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A B S T R A C T   

This study explores the potential of integrating satellite retrievals of surface soil moisture (SSM) and vegetation 
conditions into the Noah-MP land surface model. In total, five data assimilation (DA) experiments were carried 
out. One of the experiments only assimilates SSM retrievals from the Soil Moisture Active Passive mission, two 
experiments only assimilate retrievals of vegetation conditions: either optical retrievals of leaf area index (LAI) 
from the Copernicus Global Land Service, or X-band microwave-based retrievals of vegetation optical depth 
(VOD) from the Advanced Microwave Scanning Radiometer 2. Additionally, two joint DA experiments are 
performed, each incorporating SSM and one of the vegetation products. The DA experiments are compared with a 
model-only run, and all experiments are evaluated using independent ground reference data of soil moisture, 
evapotranspiration, net ecosystem exchange and gross primary production (GPP). Assimilating only SSM im-
proves estimates of the soil moisture profile (median SSM anomaly correlation improves with 0.02 compared to a 
model-only run), whereas assimilating LAI predominantly improves GPP estimates (reduction in median RMSD 
of 0.024 gC m− 2 day− 1 compared to a model-only run). The joint assimilation of SSM and vegetation conditions 
captures both of these improvements in a single, physically consistent analysis product. The DA increments show 
that this combined setup allows one satellite product to compensate for potential degradations introduced into 
the system by the other product. Furthermore, the joint SSM and VOD DA experiment has the smallest ensemble 
spread in its estimates (21% reduction in SSM spread compared to a model-only run). Overall, our results un-
derline the potential of multi-sensor and multivariate DA, in which information from different sources is com-
bined to improve the estimates of several land surface states and fluxes simultaneously.   

1. Introduction 

The importance of soil moisture and vegetation in hydrological 
processes and land-atmosphere interactions is well-known (Seneviratne 
et al., 2010; Mahfouf, 2010; Kumar et al., 2022). Soil moisture is the 
water source for plant transpiration, which contributes to the exchange 
of energy, water, and carbon between the atmosphere and the land 
surface and vice versa (Powell et al., 2013; Bonan, 2019). Soil moisture 
and vegetation on the land surface can be estimated using a range of 
satellite instruments measuring at various wavelengths of the electro-
magnetic spectrum (Balsamo et al., 2018). However, satellite observa-
tions have the disadvantage of having temporal and spatial 
discontinuities while not being able to measure fluxes directly (Dorigo 

et al., 2021a). An alternative way to describe the land surface is to use 
land surface models (LSMs) to simulate energy, water, and carbon fluxes 
at the surface and in the root zone. LSMs allow to produce physically 
consistent estimates of geophysical variables at any time and location 
(Srinivasan et al., 2000), but individual fields may have large un-
certainties (Koster et al., 2002; Dirmeyer et al., 2004; Seneviratne et al., 
2016). 

Data assimilation (DA) can be used to constrain LSM estimates using 
remotely sensed observations, combining both sources of information to 
obtain physically consistent, gap-free estimates of any variable such as 
soil moisture, evapotranspiration, and sensible heat fluxes (Lahoz and 
De Lannoy, 2014). In this study, two multi-sensor (using products from 
different satellites) and multivariate (directly updating multiple 
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variables within the LSM) DA systems are introduced. These systems 
allow constraining of the LSM estimates from both the hydrological and 
vegetative fronts. Previous studies, e.g., Scherrer et al. (2023), have 
shown that constraining the LSM using only a single variable (e.g., 
vegetation) can degrade the results in another variable (e.g., soil mois-
ture) in some areas. Crow et al. (2024) explain such a degradation with 
the presence of water state–water flux coupling strength biases existing 
in LSMs. Constraining multiple variables with observations may help to 
overcome this issue (De Lannoy et al., 2022). The following three par-
agraphs discuss earlier research on the assimilation of retrievals that are 
also assimilated in this study. 

Surface soil moisture (SSM) refers to moisture in the upper few 
centimeters of the soil and can be derived from remotely sensed obser-
vations in the microwave spectrum (Kerr et al., 2010; Paloscia et al., 
2013; Entekhabi et al., 2014; Dorigo et al., 2017). SSM DA has been 
widely used to improve soil moisture profile estimates, either by using 
backscatter or brightness temperatures (e.g., Loew et al., 2009; De 
Lannoy and Reichle, 2016a,b; Lievens et al., 2017; Reichle et al., 2019) 
or by directly using SSM retrievals from active or passive microwave 
sensors (e.g., Reichle and Koster, 2005; Draper et al., 2012; Kumar et al., 
2014; Lievens et al., 2015; Heyvaert et al., 2023). Because of the 
different nature of SSM estimated by LSMs and satellite sensors, sys-
tematic biases between the model and the observations are typically 
removed prior to assimilation, e.g., by using climatological or seasonal 
cumulative density function (CDF) matching (Reichle and Koster, 2004; 
Barbu et al., 2014; Heyvaert et al., 2023). 

Leaf area index (LAI) is a measure of the amount of leaf material in a 
canopy and is calculated as the ratio of the single-sided leaf area to the 
ground area. It can be determined using optical sensors (Fang et al., 
2019), and has been assimilated into different land surface models for 
applications focusing on hydrology or vegetation. Like for SSM, biases 
between observed and simulated LAI are omnipresent. Some studies 
therefore rescale the LAI prior to assimilation in order to remove the bias 
(e.g., Jarlan et al., 2008; Khaki et al., 2020). However, several other 
studies opt to assimilate the LAI as is (Barbu et al., 2014; Albergel et al., 
2017; Kumar et al., 2019; Erlingis et al., 2021; Rahman et al., 2022b). 
Scherrer et al. (2023) examined the impact of bias between observed 
and modeled LAI on the DA system, and showed that it can cause the 
model to move away from its equilibrium state and drift between update 
steps. Therefore, the LAI observations in this work have been rescaled to 
ensure an unbiased system. 

Vegetation optical depth (VOD) is an indicator of the total water 
content stored in above-ground vegetation (Mo et al., 1982; Jackson and 
Schmugge, 1991). It can be retrieved from different satellite sensors in 
the microwave spectrum and for different frequency bands (e.g., L-, C-, 
X-, and Ku-band). The sensitivity of VOD to different parts of the vege-
tation depends on the frequency band. The high-frequency bands 
(X/Ku-band) are mainly sensitive to the upper parts of the canopy, i.e., 
leafs, and are highly correlated with optical vegetation indices such as 
LAI (Moesinger et al., 2020). Low-frequency bands (L-band) mostly 
penetrate the upper canopy and are more sensitive to woody vegetation 
(Frappart et al., 2020). 

Kumar et al. (2020, 2021) have previously assimilated X-band VOD 
and C-band VOD from the VOD Climate Archive (VODCA; Moesinger 
et al., 2020) and L-band VOD from Soil Moisture Active Passive (SMAP) 
into the Noah-MP LSM to obtain better LAI estimates. Since Noah-MP 
does not directly model VOD, they used monthly CDF matching to a 
reference LAI as an observation operator, i.e., they replaced the VOD 
climatology with the climatology of the reference LAI and only used the 
VOD anomalies from the mean seasonal cycle. 

Mucia et al. (2022) used a similar approach, but using the Land Data 
Assimilation System (LDAS)-Monde (Albergel et al., 2017) platform with 
a simplified extended Kalman filter (SEKF), and replacing the CDF 
matching with a monthly linear rescaling. In our study, we develop a 
custom observation operator that maps root-zone soil moisture (RZSM) 
and LAI to X-band VOD, based on previous studies that discuss the 

relation of VOD with other land components (Momen et al., 2017; 
Rodríguez-Fernández et al., 2018; Konings et al., 2019; Vermunt et al., 
2020; Bousquet et al., 2021; Liu et al., 2021). 

