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Kurzfassung

Diese Arbeit widmet sich ratenoptimalen adaptiven Finite Elemente Methoden (AFEMs)
zur Losung von semilinearen, elliptischen partiellen Differentialgleichungen (PDEs). Das
zugrundeliegende Modellproblem besitzt einen nichtlinearen Reaktionsterm, wobei der
mit der PDE assoziierte Operator lokal Lipschitz-stetig ist. Diese Arbeit prasentiert und
analysiert Algorithmen, welche mehrere Fehlerquellen passend austarieren und dadurch
ratenoptimal sind, d.h. eine Fehlergrof3e fillt mit bestmoglicher Rate iiber der Anzahl der
Freiheitsgrade der Diskretisierung. Die drei Hauptkapitel haben folgenden Inhalt:

Im ersten Hauptkapitel untersuchen wir eine zielgerichtete AFEM (engl. goal-oriented
AFEM, GOAFEM) fiir semilineare Probleme mit linearer Zielgroe (engl. quantity of inte-
rest). Bei GOAFEM steht die ratenoptimale Approximation eines Funktionalwertes der ex-
akten, aber unbekannten Losung im Vordergrund. Mittels gdngiger Dualisierungstechnik
ist der Approximationsfehler durch ein Produkt zweier Fehlerkomponenten abschitzbar,
wodurch sich Konvergenzraten potentiell addieren. Dadurch ist GOAFEM in der Praxis
sehr geschitzt. Der Approximationsfehler im Zielfunktional fiihrt bei nichtlinearen Pro-
blemen zu einem nicht-berechenbaren, theoretischen dualen Problem, welches von der
exakten Losung abhdngt. Deshalb wird dieses durch ein berechenbares, praktisches duales
Problem ersetzt. Passendes Markieren der zu verfeinernden Elemente erméglicht den
Beweis von linearer Konvergenz: Kontraktion des Fehlerprodukts unabhéngig davon, wel-
che Fehlerkomponente die markierten Elemente bestimmt. Weiters zeigen wir optimale
Konvergenzraten beziiglich der Anzahl der Freiheitsgrade der Diskretisierung. Dies er-
weitert die Literatur {iber ratenoptimale GOAFEM erstmalig auf ein Modellproblem mit
nichtlinearer PDE.

Um das nichtlineare Modellproblem effizient zu 16sen, betrachten wir im zweiten Haupt-
kapitel eine AFEM, welche auch die Anzahl der Linearisierungsschritte adaptiv steuert.
Wir nehmen zunéchst an, dass die linearisierten Systeme mit linearem Aufwand exakt
gelost werden konnen. Dann ist der prdsentierte Algorithmus (engl. adaptive iteratively
linearized FEM, AILFEM) kostenoptimal. Das heil3t, eine FehlergroQe fallt mit optimalen
Raten tiber dem kumulativen Rechenaufwand zur Berechnung der numerischen Appro-
ximation. Die Hauptschwierigkeit in der numerischen Analysis lokal Lipschitz-stetiger
Probleme ist es, die uniforme Beschrédnktheit aller berechneten Iterierten zu zeigen. Da-
mit konnen wir volle R-lineare Konvergenz zeigen, d.h. Kontraktion einer FehlergroQe
unabhéngig von der Wahl der Adaptivitdtsparameter und unabhéngig davon, ob das Gitter
verfeinert wird oder ein weiterer Linearisierungsschritt vollzogen wird. Fiir hinreichend
kleine Adaptivitdtsparameter zeigen wir schlieBlich optimale Konvergenzraten beziiglich
des theoretischen Rechenaufwands der prasentierten AILFEM.

Im dritten Hauptkapitel analysieren wir die obige AILFEM, wobei das linearisierte Pro-
blem mittels eines algebraischen Losers approximativ gelost wird. Die numerische Stérung
dieser inexakten Linearisierung erhoht signifikant die mathematische Schwierigkeit, die
uniforme Beschrianktheit aller Iterierten zu zeigen. Wie zuvor beweisen wir volle R-lineare
Konvergenz einer Fehlergrof3e, welche nun Diskretisierungs-, Linearisierungs- und alge-
braischen Fehler beinhaltet. Wir folgern optimale Raten beziiglich des Rechenaufwands.
Da nun alle Schritte der AILFEM rigoros mit linearer Komplexitét realisierbar sind, sind
Konvergenzraten beziiglich des kumulativen Rechenaufwands auch als Raten beziiglich
der Gesamtrechenzeit zu verstehen. Dies zeigt sich auch in numerischen Experimenten.
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Abstract

This thesis is devoted to rate-optimal adaptive finite element methods (AFEMs) for semi-
linear elliptic partial differential equations (PDEs). It considers a model problem with a
nonlinear reaction term, where the operator associated to the PDE is locally Lipschitz
continuous. By equilibrating various error sources, this thesis proves that all presented
algorithms are rate-optimal, i.e., a suitable error quantity converges with optimal decay
rate with respect to the number of degrees of freedom of the discretization. The main
contributions are the following:

First, we investigate a goal-oriented AFEM (GOAFEM) for the semilinear model prob-
lem where the principal aim is to approximate a linear functional (quantity of interest)
evaluated at the exact, but unknown solution with optimal convergence rates. By means
of established duality techniques, the approximation error can be estimated by a product
of two approximation errors. This product structure allows that convergence rates add
up, contributing substantially to the attractivity of GOAFEMs in practice. For nonlinear
problems, the approximation error in the goal first leads to a noncomputable theoretical
dual problem that depends on the unavailable exact solution. To make the goal error
accessible, we replace this by a computable practical dual problem. A suitable marking
strategy for the refinement allows for the proof of R-linear convergence: contraction of
the error product regardless of which error component determines the marked elements.
Moreover, we show optimal convergence rates with respect to the number of degrees of
freedom of the discretization. This, for the first time, extends the literature on rate-optimal
GOAFEM to a model problem with underlying nonlinear PDE.

Second, to efficiently solve the nonlinear model problem, we consider an AFEM, where
the number of linearization steps is also steered adaptively. Under the assumption that
all arising linear systems can be solved at linear cost, the proposed algorithm, coined
as adaptive iteratively linearized finite element method (AILFEM), is cost-optimal. This
means that the suitable error quantity decays with optimal convergence rates with respect
to the (theoretical) overall computational cost that is needed to obtain the numerical
approximation. The main challenge in the numerical analysis of locally Lipschitz continu-
ous problems is to ensure that all iterates are uniformly bounded. Having achieved this,
we prove full R-linear convergence, i.e., contraction of an error quantity independently
of the adaptivity parameters and regardless of whether we refine the mesh or perform
a linearization step. For sufficiently small adaptivity parameters, we eventually estab-
lish optimal convergence rates with respect to the theoretical computational cost of the
proposed AILFEM.

Third, we analyze the preceding AILFEM, where the linearized problem is additionally
solved with an iterative algebraic solver. This perturbation of the exact linearization proce-
dure significantly increases the technicalities to verify uniform boundedness of all iterates.
As before, we prove full R-linear convergence for an error quantity that now consists of er-
ror components stemming from discretization, linearization, and the algebraic solver. We
conclude optimal rates with respect to computational complexity. Importantly, all steps in
the AILFEM strategy can now rigorously be realized in linear complexity. Hence, optimal
convergence rates with respect to overall computational cost can indeed be understood
as optimal convergence rates with respect to computation time. This is also observed in
numerical experiments.
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1 Introduction

Nowadays in science, partial differential equations (PDEs) are ubiquitous. Their appli-
cations range from classical mechanics to electrodynamics, hysteresis phenomena, the
Schroédinger equation in quantum physics, but PDEs are also used as the underlying
mathematical foundation for the Black-Scholes equation in option pricing. Due to the
complex nature of PDEs, their exact solution is in general not available. This makes the de-
velopment of numerical methods to reliably approximate the unknown solution of highest
relevance. Adaptive finite element methods (AFEMs) are computationally particularly
effective as underlined by the following quote.

In the past three decades self-adaptive discretisation methods have gained enormous importance
for the numerical solution of partial differential equations that arise from physical and technical
applications. The aim is to obtain a numerical solution within a prescribed tolerance using a
minimal amount of work. [emphasis added in boldface]

— Riudiger Verfiirth in [Ver13, Preface], 2013

This thesis investigates adaptive finite element methods (AFEMs) for a certain class
of nonlinear problems, namely semilinear elliptic PDEs. The principal objective is to
prove optimal convergences rates with respect to the number of degrees of freedom of
computable approximate solutions towards the exact (unknown) solution or towards a
quantity of interest that depends on the exact solution. The presented AFEMs have proven
optimal convergence rates with respect to the number of degrees of freedom of the finite
element space and, by including linearization and algebraic solver, also quasi-optimal
computational cost.

The thesis is structured as follows: This introduction discusses the involved concepts,
presents the main results, and puts the results in context with the existing literature. In
Section 1.1, we present the semilinear model problem considered throughout the thesis
and its inherent properties. Section 1.2 introduces the concept of mesh adaptivity and dis-
cusses the standard routines that are present in any AFEM routine. We present a schematic
AFEM algorithm that also takes linearization and an algebraic solver into account (adap-
tive iteratively linearized FEM, AILFEM; Algorithm 1.8 below). Section 1.3 explains in
which sense optimal convergence is understood and presents the main contributions of
this thesis for the presented AILFEMs. Section 1.4 motivates the extension of AFEM to the
goal-oriented setting (GOAFEM) and states the main theorem on optimal convergence
rates. We conclude the introduction with an outline of this thesis in Section 1.5 and other
scientific contributions beyond this thesis that are not presented in detail (Section 1.6).

The main part of the thesis is subdivided into three main chapters.

[OGOA]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Rate-
optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. Comput. Math. Appl.,

118:18-35, 2022. por: 10.1016/j . camwa .2022.05.008

Chapter 2 is based on [OGOA] and investigates a GOAFEM for the semilinear model prob-
lem. The main results are optimal convergence rates with respect to the number of degrees
of freedom of the finite element space.


https://doi.org/10.1016/j.camwa.2022.05.008
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1 Introduction

[®AIL1]: R. Becker, M. Brunner, M. Innerberger, J]. M. Melenk, and D. Praetorius. Cost-
optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. ESAIM Math.
Model. Numer. Anal., 57(4):2193-2225, 2023. DOI: 10.1051/m2an/2023036

Chapter 3 recasts the semilinear model problem in an abstract framework of locally Lips-
chitz continuous operators and proves optimal convergence rates with respect to compu-
tational cost under the assumption that the arising linearized systems can be solved in
linear complexity. The underlying publication of this chapter is [®AIL1].

[®AIL2]: M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEM with
linearization and algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401 .06486

Building on [®AIL1], we analyze the proposed AILFEM with an additional nested loop to
solve the linearized systems iteratively in linear complexity. Chapter 4 investigates the
perturbation from the inexact linearization and is based on [©®AIL2]. Since all steps in
the proposed algorithm can indeed be realized in linear complexity, we prove optimal
convergence rates with respect to computation time.

1.1 Semilinear elliptic problem and first results

By means of conforming finite element methods, we seek for a rate-optimal discrete
approximation of the solution u* € H, (Q) to the second-order semilinear elliptic model
problem

—div(AVu*) + b(u*) = f —div(f) inQ, (1.1)
u*=0 on 0Q,

where the computational domain Q ¢ R is a Lipschitz domain with d € {1, 2,3}, the
diffusion coefficient A: Q — ngxg is elliptic, the nonlinear reaction coefficient b: Q — R
is monotonically increasing, and given data f € L?(Q) and f € [L?(Q)]%. A precise
discussion of the assumptions is found in [©AIL1, Section 3.3 below]. For the moment,
we only highlight that the nonlinear reaction s — b(s) for s € R satisfies a certain growth
condition (for further details, cf. (GC) and its more restrictive variant (CGC) below). This
growth condition ensures that the semilinear term is a compact perturbation of a linear
model problem.

In its weak form, the model problem (1.1) reads: Find a solution u* € HO1 (Q) that satisfies
(Au*,v) = (AVu*, Vo)o+(b(u*), v)a = (f, V)a+{f, Vv)a = (F,v) forallv € H; (Q), (1.2)

where (-, -)q denotes the L?(Q)-scalar product, which is naturally extended to the duality
brackets (-, -) between Hy (Q2) and its topological dual space H~'(Q) = H; (Q)’. The weak
formulation is obtained by multiplying the strong form (1.1) with a so-called test function
v € Hy(Q) and integration by parts. Since Hy (Q)-functions can be characterized by its
vanishing trace on the boundary, the boundary condition is already incorporated into the
ansatz space H; (Q). We note that F € H~!(Q), and oftentimes abbreviate F(v) := (F, v).
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1.1 Semilinear elliptic problem and first results

Throughout the thesis, we suppose that the linear diffusion coefficient A(x) is bounded,
symmetric, and uniformly elliptic. For v € HOI(Q), the associated energy norm ||| - ||| is
induced by the principal part of the PDE and defined as

lwllf? = (A Vv, Vv

This is an equivalent norm on HO1 (Q). The induced energy scalar product is denoted by
€=

To guarantee well-posedness of (1.2) (and hence the well-posedness of the model prob-
lem), we require that the operator A: H~'(Q) — HO1 (Q) is strongly monotone, i.e., there
exists @ > 0 such that

alllv-w| < (Av-Aw, v-w) foralv,w e HOl (Q), (SM)
and locally Lipschitz continuous, i.e., there exists L[max{|||v||, |[[w]|l|}] > 0 such that

sup (Av - Aw, @)

< L[max{[v[ll, llwl}] llv - wll|  forallv,w € Hy(Q). (LIP)
peH! (Q)\{0} el

Then, the Browder—-Minty theorem on monotone operators (see [Zei90, Theorem 26.A])
guarantees the existence and uniqueness of the solution u* € HO1 (Q) to (1.2).

The weak form (1.2) can be made approximable through discretization techniques. One
fundamental advantage of finite element methods is that they allow for fairly general ge-
ometries. In order to neglect any error form the partition of the domain, let the underlying
domain Q ¢ R be a polygonal, bounded Lipschitz domain.

Once the domain Q is decomposed by a simplicial triangulation 75 (cf. [EG04, Section
1.3]), we replace X = HO1 (Q) by piecewise polynomial ansatz spaces with fixed p € N

SP(Ty) ={v e Hl(Q) | forall T € 7, vy|r is a polynomial of total degree < p}.

Furthermore, we define Xy = Sé’ (Tw) = HO1 (Q) N SP(T). The discrete formulation reads:
Seek uy; € Xy such that

(ﬂu;} , UH> = <F, UH> for all Vg € XH. (13)

Since Xy c X is a closed subspace, the Browder-Minty theorem ensures the existence and
uniqueness of the discrete solution u}; € Xj as well.

The compact growth of the semilinearity b ensures that there exists a well-defined energy
functional & for the semilinear model problem (1.2) (cf. [9AIL1, Assumption (CGC) and
Section 3.3.6 below]). Hence, the semilinear model problem (1.2) can be seen as the Euler—
Lagrange equation of an energy minimization problem with a Gateaux differentiable
functional &: X — R. More precisely, the operator A possesses a Gateaux differentiable
potential #: X — R such that its derivative dP: X’ — X equals A, i.e.,

forallv,w € X. (POT)

(Av, w) = (dPv, w) = %lII(} Pv+ tu;) -P(v)
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The energy & can be defined as E(v) := (P — F)v and, for (1.2), reads

v(x)
E) = %./£;|A1/2VU|2 dx+/Q/0 b(s) dsdx—/gfv dx—‘/Qf-Vv dx. (1.4)

There holds a classical equivalence that relates energy norm || - ||| and energy differences.

Lemma 1.1 (see, e.g., [GHPS18, Lemma 5.1]). Suppose that A satisfies (SM), (LIP),
and (POT). Letvy € Xy withmax{||lvylll, llu/ll} < 9. Then, it holds that

L[9]

a
5 ity = vall? < E(vm) = Eu) < == Muefy = vallP. (1.5

In particular, the discrete formulation to (1.3) is equivalent to the energy minimization
problem:

Find u}; € Xy suchthat &(uj)= min E(vy). O (1.6)
UHEXH

An important feature of strongly monotone and locally Lipschitz continuous problems
is that there holds a quasi-best approximation property (see [OGOA, Proposition 2.11
below] for the semilinear model problem and [®AIL1, Proposition 3.2 below] for its proof
in the abstract setting).

Proposition 1.2 (Céa). Suppose (SM) and (LIP). Then, thesolutionu* € Hy (Q) from (1.2)
and its discrete approximation uy, € Xy from (1.3) satisfy

L[2M]

. 1
lle* —ugll < min [|u* - vy, where M = — |F = A0|y-1(q). (1.7)
vgeXy a
We use Ccga = Ccga[ M| = L[2M]/a to abbreviate the constant. The factor 2 stems from
a slightly different but equivalent definition of local Lipschitz continuity (cf. (LIP) and
Remark 3.1 in the third chapter below). i

The investigation of nonlinearities typically asks which (polynomial) growth N € Ny of
the reaction contribution

b: R >R, & |b(&)|<C|EN  forC >0 (1.8)

is possible such that the problem (1.2) remains computationally stable. By choosing suit-
able norms that are connected to the variational setting, this question can be answered
with arguments based on Sobolev embeddings and is related to the local Lipschitz con-
tinuity in its core. To see this, suppose that b(0) = 0. This is without loss of generality,
since otherwise the right-hand side of (1.2) may be replaced by f := f — b(0). The suitable
growth condition on N from [©AIL2, Assumption (GC) below] reads:
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1.1 Semilinear elliptic problem and first results

There exist R > 0 and N € Nwith N < 5for d = 3 such that
BN (&) <R forallé e R. (GC)
The growth condition (GC) admits the estimate
1b(um) = b(0) 10y S llur = O =t Conalllunll] lunll  for all appoximations uy ~ u*.

In the existing literature, discrete L*(Q2)-bounds are either assumed for the discrete exact
solutions (e.g., [HPZ15; XHYM21]) or derived under the assumption that u* € H*(Q) for
s > 1 [BHSZ11]. Without additional regularity, a discrete maximum principle is restrictive
in an adaptive setting, since itimposes angle constraints on the triangulations. Oftentimes,
global Lipschitz continuity of b, i.e., a global Lipschitz constant L > 0 is also supposed in
the literature (e.g., [AW15; HPZ15; XHYM21]).

The preprint [BHSZ11] shows that the global Lipschitz continuity can be replaced
by a growth condition. By further improving this approach (without supposing addi-
tional regularity), all presented works [OGOA, Chapter 2 below], [©AIL1, Chapter 3 below],
and [®AIL2, Chapter 4 below] rely on growth conditions and only on the local Lipschitz
continuity of the semilinearity b without discrete L*(Q2)-bounds. This is a novel result and
generalizes the existing literature.

The difficulty of requiring the Lipschitz continuity assumption (LIP) only locally is that
the Lipschitz constant may vary with the functions v € HO1 (Q)and w € HO1 (Q). This is
also the case in the energy equivalence from Lemma 1.1 and the Céa lemma 1.2 that ex-
ploit (LIP). This local dependence is also passed on to the stability constant of the residual
a posteriori error estimator that is used to steer the algorithm (see [OGOA, Stability (A1)
below]). In conclusion, the local Lipschitz continuity necessitates uniform boundedness
of all computed quantities in the algorithm.

Proposition 1.3. Suppose (SM), (LIP), and possibly (POT) (depending on the case chosen
in Proposition 1.4 below). If the algorithm takes linearization and/or an algebraic solver
into account, we additionally suppose the estimator axioms (A1)—-(A3) introduced below.
Then, there exists Cppng = Cpng [ M| with M = é IF — AO| -1 (q) Such that

Muwll < Cong = Cond[M] foralluy that are computed in Algorithm 1.8 below.  (UB)

The bound simplifies to C,nq = M for the exact solutions; cf [2AILI, Proposition 3.2]
below.

Sketch of proof. This is rigorously proven in [DGOA, Lemma 2.8 below], where the argu-
ment exploits a continuous maximum principle for #* and does not rely on the estimator
axioms (A1)—(A3). In [©AILI, Corollary 3.11 below] as well as [©AIL2, Theorem 4.8 below],
the argument mainly relies on the contraction of the proposed linearization strategy and
the contraction of the algebraic solver (for more details, see Section 1.2.6 below). O

(Quasi-)Pythagorean estimate and compactness. For the proof of linear convergence
(and thus optimal rates), we exploit that the semilinear model problem (1.2) admits a
(quasi-)Pythagorean estimate. There are two considered metrics: First, the difference of
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1 Introduction

energy & from (1.4) and second, the energy norm ||| - ||| induced by the principal part of
the PDE operator. The latter relies on compactness arguments, thus imposing further
constraints on (GC) for the case of d = 3, namely:

There exist R > 0 and N € Nwith N € {2, 3} for d = 3 such that

BN (&) <R forall ¢ € R. (CGC)

Proposition 1.4. Suppose that A satisfies (SM), (LIP), and that Xy c X.
(i) Additionally, we suppose (POT). Then, the energy (1.4) satisfies that all differences
appearing in

E(vy) - EW*) = [E(vn) - E(ufy)] + [E(uyy) —EW™)]  forallvy € Xy, (0))

are nonnegative.

(ii) Under a suitable notion of compactness of the nonlinearity (CGC), we get a weaker
result for the energy norm ||| - |||: For every0 < € < 1, there exists a sufficiently fine discrete
space Xy such that, for all spaces X, with X, 2 Xy, there holds quasi-orthogonality, i.e.,

1 2 2 2 2
— Il = vnll® < M = wyll® + ey = vall® < llu* = valll” for allvy € X (QO)

1+¢ 1-¢
Sketch of proof. (i) This is immediate from the energy minimization (1.6) in Lemma 1.1
and its counterpart on the continuous level for (1.6).
(ii) The result is proved in [OGOA, Equation 2.78 below] in slightly modified form. The
argument applies Galerkin orthogonality and nestedness of spaces for u}, € Xy < X}, but
this can be applied to any v, € X}, (instead of u},). o

1.2 Adaptive FEM with linearization and algebraic solver

This section starts with the concept of (mesh) adaptivity in Section 1.2.1. Sections 1.2.2—
1.2.4 are devoted to the discussion of the involved modules of standard AFEM. Section 1.2.5
gives an overview of the literature on standard AFEM. Section 1.2.6 extends the standard
AFEM to AILFEM, where linearization and an algebraic solver are included into the SOLVE-
module of the standard AFEM routine. We conclude with a literature overview on AILFEMs
in Section 1.2.7.

1.2.1 The concept of adaptivity

The discrete finite element space Xy is supposed to admit an a priori bound depending
on the mesh-refinement level H := maxy.s, |T|'/¢ of the form

[u* = ufly o) = O(H") as H—0, (1.10)

where r > 0 denotes the rate of the (global) approximation. The generic approach is to
uniformly reduce the mesh size H of the domain Xj;, where the number of elements grow
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1.2 Adaptive FEM with linearization and algebraic solver

[SOLVE & ESTIMATE |

Figure 1.1: AFEM loop where linearization and (possibly) an algebraic solver is steered.

7o Ut 72 73

N

Figure 1.2: First meshes in the sequence of adaptively refined meshes for the problem
from Experiment 1.5. The refinement focuses on the reentrant corner at (0, 0), where the
unknown exact solution possesses a singularity.

exponentially. For sufficiently smooth solutions, the convergence rate is only bounded by
the polynomial degree of Xy. In nonconvex domains, the geometry leads to singularities
at the reentrant corners and the convergence behavior may be spoiled by such (local
point-) singularities. Uniform refinement has no means of localization of singularities
by only steering the global mesh-refinement level H. Consequently, the global refine-
ment requires additional computational effort to efficiently resolve the singularity and
overall leads to a deteriorated convergence rate; see [Gril 1] for nonconvex geometries
and Experiment 1.5 below. By introducing a computable local error measure 1y (T') of the
approximation error on all triangles T € 7 that does not rely on the unknown solution
u*, such a posteriori information can indeed detect singularities and steer a localized
mesh-refinement feedback loop as displayed in Figure 1.1. This is the concept of mesh
adaptivity.

The feedback loop from Figure 1.1 can be described as follows: For a given triangulation
71, the module SOLVE & ESTIMATE steers the linearization and the algebraic solver and
computes ny(T) for all T € 7. The module MARK singles out elements, where the local
contributions are large, e.g., by employing the Dorfler marking criterion (1.19) below
that is first found in the seminal contribution [D6r96]. The REFINE module bisects the
marked elements and performs a mesh-closure step to avoid hanging nodes. Overall, a
new triangulation 7;, is obtained by a posteriori information on potential singularities.

A sequence of adaptively refined meshes is depicted in Figure 1.2, where the schematic
loop from Figure 1.1 is carried out by a simplified version of Algorithm 1.8 below; cf. Ex-
periment 1.5 for further details.

With the mesh-level index ¢ and an approximation u, ~ u; computed by Algorithm 1.8
below, the decay rate of the energy error |||u* —u,||| over the number of degrees of freedom of
X, is a suitable measure for a fair comparison of uniform mesh refinement and adaptively
refined meshes.

Experiment 1.5 (Convergence of uniform vs. adaptive refinement). We consider the L-
shaped domain Q = (-1,1)? \ [0,1) x [-1,0) c R?, where the boundary consists of a
homogeneous Dirichlet part 0Qp (highlighted in blue and bold in Figure 1.2) and an inho-
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Figure 1.3: Adaptive (diamond, red) vs. uniform mesh refinement (circle, blue): Plot of the
approximation error ||u* — u|| for an approximation u, ~ u* computed by Algorithm 1.8
over the number of degrees of freedom (left) and over computation time in seconds (right).

mogeneous Neumann part 0Qy such that0Q = 0Qp U 0Qy = 0Q \ 0Qp. With the normal
derivative 0,,, we solve the Laplace problem

-Au*=0 inQ subjectto u*=0 ondQp and 0J,u*=gy 0noQy.

The exact solution reads u* (x) = r?/® sin (2/3¢) for x € Q in polar coordinates (r, ¢) €
R0 X [0, 27) and is used to determine gy. Its derivative has the generic point singularity at
the reentrant corner (0, 0). As refinement strategies, we compare uniform mesh refinement
and an adaptive mesh-refining algorithm.

An empirical investigation of the convergence behavior is shown in Figure 1.3. On the left,
we plot the energy error over the number of degrees of freedom. In practice, one is often more
interested in measuring computation time in seconds. This is displayed in Figure 1.3 (right).

The data points represent the iterates of the algebraic loop (more precisely: |u* — u%” HL(Q)
where € is the mesh-refinement index and j the final algebraic solver index; the index set is
defined in the spirit of Q from (1.20) below with a void linearization loop). In both cases,
uniform refinement (circle, blue) converges with suboptimal rater = —1/3 regardless of
the polynomial degree p € {1,3} of the ansatz space S (). Adaptive mesh refinement
(diamond, red) restores the optimal rater = —p /2 with respect to the number of degrees of
freedom and computation time after a short preasymtotic phase.

1.2.2 Module REFINE — Newest-vertex bisection

The newest-vertex bisection algorithm (NVB) is a local bisection method from [Sew72;
Mit91; Ste08; DGS23] that preserves conformity and y-shape regularity, which can be
understood as a lower bound on the angles of all triangles. For the introduction, we restrict
ourselves to the case d = 2, where NVB and the mesh closure can be presented as an
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1.2 Adaptive FEM with linearization and algebraic solver

BNANAY N NV VAVN,

Figure 1.4: (1): Marked element T with refinement edge refEdge(T) € M, (blue). (2):
Refinement of (1) by NVB. Due to the mesh-closure step to avoid hanging nodes, all
three edges might be marked for refinement; (1) for one marked edge, (3)-(4) for two
marked edges after performed refinement, and (5) for three marked edges and performed
refinement. (6): A hanging node in the neighboring triangle is highlighted in red (6).

A A S S

Figure 1.5: Graphical illustration that NVB preserves y-shape regularity. Left: Arbitrary
triangle with refinement edge at the bottom. Center left to right: Successive NVB iterates
of the children elements. The only possible similarity classes of triangles are highlighted
in different colors.

inductive algorithm [KPP13].

For a triangle T = conv(z, z1, z2), where conv(zy, z1, z2) denotes the convex hull of
{z0,z1, 22} € Q, we use the convention that refEdge(T) := conv(zy, z2) is the edge opposite
of z9. To refine T along refEdge(T), we introduce the midpoint my = leﬂ Then, T is
refined by bisectioninto T = Ty U T,, where Ty := conv(mr, z1, 29) and T> := conv(mr, z1, 22)
with |2i| = |T1] = |T>|; see the two leftmost triangles in Figure 1.4 for the bisection of the
triangle T along the refinement edge and the midpoint m (circle). The next refEdge (T3 2)
is opposite to my, justifying the name newest-vertex bisection.

Moreover, NVB also includes a procedure to avoid hanging nodes that may appear in
the refinement process; see Figure 1.4(6), thus additionally refining elements that are not
marked. This is denoted by 7¢;; = refine(7;, M;), where M, are the marked elements on
level €.

We remark that y-shape regularity of the input mesh 7, i.e., a uniform lower bound on
the interior angles of all T € 7, is respected by NVB, since at most four different similarity
classes of children elements (and, thus, only finitely many interior angles) may occur in
sequences of conforming triangulations generated by NVB refinement. This observation
is depicted in Figure 1.5.

Remark 1.6 (NVB in higher dimensions). We refer to [Mau95; Tra97; Ste08] ford > 3,
where the NVB algorithm is formulated recursively. Until very recently, the termination of
this recursive formulation was only ensured by the admissibility condition imposed on the
initial triangulation Ty originating from [BDD04]. However, this can be circumvented by an
initialization strategy proposed in the recent preprint [DGS23].

We denote with T(75) the set of all triangulations 7}, that are the result of finitely many
steps of newest-vertex bisection from 7, i.e., we write 7;, € T(7g) if there exists n € N



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1 Introduction

such that 7,, = 7, and marked elements M, C 7; with 7,1 = refine(7;, M,) with for all
¢=1,...,n-1where 91 = 7. Moreover, we use 7, to denote a fixed initial mesh and we
may abbreviate T = T(7).

NVB admits the following fine properties of mesh refinement, which will be applied
to obtain optimal convergence rates. To this end, for 7,7’ € T = T(7), we call the
triangulation 7" & 7 := argming ¢ o 7+ #7 the coarsest common refinement of 7 and
T’

(R1) children estimate: For arbitrary 7 € T and arbitrary 7;, € T(7g), there exists Ccpjig €
N such that

#(Ta \ Tn) +#T1 < #Tn < Cenita# (T \ Tn) + #(Te 0 ). (R1)

(R2) overlay estimate: For arbitrary 7;; € T and a refinement 7;, € T(7y), we have that

#(T @ Tn) < #Tu + #Tn — #70. (R2)

(R3) closure estimate: For any sequence of triangulations (7¢)¢en, generated by subsets
of marked elements (Mp)en, such that 7¢,1 = refine(7;, M) for € € Ny, it holds
that

0-1
#77 — #75 < Ciesh Z #M,  forall ¢ € N, (R3)
=0

where Cpesp > 1isindependent of the sequences (7¢)¢en, and (My)een,, but depends
only on 7.

The refinement is based on NVB and of constant cost for each element. Since there are at
most finitely many children [GSS14] and there holds a mesh-closure estimate [BDD04;
Ste08], the overall cost are thus of order O (#75) to generate 7;, = refine(7y, Mpy).

1.2.3 Module ESTIMATE

As the local error measure for the model problem (1.1) (with homogeneous Dirichlet
boundary conditions), we introduce the residual a posteriori error estimators follow-
ing [AO00; Ver13]. Residual error estimators are motivated by the fact that the (com-
putationally not available) error u* — u}; can be estimated via the residual in the dual space
H~1(Q) by a discrete, computable quantity ny (u},).

Suppose that A|r € [W'=(T)]4: and flr € [Wh>(T)] forall T € 7. With hy = T[4,
elementwise integration by parts of the residual F — A (vy) with vy € X give rise to the
elementwise contribution

ni1 (T, vm)? = B2 |f +div(AVoy = £) = b(o)l2 ) + hr A Vo = PTI o)

10
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1.2 Adaptive FEM with linearization and algebraic solver

Moreover, we abbreviate, for Uy C T,

N (U, vir)? = Z nu (T, vir)? (1.11)
TeUy

and the global contribution by ng (v)? = g (T, ve)?.

To ensure optimal convergence rates, four abstract conditions of the error estimator
are required. The analysis in its axiomatic form has been introduced by [CFPP14]. For
nonlinear problems, the proof of stability (A1) below requires new ideas and, in particular,
the stability constant inherits the local Lipschitz continuity (LIP) of our abstract framework,
whereas (A2)-(A4) follow from standard arguments in [CFPP14].

Proposition 1.7 ([OGOA, Proposition 2.15 below]). Let 7y € T and 7, € T(7x). The
standard residual a posteriori error estimator (1.11) for the semilinear model problem
satisfies the following properties:

(A1) stability: For all 9 > 0, there exists Cg,p[9] > 0 such that for all v, € X, and
vy € Xy with max{||lvlll, llvell} < 9, it holds that

|71 (Th O Tt v) = 01 (T 0 T, vin)| < Cotab 91 lvn = vl (A1)

(A2) reduction: With 0 < g,eq := 27'/(?? < 1 and provided that simplices are refined by
NVB, there holds, for all vy € Xy and allw € Hol(Q), that

M (Tu\Ta, va) < Gred M (T \Th, V). (A2)

(A3) reliability: There exists C,e > 0 such that

llee* = ull < Cret mu (ugy). (A3)

(A4) discrete reliability: There exists Cge > 0 such that

ey, = uzlll < Caret ne (T \Tn, uy)- (A4)

We remark that the constants Cg,, [9], Crel, and Cyre) depend on y-shape regularity of the
mesh and that Cy,, [ 9] and Cqre) depend additionally on the polynomial degree p. We also
highlight that (A3)—(A4) hold only for the exact solution u* and Galerkin solutions u};, u;,
respectively.

1.2.4 Module MARK

The marking procedure determines elements with large estimator contributions for refine-
ment. In adaptive finite element methods — in particular in the context of rate-optimality
— the Dorfler marking from [D6196] is frequently used and reads as follows. For an adaptiv-
ity parameter 0 < 6 < 1, we seek a (possibly nonunique) set of marked elements My C 7

11
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1 Introduction

such that
0n% < nu(Mp)?. (1.12)

Among the many sets M, that satisfy (1.12), we choose M, with quasi-minimal cardinality,
i.e., for a fixed constant Cy,,;x > 1 that does not depend on the mesh-refinement index
such that

#Mpy < Crark (urpin Uy with My = {Uy S T | 007 < nu(Un)?}. (1.13)

HEMH

Then, the choice of 6 = 1 results in uniform refinement, whereas a small adaptivity
parameter 0 < 0 < 1 marks very few elements with largest error indicators.

The standard approach to determine a set of marked elements is to sort the error
contributions [D61r96]. However, this would lead to the minimal cardinality in loglin-
ear complexity. For the price of marking slightly too many elements, [Ste07] singles out
a set of quasi-minimal cardinality C,,;x = 2 in linear complexity based on a bin-sort
approach. An adaptation of quickselect in [PP20] realizes Dorfer marking at linear cost
with Cparc = 1.

Concerning the proof of optimal convergence rates, the quasi-minimality of Dorfler
marking (1.13) is sufficient [D6r96] and even necessary [Ste07] (cf. Proposition 1.11 below).

1.2.5 Literature on adaptive FEM

Improving the computational accuracy via a feedback loop as in Figure 1.1 already appears
in early works such as, e.g., [BR79; BV84; 7Z787]. The proof of (plain and linear) convergence
of an adaptive FEM is significantly more challenging than for uniform refinement, since
the maximal mesh size hy = |T|'/¢ may not tend to zero uniformly (cf. (1.10) and Figure 1.2
for an illustration of that). While a first convergence result was presented in [BV84] for
d = 1, its proof remained open for d > 2 until [D6196; MNS00]. At about the same time, an
overview on available error estimators for AFEM appeared in [AO00].

After the introduction of suitable approximation classes in the context of adaptive
wavelet methods [CDDO01; CDDO03] and by means of an additional coarsening step of the
mesh, [BDD04] proved rate-optimality of an AFEM for the 2D Poisson model problem
for the first time. The coarsening procedure was circumvented in [Ste07] for the 2D Pois-
son model problem. In the publication [MSV08], other marking strategies such as the
maximum marking criterion and their implications on convergence of AFEM are analyzed.

The paper [DKO08] frees the proposed AFEM of the additional separate marking for the
oscillations oscy (u;). This strategy is refined in [CKNS08], which observed that

llee* = wpelll + oscr () = na(uf)? ~ llu* - ufylll + wne(ufy)?®  with g > 0.

The term on the left-hand side is the total error. It consists of the approximation quality of
u* and the data approximation properties encoded in oscy (u};). The total error was also
used to define the approximation class of u*; cf. (1.32) below. The term on the right-hand
side is the quasi-error that is contracted by the AFEM for a suitable choice of 1 > 0. Thus,

12
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1.2 Adaptive FEM with linearization and algebraic solver

no inner loop for data approximation is necessary in the setting of symmetric second-
order elliptic PDEs (if the initial triangulation resolves the geometry). Fostered by the
presented breakthroughs, many papers on particular schemes or applications appeared.
For instance, the paper [KS11] investigated and proved convergence for other (locally)
equivalent estimators. Moreover, extracting the essential (estimator) properties (Al)-(A4)
and (QO) gave rise to an axiomatic framework that relies solely on upper bounds of the
error estimator [CEFPP14].

The extension of the framework to nonlinear problems goes back to, e.g., [Vee02; DK08;
BDK12] for the p-Laplacian. Moreover, we refer to [GMZ12] for strongly-monotone and
globally Lipschitz continuous quasilinear PDEs, and to [FFP14] for second-order nonsym-
metric PDEs and some nonlinear problems.

1.2.6 AFEM with linearization and linear solver

The solution of the nonlinear discrete problem (1.2) is an involved task. One way to solve
nonlinear problems is by using a fixed-point iteration to linearize the nonlinear equation.
We extend the AFEM setting which usually supposes an exact solution of the discrete
problem to Algorithm 1.8 below. This Algorithm 1.8 has an inner loop which employs
the Zarantonello iteration to linearize the nonlinear equation and steers adaptively the
number of linearization steps. Moreover, we employ an algebraic solver to solve the
linearized system, we refer to this extended AFEM as adaptive iteratively linearized FEM
(AILFEM).

The linearization and the algebraic solver that is used to efficiently solve the linearized
discrete problem can also be stopped adaptively with a posteriori information. Schemati-
cally, this leads to nested loops that are depicted in Figure 1.6, where the nested loops and
their hierarchy are indicated by the boxes — discretization (with index ¢), linearization
(with index k), and algebraic solver (with index j).

In all presented algorithms in this thesis, discretization (¢, blue) incorporates the mod-
ules MARK and REFINE. When including additional errors that stem from linearization (k,
red), this is realized as a nested loop that leads to a symmetric and positive definite (SPD)
problem. The expensive SPD problem is solved by an algebraic solver. This constitutes yet
another nested loop (j, green).

