10.42 10.31 14.08 13.80 13.31 28.18 28.99 30.05
ASTGCN 13.74 15.36 14.79 13.20 14.78 14.09 24.20 24.85 23.96
DSTAGNN 12.78 12.92 13.41 15.36 15.89 16.79 31.05 30.68 29.34
DMGP(S) 10.63 10.83 10.83 12.09 12.45 11.43 26.11 26.47 27.71
DMGP(T) 8.21 8.54 9.02 13.01 13.00 13.67 22.59 23.37 23.73
DMGP(G) 7.47 7.14 7.32 10.94 11.59 11.39 19.93 23.41 23.24
DMGP 6.47 8.25 8.33 8.56 11.40 12.69 14.89 20.66 23.90

than those for weekends. The proposed DMGP model and
the two spatiotemporal graph neural network models (i.e.,
DSTAGNN and ASTGCN) outperform the two Hawkes
Process models (i.e., SAHP and THP) by a large margin,
indicating that graph neural networks are quite effective
in the representation of congestion events. In some cases,
DMGP is slightly inferior to DSTAGNN. However, the
spatiotemporal attention blocks of DSTAGCNN are much
more complex and computationally expensive than the
congestion embedding network of DMGP. Interestingly,
ARIMA yields competitive results compared to advanced
graph neural network models, suggesting that the occur-
rence of congestion may exhibit some regular temporal
patterns.
In the second test, the performance of DMGP was eval-

uated for three congestion severity levels on weekdays, as
shown in Tables 5–6. It can be observed that (1) the pre-
diction performance degrades as the congestion becomes
more severe and rarer, making it more difficult to cap-
ture long-range spatiotemporal correlations between rare
events; (2) the performance gains of the proposed DMGP
over the compared baselines under light congestion are not
as significant as the gains under moderate and severe con-
gestion, indicating that DMGP can quickly adapt to large
changes in traffic conditions and effectively use the traffic
evolution information from the limited samples of mod-
erate and severe congestion events; and (3) both spatial

TABLE 6 Performance comparison of predicted congestion
occurrence times on weekdays at different congestion levels (AUC).

Light Medium Severe
1 3 5 1 3 5 1 3 5

THP 0.69 0.68 0.68 0.71 0.70 0.68 0.75 0.79 0.64
ASTGCN 0.86 0.85 0.85 0.82 0.81 0.79 0.85 0.83 0.81
DSTAGNN 0.76 0.76 0.75 0.75 0.74 0.73 0.68 0.70 0.73
DMGP(S) 0.70 0.69 0.66 0.69 0.68 0.65 0.76 0.81 0.60
DMGP(T) 0.82 0.81 0.80 0.80 0.79 0.78 0.84 0.83 0.82
DMGP(G) 0.83 0.83 0.83 0.81 0.79 0.79 0.85 0.85 0.82
DMGP 0.85 0.83 0.83 0.86 0.81 0.79 0.88 0.85 0.82

and temporal correlations are indispensable for congestion
prediction, as evidenced by the poor performance of THP
and DMGP(S), which only consider temporal correlations
between congestion events.

4.3.4 Ablation studies

Ablation studies were conducted to evaluate the benefits of
the different components of the proposed model. Accord-
ing to the results presented in Tables 1–6, the variant
model DMGP(S) achieves the worst performance among
all the variants and is sometimes even inferior to some
of the baselines because it only captures the spatial cor-
relations of congestion events without accounting for the
temporal dependencies, which are critical for modeling
congestion events. DMGP(T) achieves better performance
than DMGP(S), suggesting that temporal embeddings play
amore important role than spatial embeddingswhenmod-
eling historical congestion events. Compared to DMGP(T),
the DMGP(G) model yields a higher prediction accuracy
because it can better capture the changes of congestion pat-
terns via the integration of the time-varying dynamic corre-
lationmatrix𝑨𝒈(𝑡) in the pattern-aware graph convolution
layer.
As shown in the above results, the temporal embed-

ding component, the graph convolutional layer, and the
time-varying correlation matrix are essential to improve
the predictive performance of the proposed DMGPmodel.
The full model leverages a pattern-aware spatiotemporal
GCN to capture stochastic and heterogeneous propagation
patterns of congestion based on a traffic condition graph
and a traffic congestion graph, thus addressing the chal-
lenges of short-term traffic congestion forecasting for large
signalized road networks.