The novelty of this paper lies in the development of a multivariate, 
multi-sensor DA system, which has been expressed as a priority within 
the land DA community (Durand et al., 2021; De Lannoy et al., 2022) 
because it allows to constrain more variables related to the water cycle 
(Girotto et al., 2019) and to improve the temporal coverage of obser-
vations that go into the DA system (Kumar et al., 2022). To our 
knowledge, this is the first time that SSM and X-band VOD retrievals 
from different sensors are simultaneously assimilated over Europe using 
a VOD observation operator that links both modeled RZSM and LAI to 
observation predictions of VOD. Among other things, this allows for a 
detailed evaluation of how soil moisture updates from different satellite 
products interact with each other. In addition, we explore the potential 
of the joint SSM and VOD DA system to improve estimates of the soil 
moisture profile and land surface fluxes. We compare the novel joint 
SSM and VOD assimilation to a system that jointly assimilates SSM and 
LAI. Assimilating LAI instead of VOD is arguably a simpler approach, 
since LAI is directly modeled by an LSM with dynamic vegetation 
growth. Several studies have already jointly assimilated SSM and LAI (e. 
g., Albergel et al., 2017; Xu et al., 2021; Rahman et al., 2022a), and this 
experiment serves in the first place as a benchmark to assess how a joint 
assimilation of SSM and VOD compares to a joint assimilation of SSM 
and LAI. The VOD observations have the advantage of a better temporal 
revisit and the potential of a multivariate state update, i.e., to improve 
the soil moisture as well, since VOD is related to the water content in the 
vegetation - which in turn is linked to water in the root zone. 

The paper is organized as follows. The different DA experiments are 
introduced in section 2 in terms of the used model settings, satellite 
retrievals, and DA setup. This section also introduces the VOD obser-
vation operator. The results comparing the different experiments are 
described in section 3 and discussed in section 4. The main conclusions 
are summarized in section 5. 

2. Material & methods 

2.1. Model configuration and study area 

For this study, we use the Noah-MP LSM (Niu et al., 2011; Yang et al., 
2011) version 4.0.1, implemented within the NASA Land Information 
System (LIS; Kumar et al., 2006; Peters-Lidard et al., 2007). Noah-MP 
has been constrained by retrievals of SSM (e.g., Kumar et al., 2014; 
Ahmad et al., 2022; Heyvaert et al., 2023), LAI (Kumar et al., 2019; 
Erlingis et al., 2021; Rahman et al., 2022b; Scherrer et al., 2023), and 
VOD (Kumar et al., 2020, 2021) in multiple earlier studies. The model 
simulates soil moisture in four layers with depths 0–10 cm, 10–40 cm, 
40–100 cm, and 100–200 cm, which we denote by SMi (i = 1, …, 4). The 
SSM corresponds to SM1. The RZSM corresponds to the top 100 cm of the 
soil and is computed as the weighted average of the first three layers, 
using the thickness of the layers as weights. The dynamic vegetation 
option, using the maximum vegetation fraction, is enabled in the model. 
Vegetation carbon is simulated in four carbon mass pools: leafs, green 
stems, woody biomass, and fine roots. Leaf mass is directly related to LAI 
through a fixed specific leaf biomass parameter dependent on land 
cover. 

The model simulations are performed from 1 April 2015 through 31 
December 2022 over the Euro-Mediterranean region (ranging from 
29.875◦N, 11.375◦W to 71.625◦N, 40.125◦E) on a regular latitude- 
longitude grid with a spatial resolution of 0.25◦. Fig. S1 in the supple-
ment provides an overview of the domain and shows that it has varying 
conditions in terms of soil moisture, vegetation, and land cover. The 
model integration time step is 15 min and daily averaged model output 
is used for evaluation. The experiments in this study are carried out after 
a thirty-year spin-up to obtain a reliable climatology of all variables. The 
final months of the spin-up period (1 January 2013 through 31 March 
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2015) also include a spin-up of the model ensemble members using the 
perturbation settings described in section 2.4. 

Land cover, soil texture, elevation maps, and parameter tables are 
taken from the NASA Center for Climate Simulation (NCCS) data portal 
(Tian et al., 2008), as described in more detail in Scherrer et al. (2023). 
As meteorological forcing, the lowest model level forecasts of the 
fifth-generation European Center for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis (ERA5; Hersbach et al., 2020) are used. This 
dataset, with a resolution of 0.25◦, is matched to our grid using bilinear 
interpolation. 

2.2. Satellite retrievals for assimilation 

2.2.1. SMAP surface soil moisture 
Version 8 of the SMAP Level-2 (L2) SSM retrievals (Chan et al., 2016; 

O’Neill et al., 2021), which are derived from L-band radiometer mea-
surements, is used for SSM DA. These retrievals represent the top 5 cm of 
the soil. Both descending and ascending overpasses are used, which 
correspond to local collection times of 06:00 and 18:00 h, respectively. 
The SMAP L2 data are provided on the 36 km Equal-Area Scalable Earth 
Grid, Version 2.0 (EASE-Grid 2.0; Brodzik et al., 2012) which is 
resampled via nearest neighbor approach to the model grid before 
assimilation. Conservative masking is applied, meaning that only re-
trievals with a recommended quality (i.e., excluding observations 
accompanied by flags for radiofrequency interference (RFI), urban area, 
mountainous terrain, and dense vegetation) are used. Additionally, 
model-based masking is applied so that no assimilation takes place over 
frozen or snow-covered soils, and meteorological masking is applied so 
that no assimilation takes place or during rainfall events exceeding 
0.0108 mm h− 1. Finally, retrievals are only assimilated if a sufficiently 
robust monthly CDF matching can be applied (Heyvaert et al., 2023). 
Fig. 1a shows the total amount of assimilated observations and reveals 
that several areas in the domain (Italy, the Alps and Carpathians, 
northeastern Europe, and most of Scandinavia) are masked. This means 
that in these areas no SMAP retrievals are assimilated and land surface 
estimates are purely model-based, also in the SSM DA experiment. 

2.2.2. CGLS LAI 
For the LAI DA, the Copernicus Global Land Service (CGLS) LAI 

product version 1 (Verger et al., 2014) is used, which is derived from the 
Ocean and Land Color Instrument (OLCI) onboard Sentinel-3 and from 
the Project for On-Board Autonomy - Vegetation (PROBA-V) satellite. 
The product is provided approximately every 10 days with a 300 m 
spatial resolution, and was upscaled to the model grid by averaging over 
model grid cells, and seasonally rescaled to the model climatology as in 
Scherrer et al. (2023). Fig. 1b shows that CGLS LAI retrievals are not 
assimilated over bare ground (e.g., the Sahara desert), where the 
modeled LAI is zero by definition. 

In addition to this, the number of assimilated observations Nobs has a 
latitudinal dependence due to seasonal snow cover, with fewer obser-
vations over Scandinavia compared to the rest of Europe. Also, note that 

Nobs is an order of magnitude larger for SMAP SSM than for CGLS LAI 
due to the 10-day resolution of the latter. 

2.2.3. AMSR2 VOD 
For the VOD DA, the Advanced Microwave Scanning Radiometer 2 

(AMSR2) X-band VOD (10.65 GHz) retrievals of the Land Parameter 
Data Record algorithm (LPDR; Du et al., 2017a,b) version 3 are used. 
Data are provided as daily images on a global EASEv2.0-Grid format 
with 25 km spatial resolution. For consistency with the model output, 
the data were resampled to a 0.25◦ regular grid. Only night-time re-
trievals are used, as these are typically more robust (e.g., Moesinger 
et al., 2020, 2022) and are often assumed to represent an equilibrium 
state of plant hydraulics (Liu et al., 2021). This corresponds to the 
descending overpass at 01:30 h local time. Since VOD is not a prognostic 
or diagnostic variable modeled by Noah-MP, an observation operator 
was developed to map the modeled RZSM and LAI to VOD. This is dis-
cussed in the next section. 

Fig. 1c shows that no observations are assimilated in England and 
Italy, mainly due to missing retrievals caused by RFI. Parts of Russia and 
Ukraine are also masked due to the poor performance of the observation 
operator in these regions (section 2.3). Similarly to CGLS LAI, no re-
trievals are assimilated over bare ground. 

2.3. VOD observation operator 

Kumar et al. (2020) - and based on this study, Mucia et al. (2022) - 
assimilated VOD by monthly CDF-matching VOD observations to LAI 
values of a reference product. That is, they created 12 different obser-
vation operators, one for each month. This approach implicitly removes 
the mean seasonal cycle of the VOD observations, and replaces it with 
the reference LAI’s mean seasonal cycle. Therefore, the approach (i) 
only uses the anomaly information of the VOD observations and (ii) is 
only unbiased if the reference LAI is unbiased with respect to the model. 
The latter is not always the case, as shown in Scherrer et al. (2023), for 
example. 