The Zarantonello iteration is used as a linearization method. It is particularly attractive
for two reasons: On each level, only a Laplace-type problem has to be solved. Moreover,
the assembly of the Laplace system can be done only once at each mesh level ¢ and does
not depend on the computed iterates. For a damping parameter § > 0 and given wy € Xy,
the Zarantonello update @ (§; wy) € Xy solves

(Pu (8 un), vu) = (un, va) + 6 [F(vy) — (Aug, vy)| forallvy € Xu. (1.14)

The Lax-Milgram theorem proves existence and uniqueness of @y (J; uy), i.e., the Zaran-
tonello operator ®5(9;-): Xy — Xp is well-defined. In particular, u}, = ®(J; uj;) is the
unique fixed point of @y (§; -) for any damping parameter § > 0. For a sufficiently small
damping parameter § > 0, the Zarantonello iteration is norm-contractive; cf. [Zei90,
Section 25.4]. This is the main ingredient to show that the energy norm of two succes-

13
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Discretization (¢)

— SOLVE. solve nonlinear
discrete problem

+ ESTIMATE. a posteriori
residual error estimator

+ MARK. Dorfler marking

+ REFINE. adaptive mesh
refinement

+ rate-optimal wrt. num-

Linearization (k)
k *

2 I~ u

— solve expensive SPD
problem

+ iterative solution of
nonlinear problem

+ residual-type
fixed-point iteration

+ idealized cost-optimal,
i.e., SPD system solvable

el

Algebraic solver (j)
ltp

zuﬂzu

+ solve SPD problem itera-
tively

+ contractive algebraic
solver, e.g., multigrid

+ cost-optimal

+ rate-optimal wrt. compu-
tation time

in linear complexity

ber of degrees of freedom

Figure 1.6: [llustration of a two-fold nested loop in adaptive mesh-refinement algorithm
with linearization and algebraic solver.

sive iterates is bounded. For a detailed discussion of the Zarantonello iteration, we refer
to [®AIL1, Section 3.2.2-3.2.4 below].

The Zarantonello linearization leads to an SPD problem (1.14). Solving large SPD prob-
lems in linear complexity requires an advanced solving procedure. To this end, we employ
aniterative algebraic solver with process function Wy : X’ xXy — Xy to solve the linearized
system (1.14). More precisely, given a linear functional ¢ € X’ and an approximation
wy € Xp of the exact solution w}; € Xy to

w}y, vu) = ¢(vg) forallvy € Xy, (1.15)

the algebraic solver returns an improved approximation Wy (¢; wy) € Xy in the sense that
there exists a uniform constant 0 < g, < 1 independent of ¢ and Xy such that

llws; = ¥ (@; wi)lll < qag llwf; — wylll - forall wy € Xp. (1.16)

To simplify notation in case of a complicated right-hand side ¢ (as for the Zarantonello
iteration (1.14)), we shall write Wy (w};; -) instead of Wi (¢; -), even though w}; is unknown
and is never computed.

Examples of norm-contractive solvers include optimally preconditioned conjugate
gradient methods [CNX12] or optimal geometric multigrid methods; see, e.g., [WZ17]
for fixed p € N or [[MPS23] for an hp-robust multigrid method, where the latter will be
employed for some of the numerical experiments.

Define j := k := £ = 0, where ¢ is the counter for mesh refinement, k = k[¢] is the
counter for linearization, and j = j[¢, k] is the counter for the algebraic solver. Algo-
rithm 1.8 presents the quasi-optimal AILFEM strategy.

14
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1.2 Adaptive FEM with linearization and algebraic solver

Algorithm 1.8: adaptive iteratively linearized FEM (AILFEM)

Input: 75 conforming mesh, initial guess uO € Xy, marking parameters 0 < 6 < 1 and
Cmark = 1 for Dorfler marking, and Zarantonello damping parameter § > 0.
Adaptive loop: Forall ¢ =0, 1,2,..., repeat the following steps (I)—(III):

(I) SOLVE & ESTIMATE. Forallk =1,2,3,..., repeat the steps (a)—(c):

(a) Set uf’o = e and deﬁne, for theoretlcal reasons, the exact solution of the
linearization iterate ”e = @y (6; ”e )from (1.14).
(b)Forallj =1,2,3,... repeat steps (i)—(ii):
(i) Compute ulf’j = ‘P(uk s uf’ h~ u,’ k* from (1.15) and ng(ue .

(i) Terminate the j-loop and define j[¢, k] := j if
the algebraic error |||u2°’* - uf’j Il issufficiently small. 1.17)

(c) Terminate the k-loop and define k[¢] = k if

. . . kY j . .
the linearization error  |[|lu; - u, i||| is sufficiently small. (1.18)

(II) MARK . Wlth Mg[@ uf ] ={U, CT¢ | Hng(u;i)z < 0 (Uy, u;i)z}, determine a set
M e Mg [ 6, ue ] from (1.13) with quasi-minimal cardinality

#My < Cpark  Mmin #U,. (1.19)
UpeMe (0,1, ]

(III) REFINE. Generate the neW mesh 7¢;1 := refine(My, 7¢) by employing NVB and

0
00 ._ J 0% ._
setu,, = U, = U, = ”e (nested iteration).

Output: Sequences of successively refined conforming tnangulatlons 7¢, discrete ap-
proximations ”e , and corresponding error estimators 7 (”e .

For the analysis of Algorithm 1.8, we define the index set

Q:={(tkj)eN | uf'j is used in Algorithm 1.8}, (1.20)

where, for any (¢,0,0) € Q, the stopping indices are defined in coincidence with Algo-
rithm 1.8 as

|
)

sup{f € Ny | (£,0,0) € Q} € Ng U {oo},
] =sup{k eN| (¢,k,0) € Q} € NU {0},
jle, k] =sup{j eN| (¢, k,j) e Q} €NU{oo}.

15
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We introduce the total step counter i.e., for two indices (¢, k, j), (¢, k’, j’) € Q, it holds that
6, k,jl <0/, k',j'| < (L k,j)appearsnotlater than (¢, k’, j') in Algorithm 1.8.

This provides indeed a lexicographic ordering with respect to the total step counter on Q,

0-1 k[€1ICKT g JIOKT i
16, k, j| == #{(', k', j) Q| |, k']|<|€k]|}—ZZ Z 1+Z Z 1*21
=0 k'=1 j’=1 k=1 j'=1

Remark 1.9 (Linear complexity). Each module of Algorithm 1.8 is realizable in linear
complexity:
* SOLVE & ESTIMATE. The employed Zarantonello linearization produces a linear sys-
tem that is solved by means of the geometric multigrid method from [IMPS23] as a
solver with linear complexity, i.e., each iterate u;f’] can be obtained with O(#7;) opera-

tions. The computation of the refinement indicators ny(T, u;f’j ) forallT € 7; can be
parallelized and done at the cost of O (#7y).

* MARK. The employed Dorfler marking (and the involved determination of the marked
elements My) is indeed a linear complexity problem; see [Ste07] for quasi-minimality
with Cyax = 2 and [PP20] for minimal cardinality.

* REFINE. The refinement of 7y is based on NVB and hence is of linear cost O (#7¢).

The cumulative nature of the AILFEM suggests to consider the computational cost as
a more restrictive measure than the degrees of freedom of the underlying space X;. The
computational cost for obtaining uf’j depends on the whole history and, since each step
is of linear complexity, the cost is proportional to the sum of the number of elements in
each iteration. More formally, it holds that

0—1 k[e'] JL1¢" k'] k-1 JL0K]
cost(¢, k, j) = > #T = Z Z > #T+ Z > #7‘+Z#7‘ (1.22)
(C.k,j'), (LK, j)eQ =0 k'=1 j'=1 k=1 j=1

[€,k"j <18,k j]

This subsection concludes with a discussion of possible stopping criteria in Algorithm 1.8.
Recall the discrete exact solution u} ~ u* from (1.3), the exact solution of the Zaran-

tonello iteration u = Dy (6;ub 0) uy, from (1.14), and the linear solver iterate uz‘j =
‘If(uI’fI*, uk I & u * from (1.15). By stability (A1) and reliability (A3), we have that
oy
lee* = g < Mee* = a l+ Mg = wg
) R k, k,j
< e Cag) 4 e = ug ™ M+ g™ = w7 (1.23)

which controls the overall error from above by splitting it into discretization error, lin-
earization error, and algebraic error. This splitting is used to derive the stopping crite-
ria (1.17)-(1.18) in Algorithm 1.8. However, the exact solutions u; and uf'* are notavailable.
A computable variant of the stopping criteria relies on the following heuristics: The lin-
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1.2 Adaptive FEM with linearization and algebraic solver

earization error shall be dominated by the discretization error, and the algebraic error
shall be dominated by the discretization and linearization errors.
The contraction of the algebraic solver (1.16) yields the a posteriori error estimate

Galg

C, % k,j k,j k,j—1 . .
luf* - u, |l < - Mg = w7l forall1 < j < j[e,kl.

— Yalg
To bound the algebraic error by the discretization and linearization error, we ask for

1- qal i i ; ! ; k,j
g k, k, k, k,j-1, k, 2] k,0
——— " =< Mg = g < Mg [ Atin me () + Ml ™ = uy (1.24)

Galg ‘

where the second estimate can be checked in practice and is used in (1.17). The Zaran-
tonello linearization is contractive for the exact solution [BIM*23, Equation (4.1)], i.e.,

k, k,0 ke kx o KJ ki ko0
ey = uy Ml < qgp Mluy — ;"I < g7, [Ny - w, "+ Muy™ = uy I+ M, = — wy, ]

We also have the a posteriori error estimate

k,x k, k.j kj k0
(1= qya) My — w0 < g™ = o, 0+ M, = = gl
(1.24)  qalg k.j kK0 ki ko
< 1- qa Aalg[/llinnf(ug ])+”|ug7_ug’ ”l] +|“ug7_ug' Il
a

, | .
where |||u§'i - u;f'olll < Alin ¢ (uf’l) can also be checked in practice for the final iterates
of the j-loop. This is used to stop the k-loop. With a hidden constant that includes the
constants from the previous estimates and also relies on stability (A1) and reliability (A3),
this overall ensures that

k,j k,j
llee* = u, “ll < (1 + Aaig Atin) 10 (1, )
for the final iterate once both, the linearization and the algebraic solver have terminated.

Remark 1.10. The stopping criteria (1.17)—(1.18) are adapted in the proposed AILFEMs to
enforce algorithmically that enough linearization as well as algebraic solver steps are made.
This is a crucial ingredient to uniform boundedness (UB).

1.2.7 Literature on AILFEM

The inclusion of iterative solvers into AFEMs already goes back to [Ste07]. Under realistic
assumptions on a generic iterative solver, AFEM with optimal complexity was first proven
in [Ste07] for the Poisson model problem and [CG12] for the Poisson eigenvalue problem.
Other contributions to the development of AILFEMs with either linearization or an inexact
solver are, e.g., found in [BMS10; EEV11; AGL13; EV13; AW15; CW17]. To use the Zaran-
tonello iteration as a numerical linearization strategy seems to go back to [CW17], and is
also used for globally Lipschitz continuous nonlinearities in [GHPS18; HW20a; HW20b;
GHPS21; HPW21; HPSV21].

17
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We point out that [HW20a; HW20b; HPW21] also consider other common linearization
strategies, namely the Kacanov iteration and a damped Newton method. These, however,
are (so far) hard to use in the semilinear setting, since the bilinear forms associated with
the linearization depend on the previous iterate and norm contraction may not hold. This
prevents a main ingredient to uniform boundedness (UB) of the iterates.

The coupling of the Zarantonello linearization with an algebraic loop is analyzed in the
own work [BIM*23] for nonsymmetric second-order linear elliptic PDEs and for strongly
monotone (and globally Lipschitz continuous) model problems in [HPSV21; BEM*23].

1.3 Convergence with optimal rates

The ultimate goal of any numerical scheme is to drive down the error with the least com-
putational effort possible. In this section, we sketch the interplay of model problem
properties such as (quasi-) orthogonality (QO)/(0) and uniform boundedness (UB) with
estimator properties (A1)—(A4), results on Dorfler marking, and fine properties of the mesh
refinement (R1)—(R3).

1.3.1 Dorfler marking: sufficient and necessary

The Dorfler marking in the MARK procedure is sufficient to ensure convergence (and also
optimal rates) of the finite element method. In some sense, [Ste07] observed that Dorfler
marking is even necessary. Since these results follow from standard reasoning with minor
modifications due to the local Lipschitz continuity, we include a short proof as these will
not be proven in the main chapters.

Proposition 1.11 (see, e.g., [CFPP14, Lemma 4.7, Lemma 4.12]). Let ¢ € Ny be such
that ¢ < €. Let (7;)¢ be the sequence of meshes generated by Algorithm 1.8. Let A sat-
isfy (SM), (LIP), and (POT). Then, the following implications hold:

(i) Suppose (UB) with Cpng = Cona|M] for all final iterates of the two inner loops of
Algorithm 1.8. Under the estimator properties (A1)—(A2) and for uf’i e Xo and
uffl € Xu+1, the Dorfler marking (1.19) implies that

kj kj kj ki .
et (tg,7) < qo Me(tty ") + Cotab[Conalllieg; —u, "Il with0 <qo <1, (1.25)

whereqe = [1-(1-q2 ) 9]1/2. Note that gy — 1 if6 — 0.

(i) Suppose (Al) and (A4) as well as (UB) for the exact solution u}, with Cyng = M
from (1.7). Let0 < 0 < Oopt = (1+Cyqp[2M]* C )" Then, there exists0 < qopt < 1
such that

Nen(Ufs)? < Gope e (u)? = 01¢(uy)® < ne(Te \ Tewns up)? forn e No  (1.26)
kY j k’ j . . . . .

Remark 1.12. (i) The term |||u,jf1 - u;llll vanishes for |0, k, j| — oo, either by a priori conver-
gence in the discrete limit space X, = \J;~, X¢ if € = co or by the contraction of the Zaran-
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1.3 Convergence with optimal rates

tonello iteration if k[€] = . The case j[£, k] = oo is analytically not possible (cf. [YAIL2,
Lemma 4.7 below]). -

(ii) Dérfler marking is used for the final iterates of the SOLVE & ESTIMATE module. In case
of an AILFEM with an exact solution of the linearization as in [2AIL1], we have uf'* and

B
u,,, as the final iterates. In case of discretization only, i.e., no linearization and no algebraic
solver, the final approximations areu; anduy, .

Proof of Proposition 1.11. The first statement, in essence, is presented in [CKNS08]. The
second statement, formulated for the error, goes back to [Ste07], while the formulation
through the error estimator is first found in [CFPP14].

(i) Stability (A1) and reduction (A2) prove that
k,j kj k,j
Nes1 () = et (Ten N T, ug 3%+ N1 (Tear \ T2, ”e o)
< e (7.+1 N 7-) u@ )2 + qred Ne (7- \ T+1) u@ )2
= ne(ug he_a- o) M0(T0 \ Tes1, u2 2,

Dorfler marking (1.19) and refinement of (at least) all marked elements lead to

kj kj kj
00 (u,™)* < ne(Me, u, ™) < ne(Te \ Tear, 1y ")°

Combining the last two estimates leads to
k,j k,j 1/2
Nes1 (") < gome(u,”) with 0<gp = [1-(1-ghy 0] " <L

kY j o1
Combined with ng+1(u£+1) nm(ue ) + Cstab [ Condl |||u€+1 u;llll due to stability (Al)

k,j
and (UB) for the final iterates u, - ! and ue ;1 yields (1.25).
(ii) Since [|luy,, — uyll < 2M, the Young inequality with § > 0 shows that

M) = 0e(Te \ Town; ul)? + 00 (Te O Toan; uf)?
L 0T Ton 42+ (14 8) nen(uf)? + (14 671) Caan[2M1 g = uf, 12
TN Ton uf 2+ (14 8) 2 (2 + (1+ 57 Cogap [2M12 Gy 10 (76 \ T )2
Rearrangement yields

1-(1+0)q5y

1+ (1467 Cyap[2M]2 C5

Ne(uy)? < 0e(Te \ Toans up)?. (1.27)

Choosing ¢ > 0 and afterwards 0 < gop¢ < 1 in a way that ensures

1—(1+5)qOpt 1

<
=1 (1+067Y) Cap[2M]2CT,, 1+ Coap[2M]2C3

= Qopt
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concludes the proof. o

For the sake of completeness, we also include the monotonicity of the estimators.

Lemma 1.13. Let (UB) hold for the Galerkin solutions uj to (1.3) with Cyng = M associ-
ated to the meshes X, that appear in Algorithm 1.8. Suppose (A1), (A3), and a Céa-type
estimate (1.7). Then, there holds quasi-monotonicity of the estimator, i.e., there exists
Cmon > 0 such that, forall7, € T and Ty € T(7;) with0 < € <€’ < ¢,

Ne (u;') < Cmon e (UZ) where  Cmon = 1 + Cyap [2M] Cyep (1 + Cca[2M]).  (1.28)

Proof. Since ||uy, — uy|ll < 2M by (UB), it holds that

(A1) (1.7)
ne (ud) < e(uf) + Coan [2M 1 luf — ull < 1e(uf) + Coran[2M] (1 + Ceea[2M]) fle* = uf |

and reliability (A3) concludes the proof. i

1.3.2 Full linear convergence

A cornerstone to prove optimal convergence rates is full R-linear convergence. Regardless
of whether the mesh is refined, another linearization step is made, or an additional linear
solver step is performed, the algorithm contracts the quasi-error from the right-hand side
of (1.23).

Theorem 1.14: Full R-linear convergence; [©AIL2, Theorem 4.13 below]

Let A satisfy (SM), (LIP), and (POT). Suppose (UB) for all iterates and the estimator
properties (A1)~(A3). Then, for arbitrary adaptivity parameters M, Aag > 0, and 0 < 6 <
1, the quasi-error from (1.23)

k,j . k,j k, k, k,j
Hy = no(uy?) + llug — g+ g™ = |l (1.29)
is R-linear convergent, i.e., there exists Cyj, > 0 and 0 < qy, < 1 such that

He? < Gy TIHG for all (6%, ), (¢,K', ') € Qith |, K, 7| < 16, K, 1
(1.30)
In particular, it follows that

llw* —ufll =0 as |0,k j| — . (1.31)

Proof'idea. The gist of the proof of (1.30) lies in the estimator reduction (1.25) (index ¢),
the contraction of the Zarantonello iteration (index k) and the contraction of the algebraic
solver (index j). Also the stopping criteria and quasi-monotonicity arguments of the
noncontracted error components are used. A detailed proof of (1.30) is given in [DAIL2,
Theorem 4.13 below].
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1.3 Convergence with optimal rates

To see the convergence (1.31), note that reliability (A3), uniform boundedness (UB)
in (A1), and R-linear convergence (1.30) yield that

ki (A3
Js

k,j ) k,j
e = w, Nl < M = wll + lluy - u me(u)) + luy — uy |l

(A1) kj kjo 123) g i (1.30)
< neluy?) +lllug —uw 'l < HY <

~

[¢,k,j| £70,0 .
a4y, " Hy” =0 as |6k, j| — co.

This concludes the proof. m]

Remark 1.15. (i) In [9AILI, Lemma 3.12 below], the k -loop stopping criterion and [DAILZ2,
Theorem 4.8 below] also the j-loop stopping criterion need to be adjusted to ensure (UB).
This adaptation, however, also allows for arbitrary adaptivity parameters0 < 6 < 1,0 < Ay,
and 0 < Ay in the statement of R-linear convergence.

(ii) We remark that the estimator contraction (1.25) in Proposition 1.11 holds only for
the final iterates, while full R-linear convergence proves the statement for any two indices
(&, k,j), (', k', j) e Qwith|t’, k', j| <€k, j|.

Moreover, with full R-linear convergence (1.30), we conclude that convergences rates
with respect to the number of degrees of freedom coincide with the rates with respect to
overall computational cost. This will become apparent with the notation of approximabil-
ity below.

Corollary 1.16 (rates = complexity; [BFM*23, Corollary 14]). Letr > 0. Under the
assumptions of Theorem 1.14 and with cost (£, k, j) from (1.22), there holds that

sup (#7¢)" H’;’j <o sup cost(E,k,j)’ng'j < oo. o
(0,k,j)eQ (0k,j)eQ

1.3.3 Optimal convergence rates and the notion of approximability

We introduce the approximation class of rate r > 0 along the lines of [CFPP14], which
were introduced in the context of AFEM in [BDDO04; Ste07; CKNSO08]. Let 95 be the initial
triangulation. We define

lu*la, = lu*la, (%) = ;lelgo(N +1)" %ptgz\%igr(zv) Nopt (Ugpe) € [0, 0], (1.32)
where the minimum is taken over the finite set T(N) = {7 € T | #7 — #7; < N} with the
error estimator 7 from (1.11). The index opt = opt(V) is used for quantities that depend
on functions in the finite element space Xop¢ associated with a minimizing (optimal) mesh
inT(N).

If [u*|a, < oo, we say that the exact solution u* of the model problem (1.2) is in the
approximation class of rater > 0. This is ensured if and only if

min u* )=0(NT") for N )
%ptGT(N) T]Opt( opt) ( ) — X

With other words, starting from an initial triangulation 7y, the sequence of the error mea-
sure (nopt(n))NeN, On the corresponding theoretically optimal (but too costly to compute)
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meshes (Topt(n)) v en, decays atleast with algebraic rate r > 0 with respect to the number N
of additional triangles. To see the equivalence, recall that elementary calculations [BHP17,
Lemma 22] show that

#Topt — #T0 + 1 = #Topy,

where the hidden constant depends only on #7;. From this, we infer the claimed equiva-
lence

[u*la, <00 = ‘TnéiTr(IN) nopt(u;pt) < C(r) (#Topt) " < oo forall N € Ny.
opt

Remark 1.17. In general, the sequence of optimal meshes (Tope(n))nen, May not be nested
and does not necessarily stem from successive refinement.

1.3.4 Comparison lemma

To connect the sequences of the meshes generated by Algorithm 1.8 with the optimal
meshes from the definition of the (1.32), we recall the comparison lemma. It states that by
adding a certain number of elements to the triangulation from Algorithm 1.8 there holds
contraction of the estimator.
Proposition 1.18 (comparison lemma). Let quasi-monotonicity of the estimators from
Lemma 1.13 and the overlay estimate (R2) hold. Let0 < € < L with 7, € T that satisfies
ne(uy) > 0. Moreover, let0 < g < 1 and letr > 0 such that |[u*||a, < co. Then, for everyt,
there exists a refinement 7y € T(7;) that satisfies

C, * 1/r
¥To — #7 < (M) (1.33)
qme (ug )
ne (ug,) < qne(up). (1.34)
Proof. First, pick the minimal N € Ny such that
Cmon ||U*||Ar <qg(N+ l)r 77@(”2)- (1.35)

Note that N = 0 would give Cmon [u*[a, < g n¢(u;). This is not possible since g ne (1) <
Ne (1)) < Cmon Mo(uy) < Cmon |t*|a,. We conclude that N € N.
Next, we determine

Topt= = argmin nopt(ug,)  and define the overlay 7p := 7 @ Topr-
7(—)pt €T(N)

The overlay estimate (R2) gives
(R2)
#To —#T < (#Tope — #70 + #T¢) — #T7 < N.

The (not met) minimality for N — 1 € Ny in (1.35) ensures that g N” n¢ (1)) < Cmon [|u*|a, -
Rearrangement together with the previous estimate results in (1.33). The quasi-monoto-
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1.3 Convergence with optimal rates

nicity of the estimators and the definition of the approximation class (1.32) yield

Cmon ” u* "A, (1.35)

778/(”2’) < Cmon Tlopt*(ugpt*) < (N+1) < Clne(ue*)- (1.36)

This concludes the proof of (1.34). O

1.3.5 Main theorem on optimal rates with respect to cost

One main result in this thesis, namely quasi-optimal convergence of the proposed AILFEM
strategy, is the content of the following theorem. This guaranteed cost-optimal steering
of discretization, linearization, and the algebraic solver hold for general locally Lipschitz
continuous problems and, thus, extends known results on strongly-monotone and Lip-
schitz continuous problems [GHPS21; HPSV21; HPW21].

Theorem 1.19: optimal complexity; [©AIL1, Theorem 3.17 below]

Suppose (SM), (LIP), and (POT) as well as (UB). Under the assumptions of (A1)—(A4) and
the fine properties of mesh refinement (R1)—(R3), letr > 0. Then, for arbitrary adaptivity
parameter Ay > 0 and sufficiently small Ay, > 0 and 0 > 0, Algorithm 1.8 reproduces
optimal rates with respect to the cost and computation time. Formally, with the quasi-
errorH’Z’] from (1.29) and cost (¢, k, j) from (1.22), it holds that

. ko)
sup(N+1)" min  nepe(u),) <o =  sup cost(f,k,j)"H’ <oco. (1.37)
NeNg Topt (N)€T(N) OPE Fopt (0,k,j)e@Q ¢

With other words, the quasi-error H'g’j decays with the best possible rater > 0 over the
computational cost, ifu* satisfies |u*|a, < oo, i.e., u* can theoretically be approximated
at rater > 0 on a sequence of error estimators of Galerkin solutions ug, on optimally
chosen meshes Topt. O

Remark 1.20. (i) In case of [2AIL1], where an exact algebraic solver of the linear procedure
is assumed, the theorem holds with a modified quasi-error without algebraic contribution.

(ii) The proof of optimal convergence rates uses a perturbation argument that0 < 6
and 0 < Ay, are sufficiently small to relate the Dérfler marking on the final iterates in
Algorithm 1.8 to Dorfler marking on exact Galerkin solutions uy . The comparison lemma
then connects the optimal meshes in the approximation class to the meshes generated by
the algorithm.

(iii) The stopping criterion of the j-loop is tailored to ensure (UB) for all iterates. This
implicitly, but not explicitly enforces that also A,g is sufficiently small.

We conclude the section on AILFEMs with a schematic connection of the presented
results; see Figure 1.7.
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Dorfler sufficient Quasi-monotonicity Déorfler necessary
Proposition 1.11(i) Lemma1.13 Proposition 1.11(ii)

Full R-linear convergence Comparison lemma
Theorem 1.14 Proposition 1.18
Optimal complexity
Theorem

Figure 1.7: Overview of the proof strategy to obtain optimal complexity. The blocks high-
lighted in green concern the approximate solutions from the algorithm, whereas the results
in gray are for the exact discrete solutions. The comparison lemma (Proposition 1.18) is
used to connect R-linear convergence (Theorem 1.14) on the algorithmic approximations
with the definition of the approximation class that relies on the exact solution to obtain
optimal complexity (Theorem 1.19). The properties (UB) and (QO)/(O) need to hold only
for the meshes that are generated by the proposed Algorithm 1.8.

1.4 Goal-oriented AFEM

The next section is devoted to goal-oriented AFEMs for semilinear PDEs. Usually, stan-
dard adaptive FEM aims to compute the exact solution u* € H; (Q) of the given model
problem (1.2). In applications, it is oftentimes more important to compute a scalar goal
functional G € H-'(Q), e.g., an energy, evaluated at the solution u*. Goal-oriented adap-
tive FEMs (GOAFEMs) thus seek to approximate G(u*) ~ G(u;), where, in our case, the
quantity of interest is assumed to be of the linear form

G(v):/gv dx+/g-Vv dx, (1.38)
Q Q

which models a general H~!(Q) right-hand side.

Unlike the naive approach based on continuity of G
1G(W™) - G(up)| = 1G(w* —up)| < 1Glu-1(q) lu* - uglp ) (1.39)

a more sophisticated approach relies on duality techniques from [GS02] and leads to
a (potential) doubling of convergence rates. The increased difficulty of goal-oriented
methods lies in the fact that the algorithm needs to balance singularities of the model
problem (1.2) with singularities that only appear in the goal quantity G € H~!(Q) to overall
minimize the goal error G(u*) - G(u};) with the best convergence rate possible.
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1.4 Goal-oriented AFEM

1.4.1 Dual problems and a goal-error estimate

We first consider a linear model problem to gain insights on how to define the dual problem
and derive a goal-error identity as well as a goal-error estimate. Afterwards, we discuss
the changes needed to cover the semilinear case as well.

The linear case. For vanishing nonlinearity b(-) = 0 and F,G € H~!(Q), the primal and
the dual problem reads: Find u* € HO1 (Q) and z* € HO1 (Q), respectively, that satisfies

(u*, v) =(F, vy forallve Hy(Q) resp. (v, z*)=(G,v) forallve Hy(Q). (1.40)

For the finite element space Xy with corresponding Galerkin solutions u}, € Xy and
z}; € Xy. The linear goal quantity G together with Galerkin orthogonality establish

G*) - Gul) = Gu* —uf) "2V qu* - ufy, 2*) (1.41)

(1.40)
=t —ugy, 25 =z sl —ugllllz* - 25l (1.42)

This already yields two important observations: First, in (1.41), we see that the goal error
is the dual problem tested with u* — u},. Second, in (1.42) we already see a (nonlinear)
product structure that allows for a doubling of convergence rates (under the premise that
both problems can be approximated with the same rate; cf. (1.39)). We also remark that in
linear problems, the primal and dual error contribute equally to the error product.

Theoretical dual problem and goal-error identity. We shift the focus to the semilinear
setting by translating (1.41) to the semilinear model problem (1.2). For a linear goal G €
H~1(Q) and the semilinear model problem (1.2), the (symbolic) dual solution z* [ur] €
Hy (Q) satisfies

G(u*) - G(upy) = G(u* —ug) = (AW*) - Aug) , 2" [ug)

= Qu* —ugy, 2 [ug]) + b W*) = b(ug), 2 [ugla,

where we use the notation [ -] for arguments in H; (Q) to signify the dependence on
the linearization point. Under the assumption of a differentiable b (cf. [9AIL1, Assump-
tion (CAR) below]), the difference b(u*) — b(u};) can be rewritten with the main theorem
of calculus as

1
b(u*) - b(ul) = (/0 b (u* o+ (Ul — u*)) dr) (u* - u). (1.43)
By defining
1
B(u*, up)w = (/0 b (u* + 71 (upy—u*)) dr) w forw e Hy(Q). (1.44)
25
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and motivated by the linear case, this gives rise to the theoretical dual problem: Find
z*[u};] € Hy (Q) such that

(v, ZX[up]) + (v, Bw*, uf) 2 [u}y]) = G(v) forallv e Hy(Q). (1.45)

Overall, for zy € Xy, the Galerkin orthogonality for the primal problem (1.2) yields a
goal-error identity that is similar to (1.41)
G(u*) = Gluf) "2 (ur = ufp, 2 TufI) + b () - blugy), 2 [uf])

W wr —ufy, 2] - ) + bur) - b(ul), 2 [uh] - zn).

(1.46)

Practical dual problem and goal-error estimate. Though similar to the linear case,
the goal-error identity (1.46) faces two major differences when compared to the linear
problem: First, the dual problem depends on the linearization point u}, and thus changes
on each mesh level. Second, the theoretical dual problem (1.45) is not computable in
practice, since the operator B(u*, u};) involves the unavailable exact solution u*. Aremedy
to the second issue comes from the observation that B(u*, u};) — b’(u};) as uy, — u*.
This motivates the so-called practical dual problem: Seek z* [u};] € HO1 () such that

(v, 2 [up]) + v, b’ (u) z2*[uf]) = G(v)  forallv € Hy (Q). (1.47)

We include the practical problem into (1.46) and arrive at the goal-error identity

Gu*)=Gluf) "= (¥ —ufy, 2 [ufy]==* Luf]) + (b(u*)=blufy), 2 [uf] =2 [uf]) | 4q)

+{u* —ugy, 2 ugl =z lug ) + bW =b(ug) , 2" [ug]-z5 ugl).

The dual problems (1.45) and (1.47) are well-posed due to the Lax-Milgram lemma,
relying on the monotonicity of b (and B(u*, uy;)) (see [©AIL1, Assumption (MON) below]),
the growth condition [OGOA, Section 2.7 below], and the ellipticity of the diffusion part
(see [AIL1, Assumption (ELL) below]).

To reliably control the goal error |G(u*) — G(u};)|, we rigorously derive two stability
results ([OGOA, Lemma 2.9 and 2.10 below]).

Proposition 1.21. Suppose (SM) and (LIP). Then, it holds that
Ib(w*) = b(up)lg-1q) S Mlu* —ugll and 12" [ug] - 2" [uglll < llu* - ugll. (1.49)
Applied to (1.48), this proves the goal-error estimate

(1.48) 1/2
Gu*) = Gup)l s Mt = ubll [Mz* [ugs] = 25 [ 1P + e = wgl?] 2.

(1.50)
for semilinear PDEs; compare with (1.42). o

We remark that the first stability estimate (1.49) isimmediate if we suppose global Lipschitz
continuity of b. The second stability estimate (1.49) follows if b’ is Lipschitz continuous
(since B(u*, uy;) = B(uj, u*)).
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1.4 Goal-oriented AFEM

Goal-oriented adaptivity. The goal-error estimate (1.50) is the starting point for areliable
goal-error control. To this end, we introduce the error estimator related to the practical
dual problem. For a linearization point wy € Xy, the strong form of the practical dual
problem reads

—div(AVz* [wy]) + b (wy)z* [wy] = g — div(g) inQ, (1.51)
z¥[wg] =0 on 0L).

The elementwise contribution of the a posteriori estimator related to the practical dual
problem (1.47) read

Cu(wis T, o) = hi |g +div(AVoy — g) — b’ (wy) vy ||%2(T) +hr |[[A Vv — gllli2orn0)

which depends on the linearization point wy € Xy. Moreover, for Uy € 7y and wy € Xy,
the practical and computable dual estimator reads

C(wr; Upp, vy )? = Z (p(w; Tovg)?  and  {g(wisvg)? = (g (wis Ta, ve)?.
TeUy

The dual estimator { (u};; z7;[uy;]) also satisfies (A1)-(A4); see [DGOA, Proposition 2.15

below]. Therefore, reliability (A3) and the goal error estimate (1.50) show
(1.50) 1/2

IGW*) -Gl < M = upll [lz* [uf] - 2 [wh P + llu* = ufll?] /

12 (1.52)

< ma(upy) [Ga(uly 25 lug D + na(up)®] ' = nu(ul) pu(uly, 25 [ug]),

where we call the estimator py (-, -) combined estimator. The combined estimator also
satisfies the axioms of adaptivity (A1)-(A4); see [BIP21, Proposition 7], where we note
that [BIP21] considers a linear PDE with a nonlinear goal functional, but ultimately obtains
the same goal-error estimate (1.50).

1.4.2 Goal-oriented AFEM algorithm and the MARK module

The product structure in (1.52) requires a suitable marking step to preserve quasi-minimal-
ity of the marked elements. An abstract algorithmic formulation of a goal-oriented adap-
tive FEM is given in Algorithm 1.22.

Algorithm 1.22: schematic goal-oriented adaptive FEM

Input: 75 conforming mesh, marking parameters 0 < 6 < 1, Cyax > 1 for MARK module.
Adaptive loop: Forall ¢ =0, 1,2, ..., repeat the following steps (I)-(V):

(I) SOLVE & ESTIMATE (primal). Compute u; from the discrete primal prob-
lem (1.3) and the primal estimator n, (u;).

(II) SOLVE & ESTIMATE (dual). Compute z;[u;] from the practical dual prob-
lem (1.47) and the practical dual estimator (¢ (u); z; [u]]).
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(III) Compute the combined estimator p,(u;, z; [u;]) from (1.52).
(IV) MARK. M, < mark(7y, n¢, pe); % respects product structure (1.52).
(V) REFINE. 7g41 <« refine(7;, My). % newest-vertex bisection

Output: Sequence of successively refined conforming triangulations 7y, discrete solu-
tions u; and z; [u; ], and corresponding error estimators ne (1)), pe (1}, z; [u;]).

We remark that the dual problem depends on the previously computed discrete solution
u; and thus (unlike linear PDEs [BBPS23]), the SOLVE & ESTIMATE-modules cannot be
parallelized, but have to be solved sequentially.

In Proposition 1.11(i), quasi-minimal cardinality in the Dorfler marking (1.19) is a cru-
cial ingredient. The naive approach for primal and dual problems is separate Dorfer
marking (1.19) for the primal estimator 7, with set M| and the second estimator p, with
set M and then taking the union M U M as the set of overall marked elements [HPZ15].
However, this may lead to a suboptimal allocation of resources that may cause rates to de-
teriorate. A problematic case is if one estimator marks only a few elements with very large
contributions and the other estimator marks a large number of elements, but with com-
parably very small indicators compared to the first estimator. A remedy to this problem
was introduced in [MS09] for the Poisson problem, where only the set of lesser cardinality
constitutes the set of marked elements. The algorithm is presented in Algorithm 1.23.

Algorithm 1.23: mark — MARK module from [MS09]
Input: triangulation 7;, estimators 7y, p¢, marking parameters 0 < 6 < 1, Cpac > 1.
(i) Find a quasi-minimal set that satisfies the Dorfler marking for the estimator 7,

#M] < Carc min #U7  with My = (U € 77 | 0n7 < ne(Up)?}.
UFeM

o €My
(ii) Find a quasi-minimal set that satisfies the Dorfler marking for the estimator p,
#M{ < Cmare min #UF  with  M{ = (U €7 | 0 P2 < po(Up)?}.
U eM,
(iii) Choose M, € {#M}, #M}} such that #M,; = min{#M, #M}}.

Output: marked elements M,.

In our case, due to the goal error estimate (1.52), the MARK module takes the primal and
combined estimator from (1.52). Marking only the set with lesser cardinality ensures that
at each level ¢, Dorfler marking holds either for the primal or the combined estimator.

Remark 1.24 (alternative marking strategies). The markingin [MS09]is an approach where
marking is performed separately as a first step and then the primal and dual a posteriori
information is combined. A refined version of the [MS09] marking is proposed in [FPZ16],
where Step (iii) is replaced by

(ili") DefineN := min{#M],#M"}.
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1.4 Goal-oriented AFEM

(iv) Pick M! ¢ M] and M € M?, where#M] = #M? = N.
(V) Define M := M UM?.
These two marking strategies are in the spirit of mark first, combine later.
A different but equivalent marking in the sense of estimator equivalence is proposed
in [BET11]. For given estimators ny and pg, the elementwise contributions of the weighted

estimator g, read
0¢(T) = ne(T)pe + nepe(T). (1.53)

Then, Dorfler marking is performed for the weighted estimator p,. Thus, this approach can
be summarized as combine first, mark later.

For GOAFEM for semilinear PDES, all three marking strategies involve the primal estima-
torne = ne(uy) as well as the combined estimator pe = pe(u}, z};[uy;]) as motivated by the
goal-error estimate (1.52).

1.4.3 Literature on goal-oriented adaptive FEM

Despite the high relevance of goal-oriented adaptive FEM (GOAFEM) in practice, litera-
ture is comparably scarce compared to standard AFEM. GOAFEMs are related to dual and
adjoint methods that were developed in [EEH]95; BRO1; BR0O3; GS02] to improve computa-
tional performance in the presence of a goal functional.. Roughly speaking, GOAFEMs
are divided into two schools of thought: First, dual weighted residual methods (DWR),
where the primal and dual estimators are weighted elementwise. These DWR methods are
computationally very performant but convergence of the related adaptive strategies is
hard to analyze rigorously and appears to be still open. We refer to [ELW19; ELW20; DBR21;
AESW22] for some recent contributions. The second large class are AFEM methods that
are based on (merely) global error estimation for the primal and dual problem, which
allows for guaranteed convergence rates. We shall discuss the latter in greater detail.