4.3.5 Qualitative results

Qualitative prediction results of the proposed model can
be presented using the road network of Xi’an City. From
Figure 7, it can be observed that the congestion events
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ZHANG et al. 1193

F IGURE 7 Examples of predicted congestion during the morning peak hour (7:30–9:00 a.m.) in Xi’an City. First row: ground truth;
second and third rows: the difference between the congestion severity level predicted by deep marked graph process (DMGP)/attention-based
spatial–temporal graph convolutional network (ASTGCN) and the ground truth.

predicted by the proposed model evolve closely to the
ground truth.More importantly, it can be observed that the
proposedmodel performs consistentlywell under different
congestions severity levels, demonstrating its robustness to
different traffic conditions. As shown in Figure 7e, the pro-
posed DMGP model slightly underestimates the severity
of congestion on some heavily congested roads. The pre-
diction errors of ASTGCN is significantly larger than that
of DMGP under different traffic conditions throughout the
city, (Figure 7g–i).
The experimental results show that the proposed pre-

diction model can capture realistic evolution patterns of
congestion better than the compared baselines, whichmay
be due to the integration of spatiotemporal correlations
into the point process model. The integration of learned
spatiotemporal embeddings with the conditional inten-
sity function accounts for both temporal dependencies
of historical congestion events and the spatial correla-
tions between neighboring roads. With a limited number
of congestion events in the training data set, the pro-
posed model still manages to produce good prediction
results and demonstrates better generalization than the

baselines through the integration of the point process
framework and the spatiotemporal GCN, which naturally
impose some forms of prior bias and relational induc-
tive bias (Battaglia et al., 2018). Our model is a two-task
learning scheme that uses shared parameters and features
to jointly optimize the prediction of congestion occur-
rence and severity. The proposed model predicts both the
occurrence time and the severity index, which facilitates
tracking and analyzing the evolution of congestion events.
We also evaluated the time cost of the proposed model.

In our experiments, the training time cost of the DMGP
model was about 7217 s (slightly more than 2 h), while a
typical test (weekday peak-hours) took about 4.0 s, suggest-
ing that the DMGP model can be scaled up to large road
networks.

5 CONCLUSION

This paper has introduced a DMGP model for predicting
the congestion severity indices and the occurrence
time of traffic congestion events for large urban
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signalized road networks. The proposed prediction
approach integrates a spatiotemporal convolutional graph
network with the conventional point process model,
accounting for stochastic and heterogeneous evolutionary
patterns of traffic congestion. Our model outperforms
existing baselines and achieves superior prediction results
and computational efficiency on a real-world traffic
congestion data set. Congestion management is critical
for intelligent transportation systems. The proposed
congestion prediction model can be practically used to
support both real-world advanced traffic management
and traveller information systems. The proposed model
can make relatively accurate predictions of the occurrence
time and severity of congestion on a citywide scale,
thereby facilitating responsive and intelligent control of
traffic signals. Congestion information can also be used to
estimate travel times online, thus helping to find person-
alized optimal routes. The model also helps to understand
the underlying driving factors of recurrent congestion,
which is also important for transportation management
authorities to take appropriate measures to improve
the management of traffic supply and demand, such as
promoting the use of public transportation, car-pooling,
high-occupancy vehicle lanes, and developing optimal
pricing policies.
However, the practical application of the proposed

model may face data challenges as high-quality citywide
traffic data may not be available for all road segments.
Therefore, error-tolerant prediction methods are worth of
scrutiny in the future. We will continue to improve the
dynamic GCN to better capture the evolution and interac-
tion patterns of congestion events. More advanced meth-
ods will be explored to integrate congestion embeddings
with the point process model, such as neural dynamic
classification (Rafiei & Adeli, 2017) or dynamic ensemble
learning (Alam et al., 2020), which are computationally
efficient and excel at modeling traffic dynamics and cap-
turing volatile congestion patterns. Weather and event
information can be collected and incorporated into the
proposed model to enhance predictive performance.
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