Our approach differs from Kumar et al. (2020) in three main aspects: 
(i) instead of creating separate observation operators for each month, we 
create a single model valid for all months, (ii) we do not use an external 
‘reference LAI’ product but only modeled LAI and therefore obtain an 
unbiased DA system, and (iii) we also account for the dependence of 
VOD anomalies on RZSM anomalies. Both dependencies are modeled via 
a linear dependence as follows: 

VOD′ = α⋅LAI′ + β(LAI,RZSM)⋅RZSM′, (1)  

where the prime symbol denotes the anomalies, α is a long-term time- 
invariant fitted parameter and β(LAI, RZSM) is a time- and state- 
dependent coefficient that links the night-time VOD anomalies and 
RZSM anomalies in Equation (1) based on current RZSM and LAI: 

β(LAI,RZSM) = β0 + β1⋅LAI + β2⋅RZSM + β3⋅RZSM⋅LAI, (2)  

Fig. 1. Number of assimilated observations Nobs for the three satellite products between 1 April 2015 and 31 December 2022: (a) SMAP SSM, (b) CGLS LAI, and (c) 
AMSR2 VOD. No assimilation is performed over the white masked grid cells. 
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with long-term time-invariant fitted parameters βi. 
In situations with little vegetation, VOD is more sensitive to the ef-

fects of rain, such as interception (Vermunt et al., 2020) and surface 
ponding or flooding (Bousquet et al., 2021). The latter can lead to strong 
decreases in VOD; therefore, we expect a negative relationship between 
VOD anomalies and RZSM anomalies for low LAI and high RZSM. In 
contrast, for high LAI, when the vegetation is fully developed and active, 
the VOD is more sensitive to vegetation water content (VWC), and 
night-time VWC is in equilibrium with RZSM (or more precisely, the leaf 
water potential is in equilibrium with the root water potential) (Konings 
and Gentine, 2017; Konings et al., 2019; Liu et al., 2021). Therefore, we 
expect a positive relationship between VOD anomalies and RZSM 
anomalies for high LAI. This effect will be stronger at lower RZSM 
because of saturation effects in the relationship of moisture content and 
water potential at high moisture contents, hence the inclusion of an 
interaction term. Fig. S2 in the supplement presents the changes of β as a 
function of LAI and RZSM for a specific grid cell in the domain. As ex-
pected, the interaction effect is negative at low LAI and high RZSM, and 
positive at high LAI and low RZSM. 

Inserting Equation (2) into Equation (1) leads to a linear model with 
interaction effects. The parameters α and βi have been calibrated for 
each grid cell separately using VOD retrievals and model output for LAI 
and RZSM over the period July 2012 (start of availability of AMSR2 
observations) through December 2022. The anomalies of the modeled 
RZSM and LAI used in Equation (1) are calculated by subtracting the 
long-term mean seasonal cycle of the model over the same period. 
Similarly, VOD (bulk signal) estimates are obtained by adding the long- 
term seasonal cycle to the VOD anomaly estimates. Fig. 2 shows eval-
uation metrics of the fit of the observation operator using VOD retrievals 
that were not used in the observation operator calibration. Over large 
parts of the domain, the coefficient of determination R2 scores higher 
than 0.7, which means that the operator can explain more than 70% of 
the total variance. Lower scores are found in mountainous areas and in 
northern Turkey and Finland. The median root mean square error 
(RMSE) of the observation operator is 0.045 [-], but there is a strong 
east-west gradient, with good performance in western Europe and poor 
performance in eastern Europe. Furthermore, northern Turkey has a 
high RMSE, which could be caused by RFI. The correlation of anomalies, 
Ranom, is higher than 0.5 in most of the domain, with lower scores in 
Scandinavia, the Alps, and Turkey. 

To avoid assimilating low-quality retrievals or in areas where the 
observation operator does not perform well, we mask pixels where R2 ≤

0.5 [-− ] and RMSE ≥ 0.08 [-]. This occurs mainly in some larger areas of 
western Ukraine and Russia (Fig. 1c). 

Note that the RMSE is used here to quantify the explicit model error, 
whereas the evaluation of simulation results below will focus on differ-
ences with reference datasets. This is why we will use the term root mean 
square deviation (RMSD) in the remainder of the text. 

2.4. Data assimilation 

Six experiments are carried out in total and are listed in Table 1: one 
open loop (OL; model-only) and five DA experiments. In the DASSM, 
DALAI, and DAVOD experiments, retrievals of SMAP L2 SSM, CGLS LAI, 
and AMSR2 X-band VOD are assimilated, respectively. We refer to them 
as the ‘single-sensor’ DA experiments since only one satellite product is 
assimilated in each of them. In the remaining two experiments a ‘joint’ 
DA of SMAP L2 SSM retrievals and vegetation retrievals from CGLS LAI 
(DASSM+LAI) or AMSR2 VOD (DASSM+VOD) is performed. All six experi-
ments use an ensemble of 24 members and the same perturbation 
scheme as listed in Table 2. The perturbations represent the uncertainty 
in the forcings and the state variables of the model. Perturbations to 
precipitation and downward short-wave radiation are applied multi-
plicatively and are drawn from lognormal distributions, while pertur-
bations to downward long-wave radiation and the model prognostic 
state variables are drawn from a normal distribution and applied addi-
tively. Perturbations are truncated if they exceed 2.5 standard de-
viations. Temporal autocorrelations are only applied to forcings, using a 
first-order autoregressive model with a time scale of 24 h. Spatial cor-
relations are not applied to the perturbations. Settings for the cross- 
correlations of errors in the forcing and soil moisture state variables 
are taken from Kumar et al. (2014), while the cross-correlations between 
the soil moisture and LAI state variables are based on the anomaly 
correlations between these variables in a deterministic model run with 
the same domain and temporal coverage as our experiments. Perturba-
tions in prognostic variables are not cross-correlated with those of 
forcings. Any unintentional perturbation bias in the forecasts is removed 
using a correction described by Ryu et al. (2009). 

The five DA experiments use a one-dimensional ensemble Kalman 
Filter (EnKF; Reichle et al., 2002; Evensen, 2003) to assimilate satellite 
retrievals into the LSM. Whenever an observation is available at a spe-
cific location, the EnKF updates the state variables to reduce the devi-
ation between model forecasts and observations. For experiments 
DASSM and DALAI, the four soil moisture state variables or the LAI state 

Fig. 2. Evaluation of the VOD observation operator model fit in terms of (a) the coefficient of determination R2 [-], (b) the root mean square error RMSE [-], and (c) 
the anomaly correlation Ranom [-] between model predictions and observation data. Darker colors indicate better performance. 

Table 1 
Overview of the performed experiments, indicating for each of them which of 
the three satellite product(s) is (are) assimilated, and whether the soil moisture 
SMi (i = 1, …, 4) and/or the LAI state variables are updated.  

experiment assimilated products updated variables 

SMAP CGLS AMSR2 SMi LAI 

SSM LAI VOD 

OL      

DASSM • •

DALAI  • •

DAVOD   • • •

DASSM+LAI • • • •

DASSM+VOD • • • •
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variables are updated respectively, as shown in Table 1. For the DAVOD 
and joint DA experiments, both soil moisture and LAI state variables are 
updated. In the case of DAVOD, the multivariate update is driven by the 
observation operator used to map the LAI and RZSM simulated by 
Noah-MP to VOD (section 2.3). For the joint DA experiments, the 
multivariate update is a natural consequence of our intention to use 
multi-sensor information to improve soil moisture and vegetation state 
variables simultaneously. 

The uncertainty in the observations is tuned by optimizing innova-
tion diagnostics (Reichle et al., 2002) through Desroziers’ metrics 
(Desroziers et al., 2005) and making a systematic comparison of 
different perturbation sizes as was done in Heyvaert et al. (2023). The 
perturbations of all observations are applied additively with standard 
deviations of 0.0125 m3 m− 3 for the SMAP SSM retrievals, 0.05 [-] for 
the CGLS LAI retrievals, and 0.03 [-] for the AMSR2 VOD retrievals. 
Because these sensors are all based on different wavelengths (respec-
tively, L-band microwave, X-band microwave, and optical), no 
cross-correlations between the observation errors are considered. 