The first result on optimal convergence rates for a GOAFEM is found in [MS09] for the
Poisson model problem. A computable and less local variant of DWR was used to single out
elements in the MARK-module in [BET11] (see (1.53) above) with an empirically improved
performance, yielding a connection between both schools of thought.

Linear convergence of GOAFEM for the semilinear model problem (1.2) was shown
in [HPZ15; XHYM21], however, relying on the global Lipschitz continuity of b and discrete
L®(Q)-bound on the discrete solutions. The mere convergence of GOAFEM for general
nonsymmetric second-order linear elliptic problems was proven in [HPI16],
while [FFGHP16] published results on optimal rates for symmetric second-order lin-
ear elliptic PDEs. The paper [FPZ16] generalized those results on optimal rates to gen-
eral second-order linear elliptic PDEs with marking more elements compared to [MS09].
In [BIP21], optimal convergence rates were proven for a nonsymmetric model problem
with quadratic goal functional, where the key goal error estimate has a similar product
structure as in (1.52) (for different reasons).

GOAFEMs that also include an inexact solver are scarce. The aforementioned contribu-
tions, except for [MS09] with a generic contractive solver, are under the assumption of an
exact solve procedure. Moreover, the solve procedure of [MS09] does not comment on
the practical steering of the contractive solver. By including (and also adaptively steering)

29



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1 Introduction

an inexact solver, a cost-optimal GOAFEM for symmetric second-order linear PDEs is
presented in [BGIP23]. For a linear and nonsymmetric problem with a coupled loop of the
form of Algorithm 1.8 with symmetrization and an algebraic solver, we refer to the recent
own work [BBPS23].

This thesis presents the following major extensions to the existing literature: In [DGOA],
a thorough analysis replaces global Lipschitz continuity with growth conditions on the
nonlinear reaction b. Moreover, any discrete L*(Q2)-assumptions are avoided. By intro-
ducing the practical dual problem, we are able to prove the stability estimates (1.49) as
well as the goal-error estimate (1.50). Moreover, since the primal and dual problem do not
decouple as in the linear case [MS09; BIP21; BGIP23], stability estimates with respect to
the linearization point w € HO1 (Q) (Lemma 2.25 below) of the form

lz*[w*] = 2* [w]ll + llzf; [w*] = 2 [w]lll < llw* - wil (1.54)

are required and pose a significant additional challenge.

In addition, we rigorously prove R-linear convergence (Theorem 2.19 below) and op-
timal convergence rates (Theorem 2.20 below) with respect to the number of degrees
of freedom for the semilinear model problem in the goal-oriented setting. This result is
obtained under a supposed exact solve procedure. Overall, this is the first mathematically
rigorous result on optimal convergence rates of GOAFEM for a nonlinear PDEs.

1.4.4 Main results: linear convergence and optimal convergence rates

For a sufficiently large mesh-refinement index ¢y € Ny, we establish the quasi-orthogonal-
ity (QO) in the energy norm for the primal problem [OGOA, Lemma 2.29 below] and the
exact dual problem [OGOA, Lemma 2.30 below] as an intermediate step. From this and
motivated by (1.52), we prove the technically demanding quasi-orthogonality for the
combined quantity ((OGOA, Lemma 2.31 below])

llz* [e*] = 255 [ug 1P + ™ = w1 (1.55)

With this, we are able to present R-linear convergence regardless of the whether Dorfler
marking is performed for the primal or the combined estimator.

Theorem 1.25: R-linear convergence [OGOA, Theorem 2.19 below]

Suppose (SM) and (LIP). From (1.52), recall the combined estimator pe(uy, z; [u)]) =
[Co(us 22 (D)2 + ne(u)2] V2. Let ng and pq satisfy (A1)~(A3) and let (QO) hold for

2 2 2
llu* —ugll®  and |lz*[w*] -z [ug ]I+ llw* - ugll®.

Then, for arbitrary0 < 6 < 1 and arbitrary1 < Cpa < oo, there exists 0 < gy, < 1,
Ciin > 0, and €y € Ny, such that, forallm > € > €, it holds that

M () pm (U, Z3 [Um]) < Crin gl ne(ud) pe(uf, 20 [uf]). O (1.56)
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1.5 Outline of the thesis

For the product setting, we state a suitable comparison lemma from the literature cus-
tomized for the case of the primal and combined estimators.

Proposition 1.26 (variant of comparison lemma [FPZ16, Lemma 15]). Suppose quasi-
monotonicity of the estimators (Lemma 1.13) separately for n, and p, and the overlay
estimate (R2). Let0 < £ < co with 7y € T that satisfies n¢(u;) > 0 and pe(z; [u;]) > 0.
Moreover, letr > 0 and s > 0 such that |u*|a, + |z* [u*]|a, < co. Then, forevery0 < q <1,
there exists a refinement 7y € T(7;) that satisfies

Cion [4*[a, [12*[u*]]a, + lu*|a, ]|~ 207}

#To —#T0 < , (1.57)

“ qme(uf) pe(zf Tuf1)
ne (ug) per (g [ug]) < gneug) pe(zg lugl), (1.58)
where Con depends only on the primal and dual quasi-monotonicity constant. m]

We remark that the proof constructs two overlays (and uses the overlay estimate (R2)
twice), namely 7; ® 7, ® 7;, where 7, and 7; denote the optimal meshes from the primal
and dual approximation classes, respectively.

We are able to present the main result on optimal convergence rates with respect to the
number of degrees of freedom.

Theorem 1.27: Optimal rates [OGOA, Theorem 2.20 below]

Let A fulfill (SM) and (LIP). Suppose that n, and {, satisfy (A1)—(A4) and that (R1)—(R3)
holds. Recall the combined estimator pe(u, z; [u;]) = [Lo(u); 2z} [uf])* + ng(u;)z]l/z.
Let (QO) hold for a sufficiently large mesh-refinement index €y € Ng and

2 2 2
le* —uggl® - and 2" (w*] - 2 g 1P + e = uglP.

Suppose that |u*||a, < oo forr > 0 and that|z* [u*]|a, < oo fors > 0. Then, for sufficiently
small0 > 0 and 1 < Cpa < o0, and forall € > €y, it holds that

ne(ud) pe(uf, 2l [uf]) < [u*la, [lu*la, +12* [u*1la, | (#Tc - #95) " ™20+l (1.59)

In particular, the rate of convergence is min{2r, r + s}. m]

This concludes the introduction.

1.5 Outline of the thesis

The following section gives an overview of the contributions presented in this thesis. The
remainder of this thesis presents results that I, together with collaborators, have estab-
lished during my PhD studies. These contributions are subdivided into three additional
chapters — one for each research question, which shall be motivated in the following.
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1 Introduction

1.5.1 Chapter 2: goal-oriented adaptive finite element method (GOAFEM)
with exact solver for semilinear PDEs

[OGOA]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Rate-
optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. Comput. Math. Appl.,
118:18-35, 2022. po1: 10.1016/ j . camwa.2022.05.008

In this publication, we consider the semilinear primal problem (1.2) and a linear goal
quantity G € H~1(Q) under the assumption of an exact solve procedure. Semilinear
problems in a goal-oriented setting have been investigated in [HPZ15; XHYM21], however,
without proven optimal convergence rates. Closing this gap is the main achievement
of [DGOA], where optimal convergence rates are understood with respect to the number
of degrees of freedom. This achievement relies on the following main observations:

First, we replace the theoretical dual problem by a practical dual problem along the
lines of [HPZ15]. By clarifying the assumptions on the problem setting, the growth argu-
ment [BHSZ11] can be used to obtain the main stability estimates (1.49).

Second, existing literature on rate-optimal GOAFEMs focuses mainly on linear problems
and linear goals [MS09; BET11; FEGHP16; FPZ16]. The publication [BIP21] considers a
linear model problem but a quadratic goal and derives a structurally similar goal error esti-
mate (1.52) (for different reasons). The marking procedure therein is motivated by [MS09]
and ensures quasi-minimal cardinality of the marked elements and is used to drive the
mesh refinement in the proposed GOAFEM.

Third, for nonlinear problems, the dual problem depends on the linearization point.
By proving a stability result (1.54) with respect to the linearization point, we are able to
verify the combined quasi-orthogonality (1.55), which then gives rise to the full R-linear
convergence (Theorem 1.25) and, eventually, optimal convergence rates (Theorem 1.27).

1.5.2 Chapter 3: adaptive iteratively linearized finite element method
(AILFEM) with exact linearization for semilinear PDEs

[®AIL1]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Cost-
optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. ESAIM Math.
Model. Numer. Anal., 57(4):2193-2225, 2023. DOI: 10.1051/m2an/2023036

Numerical methods to linearize nonlinear equations such as the discrete problem (1.3)
are analyzed in depth and widely applied, yet, their application in the context of adaptive
FEM poses an exciting research question. The linearization method produces cost in the
sense of (1.22) and the question arises when to adaptively stop the linearization without
spoiling optimal convergence rates.

In principle, the seminal work [Ste07] addresses this question for a generic iterative
solver in GALSOLVE that contracts the energy error of an initial guess with contraction
factor 0 < g < 1 at the cost of O(|log(q)|#75) for the Poisson model problem. R-linear
convergence and optimal convergence rates then hold for sufficiently small adaptivity
parameter 6 > 0 and solver parameter A, > 0 and only for the final iterates of the iterative
solver. Following [CKINS08], the convergence analysis can be generalized to arbitrary
0 < 6 < 1 (yet sufficiently small Ay;,, > 0) by a perturbation argument from [CFPP14]. Im-
portantly, [Ste07] does not explicitly state on how the inexact solver is stopped in practice.
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1.5 Outline of the thesis

By recasting the semilinear problem into an abstract operator framework from [CW17;
HW20b; HPW21; GHPS21], we propose an AILFEM strategy in the spirit of Algorithm 1.8
with a void algebraic solver loop, i.e., by supposing an exact algebraic solver for the lin-
earized problem. The damped Zarantonello operator ®(4;-): Xy — Xy with damping
parameter § > 0 is employed as a means of linearization. For a sufficiently small § > 0, the
Zarantonello operator is contractive in the energy norm in the sense that there exists a
0 < g < 1 such that

Pw (85 ver) = Pr (8wl < Gllve — wall - forallvy, wy € X,

where it is important to note that § and g depend on max{|||lvg||, [lwg|l|} due to the locally
Lipschitz continuous setting. The AILFEM strategy steers and equibalances errors that
come from discretization and linearization, respectively. For two successive iterates ul’fl €
Xy and ul! € Xy, the proposed algorithm stops the inner loop for linearization given
that

Nkt = ubll < A (el and [lub ™ < Cong[M]  for some 0 < Cypg[M] (1.60)

with M from (1.7). This extends the algorithmic stopping criterion found in, e.g., [BIM*23;
HPSV21; GHPS21] for globally Lipschitz continuous operators.

In practice, the norm criterion on the right-hand side in (1.60) further constrains (UB)

in the sense that |||u& Il < ConalM] < CpnalM] for the final iterates of the linearization

loop. This nested itel;lation criterion (cf. (3.28) below) follows essentially from the norm
contraction of the Zarantonello iteration under the premise of a suitable 6§ > 0 and will be
met after ko-many linearization steps for ko € Ny (cf. Corollary 3.11).

The algorithmic adaption allows us to prove full R-linear convergence, i.e., contraction
of a suitable quasi-error regardless of the algorithmic decision to either refine the mesh or
perform another linearization step (cf. Theorem 1.14) also for arbitrary 6 > 0 and Ay, > 0.
With full R-linear convergence, we infer that convergence rates with respect to the number
of degrees of freedom and with respect to computational cost (1.22) coincide under the
assumption of linear complexity for the solution of the linearized system.

Finally, we prove optimal convergence rates with respect to the degrees of freedom for
0 > 0 and Ay, > 0 sufficiently small. Since the Pythagorean identity (O) holds for a setting
with energy &, the results hold for all mesh-refinement levels ¢ € Np.

We conclude the paper with a practical algorithm that asymptotically ensures that a
suitable damping parameter is determined. In future research, this may be extended to a
fully-adaptive damping strategy in the spirit of [AW15], where optimal convergence rates
are observed experimentally for an employed Newton method.

1.5.3 Chapter 4: adaptive iteratively linearized finite element method
(AILFEM) with linearization and algebraic solver for semilinear PDEs

[®AIL2]: M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEM with
linearization and algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401 .06486

The exact solution of a sparse SPD system such as the Zarantonello update (1.14) is
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1 Introduction

experimentally of loglinear complexity; cf. [BIM*23, Figure 3]. This can be avoided by
including a contractive solver as an inner loop. Examples are an optimally preconditioned
conjugate gradient method [CNX12] or an optimal geometric multigrid method [WZ17;
IMPS23]. ,

The additional inner solver loop with iterates uf’] approximates the (exact and in practice
unavailable) Zarantonello solutions u ;f . Heuristically, it is clear that sufficiently many
algebraic solver steps will cause the perturbation to be negligible. Since the linear solver
loop produces also cost in the sense of (1.22), we propose an AILFEM (Algorithm 1.8) that
equibalances discretization, linearization, and algebraic solver errors. This motivates the
research question of [©AIL2]: Is the proposed AILFEM strategy cost-optimal with respect
to this perturbation? This question is more delicate than it seems at first glance for the
following two reasons:

First, the perturbed Zarantonello iteration is contractive only for 1 < k < k[¢]
(cf. [BIM*23, Lemma 5.1]), i.e., there exists 0 < g < 1 such that

k+1,j k,j
Nl —u, 2 < qllug —u, Il forall1 < k+1<k[e], (1.61)

unless there are sufficiently many algebraic solver steps. We prove that there exists an
jmin € Np that is independent of the mesh-refinement index ¢ and the linearization index
k and enforce algorithmically that at least jni, steps are performed.

Second, there holds a Pythagorean identity (O) holds for all ¢ € Ny in case of the energy.
Thus, it is desirable to formulate the linearization error as an energy difference instead of
a difference in norm. However, the algebraic solver contracts in norm, while the (exact)
linearization contracts in energy. A link of energy and energy norm for the final iterates
of the j-loop is established in the spirit of [HPW21, Property (F4)] (cf. Lemma 4.9 below),
which also depends on sufficiently many linear solver steps. This equivalence is important,
since it consists only of computable quantities.

As a first result, we prove uniform boundedness (UB) for all iterates (see Theorem 4.8
below) and establish R-linear convergence based on a new proof strategy from [BFM*23]
for arbitrary adaptivity parameters 6 > 0, Ajj, > 0, and A4, > 0. Consequently, for 6 > 0
and Ay, > 0 sufficiently small, we prove optimal convergence rates understood with
respect to the number of degrees of freedom and with respect to computational cost (1.22).
Moreover, since all steps in the AILFEM strategy are rigorously of linear complexity, we
also infer optimal rates with respect to computation time.

1.6 Other contributions on nonsymmetric elliptic PDEs

1.6.1 Adaptive iteratively symmetrized FEM (AISFEM) with symmetrization
and linear solver
[BIM*23]: M. Brunner, M. Innerberger, A. Miragci, D. Praetorius, J. Streitberger, and P.
Heid. Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic
PDEs. IMA J. Numer. Anal., 2023. DOI: 10. 1093/ imanum/drad039. Corrigendum to:
Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs.
IMA J. Numer. Anal., 2024. por: 10.1093/imanum/drad103
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1.7 Additional remarks on notation

In this publication, we consider a general nonsymmetric second-order linear elliptic
PDE in the framework of the Lax-Milgram lemma.

The usual approach to apply generalized minimal residual methods (GMRES) to non-
symmetric problems is replaced by an adaptive algorithm of the form of Algorithm 1.8.
This is motivated by the fact that the link of an abstract contraction property of (optimally
preconditioned) GMRES methods in vector norms lack a connection to the functional
analytical setting of the finite element formulation until now. In addition, the Zarantonello
iteration (1.14) does not only linearize but also symmetrize the underlying problem. Thisis
combined with a linear solver for the arising symmetric and positive definite Zarantonello
system.

Since nonsymmetric problems do not possess an energy, only quasi-orthogonality
results in the norm (as in (O) in Proposition 1.4(i)) can be exploited. Thus, there exists a
mesh refinement index ¢y € Ny such that full R-linear convergence holds for all £ > ¢,.
Regardless of the preasyptotic phase, we prove optimal convergence rates with respect to
the overall computational cost, i.e., the total computation time for the proposed adaptive
iteratively symmetrized finite element method (AISFEM).

1.6.2 Goal-oriented adaptive iteratively symmetrized FEM (GOAISFEM) with
symmetrization and linear solver

[BBPS23]: P. Bringmann, M. Brunner, D. Praetorius, and J. Streitberger. Optimal com-
plexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs, 2023.
arXiv: 2312.00489

In this preprint, we extend the given framework from [BIM*23] to the setting of goal-
oriented FEM. The analytical challenge is the nonlinear product structure for the quasi-
error (similar to (1.52)), where the marking leads only to reduction of one of the factors.

Since the nested loops (symmetrization and algebraic solver) admit only the contraction
of the inexact Zarantonello iteration for all but the last indices [BIM*23, Lemma 5.1]
(cf. (1.61)), the proof of full R-linear convergence requires a novel approach based on a tail-
summability criterion from [BFM*23]. The proof exploits a relaxed quasi-orthogonality
condition from [Fei22] that, in addition to [BIM*23], enables us to prove full R-linear
convergence for all £ > ¢y = 0, which holds for linear second-order elliptic PDEs. With
full R-linear convergence, we are able to prove optimal complexity of the proposed goal-
oriented adaptive iteratively symmetrized finite element method (GOAISFEM).

1.7 Additional remarks on notation

Sobolevspaces. Forasmoothv € C*(Q), we define the Sobolev scalar product according
to [Alt16, Section 3.27-3.29]

v, wyg(q) = ‘/Q (v(x) w(x) +Vu(x) - Vw(x)) dx forallv,w € C*(Q)
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1 Introduction

with the induced norm
"v"?{l(g) = <V ’ V>H1 (Q)-

The Sobolev space H' (Q) is defined by the closure cl with respect to the | - | ;1 (0)-norm as
HY(Q) := cl{v € C®(Q) | v Hi(q) < °o}. Analogously, the Sobolev space H, (Q) is defined
as the closure of C;° (Q) with respect to the | - | (0)-norm.

Jump term. The normal jumps across a face F of a triangulation 75 that is shared by two
neighboring elements 7; and 7> is defined as

[([v]] = [[v - n]lr = vy n1 +V|g, R,

where n; denotes the outer normal on o7T; fori =1, 2.

Inequality and equality up to constants. Frequently, we will make use of the notation
a s bfora,b € R, if there exists a constant C > 0 that is clear from the context such that
a < Cb. Moreover, ifa < band b < a, we write a ~ b.

Approximation. We use u* ~ uy € Xy as an abbreviation for the phrase that uy € Xy is
an approximation of u*. This relation is not symmetric and context-sensitive.
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2 Rate-optimal goal-oriented adaptive
FEM for semilinear elliptic PDEs

This chapter is taken from:

[OGOA]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Rate-
optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. Comput. Math. Appl.,
118:18-35, 2022. por: 10.1016/j . camwa.2022.05.008

The reference [BGIP23] was updated from the preprint to the publication.

2.1 Introduction

2.1.1 Goal-oriented adaptive FEM

While standard adaptivity aims to approximate the exact solution u* € HO1 (Q) of a suit-
able PDE at optimal rate in the energy norm (see, e.g., [D6r96; MINS00; BDD04; Ste07;
CKNS08] for some seminal contributions and [FFP14] for the present model problem),
goal-oriented adaptivity aims to approximate, at optimal rate, only the functional value
G(u*) € R (also called quantity of interest in the literature). Usually, goal-oriented adap-
tivity is more important in practice than standard adaptivity and, therefore, has attracted
much interest also in the mathematical literature; see, e.g., [BR03; EEH]95; GS02; BRO1]
for some prominent works and [KVD19; ELW19; ELW20; DBR21; BGIP23; BMZ21] for
some recent contributions. Often, dual-weighted residual (DWR) estimators are used
for goal-oriented adaptivity [BR03; GS02; ELW19; ELW20]. One drawback of such an ap-
proach, however, is that it requires an approximation of the dual solution to make the
DWR estimator computable. Instead, the present work takes a different route following
the seminal paper [MS09] and only employs computable error estimators via a suitably
modified dual problem.

Unlike standard adaptivity, there are only few works that aim for a thorough mathe-
matical understanding of optimal rates for goal-oriented adaptivity; see [MS09; BET11;
FFGHP16; FPZ16] for linear problems with linear goal functional and [BIP21] for a linear
problem, but nonlinear goal functional. The works [HPZ15; XHYM21] consider semilinear
PDEs and linear goal functionals, but only prove convergence, while optimal convergence
rates remain open (and can hardly be proved for the proposed algorithms). The present
work proves, for the first time, optimal convergence rates for goal-oriented adaptivity for
a nonlinear problem. To this end, we see, in particular, that the marking strategy used
in [HPZ15; XHYM21] must be modified along the ideas of [BIP21].
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2 semilinear GOAFEM

2.1.2 Model problem

Ford € {1,2,3},let Q c R be a bounded Lipschitz domain. Given f,g € L?(Q) and
f,g € [L>(Q)]¢, we aim to approximate the linear goal quantity

G(u*) ::/qu*dx+/ﬂg-Vu*dx, 2.1)

where u* € HO1 (Q) is the weak solution of the semilinear elliptic PDE
—div(AVu*) + b(u*) = f —divf inQ subjectto u* =0 onT :=0Q. 2.2)

While the precise assumptions on the coefficients A: @ — R and b: Q x R — R
are given in Section 2.2.1-2.2.2, we note that, here and below, we abbreviate AVu* =
A)Vu*r(): Q - R%and b(u*) = b(-, u*(})): Q - R.

The weak formulation of the so-called primal problem (2.2) reads as follows: Find
u* € Hy (Q) such that

(u*, v +(b(u*), vy = F(v) = (f, v)+{f, Vv) forallv e H)(Q), (2.3)

where (v, w) := fQ vw dx denotes the L?(Q)-scalar product and (v, w) := (AVv, Vw) is
the A-induced energy scalar product on HO1 (Q). We stress that existence and uniqueness
of the solution u* € Hy (Q) of (2.3) follow from the Browder-Minty theorem on monotone
operators (see Section 2.2.4).

Based on conforming triangulations 7 of Q and a fixed polynomial degree m € N, let
Xy = {vyg € Hol(Q) | VT € 9u: vglris apolynomial of degree < m}. Then, the FEM
discretization of the primal problem (2.3) reads: Find u}; € Xy such that

(upy, vu) +<(b(uy), va) = F(vy) forallvy € Xy. (2.4)

This allows to approximate the sought goal quantity G(u*) by means of the computable
quantity G (uy;).

2.1.3 Error control and GOAFEM algorithm

The optimal error control of the goal error G (u*) — G (u};) involves the so-called (practical)
dual problem: Find z* [u};] € HO1 (Q) such that

(z*up], vy + ' (uf)z*[uf], vy = G(v) forallv e Hy (Q), (2.5)

where b’(x,t) = 0,b(x,t). Existence and uniqueness of z*[u};] follow from the Lax-
Milgram lemma (see Section 2.2.5). With the same FEM spaces as for the primal problem,
the FEM discretization of the dual problem (2.5) reads: Find z},[u};] € Xy such that

e lugl, va) + b’ (ufy)zfuy], va) = G(vy) forallvy € Xy. (2.6)
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2.1 Introduction

The notation z* [u};] emphasizes that the dual solution depends on the (exact) discrete
primal solution u}; (instead of the practically unavailable exact primal solution u*); the
same holds for the discrete dual solution z7 [u;].

For this setting, we derive below (see Theorem 2.7) the goal error estimate

1G(u*) = G(upl < lu* = uplgo)lz* ug] =z lug g o) + lu* - u}}ll,qu(m 2.7)

where < denotes < up to some generic multiplicative constant C > 0. While the product of
primal and dual error is also present for goal error estimates for linear PDEs (see, e.g., [GS02;
MS09; FPZ16]), the last summand on the right-hand side of (2.7) controls the linearization
error of the (practical) dual problem. The arising error terms are controlled by standard
residual a posteriori error estimates (see Section 2.3.2), i.e.,

lu* —uflm < nu(uy)  and  |2*[uf] - 25 [ugllm ) < Ca(aflug]).
Hence, (2.7) gives rise to the fully computable error bound
|G (u*) = G(ufp| < na(ugy) [ (ufy)? + Lu (2 [uf])?] 2 (2.8)

that, following [MS09; FPZ16; BIP21], is used to steer an adaptive loop of the type

Estimate » Mark » Refine (2.9)

2.1.4 Outline

This work is organized as follows: In Section 2.2, the analytical preliminaries for the semi-
linear setting and its linearizations are presented. This includes the precise assumptions
on the PDE and the right-hand sides as well as well-posedness of the arising continuous
and discrete problems. In Section 2.2.7, the key estimate (2.7) is proved; cf. Theorem 2.7.
In Section 2.3, we formulate the GOAFEM algorithm (cf. Algorithm 2.17), which employs
a marking strategy that respects the product structure found in (2.8). We proceed with
stating the main results. First, Theorem 2.19 shows linear convergence of the proposed al-
gorithm. Second, Theorem 2.20 shows optimal convergence rates. Section 2.4 is devoted to
the proofs of the aforementioned results, which contain the axioms of adaptivity [CFPP14]
for the semilinear setting (Section 2.4.1), a stability result for the linearized dual problem
(Section 2.4.2),which turns out to be important, and the necessary quasi-orthogonalities
(Section 2.4.5). Numerical experiments in 1D and 2D underline our theoretical findings in
Section 2.5. Finally, some conclusions are drawn in Section 2.6.

2.1.5 General notation

We use | - | to denote the absolute value |1| of a scalar A € R, the Euclidean norm |x| of a
vector x € R4, and the Lebesgue measure |w| of a set w C Q, depending on the respective
context. Furthermore, #2{ denotes the cardinality of a finite set U.
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2 semilinear GOAFEM

2.2 Model problem

2.2.1 Assumptions on diffusion coefficient

The diffusion coefficient A: Q — Rfyxn‘f satisfies the following standard assumptions:

(ELL) A € L™(;RE:D), where A(x) € REXY is a symmetric and uniformly positive definite
matrix, i.e., the minimal and maximal eigenvalues satisfy

0<pp:= )lclelsfz Amin(A(x)) < sup Amax(A(x)) =: gy < oo.

xeQ

In particular, the A-induced energy scalar product (v, w) = (AVv, Vw) induces an equiv-
alent norm [|v]|| := (v, v)*/? on H} (Q).

To guarantee later that the residual a posteriori error estimators are well-defined, we
additionally require that A|; € W1 (T) forall T € 7, where 75 is the initial triangulation
of the adaptive algorithm.

2.2.2 Assumptions on the nonlinear reaction coefficient

The nonlinearity b: QxR — R satisfies the following assumptions, which follow [BHSZ11,
(A1)-(A3)]:

(CAR) b: QxR — Risa Carathéodory function, i.e., for all n € Ny, the n-th derivative agb
of b with respect to the second argument ¢ satisfies that
e forany¢ € R, the function x — 6? b(x, &) is measurable on (,
e forany x € Q, the function ¢ — (3? b(x, &) is smooth.

(MON) We assume monotonicity in the second argument, i.e., b’ (x, ¢) = 0:b(x, ¢) > 0 for all

x € Qand ¢ € R. In order to avoid technicalities', we assume that b(x, 0) = 0.
To establish continuity of (b(v), w)q resp. (b’ (v) ¢ , w)q, we impose the following growth

condition on b(v); see, e.g., [FK80, Chapter III, (12)] or [BHSZ11, (A4)]:
(GC) Ifd € {1,2},1let N € N be arbitrary with 1 < N < co. Ford = 3,let1 < N < 5. Suppose
that, for d € {1, 2, 3}, there exists R > 0 such that

b (x, &) < RA+|EN"") forallxeQ, allé e R, andall0 < n < N.

While (GC) turns out to be sufficient for plain convergence of the later AILFEM algorithm,
we require the following stronger assumption for linear convergence and optimal conver-
gence rates.

(CGC) Thereholds (GC), ifd € {1, 2}. If d = 3, there holds (GC) with the stronger assumption
N € {2,3}.

IThe assumption b(0) = 0 is without loss of generality, since we could consider b(v) := b(v) — b(0) and
f := f — b(0) instead.
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Remark 2.1. (i) Letv,w € Hol(Q). To establish continuity of (v, w) — (b(v), w), we apply
the Holder inequality with1 < s,s’ := s/(s — 1) < co to obtain that

n

L 2.10

(b(v), w) <[bW)] s () IWles @) S L+ Y e @) WlLs @) = A+ N0 o) WlLs ) (2.10)
To guarantee that (b(v), w) < o, condition (GC) has to ensure that the embedding

HO1 (Q) — L'(Q)) iscontinuous for r=s and r=ns'. (2.11)

Ifd € {1,2}, then (2.11) holds true for arbitrary 1 < r < o and hence arbitraryl < s < co
andn € N. Ifd = 3, thenr = s = 6 is the maximal index in (2.11) and s’ = 6/5. Hence, it
follows necessarily that n < 6/s’ = 5. Furthermore, ifd = 3, note that it suffices to consider
n = 5 since, for n < 5, we can estimate (1 + |&|" %) < (1 + [£°7%) forall ¢ € R, and all
0 < k < n < 5. Altogether, we conclude continuity of (v, w) — (b(v), w) foralln € N if
de{l,2},andn <5ifd = 3.

(ii) Letv, w, ¢ € HO1 (Q). In the same spirit, we establish continuity of (v, w, @) (b’ (v) @, w).
Ifd € {1,2}, for arbitrary1 < t < co, we use the generalized Holder inequality; see, e.g.,
[K]JF77, Section 2.2]. To this end, definet” byl =1/t" + 1/t + 1/t and observe that

B W) g, wy < I ) o 1ol @ lwlia < A+ 10" 0 o)l @l o Il @, 212)
Using |[v" o ) = ||V||Z(_nl4>w @’ the (GC) needs to ensure that the Sobolev embedding
H(}(Q) — L"(Q) is continuous for bothr = (n — 1)t"” andr = t. Ifd € {1, 2}, this holds for
arbitraryl <t <o andn € N. Ifd = 3, thenr =t = 6 is the maximal index in (2.11) and
hencet” = 3/2. The upper bound (n — 1) < 6/t"” = 4 thus guarantees continuity.

(iii) Letv, ¢ € HO1 (Q) andw € L*(Q). Then, the reasoning of (ii) reduces to the Holder
conjugates from (i).

(iv) The additional constraints on the upper bounds of n in (CGC) will become apparent
later; see Remark 2.32.

(v) The lower bound 2 < n imposed ford € {1,2,3} stems from the necessity of a Taylor
expansion of the dual problem; cf. (2.45). m]

2.2.3 Assumptions on the right-hand sides

For d = 1, the exact solution u* from (2.3) and the dual solutions z*[w] and z*[w] with
arbitrary w € HO1 (Q) from (2.15) and (2.18) below satisfy L*-bounds, since H!-functions
are absolutely continuous. For d € {2, 3}, we need the following assumption:

(RHS) We suppose that the right-hand side fulfills that

fel’(Q)forsomep>d=>2 and feL9(Q)wherel/q:=1/p+1/d.

To guarantee later that the residual a posteriori error estimators from (2.54)—(2.55) are well-
defined, we additionally require that f|r, g|r € H(div, T) with traces f|r-n, g|r-n € L*(0T)
for all T € 75, where 7j is the initial triangulation of the adaptive algorithm.
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2.2.4 Well-posedness of primal problem

First, we deal with the continuous primal problem (2.3). With the dual space H~(Q) :=
Hy (Q)*, we consider the operator

A:Hy(Q) - H(Q), Aw:=(w, )+ bw),-). (2.13)

The assumption (GC) implies that A is well-defined, (ELL) and (MON) yield that A is
strongly monotone, and (CAR) is used to show that A is hemi-continuous. Overall, the
Browder-Minty theorem (see, e.g., [Z¢i90, Theorem 26.A (a)—(c)]) applies and proves that
the primal problem (2.3) admits a unique solution u* € Hy (Q). The same argument shows
that the discrete primal problem (2.4) admits a unique solution u}, € Xy. Details are
provided in Appendix 2.7.

2.2.5 Well-posedness of dual problem and goal error identity

For v, w € Hy (Q), define

1
B(w,v) = / b'(w+(@v-w)r)dr >0 ae.inQ. (2.14)
0

Note that B(w,v): Q — Rsg. If v = u* is the exact primal solution, we introduce the

shorthand B* (w) := B(w, u*). With this notation, the theoretical dual problem reads as
follows: Find z*[w] € Hy (Q) and Z}; [w] € Xy such that

(z*[w], v) + (B*(w)z*[w], v) = G(v) forallv € Hy(Q), (2.15a)

(z5[w], va) + (B*(w)zj[w], vy) = G(vy) forallvy € Xy. (2.15b)

Under the assumptions (ELL), (MON), and (GC), the Lax-Milgram lemma proves existence

and uniqueness of Z* [w] € HO1 (Q) and Zz};[w] € Xp. Details are found in Appendix 2.7.
According to the Taylor theorem, it holds that

b(u*)-b(w)=(u*-w)B*(w) inQ. (2.16)

For any approximation z*[u},] ~ zy € Xy, this yields the error identity

G(u*) - Gufy) “EV(E (], w* — upy) + (B* (i) 2 [uf], u* - ufy)
S —ufy, 2 [ufI) + (0w?) - b, 2 uf]) @17

COE G — ugy, 24 ] = za) + (D) = b(ugy), 2 uf] - 2.

While this error identity looks similar to the one for linear problems (see, e.g., [MS09;
BET11; FPZ16] as well as [BGIP23] in the presence of inexact solvers), we stress that it
suffers from one essential shortcoming: The theoretical dual problem (2.15) involves
B*(u};) = B(u};, u*) which depends on the unknown exact solution u*. Consequently,
the corresponding bilinear form cannot be implemented in practice and, hence, zZ*[u};]

42



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.2 Model problem

cannot be approximated by its FEM solution Z}; [u;].

However, it follows formally that B* (u};) - b’ (uy;) — 0asuj;, — u*. Hence, we introduce
the practical dual problem (2.5) and its discretization (2.6), now considered for a general
argument: Given w € Hy (Q), find z*[w] € H; (Q) and 2}, [w] € Xy such that

(z*[w], vy + (b’ (w)z*[w], v) =G(v) forallv € Hy (Q), (2.18a)
(z[w], va) +(b" (w)zjy[w], ve) = G(vy) forallvy € Xpy. (2.18b)

The same arguments as for the theoretical problem (2.15) apply and prove existence and
uniqueness of z* [w] € HO1 (Q) and z};[w] € Xp. Details are found in Appendix 2.7.
Overall, the error identity (2.17) for zg = z};[u};] then takes the following form

G(u*)=Gufy) 2™t —ufh, 2* [ufy] = gh [ ]) + D) =blufy), 2* L) == ) (5 1o
+uut —ufy, 2 gy =2 [y )) + (b () =D (ufy), 2 [ufy] = [uf;])-

This identity will be the starting point for proving the goal error estimate (2.7); see Theo-
rem 2.7 below for the formal statement.

2.2.6 Pointwise boundedness of primal and dual solutions

In this section, we prove that imposing regularity assumptions on the right-hand side
yields that the exact solution #* and the dual solutions z* [w] and z* [w] are bounded in
L®(Q). Ford = 1, this is immediate, since H!(Q)—~C(Q). Ford € {2,3}and f = 0 = g,
we refer to, e.g., [BHSZ11, Theorem 2.2]. These L*-bounds turn out to be crucial for the
goal error estimate (Theorem 2.7) as well as for the numerical analysis of the proposed
adaptive goal-oriented strategy (Algorithm 2.17). In particular, they also allow one to derive
Céa-type estimates for the discrete primal and dual solutions (Proposition 2.11, 2.12).

Proposition 2.2. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, the weak so-
lution u* € HOI(Q) of (2.3) is bounded in L*(Q). In particular, for d € {2,3}, there
holds

lu* =@y < C g 1QIY VP (1 f 1Lagay + If 1 @) (2.20)
with a constant C = C(d, p) > 0.

Remark 2.3. In this remark, we consider special choices of p and q from (RHS). Ifd = 2
andp = oo, thenq = 2. Ifd =3 andp = 6, then alsoq = 2. In [BHSZ11, Theorem 2.2], the
following statement is proven with a slightly simplified proof: Suppose f € L*>(Q) and f = 0
as well as (ELL), (CAR), and (MON). Then, the weak solutionu* € Hy (Q) of (2.3) satisfies
lu* =) < CQ, d) gt 1 l12q)- =

The proof of Proposition 2.2 requires the following elementary result from [WYWO06,
Lemma4.1.1]:
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Lemma 2.4. With positive constantsC, ko > 0 and xy > 1, let ¢: Rso — Rxo satisfy

0<¢p(A) <¢p(A) and (N < ( ) i oM forall 0 < A <A (2.21)

A=A
Then, there holds that ¢(A) = 0 for all A > C ¢(0)x1~D/xo pxa/(a=1) O

Furthermore, the proof of Proposition 2.2 requires the Gagliardo-Nirenberg-Sobolev
inequality; see, e.g., [FK80, Theorem 16.6] or [Chi09, Theorem 12.7]:

Lemma 2.5 (Gagliardo-Nirenberg-Sobolev inequality). LetQ € R be open and bound-
ed and suppose that1l < p < co. If1 < p <d,letl <r < p*:=dp/(d—-p) < oco. If

d<p<o,letl <r < oo. Then, there exists a constant Cl,\g = CéNs(d’ p, 1) such that

1,
Wl < Cons IVUlr ) forallv e Wy P (Q), (2.22)

where Cons = Clyo QY4 If1 < p < d andr = p*, then Cgns = p(d - 1)/(d — p)
depends onlyond and p. o

Proof of Proposition 2.2. Ifd = 1,u* € C(Q) c L*(Q) holds due to the Sobolevembedding.
Ifd € {2,3} and for A > 0, we define the test function

¢; (x) := max{u*(x) - 4,0}
and recall from [Chi09, Theorem 12.4] that cp;{ € HOI(Q) with
V;(x) =Vu*(x) foralmostallx € Q(A) :={x € Q| u*(x) > A}. (2.23)
The mean value theorem and (MON) prove for some min{¢;, &} < ¢ < max{¢&, &} that
(b(§2)=b(1))(§2-¢1) = b'({)(&2=¢1)* 2 0 forall &y, & € R. (2.24)

Hence, it follows that (b(u*) — b(1), u* - /I)Q(M > 0. Using (MON), we see that b(1) >
b(0) = 0 and hence (b(A), u* - /1>Q(/1) > 0. Using the coercivity assumption (ELL) and
testing the weak formulation (2.3) with ¢}, we observe that

42 (ELD RN ok +y 2.3) + L * +
uO”V(pA"LZ(Q) < <<(P/1» (Pﬂ» = (u*, (P/1>> = Af, (P/1>+<f’ V‘Pa) (b(u™), 4’;1)

=(f, o) +(f, Vi) —(bu*), u* = A)an
=(f, 1) +{(f, Vi) = (b(u*) = b(A), u* - A)an) — (b(A), u* = A)an)
<{f, o) +(f, Voy). (2.25)

With the Hélder inequality, we arrive at
1ol V@122 ) < I Lo 1031 0y + 1 lrc IV 05 11 - (2.26)

Moreover, (RHS) yields that1/qg’=1-1/g=1-1/p-1/d =1/p’ —1/d = 1/p”*, where
p’ <2 < d.Since Q] < oo, we have that Hj (Q) — Wol”’ (Q). Therefore, Lemma 2.5 (applied
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tol <p’' <dandr =p’ = q’)yields that

lox Iz @) < Cans IVoyl Q) (2.27)
where Cgns depends only on d, p’. Collecting (2.25)—(2.27), we obtain that

max{Cgns, 1}

IVoil72 ) < CLIVOIl ) with Ci= (Iflza) +1flr @) . (2.28)

Now, we aim at a lower bound for the left-hand side of (2.28). Recall the definition of
Q(A) from (2.23). Applying the Holder inequality, we observe that

/ p'/2
i1 0= [ Woiars ([ wettas] omr
Q(4) Q)

Taking the last equation to the power of 2/p’ > 1, we show that

;4 (2.28) o
IVoilZ, o) < IVOI 12 o) QPP 7<™ CiCans IV 93l () 1QOIPPE (2.29)

In combination with (2.27), we arrive at
I (P/J{”Lq’ Q) = Cens "V(P,J{”Ln’ Q) = C CCZ;NS |Q(/1)|2/p/_1- (2.30)

For 0 < 1 < A, we observe that
Q1) 2 Q(A).