The timing of state updates in the DA experiments coincides with the 
overpass times of the satellites, as pictured in Fig. 3 for the DASSM+VOD 
experiment: 01:30 h local time for the AMSR2 VOD retrievals, and 
06:00 h and 18:00 h for the SMAP SSM retrievals. Note that observations 
from either sensor may occasionally be masked, meaning that two SMAP 
retrievals do not necessarily follow each AMSR2 retrieval in reality. 

The EnKF is a method to correct random errors in the model and 
observations, but should not be used to correct for systematic deviations 
(bias) (Baek et al., 2006). To obtain an unbiased DA system, a monthly 
rescaling of the observations to the model climatology is performed 
through CDF matching (Reichle and Koster, 2004; Barbu et al., 2014; 
Heyvaert et al., 2023) in the case of SSM DA. For the LAI DA, a seasonal 
rescaling is performed as described in Scherrer et al. (2023). For the 
VOD DA, the bias is removed during the construction of the observation 
operator, guaranteeing an unbiased DA system. Therefore, effectively 
only anomalies from the mean seasonal cycle are assimilated. 

2.5. Impact analysis 

In order to visualize the impact of the respective DA experiments on 
geophysical estimates, maps are created that show the RMSD between 

the OL experiment on the one hand and the various DA experiments 
(listed in Table 1) on the other. The RMSD between both time series of 
length N days is defined as 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(xDA

i − xOL
i )

2

√
√
√
√ , (3)  

with xDA
i (xOL

i ) the ensemble mean realizations of a geophysical variable, 
e.g., SSM or LAI, estimated by the DA (OL) experiment at day i. A larger 
RMSD between OL and DA signifies larger deviations from the model by 
assimilating the satellite retrievals, i.e., a stronger impact of the DA on 
the land surface estimates. 

2.6. Evaluation with reference data 

The performance of the different DA setups is evaluated by 
comparing the results with independent reference data. Since we use an 
unbiased DA system, our objective is to improve the representation of 
anomalies in the DA analysis compared to the OL experiment. These 
improvements are measured with the anomaly correlation Ranom, i.e., 
the Pearson correlation between anomalies from the mean seasonal 
cycles of observations and analysis. Only evaluation data in grid cells 
without masking for any of the three satellite products (Fig. 1) are used 
to ensure a fair comparison of the different DA experiments. A two-sided 
Wilcoxon signed-rank test is performed for each evaluation to find 
whether the distributions of Ranom from the DA experiments are signif-
icantly different from those of the OL experiment. The test was not 
performed for evaluations with X-BASE data (see section 2.6.2) because 
one of the assumptions of the statistical test (independent samples) is not 
fulfilled when using this product, due to spatial autocorrelation between 
the gridded values. In addition to the evaluation with Ranom, we also 
evaluate in terms of RMSD for the flux variables to assess whether DA 
manages to improve their absolute values. 

2.6.1. International Soil Moisture Network 
SSM and RZSM are evaluated with in situ data from the International 

Soil Moisture Network (ISMN; Dorigo et al., 2011; 2013; 2021b). This 
database provides ground station measurements of soil moisture at 
various depths for locations spread throughout the study domain. When 
multiple sites are available within one grid cell, the skill metrics are 
computed for each of the sites, after which the metrics are averaged to 
obtain a single value for the grid cell to avoid giving too much weight to 
such areas in the analysis. 

Only measurements that have been flagged as ‘good’ are used in the 
evaluation. We require each site to have at least 200 observations (after 
daily aggregation) over at least three different years to be used in the 
evaluation. Sites should have at least one measurement deeper than 10 
cm for them to be used in the evaluation of RZSM. In total, 38 sites are 

Table 2 
Overview of the ensemble model perturbations, valid for all experiments. Perturbed forcing fields are the downward short-wave radiation (SW), downward long-wave 
radiation (LW), and precipitation (P). For the prognostic variables, soil moisture in the four soil layers (SMi, i = 1, …, 4) and LAI are perturbed. Additive (+) per-
turbations have a mean of 0 and are drawn from a normal distribution, while multiplicative ( × ) perturbations have a mean of 1 and are drawn from a lognormal 
distribution. Temporal correlations of the time series are applied through a first-order autoregressive model. Perturbations to prognostic variables are not correlated 
with forcing perturbations.   

type mean standard deviation temporal correlation cross-correlations with other perturbations 

SW LW P SM1 SM2 SM3 SM4 LAI 

SW × 1 0.3 24 h  − 0.50 − 0.80      
LW + 0 50 W m− 2 24 h − 0.50  0.50      
P × 1 0.5 24 h − 0.80 0.50       
SM1 + 0 0.00400 m3m− 3 0     0.60 0.40 0.20 0.08 
SM2 + 0 0.00007 m3m− 3 0    0.60  0.60 0.40 0.13 
SM3 + 0 0.00004 m3m− 3 0    0.40 0.60  0.60 0.19 
SM4 + 0 0.00002 m3m− 3 0    0.20 0.40 0.60  0.10 
LAI + 0 0.01 0    0.08 0.13 0.19 0.10   

Fig. 3. Depiction of which retrieval is assimilated at what time in the 
DASSM+VOD experiment. 

Z. Heyvaert et al.                                                                                                                                                                                                                               



Science of Remote Sensing 9 (2024) 100129

6

used in the SSM evaluation and 17 in the RZSM evaluation. An overview 
of all the networks used and their references is provided in the supple-
ment, Table S1. 

2.6.2. Warm Winter 2020 and X-BASE 
Vegetation-related fluxes are evaluated using in situ measurements 

from the Warm Winter 2020 database (Warm Winter 2020 Team and 
ICOS Ecosystem Thematic Centre, 2022). These provide, among other 
variables, estimates of evapotranspiration (ET), gross primary produc-
tion (GPP), and net ecosystem exchange (NEE), based on flux tower 
stations through eddy covariance measurements. For evaluation, the 
daily means provided in the data product are compared with the daily 
mean model output. 

The same preprocessing steps that are applied to the ISMN in situ 
data are also applied to station data from the Warm Winter 2020 data-
base. Of the 73 stations in the database, only 10 can be used for the 
evaluation of ET and GPP in model grid cells where data from all three 
satellite products are assimilated. Only one NEE station is available 
where all three satellite products are assimilated, so the Warm Winter 
2020 database is not used for the evaluation of NEE. Additionally, the 
data are available only until the end of 2020, whereas our experiments 
run until the end of 2022. Therefore, we also use the X-BASE dataset 
(Nelson et al., 2023, 2024) for the evaluation. These data are based on 
eddy covariance flux towers and remotely sensed observations, which 
are linked by machine learning techniques to provide gridded estimates 
of ET, GPP, and NEE. The version we use has a temporal resolution of 
one day and uses a 0.25◦ regular grid, which is transformed into the 
model grid through bilinear interpolation. 

2.7. Data assimilation diagnostics 

In this study, the ensemble spread is defined as the range of the 
ensemble, i.e., the difference between the maximum and minimum 
values of the ensemble members. Its temporal average is computed for 
the SSM, RZSM, and LAI state variables. The spread for each DA 
experiment (section 2.4) can then be compared with that of the OL. A 
reduction in the mean ensemble spread for the DA compared to the OL 
reflects a reduction in the uncertainty of the estimate as a result of the 
analysis update (Reichle et al., 2017). 

The observation-minus-forecast residuals, or innovations, denote the 
difference between rescaled satellite retrieval and model estimate in 
‘observation space’. Therefore, the rescaled SMAP SSM and CGLS LAI 
retrievals are compared to the modeled SM1 and LAI, respectively, 
whereas a VOD model estimate must be derived from modeled LAI and 
RZSM using the observation operator (section 2.3) before a comparison 
with the AMSR2 VOD retrievals can be made. 

The analysis-minus-forecast residuals, or increments, are the equiv-
alent of the innovations in the ‘model space’. SMAP SSM assimilation 
results in increments of SMi (i = 1, …, 4), whereas VOD assimilation 
results in increments of SMi (i = 1, …, 4), and LAI. We define an ‘SSM 
increment’ as an increment of SM1, and an ‘RZSM increment’ as the 
weighted average of soil moisture increments in the top three layers of 
the model, with the thickness of the layers as weights. 

3. Results 

3.1. Impact analysis 

Fig. 4a shows the impact of the five different DA experiments on SSM 
using the RMSD between the OL and DA experiments. The three single- 
sensor DA experiments in the upper row show that DALAI does not have a 
substantial impact on SSM compared to DASSM or DAVOD (mean RMSD of 
0.001 m3m− 3 compared to 0.013 m3m− 3 and 0.010 m3m− 3, respec-
tively). Note that DALAI is the only DA experiment in which soil moisture 
is not explicitly updated (Table 1), and updates in LAI do not propagate 
much to the SSM via the model. The impact of DALAI on RZSM is slightly 

higher (Fig. S3 in the supplement). DASSM affects SSM estimates more in 
lower latitudes, that is, for drier areas such as Spain and Turkey, and 
over southern Ukraine. In this last region, the DAVOD also impacts SSM, 
but the impact of DAVOD is generally lower in other areas compared to 
DASSM. The joint DA experiments, DASSM+LAI and DASSM+VOD, show 
similar results as DASSM in terms of impact on SSM (same mean, standard 
deviation, and spatial distribution). 

The same analysis is performed for the LAI estimates in Fig. 4b. While 
LAI is most impacted by DALAI and DAVOD (mean RMSD of 0.157 and 
0.199 respectively), there is also a relatively high impact of DASSM 
(mean RMSD of 0.079), even though LAI is not explicitly updated in 
DASSM (Table 1). This impact is thus coming purely from model propa-
gation. The three single-sensor experiments in the upper row show a 
similar spatial pattern, with the largest DA impact on LAI in eastern 
Europe (Ukraine) and, to a lesser extent, the Iberian peninsula. The 
impact map of DASSM+LAI resembles that of DALAI and the map of 
DASSM+VOD resembles that of DAVOD. This means that for LAI, the 
dominant impact in the joint DA experiments comes from the assimila-
tion of vegetation retrievals. 

In summary, both joint DA experiments resemble the SSM-only DA 

Fig. 4. (a) RMSD between the estimated SSM in the OL and the DA experiments 
indicated above the panels. The mean and standard deviation of the maps are 
computed over the non-masked pixels. (b) As in (a), but for estimates of LAI. 
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experiment in terms of impact on SSM estimates, and the vegetation- 
only DA experiment in terms of LAI estimates. The impact analyses 
are also performed for RZSM, GPP, ET, and runoff (Figs. S3–S6 in the 
supplement). The results for RZSM, ET, and runoff are comparable to 
those of SSM (Fig. 4a) with most impact from DASSM, and lower impact 
from DAVOD and DALAI. The impact of the joint experiments closely re-
sembles that of DASSM. For GPP, the impact of the joint DA depends on 
which vegetation product is assimilated: the map of DASSM+LAI corre-
sponds to that of DASSM, while the map of DASSM+VOD corresponds to 
that of DAVOD. 

3.2. Evaluation with reference data 

The performance of the different DA experiments is shown in Table 3 
for a number of prognostic and diagnostic variables. The spatial median 
of the improvement (positive values) or degradation (negative values) in 
skill with respect to the OL, i.e. ΔRanom, is computed using independent 
data at sparse in situ locations or from satellite products. For SSM and 
RZSM, a comparison with ISMN stations shows the highest median im-
provements for the DASSM experiment. Assimilating vegetation products 
does not show any impact (DALAI) or degrades soil moisture estimates at 
in situ sites (DAVOD). Both DASSM+LAI and DASSM+VOD show improve-
ments in soil moisture estimates as well, although slightly smaller than 
for the single-sensor DASSM experiment. Note that the number of avail-
able stations is substantially smaller for RZSM than for SSM, hence the 
statistics of the latter are more reliable. However, the findings of both 
are consistent with each other. 

Fig. 5a–e shows the spatial distribution of skill changes at the in situ 
stations and Fig. 5f compares the boxplots of the distributions for the 
different DA experiments. Only when SSM DA is included, small overall 
improvements are found with respect to the OL, and particularly in 
eastern Europe. This is consistent with the findings of Heyvaert et al. 
(2023) who assimilate the ESA CCI Soil Moisture product, which con-
tains SMAP SSM retrievals, among others (Dorigo et al., 2017; Gruber 
et al., 2019). The spatial distribution of the ISMN stations for RZSM is 
presented in the supplementary material, Fig. S7. 

The evaluation results for GPP are depicted in the third and fourth 
rows of Table 3 for the Warm Winter 2020 and X-BASE evaluation data, 
respectively. Over the ten Warm Winter 2020 stations, we find degra-
dations for each DA experiment except DALAI, which is also the experi-
ment that has the largest improvements in GPP when evaluating with X- 
BASE. Fig. 6a shows that these improvements occur throughout the 
domain and are largest in southern Europe. DASSM overall slightly de-
grades the estimates of GPP, especially in Ukraine and northern Spain 
(Fig. 6b). Assimilating both SSM and LAI (DASSM+LAI) results in slightly 
smaller improvements than assimilating only LAI (Table 3), mainly due 
to small degradations in the areas mentioned above (Fig. 6d). Overall, 
the spatial ΔRanom distribution of DASSM+LAI resembles that of DALAI, 
with locations at the lower end of the distribution performing slightly 
better for the single-sensor DALAI experiment (Fig. 6f). Although DAVOD 
performs better overall than DASSM in terms of GPP, Fig. 6c highlights 
some areas where it degrades the results compared to OL, particularly 

the Pannonian basin, Romania, and Ukraine. The results improve 
slightly in these first two areas when SSM is assimilated alongside VOD 
(DASSM+VOD, Fig. 6e). Similar conclusions can be drawn from an eval-
uation in terms of RMSD, with the largest improvements for the DALAI 
(ΔRMSD = − 0.024 gC m− 2 day− 1) and DASSM+LAI (ΔRMSD = − 0.022 gC 
m− 2 day− 1) experiments (Fig. S8). 

The evaluation results for NEE are similar to those for GPP, with the 
largest improvements in the experiments in which LAI is assimilated. 
Assimilating VOD slightly degrades the estimates. Figs. S9–S10 show 
that the spatial patterns of the NEE improvements are similar to those of 
the GPP, both in terms of Ranom and RMSD. 

Finally, for ET, we find that the impact of any DA experiment is 
relatively small in terms of Ranom, both for an evaluation with the ten 
stations of the Warm Winter 2020 dataset and with the X-BASE product 
(last two rows of Table 3). As was the case for GPP and NEE, the best 
overall performance is achieved when a vegetation product is assimi-
lated: both DALAI and DAVOD show small improvements when evaluating 
with X-BASE data. DALAI has a relatively small impact throughout the 
domain, whereas the effect of DAVOD is quite different throughout the 
domain, with some areas showing stronger improvements and others 
showing degradations, especially in southern Ukraine (Fig. S11). 
Assimilating SSM slightly degrades ET results, both in the single-sensor 
DASSM and the joint DASSM+LAI and DASSM+VOD experiments. The eval-
uation in terms of RMSD is similar, with stronger degradations for 
DAVOD (Fig. S12). 

A remarkable result from Table 3 may be that DASSM improves the 
SSM and RZSM estimates substantially, yet slightly degrades turbulent 
fluxes from the land surface. This may be attributed to imperfect 
coupling mechanisms (e.g., errors in the partitioning between transpi-
ration and evaporation) in the LSM, something that has been raised by 
multiple previous studies (Dong et al., 2022; Zhou et al., 2023; Crow 
et al., 2024). 

In summary, soil moisture estimates are most improved by DASSM, 
whereas estimates of GPP, NEE, and ET are most improved by assimi-
lating a vegetation product (DALAI in particular). The joint DASSM+LAI 
does not have the highest performance for any specific variable, but is 
capable of capturing the improvements of both single-sensor DA ex-
periments (DASSM and DALAI) into a single physically consistent product. 

3.3. Ensemble spread 

The impact of DA on the ensemble spread is visualized in Table 4. It 
shows how the spread for SSM, RZSM, and LAI differs for the various DA 
experiments with respect to the OL. 