This observation and u* > A on Q(A) provide alower bound for the left-hand side of (2.30):
, 1/q’ ,
ol = ([ (maxturo-2.007 as) = (a-pla) .

Combining this estimate with (2.30), we see that

C2

q/
|Q<A)|s( . A) QT @YD with Gy = Gy Cons. 2.31)

Recall that 1/xp :=1/q" =1-1/p — 1/d. Together with p > d > 2, we thus observe that

k1i=q 2/p'-1)=2-2/p-1)/(1-1/p-1/d)=(1-2/p)/(1-1/p-1/d) > 1.

Therefore, we are able to apply Lemma 2.4 to (2.31). This yields that [Q(A)] = 0 for A >
C2 |Q(0)|1=D/x0 2:a/(a=1) By definition of Q(A), this proves that

u* (x) < Gy |Q|(M4-1/p) p(/d=1/p)/(1=2/p)  for almost all x € Q.
To see that —u* satisfies the same bound, we argue analogously. For A > 0, we define the

test function ¢; := min{u*(x) - 4,0} < 0 and observe that ¢, € Hol(Q). With Q(A) :={x €
Q | u(x) < -1} and the above arguments, we then conclude the proof. O
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In the same spirit as in Proposition 2.2, we are able to establish L*-bounds for the solutions
of the theoretical and practical dual problems (2.15a) and (2.18a).

Proposition 2.6. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Letw € Hy (Q). Then,
the weak solutions z* [w] € HO1 (Q) of the theoretical dual problem (2.15a) and z*[w] €
H; (Q) of the practical dual problem (2.18a) are bounded in L™ (Q). In particular, for
d € {2, 3}, there holds

12* [w]lo () + 12* [w]l=) < C ugt 1Y) (Iglaq) + 18l @) (2.32)
with a constant C = C(d, p) > 0, which is, in particular, independent of w.

Proof. We argue as for Proposition 2.2. The case d = 1 follows from the Sobolevembedding.
For d € {2,3} and for A > 0, we define the test function

@} (x) := max{z*[w](x) - A, 0}
and recall that ¢} € Hj(Q) with
Vi (x) =Vz*[w](x) foralmostallx € Q(A) :={x € Q| Z*[w] > A}.

From (2.14), recall that B*(w) = B(w,u*) > 0. In particular, it follows that
(B*(w)z*[w], Z*[w] — A)ay = 0. Using the coercivity assumption (ELL) and testing
the weak formulation (2.15a) with @7, we observe that

Vorl? (EEL) + ot (5% +y (2.152) + Vo) — (B* Sx +
,Lto” (P,1||LZ(Q) = «(p/p ‘P,1»—<<Z [LU], (P,1» = <g' (pA>+<g! (p/1> < (LU)Z [w]r (p1>

=(8, ¢ +(8, Voy) — (B*(w)z*[w], 2*[w] = A)an) < (8, ¢}) +(8, V).

Following the steps of the proof of Proposition 2.2 (where the latter estimate corresponds
to (2.25)), we conclude the proof for Z[w]. The same argument applies for the practical
dual problem, where B* (w) is replaced by b’ (w) > 0. This concludes the proof. |

2.2.7 Goal error estimate

The following theorem provides, up to norm equivalence, the formal statement of the goal
error estimate (2.7).

Theorem 2.7

Suppose (RHS), (ELL), (CAR), (MON), and (GC). Letu* € Hol(Q) solve (2.3) and u}; € Xg
be its approximation (2.4). Then, it holds that

|G (*) = G(upp)| < Cest [lu* = ufyllllz* [uef;] = 255 ugg M+ Ml = uggll?], (2.33)

where Cest = Cest(1Q, d, |u* |1y, 1 R, p, [, £, &, & o).

The proof of Theorem 2.7 requires some preparations. We start with the following lemma
which extends [BHSZ11, Lemma 3.1] to f # 0.
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Lemma 2.8. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Letw € HO1 (Q). Then, it
holds that
eIl + gl < Cona, (2.34a)

N2> [wlll + 127 [wllll + llz* [w]lll + 27 [w]ll < Cona, (2.34b)

where Cong = Cona(IQl, d, p, f, f, o) for (2.34a) and Cyng = Cona(I1Q, d,p, &, &, o)
for (2.34b). The constant Cynq is independent of w € Hy (Q).

Proof. Inthe case d = 1, (2.34) follows from the Sobolev embedding and (ELL). Moreover,
note that b(0) = 0 and (2.24) prove that (b(u*), u*) > 0. Using (ELL), (MON), and the
Hoélder inequality, we obtain that

2.3)
I W? = G, ) =G w) + (fF, Vur) = (bw®), u) (2.35)
<M fleao 1w le ) + 1 1@ IVuXlpr q)-
Arguing as for (2.27) and applying the Holder inequality, we see that
llu* |l < max{Cans, 1} (Iflzaca) + 1flr ) IVU*] (@) (2.36)
< max{Cans, 1} (Iflzoc) + Ifle ) 1M 72 1V0*] 20,

where Cgns depends only on d and p’. With |[Vu*]2q) < ugl/zlllu*lll, this concludes

the proof for u*. The same argument (based on (2.4) instead of (2.3)) applies for u.
Furthermore, the same argument applies also for the dual problems (based on (2.15)
and (2.18) instead of (2.3) for the theoretical and practical dual problem, respectively). For
w,v e HO1 (Q), the monotonicity (b(v), v) > 0is substituted in case of the dual problems
by (b’ (w)v, v) > 0 and (B*(w)v, v) > 0, respectively. This concludes the proof. O
The following lemma is one of the two main ingredients for the proof of Theorem 2.7.

Lemma2.9. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Letw € Hol(Q) with||w]| <
M < oo. Then, it holds that

(b(u*) = b(w), v) < Cupllu* - wlllivll forallv e Hy(Q) (2.37)
with Crip = Crip(|1Ql, d, |u*|r~), M, n, R, p, f, f, ko).
Proof. We argue as in the proof of [BHSZ11, Theorem 3.4]. With respect to Remark 2.1,
choose s > 1 arbitrarily for d € {1,2} and s = 6 for d = 3. In any case, we see that
(b(u*) —=b(w), v) < [b(u*) = b(W)ls @)Vl @) < ClIbW*) = bWl g llvll,  (2.38)
where C := pg; 1 Cgns. It remains to prove that

Ib(u*) = b(W)l 1 g < e = wll.
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Due to the smoothness assumption (CAR), we may consider the Taylor expansion

n-1 (w_u*)k (w_u*)n

b(w) = ) b )= (n-1)!

k=0

1
/ 1 -7 '™ (u* + (w - u*) 1) dr. (2.39)
0

Since b is smooth and u* € L*(Q), we obtain that
16 ()| <€ forallk=1,...,n—1,

where C depends only on |u*| 1~ (q), and n. Moreover, (GC) allows to bound the remainder
term, i.e., forany 0 < 7 < 1, it holds that

167 (u* + (w - u*) D)1=y < C,

where C depends only on |Q|, n, and R. The triangle inequality yields that
n n
Ibu*) = b(w)ly (q) < ; lu* = w) e ) = ; lu* = wlf - (2.40)

Recall from Remark 2.1 that HO1 (Q) — LF'(Q) forall1 < k < n by choice of s and n.
Therefore, the Gagliardo—Nirenberg-Sobolev inequality proves that

n
Ib*) = b)) s D AV = w)lfsyg, (2.41)
k=1

where the hidden constant depends only on |Q|, d, |u*|;~q), n, and R. With
IV(u* = w)l2¢q) = llu* —wlll < Cong + M, this leads to

n
Ib(*) = (W)l (q) < (vaw* - w>||§;3m) IV =)z < lu* - wll,  (2.42)
k=1

with hidden constants C = C(|Ql,d, |[u*|r~), M, n,R,p, f, f, o) > 0. Together
with (2.38), this concludes the proof of (2.37). o

The following lemma is the last missing part for establishing Theorem 2.7.

Lemma 2.10. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Letw € HO1 (Q) with
llw|ll £ M < oo. Then, it holds that

2" [w] = 2* [w]lll < Cayar llu* = wlll, (2.43)

where Cdual = Cdual(lQL d, ||U*”L°°(Q)» M, n,R, p, f’ f’ 88 IJO)
Proof. Define 6 := z*[w] — z*[w] € HO1 (Q). For the exact primal solution u*, we observe

that the theoretical dual problem and the practical dual problem coincide, as B* (u*) =
B(u*,u*) = /01 b’ (u*)dr = b’ (u*) and hence z[u*] = Z[u*]. Using monotonicity and the
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definition of the theoretical as well as practical dual problem, we obtain that

2 (MON) ,
lloll" =6, 6) < (6, 8) +(b'(w)d, 5)

CLY 1z w], 8) + b (w)2* [w], 8)] - G(5)
= [(&*[w], 6) + (B*(w)Z* [w], )] — G(8) + (b (w) — B*(w)] 2*[w], &)

CEV(Y (w) - b () + B (u*) - B*(w)] 2*[w], 6).
Since Proposition 2.6 yields that z* [w] € L*(Q) independently of w, we can proceed as
in Remark 2.1(i). To this end, we choose s > 1 arbitrarily for d € {1,2} and s = 6 ford = 3.
Assumption (GC) then yields that
oI < [I6"(u*) = b/ W)l ) + 1B* () = B* W)l g | 12 0] 0. (2.44)
It remains to prove that
b (u*) = b ()l ) < llu* = wil and |B*(@*) = B* @)l g, < llu* = wll.  (2.45)

We observe that the change of variables 7 — 1 — 7 leads to
1 1
B*(w) = B(w,u*) = / b'(w+ (u* -—w)t)dr = / b (u*+(w-u*)r)dr = B(u*,w),
0 0
and, hence,
1
B*(u*) - B*(w) = / [b'(u*) = b (u* + (w—u*)7)] dr.
0

We only prove the second inequality of (2.45), but note that the first estimate follows for
7 = 1 by the subsequent arguments: Due to the smoothness assumption (CAR), we may
consider the Taylor expansion of the integrand b’ (u* + (w — u*) 1) for 0 < 7 < 1 to see that

n—1 *\k-1 k-1
(w1 = S ) (e W W) T
b'(u* +(w—-u )T)—;b (@) (k-1)! (2.46)
*\n-1 _n- 1
+(“’_<L:z)2>l'T 1/(1_a>”‘2b<")(u*+(w—u*>“f)d‘7-
—_ ! O

Since b is smooth and u* € L*(Q), we obtain that
16O ()| < € forallk=2,...,n-1,

where C depends only on |u*| =), and n. Moreover, (GC) allows us to bound the remain-
der term, i.e., forany 0 < 7 o < 1, it holds that

"b('l)(u* +(w — u*) T 0') ||L"°(Q) <C,
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where C depends only on |Q], n, and R. If d € {1, 2}, note that (n — 1)s” < c0. If d = 3, it
holds that (n — 1)s” < 6. Hence, we obtain forall 2 < k < n — 1 that

1@ = w) ) = ™ =it ) S (Cona + M)" 2 fllu* — wil,
where the hidden constant depends only on norm equivalence [||-[| = [V(-)]2(q). Arguing

as for (2.40)—(2.42) above, we infer that

e = wlll, (2.47)

ual

I/ (u*) = B (W)l ) + IB* (u*) = B* ()] 0y < Cf

where C .. = C} . (1Ql,d, |u*|~), M,n,R,p,f, f, 8 & to) > 0. This shows the inequali-

ties in (2.45). The estimate (2.44) together with (2.45) yields (2.43), where
Caual= Caual (1Q], d, [u* =), M, 7, R, p, f, f, &, & to) > 0. This concludes the proof. o

Proof of Theorem 2.7. Since Lemma 2.8 guarantees |[|u;|l| < Cpng, we can apply Lemma 2.9
and Lemma 2.10 to w = uJ; to obtain that

(b(u*) = b(up), v) < Cupllw* —ugllllvll forallv e HY(Q) (2.48a)
as well as
N2> [uz] = 2" [ugg]lll < Cavar llu™ — ugll. (2.48Db)
Combining these estimates with the error identity (2.19), we prove the error estimate

IG(u*) = G(ug)| = [{u* —ugy, 2" [ugl - z5[ugl) + b(W*) = b(ug), 2" [ug] - 25 [ug])
+(u* —ugy, Zug] = 2 [ug]) + (b)) = b(ugy), 2% [ug] - 2" [ug])l
(2.48) * * *[,% * * * * 12
< Cest [l = uglllz* [ug] = 27 lug 1+ e = ufll?],

where Cest = (1 + Crjp) max{1, Cqya }. This concludes the proof. |

The assumptions of Lemma 2.9 (resp. Lemma 2.10) also yield the validity of a Céa-
type best approximation property for the discrete primal solution u}; € Xy (resp. for the
discrete dual solutions z}; [w], z; [w] for any w € HO1 (Q) with |[|w]|| £ M < ), even though
the PDE operator A from (2.13) is not Lipschitz continuous.

Proposition 2.11 (Céalemma for primal problem). Under theassumptionsof Lemma 2.9,
it holds that

lle* — upll < Ceea min [lu* — vylll, (2.49)
UHEXH
where Ccga = Ccea(1Q, d, n, R, p, f, f, lo)-

Proof. The Galerkin orthogonality reads

(u* —upy, va) +(b(u*) —=b(uyy), vy) =0, forallvy € Xy. (2.50)
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2.2 Model problem

Using (MON) and the Galerkin orthogonality, we observe that

2.24)
It = w2 Qu* = uly, u* = ufp) + () = b, u* = uf)

P - u - o)+ (D) = blufy), ut - v

(2.37)
< Ceea llu™ = uglilllu* - vll,

where Ccga := 1 + Crip. This proves (2.49), where the minimum is attained due to finite
dimension of Xg. O

Proposition 2.12 (Céa lemma for dual problems). Letw € HO1 (Q) with||w|| £ M < o.
Under the assumptions of Lemma 2.10, it holds that

12* [w] - Z5 [w]lll < Cea min [I2* [w] - vpll, (2.51)
VHEXH

llz* [w] -z [w]lll < Ccea min [ll2* [w] - vpll, (2.52)
UHEXH

WhereCCéa = Ccea(1Q], d, ”u*"L”(Q)’M’ n, R, p’f’f’ IUO)

Proof. We prove the statement for the practical dual problem. With minor modifications,
the same argument also applies for the theoretical dual problem. We only need to show
that the bilinear form of the practical dual problem is continuous and elliptic. Then, by
standard theory for Lax-Milgram-type problems, this proves the Céa lemma (2.52). To
this end, we exploit (MON) and obtain that

wll* = (v, v) < (v, v) + (b’ (w)v, v) forallv € Hy(Q),

i.e., the bilinear form is elliptic with constant 1. In view of Remark 2.1, choose t > 1
arbitrarily for d € {1,2} and ¢ = 6 and, hence, " = 3/2 for d = 3. With (ELL) and (GC), it
follows that

(z, v) +(b'(w)z, vy < (1+CIb" W)l @)Nzllllvll  forallv, z € Hy (Q).
With (2.45) and ||lu* — w||| £ Cyng + M, we can finally bound
10" W)l ) < 1B (W) () + Clllw* = wlll < 10" (@)l () + C(Cona + M).

Combining the last two estimates, we prove continuity of the bilinear form with Ccg, =
Ccea(1Q, d, |u* =), M, n, R, p, f, f, o). This concludes the proof. O

Remark 2.13. If it is a priori guaranteed that |u};|;~q) < C < oo, then the proofs of
Section 2.2.7 simplify considerably and the use of (GC) can be avoided. By Proposition 2.2,
we infer

luf; = t(u* = ufy) | <o forall 0<7<1. (2.53)
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To establish Lemma 2.9, recall B* (u};) from (2.16). The observation (2.53) together with the
smoothness assumption (CAR) yields that |B* (u};)| =) < co. Altogether, we obtain that

(b(u*) = b(ug), v) < IB*(uip)l=@lu* = uflz@lvlezq)-

Note that (2.53) also establishes the crucial estimate (2.45) from Lemma 2.10 due to the local
Lipschitz continuity from (CAR); see [HPZ15, Proposition 1]. However, we stress that already
for lowest-order FEM, the validity of a discrete maximum principle requires assumptions on
the triangulation which are not imposed for (GC) and usually not met for adaptive mesh
refinement. o

Remark 2.14. Note that (CAR) implies only that b(x, -) is locally Lipschitz. If we addi-
tionally assume global Lipschitz continuity, i.e., L' := sup,.q|b’(x, ) |~®) < oo, then the
strongly monotone operator A: Hy (Q) — H™(Q) from (2.13) is also Lipschitz continuous
with L := max{ui, L'}. In particular, the problem (2.3) fits into the framework of the main
theorem on strongly monotone operators, and the proof of Lemma 2.9 becomes trivial. The
same applies to the proof of Lemma 2.10, if b’ is globally Lipschitz continuous. o

2.3 Goal-oriented adaptive algorithm and main results

2.3.1 Mesh refinement

From now on, let 75 be a given conforming triangulation of Q. For mesh refinement, we
employ newest vertex bisection (NVB); see [Ste08]. For each triangulation 75 and marked
elements My C 75, let 7, := refine(75, Mpy) be the coarsest triangulation where all
T € My have been refined, i.e., My € 75\ 7,. We write 7, € T(7g), if 7), results from 7 by
finitely many steps of refinement. To abbreviate notation, let T := T(7p).

Throughout, each triangulation 75 € T is associated with the finite-dimensional FEM
space Xy C H, (Q) from the introduction, and, since we employ NVB, 7;; € T(75) implies
nestedness Xy C Xj,.

2.3.2 A posteriori error estimators
For 7y € T, vy € Xy, and w € Hy (Q), let

nir (T, v)? = K2 f + div(A oy = £) = b(wi) s,

(2.54)
+hr [[(AVvg - f) - ”]]"é(amg)’

(w3 T, v)? o= 2| g + div(A Voy — g) = b (w) (o) 2,

(2.55)
+hr |[(AVvy - g) - "]]"iZ(aTmQ)

be the local contributions of the standard residual error estimators, where [ - ]| denotes the
jump across edges (for d = 2) resp. faces (for d = 3) and n denotes the outer unit normal
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2.3 Goal-oriented adaptive algorithm and main results

vector. For d = 1, these jumps vanish, i.e., [ - ]| = 0. For Uy C 75, let

na(Uy, ve) 3=( Z nu (T, UH)Z)I/2 and (g (w; Uy, vy) 3=( Z (m(w; T, VH)2)1/2
Te Uy Te Uy

To abbreviate notation, let ny (vy) = ng (74, vy) and {y(w;vy) = (y(w; T, vy). Fur-
thermore, we write, e.g., (i (Uu, z5;[w]) = {u(w; Uy, z};[w]), since w is clear from the
context.

The next result establishes that the error estimators (2.54)—(2.55) satisfy the following
slightly relaxed axioms of adaptivity from [CFPP14]. Compared to [CEFPP14], stability (A1)
is slightly relaxed and reduction (A2) is simplified due to the nestedness of the discrete
spaces. Furthermore, we note that well-posedness of (2.54)—(2.55) requires additional
regularity assumptions on A, f, and g (as stated in Section 2.2.1 and 2.2.3) so that the
jump terms are well-defined. The proofis postponed to Section 2.4.1.

Proposition 2.15. Suppose (RHS), (ELL), (CAR), (MON), and (CGC). Let7; € T and
Tn € T(7i). Then, there hold the following properties:

(A1) stability: For all M > 0, there exists Cgap[M] > 0 such that for all w € Hol(Q),
vy € Xp, and vy € Xg with max{|||w|||, [lvzll, lvell} € M, it holds that

|71 (T O Tz, vn) = 18 (T O T, vi)| < Cotan [M ] o = vall,
| (w; T 0 Tz, vn) = S (w5 T O Tir, vi)| < Coan [M ] llon — vill.

(A2) reduction: With 0 < gpq := 2719 < 1, there holds that, for all vy € Xy and all
w € H} (Q),

M (Te\ T, i) < Gred N (Ta\Tn, vir) @and §(w; T\ T, Vi) < Gred $ua(W; Tu\Th, Vn).
(A3) reliability: Forall w € HO1 (Q), there exists C, > 0 such that
lle* = upill < Cret ma (ufy) and llz* [w] = 25 [wlll < Cret S (25 [w]).
(A4) discrete reliability: For all w € HO1 (Q), there exists Cqre; > 0 such that
ey = uzlll < Carel N (71 \ T, uzy) and llizgy [w] = zg [wlll < Carel S (Te\Th, 27 [W]).

The constant C. depends only on d, o, and uniform shape regularity of the meshes
T € T. Cqrel depends additionally on the polynomial degree m, and Cg,, | M| depends
furthermoreon |Q|, M, n, R, and A.

Remark 2.16. As far as the axioms of adaptivity (A1)—(A4) are concerned, we stress that
only the constant Cg,, [ M| depends on M > 0. From Lemma 2.8, we know that |||v]|| < Cynd
forallv € {u*,uy;, uyy, z* [w], z; [w], zj; [w]}. Hence, forw € {u*, u;, up}, vw € {u};, z; [wl},

andvy € {u};, z};[w]}, also the constant Cyp, = Cstap [ Conal in (A1) becomes generic.
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2.3.3 Goal-oriented adaptive algorithm

The following algorithm essentially coincides with that of [HPZ15]. Following [BIP21], we
adapt the marking strategy to mathematically guarantee optimal convergence rates.

Algorithm 2.17: Goal-oriented adaptive FEM

Input: Adaptivity parameters 0< 6 < 1 and Cya > 1, initial mesh 7.
Loop: Forall¢ =0,1,2,..., perform the following steps (i)—(v):

(i) Compute the discrete solutions u;, z; [u;] € X, to (2.4) resp. (2.6).
(i) Compute the refinement indicators n¢ (T, u;) and {¢(T, z; [u;]) forall T € 7;.
(iii) Determine sets M?, /VZZ C 7¢ of up to the multiplicative constant Cy,,;x minimal
cardinality such that
0ne(uf)? < ne (Mg, ul)?, (2.56a)
0 [me(ud)® + Geuds 2 D] < [ne(My,ud)® + G My 27 [uf )? ] (2.56b)

(iv) Select MY € My and MY ¢ M, with #MY = #M¥ = min{ #M,, , M, }.
(v) Define M, := M|} U M|* and generate 7¢1 := refine(7;, My).

Output: Sequence of triangulations 7; with corresponding discrete solutions u; and
zy [uy] as well as error estimators n¢ (uy) and (o (u); z; [uy]).

2.3.4 Main results

In the following, we give formal statements of our main results on Algorithm 2.17. The
proofs are postponed to Section 2.4 below. Our first result states that Algorithm 2.17
indeed relies on reliable a posteriori error control for the goal error and guarantees plain
convergence.

Proposition 2.18. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, there hold the
following statements (i)—(ii) :
(i) There exists a constant Cr’el > 0 such that

G(u*) = Gup)| < Clymu (uly) [n(ul)? + Cu (25w D2 Y% forall T e T, (2.57)
(ii) Forall0 < 6 < 1 and1 < Cpui < 0, Algorithm 2.17 leads to convergence

1/2

G (") = Gu)| < Clgme(u)) [ne(w))? + {2 [uf])?]'" — 0 ast —» o (2.58)

whereC/, = C,(IQL,T,d,n,R,p. . f, 8 & Ho)-

We stress that (2.57) is an immediate consequence of the goal error estimate (2.33) from

54



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.3 Goal-oriented adaptive algorithm and main results

Theorem 2.7 and reliability (A3), i.e.,

Cot 1G(u*) = G(up)| < [lw* = ufsllilz* [uefy] = zfy L+ Ml = wfyll?]
< Chy [ (ufy) G (2 [ufs]) + i (uy)?
< V2 C2mur () [ € (2 [ )P + i ()] 2.
Consequently, only the convergence (2.58) of Proposition 2.18(ii) has to be proven. Re-

placing the assumption (GC) on the nonlinearity by the stronger assumption (CGC), we
even get linear convergence, which improves Proposition 2.18(ii).

Theorem 2.19

Suppose (RHS), (ELL), (CAR), (MON), and (CGC). Then, forall0 < 6 < 1and1 < Cparx <
oo, there exists €y € Ny, Cjin, > 0, and 0 < qii, < 1 such that Algorithm 2.17 guarantees that,
foralle, k € Nog withk > € > £,

e () [me@)? + ez 1w D? 1% < Gingls ne(ud) [ne(u)? + G (22 (i )? V2. 2.59)

The constants Cy, and qyn as well as the index €y depend onlyon|Q|, T,d, m,0,n, R, p, f,
[, 8 8 o, andA.

To formulate our main result on optimal convergence rates, we need some additional
notation. For N € Ny, let Ty := {7 € T | #7 — #7y < N} denote the (finite) set of all
refinements of 75 which have at most N elements more than 7. For s, t > 0, we define

|u* I, = sup ((V+1)* min gy (ufy)) € Rag U {eo},
NeNp Tuely

I2* 10, = sup (N -+ 1) min Gr(afy [0 € Rao U (o)

In explicit terms, e.g., [u*|a, < o means that an algebraic convergence rate O(N ) for
the error estimator 7, is possible, if the optimal triangulations are chosen.

In comparison to [HPZ15] or [XHYM21], our proof of Theorem 2.19 avoids any L*-
bounds on the discrete solutions as well as the assumption that the initial mesh is suffi-
ciently fine. Moreover, in contrast to [XHYM21], which proves linear convergence for the
marking strategy suggested in [HPZ15] (and a multilevel correction step), we even prove
optimal convergence rates without assuming global Lipschitz continuity for the primal
and dual operators.

Theorem 2.20

Suppose (RHS), (ELL), (CAR), (MON), and (CGC). Lets,t > 0 with |u*|a, + |2* [u*]]a, <
co. Then, for all0 < 6 < Oopt == (1+CZ_, C5 )" and 1l < Cpai < oo, there holds the
following: With the index £y € Ny from Theorem 2.19, there exists Copt > 0 such that
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Algorithm 2.17 guarantees that, for all ¢ € Ny with € > 0y,

ne(ud) [ me ()2 + Gz )2 ]2 < Copt lu* [a, (1u* [a, + 12* [u*11a,) (#T7 - #75)
(2.60)

where a := min{2s, s + t}. The constant Cop depends only on|Q|, T, d, m, Cpyb, Cimark, €0,
0,n,R,p, f,f, & & ko, andA.

Remark 2.21. Compared to the treatment of linear problems in [FPZ16], the crucial
change in the marking strategy considers the combined error estimator due to the structure
from (2.7). This allows us to prove convergence rates in contrast to [HPZ15; XHYMZ21] by
using key ingredients from [BIP21]. As a trade-off, the proofs of the essential quasi-orthogo-
nalities are much more involved both in the semilinear primal setting as well as for the
combined error estimator.

Remark 2.22. With the estimatene (u)) [ne(uy)? + (o (2 [up D?1Y? < me(ul)® + Go(z) [uy])?,
one can also consider Algorithm 2.17 with M, := MZZ, which then takes the form of the
standard AFEM algorithm (see, e.g., [CFPP14]) for the product space estimator. Then, The-
orem 2.19 and 2.20 hold accordingly with the product replaced by the square sum and
a = min{2s, 2t}, which is slightly worse than the rate a from Theorem 2.20. We refer
to [BIP21] for details (in a different, but structurally similar setting).

Remark 2.23. The marking strategy proposed in [BET11] uses Dorfler marking

0 > pe(T,uf, zo[uf])® < D7 pe(T,uf, ze[uf])? (2.61)
TeT TeM

for the weighted estimator product
pe(T, u, ze[up])? = 1o (T, uf)?Co(2f [uf 1)? + ne(uf) (T, 2 [ug ).

This combined estimator can be interpreted as a computable (but less local) upper bound for
the dual weighted residual estimator. Beyond linear PDEs [FPZ16], however, convergence
cannot be guaranteed, since the linearization error of the dual problem will not tend to zero
in general. As a possible remedy, [BIP21, Remark 3(iii)] proposes to consider

oo(T, uf, ze[uy 1) =ne(T, uf)? [ne )+ () [up D | +ne (up)?[ne (T, up)*+ Lo (T, 25 [uy1)?]

for the Dorfler marking (2.61). The present results in combination with the analysis
from [FPZ16] show that this strategy implies convergence with optimal ratemin{2s, s + t }.
Details are left to the reader.

2.4 Proofs

In this section, we give the proofs of Proposition 2.15 and 2.18 as well as Theorem 2.19
and 2.20.
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2.4 Proofs

2.4.1 Axioms of Adaptivity

In this section, we sketch the proof of Proposition 2.15 and verify that the residual er-
ror estimators from Section 2.3.2 satisfy the (relaxed) axioms of adaptivity (A1)—(A4)
from [CEFPP14]. As usual for nonlinear problems, only the verification of stability (A1)
requires new ideas, while (A2)-(A4) follow from standard arguments. For a triangulation
7, € Tand an element T € 7;, let E(T) be the set of its facets (i.e., nodes for d = 1, edges
for d = 2, and faces for d = 3, respectively). Moreover, let

[T) = | J{T" e T | TN T # 0} (2.62)

denote the usual element patch. Recall that (RHS) ensures that the error estimators (2.54)—
(2.55) are well-defined. To abbreviate notation, we define the primal and dual residuals

R(vy) = f+div(AVvy — f) — b(vy), (2.63a)
R (w;vy) := g +div(AVvy — g) - b" (w)vy (2.63b)

forall vy € Xy and w € HO1 (Q). We stress that we do not explicitly state the dependence of
the constants on the y-shape regularity constant.
To prove stability (A1), we need the following auxiliary result:

Lemma 2.24. Suppose (ELL), (CAR), and (CGC). LetM > 0 andv,w € H;(Q) with
max{|||v|l, llwlll} < M. Then, it holds that

1b(v) = b(w)l2q) < C[M] llv—wll (2.64)
with C[M] = C(IQl, d, M, n, R, o).

Proof. Similarly to the Taylor expansion in (2.39), it holds that

b(v)—Zb””( )( ) +(”_“1’;,n/ 1-0"'b"(w+@-w)r)dr.  (2.65)

This yields that

12(Q)

n-1 1
1) =b )iz 5| Y 8 @) (0= + w=0)" [ (1=0 b (s (0-1)7)
k=1

Recall the generalized Holder inequality
lowliza) < @2 ) 1Wli2o (@), Where 1/2=1/2(1/p+1/p’).

Recall that [v*| e (q) = Foranyk=1,...,n—1and 1 < p < oo, it holds that

"V"Lkp (Q)

(CG
15%w) (0-1) 20y IS W) e I0 =Wy gy £ AN 0 N0ty -
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For d =1, 2, both norms can be estimated by the corresponding energy norm. For d = 3,
let p = n/k and hence p’ = n/(n — k) > 1. Note that 2(n — k)p’ = 2n < 6 = 2" aswell as
2kp = 2n < 6 = 2* by virtue of (CGC). For the remainder term in (2.65), (CGC) yields that
b (w)| < 1forall w € H)(Q) and thus the integral is bounded by a constant. Altogether,
this guarantees that

n-1 n
Ib@)=bW)l12(0) < Y Jb (w) (v=w) 1 120) 10 =w) 1120y < D A+ lwll*™) llv-wll,
k=1 k=1

where the hidden constant depends only on Q, d, M, n, and R from (CGC), and ug
from (ELL). Note that ||lv — w||* < |lv — w||, where the hidden constant depends only
on M. This concludes the proof. i

With Lemma 2.24 at hand, stability (A1) follows as for a linear model problem [CKNS08].

Proof of stability (A1) for primal problem. With the primal residual R(vy) from (2.63a),
the refinement indicators read

(T, vy)* = hi ||5R(VH)||22(T) +hr |[(AVvg + f) - "]]"%z(amg)-
Define 6y, := v, — vy € X and D(8y,) := div(A V) + b(vy) — b(vy,). Observe that
R(vp)=|f +div(AVvy — f) = b(vy)]| + [div(AV6,) + b(vh) — b(vp)] =R (ve) + D(8p).
Elementary calculus proves that
1/2
(T, o) = (IR W) + DOy + Rl AT+ 00+ ) - mllaoro) 6
< (T, vu) + hr|D(0n) | 2(r) + h;/z IMAVS, - n]l2orn0)-
Recalling the definition of D(§;,), we see that
1D 12(r) < 1diV(AVOR)12(r) + 1B (vE) = b(UR) 12 (1) (2.67)
For the first term in (2.67), we use the product rule and an inverse inequality to see that

Idiv(A 6] 2(r) < I(div A) - Vylzr) + 1A s D20yl )

. 0 (2.68)
< (Idiv A= + 7 1ALy ) 1980l r),

where : denotes the Frobenius scalar product on R%*¢ and D? 6y, is the Hessian of &j,. The
jump term in (2.66) can be estimated by a discrete trace inequality:

172
I[AVS: - mllz6rna < by 1AL @i 1V 80l 20, 1)- (2.69)
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Collecting (2.66)—(2.69), we obtain that

110 (T, vp) = (T, vp)|
< hy [Idiv Al (r) + hi 1Al @, im1) | 1V8kl2, 117y + Br 10(i) = b(wi) 21y
< [191Y9 max|div Al=cr) + Al |1V 82, 11) + Qb (0r) = D@21,

where the hidden constant depends only on the shape regularity of 7;,, and the polynomial
degree m of the ansatz spaces. Together with Lemma 2.24, this yields that

1/2
70 (T 0 Tazy vn) = (T O T o] < (3 Ima(T,wn) = (T )P )

Te T,NTh
1/2
2 2
S0 (90 iy, + 1) = b))
Te 7,NTy
1/2
< (190122 + 1D (wrr) = b(on)I22)) % < llvn = vl

The hidden constant depends only on |Q|, the shape regularity of 7;,, d, m, M, n, R, po, and
A. Note that for any non-refined element T € 7, N 75, it holds that 0, (T, vy) = ny (T, vy).
This concludes the proof. m]

Proof of stability (A1) for dual problem. With the dual residual R*(w; vy) from (2.63b), the
refinement indicators read

CH(W; T, VH)2 = hjz" ”9{*(10» VH)"]%Z(]“) + hT "[[(A VVH - g) : n]] "iz(aTﬁQ)'

We define 6;, := v, — vy € X; and D*(6y,) := div(AVéy,) — b’ (w)d,. Observe that similar
arguments as for the proof of stability (A1) of the primal problem lead to

R*(w; vp) = R*(w; vy) + D" (6r)
and, hence,
Cn(w; Ty vp) < Gn(w; T, vg) + hr | D" (80 2y + h;/z IAVS, - n]li2or00)-

Here, we only estimate the term [b’(w) 0y 2(q), since the other terms follow from the
arguments provided for the primal problem. To this end, choose 2 < p < o arbitrarily if
de {1,2}.Ifd = 3,let p = 3 and, hence, p’ = 3/2. Assumption (CGC) guarantees that the
Sobolev embedding (2.11) holds with r = 2p and r = 2(n — 1) p’ simultaneously. Therefore,
we obtain that

1V ()3l 2y < 1V ()20 @ I8l 20y < (1+ 10" 20 ) 180l 120 (0

R [ e 1 P e B 1 K AR AT
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Arguing as for the primal problem, we see that
¢ (w; T VT, vn) = Cn(w; T O Th, va)|

) 1/2
AV gy I @) =) ) S o = vl
Te T,NT

A

The hidden constant depends only on |Q|, the shape regularity of 7, d, the polynomial
degree m of the ansatz spaces, M, n, R, y9, and A. This concludes the proof. o

The proof of (A2) follows as for linear PDEs; see, e.g., [CKNS08]. The verification of (A3)-
(A4) is based on standard arguments found in, e.g., [Ver13]. Therefore, the proofs of (A2)-
(A4) are only sketched in Appendix 2.8.

2.4.2 Stability of dual problem

The next result transfers [BIP21, Lemma 6] to the present setting of semilinear PDEs. It
shows that the norm difference of dual solutions can be estimated by that of the corre-
sponding primal solutions.

Lemma 2.25. Suppose (RHS), (ELL), (CAR), (MON), and (GC). LetM > 0 andw < HO1 (Q)
with||w||| € M. Then, it holds that

llz*[w*] = 2* [w]ll + llz; [w*] = 25 [w]lll < Caigellle™ - will, (2.70)

where Cyitr = Cairr(1Ql, d, M, n, R, p, f, f, &, &, Ho)-

Proof. First, note that

(2*[u*] - z*[w], v) + (b (u*)z* [u*] - b’ (w)z*[w], v) =0 forallv € Hy (Q),

e [u™] =z [w], va) + (0" (w2 [u*] = D' (w)z; [w], vyy =0  forallvy € Xp.
(2.71)
We aim to prove that

llz*[u*] = z* [w]ll < Caigelllu™ — wlll

To this end, note that the strategy in the proof of Proposition 2.10 provides a similar
estimate to (2.47) by choosing ¢ from Remark 2.1(ii) instead of s from Remark 2.1(i), i.e.,

16" (u*) = b’ (W) () < Chuallle* = wlll (2.72)

with €}, = C}
ua

ual [l d, [u* =), M, n,R,p, f, f, & & ko) > 0. The Holder inequality
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leads us to

llz* [w*] = 2* [w]ll? = (2* [u*] - 2*[w], 2*[u*] - 2*[w])

PV (b (w2t ] - b (w)e* [w], 2* [u*] - 2 [w])

= (" (W) =" (w))z* [u*], 2" [u*] -z* [w]) = (b (w) (z* [u*] -2* [w]), 2* [u*] -z* [w])

(MON)
< (W (W) = b W)z [u*], 2 [u*] - 2 [w]) (2.73)
< 1B’ () = b (W)l g 12" [ iy N2 (6] = 2* [w] | g

2.7

.72)
S llw* = wiltliz* [w* 2> [w*] = 2* [w]ll,

where the hidden constant depends only on C; . from (2.72) and norm equivalence.
Finally, recall that [||z*[u*]||| £ Cpng from Lemma 2.8. The same reasoning applies for
llzf; [w*] = z7; [w]lll. This concludes the proof. O

2.4.3 Proof of Proposition 2.18

The proof of Proposition 2.18 builds on the following lemma, which adapts [BIP21, Propo-
sition 14] to the present setting.