For SSM, the average OL ensemble spread over the domain is 0.065 
m3 m− 3, with the largest spreads in drier areas such as the Iberian 
peninsula, Anatolia, and northern Africa (see Fig. S13a for the spatial 
pattern). For RZSM, the pattern is quite different, with smaller spreads 
over the sandy soils of the Sahara desert and mountainous areas (Alps, 
Carpathians), and larger spreads over Ukraine (Fig. S13g). Its spatially 
averaged value is 0.028 m3 m− 3; this smaller spread for the root zone 
compared to the surface can be explained by the smaller perturbations 

Table 3 
Median ΔRanom for the different DA experiments with respect to OL. The experiment with the largest improvement for each geophysical variable is indicated in bold. 
Only model grid cells for which all three products are assimilated are included in the computation of the metrics.   

Product period Nsites skill improvement (median ΔRanom) 

DASSM DALAI DAVOD DASSM+LAI DASSM+VOD 

SSM ISMN 2015–2022 38 0.016* 0.000 − 0.011* 0.013* 0.016 
RZSM ISMN 2015–2022 17 0.015 0.001 − 0.017* 0.011 0.005 
GPP Warm Winter 2020 2015–2020 10 − 0.002 0.000 − 0.023 − 0.002 − 0.016  

X-BASE 2015–2021  − 0.004 0.022 − 0.001 0.014 − 0.002 
NEE X-BASE 2015–2021  − 0.003 0.009 − 0.006 0.002 − 0.004 
ET Warm Winter 2020 2015–2020 10 ¡0.001 ¡0.001 − 0.007 − 0.003 − 0.011  

X-BASE 2015–2021  − 0.003 0.003 0.001 − 0.003 − 0.002 

*p < 0.05 (two-sided Wilcoxon signed-rank test, not performed for X-BASE). 
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applied to soil moisture in the deeper layers (Table 2) and the lower 
sensitivity to atmospheric variables. Table 4 shows that the ensemble 
spread corresponding to DASSM is only 79% (62%) that of the OL for SSM 
(RZSM), whereas DALAI does not impact SSM and RZSM spread, and 
DAVOD mainly decreases the spread in the RZSM. The joint DA 

experiments lead to similar spreads in SSM and RZSM as single-sensor 
DASSM, with a slightly stronger spread reduction for DASSM+VOD, mak-
ing it the experiment with the least uncertainty in soil moisture 
estimates. 

In the case of LAI, we find the largest spreads in the same dry areas as 
for SSM, except for the desert where Noah-MP LAI is zero by definition 
(Fig. S13m). For single-sensor DA, the relative spread is the smallest for 
DAVOD (0.74) and DALAI (0.76), but also DASSM has a considerably 
smaller spread compared to OL (0.90). The slightly larger reduction in 
spread with DAVOD could be an effect of more frequent updates, since 
VOD retrievals are available almost daily, while LAI retrievals are 
available only every ten days. As is the case for SSM and RZSM, the 
largest decrease in the average spread can be found in the joint DA ex-
periments, with DASSM+VOD showing the strongest reduction in spread. 

Summarized, the DASSM mostly decreases the uncertainty in the SSM 
and RZSM estimates, and DALAI and DAVOD mostly decrease the uncer-
tainty in LAI estimates. The joint DASSM+LAI and DASSM+VOD experiments 

Fig. 5. DA skill difference ΔRanom relative to the OL for SSM at the ISMN stations within the region where all three satellite products are assimilated, for (a) DASSM, 
(b) DALAI, (c) DAVOD, (d) DASSM+LAI, and (e) DASSM+VOD experiments. Blue indicates improvements by the DA, whereas red indicates degradations. (f) Corresponding 
boxplots summarizing the spatial distributions for the different experiments. The central line denotes the median and the white square the mean of each distribution. 

Fig. 6. Same as Fig. 5, but now using gridded X-BASE GPP as reference data.  

Table 4 
Relative mean ensemble spread of the DA experiments with respect to the mean 
ensemble spread of the OL. Values smaller than one indicate that the spread is 
smaller for the DA. The experiment with the smallest spread is indicated in bold 
for each variable. Only pixels where observations from all three sensors are 
assimilated are considered.   

DASSM DALAI DAVOD DASSM+LAI DASSM+VOD 

SSM 0.79 1.00 0.96 0.80 0.79 
RZSM 0.62 1.01 0.86 0.62 0.60 
LAI 0.90 0.76 0.74 0.74 0.71  
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are able to combine both in such a way that the uncertainty in all var-
iables is maximally decreased. 

3.4. Innovations and increments 

3.4.1. DASSM+LAI 
This section compares the innovations between the joint DASSM+LAI 

and single-sensor DASSM and DALAI. Fig. 7a shows no clear difference 
between the SSM innovations from the joint DASSM+LAI and single-sensor 
DASSM experiment, with the time series of the difference of their absolute 
values closely resembling a zero-mean white-noise sequence. Fig. 7b, 
visualizing the temporally averaged absolute differences between both 
experiments, also shows a zero-mean noisy pattern. Assimilating CGLS 
LAI alongside SMAP SSM hence does not alter SSM innovations in any 
systematic way. 

The two bottom panels, Fig. 7c and d, show the results of the LAI 
innovations. Innovations in the joint DA are on average smaller than in 
the single-sensor DALAI. This means that the LAI estimates are closer to 
the observed CGLS LAI retrievals when SMAP SSM is assimilated 
alongside CGLS LAI. Some periods, such as the growing seasons of 2017, 
2018 and 2020, show larger innovations for the joint DA. Spatially, we 
find that the smaller innovations for the joint DA are predominantly 
located in southern latitudes. 

A similar figure comparing increments, rather than innovations, 
between DASSM+LAI and the single-sensor DA experiments is presented in 
the supplement (Fig. S14). Unsurprisingly, differences in SSM and RZSM 
increments (coming from the SSM innovations) are not systematically 
different between the joint DASSM+LAI and single-sensor DASSM experi-
ment. Likewise, the behavior for the LAI increments closely resembles 
that of the LAI innovations. 

3.4.2. DASSM+VOD 
In contrast to the findings of DASSM+LAI, Fig. 8a and b shows that the 

SSM innovations are on average slightly larger for DASSM+VOD than for 
DASSM, especially in southern Ukraine. This result implies that assimi-
lating AMSR2 VOD retrievals moves the SSM estimates further away 
from the SMAP SSM retrievals. As can be seen in Fig. S15, this also 
translates in larger increments for SSM and RZSM from the SMAP SSM 

retrievals in DASSM+LAI, i.e., the DA is making larger corrections to the 
soil moisture state variables in the joint DA. This is confirmed by the 
strong positive ‘spikes’ after the two outages of the SMAP instrument (19 
June 2019–23 July 2019; 20 September 2022–6 October 2022), indi-
cating how the analysis deviates from the SMAP SSM retrievals when 
only AMSR2 VOD is being assimilated. However, at most other times, we 
find that the differences in the SSM innovations are relatively small. 

Innovations of VOD show a very pronounced difference between 
DASSM+VOD and DAVOD in Fig. 8c and d: they are substantially larger in 
the joint than in the single-sensor DA, particularly in the second half of 
the year and in the east of Europe (up to 40% larger innovations here, 
with an average of 20% over the domain as a whole). Assimilation of 
SMAP SSM thus introduces larger differences between the observed and 
estimated VOD. 

Innovations in VOD are transformed to increments of soil moisture 
SMi (i = 1, …4, summarized by means of the RZSM) and LAI in the state 
space. Fig. 9 shows how the absolute values of the increments compare 
between the joint DASSM+VOD and single-sensor DAVOD. Increments of 
LAI tend to be larger in the joint DA, as is the case for the VOD in-
novations, whereas increments of RZSM are actually smaller in the joint 
DA: on average 48% smaller throughout the domain. 

Unique to the DASSM+VOD experiment is that increments of the RZSM 
come from two sources: the SSM innovations from SMAP (at 6:00 and 
18:00 h local time) and the VOD innovations from AMSR2 (at 1:30 h 
local time). Fig. 10 computes the temporal correlation between the in-
crements introduced by both sensors. Only days for which increments 
from both sensors are available are considered in the computation of the 
correlation. It shows that increments introduced by both sources are 
anticorrelated, meaning they tend to ‘counteract’ each other in the joint 
DA system. This is particularly the case in the east of the domain 
(southern Ukraine), an area that also appears in maps comparing 
innovation magnitudes of DASSM+VOD and single-sensor experiments 
(Fig. 8). 