Lemma 2.26. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, for any choice of
the marking parameters0 < 0 < 1 and 1 < Cpu¢ < o0, Algorithm 2.17 guarantees that
o llw* —uylll+ne(uy) — 0 if#{k € Ng | My satisfies (2.56a)} = oo,
o llw* = ugll+ne(uy) + llz* [w*] = 27 [ug 1+ Nlz* [w*] = 27 [w* ]l + e (27 [ug]) — 0
if#{k € No | My satisfies (2.56b)} = oo,

as { — oo. Moreover, at least one of these two cases is met.

Sketch of proof. The proof is essentially verbatim to that of [BIP21, Proposition 14] and
therefore only sketched. From the Céa lemma (2.49) for the primal problem (resp. (2.52)
for the dual problem), the nestedness X; C X4 of the discrete spaces for all ¢ € Ny, and
the stability of the dual problem (Lemma 2.25), it follows that there exist a priori limits
uk, zX[uk] € Hy(Q) such that

0!

L —o0

N = ug -+ 25 [ud] = 2 [ug 1 — O.

Together with stability (A1) and reduction (A2), the estimator reduction principle proves
that

ne(ul) =250 if#{k € No | M satisfies (2.56a)} = oo,

ne(ul) + G (2 [uf]) —= 0 if #{k € No | My satisfies (2.56b)} = .

Clearly, at least one of these two cases is met. With reliability (A3), it follows that u* = u},
while z*[u*] = zZ[uX] requires that #{k € Ny | My satisfies (2.56b)} = oo; see [BIP21,
Proposition 14] for details. o
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Proof of Proposition 2.18. The proofis verbatim that of [BIP21, Proposition 1] and there-
fore only sketched. From (A1)-(A3), the Céa lemma (2.49) for the primal problem
(resp. (2.52) for the practical dual problem), and the nestedness of the discrete spaces,
there follows boundedness

ne(uy) + Co(zy [uy]) < mo(ud) + Co(zy [uy]) < oo forall€ e Ny;

see [BIP21, Section 4.1] for details. Together with the convergence results of Lemma 2.26,
this yields convergence

ne(ud) [me(ud)? + G (22 2] tow

This concludes the proof. o

2.4.4 Auxiliary results

We continue with some preliminary results, which are needed for proving the quasi-
orthogonalities and which are, hence, crucial to prove linear convergence. To this end,
consider the Fréchet derivative of A at w € HO1 (Q),ie,

A'w](-): Hy(Q) —» HH(Q), A'[w](2):=(z, - )+ (w)z, -). (2.74)
Lemma 2.27. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, there exists a con-
stantC = C(1Q|, d, |u*|1~), m, R, p, f, f, po) such that

(AW = Auf) - A W) (@ —u), v) < Cllw* ~uf IPIll - forallv € H(Q). @.75)

Proof. Due to the linearity of ( -, - )) in the left-hand argument, we conclude that the only
contribution is due to b, i.e., forall v € H& (Q), it holds that

(AW*) = A(ug) = A' w1 (w* - up), vy = (bW*) - b(ug) - b"(w*)(u* - ug), v).

Forv € HO1 (Q), the Holder inequality with arbitrary 1 < s < 0 ifd € {1,2} and s = 2* if
d = 3 proves that

(b(u*) = b(ug) = b (u*)(u* —up), v) < |b(u*) = b(ug) = b (W) (W* = u)l e @)l

From the Taylor expansion (2.39), note that

n-1 *x _ %)k
b b(u?) — b () (u* - uz) - _ kZ:; b(k)(u*) %
* _ o *\N 1
_ % /0 (1=2)" "™ (u* + (uf - u*) 7) dr.
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Together with Lemma 2.8 and u* € L*(Q), the assumption (GC) yields that
n
Ib(u*) = b(uf) = b’ (u*) (u* = uf)l o) S > 1@ = w0 g
) k=2
= DM =l o) S IV = U2 o) > et = uf I,
k=2

where the hidden constants depend only on Gy, 4 from Lemma 2.8, n, R from (GC) and
norm equivalence. This concludes the proof. o

The next lemma is an auxiliary result for establishing quasi-orthogonality. Our proof
combines arguments from the linear setting [BHP17, Lemma 17] with ideas from [FFP14,
Lemma 6.10]. We stress that the proof exploits the a priori convergence |[u* — uy|| — 0
from Lemma 2.26.

Lemma 2.28. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, the normalized
sequences

* ok * ok
u —u, Upg — Uy

* * * *
foru* + u; foruj,, +u;

e := 1 llw* —ugll’ and Eq = llug, - upll’ (2.76)

0, otherwise 0, otherwise

converge weakly to 0 in Hy (Q).

Proof. We only show the statement for e,. The proof for E, follows by similar arguments.
To prove that e, — 0 in HO1 (Q), we show that each subsequence (e, )ren, admits a further
subsequence (egk]_ )jeno such that eq, = 0 as j — co. To this end, consider a subsequence
(ee. )ken, Of (e¢)ren,. Without loss of generality, we may assume that e, # 0 for all k € Np.
Note that [[le, [l < 1. Hence, the Banach—-Alaoglu theorem yields a further subsequence
(egkj )jen, satisfying weak convergence eq, — Weo € HO1 (Q) as j — oo. It remains to show
that w., = 0. Lemma 2.26 implies that u* € X, and, hence, ¢; € X, for all £ € Ny. Mazur’s
lemma (see, e.g., [FK80, Theorem 25.2]) yields that we, € X.
First, the Galerkin orthogonality shows that

(AW*) = Aug ), vi) =0 foralli < €; and v; € X;.
]

Letting j — oo, we infer that

(AW*) = Aug ), vi)
lim — ! =0 foralli e Ngandv; € X;.
j—eo lllu —Mgkjlll

Let v, € Xw. By definition of X, there exists a sequence (v;);en, With v; € X; and [||ve —
vi|l = 0asi — oo. Given € > 0, there exists iy € Ny such that |||v; — ve||| < eforalliy < i € Np.
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Estimate (2.37) yields that

(AW*) = A(ug ), Vi = Veo)

lim ! <llvi —veolll < €

s T ”e*k.m lvi — veolll < &,
]

where the hidden constant depends only on Cy;,. Hence, we get that

(A(W*) = Alug ), Veo)
lim — =0 forallv, € Xe.
joeo llle* — ugkjlll

Moreover, Lemma 2.27 and the triangle inequality lead to

(A [u* ] (u* - ug*kj), veo)|  (AWX) = Aug ), veo)l

]
* _ 1%
e = ug

+ Clle* = uX Mllvsolll-
M — ”Zk I Il gkj””” ool
j

Together with a priori convergence ||u* — u;k Il — 0, we thus obtain that
i

(A [w*] (u* - ug*kj), Veo) |

lim =0. 2.77)
Jj—oo llu* — uZ‘kj Il

Note that due to (ELL) and (MON), A’[u*](-) is bounded from below, i.e.,
Il < (A [u*](w), v) < |A [ @) g1 llvll - forallv e Hy(Q).

Due to the smoothness of ¢ — b(t, ¢) and the L*-bound for u* from Proposition 2.2,
we infer that 0 < b’(u*) < C. Hence, A’[u*](-) is a bounded linear operator and the
restriction A’ [u*](-)|x.: Xo — X is an isomorphism. Consequently, also the adjoint
(A [u*]|x,)": X — Xw is anisomorphism, where we note that X, is a closed subspace
of the Hilbert space H; () and, hence, reflexive. Hence, for every v, € X, there exists
Voo € Xo such that

(A [u* ] (u* - ug*kj), Veo) | (A [u*]* (veo) , u* = u;‘,gj)l

0 =lim = lim
- * _ gk - * _ g%
joeo e =i joe e =,

Gu* —uf, T
= lim ’ = lim {eq, , Vo).
B e e e

j
This shows that w., = 0 and concludes the proof. o

2.4.5 Quasi-orthogonalities

Our proof of the crucial quasi-orthogonalities adapts that of [BHP17, Lemma 17, 18] from
the linear setting in the Lax-Milgram framework to the present nonlinear setting. However,
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we stress that the following results all need the stronger growth condition (CGC), while
our earlier results only require (GC).

Lemma 2.29 (quasi-orthogonality for primal problem). Suppose (RHS), (ELL), (CAR),
(MON), and (CGC). Then, forall0 < € < 1, there exists £y € N such that forall ¢ > €y and
allk € Ny, it holds that

1
2 2 2
e = g M7 + gy, — wll= < 1-= e = uglI=. (2.78)

Proof. Together with the Rellich-Kondrachov compactness theorem (see, e.g., [KJF77,

Theorem 5.8.2]), Lemma 2.28 yields strong convergence

o€[l,), ifde{l,2},

)
eellroca), |Eeliecq) —— 0  where
leelze (), IEelzo () {U c[L2), ifd=3.

Ifd =1,2,letl < 0 < oo be arbitrary with Holder conjugate ¢’ > 1. Ifd = 3,letc =5 =2*-1
and hence ¢/ = 5/4 = (2* - 1)/(2* — 2). Note that (CGC) yields that no” < ¢ and hence
lecl o () < leelo@) — 0as € — co. We argue as for (2.40): By the Taylor expansion,
no’ < 2* and with Lemma 2.8, we obtain that

n
1b(w*) = bl ) < ) u* = ufl o) S 1u* = ufl o g
= (2.79)
= lu* = uf Ml oo oy < Me* = udlleclio -
Furthermore, for k, ¢ € N, recall the Galerkin orthogonality
Cu* —ugy vk ) +(b(u™) = b(ug,,), vewr) =0 forall vey € Xesr. (2.80)
Due to the bilinearity and symmetry of { -, - ), we have that

2 2 2
e = P = Mor* = e 12+ Mg — w12 + 260" =l ufy —uf). (28D

Let0 < € < 1. Note thatuj,, —uy € X4 due to nestedness of the discrete spaces. Exploiting

the Galerkin orthogonality (2.80) and the Young inequality, we thus obtain that there exists
¢y such that, forall ¢ > ¢y and all k > 0,

(2.80)
2«”* - utﬁk ’ uZ+k - u@*» > =2|(b(u*) - b(uzf:k) ’ uZ+k - uz>|
> ~2|b(u*) - bt o)l — ut o)
(2.79)
> =2l — ug Mg, —ull
2 2
2 —elllw™ = ug 1™ + Mgy — ug ]

The combination with (2.81) proves that

2 2 2
M = ugl® = Mo = wg 1% + Mgy, — ug i

1-¢
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This concludes the proof. o

While Lemma 2.26 guarantees a priori convergence ||u* — uj|| — 0 of the primal
problem, a priori convergence of the dual problem has to be assumed (and depends on
the marking steps).

Lemma 2.30 (quasi-orthogonality for exact practical dual problem). Suppose (RHS),
(ELL), (CAR), (MON), and (CGC). Suppose that||z* [u*] — z; [u*]||| — 0 as€ — co. Then,
forall0 < ¢ < 1, there exists €y € N such that for all ¢ > ¢y and all k € Ny, it holds that

1
2" (] - z (WP, (2.82)

2 2
[ ] = 27 [ " + gy ] = 27 Tu T < 7=

Proof. Note that the dual problem reads
a(z*[u*],v) +(K(z*[u*]), v) = G(v) forallv € Hj (Q),

where K(w) := b’ (u*)w € L*(Q) defines a compact operator K: Hy (Q) — H~'(Q). The
claim thus follows from [BHP17, Lemma 17, 18]. O

Lemma 2.31 (combined quasi-orthogonality for inexact practical dual problem). Sup-
pose (RHS), (ELL), (CAR), (MON), and (CGC). Suppose that ||z* [u*] — z; [u; ][l — O as
¢ — oo. Then, forall0 < 6 < 1, there exists £y € N such that forall ¢ > €y and all k € Ny,
it holds that

2 2 2 2
[l = g 1 + 2> (] = 25 g P ]+ [ Mgy — wg i + zg g w7y ] = 20 [ug 11 ]

< [Mle* = wrl® + llz* [w*] - 25 w10 ] (2.83)

T 1-46

Proof. According to Lemma 2.25, it holds that

lz*[w*] = 27 [w* Il < Nz*[w*] = 27 [ug 1+ llzy [w*] = 27 [ug 1
(2.70) 0—o00
< Mz [w*] = 2 [ug M+ llw* = ug il — 0.

Hence, we may exploit the conclusions of Lemma 2.29 and Lemma 2.30. For arbitrary

a > 0, the Young inequality guarantees that

llz* [w*] = 2 (g P < L+ @) lllz* (6] = 25, [ TP+ U+ @) g (] - 20 [ug JIP,

Ny g ] = 22 [ug 1P < L+ @) lllzg g [w*] = 27 [w* 1I1P + (L + a™ ) 2y [u*] - 27 [ug 11IP
+ (1 + @)L+ a7 llag [u] = 22 Lug 1P

llz* [2*] = 27 [w* P < (1+ @) llz* [w*] = 27 [wp P + (1 + a7t g [w*] = 27 [ug 111
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Together with Lemma 2.30, this leads to

llz* [u*] = 28, Ly P + g g ] = 2 w101
< (1+a) [llz* [w*] = 27 [ TIP + llzg, (6] = 27 (w1117 ]
+(2+a)(1+a ) lllzf (1] = 28 [ug P + (1 @) Nlzf [u*] = 27 [w111P
(2. 82) 1 +a -
- llz ] = 2 [P + (L + @ flzg [u*] - 27w 111P
+ (2 + a)(l +a ) zf, [ ] = 20 [ug, NP
(1+cx)2 2, l1+aH(1+a)

< lle* [w*] = 2 [ 117 + | (1 + e | A UM B U

- (2 + a)(l +a gy [u*] =25 [y, P (2.84)

forall0 < e < 1andall ¢ > €y, where ¢, € No depends onlyon €. Ifd € {1,2},let1 <t < o
be arbitrary. If d = 3, let t = 2* and, hence, t”” = 3/2; cf. Remark 2.1. We argue as for (2.40):
By the Taylor expansion, o := (n — 1)t” < 2%, and with Lemma 2.8, we obtain that

b (u*)=b' ()| <9)~Z||u 1 g SN = N gy S = Mheehio ), (2.85)

where |e¢||zs ) — 0as £ — co. Recall that the inequality (2.73) in the proof of Lemma 2.25
does not rely on any L*(Q)-bounds; hence, we may exploit the discrete analogue of (2.73)
in combination with the Hélder inequality to obtain that

1 -2 [ue]lll2 (b ) - b’ (up)lzg [u*], 27 [u*] - 27 [ug])
SV (W*) = b (W) o128 [ e l2g [w™] - ZZ[uZ]IILt(Q)
70)
<

”lze [w* D" (w*) = b (i) o ™ = ug R |||ZZ[M*]III||ee oo™ = ug P

llzg [

(2.

Since |||z; [z*]lll < Cpng due to Lemma 2.8, this proves that

Iz (] - 22 [ I < wellw* -l with 0 < kg < 0, (2.86)
Plugging (2.86) into (2.84), we thus have shown that

2 2
Mz* (6] = 28 g I + lzgp [uge ] = 27 Tug 1

(l+a)2

-1
< ¥ [ur] = 2 [ 2 + [ (14 a2 ¢ L DAE D) s

1-

2
—ugll
+ (2 + a)(l + a7 ) ke lu* = ul, IP

forall0 < e < 1,alla > 0,and all ¢ > ¢y, where ¢, € Ny depends only on . We combine
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this estimate with that of Lemma 2.29. This leads to

2 2 2 2
[l = g 1P +M2* (] = 27 g P ]+ [ Mgy — wg 1 +zg, [ug ] = 2 [ug 11 ]

< C(a, & 0) [lw* = ufllP +Mz*[u*] = 27 [wy P | + 2+ a)(L+a™) koo llw* = ul, I,
where, since 1/(1 - €) < (1 +a)?/(1 - ¢),

(1+a)?

, [(1+a‘1)2+ 1+
1-¢

Cla,e0) = max{ a‘l)(1+a)]w}

forall0 < e <1,alla > 0,andall ¢ > £y, where ¢y € Ny depends only on . For arbitrary
0 < a, B, € < 1, there exists €| € Ng such that for all £ > ¢, it holds that

C+a)l+a Hxpr <p

as well as

(1+a‘1)(1+a)] xp < (1+oz)2

(I+a 1%+ )
1-¢

l1-¢
Hence, we are led to
[l = w 1P + 2> [w*] = 20 Lug P ]+ [y — wi P+ llzg lug ] — 20 T TP
- (1+ a)z
T (1-e1-p)

2 2
[l = ug 1* + W™ [u*] = 27 [ug 10" .

(2.87)

Given 0 < § < 1, we first fix a > 0 such that (1 + a)? < ﬁ. Then, we choose 0 < ¢, < 1

such that % < ﬁ. The choices of € and g also provide some index ¢y € Ny such

that estimate (2.87) holds for all £ > €y. This concludes the proof. i

Remark 2.32. Ford = 3, assumption (CGC) requires n € {2,3}. We note that, while
well-posedness of the residual error estimator relies on this assumption, the quasi-ortho-
gonalities (2.78) and (2.83) only requiren € {2,3,4} ford = 3.

Remark 2.33. Ifd > 3, the same reasoning using the Holder inequality still holds true,
though the polynomial degree n in (CGC) becomes more constrained.

2.4.6 Proof of Theorem 2.19 and Theorem 2.20

It is a key observation in the analysis of [BIP21] that it suffices to prove
e stability of the (practical) dual problem (see Lemma 2.25 resp. [BIP21, Lemma 6]),
¢ quasi-orthogonality of the primal problem (see Lemma 2.29 resp. [BIP21, Lemma 11]),

e combined quasi-orthogonality for the practical dual problem (see Lemma 2.31 resp.
[BIP21, Lemma 13]).
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2.5 Numerical experiments

Then, the estimator axioms (A1)-(A4) already prove linear convergence (2.59) in the sense
of Theorem 2.19 (see [BIP21, Theorem 2(i)] and [BIP21, Section 6.1]) with optimal con-
vergence rates (2.60) in the sense of Theorem 2.20 (see [BIP21, Theorem 2(ii)] and [BIP21,
Section 6.2]).

2.5 Numerical experiments

In this section, we test and illustrate Algorithm 2.17 with numerical experiments ford = 1
and d = 2. We consider equation (2.2), where A = ((1) (1’) The adaptivity parameter is set
to 6 = 0.5. We compare the proposed GOAFEM (Algorithm 2.17) with standard AFEM
(adapted from, e.g., [CFPP14; CKNS08]), where mesh-refinement is driven by the primal
estimator (i.e., Algorithm 2.17 with M, := MZ in step (v)) and standard AFEM driven by
the product space estimator (see Remark 2.22).

Example 2.34 (boundary value problem in 1D). Ford =1 andQ = (0, 1), consider

—(u*)" +arctan(u*) = f inQ subjectto u*(0)=u*(1)=0, (2.88)

with semilinearity b(v) = arctan(v) and henceb’(v) = 1/(1 + v?). We set f = 0 and choose
f in such a way that

u*(x) = sin(mx).

The implementation of conforming finite elements of order m € {1,2,3,4} is done using
Legendre polynomials and Gauss-Legendre quadrature and Gauss—Jacobi quadrature for
the interval containing the left interval endpoint. For mesh refinement, 1D bisection is used.
Moreover, we employ the (damped) Newton method from [AW15, Section 3] for step (i) in
Algorithm 2.17 to approximate the nonlinear primal problem. Let g = x~%/?° € L?(Q) and
g = 0 serve as the goal functions. As a reference, we use the value of the integral which reads

1 .
G(u*) = / % dx ~ 0.95925303932778833 . ... (2.89)
0 X

The uniform initial mesh is given by 7o = {[%5, £] | k = 1,2}. Figure 2.1 shows meshes of
GOAFEM and AFEM for m € {1,2,3, 4} as well as discrete solutions uy, and z};[uy;].

The numerical convergence results are depicted in Figure 2.2. We observe that the estima-
tor as well as the goal error achieve the expected rate#7,; ™ if computed with Algorithm 2.17.
In contrast, standard AFEM leads to a slower convergence for m > 2, since singularities
induced by the goal functional might not be resolved properly.

Example 2.35. ForQ = (0, 1)2, we test Algorithm 2.17 with a semilinear variant of [MS09,
Example 7.3]: The weak formulation of the primal problem reads: Find u* € H; (Q) such
that

((u*,v))+<b(u*),v>:/gf-Vvdx, forallv € Hy (Q), (2.90)

whereb(v) = v3 and f = xa, (=1,0) with the characteristic function yo, of Qf = {x € Q |
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2 semilinear GOAFEM

I LI T T T LI L 1
HHHHHH S {0 m=4
- 0.8
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m=2 a | W a 104
- m=2
= -10.2

m=1 e Wi
H-HHHHHH.——=TH oo m =1

GOAFEM 0 0.2 0.4 0.6 0.8 1 AFEM 0 0.2 0.4 0.6 0.8 1
Q Q

(a) Mesh plot for m € {1, 2, 3,4}, where
#DOF € {80, 77,79, 85} for GOAFEM (left) and
#DOF € {90,79,79, 85} for AFEM (right).

(b) Primal solution u}; (solid) and dual
solution z};[u};] (dashed), where
#T5 = 1236 and m = 1.

Figure 2.1: Mesh plots (left) for ansatz spaces with m € {1, 2, 3,4} for GOAFEM (Algo-
rithm 2.17) and standard AFEM and plots of the solutions u}, and zy [u};] (right) for for
Example 2.34.

x1+x < 3}. The weak formulation of the practical dual problem for w € Hy (Q) reads: Find
z*[w] € Hy (Q) such that

(z*[w], v) + b (w)z*[w], v)z/g-Vvdx, forallv € Hy (Q),
Q

whereb’(v) =3v? andg = Yo, (=1,0) withQg = {x € Q | x1+x2 > %}. Our implementation
employs the Matlab code package MooAFEM [I1P23] for 2D AFEM.

For various polynomial degrees m € {1,2,3,4}, Figure 2.4 shows the goal error calcu-
lated with the proposed GOAFEM algorithm, the standard AFEM driven by the primal
estimator ng(u)?, and AFEM driven by ne(u¢)? + {¢(ze[ue])? for the marking (AFEM+).
Following [HPWZ21], we solve the discrete primal problems by an energy-based Newton
iteration, where the energy reads

u(x)
E(u*) = %/Qqu"l2 dx+/0/0 b(s) dsdx - /Qf -Vu* dx.

The reference goal value G (u*) = —0.0015849518088245 is obtained from the calculated
goal values using GOAFEM with m = 4. For m = 1, an example of the meshes generated
by GOAFEM (Algorithm 2.17) is shown in Figure 2.5a, by the standard AFEM algorithm in
Figure 2.5b, and AFEM+ in Figure 2.5c. For GOAFEM and AFEM+, the singularities for both
the primal and the dual problem are resolved, whereas for standard AFEM only those of the
primal problem are taken into account. The meshes for m € {2, 3,4} look similar with an
increasing focus of the refinement on the singular points for increasing m (not displayed).
In particular, GOAFEM and AFEM+ lead to similar results, although in practice AFEM+ is
slightly inferior from the point of theory (see Remark 2.22).
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2.6 Contributions and conclusion
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Figure 2.2: Relative goal error |G (u*) — G(u;)|/|G(u*)| (left) and the estimator product

ne~(n7 + (7 (right) over the total number of degrees of freedom in Example 2.34 for ansatz
spaces with m € {1, 2, 3,4} for Algorithm 2.17 (solid) and standard AFEM (dotted).

Figure 2.3: Plot of u}; (left) and z};[u;] (right) generated by Algorithm 2.17, where m = 2
and #DOF = 54653.

2.6 Contributions and conclusion

Let (7¢)een, be the sequence of meshes generated by the adaptive loop (2.9) of Algo-
rithm 2.17. Let np := n¢(ue) and o := {¢(2¢[u¢]) be the corresponding computable error
estimators, where 1, and z,[u,] are conforming piecewise polynomials of degree < m
on 7¢, which solve the discrete primal and dual problem (2.4) and (2.6), respectively. We
prove that the proposed adaptive strategy leads to linear convergence

Nesn (M + Gl ? < Ciin gl me (07 + (F1Y% forall€,n e Ny, (2.91)

where C;j, > 0 and 0 < gy;, < 1 are generic constants. This guarantees that

{—o0

lu = wellip (o) lzlue] = ze (el o) + 1t = uclfy g, —— 0.
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2 semilinear GOAFEM
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Figure 2.4: Relative goal error |G(u*) — G(uj)|/|G(u)| (left) and estimator product

ne/n? + {2 (right) for m € {1, 2, 3,4} with adaptive refinement according to Algorithm 2.17
(solid) compared to standard AFEM (dotted), and AFEM+ (dashed).

(a) GOAFEM mesh (b) Standard AFEM mesh (c) AFEM+ mesh
with #7; = 3602. with #7; = 3727. with #7; = 4161.

Figure 2.5: Visualization of adaptive meshes for Example 2.35 generated by Algorithm 2.17
(left), standard AFEM (center), and AFEM+ (right) for m = 1.

According to the goal-error estimate (2.7), this also yields convergence of the goal quantity
G(up) » G(u) as £ — oo,
Furthermore, we prove that the estimator product leads to convergence

ne [n? + (1Y% = O((#70)%), (2.92)

where the rate a = min{2s, s + ¢} is optimal in the sense that s > 0 is any possible rate
for ny and ¢ > 0 is any possible rate for ¢, (with respect to the usual approximation class-
es [CFPP14]). In particular, this is the first optimality result on GOAFEM for a nonlinear
model problem. While the optimal rate would be a = s+t for linear model problems [MS09;
FPZ16], the slightly worse rate a = min{2s, s + ¢} stems from the fact that the adaptive
algorithm must also control the linearization of the dual problem. Technical key results
include Pythagoras-type quasi-orthogonalities for the semilinear model problem (2.2)
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2.7 Appendix: Well-posedness of primal and dual problems

and the linearized dual problem (2.5). Finally, we note that our analysis allows to modify
the marking strategies of [HPZ15; XHYM21] to ensure linear convergence of n; + {; =
O((#7¢)~%) with rate @« = min{2s, 2t}.

Finally, while prior results in the literature usually assumed global Lipschitz continuity
of the semilinearity b(u), our analysis relies only on growth conditions on b(u) that imply
local Lipschitz continuity. Furthermore, our analysis avoids any L*-boundedness assump-
tion on the discrete solutions as well as the necessity of a sufficiently fine initial mesh 7.
Under such (usually unrealistic) assumptions, the present analysis could be simplified
significantly.

2.7 Appendix: Well-posedness of primal and dual problems

Recall the operator
A:Hy(Q) » H(Q), Aw:=(w, )+ (bw), ).

Assumption (GC) and the resulting estimate (2.10) yield that

(2.10)
bW, w) 5 bWl g llwll < co.
Together with the continuity of { -, - )), we infer that A is well-defined.
The estimate (2.24) in combination with (ELL) leads us to

(Aw-Av, w-v)y=§w—-v, w-v)+{(b(w) - b(v), w-"o)

> lw = vlli? = [V(w = )|}, forallv,w e Hy(Q),

(2.93)

where the hidden constant depends only on o from (ELL). This proves that A is strongly
monotone and hence, in particular, monotone and coercive. Moreover, the solution
u* € Hy (Q) of (2.3) is necessarily unique. Finally, recall from (CAR) that b is smooth in ¢.
Therefore, the mapping

Tr—>/b(l}+Tw)(pdx€|R fort € [0,1] andv,w,(peHOl(Q)
Q

is continuous, i.e., A is hemi-continuous. Therefore, the Browder—Minty theorem applies
and yields existence and uniqueness.

To address well-posedness of the theoretical dual problem (2.15), we show that (GC)
implies that fQ |B*(w)zv|dx < o forall v, w, z € HO1 (Q). The cases d € {1, 2} are covered,
e.g., in [AW15, Lemma A.1]. If d = 3, we exploit (GC) and apply the same reasoning as for
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2 semilinear GOAFEM

the estimate (2.12) to obtain that, with = 6 and t”” = 3/2,

2.12) .
(Bw)z, ) < 1B oyl Ivhiro 5 | /0 b+ rw-w)di| , o el

(GO)
<|

1
/ (1+|u+7t(w-uw)|" tdr
0

41111141 (2.94)
L7(Q)
1
S (1 +/0 |+ 7w = )" e (g dT)IIIZIIIIIIVIII < 0,

where the last step uses that |(u + 7(w — w))" 7 (q) = |u+ 7(w - u)||2’<‘n{1)t,, @ with

(n—1)t"” <4-3/2 = 6so that the bracket is uniformly bounded in terms of |||u||| + [||w|||; see
Remark 2.1. Using (ELL) and (MON) for coercivity (see, e.g., (2.93) above), the Lax-Milgram
lemma proves existence and uniqueness of Z* [w] € HO1 (Q) and Z} [w] € Xy.

2.8 Appendix: Proof of Axioms of Adaptivity (A2)—(A4)

This section contains the standard arguments of (A2)—(A4), which carry over to the semi-
linear setting.

Proof of reduction (A2). For T € Ty\Tn, let Ty, |r:= {T” € 7, | T’ € T} denote the set of its
children. Note that NVB guarantees that

hyr < 27 Yepy =27V 71V forall T’ € T |7 . (2.95)
Recall that
(T, vi)? = W5 AR @aIZ oy + e IAVE + ) - 117 5700,

Applying the bisection estimate (2.95), we obtain that

m(T\Tm, o2 = >0 (T o)? = )" > (T vp)?

T’ €T\ Tn TeTu\Tn T'€Tnlr

= (B AR@ ey + e ATV + ) - m1 g )
TeTu\Tn T"€Tnlr

For the first term, it holds that

SR IRy, < 2729 B2 R ) s -
T €Tnlr

For the second term, note that vy € Xy is a coarse-mesh function and, hence, smooth in
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2.8 Appendix: Proof of Axioms of Adaptivity (A2)—(A4)

the interior of T € 75. Hence, all jumps in the interior of T € 75 vanish. This leads to

T’ €Tnlr T’ €Tnlr

< 2_1/d hT Z”[[(A VVH +f) : n]]”iz(aT’ﬂaTﬁQ) = 2_1/d hT"[[(A VVH +f) : n]]”iz(aTﬁQ)'
T’ €Tnlr

Altogether, we conclude reduction (A2) for the primal estimator

M(Ti\Tiz, vm)® <2729 %" WE IR I3 gy +2719 D7 he LAV +f) - ]2 500,
TeTu\Th TeTu\Th

< 27V e (T \Tn, ver)?.

The same arguments apply for the dual estimator. m]

Sketch of proof of reliability (A3). Assumptions (ELL) and (MON) yield that, forallu, w, z €
Hy (),

M — w2 < (Aw) - A, u - u, (2.96a)
llz = 2 [wlll? < (A [w](z - 25 w]), 2 — 25 [w]). (2.96b)

For all vy € Xy, the Galerkin orthogonalities for the primal and dual setting read

(AW*) = Alugy) , vy) = 0 = (A(wy) — Alug) , vu), (2.97a)
(A'w] (" [w]) - A [wl(zf [w]), vir) = 0 = (A'[w](z [w]) = A'[w](z[w]), vrr)-
(2.97b)

Ford e {2,3},let y: Hyj(Q) — Xy be a Clément-type quasi-interpolation operator, while
# is the nodal interpolation operator for d = 1. For the primal setting, let u € {u*, u}/} and
choose X € {HO1 (Q), Xp,} accordingly. Then, (2.96)-(2.97) and (2.3) or (2.4) (according to
u) lead to

lle = gl < sup vl (Aw) - Aug), v) = sup wll~ (Aw) - A(ufy), v —mv)

0zveX 0#veX
= OSUPXIIIUIII_I[U, v—pv)+{(f, V(v —xv)) - (Au}y), v-pv)|. (2.98)
#V€E

For the dual setting, let z € {z*[w], z;[w]} and choose X € {Hol(Q),Xh} accordingly.
Using (2.96)-(2.97), and (2.5) or (2.6) (according to z), the same arguments as above yield
that

llz =z [wlll< sup [[vll™" [(g, v—rw)+(g, V(v—m))—(A'[w] (zf; [w]), v—r)].  (2.99)

0+veX

Based on (2.98)-(2.99), standard arguments employing elementwise integration by parts
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2 semilinear GOAFEM

and fine properties of Clément-type operators conclude reliability (A3), i.e.,
lle* = ufll < ne(ufy)  and Iz [w] - 2 [w]ll < Crel Ca (25 [0)).
The hidden constants depend only on 5 and, hence, only on d and yo. o

Sketch of proof of discrete reliability (A4). To prove discrete reliability (A4), we choose g
as the Scott-Zhang projector [SZ90] for d € {2, 3}, which is a Clément-type quasi-inter-
polation operator, and note that ; can be chosen in such a way that (v, —g vp) |7 = 0 for
all T € 75 N 7, and vy, € Xj,; see [CKINS08]. Standard arguments then show that

My = ugll < na(Ta\Tn ugy)  and - llz; [(w] = zg [wlll S Cu(Ta\Th, 255 [w]).

The hidden constants depend only on the dimension d, the polynomial degree m, and
norm equivalence. This concludes the proof of discrete reliability (A4). O
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3 Cost-optimal adaptive linearized adaptive
FEM for semilinear elliptic PDEs

This chapter is taken from:

[®AIL1]: R. Becker, M. Brunner, M. Innerberger, J]. M. Melenk, and D. Praetorius. Cost-
optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. ESAIM Math.
Model. Numer. Anal., 57(4):2193-2225, 2023. DOI1: 10.1051/m2an/2023036

3.1 Introduction

3.1.1 State of the art

Cost-optimal computation of a discrete solution with an error below a given tolerance
is the prime aim of any numerical method. Since convergence of numerical schemes is
usually (but not necessarily) spoiled by singularities of the (given) data or the (unknown)
solution, a posteriori error estimation and adaptive mesh refinement schemes are pivotal
to reliable and efficient numerical approximation. This is the foundation of adaptive finite
element methods (AFEM), for which the mathematical understanding of convergence
and optimality is fairly mature; we refer to [BV84; D6r96; MNS00; BDDO04; Ste07; MSV08;
CKNS08; KS11; CN12; FFP14] for linear elliptic equations, to [Vee02; DK08; BDK12; GMZ12;
GHPS18] for certain quasi-linear PDEs, and to [CFPP14] for an overview of available results
on rate-optimal AFEM.

In particular, for nonlinear PDEs, the arising discrete equations must be solved itera-
tively. The interplay of adaptive mesh refinement and iterative solvers has been treated
extensively in the literature; we refer, e.g., to [Ste07; BMS10; AGL13; ALMS13] for algebraic
solvers for linear PDEs, to [EEV11; GMZ11; AW15; HW18; GHPS18; HW20a; HW20b] for the
iterative linearization of nonlinear PDEs, and to [EV13; HPSV21] for fully adaptive schemes
including linearization and algebraic solver. For the latter works, the consideration is
usually restricted to the class of strongly monotone and globally Lipschitz continuous
nonlinearities; see [GMZ11] for the first plain convergence result, [HW20a] for an abstract
framework for plain convergence of adaptive iteratively linearized finite element methods
(AILFEM), [GHPS18; GHPS21] for rate-optimality of AILFEM based on the Zarantonello
iteration (as proposed in [CW17]), and [HPW21] for rate-optimality for other linearization
strategies including the Kacanov iteration as well as the damped Newton method. In
particular, we note that [GHPS21; HPW21; HPSV21] prove optimal convergence rates
with respect to the overall computational cost. For more general nonlinear operators,
optimal convergences rates are empirically observed (e.g., [EV13]), but the quest for a
sound mathematical analysis is still ongoing.
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3 semilinear AILFEM with linearization

3.1.2 Contributions of the present work

We prove optimal convergence of AILFEM for strongly monotone, but only locally Lipschitz
continuous operators, where our interest stems from the treatment of semilinear elliptic
PDEs. Ford € {1, 2,3} and a bounded Lipschitz domain Q c R¢, our model problem reads:
Find the (unique) solution u* € HO1 (Q) to the (scalar) semilinear elliptic PDE

—div(AVu*) +b(u*) = f —divf inQ subjectto u* =0 onaQ, (3.1)

where we refer to Section 3.3 for a discussion of the precise assumptions on the diffusion
matrix A, the semilinearity b, and the given data f and f. The presented AILFEM algorithm
employs the Zarantonello linearization with a damping parameter § > 0, requiring only to
solve a linear Poisson-type problem in each linearization step. The AILFEM algorithm
takes the form

ITERATIVELY SOLVE AND ESTIMATE MARK REFINE

where the first step represents an inner loop of the Zarantonello iteration and error es-
timation by a residual a posteriori error estimator. This inner loop is stopped when the
linearization error (measured in terms of the energy difference of discrete Zarantonello
iterates) is small with respect to the discretization error (measured in terms of the error
estimator). However, since the PDE operator is only locally Lipschitz continuous, the
stopping criterion must be slightly extended when compared to that of [HW20a; GHPS21;
HPW21] for globally Lipschitz continuous operators. As usual in this context, we employ
the Dorfler marking to single out elements for refinement, and mesh refinement relies on
newest vertex bisection.

We prove that the solver iterates are uniformly bounded, provided that the Zarantonello
parameter ¢ is chosen appropriately (Corollary 3.11). For arbitrary adaptivity param-
eters (0 for marking and A for stopping the Zarantonello iteration), we then prove full
linear convergence (Theorem 3.14), i.e., linear convergence regardless of the algorithmic
decision for yet another solver step or mesh refinement. For sufficiently small marking
parameters, this even guarantees rate-optimality with respect to the number of degrees
of freedom (Theorem 3.17) and cost-optimality, i.e., rate-optimality with respect to the
overall computational cost (Corollary 3.19).

3.1.3 Outline

This work is organized as follows: In Section 3.2, we present our adaptive iterative lin-
earized finite element method (Algorithm 3.10) and the details of its individual steps. This
includes the discussion of the abstract Hilbert space setting, the precise assumptions for
the iterative solver, and a discussion of the extended stopping criterion. Finally, we prove
full linear convergence of the proposed AILFEM algorithm (Theorem 3.14) and optimal
rates both with respect to the degrees of freedom (Theorem 3.17) as well as the overall
computational cost (Corollary 3.19). In Section 3.3, we introduce and discuss semilinear
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3.2 Strongly monotone operators

elliptic PDEs, which fit into the abstract framework of Section 3.2. Section 3.4 presents a
practical extension of our AILFEM strategy (Algorithm 3.23), which includes the adaptive
choice of the Zarantonello damping parameter §. In Section 3.5, we support our theo-
retical findings with numerical experiments. Finally, Appendix 3.6 concludes the work
by providing additional material, which allows us to apply the abstract setting to a wider
range of problems like non-scalar semilinear PDEs.

3.1.4 General notation

Without ambiguity, we use | - | to denote the absolute value || of a scalar A € R, the
Euclidean norm |x| of a vector x € R%, and the Lebesgue measure |w| of a set v C RY,
depending on the respective context. Furthermore, #1 denotes the cardinality of a finite
setU.

3.2 Strongly monotone operators

In this section, we present the mathematical heart of our analysis, which will later be
applied to strongly monotone semilinear PDEs.

3.2.1 Abstract model problem

Let X be a Hilbert space over R with scalar product (-, -)) and induced norm ||| - |||. Let
Xy € X beaclosed subspace. Let X’ be the dual space with norm |-| y» and denote by (-, -)
the duality bracket on X’ x X. Let A: X — X’ be anonlinear operator. We suppose that A
is strongly monotone, i.e., there exists a > 0 such that

allv-wll? < (Av - Aw, v -w) forallv,w € X. (SM)

Moreover, we suppose that A is locally Lipschitz continuous, i.e., for all 9 > 0, there exists
L[9] > 0 such that

(Av-Aw, @) < L[I]|lv-wl|[l|¢]ll for all v, w, ¢ € Xwith max {|||v|||, |||1/—w|||} <9. (LIP)

Remark 3.1. [7ei90, p. 565] defines local Lipschitz continuity as follows: For all® > 0, there
exists L'[®] > 0 such that

(Av-Aw, ¢) <L'[B]llv-wllll@ll for allv, w, ¢ € X with max {llvll, llwll}<©.  (3.2)
Conditions (LIP) and (3.2) are indeed equivalent in the sense that

max {[[[vll, llwll} < max {llvlll, llv - wil + lvll} < 29,
max {||[vll, llv - wlll} < max {{lvll, llvll + llwll} < 2e.

However, (LIP) is better suited for the inductive structure in the proof of Corollary 3.5.
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Without loss of generality, we may suppose that A0 # F € X’. We consider the operator
equation

Au* =F. 3.3)
For any closed subspace Xy € X, we consider the corresponding Galerkin discretization
(ﬂu;}, UH> = (F, VH> for all Vy € XH. (3.4)

We observe that the setting of strongly monotone and locally Lipschitz operators yields
existence and uniqueness of the solutions to (3.3)—(3.4) as well as a Céa-type estimate.

Proposition 3.2. Suppose that A satisfies (SM) and (LIP). Then, (3.3)—(3.4) admit
unique solutionsu™* € X and uy, € Xy, respectively, and it holds that

1
max {[lu* [l uzll} < M = - 1F = AOx %0 (3.5)

as well as

llee* = ull < Coea min llu* —vull  with  Ccea = LI2M]/a. (3.6)

Uy H

Proof. Since A is (even locally Lipschitz) continuous, existence of u}; follows from the
Browder-Minty theorem on monotone operators [Zei90, Theorem 26.A]. Uniqueness of
uy; follows from strong monotonicity, since any two solutions u};, uy € Xy to (3.4) satisfy

(SM) 3.4
alluf, - upll? < (Auly - Aug, ufy — uy) =0

and hence u}; = uy. Boundedness (3.5) follows from

(SM)
allufll? "< (Aufy = A0, ufy) = (F = A0, ufy) < |F = A0y lufy Il

Since (3.3) is equivalent to (3.4) with X = Xj, the foregoing results also cover u* € X.
This concludes the proof of (3.5). To see the Céa-type estimate (3.6), recall the Galerkin
orthogonality

(Au* - Aujy, vg) =0 forallvy € Xy. (3.7
For vy € Xy, standard reasoning leads us to
(SM)
allu* —ufll* < (Au* - Audy, u* - uly) (LD (Au* — Augy, u* —vy)
(LIP)
< L2M] llw* = ugille* - valll.

Rearranging the last estimate, we prove (3.6), where the minimum is attained since Xy is
closed. This concludes the proof. o

Finally, we suppose that the operator A possesses a potential #: there exists a Gateaux
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differentiable function #: X — R such that its derivative dP: X — X’ coincides with A,
i.e., it holds that

P(w +tv) — P(w)
t

(Aw, v) = (dP(w), v) = lin(l) forallv,w € X. (POT)
r—

teR

We define the energy &(v) := (£ — F)v, where F is the right-hand side from (3.3).
Note that the energy & trivially satisfies that

E(vy) - &™) = [E(vy) - E(upy) | + [E(ufy) — E(w*)|  forallvy € Xy (3.8)

and all these energy differences are non-negative; see (3.10).
Moreover, assumption (POT) admits the following classical equivalence:

Lemma 3.3 (see, e.g., [GHPS18, Lemma 5.1]). Suppose that A satisfies (SM), (LIP),
and (POT). Let9 > M. Letvy € Xy with ||vg — ug|l < 9. Then, it holds that

L[9]

a
3 v = uslI? < &) - E(ufy) < == v - ulI” (3.9)
In particular, the solution uj; of (3.4) is indeed the unique minimizer of & in Xy, i.e.,
E(uyy) < &(vy) forallvy € Xy, (3.10)

and, therefore, (3.4) can equivalently be reformulated as an energy minimization prob-
lem:

Find u}; € Xy suchthat &(uj;) = min E(vy). o
UHEXH

3.2.2 Zarantonello iteration

Let Xy C X be a closed subspace. For given damping parameter § > 0, we define the
Zarantonello mapping ®y(J;-): Xy — Xy by

(P (6;wr), v ) = (wu , va)) + 6 (F — Awy , vy)  forallvy € Xy. (3.11)

Clearly, existence and uniqueness of ®y(d6;wy) € Xy and hence well-posedness
of @y (5;-) follows from the Riesz theorem. The following two estimates are obvious:
first,

F - )
D1 (8 wrr) — wall < 6 |F — Awgly = 6 sup LT V) o all gy € Xy (3.12)

veX\{0} Il
second,

®H (65 vy) =Py (6; wy)lll < vy —wglll + 6 |Avy —Awy | x forall vy, wy € Xy, (3.13)
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Due to the local Lipschitz continuity (LIP) of A, this proves that also ®y(J; -) is locally
Lipschitz continuous. By definition, u}; € Xy solves (3.4) if and only it is a fixed point of
(I)H(5; '), ie., u}_} = (I)H(5; u;;)

3.2.3 Zarantonello iteration and norm contraction

Let Xy € X be a closed subspace. The next proposition [Zei90, Section 25.4] proves local
contraction of @y (J; -) with respect to the energy norm. For the convenience of the reader,
we include the proof to highlight that local Lipschitz continuity suffices.

Proposition 3.4 (norm contraction). Suppose that A satisfies (SM) and (LIP). Let 9 > 0
and vy, wy € Xy withmax {||lvglll, llve — wyll} < 9. Then, for all0 < 6 < 2a/L[9]* and
0 < gn[6]? =1-6(2a - 6L[9)?) < 1, it holds that

P (65 vir) — P (6 wi)lll < g (6] lllve — walll- (3.14)

We note that gn[6] — 1 as § — 0. Moreover, for known a and L[9], the contraction
constant gy[6]? = 1 — a?/L[9]? = 1 — a § is minimal and only attained for § = a/L[9)?.

Proof. Recall that the Riesz mapping
IHZ XH d XI,-I’ Vg — IH(UH) = << , UH» for all VyH € XH (315)

is an isometric isomorphism; cf., e.g., [Yos95, Chapter II1.6]. Therefore, a reformulation of
the Zarantonello iteration reads

(@r(8;wn), o) = (wr, eu) + 8 {on, I;'(F - Awy)) forall gy, wy € Xp.

Given vy, wy € Xy with max {|||vH|||, lveg — wHIII} < 9, we exploit the last equality for
@y (6; vy) by subtraction of @y (5; wy) and use ¢y = @y (5; vy) — Py (5; wy) to arrive at

Pw (8; vir) — ©u (8 wi)lIP = v — wall® = 28 (vn — wi, Iy (Avy — Awg))
+ 8% 1 (Avy — Awp)|I*.

The isometry property of Iy implies that

_ (3.15) (LIP)
;' (Avy = Awp)lI? "= |Avy — Awgl, < L9 vy — walll*.
Moreover, it holds that
_ (3.15) (SM)
(vrr —wy, I; (Avy — Awg)) =" (Avg — Awy, vy —wy) > allvg — wyll*

Combining these observations, we see that
0 < |Pu (65 vr) = Pr (& wr)lI” < [1-28a+ 6*L[9]1%] vy — wall®.

Rearranging gn[6]? := 1 - 28a+ 6°L[9]?> = 1 - §(2a - 6L[9]?), we conclude the first claim.
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Finally, it follows from elementary calculus that § = a/L[9]? is the unique minimizer of
the quadratic polynomial gy[ 6] if « and L[9]? are fixed. This concludes the proof. m]

Corollary 3.5. Suppose that A satisfies (SM) and (LIP). Letu?, € Xy with||ud,|| < 2M.
Let0 < 6 < 2a/L[3M]? and let0 < gn[6] < 1 be chosen according to Proposition 3.4,
where 9 = 3M. Define

ubtl .= oy (5;ul)  forallk e Ny. (3.16)

Then, it holds that

(1 = an 8D Mgy = ufll < Mug!

—uflll < (1+gn[0]) llufy — ugll 3.17)
and
leas =l < an 81 Mgy -l < an (6157 llufy—udll < 3M  forallk € No.  (3.18)
In particular, it follows that
llupll < 4M  forallk € Ny. (3.19)

Proof. The claim (3.18) is proved by induction on k. By recalling (3.5), it holds that [[|lu} || <
M as well as [[|luf; - u%lll < gl + |||u2,||| < 3M. Therefore, Proposition 3.4 proves that

(3.14)
Mg, — upll = 1w (8 uly) — Pu(S;ul)ll < anl[8]lluf; — udll < 3M.

This proves (3.18) for k = 0. In the induction step, we know that [[|u}; - u'f;lll < 3M. As
before, (3.14) from Proposition 3.4 and the induction hypothesis prove that

(3.14)
gy — bl = Pk (85 uf) — P (8 Il < g 8] gy — wbl
< gn 615 llupy — ulll < 3M.

This proves (3.18) for general k € Ny, and the inequalities (3.17) follow from (3.14) and the
triangle inequality. Moreover, the triangle inequality yields that

k k
Mozl < Meagll + Moz — wiglll < 4M.

This concludes the proof. m]

Corollary 3.6. Suppose that A satisfies (SM) and (LIP). Letu?, € Xy with||u’|| < 2M.
Let0 < 6 < 2a/L[6M]? and let0 < gn[6] < 1 be chosen according to Proposition 3.4,
where 9 = 6M. Then, the Zarantonello iterates from (3.16) satisfy (3.17)—(3.19) as well as

e =gl < an 8] Mgy =g Il < an 18] Nug—ulll < 6M forallk e N, (3.20)
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Proof. Since L[3M] < L[6M], it only remains to prove (3.20). We argue by induction and
note that

(3.19)
ey = udylll < Muegll+ M ll "< 6M.
Therefore, Proposition 3.4 proves that
2 _ 1 o1 NS 10
llug — ugll = N1Pu (65 upy) — Pu(Sull < gn6]llugy — ugll < 6M.

This proves (3.20) for k = 1. In the induction step, we know that [|uf - uk|| < 6M.
Therefore, Proposition 3.4 and the induction hypothesis prove that

(3.14)
leegs =g I = NPw (65 ™) = P (8wl < gul6] g™ - uglll < 6M.
This proves (3.20) for general k € N and concludes the proof. o

3.2.4 Zarantonello iteration and energy contraction

Let Xy C X be a closed subspace. The next result extends the abstract lower bound
from [HW20a, Proposition 1] to the Zarantonello iteration in the locally Lipschitz continu-
ous setting.

Lemma 3.7. Suppose that A satisfies (SM), (LIP), and (POT). Letu, € Xy with |[u’|| <
2M. Then, for0 < § < 2a/L[6M]?, the Zarantonello iteration (3.11) yields that
0 < K[8] k! - ubll? < &(uf) - Sl < K[o] lluft —ufl?, (321

wherex[6] = (671 = L[6M]/2) > 0 and K [8] = (671 - a/2).

Proof. Define ef! := ukt! — uk forall k € Ny. Then, (POT) guarantees that & = P — Fis

Gateaux differentiable. Define ¢(t) := E(uk, + t elt!) for ¢ € [0, 1] and observe that
@' (1) = (dE(ul, +telt), ebly = (A(uk, +telt) — F, eb1y.

For 0 < & < 2a/L[6M]?, Corollary 3.6 together with the boundedness |||ul’j,||| < 4M

from (3.19) and the convexity of the norm show that
max {[le; Il lluf; — t ey I} < 6M  forall k e N. (3.22)

With the fundamental theorem of calculus and the Zarantonello iteration (3.11), we see
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that
1
k) —swkt = —/ (Al +tely —F, ektly dr
0
1
—/ (ﬂ(uH+teI’fI+1) ﬂullfl, k+1) dt — (Auf, - F, ek+1)
0
3.11) !
= —/ (AWE + el — Ak, by de + < ((ek+1 ekry
0

wp) /1 ! el ez _ (L1 LIBMIN e ke
2 (5 - /0 (LI6M] delluc” - uf I = (5 - = )l = wh .

Since 6 < 2a/L[6M]? < 2/L[6M], it follows that x[5] = (1/§ — L[6M]/2) > 0. This proves
the lower bound in (3.21). Moreover, the same argument also yields that

1
k) - sk P2 - /0 (AW +r el — AUk, ektly dr + — ((ek+1 el

M (1 ! kel k2 el kg2
< (5- / ar de)lld™ — bl = (5 - 5) k! - i
0

This concludes the proof. m]

The Zarantonello iterates are also contractive with respect to the energy difference.

Proposition 3.8 (energy contraction). Suppose that A satisfies (SM), (LIP), and (POT).
Then, for0 < & < 2a/L[6M?, it holds that

0 < &L -8y < qrld1? [EWh) - &uf)]  forallk e Ny (3.23a)

with contraction constant

SL[6M] ) 28a?

> L[3M] <1 (3.23b)

0 < qe[6]% = 1—(1-

We note that qe| 6] — 1 as & — 0. Furthermore, for all k € Ny, it holds that

(1-qel81%) [E(ugy) - 8] < Eufy) -Eu) < 1+qel6]%) [E(uf) -E(uf)]. (3.24)

Proof. First, we observe that

(3.4)
allug; — ugll® < (Aufy = Augy, ufy - ufp) = <F Aufy, ufy - uf)
6.1 1( ol ol (3.25)

k
—ugy, U U ) < < Illu — uggllilleef; = wgll
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Since 0 < § < 2a/L[6M]?, it follows that

0 < sk - ul) = EGul) - Sl - [E@h) - Ewk)]

(3.21) 1 LleM
2" sy~ 80af) - (5~ M) gt —uf?
(3.25) 1 L[6M
< 8(u1’f])—8(u;})—(5—%
2
(359) [1_(1_ 5L[6M]) 20«
2 ) IBM]

2 2 k2
) 62 luafy — ufyl

| lea) - e,

where (3.9) holds due to (3.18) from Corollary 3.5. This proves (3.23). The inequalities (3.24)
follow from the triangle inequality. This concludes the proof. o

Remark 3.9. For a globally Lipschitz continuous A with Lipschitz constant L, we observe
that the energy contraction factor is minimal for § = 1/L, where qg[5]> = 1 - %Z In contrast,

the optimal norm contraction factor gn[6]% = 1- g—j isobtained for § = 3; cf. Proposition 3.4.
To allow a larger damping parameter 6 > 0, energy contraction is preferred.

3.2.5 Mesh refinement

From now on, let 75 be a given conforming triangulation of the polyhedral Lipschitz
domain Q c R% with d > 1. For mesh refinement, we employ newest vertex bisection
(NVB) for d > 2 (see, e.g., [Ste08]), or the 1D bisection from [AFF*13] for d = 1. For each
triangulation 75 and a set of marked elements My C 7y, let 7, = refine(7y, My) be
the coarsest triangulation such that all T € My have been refined, i.e., My € 75\ 7. We
write 7, € T(7x), if 7;, results from 75 by finitely many steps of refinement. To abbreviate
notation, let T := T(7y).

Throughout, each triangulation 75 € T is associated with a conforming finite-dimen-
sional space Xy c X, and we suppose that mesh refinement 7;, € T(7f) implies nestedness
Xy € X, c X.

3.2.6 Axioms of adaptivity and a posteriori error estimator
For 75 € T and vy € Xy, let
(T, ): Xy > Ry forallT € 75 (3.26)

be the local contributions of an a posteriori error estimator

,\1/2
nu(vy) = ng (T, vy), where ng (Uy, vy) = ( Z nu (T, vy) ) forall Uy € 75.
Te Uy

We suppose that the error estimator ny satisfies the following axioms of adaptivity
from [CFPP14] with a slightly relaxed variant of stability (A1) from [OGOA].
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(A1) stability: For all 9 > 0 and all' Uy C 75, N 75, there exists Cyiap [9] > 0 such that for all
v € Xp and vy € Xy with max {||lvpll, llvn — valll} < 9, itholds that

| Uz, vw) = 0t (Usz, vir)| < Coran[91 llvn — il
(A2) reduction: With 0 < geq < 1, it holds that
(T \T> Vi) < Gred N (Tu\Tn, vi) — forallvy € Xp.
(A3) reliability: There exists C, > 0 such that
N = upll < Cret mu (ugy).
(A4) discrete reliability: There exists Cge; > 0 such that

ey — ugilll < Caret N (T \ T, ujy)-

3.2.7 Idealized adaptive algorithm

In the following, we formulate and analyze an AILFEM algorithm in the spirit of [GHPS21],
but with an extended stopping criterion in Algorithm 3.10(i.b), i.e.,

E(ug ™) = 8w < A ne(uf)® A lugll < 2M. (i.b)

Clearly, if the stopping criterion from Algorithm 3.10(i.b) holds, then also the simpler
stopping criterion |&(uf 1) — E(uf)| < A% ne(uf) from [GHPS21, Algorithm 2] holds.

The proposed algorithm is idealized in the sense that an appropriate parameter § > 0 is
chosen a priori; see Theorem 3.17 below.

Algorithm 3.10: idealized AILFEM with energy contraction

Input: initial triangulation 7, initial guess ug = 0with M = éllF —A0| x» < oo according
to (3.5), marking parameters 0 < 0 < 1 and 1 < Cya¢ < o0, damping parameter § > 0,
solver parameter A > 0.

Loop: For ¢ =0, 1,2,..., repeat the following steps (i)—(iv):

(i) Forallk =1,2,3,..., repeat the following steps (a)-(b):
(a) Compute uf := ®¢(&uf ") and no(T, uf) forall T € 7.
(b) Terminate k-loopif (I&(uf™1) -&EWH < A2 ne(up)> A lubll < 2M).

(i) Upon termination of the k-loop, define k(¢) = k.
(iii) Determine a set M, C 7; with up to the multiplicative factor C,,;x minimal
cardinality such that 6 n, (ufm)2 < Zrem, Ne(T, uf(@)z.

IWhile [DGOA, Proposition 15] states stability only for 7;, N 77, the inspection of the proof reveals that indeed
arbitrary subsets Uy C 75, N 7y are admissible.
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I (iv) Generate 7¢;1 := refine(7;, M) and define “g+1 = uf“).

Following [GHPS21], the analysis of Algorithm 3.10 requires the ordered index set
Q={(k)e Ng | index pair (¢, k) occurs in Algorithm 3.10 and k < k(¢)}, (3.27)

where k(¢) > 1 counts the number of solver steps for each ¢. The pair (¢, k(¢)) is excluded
from Q, since either (¢ +1,0) € Q and u?+1 = uf(e) or even k(¢) := o if the k-loop does not
terminate after finitely many steps. Since Algorithm 3.10 is sequential, the index set Q is
lexicographically ordered: For (¢, k) and (¢’, k') € Q, we write (¢, k’) < (¢, k) if and only
if (¢/, k') appears earlier in Algorithm 3.10 than (¢, k). Given this ordering, we define the
total step counter

(-1
(€, )] = #{(C',K) € Q| (¢/,K) < (¢, k)} =k + ) k(€),
=0

which provides the total number of solver steps up to the computation of uf
Moreover, we define Q = Q U {(¢,k(¢)) | ¢ € Nowith (¢ + 1,0) € Q}. Note that
Q c Ny x Ny is a countably infinite index set such that, for all (¢, k) € Ny x Ny,

(+1,00eQ = (£,k(¢)) eQandk(¢) =max{k eNy| (¢, k) €@},
Lk+)eQ = (L,k)eq.

With £ = sup{f € Ny | (£,0) € Q}, it then follows that either £ = oo or k(£) = . From
now on and throughout the paper, we employ the abbreviations (¢, k) = (¢, k(¢)) and
k._ k()

ue = ue
Corollary 3.11. Suppose that A satisfies (SM), (LIP), and (POT). Suppose the axioms of
adaptivity (A1)—(A3). Let A > 0 and 0 < 0 < 1 be arbitrary. Then, there exists a choice of
the parameter § > 0 in Algorithm 3.10 such that there exist0 < gy < 1 and0 < gg < 1
such that the following properties hold:

> nested iteration: |||u2||| <2M forall (¢,0) € Q; (3.28)
> boundedness: llufll < 4m forall (¢, k) € Q; (3.29)
> norm contraction: Muy — us ™I < gnllluy - ufll forall (¢,k) € @Q; (3.30)

> energy contraction: &(uf*') - E(u}) < g2|E(uf) - E(uy)| forall (¢,k) € Q. (3.31)

Moreover, this guarantees (3.17)—(3.18) for all (¢,k) € Q with qn|[d] replaced by gn.
Furthermore, there exists kg € Ng such thatl”u{flll < 2M forall (¢,k) € Qwithk > k.

Proof. Let0 < § < 2a/L[6M]?* be arbitrary but fixed. From Algorithm 3.10 and u := 0, we
have that [[|u{|| < 2M. Then, [|u} — ul|| < 3M. Choose 0 < gx = gn[6] < 1 according to

88



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.2 Strongly monotone operators

Proposition 3.4, where 9 = 3M as well as 0 < gg = gg[d] < 1 according to Proposition 3.8.
This proves norm contraction (3.30) as well as energy contraction (3.31) for all (¢, k) € Q.
Furthermore, for all (¢, k) € @Q, it follows that

(3.18)
Mg I < Meag I+ Meeg = gl ~< ™ M + g lllug - ugll < M + g 3M < 4M, (3.32)

which proves boundedness (3.29). Moreover, (3.32) together with 0 < gy < 1 from (3.30)
proves that there exists kg € Ny, which is independent of ¢, such that, for all k > ko, it
holds that

k (3.32) k !
Nabn V27 M+ gk 3M < 2.

This shows for (¢,0) € Q that the stopping criterion |||u£C Il < 2M ismetforall (¢,k) € Q
with k > ky. This concludes the proof. m]

3.2.8 AILFEM under the assumption of energy contraction (3.31)

Norm contraction (3.30) is the critical ingredient in the proof of Corollary 3.11 — leading
to boundedness (Corollary 3.5), which is key to the proof of energy contraction (3.31)
(cf. (3.22)). Thus, norm contraction (3.30) is sufficient for obtaining nested iteration (3.28),
boundedness (3.29), and energy contraction (3.31). However, supposing (3.31) already
suffices to obtain uniform constants in the energy norm as the next result shows. Thus,
throughout the rest of this paper, we suppose that energy contraction (3.31) holds for all
(¢, k) € Q.
Lemma 3.12. Suppose that A satisfies (SM), (LIP), and (POT). Suppose that the choice
of & > 0 guarantees that Algorithm 3.10 satisfies energy contraction (3.31). Then, it holds
that
L[3M]

k T
uylll <M +3M = —
luaf — =

forall (¢, k) € Q. (3.33a)
Moreover, it holds that

Nuf —ulll<t  forall(e,k), (e, k) € Q. (3.33b)
Furthermore, there exists kg € Ny, which is independent of ¢, such that

llukll < 2M  forall(¢,k) € Q withk > k. (3.34)

Proof. From Algorithm 3.10 and u) = 0, we have that [[ul|| < 2M. With [Juf|l < M
from (3.5), it holds that [[Ju) — u?lll < 3M. Forall (¢, k) € Q, it follows that

(3.9) 2.\1/2 o
lacf < Weef -+ e = ufll <" M+ (2) (B - 8 @)
(3.31) 2\1/2 (3.9) L[3M]\1/2
< Mgl (S) () -E@) < M+ gl 3m ( [ ]) (3.35)
(3.31) LI3M]\1/2
< M+3M([ ]) = L (3.36)
2
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This and the triangle inequality prove (3.33b). Moreover, inequality (3.35) together with
0 < gg < 1 from energy contraction (3.31) proves that there exists kg € Np, which is
independent of ¢, such that

L[3M]

(3.35)
lafll <" M+ qf 3M (

1/2 1
) SoM  forall (¢, k) € Qwith k > ko. (3.37)

This concludes the proof. i

Remark 3.13. (i) From Lemma 3.12, we infer that the stopping criterion can fail only finitely
many times due to the energy norm criterion |||uéf Il <2M.

(ii) Under the assumption of energy contraction (3.31), we note that (3.33b) shows that t
provides a uniform upper bound for the involved stability and Lipschitz constants Cyp, [ 7]
and L[ 1], respectively. Indeed, it will become apparent later that stability and local Lipschitz
continuity will only be exploited for the differences |[|ut, — u I, lu}, — ul I, or lllu* — uf |
in (Al), (3.9), and (3.21).

3.2.9 Main results

Given the Pythagoras identity (3.8) and energy contraction (3.31), the first main theorem
states full linear convergence of the quasi-error

A = llw* = uflll +ne (). (3.38)

Theorem 3.14: full linear convergence

Suppose that A satisfies (SM), (LIP), and (POT). Suppose the axioms of adaptivity (A1)-
(A3) and orthogonality (3.8), where Xy is understood as X, for (¢,k) € Q. Let0 < 0 < 1,
1 < Chark < 0, andA > 0. Suppose that the choice of 6 > 0 guarantees that Algorithm 3.10
satisfies energy contraction (3.31). Then, there exist Cy, > 0 and 0 < qu, < 1 such that
Algorithm 3.10 leads to

A¥ < Cling! WOVIERIAR forall (6, k), (€, k') € Qith (¢, k') < (¢,k).  (3.39)

lin

The constants Cy, and gy, depend only on M, L[1/2], &, Cstap [ T], Gred> Crel, and qg as well
as on the adaptivity parameters0 < 0 < 1 and A > 0. i

The proof of Theorem 3.14 extends that of [CHPS21, Theorem 4], since the stopping
criterion from Algorithm 3.10(i.b) requires further analysis to cover all cases. To ease
notation, we introduce the shorthand

d(v,w)? = |EW) - E(w)| forallv,w € X.

The following lemma provides the essential step in the proof of Theorem 3.14.
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Lemma 3.15. Under the assumptions of Theorem 3.14, there exist constants . > 0 and
0 < qiin < 1 such that

Af = d(u*, ub)? + pne(uf)? forall(¢,k) € Q (3.40)

satisfies the following statements (i)—(ii):
i) Af <g2 AY forall(0,k+1) € Q.

(i) AD,, < qlzin Af_l forall (€ +1,0) € Q.

The constants u and qyin, depend only on M, L[2M], &, Cstap[ 7], Gred, Crel, and qg as well
as on the adaptivity parameters0 < 6 < 1 and A > 0.

Proof. For k e Nsuchthat1 < k < k(¢), the stopping criterion of Algorithm 3.10(i.b), i.e.,
d(ug ™ uf)? = 8™ - &) < P neug)* A lluglll < 2M, (i.b)

comprises four cases. Statement (i) contains the cases true A false, false A false, and
false A true. Statement (ii) consists of the remaining case true A true.

Case 1: Evaluation of (i.b) returns true A false. This case investigates (i.b) for k + 1 <
k(£). First, we note that

(A3) (A1),(3.33a)
2 2 2 2 k+1\2 2 2 k+112
™ = ugl® <" Cogme(u)* < 2Cyme(ug™)? + 2 Cy Cop Lol llug = ug ™I

Together with (3.9), this leads us to

3.9) L[2M] 3.9)
d(u*,up)? "< == —lu* = ufl < Cone(ug™)? + G d(ug, ug™)?,

and C := 2a 'L[2M]C?,C?  [1]. For0 < € < 1, we

rel “stab

where we define C; = L[2M]CZ,
obtain that

d(u*, uf*? G5) (1 - &) d(u*, u})*+edu*, uf)? +d(uy, ub™)>?

< (1-e)d(u*,u})?+eCrne(ub™)% + (1 + & C) d(uy, uy™)>?

(3.31)
< (T-e) du*,up)®+eCrne(uf™)? + (1+eC) g2 d(uf, uf)?.

We use the last inequality for the quasi-error Af“ to obtain that
AR = d(u*, ub 2 4 g (ubhy?
< -e)dw*, uf)?+ (u+eC)ne(uf™? + (1+eCo) g d(uf, ugp)*. (3.41)

We need four auxiliary estimates:
First, since [|u; || < M and [||uy — uf|ll < 2M hold independently of ¢, the axioms (A1)-
(A3) and Proposition 3.2 imply quasi-monotonicity of the estimators, i.e.,

Ne(uf) < Cmontlo(ug)  With  Cmon = (2+8Csan[2M12(1+ C2)C2) % (3.42)
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cf. [CFPP14, Lemma 3.6]. With Cy := Cpon max{1, Cs, [M | M}, we infer that

- (3.42) - (A1) N
nf(ue) < CmonﬂO(uo) < Cmonn0(0) + CimonCstab [M]Hluo Il < Co(no(0) +1). (3.43)

Second, with C3 := 2 Cy(no(0) + 1) and Cy := 4 a™! Cyap[7]? g, it holds that

(A1) 3.9) 4
ne(ug™)? <" 200 (u))? + 2 Cyap [ 71 ey — ub1? < 2m(uZ)Z+ECsmb[r]zdl(uz,uek”)2
(3.31) 4 (3.43)
< 2me(uy)? + ECstab[T]zqé d(uy, ub)? "< Gy + Cod(uy, ub)?. (3.44)

Third, the error estimator allows for the following estimate with an arbitrary but fixed
Young parameter 0 < y < 1:

(A1) _
ne(ug™)? < (L +y) me(uf)® + (1 +y7") Cotan [717 Mg ™ = g ||

< (L+y) o) +2(1+ 7™ Coap [ 717 [lluf = g™ 1P + e — gl

(3.9 4 _
< (L) meuf)? + — (L ™) Coap 717 [ uf ™)+ A, ub)?]

(3.31)
< (L+7y) ne(ub)? + Cs d(uy, uf)?, (3.45)

where Cs := 4 a1 (1+y71) Cyap[7]% (1 + 43).

Fourth, we observe that the case true A false yields that
k+1 k+1 k+1
2M < llug ™Ml < Mug lll+ My = ug™ M < M+ (llug = ug ™l
and hence M < [llu; — uf*|||. With Cs := 2a~'M~2 42, this observation leads us to

Moy — uf™MI? c.9
<t - <

(3.31)
Ve 2a’1M’2dl(u;,u§+1)2 < ngl(uz,uf)z. (3.46)

1

Recall that 0 < € < 1 and define 0 < ¢ := % < 1. This choice of o ensures that

(1-0)(1+y)=1-¢. (3.47)

We apply these observations to the term (u + & C1) n¢ (uf*1)? of (3.41) to arrive at
(p+eC)ne(ug™)? = (1 - 0) pne(ug™)? + (0 p+ e Cr) ne(ug™)?

-1y pme ) + (1 0) pCsd(uf, uf)® + (0 p+ e Cr) me(uf )

8?”(1 — o)1 +y) une(u)* + (1 - o) pCsd(u), uf)* + (o p+eCp)[Cs + Cad(uy, uf)?]

(3.46)
< (=o)X +7y) une(ud)*+(1 - o) uCs d(u}, uf)*+(o p+ e C1)(C3Cs + Ca) d(uf, uf)?
3.47
G2 )(1 —£) ung(uéf)z + [(1 -0)Cs+ 0C7]pdl(uz, uéf)z +¢eCy Crd(uy, uf)z, (3.48)
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where C; = C3Cg + C4. Together with (3.41), we obtain that

(3.41)
AT (1= ey d(u*, up)® + (u+ e Cr) ne(uf ™) + (1 + e ) g2 d(uy, ul)?
(3.48)
< (1-ed* ul)*+ (1-e) pne(ug)?
+{[1-0)Cs+0Crlu +eC1Cr+ (1 +eCo) g5} d(uy, uf)?
< (T-e)d*, u))*+ (1—e) pne(uf)?
+{p max{Cs,C7} +eC1 C7 + (1 + £ C2) g } d(uy, uy)?.
Note that Cy, ..., C; depend only on the problem setting. Provided that
,umax{C5,C7}+z-:C1C7+(1+£C2)q§s 1-¢ (3.49)
we conclude that
A]e“rl < (1-¢) [d(u, uy)® +d(uy, uéf)z + 1 ng(uf)z]
(3.8)
= (1-¢) [d(u*, ug)® + pne(up)®] = (1 - &) A
Case 2: Evaluation of (i.b) returns false A false or false A true. These cases follow

from the arguments found in [GHPS21, Lemma 10(i)]. There, the proofis based in essence
on the estimate

B 331
e (uf? < A2 A uf)? < A (14 gd) d(ud, ub)?,

to obtain an upper bound of the quasi-error A’;” in terms of the linearization
error d(uy, uf)?. With Cg := 172 (1 + g2) and provided that

(u+eC)Cs+(1+eCo)gi < 1—¢, (3.50)
[GHPS21, Lemma 10(i)] then proves that
AR < (1 - )AL,

Up to the final choice of y, € > 0, this concludes the proof of these cases and statement (i).

Case 3: Evaluation of (i.b) returns true A true. The case true A true is analyzed
in [GHPS21, Lemma 10(ii)] and is based on the contractivity of the error estimator given
that the Dorfler marking is employed.

Define gg := (1-(1-4¢2,) 0) and Cy := 4a~'(1+43) Cyap[7]*. Let 0 < w < 1 be arbitrary.
Note that C;, C2,Cy > 0 and 0 < gy < 1 depend only on the problem setting. Provided that

eCip ' +go(1+6)<1-¢ and eCr+qgi+puqgo(l+w')Co<1-¢, (3.51)
we obtain from [GHPS21, Lemma 10(ii)] that
1

0 k-
A < (I-e) A,
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Up to the final choice of w, y, € > 0, this concludes the proof of Lemma 3.15(ii).
Choice of parameters. We proceed as follows:

1. Choose w > 0 such that (1+ w) gy < 1.

2. Choose > 0 such that gf + pmax{G;,C;} < 1, g5 + pCg < 1,

and g2+ pqe(l+w) 'Co < 1.
3. Finally, choose ¢ > 0 sufficiently small such that (3.49)—(3.51) are satisfied.
This concludes the proof of Lemma 3.15 with qlzin =(1-¢). m|

Proof of Theorem 3.14. According to (3.9), it holds that A¥ ~ (A¥)1/2, where the hidden
constants depend only on g, a, and L[7/2]. We use (3.9) for the term |||u; - uéflll, and hence
the dependency L[7/2] is justified by (3.36). Then, linear convergence (3.39) follows from
Lemma 3.15 and induction, since the set Q is linearly ordered with respect to the total step
counter |(-, ). m|

Remark 3.16. (i) Provided that energy contraction (3.31) holds and that the adaptivity
parameter A > 0 is sufficiently small, the stopping criterion

18 ™) = &) < A% ne(uf)? (i.b")

from [GHPS21] is a viable alternative to the stopping criterion of Algorithm 3.10(i.b). The
main difficulty is to ensure nested iteration (3.28). This relies, in essence, on the estimate

a koG9 Lk (3.31),3.24) qg[6]? k-1 K
5 llugy —u l* < E(uy) — E(uy < m [8(% )—8(%)]

5 2
BT 02 e+l 21— 2],

6" qe[6]?
B 1 - qgg[0]

koo (AD
T qelop "0 = 2

where |||u; - ué‘ Il < t/2 stems from (3.36). Using a uniform estimate for the error estimator
as in (3.43), the last estimate, and the observation thatllluflll <M +luy - uflll lead us to

2._ 4 e [61°

OGO +1) Ly s a 1-qpl6]2’
— (E

[1-A27[6]? Csan [7/2]2]1/% ~

0 k
leg Il = Mzl < M+ A

where a sufficiently small A such that A? r[5]? Csap[7/2]? < 1 is required and where Cy =
Cmon Mmax{l, Csap[M| M}. We see that a sufficiently small A > 0 ensures nested itera-
tion (3.28). In contrast, (i.b) leads to full linear convergence for arbitrary A > 0.

(ii) Theorem 3.14 proves linear convergence, and hence in particular plain convergence
A¥ — 0 as|(¢, k)| — oo. In Appendix 3.6, it is shown that plain convergence also holds for
Algorithm 3.10 with the modified stopping criterion

Mouf — ub™ < Ane(ul) A llubll <2Mm (i.b”)

(instead of Algorithm 3.10(i.b)) in the strongly monotone and locally Lipschitz continuous
setting without (POT). Due to the lack of an energy &, the result relies on norm contrac-
tion (3.30) instead of energy contraction (3.31).
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To formulate our main result on optimal convergence rates, we need some additional
notation. For N € Ny, let Ty = {7 € T | #7 — #79 < N} denote the (finite) set of all
refinements of 75 which have at most N elements more than 7. For s > 0, we define

|4, = sup ((N+1)* min [llu* - ugpll+ mope(ulpo)] ) € Ruo U oo} (352)
NeNg Topt €Ty
Here, u(’;‘pt € Xopt denotes the exact Galerkin solution (3.4) with respect to the optimal

mesh 7y, where optimality is understood with respect to the quasi-error Agpt from (3.38)
(consisting of the energy norm error plus error estimator). In explicit terms, |u*|a, < oo
means that an algebraic convergence rate O(N~°) for the quasi-error A5, is possible, if
the optimal triangulations are chosen.

The second main theorem states optimal convergence rates of the quasi-error (3.38) with
respect to the number of degrees of freedom. As usual in this context (see,
e.g., [CFPP14]), the result requires that the adaptivity parameters 0 < 8 < 1and A > 0 are
sufficiently small. The proofis found in, e.g., [GHPS21, Theorem 8]. A careful inspection
of the proof reveals that it requires only estimates of the form

k k-1 k
d(uy,uy ) < Ane(uy),

as well as linear convergence (3.39), which are satisfied for Algorithm 3.10. The results
from [GHPS21] are proven for a uniform Lipschitz and stability constant; in the present
setting, this follows from Remark 3.13(ii).

Theorem 3.17: rate-optimality w.r.t. degrees of freedom

Suppose that A satisfies (SM), (LIP), and (POT) as well as the axioms of adaptivity (A1)—
(A4). Suppose that the choice of 5 > 0 guarantees that Algorithm 3.10 satisfies energy
contraction (3.31). Define

1- qE a\1/2
Aopt ' = ——— | — , (3.53)
U gk Coapn 7] <2)

with T from (3.33). Let0 < 0 < 1 and0 < A < Aop0 such that

0<0 = ———
I—A/Aopt

< (14 Cyap[T]?CZ) 712 (3.54)

Lets > 0. Then, there exist copt, Copt > 0 such that

-1

Copt lu*la, < sup (#7¢ - #7 +1)° Algc < Copt max{|u*|a,, Ag}» (3.55)

(0,k)e@

where||u* |, is defined in (3.52). The constant cop; > 0 depends only on Ccea = L[2M]/a,
fine properties of NVB refinement, Cgap [ 7], Crel, #70, and s, and additionally on € or €y, if

£ <ooor ngo(ufo ) = 0 for some (£y, 0) € Q, respectively. The constant Cope > 0 depends only
on fine properties of NVB refinement, a, Csab [ T], Gred> Crel» Carel, 1 = A/ Aopt (and hence on
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energy contraction qg), Cmark, Ciin, Giin, and s. O

To estimate the work necessary to compute u} € X;, we make the following assumptions
which are usually satisfied in practice:

> The computation of all indicators 7, (T, u;f ) for T € 7; requires O (#7;) operations;

> The marking in Algorithm 3.10(iii) can be performed at linear cost O (#7;) (cf. [Ste07],
or the algorithm from [PP20] providing M, with minimal cardinality);

> We have linear cost O(#7;) to generate the new mesh 7, in Algorithm 3.10(iv).
In addition, we make the following “idealized” assumption, but refer to Remark 3.18(ii):

> The solutions uf € X, of the linearized problems in Algorithm 3.10(i.a) can be com-
puted in linear complexity O (#7;).