Fig. 7. Overview of differences in absolute values of innovations between DASSM+LAI and (a)–(b) DASSM or (c)–(d) DALAI. Left column: time series of the difference of 
spatial averages, right column: maps of the difference of temporal averages. 
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4. Discussion 

4.1. Synthesis of the results 

The evaluation of DASSM, DALAI, and DASSM+LAI shows that the two 
single-sensor DA systems complement each other as expected. The 
reason for the complementarity of the single-sensor DA systems lies in 
the way they operate: DASSM only updates soil moisture while DALAI only 
updates LAI. Ignoring the effects of model propagation, they thus 
operate more or less independently of each other in the joint DASSM+LAI. 

This is not the case when comparing DASSM, DAVOD and DASSM+VOD, 
as VOD DA updates both the LAI and RZSM and more complicated in-
teractions therefore occur. The innovations of both SSM and VOD are 
greater in DASSM+VOD than in either DASSM or DAVOD, and soil moisture 
increments introduced by SMAP SSM and AMSR2 VOD are negatively 
correlated throughout the domain. This indicates that the two DA sys-
tems counteract each other. However, larger innovations in DASSM+VOD 
do not directly translate into larger increments either: larger RZSM and 
LAI increments are introduced by SMAP SSM and AMSR2 VOD, 
respectively, but AMSR2 VOD introduces smaller RZSM increments for 

Fig. 8. Overview of differences in absolute values of innovations between DASSM+VOD and (a)–(b) DASSM or (c)–(d) DAVOD. Left column: time series of the difference 
of spatial averages, right column: maps of the difference of temporal averages. 

Fig. 9. Overview of differences in absolute values of increments between DASSM+VOD and DAVOD for (a)–(b) RZSM and (c)–(d) LAI. Left column: time series of the 
difference of spatial averages, right column: maps of the difference of temporal averages. 
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DASSM+VOD than for DAVOD. This is because SSM DA substantially de-
creases the spread of SSM and RZSM (Table 4). As a consequence, the 
EnKF gives more weight to the SSM and RZSM model estimates than to 
the AMSR2 observations in the joint DA. The larger innovations are 
preferentially attributed to larger LAI increments, because the LAI 
spread is not reduced by the SSM DA. Similarly, the SMAP RZSM in-
crements are slightly reduced in DASSM+VOD compared to DASSM, since 
VOD assimilation has reduced the spread in the modeled RZSM. 

4.1.1. Optimality of the DA systems 
Despite the strong reduction in ensemble spread for the joint DA 

experiments, we find through internal diagnostics of the DA system 
(Desroziers et al., 2005) that the perturbation settings of Table 2 are well 
suited for both single-sensor and joint DA experiments. Fig. 11 shows the 
distributions of the pixel-wise standard deviations of the normalized 
innovations, which should be centered on unity, if the model and 
observation errors are assumed correctly (Reichle et al., 2002; De Lan-
noy and Reichle, 2016a, 2016b; Heyvaert et al., 2023). There is no 
substantial difference in this diagnostic between single-sensor and joint 
DA experiments. Therefore, the random ensemble model and observa-
tion error characterization in the DA system is well chosen, especially for 
the SMAP SSM and AMSR2 VOD retrievals. 

By design, any bias between assimilated observations and model 
predictions was removed for the single-sensor DA experiments, but this 
does not guarantee a bias-free situation in a joint DA system. A bias in 
the joint DA system could explain systematic differences in some time 
series of innovations and increments (e.g., the fact that VOD innovations 

tend to be larger for DASSM+VOD than for DAVOD, Fig. 8c). This concern is 
refuted in Fig. S16, which shows that the innovations for joint DA ex-
periments are not biased and have distributions similar to those of 
single-sensor DA experiments. 

4.1.2. Complementarity of the DA systems 
In the joint DASSM+VOD, the sizes of the SSM increments from AMSR2 

VOD are approximately an order of magnitude smaller than the SSM 
increments from SMAP SSM. This may be explained by the chosen 
observation errors and by the fact that the VOD is related to RZSM rather 
than SSM via the observation operator (section 2.3). Despite this, the DA 
impact on SSM estimates shown in Fig. 4 is only slightly less for DAVOD 
than for DASSM. Although this appears to be a contradiction at first sight, 
it may be explained by considering the lagged autocorrelations of the 
total error (model and observations) in the DA system. We find that this 
quantity is substantially larger for VOD than for SSM retrievals 
(Fig. S17), likely due to the smoothing performed by the LPDR algo-
rithm. As such, a potential error can return in multiple small increments 
and over time result in (i) the high RMSD between OL and DA observed 
in the impact analysis and (ii) significant degradations in SSM by DAVOD 
(Table 3 and Fig. 5). 

DASSM+VOD and DASSM show an interesting difference in the magni-
tude of SSM innovations after the two outages of the SMAP instrument in 
the summers of 2019 and 2022 (Fig. 8a). These downtime periods are 
followed by large positive peaks in the innovations, which means that 
the joint SSM estimates drift away from the SSM observed by the satellite 
during the SMAP outage. The large innovation spikes also translate to 
larger increments for SSM in the joint (Fig. S15a), indicating that SSM 
DA has to make more corrections if VOD is assimilated than when this is 
not the case. However, the opposite is true for RZSM increments, which 
show negative spikes (Fig. S15c), indicating that the assimilation of SSM 
needs to make fewer corrections when jointly assimilated with VOD. 
This could signify a poor vertical coupling between the surface and the 
root zone of the Noah-MP LSM, which does not allow a transfer of the 
improvements made by VOD DA from the root-zone to the surface. 
Another explanation may be that assimilating VOD decreases the model 
spread of RZSM three times more than that of SSM (Table 4), causing 
smaller increments in the joint DA. 

It should be noted that the time series of innovations and increments, 
as shown in Figs. 7–9, show spatially averaged values over very different 
domains depending on the season, as observations over snow-covered or 
frozen soil are not assimilated. Figs. S18a and S19a in the supplement 
show time series of the number of pixels over which assimilation of 
SMAP SSM and AMSR2 VOD occurred, respectively. 

4.2. Limitations of the study 

4.2.1. Rescaling of the satellite retrievals 
Since the EnKF expects no bias between the model estimates and the 

observations, CDF matching was applied to match the retrieval 

Fig. 10. Temporal correlation between RZSM increments from alternating in-
novations of SSM and VOD in the DASSM+VOD experiment. 

Fig. 11. Distributions of the temporal standard deviations of the normalized innovations snorm. innov. of (a) SSM, (b) VOD, and (c) LAI. For each panel, the relevant DA 
experiments are shown. The horizontal axis is logarithmic. 
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climatology to that of the LSM (Reichle and Koster, 2004; Barbu et al., 
2014; Heyvaert et al., 2023). While this is a common approach in 
literature, it is known to potentially result in an important loss of in-
formation when the bias in the innovations is the result of anthropogenic 
processes such as irrigation, which are not well represented in LSMs 
(Kumar et al., 2015) and therefore not modeled in our study. For such a 
situation, some studies present alternative approaches with a reduced 
bias correction in which for example only the mean climatological cycle 
is bias corrected (e.g., Kwon et al., 2022). This might further improve the 
results of DASSM since our domain contains many agricultural areas. 

Regarding LAI, it is common practice not to rescale the retrievals 
before assimilation (e.g., as is done by Albergel et al., 2017; Erlingis 
et al., 2021; Rahman et al., 2022b). In contrast to this, we only update 
differences in anomalies by rescaling the LAI as in Scherrer et al. (2023) 
to respect the assumptions of the EnKF. As a consequence, the impact of 
LAI DA on the soil moisture estimates (Fig. 4a and Fig. 5a) is much 
smaller in our study compared to studies assimilating biased LAI in 
Noah-MP (e.g., Kumar et al., 2019; Mocko et al., 2021). Overall, LAI in 
Noah-MP appears to be more sensitive to small changes in soil moisture 
than the other way around (impact of DASSM on LAI is large compared to 
impact of DALAI on SSM and RZSM). This apparent insensitivity of the 
Noah-MP hydrology to vegetation dynamics has also been reported by 
other studies (e.g., Hosseini et al., 2022). 