Since a step (¢, k) € Q of Algorithm 3.10 depends on the full history of preceding steps,
the total work spent to compute uf € X is then of order

work(l, k) = Z #7; forall (¢,k) € Q. (3.56)

(k") e
(0,k")<(0,k)

Remark 3.18. (i) In order to avoid the computation of ne+1 (uéfﬂ) in each step of the inner

loop, i.e., forall k such that (¢ + 1, k) € Q, one may use ng(ue&) instead. While the proof of
linear convergence with the adapted stopping criterion is possible, the proof of optimality
remains an open question that goes beyond this work.

(ii) The idealized assumption that the cost of solving the linearized discrete system in
Algorithm 3.10(i.a) is linear, can be avoided with an extended algorithm (and refined anal-
ysis) in the spirit of [HPSV21]. There, an algebraic solve procedure is built into the presented
adaptive algorithm as an additional inner loop, taking into account not only discretization
and linearization errors but also algebraic errors. In this setting, the “idealized” assump-
tion on the solver would be reduced to the assumption that one solver step has linear cost,
which is feasible in the context of FEM. To keep the length of the present manuscript reason-
able, we have decided to focus only on the linearization. The details follow along the lines
of [HPSV21] and are omitted.

The next corollary states the equivalence of rate-optimality with respect to the number
of degrees of freedom and rate-optimality with respect to the total work, i.e., the overall
computational cost.

Corollary 3.19 (rate-optimality w.r.t. computational cost). Let (7¢)¢en, be the sequence
generated by Algorithm 3.10. Suppose full linear convergence (3.39) with respect to the
quasi-errorA’eC from (3.38). Then, foralls > 0, it holds that

#70)° Gy
Crate = SUP (#7¢ —#T5+1)°AF < sup work(¢,k)° AF < Llhﬁcme. (3.57)
(Lk)eQ (Lk)eQ (1-q.")
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Consequently, rate-optimality with respect to the number of elements (3.55) yields that

_ #70)° G
Cope [u*]la, < sup work(e, k)* Ay < Copt(leh)‘; max{|u*|a,, A}. (3.58)

(0,k)eQ -y

Proof. The first inequality in (3.57) is obvious. To obtain the upper bound, let (¢, k) € Q.
Elementary calculus (see [BHP17, Lemma 22]) proves that

#Ty < #T0 (#Tn —#70 + 1) forall 7y € T.

Moreover, linear convergence (3.39) and the geometric series lead us to

1/s k\-1/s
, (3.39) .y C." (A7)
k'\~1/s 1/s ¢ aky-1/s L/s\[(6k)|=1( k)| o “lin Y707
>, @) < Gy (Ap) D, () =Tk
(' K)eQ (k)eQ ~ %in
,k")<(0,k) (£',k")<(0,k)

Combining the last two inequalities, we obtain that

#o < (BT) Y (#Te —#To+1) < (#T0) Coe > (AE)TMS

rate
ke 0,k e (ke
(0, k")<(L,k) (0',k")<(L,k) (0',k")y<(L,k)

Cl/s

li - 1
< (7)) 7 (A e

= Din

Rearranging this estimate, we obtain the upper bound in (3.57). O

3.3 Semilinear model problem

3.3.1 Model problem

Ford e {1,2,3}, let @ c R? be a bounded Lipschitz domain. Given f € L?(Q) and
f € [L*(Q)]¢, we aim to approximate the weak solution u* € X := HJ (Q) of the semilinear
elliptic PDE

—div(AVu*) + b(u*) = f —divf inQ subjectto u* =0 onaQ. (3.59)

While the precise assumptions on the coefficients A: Q — ngﬁg and b: O xR — R
are given in Section 3.3.3-3.3.4, we note that, here and below, we abbreviate AVu* =
A()Vu*(-): Q - RYand b(u*) = b(-, u*(})): Q — R.

Let (-, -)o denote the L?(Q)-scalar product (v, w)q = [, vwdx and let (v, w) :=
(AVv, Vw)q be the A-induced energy scalar product on HO1 (Q). Then, the weak formula-
tion of (3.59) reads as follows: Find u* € HO1 (Q) such that

(Au*, v)y:i=(u*, v)+bW*), via=(f, v)a+{f, Vv)o=/(F, v)forallv € Hy(Q). (3.60)
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Existence and uniqueness of the solution u* € HO1 (Q) of (3.60) follow from the Browder—
Minty theorem on monotone operators (see Section 3.3.6 for details).

Based on conforming triangulations 7y of Q and fixed polynomial degree m € N, let
Xy = {vy € HO1 (Q) | YT € T5: vylrisapolynomial of degree < m}. Then, the FEM
discretization of (3.60) reads: Find u}; € Xy such that

((u;} , UH» + (b(u;}) , VH>Q = <F, UH> for all vy € Xg. (3.61)

The FEM solution u}; approximates the sought exact solution u*.

3.3.2 General notation

Forl < p < oo, letl < p’ < o be the conjugate Holder index which ensures that
19 ¥l0) < 19l@lWly g for ¢ € L7(Q) and y € L7 (Q), ie, 1/p+1/p’ = 1 with
the convention that p’ = 1 for p = ~ and vice versa. Moreover, for1 < p < d, let
1 < p* :=dp/(d - p) < o denote the critical Sobolev exponent of p in dimension d € N.
We recall the Gagliardo—Nirenberg—Sobolev inequality (see, e.g., [FK80, Theorem 16.6])

lvlir @) < Cons IVVlr@) forallv e w,P(Q) (3.62)

with a constant Cgns = Cons(1Q), d, p, ). With X = Hol(Q), we restricttop = 2. Ifd €
{1,2}, (3.62) holds forany 1 < r < o0. If d = 3, (3.62) holds forall 1 < r < p* = 6, where
r = p* is the largest possible exponent such that the embedding W'?(Q) — L"(Q) is
continuous.

3.3.3 Assumptions on diffusion coefficient
The diffusion coefficient A: Q — [R{gi;n‘f satisfies the following standard assumptions:

(ELL) A € L¥(;RE5D), where A(x) € REXY is a symmetric and uniformly positive definite

matrix, i.e., the minimal and maximal eigenvalues satisfy

0 < o = inf Apin(A(x)) < sUp Amax(A(x)) =ty < oco.
xeQ xeQ
In particular, the A-induced energy scalar product (v, w)) := (AVv, Vw)q induces an
equivalent norm [|v]|| := (v, v)'/? on H}(Q).
To guarantee later that the residual a posteriori error estimators are well-defined, we ad-
ditionally require that A|; € [Wb*(T)]%*? forall T € 75, where 7 is the initial triangulation
of the adaptive algorithm.

3.3.4 Assumptions on the nonlinear reaction coefficient

The nonlinearity b: QxR — R satisfies the following assumptions, which follow [BHSZ11,
(AD)-(A3)]:

(CAR) b: Q x R — R is a Carathéodory function, i.e., for all n € Ny, the n-th derivative
b = 9:b of b with respect to the second argument ¢ satisfies that
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3.3 Semilinear model problem

> for any ¢ € R, the function x — b (x, ¢) is measurable on Q,
> for any x € Q, the function ¢ — b™ (x, &) exists and is continuous in ¢.

(MON) We assume monotonicity in the second argument, i.e., b’ (x, &) := bV (x, &) > 0 for all
x € Qand ¢ € R. Without loss of generality?, we assume that b(x, 0) = 0.

To establish continuity of v — (b(v), w)q, we impose the following growth condition on
b(v); see, e.g., [FK80, Chapter III, (12)] or [BHSZ11, (A4)]:

(GC) Ifd € {1,2}, there exists N € Nsuch that1 < N < o. Ford = 3, there exists N € N
such that 1 < N < 5. Suppose that, for d € {1, 2, 3}, there exists R > 0 such that

Ib™M) (x,&)| < R forae. x e Qandall¢ € R. (3.63)

While (GC) turns out to be sufficient for plain convergence of the later AILFEM algorithm,
we require the following stronger assumption for linear convergence and optimal conver-
gence rates.

(CGC) There holds (GC), ifd € {1, 2}. Ifd = 3, there holds (GC) with the stronger assumption
N € {2,3}.

Remark 3.20. (i) Let v,w € Hy(Q). To establish continuity of (v, w) > (b(v), w)q, we
apply the Holder inequality with Hélder conjugates 1 < s, s’ < oo to obtain that

Kb(v), w)al < [bW)] L ) IwlLs () (3.64)

The smoothness assumption (CAR) admits a Taylor expansion for b. Together with b(0) = 0
from (MON), this yields that

N-1,(n ) Nol
oion 3 BO) A-9"" pw) N
o)™ 3 e [, T e defo (3.65)
With [v"] ) = V17, (a1t follows that

(GO) N-1 N-1
N N
@@y s D 10 1oy + 10V @) = D 101 o) + 101w
1 n=1

N
N-1
< Z"””ZNS'(Q) < Nmax{L, [v] s o)} Vlvs ()
n=1

where the second to last estimate exploits the L”-space inclusions for bounded Q. To
guarantee that |[(b(v), w)q| < o, condition (GC) should ensure that the embedding

HO1 (Q) — L"(Q) iscontinuous for r=s and r=Ns'. (3.66)

20therwise, consider b(v) = b(v) — b(0) and f = f — b(0) instead.
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3 semilinear AILFEM with linearization

Ifd € {1, 2}, (3.66) follows if 1 < r < o and hence arbitrary1 <s <cand N € N. Ifd = 3,
r =s = 2* = 6 is the maximal index in (3.66). Hence, it follows that N < 2*/s’ = 2*/2* =
2* — 1 = 5. Altogether, we conclude continuity of (v, w) — (b(v), w)q forall N € N if
de{l,2},and N <5ifd =3.

(ii) The definition of [DGOA, (GC)] uses

b (x,&)] < RA+[EIN"") forallxeQ, allé e R, andall0<n <N

instead of (3.63). However, the following observation replaces the estimates for all b") with
0 < n < N. Due to the smoothness assumption (CAR), we may apply a Taylor expansion
for an admissible ¢ such that (N — n) 0 < 0 ifd =1,2and (N - n) o0 < 6if d = 3. Together

with 0" o) = ||v||z,,g(m, this leads us to

RN ( L1 —gnN-1n

e ErAC | Ta Tt)

16 )o@ <

N
Zu U1 ey + 1N e ) S vauw .

< (N n) (1+ vl ) < (N - n) (L+[llwl¥="), (3.67)

L(N- n)U(Q)
where the additive constant stems from the fact that ") (0) # 0 in general (in contrast
to the reasoning in (i)). This estimate plays a central role in proving the local Lipschitz
continuity of b and thus of the overall semilinear model problem; see Lemma 3.21 below
and the discussion thereafter. o

3.3.5 Assumptions on the right-hand sides

For d = 1, the exact solution u* from (3.60) below satisfies an L*-bound, since H!-func-
tions are absolutely continuous. For d € {2, 3}, we need the following assumption:

(RHS) We suppose that the right-hand side fulfills that

fe[lP(Q)]%forsomep>d>2 and feL9(Q)wherel/q:=1/p+1/d.

To guarantee later that the residual a posteriori error estimator from (3.74) is well-defined,
we additionally require that f|r € H(div,T) and f|r - n € L?>(8T) for all T € 75, where 75 is
the initial triangulation of the adaptive algorithm.

3.3.6 Well-posedness and applicability of abstract framework

Letv, w € Hy (Q). We consider the operator A, where H~!(Q) = Hy(Q)’ is used to denote
the dual space of H; (Q),

A:H(Q) —» H(Q), Aw:={(w, )+ {bw),  )a. (3.68)
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3.3 Semilinear model problem

Since b’ (x, {) > 0 according to (MON), this implies that
(b(x, &) —b(x,&))(&2— &) 20 forallx e Qand &, & € R.
Together with (ELL) and for v, w € HO1 (Q), we thus see that
(Aw-Av, w-v)=§w-v, w-v) +{b(w)-bv), w—-v)q > ||lw- v||I%. (3.69)

This proves that A is strongly monotone with a = 1 with respect to the energy norm ||| - |||.
The following lemma is crucial to prove local Lipschitz continuity.

Lemma 3.21. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Let 9 > 0 and letv, w €
Hy () withmax {[|lwll, lw - vlll} < 9 < co. Then, it holds that

(b(w) = b(v), 2)a < L[] lw - vllllzll forallz e Hy () (3.70)
with L[9] = L(|Q|, d, 9, N, R, o).

Proof. Due to the smoothness assumption (CAR), we may consider the Taylor expansion

b(v)—Zb(”)( w) .) +(”_“’1))]T/ 1=V 1pM (w4 (v-w)e)dé.  (3.71)

In order to apply the generalized Holder inequality for three terms ¢, ¢, v € HO1 (Q)

(@@, via<|dlp o lelu@ lvieeo),

where 1 =1/t + 1/t +1/t”, we choose t > 2 arbitrarily ford € {1,2} and ¢t = 6 and hence
t"” = 3/2 for d = 3. In both cases, we see that

(b(w) - b(v), z>Q<Z 15 (w)(w = )" M @ lw = vl @1l @)

|LtN (Q) "w - V”L[(Q) "Z"L[(Q)

+ hM/ A=) 1M (w+ (v -w) &) de
. 0

(N-1D)!
N-1
(
< (D1 @) = 0 My gy + 1w = VISR g )il = vl
n=1

where the hidden constant depends on R from (GC). Since HOI(Q) — LIN-D" () for
d € {1, 2,3}, it remains to prove that

16 (w)(w - v)"—1||L[n(Q) <C[9] foralln=1,...,N-1. (3.72)

To this end, choose r; = (N —1)t”/(N —n)and t, = (N — 1)t””/(n — 1) and note that

T

1 1(N—n n—l)_l 1

+ —+—.
N-1 N-1 nh b
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3 semilinear AILFEM with linearization

Using the Holder inequality, we arrive at
16 (w) (w = )" M ) < 1B @)1 ()l (w = )" M)

Since | ¢/|10q) = ||(p||L]a(Q) and (N — 1)t” < oifd € {1,2}and (N - 1)t” < 6ifd =3
guarantee admissibility as in Remark 3.20(ii), we apply the Sobolev embedding to obtain
that

|N—n

(n) (387
167 (W) q) 1+ wl =1+ |wly S L+l

L(N n)tl (Q) L(N l)t”(Q)

and
-1 -1
[w ="Mz = 1w = VI, ) = 10 = VIR 0 ) < lw =l

The last estimates together with the assumptions |lw - v||| < 9 and [|w]|| < 9 conclude the
proof with hidden constant L[9] = L(|Q|, d, 9, N, R, uo) > 0. i

To see the local Lipschitz continuity of A, let v, w, v € HO1 (Q) and observe that

(Aw - Av, v) = (w—v, y) +bw) - bw), Yo < A +L9]) llw - vll 1wl

provided that [|w|| < 9 and ||w — v|| < 9. This shows that A is locally Lipschitz contin-
uous with Lipschitz constant L[9] = 1 + L[9]. Hence, A fits into the abstract setting of
Section 3.2.

Furthermore, following [AHW23], we note that the energy for the semilinear model
problem (3.59) of Section 3.3 for v € Hyj (Q) is given by

v(x)
8(1/):%/Q|A1/2Vv|2 dx+‘/Q/0 b(s) dsdx—‘/va dx—/Qf-Vv dx. (3.73)

To see that the second integral is well-defined, note that the integration of the Taylor
expansion (3.65) gives rise to a term sV*! evaluated at s = v(x) and s = 0. Its integrability

[N 11 ) = "V"L<N+1> () SIS ensured by (CGC).

3.3.7 Residual error estimators

For 7 € T and vy € Xy, the local contributions of the standard residual error estimator
for the semilinear model problem (3.60) read

e (T, vg)? = Bz |f +div(A Voy — f) - b(vH)Ile(T)
+hr |[[((AVvy = f) - nll IILz(aTmQ),

(3.74)

where [[ - ]| denotes the jump across edges (for d = 2) resp. faces (for d = 3) and n de-
notes the outer unit normal vector. For d = 1, these jumps vanish, i.e., [ - ][] = 0. [DGOA,
Proposition 15] proves the axioms of adaptivity (A1)-(A4) for the present setting.

102



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.4 Practical algorithm

Proposition 3.22 ([OGOA, Proposition 15]). Suppose (RHS), (ELL), (CAR), (MON),
and (CGC). Then, the residual error estimator from (3.74) satisfies (A1)—(A4) from Sec-
tion 3.2.6. The constant Cye| depends only on d, py, and uniform shape regularity of the
meshes Ty € T. The constant Cqye) depends, in addition, on the polynomial degree m, and
Cstab [ 9] depends furthermoreon |Q|, 9, n, R, and A. O

3.4 Practical algorithm

For the semilinear problem (3.59) of Section 3.3, it holds that @« = 1 according to (3.69).
The optimal damping parameter § > 0 as well as L[6M ] are unknown in practice. In this
section, we present a practical algorithm which is formulated with computable quantities
only.

3.4.1 AILFEM and contraction of damped Zarantonello iteration

Instead of adaptively choosing § > 0, we adapt the local Lipschitz constant L. Since a = 1,
this already determines the optimal choice 6 = 1/L and g[5]? = 1 - §?; see Remark 3.9.

Algorithm 3.23: practical AILFEM

Input: initial triangulation 7y, initial guess ug =0and M = |F — A0| x» < oo according
to (3.5), marking parameters 0 < 6 < 1 and C, > 1, solver termination parameter
A > 0, and solver parameters Ly := 1 and 8 := V2.

Loop: For ¢ =0, 1,2,..., repeat the following steps (i)—(v):

(i) Calculate 6; < 1/L; and g7 « 1 - 67.
(i) Forallk =1,2,..., repeat the following steps (a)—(c):

(a) Compute uf := ®¢(5; uf~1) and e (T, uf) forall T € 7.
(b) Terminate k-loopif (|&(uf~ 1) - &)l < A2 ne(uf)* A lubll < 2M).
(©) If (&(uf) > g7 E(uf1)), then

(c1) Discard the computed uéf andsetk « k- 1.

(c2) Increase Ly < B Ly.

(c3) Update & « 1/L; and g7 < 1 - 52.

(iii) Upon termination of the k-loop, define k(¢) := k.

(iv) Determine M, C 7; with 6 m(%&(f))z < Sreng ne(T, uf(e))z,

(v) Generate 77,1 = refine(7;, M,) and define u2+1 = uf(e).

Remark 3.24. The motivation of the criterion in Algorithm 3.23(ii.c) is based on the equiv-
alence

Eu)-&wy) < gileéuy ™H-6wy)] = Ew))-qt&wi™) < (1-g2) &(uy). (3.75)
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3 semilinear AILFEM with linearization

The energy minimization property from Lemma 3.3 and b(0) = 0 from (MON) show that
E(uy) < &(0) =0;cf (3. 73). As a necessary criterion for energy contraction (3.31), we thus
obtain 8(ue) < q€28(u 1), which is enforced by Algorithm 3.23(ii.c).

Remark 3.25. NotethatA > 0 is arbitrary but fixed and remains unchanged throughout the
algorithm. In the numerical experiments below, the particular choice A = 0.1 is motivated

by the following heuristic argument: the estimator (u;) and hence approximately T]g (uf)
controls the discretization error, while ||uy — u, |||2 s 8( ) - S(uZ‘) 8( e ) -

E(u e) ||| g - ”e |||2 controls the linearization error — at least if 6y is suﬁiczentlysmall

Hence, S(ue ) S(Ltg ) < 0.1%2 7, (uy )2 heuristically aims at limiting the linearization error
to be at most 10% of the current discretization error.

The next result states that Algorithm 3.23(ii.c) will not lead to an infinite loop.

Proposition 3.26. Suppose that A satisfies (SM), (LIP), and (POT). Let u®, € Xy with
lul |l < 2M. Set Lo, Ly < 1 and define p := V2. Compute 6y = 1/Ly and g% = 1 - 62,
Starting withk — 1 and u}, = ®y(6y; ul)) € Xy, we proceed as follows:

* Givenuk, € Xy fork > 1, computeul' = @y (6y; uk) € Xy and check if
EWly < g4 &(uk). (3.76)

e If (3.76) holds, then increase k « k + 1.

e If (3.76) fails, then increase Ly < B Ly and update 6y < 1/Ly and ‘7121 —1- 513.
Discard the computed uk!.

Then, the condition (3.76) fails only finitely often so that this simple algorithm defines
the sequence of iterates (ul’fl) keNp-

Proof. Step 1. Given the initial Ly = 1, there exists a minimal number j € Ny such that

L[6M]? : , ' , 1 2a
<pB'Lo=Lg(j) andthus 6y :=d6g(j)= Lo < TI6MP"

Define gy [0y (k)]? := 1 — 8y (k)2. Recall gg[ 8] from (3.23b) and observe that

8 (K)L[BM] . 26y (k)a?
2 ) L[3M]

qeldu(k)]* =1-(1- ~1-6y(k)+ 6y(k)?> for 6y (k) — 0.

Since 6y (k) — 0 for k — oo, there exists a minimal number ky € N with ky > j such that

1 1 2a
qe 61 (ko)]? [6H(k0)] ﬁZkOL(Z) <1 aswellas dy(ky) = oL, < LI6MP"
This implies that Proposition 3.8 holds for the theoretical sequence u, = and

uktl .= @y (6y; ul,). In particular, we conclude that energy contraction (3. 31) holds with
qH = 1 52 Moreover, Remark 3.24 shows that the necessary criterion (3.76) is guaranteed
to hold for the iterates (iZI’;)keNO as soon as (3.31) holds.
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3.5 Numerical experiments
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Figure 3.1: Results of Experiment 3.28 with polynomial degree m = 1. Left: Error
estimator ng(uf) (diamond, left ordinate) and energy difference of iterative solutions

(8(u§) -&(u*)) 1/2 (circle, left ordinate) against work(¥¢, k) and the number of Zarantonello
steps on X; (cross, right ordinate). Right: Energy difference of é](uéC ) to E(u*) (circle) and
to &(uy) (square) over the total step counter |(¢, k)|. Throughout, &(u*) is obtained by
Aitken extrapolation and &(u;) by sufficient Zarantonello steps on each level ¢.

Step 2. Since the failure of (3.76) increases the current value of L to BL, it follows from
Step 1 that (3.76) can fail only finitely often, until the recomputed sequence (qu{)keNO
satisfies (3.76) for all k € Ny with k > ky. O

Remark 3.27. The optimality results for Algorithm 3.10 are expected to carry over — at
least asymptotically — to Algorithm 3.23; see Proposition 3.26. The major difficulty lies in
algorithmically determining whether the correct estimate of the Lipschitz constant (and
thus 1) is preasymptotic or not, i.e., determining k in Step 2 from the last proposition by
means of computable quantities only. However, it is ensured that 6y remains uniformly
bounded from below.

3.5 Numerical experiments

In this section, we test and illustrate Algorithm 3.23 with numerical experiments. All
experiments were implemented using the Matlab code MooAFEM [1P23]. Throughout,
Q c R?andwe use x = (x1, x2) € Q to denote the Cartesian coordinates. In all experiments,
we consider equation (3.59) with isotropic diffusion A = (§%) with 0 < ¢ < 1. The
adaptivity parameter is set to 6 = 0.5 and C,,,« = 1. Moreover, recall the definition of the
overall computational cost from (3.56), which reads

-1
work(l, k) = Z HTp = k#T; + Z k() #70.
(' k")eQ =0

(0,k")<(0,k)
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3 semilinear AILFEM with linearization

Experiment 3.28 (nonlinear variant of the sine-Gordon equation [AHW23, Experiment 5.1]).
ForQ = (0,1)?, let X = Hy(Q) with||-||I* = (V-, V-) (i.e, € = 1) and consider

—Au* + (w3 +sin(u*)=f inQ subjectto u* =00ndQ, (3.77)

with the monotone semilinearity b(v) = v® + sin(v), which satisfies (ELL), (CAR), (MON),
and (GC). We set f = 0 and choose f in such a way that

u*(x) = sin(mxy) sin(mxy),

which satisfies (RHS). In Figure 3.1, we plot the a posteriori estimator ne (uy) and the energy

difference of the iterative solutions (&(uf) — &(u*)) 1/2 against thework(£, k) for lowest order
FEM m = 1, where we approximate E(u*) by means of Aitken convergence acceleration on
uniform meshes with up to #7sna = 67108864 degrees of freedom on the finest mesh. The
decay rate is of (expected) optimal order O(work(¢, k)~'/?) as|(£, k)| — co. Moreover, the
experimentally observed number of sufficient linearization steps k() is two. Furthermore,
in Figure 3.1, we plot the difference of &(uf) to the approximated reference energy &(u*)
using Aitken'’s acceleration and to the energy E(u;) on X, over the step counter|(£, k)|. The
reference energy & (uy) is calculated by a sufficient number of Zarantonello iterations on each
level ¢ until the energy difference of successive iterates is below the tolerancetol < 10712,

Experiment 3.29 (singularly perturbed sine-Gordon equation). This example is a variant
of [AHW23, Experiment 5.2]. Ford = 2 andQ = (0,1)?, let e = 1075 and consider

—eAu* +2u* +sin(u*) =1 inQ subjectto u* =0o0noQ,

with the monotone semilinearity b(v) = v + sin(v). In this case, the exact solution u* is
unknown. The used X -norm is given by || - |I> = €(V-, V-) + (-, -). The particular choice
of the X-norm allows for a« = 1 due to the monotonicity of b(v). The problem clearly
satisfies (ELL), (CAR), (MON), and (GC). Moreover, f = 1 and f = 0 satisfy (RHS). In this
experiment, we employ a slight modification of the error estimator (3.74) following [Ver13,
Remark 4.14]

(T, ve)? = i | f + eAvy — b(VH)"iZ(T) +hr |[[e Voy - n]] ||iz(aTnQ),

where the scaling factors hy = min{e~'/2 hy, 1} ensure e-robustness of the estimator.

In Figure 3.2A, we plot the error estimatorn, (uéf) forall(¢, k) € Q against thework(¢, k) for
polynomial degrees m € {1,2}.  The decay rate is of (expected) optimal
order O(work(€, k)~™/?) as|(€, k)| — co. The number of Zarantonello steps on each mesh
refinement level ¢ stabilizes for m € {1,2} at three (m = 1) and two (m = 2) after an ini-
tial phase. For m = 2, Figure 3.2B shows the approximate solution uf, where ¢ = 28 and
k(28) = 2. Figure 3.2C depicts a mesh plot for #7; = 4295 for ¢ = 11 and m = 1. In partic-
ular, this experiment shows that Algorithm 3.23 is suitable for a setting with dominating
nonlinear reaction given that a suitable norm on X is chosen. Furthermore, we remark
that the nonlinearity b(v) = v + sin(v) is globally Lipschitz continuous with Lipschitz con-
stant L = 2. In our experiments, 6, is decreased twice, i.e., 6, decreases from1 t00.5=1/L,
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3.5 Numerical experiments
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(A) Error estimator (uéC ) over work (diamond, left ordinate) and number of Zarantonello iteration
steps on X, over work (cross, right ordinate) for m = 1 (left) and m = 2 (right).

NN
(B) Approximate solutions uf, where (C) Mesh with #7; = 4295, where
0=128,k(28) =2,and m = 2. ¢=1landm=1.

Figure 3.2: Using the norm || - [[|> = € (V-, V-)+(-, -) in Experiment 3.29. Top: Convergence
plot of the error estimator 7, (u f) over work(?, k) and number of Zarantonello iterations
on X over work for m = 1 (top, left) and m = 2 (top, right). Bottom: Plot of the approximate
solution uf (bottom, left) and plot of a sample mesh (bottom, right).
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(D) Plot of iterative solution u,, where € = 16,
(C) Results for m = 4. k(16) =2, dim(X;) = 14599, and m = 1.

Figure 3.3: 3.3A-3.3C: Product error estimator e (uf) [ne(uf)? + ¢ (ze [uf])?] 2 (diamond,
left ordinate), absolute goal error |G(u*) — G(uéf)| (circle, left ordinate), and number of
Zarantonello steps on X; over work (cross, right ordinate) for m = 1 (top, left), m = 2 (top,
right), and m = 4 (bottom, left). 3.3D: Plot of an iterative solution uf (bottom, right).

which is optimal according to Remark 3.9 and remains uniformly bounded from below;
c¢f. Remark 3.27.

Experiment 3.30 (Goal-oriented AILFEM (GAILFEM)). We also test a canonical extension
of Algorithm 3.23 in a goal-oriented setting similar to that of [MS09, Example 7.3]. A
thorough treatment of this problem (and the assumptions thereof) is found in [DGOA,
Example 35]. We use the proposed practical Algorithm 3.23 as the solve module for the
semilinear primal problem in the GOAFEM algorithm [DGOA, Algorithm 17]. LetQ = (0, 1)?
and e = 1. The weak formulation of the primal problem reads: Find u* € H; (Q) such that

(Vu*, Vo) + (b(u*), v) = / f-Vvdx, forallve Hy(Q), (3.78)
Q
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3.6 Appendix: Convergence for vector-valued semilinear PDEs

whereb(v) = v3 and f = xa, (=1,0) with the characteristic function yo, of Qf = {x € Q |
x1+x < 3}. The weak formulation of the practical dual problem for the linearization point
w € Hy (Q) reads: Find z*[w] € H, (Q) such that

(Vz*[w], Vo) + (b’ (w)z*[w], v) = / g -Vvdx, forallve Hy(Q),
Q

whereb’ (v) = 3v? and g = Yo, (=1,0) withQg ={x € Q| x1 +x2 > %}. The goal functional
thus reads

0
G(v) = —/ P dx forallv Hol(Q).
Qg 0X1

4
. Since div(g) = 0 on every element T € 7y, the associated error estimator for the dual
problem reads

G (w3 T, vm)? o= B vy = b7 () (v 2 ) + B WLV = 8) - mlll gy (379)

We used || - |II> = (-, -)) as the X -norm. For various polynomial degrees m € {1,2, 4}, Fig-
ure 3.3A-3.3C shows the results of the proposed GAILFEM algorithm driven by the product
estimatorne (ug) [ne(uf)? + (o (ze [uf1)?] Y2 which is an upper bound to the goal error differ-
ence G(u*) — G(uy) and a viable way to recover optimal convergence rates; cf. [DGOA]. We

plot the estimator product ng (u¥) [ne(uf)? + (o (ze[uf])?] Y2 the number of Zarantonello
steps, and the absolute goal error difference |G (u*) — G(u§)| over the work(¢, k), where
G(u*) = —0.0015849518088245 serves as a reference value; see [)GOA, Example 35]. In
Figure 3.3D, we plot the sample solution uf, wheret =13, k(13) =2, andm = 1.

The decay rate is of (expected) optimal order O(work(€, k)~ ™) for|(€, k)| — oo, where
m € {1,2,4} is the polynomial degree of the FEM space X,. The number of Zarantonello
steps does not exceed two for m = {1, 2,4} and stabilizes after an initial phase at one for
m = 4, respectively. Figure 3.4 depicts two meshes form = 1 and m = 4.

3.6 Appendix: Convergence for vector-valued semilinear PDEs

This appendix aims to extend the analysis from Section 3.2 to problems where the mono-
tone operator does not have a potential, e.g., vector-valued semilinear PDEs. We prove
plain convergence of Algorithm 3.10 without the assumption (POT) and with the modified
stopping criterion

g =g~ < AneCug) A lllugll < 2M (i.b”)

replacing Algorithm 3.10(i.b). The proof requires some preliminary observations: First,
the convergence of the exact discrete solutions u towards the exact solution u in the
so-called discrete limit space, which dates back to the seminal work [BV84]. Second, we

need to show that the approximate discrete solutions uéf converge to the same limit.
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(A) Mesh generated for m = 1, where (B) Mesh generated for m = 4, where
dim X, = 3092 and ¢ = 12. dim X, = 3081 and ¢ = 12.

Figure 3.4: Generated GAILFEM meshes for m = 1 (Figure 3.4A) and m = 4 (Figure 3.4B).

Lemma 3.31. Suppose that A satisfies (SM) and (LIP). With the discrete subspaces X, C
X from Algorithm 3.10 (with or without the modified stopping criterion (i.b”)), define

the discrete limit space X, := U%:o Xp, where we recall that € = sup{f € Ny | (¢,0) € Q}.
Then, there exists a unique u}, € X which solves

(Auk, Vo) = (F, Vo) forallve, € Xw. (3.80)
Moreover, given the exact discrete solutions uy € Xy, it holds that

llul —ufll =0 as € — ¢ (3.81)

Additionally, suppose (A1)—(A3) and suppose that the choice of 6 > 0 in Algorithm 3.10 en-

sures norm contraction (3.30). Then, the approximations uf computed in Algorithm 3.10

fulfill that

lul —ubll >0 as (6,k)eQ with |(¢,k)] — o. (3.82)

Proof. The proof consists of three steps.

Step 1 (exact solutions). Since X; C X1 C X, the discrete limit space X, = U%ZO X
is a closed subspace of X. Proposition 3.2 proves the existence of a unique u} € X
satisfying (3.80). The Galerkin solutions u; from (3.4) are also Galerkin approximations of
uX . Hence, there holds the Céa-type estimate

N e 36 . N e
lle =l < Coea minflul, = vell — 0, (3.8
(4 0

where convergence follows by definition of X...
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3.6 Appendix: Convergence for vector-valued semilinear PDEs

Step 2 (approximate solutions for ¢ = o). The norm contraction (3.30) and ug = uf
reveal that

k(es1) G300 k(e+1) 0 k(o)
0 <llufyy =gy M < ay Mgy = wgall < anflllug =g I+ g,y — ugll].
From Step 1, we infer that (u),en, is a Cauchy sequence. Defining a, := |[|u} - uflll and

b = qn lllug,, — uy|l, the last estimate can be rewritten as

0<ap £gnae+by, where lim b, =0.

{—oo

It follows from elementary calculus (cf. [CFPP14, Corollary 4.8]) that
0 = lim a; = lim [|lu} — u2|.
lim ag = lim|luf - ugl)

Altogether, we obtain that
3.30)
e = gl < Moad = e+ leed = gl "< Muad = e+ llaed = gl
k
< Mud = ugll+ g = wi g+ lug_y —ug >0 as € — o

Step 3 (approximate solutions for ¢ < co and k(¢) = ). It holds that u}, = u} and
hence, due to (3.30), B

M, — uflll = g —ufll -0 as [(€,k)] — oo,
This concludes the proof. m]

The following theorem states plain convergence in the abstract setting of the proposed
AILFEM algorithm.

Theorem 3.32: Plain convergence

Suppose that A satisfies (SM) and (LIP). Suppose the axioms of adaptivity (A1)—(A3).
Suppose that the choice of 5 > 0 in Algorithm 3.10 ensures (3.30). Then, for any choice
of the marking parameters0 < 0 < 1,1 > 0, and 1 < Cpa < oo, Algorithm 3.10 with
modified stopping criterion (i.b"") guarantees convergence of the quasi-error from (3.38),
ie.,

AY = lu* = uflll+ne(uf) - 0 as(€,k) € Qwith|(, k)| — . (3.84)

Proof. The assertion |(£, k)| — oo consists of two cases:
Case 1 (£ = ). Recall the generalized estimator reduction [CFPP14, Lemma 4.7]: Let
w > 0. Given the Dorfler marking in Algorithm 3.10(iii), it follows that

k(2 k k k
Mot (tgy) < Gest Mo (Uy)® + Cest g, — uy P, (3.85)
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where 0 < gest == (1+ ) [1-(1-4¢%,)0] < 1and Cest == (1 + 0™ ") Cyrap[4M]* with
w > 0 being sufficiently small and where 4M stems from nested iteration (3.28). From
Lemma 3.31, we infer that |||u§+1 - uflll — 0as ¢ — 0. Hence, it follows from elementary

calculus (cf. [CEFPP14, Corollary 4.8]) that ng(uf) — 0as ¢ — oo. Moreover, this and
Lemma 3.31 prove that

o (A3) k. (AD K k
llw* = udl < Crame(ug) + llug —ugll < Crame(uy) + (1 + CrelCotan [3M]) llugy — ugll
k k {—o0

< Crelnﬁ(u[) + (1 + Cre1Cstap [BM]) [”lu;r — u Il + MMl — u[l”] — 0.

We conclude that |lu* — u, ||| + ng(ue) +1e(u;) — 0as € — co. Due to (3.18) together with
Lemma 3.31 and for C; | := 1 + Cy, this yields for all (¢, k) € Q that

3
AY < Clyme(uf) + [1+ Coa [3M1] lluf - ufll Cr'eme(uZ) +[1+ Cyap [3M] ] g — ull
?—o0

< Clme (uf) + [1+ Coqan BM1] [l = ug_yll + gy = ugyll] —> 0.

This concludes the proof of the first case.
Case 2 (¢ < coand k(£) = o). Since k(£) = oo, at least one of the cases is met:

#{k € No | llugll > 2M} =co or #{k € No | Ane(ug) < lllug — ug "'} = oo.

Since norm contraction (3.30) holds, the arguments to obtain (3.32) prove the existence of
ko € N such that, for all k > kg, it holds that

lluglll < 2M.

We deduce from the (not met) stopping criterion in Algorithm 3.10(i.b”") and (3.30) that

@i.b"”")
k 1
Ao (ug) < lllug — g ===

With contraction (3.30), we see that

™ — ug |I| relnﬂ(ue )+l —uy ||| relné(uz) + (1 + Csap [3M]) llluf — uyl 220
This concludes the proof of the second case and the proof is complete. o
The next corollary states that the exact solution u* = u is discrete if ¢ < co. Moreover, if
there exists £ with (uf) = 0, then the exact solution u* coincides with uf

Corollary 3.33. Under the assumptions of Theorem 3.32, there hold the following impli-
cations:

(i) Ife =sup{€ e Ny | (¢,0) € Q} < o, thenu* = ”E andng(ué‘) =0

(i) Ift € Ng withk < o andng(uf) =0, then uf =u* =uy.
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Proof. (i). According to Theorem 3.32, it holds that
Af = llw* —ugll+ne(uy) -0 as  k — oo.
Norm contraction (3.30) proves that
e = ufll < g llug = udll >0 as k- co.
Uniqueness of the limit yields that u* = ué‘ With stability (A1), we obtain that
0 < ne(uf) < ne(uf) + Ctan [3M] lluf — ufl > 0 as  k — oo.

This concludes the proof of (i).

(ii). Note that the stopping criterion in Algorithm 3.10(i.b”") implies that |||u§ - uf_l Il <
A ng(uf) = 0 by assumption. Thus, uf = uf_l. This implies that uf_l is a fixed point of
@, (J;-). Since the fixed point is unique, we infer that uf = uf_l = uy . With reliability (A3),
we thus obtain that

(A3)
Il <

k
™ — uy Crel Ne(uy) = Cre1 me (1) = 0.