4.2.2. Reference data 
We aim to facilitate a fair comparison between all DA experiments by 

only evaluating over grid cells where the three satellite products are 
available for assimilation. Unfortunately, this limits the availability of 
independent reference data, especially in the case of the Warm Winter 
2020 database. We compensated for this by performing an additional 
evaluation using X-BASE, but this probably overestimates the im-
provements introduced by DALAI, because X-BASE has been trained 
using data from optical remote sensing. Despite this, we found in Table 3 
that DALAI performs best in terms of GPP and ET not only with respect to 
X-BASE, but also to the Warm Winter 2020 database. To further examine 
the correspondence between both datasets, we compare Ranom for GPP 
over grid cells for which a ground station is available (Fig. S20). While X- 
BASE appears to systematically overestimate the performance, espe-
cially at Warm Winter 2020 ground stations with poor Ranom values, 
there is a strong correspondence between both. This is consistent with 
the findings of Wild et al. (2022) and an additional motivation to use the 
X-BASE product to supplement the limited ground station data in the 
evaluation of DA experiments. 

4.2.3. Regional effects 
An area that often stands out is eastern Europe, particularly the re-

gion of Ukraine north of the Black Sea. This area is known to have a 
relatively poor performance of the VOD observation operator (Fig. 2b). 
Despite this, there is a large impact of DAVOD on model estimates in this 
region (Fig. 4). Therefore, it could be useful to use a spatially varying 
observation error in the DA system in future work, so that larger un-
certainties can be applied to VOD observations in such areas. This would 
be particularly relevant since the VOD assimilation degrades estimates 
of, for example, GPP in this area (Fig. 6c). With this in mind, it is not 
surprising that the SMAP SSM innovations are larger in this area for 
DASSM+VOD compared to DASSM (Fig. 8b): assimilating VOD drives SSM 
estimates further away from SMAP observations. A good characteristic 
of the joint DASSM+VOD setup is the fact that these larger innovations 
translate into larger increments for SSM and RZSM in this area (Fig. S15) 
and that these increments aim to counteract the effects of the VOD 
assimilation (Fig. 10). The result is that the largest degradations by 
DAVOD in geophysical estimates are less pronounced in the joint 
DASSM+VOD (compare panels c and e of Fig. 6 for GPP). 

4.2.4. Limitations of VOD DA 
Contrary to Kumar et al. (2020) and Mucia et al. (2022), we did not 

find significant improvements of RZSM or GPP estimates compared to 
reference data with VOD DA. DAVOD even degrades the estimates of 
RZSM compared to in situ sites (Table 3), even though including RZSM 
in the VOD observation operator improves the performance of the 
observation operator. Therefore, the smaller SMAP RZSM increments in 
the joint DA (Figs. S15c–d) are counterproductive, and DASSM+VOD 
shows less improvement in RZSM than DASSM. 

One major difference of our setup to Kumar et al. (2020) and Mucia 
et al. (2022) is that both of these studies use a biased VOD DA setup 
where a large part of the DA effects are due to bias correction. Since both 
rescale the VOD data to a reference LAI, it is difficult to separate the 
relative contributions of VOD anomaly DA and reference LAI clima-
tology DA in their setup, especially considering that they found very 
similar performance for both VOD DA and LAI DA. Other reasons for the 
poor performance in our setup could be related to data quality, the 
observation operator, or the setup of the joint DA system, which will be 
discussed in more detail below. 

The LPDR data product used here applies a strong smoothing to the 
observations. While this can be useful for studies using the data directly, 
it can be counterproductive for data assimilation. Smoothed observa-
tions result in substantially higher total error autocorrelation from VOD 
DA compared to SSM DA (Fig. S19). This may explain why we do not see 
a positive effect of the more frequent updates in VOD DA compared to 
LAI DA (daily versus 10-daily) that has been reported by Mucia et al. 
(2022). To overcome this problem, data thinning or an alternative VOD 
product that employs less smoothing could be used in future studies. 

A potential shortcoming of the observation operator is the calibra-
tion using LAI and RZSM modeled by Noah-MP. This makes it sensitive 
to how well the coupling of LAI and RZSM is represented in this model. If 
Noah-MP overestimates the coupling, so will the observation operator, 
and it will therefore overcorrect RZSM based on VOD innovations. Such 
an overcoupling can degrade DA performance (Crow et al., 2020). 
Additionally, a coupling that is too strong can present problems during 
the calibration of the observation operator, since the multicolinearity of 
LAI and RZSM can make it difficult to assign the correct effect size for 
LAI and RZSM. 

Finally, it might be possible to improve DASSM+VOD performance by 
further improving the perturbations to the model state variables. Con-
trary to observation perturbations, which have been tuned based on 
innovation diagnostics, we used literature values from Kumar et al. 
(2019) and our own estimates for the error cross-correlation of LAI and 
SM. In the case of DASSM+LAI (a similar setup as in Kumar et al. (2019; 
2020)) this did not cause problems, because RZSM has only a weak effect 
on LAI in the model. For LAI DA, the relative sizes of RZSM and LAI 
perturbations also only have a weak effect, since updates of RZSM due to 
LAI DA is limited by the low ensemble cross-correlation between model 
predicted observable (LAI) and RZSM. Instead, in the case of DAVOD and 
DASSM+VOD, the model predicted observable (VOD) has a higher corre-
lation with RZSM, since RZSM factors into the observation operator. As a 
consequence, the relative sizes of the perturbations of RZSM and LAI 
matter, because they govern how strongly the VOD innovations are 
translated into RZSM and LAI increments, respectively. Underestimating 
the LAI perturbation size (i.e., being overconfident in the model LAI 
estimates), will consequently lead to higher RZSM updates, with similar 
effects as an overestimation of LAI-RZSM coupling in the model. 

As discussed above, for DASSM+VOD the VOD DA leads to higher in-
crements of LAI and lower increments of RZSM compared to DAVOD, due 
to the lower spread in RZSM caused by the additional SSM DA. There-
fore, increasing the LAI perturbation size of the model could help 
decouple the vegetation and soil moisture updates in DASSM+VOD, and 
reduce the negative impact of VOD DA on RZSM. 

5. Conclusions 

This work evaluates single-sensor and joint data assimilation of three 
satellite products into the Noah-MP land surface model: (1) a microwave 
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SMAP L2 surface soil moisture product, (2) the optical CGLS leaf area 
index product, and (3) an AMSR2 X-band vegetation optical depth 
product. For each DA experiment, the impact of assimilation on the 
model estimates was examined in terms of RMSD with respect to the OL 
or model-only experiment, and the improvements in the DA estimates 
were quantified using independent evaluation data. The single-sensor 
experiments showed that soil moisture estimates are most improved 
by assimilating SMAP SSM. The uncertainty in the soil moisture esti-
mates (ensemble spread) was also decreased the most by assimilating 
this product. Similarly, vegetation estimates such as LAI or GPP are 
mainly affected by assimilating a vegetation product, i.e., either CGLS 
LAI or AMSR2 VOD. The largest improvements in estimates of GPP, NEE, 
and ET were observed when CGLS LAI was assimilated. 

We find that the joint assimilation of SMAP SSM and CGLS LAI ‘in-
herits’ the properties of the two single-sensor DA experiments in the 
sense that it shows relatively large improvements in both the soil 
moisture and vegetation state variables. Overall, the innovations are 
slightly smaller in the joint experiment, meaning that the observations 
and model estimates are closer together at times of updates. 

For the joint assimilation of SMAP SSM and AMSR2 VOD, the story is 
more complex. While this particular DA experiment shows the largest 
decrease in ensemble spread for all considered state variables, we also 
find that soil moisture increments introduced by both sensors actively 
attempt to counteract each other. However, this counteracting is present 
predominantly over areas where the VOD assimilation does not perform 
well, and demonstrates that DA of one product can counteract the flaws 
of another product in a multi-sensor DA setup. 

Our results emphasize the value of integrating data from different 
satellite sources to improve self-consistent estimates of land surface state 
variables and fluxes. This will ultimately improve applications in, for 
example, land and water management or numerical weather prediction. 
Future work can focus on improving the observation operator such that 
the performance of the VOD DA increases, and further optimizing the 
perturbation settings of the model, particularly for the LAI prognostic 
variable and its cross-correlation with soil moisture. 
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