This concludes the proof. m]

Plain convergence is required to obtain results proving weak convergence in the spirit
of [DGOA, Lemma 28]. This is pivotal for achieving quasi-orthogonality along the lines
of [DGOA, Lemma 29], which can substitute (3.8) in the proof of full linear convergence.
Details are omitted.
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4 Cost-optimal adaptive linearized adaptive
FEM with linearization and algebraic
solver for semilinear elliptic PDEs

This chapter is taken from:

[®AIL2]: M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEM with
linearization and algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401 .06486

4.1 Introduction

4.1.1 Problem setting and main results

Undoubtedly, adaptive finite element methods (AFEMs) are in the canon of reliable nu-
merical methods for the solution of partial differential equations (PDEs). Some of the
seminal contributions in this still very active area are [BV84; D6r96; MNS00; BDDO04; Ste07;
CKNS08; KS11; CN12; FEP14] for linear problems, [Vee02; DK08; BDK12; GMZ12; GHPS21]
for nonlinear problems, and [CFPP14] for an abstract framework.

By means of conforming finite elements, this paper is concerned with the cost-optimal
computation of the solution u* € HO1 (Q) to the semilinear elliptic model problem

—div(AVu*)+b(u*)=F inQ subjectto u*=0 onoaQ, 4.1)

with a Lipschitz domain Q c R4 for d € {1, 2, 3}, an elliptic diffusion coefficient A: Q —
Rglyxn‘f , amonotone nonlinearity b: Q — R, and sufficiently regular data F. The assump-
tions are such that the Browder-Minty theorem ensures existence and uniqueness.

Moreover, the model problem (4.1) can be recast into the framework of strongly mono-
tone and locally Lipschitz continuous operators such that the abstract model problem
reads: For X = HO1 (Q) with topological dual space X’ = H~!(Q) and duality bracket (-, -), a
nonlinear operator A: X — X’, and given data F € X’, we aim to approximate the solution
u* e Xto

(Au*,v)=(F,v)y forallveX. 4.2)

To this end, we employ conforming piecewise polynomial finite element spaces Xy c X
with the corresponding discrete solution u}; € Xy to

(ﬂu;} , VH> = <F, VH> for all Vg € XH, (43)

which, however, can hardly be computed exactly, since (4.3) is still a discrete nonlinear
system of equations.
The major difficulty of such problems is that the Lipschitz constant of A depends on
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the considered functions v and w in the sense that for 9 > 0, it holds that
[Av — Aw|x < L[] lv-w|| forallv,w e X with max{|||v|||, |||w|||} < 9. (LIP)

Moreover, this dependence also appears in the stability constant of the residual-based
a posteriori error estimator [Ver13; ©GOA].

Hence, for such a problem class, any approximate numerical scheme must ensure
uniform boundedness of all computed approximations u}, ~ uy € Xy throughout the
algorithm. This constitutes the first main result: The developed adaptive iteratively lin-
earized FEM (AILFEM) algorithm (more detailed in Algorithm 4.6 below) guarantees a
uniform upper bound on all iterates (see Theorem 4.8 below). In particular, the algorithm
steers the decision whether it is more preferable to refine the mesh adaptively or to do an
additional step of linearization or a further algebraic solver step instead.

Once uniform boundedness is established, we prove full R-linear convergence (Theo-
rem 4.13 below) as the second main result. Full R-linear convergence establishes contrac-
tion in each step of the algorithm regardless of the algorithmic decision. At the expense
of a more challenging analysis that links energy arguments with the energy norm of the
algebraic solver, full R-linear convergence is guaranteed for all mesh levels ¢ > ¢, = 0 while
prior works [DGOA; BIM*23] used compactness arguments which only guaranteed the
existence of the index ¢y € Ny (and not necessarily ¢y = 0). As a consequence of uniform
boundedness and full R-linear convergence, the third main result proves optimal rates
both understood with respect to the degrees of freedom and with respect to the overall
computational cost (Corollary 4.14 and Theorem 4.15) of the proposed algorithm.

Compared to existing results in the literature [GHPS21; HPSV21; HPW21; BEM*23], all
three main results require a suitable adaptation of the stopping criteria of the lineariza-
tion loop as well as sufficiently many iterations in the algebra loop, together with subtle
technical challenges, in particular, for the proof of full R-linear convergence.

4.1.2 From AFEM to AILFEM

On each mesh level (with mesh index ¢), the arising discrete nonlinear problems cannot
be solved exactly in practice as supposed in classical AFEM [Vee02; DK08; BDK12; GMZ12].
To deal with this issue, we follow [CW17; GHPS18; HW20b] and consider the so-called
Zarantonello iteration from [Zar60] as a linearization method (with index k). The Zaran-
tonello iteration is a Richardson-type iteration where only a Laplace-type problem has to
be solved in each iteration. Since the arising large SPD systems are still expensive to solve
exactly, we employ a contractive algebraic solver as a nested loop to solve the Zarantonello
system inexactly (with iteration index 7). The loops thus come with a natural nestedness
(see Figure 4.1), where the overall schematic loop of the algorithm reads

¥

Since the proposed adaptive loop depends on all previous computations, optimal con-
vergence rates should be understood with respect to the overall computational cost. This
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Figure 4.1: Depiction of the nested loops of the AILFEM algorithm 4.6 below.

idea of optimal complexity originates from the wavelet community [CDDO01; CDD03] and
was later used in the context of AFEM in [Ste07] for the Poisson model problem and [CG12]
for the Poisson eigenvalue problem, both under realistic assumptions on generic iterative
solvers.

AILFEMs with iterative and/or inexact solver with a posteriori error estimators are
found in, e.g., [BMS10; EEV11; AGL13; EV13; AW15; CW17] and references therein. Be-
sides the Zarantonello iteration, for globally Lipschitz continuous nonlinearities, the
works [HW20a; HW20b; HPW21] analyze also other linearizations such as the Kac¢anov
iteration or damped Newton schemes. Optimal complexity of the Zarantonello loop that
is coupled with an algebraic loop is analyzed in [BIM*23] for nonsymmetric second-order
linear elliptic PDEs and for strongly monotone (and globally Lipschitz continuous) model
problems in [GHPS18; GHPS21; HPSV21; HPW21; BEM™*23].

The literature on AILFEMs for locally Lipschitz continuous problems is scarce and
closing this gap is the aim of this work. The semilinear model problem is treated in,
e.g., [AW15] by a damped Newton iteration and in [AHW23] by an energy-based approach
with experimentally observed optimal rates. We also refer to the own work [©AIL1] for an
AILFEM with optimal rates with respect to the the overall computational cost under the
assumption that the algebraic solver can be performed at linear cost.

4.1.3 OQutline

This paper is structured as follows: Section 4.2 introduces the abstract framework on
locally Lipschitz continuous operators. In Section 4.3, we formulate the (idealized) AIL-
FEM algorithm (Algorithm 4.6). We prove uniform boundedness for the final iterates
of the algebraic solver (Theorem 4.8). Section 4.4 presents the second main result: Full
R-linear convergence (Theorem 4.13). In particular, rates with respect to the degrees of
freedom coincide with rates with respect to the computational cost (Corollary 4.14). In
Section 4.5, we prove the main result on optimal complexity of the proposed AILFEM
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algorithm (Theorem 4.15). In Section 4.6, we present numerical experiments of the pro-
posed AILFEM strategy and investigate its optimal complexity for various choices of the
adaptivity parameters.

4.2 Strongly monotone operators

This section introduces an abstract framework of strongly monotone and locally Lipschitz
continuous operators. This class of operators covers the model problem (4.1) of semilinear
elliptic PDEs with monotone semilinearity.

4.2.1 Abstract model problem

Let X be a Hilbert space over R with scalar product (-, -)) and induced norm ||| - ||. Let
Xy € X be a closed subspace. Let X’ be the dual space with norm | - | x and denote by
(-, -) the duality bracket on X’ x X. Let A: X — X’ be a nonlinear operator. We suppose
that A is strongly monotone, i.e., there exists a monotonicity constant & > 0 such that

allv-wl? < (Av - Aw, v-w) foralv,w e X. (SM)

Moreover, we suppose that A is locally Lipschitz continuous, i.e., for all 9 > 0, there exists
L[9] > 0 such that

(Av-Aw, @) <L[9] llv-wll ¢l for all v, w, ¢ € Xwith max {||jv|l, llv-wll} <9.  (LIP)

Remark 4.1. We remark that local Lipschitz continuity is often defined differently in the
existing literature, cf. [Ze190, p. 565]: For all® > 0, there exists L'[®] > 0 such that

(Av-Aw, @) <L'[O] [lv-wl|| ||l for allv, w, ¢ € X with max{|||v|||, |||w|||} < 0. (LIP)

We note that the conditions (LIP) and (LIP’) are indeed equivalent in the sense that (LIP)
yields (LIP") with © = 29, and, conversely, (LIP") yields (LIP) with 9 = 2 ©. However, con-
dition (LIP) is better suited for the inductive proof of Proposition 4.4 which is the main
ingredient to guarantee uniform boundedness in Theorem 4.8.

Without loss of generality, we may suppose that A0 # F € X’. We consider the operator
equation: Seek u* € X that solves (4.2). For any closed subspace Xy C X, we consider
the corresponding Galerkin discretization (4.3). We note existence and uniqueness of the
solutions to (4.2)-(4.3) and a Céa-type estimate.

Proposition 4.2 ([9AIL1, Proposition 2]). Suppose that A satisfies (SM) and (LIP).
Then, (4.2)~(4.3) admit unique solutionsu* € X and uy, € Xy, respectively, and

1
max {[llu*|l, llugll} < M = - 1F = Allx >0 (4.4)
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as well as
llw* — uplll < Ceea Umei)l(l lluw* —vull with Ccéa = L[2M]/a. O (4.5)
H H

Finally, we suppose that A has a potential #: There exists a Gateaux differentiable
function #: X — R such that its derivative d#: X — X’ coincides with A, i.e.,

P(w+tv) — P(w)
t

(Aw, v) = (dP(w), v) = }fin& forallv,w € X. (POT)

teR

With the energy E(v) = (P — F)v, there holds the following classical equivalence.

Lemma 4.3 (see, e.g., [GHPS18, Lemma 5.1]). Let Xy C X be a closed subspace (where
also Xy replaced by Xy is admissible). Suppose that A satisfies (SM), (LIP), and (POT).
Let9 > M. Letvy € Xy with ||vy — uj|ll < 9. Then, it holds that

L[9]

a
) v — uill® < E(va) - E(ufy) < — llve — ufylI”. (4.6)

In particular, the solution uj, of (4.3) is indeed the unique minimizer of & in Xy, i.e.,
E(uyy) < &(vy) forallvy € Xy, (4.7

and, therefore, (4.3) can equivalently be reformulated as an energy minimization prob-
lem:

Find u}; € Xy suchthat &(uj;) = min E(vy). (4.8)
UHEXH

In particular, it holds that
E(vy) — &™) = [E(vy) - E(up)| + [E(u)y) — EW*)|  forallvy € Xy (4.9)

and all these energy differences are nonnegative. m]

4.2.2 lterative linearization and algebraic solver

Let Xy c X be a finite-dimensional (and hence closed) subspace of X. In order to solve
the arising nonlinear discrete problems (4.3), we will incorporate a linearization method
as well as an algebraic solver into the proposed algorithm.

Linearization by Zarantonello iteration. For a detailed discussion of the Zarantonello
iteration, we refer to [©AIL1, Section 2.2-2.4]. For adamping parameter § > 0 and wy € Xy,
let ®y(5; wy) € Xy solve

(P (85 un), vy) = (up, ve) + 6 [F(vp) = (A(ug), vy)|  forallvy € Xy. (4.10)

The Lax-Milgram lemma proves existence and uniqueness of ®y(J; uy), i.e., the Zaran-
tonello operator @ (9;-): Xy — Xy is well-defined. In particular, u}, = ®(5; u},) is the
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unique fixed point of @ (J; -) for any damping parameter § > 0. Moreover, for sufficiently
small § > 0, the Zarantonello operator is norm-contractive.

Proposition 4.4 (see, e.g., [9AIL1, Proposition 3.4]). Suppose that A satisfies (SM)
and (LIP). Let9 > 0 and vy, wy € Xy with max{llllell, vy — wHIII} < 9. Then, for
all0 < 6 < 2a/L[9]* and0 < g}, [6,9]* =1 -6 (2a — 6L[9]?) < 1, it holds that

Pk (85 vr) = @u (8 wp)lll < 7,16, 9] v — wlll. (4.11)

We note that q;, [6,9] — 1 as & — 0. For known a and L[9], the contraction constant
q;,.[6,91? =1-a?/L[9]? = 1 - a 6 is minimal and only attained for 6 = a/L[9]*. O

Algebraic solver. The Zarantonello system (4.10) leads to an SPD system of equations
to compute @y (J; uy). Since large SPD problems are still computationally expensive,
we employ an iterative algebraic solver with process function ¥y : X’ x Xy — Xy to
solve the arising system (4.10). More precisely, given a linear functional ¢ € X’ and an
approximation wy € Xy of the exact solutions w}, € Xy to

((w}_} , VH» = (p(UH) for all vy € Xy,

the algebraic solver returns an improved approximation Wy ( ¢; wy) € Xy in the sense that
there exists a uniform constant 0 < g, < 1 independent of ¢ and Xy such that

llws; = ¥ (@; wi)ll < qag llwf; — wylll - forallwy € Xp. (4.12)

To simplify notation when the right-hand side ¢ is complicated or lengthy (as for the
Zarantonello iteration (4.10)), we shall write Wy (w};; -) instead of W5 (¢; -), even though
w}; is unknown and will never be computed.

4.2.3 Mesh refinement

Henceforth, let 75 be an initial triangulation of Q into compact triangles. For mesh re-
finement, we use newest vertex bisection (NVB); cf. [Ste08] for d > 2 with admissible 7,
as well as [KPP13] for d = 2 and [DGS23] for d > 2 with nonadmissible 7. Ford = 1,
we refer to [AFF*13]. For each triangulation 75 and marked elements My < 75, let
T, = refine(7y, Mpy) be the coarsest refinement of 77 such that at least all elements
T € My have been refined, i.e., My C 75 \ 7. We write 7;, € T(7g) if 7, can be obtained
from 7y by finitely many steps of NVB, and, for N € Ny, we write 7, € Ty (7) if 7, € T(7)
and #7, — #7g < N. To abbreviate notation, let T := T(7). Throughout, any 757 € T
is associated with a finite-dimensional space Xy c X such that nestedness of meshes
T, € T(75) implies nestedness of the associated spaces Xy C Xj,.
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4.2 Strongly monotone operators

4.2.4 Axioms of adaptivity and a posteriori error estimator

For 7y € T,T € 7y, and vy € Xy, let ny(T,vy) € Rso be the local contributions of an
a posteriori error estimator and abbreviate

1/2
Ny (vy) = ng(Tg, vy), where ng (Uy, vy) = ( Z nu (T, vH)z) forall Uy € 7. (4.13)
Te Uy

We suppose that the error estimator ny satisfies the following axioms of adaptivity
from [CFPP14] with a slightly relaxed variant of stability (A1) in the spirit of [DGOA].

(A1) stability: For all 9 > 0 and all Uy C 7, N g, there exists Cgap, [9] > 0 such that for all
vp € Xy and vy € Xy with max {|[[val, lv, — vall} < O, it holds that

7 (U, vi) = ni (Up, )| < Coran 9] llvn — valll.
(A2) reduction: With 0 < ¢q < 1, it holds that
M (Te\Ti, vir) < Gred N (Tu\Tn, vy)  forallvy € Xpy.
(A3) reliability: There exists C, > 0 such that
N = ugll < Cret i (ugy).
(A4) discrete reliability: There exists Cg;e; > 0 such that
ey = ugll < Carer N (Ter\ T, ).

4.2.5 Application of abstract framework (4.2) to semilinear PDEs (4.1)

In the following, we comment on how the semilinear PDE (4.1) fits into the abstract frame-
work in Section 4.2.1-4.2.4. Let Q c R4, d € {1,2,3 | }, be a bounded Lipschitz domain
with polygonal boundary. The weak formulation of the semilinear model problem (4.1)
reads: Given F € H™1(Q), find u* € X = H;(Q) such that

(AVu*, Vu)g + (b(u*), v)q = (F, v) forallv e Hy(Q), (4.14)

where (-, -)q denotes the L?(Q)-scalar product. Note that (4.14) coincides with (4.2), where
Au = (AVu, V-)g+(b(u), yowithu € X. The precise assumptions on the model problem
are given as follows.

Assumptions on the right-hand side. We suppose the following.
(RHS) Let(F, v) := (f, v)a + {f, Vv)q with given f € L?>(Q) and f € [L?(Q)]“.

Assumptions on the diffusion coefficient. The diffusion coefficient A satisfies the
following standard assumptions:
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(ELL) A € L®(Q; Rgi;;g), where A(x) is a symmetric and uniformly positive definite matrix,

i.e., the minimal and maximal eigenvalues satisfy

0 < po = essinf Apin (A(x)) < esssup Amax(A(x)) = up < .
xeQ xeQ

In particular, the A-induced energy scalar product (v, w)) := (AVv, Vw)qg induces an
equivalent norm [|v]| = (v, v)/? on H}(Q).

Assumptions on the nonlinear reaction coefficient. The nonlinearity b(-) satisfies
the following assumptions from [BHSZ11, (A1)-(A3)]:

(CAR) b: Q xR — R is a Carathéodory function, i.e., for all n € Ny, the n-th derivative
b = d¢b of b with respect to the second argument ¢ satisfies that

> forany ¢ € R, the function x +— b (x, ¢) is measurable on Q,
> for any x € Q, the function ¢ — b (x, &) exists and is continuous in ¢.

(MON) We assume monotonicity in the second argument, i.e., b’(x, &) := bV (x, &) > 0 for
all x € Qand ¢ € R. By considering b(v) := b(v) — b(0) and f := f — b(0), we assume
without loss of generality that b(x, 0) = 0.

To establish continuity of v — (b(v), w)q, we impose the following growth condition on
b(v); see, e.g., [FK80, Chapter III, (12)] or [BHSZ11, (A4)]:

(GC) There existR > 0 and N € Nwith N < 5 for d = 3 such that

IbN)(x,&)| <R fora.e.x € Qandall ¢ € R.

These assumptions suffice to prove that the operator A := X — X’ = H~1(Q) associated
with the model problem (4.14) is strongly monotone (SM) and locally Lipschitz continu-
ous (LIP) in the sense of Section 4.2.1; see [®AIL1, Lemma 3.21].

Energy minimization. Associated with the semilinear model problem (4.14), we con-
sider the energy

v(x)
8(v):%‘/|A1/2Vv|2dx+// b(s)dsdx—/fvdx—/f~Vvdx forveHol(Q).
Q aJo Q Q

To ensure the well-posedness of integrals, we require the following stronger growth con-
dition (guaranteeing compactness of the nonlinear reaction term). Indeed, the same
assumption is also required for stability (A1) of the residual error estimator (4.15) below.

(CGC) Thereholds (GC),ifd € {1, 2}. If d = 3, there holds (GC) with the stronger assumption
N € {2,3}.

Residual error estimator. To guarantee well-posedness, we additionally require that
Alr € [Wh(T)]9%d and f|r € (Wb (T)]%forall T € 75, where 7 is the initial triangulation
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4.3 Fully adaptive algorithm

of the adaptive algorithm. Then, for 7;; € T and vy € Xy, the local contributions of the
standard residual error estimator (4.13) for the semilinear model problem (4.14) read

0 (T, vi)? = h2 |f + div(AVoy - ) = b(ui) 2

(4.15)
+hr [[(AVv = F) - 10122 op0q)

where hy = |T|? and where [[ - ]| denotes the jump across edges (for d = 2) resp. faces
(for d = 3) and n denotes the outer unit normal vector. For d = 1, these jumps vanish, i.e.,
[[ - 11 = 0. The axioms of adaptivity are established for the present setting in [DGOA].

Proposition 4.5 ([OGOA, Proposition 2.15]). Suppose (RHS), (ELL), (CAR), (MON),
and (CGC). Suppose that NVB is employed as a refinement strategy. Then, the resid-
ual error estimator from (4.15) satisfies (A1)—(A4) from Section 4.2.4. The constant Cy
depends only on d, gy, and uniform shape regularity of the initial mesh 7y. The constant
Carel depends, in addition, on the polynomial degree p, and Cq,, [ 9] depends furthermore
onl|Q|,9,N,R,andA. O

Algebraic solver. As an algebraic solver, we employ a norm-contractive solver to solve
the Zarantonello system (4.10). Possible choices are, e.g., an optimally preconditioned
conjugate gradient method [CNX12] or an optimal geometric multigrid [WZ17; IMPS23].
More precisely, the numerical experiments below employ the 2p-robust multigrid method
from [IMPS23], which is well-defined owing to ellipticity (ELL).

4.3 Fully adaptive algorithm

In this section, we present the adaptive iterative linearized finite element method (AIL-
FEM). As a first main result, we prove that the iterates from the proposed algorithm are
uniformly bounded.

4.3.1 Fully adaptive algorithm

In this section, we introduce a fully adaptive algorithm that steers mesh refinement (¢), lin-
earization (k) and the algebraic solver (i). The algorithm utilizes specific stopping indices
denoted by an underline, namely ¢, k[ €], i[ €, k]. However, we may omit the dependence

when it is apparent from the context, such as in the abbreviation uf’i = uf'l[e’k].

Algorithm 4.6: adaptive iterative linearized FEM (AILFEM)

Input: Initial mesh 7y, marking parameters 0 < 0 < 1, Ciparx > 1, solver parameters
Min, Aalg > 0, minimal number of algebraic solver steps imin € N, initial guess ug,o =

ug'* = ug’i € Xo with |||u8’°||| < 2M, and Zarantonello damping parameter § > 0.

Adaptive loop: Forall ¢ =0, 1,2, ..., repeat the following steps (I)-(III):
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(I) SOLVE & ESTIMATE. Forallk =1,2,3,..., repeat steps (a)—(c):

k—-1,i k-1,i

(a) Define uf’o '=u, ~and, for theoretical reasons, u£ =D¢(G5u, ).
(b) Foralli=1,2,3,... repeat steps (i)—(ii):
(i) Compute uf’i = ‘I/g(u ]” 1) and error estimator ng(ue h.

(ii) Terminate the i-loop and deﬁne i[e, k] =iif

k,i-1 k,i k,i k,i k,0 : :
T < Aaig [Aain me (™) + g = g ] AND i < i (4.16)

(c) Terminate the k-loop and define k[¢] := k if

lleey”

EWE®) — &(uty < A2 me(uy™y? AND  Jluy |l < 2M. 4.17)

(IT) MARK. Find a set M, € M[9, u;’*] ={U T | 0 m(uf’i)2 < ne(Uy, uf’i)z} such
that
#My < Cark min #U,. (4.18)

UreMe[0,up"]
(III) REFINE. Generate the new mesh Te+1 = refine(My, 7¢) by employing NVB and

00 ._ 0i ._ 0% ._ ki
define Up,y = Upy = U —uz ! (nested iteration).

Output: Sequences of successively refined trlangulations 7¢, discrete approximations
k " and corresponding error estimators 7, (u .

For the analysis of Algorithm 4.6, we define the countably infinite index set
={(L, k,i) e N "isused in Algorithm 4.6 |, }
where, for any (¢, 0,0) € Q, the final indices are defined as

£ :=sup{f e Ng: (£,0,0) e Q} € NpyU {0},
k(€] :==sup{{| k} e N: (£,k,0) € Q} € NU {0},
i[€, k] =sup{{| i} eN: (£, k,i) € Q} € NU {oo}.

We note, first, that these definitions are consistent with those of Algorithm 4.6, second,
that Lemma 4.7 below proves that i[ ¢, k] < oo, and, third, that hence either £ = o or £ < o

with k[£] = . Forall (¢, k, i) € Q, we introduce the total step counter |-, -, -| defined by
=1 k[C]i[¢ K] - i-1

[0,k i| = #{(0', K, € Q| (€, ki) < (,k, )} = ) Z > 1+Z Z 1+ 31,
=0 k=1 =1 =1 =1 =1

We note that this definition provides a lexicographic ordering on Q.
In the later application to AILFEM for semilinear elliptic PDEs, every step of Algo-
rithm 4.6 can be performed in linear complexity as the following arguments show.

> SOLVE. The employed algebraic solver is an hp-robust multigrid [IMPS23] and hence
each algebraic solver step requires only O (#7;) operations.
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> ESTIMATE. The simultaneous computation of the standard error indicators n, (T, uf'i )
forall T € 7; can be done at the cost of O (#7;).
> MARK. The employed Dorfler marking (and the involved determination of M) is in-
deed a linear complexity problem; see [Ste07] for Cpa = 2 and [PP20] for Cpapi = 1.
> REFINE. The refinement of 7; is based on NVB and, owing to the mesh-closure esti-
mate [BDDO04; Ste08], requires only linear cost O(#7;).
Thus, the total work until and including the computation of uf’i is proportional to

0—1 k[e]i[e¢ k"] k—1i[¢,k"]

cost((,k,i) = ) #fr,:z Z Z #7‘/+Z Z #‘T+Z#T (4.19)

(k' 7)eQ =0 k’'=1 i'= k= =1
e,k ,i"| <|0,k,i]

An important observation is that the algebraic solver loop always terminates.

Lemma 4.7. Independently of the adaptivity parameters 0, Ay, and Ay, thei-loop of
Algorithm 4.6 always terminates, i.e., i[ ¢, k] < o forall (¢, k,0) € Q.

Proof. We argue as in [BIM*23, Lemma 3.2]. Let (¢, k, 0) € Q. We argue by contradiction
and assume that the i-loop stopping criterion (4.16) in Algorithm 4.6(1.b.ii) always fails
and hence i[¢, k] = co. By assumption (4.12), the algebraic solver ¥, (uf’*; -) is contractive
and hence convergent with limit u ;f’* = Dy (5; uf_li) from Algorithm 4.6(I.a). Moreover,
by failure of the stopping criterion (4.16) in Algorithm 4.6(1.b.ii), we thus obtain that

0y 4160 p k 1
Tle(u )+|||u —u, s Nyt - - |||

This yields |||u:f - ue %I = 0 and hence uf =u, ki foralli € Nom since the algebraic solver

is contractive. Consequently, the i-loop stopping criterion (4.16) in Algorithm 4.6(1.b.ii)
will be satisfied for i = iyi. This contradicts our assumption, and hence we conclude that
i[e, k] < oo. O

4.3.2 Energy contraction for the inexact Zarantonello iteration

In this section, we prove uniform boundedness of the iterates u,’ o from Algorithm 4.6:
Note that the algorithm does not compute the Zarantonello iterate u = @y (6; ulf b l)
exactly, but relies on an approximation uf Lruk .. We prove that this inexact Zarantonello
iteration is contractive with respect to the energy, which is the case if at least ipjn € N
steps of the contractive algebraic solver are performed, i.e., i[¢, k] > ipin. In particular,
a suitable choice of the damping parameter § > 0 and the index iy, are derived in the
following.

Theorem 4.8

Suppose that A satisfies (SM), (LIP), and (POT). With M from (4.4), definet = M +
?)M(@)l/2 > 4M. Let Mjin, Aaig > 0 and 0 < 6 < 1 be arbitrary. Suppose thatlllu?’olll =
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|||u2‘i||| < 2M with M > 0 from (4.4). Choose imin € N such that

g < 1/3. (4.20)

Then, for any choice of § > 0 satisfying0 < & < min{ 5, %}, there exists a uniform
energy contraction constant0 < qg = qg[6, 1] < 1 (see (4.33b) below) such that the
following holds.

> nested iteration: |||uf’£||| <2M if(€,k,i) e (4.21)
> i-uniform bound: |||u;f’£||| <7 if(€,k,i) e @; (4.22)

> &-contraction: 8(u§+1'£) -&u)) < g4 (S(uf'é) -&(uy))) if (6, k+1,i) € Q. (4.23)

With (4.21)—(4.23), we obtain for all iterates the
> uniform bound: |||u;f'i||| <57 if(L,k,i) Q. (4.24)

Moreover, there exists an index ko = ko[ 5, 7, @, L[3M], M| € N independently of the mesh

refinement index € such that, for allk’ > ko, the nested iteration condition |||u;f,’i||| <2M
in the k-loop stopping criterion (4.17) is always met.

The main observation of the following lemma is that the uniform boundedness is passed
on by the inexact Zarantonello iteration along the k-loop indices.

Lemma 4.9. Suppose that A satisfies (SM), (LIP), and (POT). Let A, Aqig > 0 be arbi-

trary and define t = M+E’>M(M)1/2 >4M. Letk € No with0 < k < k[¢] and

a

leeg ™l < . (4.25)

Then, for imin € N satisfying (4.20) and for any 0 < 6 < min{ 7, %}, it holds that

1 L[57] k+1,i ki k,i k+1,i
0= (55— =5 ) Mg ™ = I < &) - &™)
1 : : (4.26)
< (= - 3 ) ™ = g I forall ¢k +1,) € Q.

6 (1 - qalg )

Proof. The proofis subdivided into five steps.
Step 1 (choice of i,in). We note that for any iy € N, the property (4.20) is indeed
equivalent to

1-24"

1! q

5 < ——° foralli> imn. 4.27)
1- qalg

Step 2 (boundedness). Defineef*! := uf“’i— u§£ Recall thatfor0 < § < 2a/L[27]?, the

Zarantonello iteration satisfies contraction (4.11). Hence, the contraction of the algebraic
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solver (4.12), the triangle inequality, nested iteration uf*l 0 _ uf l, assumption (4.25), and
4M < 17 show that
1 k+1, k+1,0 k+1, z[t’ k+1] k+1, k 1,0 k+1, k,i
e ™M Il < Meey ™ =, ™l + Ml ™ - e ||| Daig ||| B 7 | R 7l P |
k+1, ki ) k 1,
< 2|I|u T w < 2 ey - u, *||I+II|uE‘ ]
(. . (4.25)

=nr 43, 18,27 lluy —ug ™l < 4(M +7) < 51.

With the convexity of the norm and |||u;f’£||| < 7 < 57, we also obtain that
k+1,i k+1
oty ™1 < max flug* — ¢ e < 5 (4.28)

Step 3. Sinqe the energy & = P — F from (POT) is Gateaux differentiable, it follows that
() = S(ufi +t ef*1) is differentiable with

@' (1) = (dE(uy " +1ef*), ey = (A(uy" +ref*) — F, ef). (4.29)

The fundamental theorem of calculus and the exact Zarantonello iteration (4.10) show
that

1 1 )
8(1/{@ ) 8( 5"’1 L) — (0) — (p(l) = —‘/0 (t) dr (4. 29) ‘/0' <ﬂ(u§y1+ teéc+l) -F, eéc+1> dr

1
=—/ <ﬂ(uk’+tee+1)—ﬂ(ue ), eg”) dt—(ﬂ(ue ) F, eé“”)
0

(4.10) u

1
—/ (ﬂ(ukl+te£+1)—ﬂ(ua) efly dt + — ((uk+1* cebly. .30
0

Step 4 (proof of lower bound in (4.26)). For any i € Nwith i < i[¢, k], the contrac-

tion (4.12) of the algebraic solver and nested iteration u;f = uf“ 0 prove that

ketlx _ kel (412)  G1e,k+1] . k+1,% k% k+1,i k+1,i ki
e = g™ S gy M = g < gl Mgt = g gl Mg = gL
This gives rise to the a posteriori estimate
k+1, k+lz alg k+1,i ki alg K+l
Mug™ " —uy Ml € ——— - g — "Ml = 1 lleg ™l (4.31)
alg - alg
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With (4.31), imin < i < i[¢, k + 1], and (4.27), we derive

k+1, k, k 1,
<<uk+1* _ ue , eEH» _ « £+ z_ z, e£+1»+«uk+l* + z, ee+l»

k+1p12 k+1, k+1t 1 k+12 k+1 k+1z k+1
= lleg Il + Qug ™" - Uy +>>>||Ie+lll = Il **— “lllles I

(4.31)
2

k+1 anlg k+1 2( k12
”le |||] — | llle, ™ Il |||€g I >0. (4.32)
qalg

k+1 k+1
leg I {llleg™ 1l = -

With the local Lipschitz continuity (LIP) and (4.28), it follows from (4.30) that

kali. (LIP) ! kg2, kil _ Kl kel
&)~ 2" ([ rL5t) de) eI+ Sl e
(132) LIST] 0 kr1y2

2 55 - S0 ek e

Since 0 < § < 1/L[57], the last expression is positive.
Step 5 (proof of upper bound in (4.26)). To derive the upper equivalence constant, we
infer from Step 4 that

k+1 i

k+1, kz 1 k+12 k+1,
Qug ™ —u,*, egt™y < lllef ™I + lluy ™ -

k+1
U “Millee™

(4.31)
k+1 k+1 k+1 k+1
< ek ek + 2 el ] = (——— ek
g

al alg

Combined with Step 3, we obtain that
1 .
Bt -8 = [ Al e -Aulh, ey dioe g (@l -uf ey

(SM) ! Y 1 a
([ de e P+ e - al ef < (- ) HefIE
0 o(1- Dalg )

This concludes the proof. i

Lemma 4.10 (energy contraction). Suppose the assumptions of Lemma 4.9. Recall
imin € N from (4.20). Then, for0 < § < min{ﬁ, %}, it holds that

0 <& ™) - &8uf) < qeld, 117 [E(u,") - E(ud)] (4.332)

with the contraction constant

1 ( lrlngm)Z 62 2
2. _1_(=_ a
0<qel6,1]? = 1 ( : L[ST]) o] <1 (4.33b)
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4.3 Fully adaptive algorithm

We note that qg[ 5, 1] — 1 as § — 0. In particular, it holds that

k+1,i

(1-ggl[6, 7] )[8(u )—S(u;)] <8(u£ ) E(u, )<8(u2 ) E(uy). (4.34)

Proof. First, we observe that

. (SM) ; 43
allluy — uk’llll2 < (Au) - Aukt u; — Ly =2 (F Au —ub Ly
0 0 [ ¢ e 2 ¢ (4.35)
101 e, i k,i k+1, k.i ki '
« B TR ThiE g T » << |||U -, ||| g — e, -

The inverse triangle inequality and contraction (4.12) of the algebraic solver prove that

k+1, k+1,i
Moy ™ = g = Meef % = g 1= M+ = g ™) w6
(4 1 ) ki, (4.35) - ki .
> (- g g™ w2 (1= g S alluf - u,
Since 0 < 6 < min{ sy 51] L[21 2} it follows that
(4.6) k+1, ki k+1,
0 < & —8up) =8(uh) - &) - [8(uy™) - &(uy ™)
(4.26) . L[57] k+li k2
< ™ - 8(0—(26 2 ) g™ = g
(436) k,i
&) - ) ~ (55~ T3) (- gl 6 o g — uf P
lmln 2 2
(4.6) (1-qy,")"a" 6 ki N
< (1—[1—6L[51]] Lo )[S(ue ) - Ew))]
i
= qg[5,7)% [&(u,") - E(uy)].
. ) ) . (1- ;rltgun)Z a? .
We may rewrite gg[d,7]° = 1 — C§ + C L[57] 6 with C = — I Since 0 < § <

min{L[éT 21]2} < L[ST],we obtain that 0 < gg[§, 7] < 1. This proves (4.33). The lower
inequality in (4.34) follows from the triangle inequality The upper inequality in (4.34)

holdsduetoo<a(u§+“) &(uy) and hence &(uy") ~&(up ™) = &(uy™) - E(uf) +E(ul) -
E(u f”’) < &(u, )—S(ue*) This concludes the proof. O

Proof of Theorem 4.8. The proof consists of four steps.

Step 1 (proof of (4.22)-(4.23) for k = 0 and all ¢ € Np) Let ¢ € Ny with ¢ < £ be arbitrary,

but fixed. From the initial guess ug’o or Algorithm 4.6(I.c) and u? = u? 0= uf}l for any

¢ € N, we have that |||u2’0||| < 2M and a fortiori |||u2'0||| < 7. This proves (4.22) for k = 0 and
all ¢ € N with ¢ < ¢ (even with the stronger bound 2M < 7).

In particular, we may apply Lemma 4.10 to obtain thata(u;’L)—S(u;) < ggl6,1]? [8(u2‘£)—
&(uy)], which proves (4.23) for k = 0 and € € N.

Step 2 (proof of (4.22)-(4.23) for k > 0 and all ¢ € Np) Let ¢ € Ny with ¢ < £. We argue
by induction on k, where Step 1 proves the base case k = 0. Hence, we may assume
that boundedness (4.22) holds forall 0 < k” < k. Lemma 4.10 applied separately for all
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4 semilinear AILFEM with linearization and algebraic solver

0 < k’ < kyields energy contraction (4.33) for the indices 0 < k’ < k. Overall, we obtain
that

+i * (433) ,i * (433) + ,L’ *
Sy ™~ 8wy < qels, 1 [ ~ 8] < qeld, TPEY [ - &),
(4.37)

where we only used energy contraction (4.33) for 0 < k’ < k, i.e., for indices _that are
covered by the induction hypothesis. From (4.37), [[lu; Il < M from (4.4), and |||u2’£||| <2M
and u?’i = u?’o from Step 1, we obtain that

a4 < Mo I+ e = a0
()7 e - swp)
U Mgt (%)1/2 &) - &)
M+ art (L[?;M] )1/2 Ny = w) Il < M+ gf*! (@)1/2 3M <71. (4.38)

Thus, boundedness (4.22) is satisfied for 0 < k¥’ < k + 1. Again, Lemma 8 yields energy
contraction for 0 < k’ < k + 1. This completes the induction argument and concludes
that (4.22)—(4.23) hold for all ¢ € Ny and all k£ € Ny.

Step 3 (uniform boundedness). Contraction of the algebraic solver (4.12), the straight-
forward estimate from the exact Zarantonello iteration (4.10), ||lu*|| £ M < 7 from (4.4),
|||u2“‘0||| < 1 from (4.22), and the constraint § < min{1/L[57], 2a/L[27]?} which ensures
that 6L[27] < §L[57] < 1, yield that

(LIP)
k, k.0 K0y kO k,0 k,0
Moy ™ = uy Il = NP (85 ,7) =yl < SNF = A(uy )l < 8 L[27] [lu* - uy |l < 27,

With |||u§’*||| < |||u§’0||| + |||uéf'* - ulf’olll < 37 owing to (4.21), it follows that

ki @12 ko ' kx kO .
ey < g ”|+q;]g”|ug —u, |l <5t forall (¢,k,i) € Q.

Step 4 (existence of ko) Let £ € Ny with ¢ < £. Asin (4.38) from Step 2, we obtain

j L[3M]\1/2
O R e R T

Clearly, there exists a minimal integer ko = ko[qgg, a, L[3M]] = ko[d, 7, @, L[3M],M] € N
such that, for all k > kg, it holds that

M+6]IEC (L[f;M])l/Z 3

<2M.

In particular, ko is independent of the mesh level ¢ and |||u2€’£||| <2Mforall kg < k < k[?].
This concludes the proof. o
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4.3 Fully adaptive algorithm

Remark 4.11. (i) According to uniform boundedness (4.24), all involved Lipschitz constants
or stability constants are uniformly bounded byL [107] and Cy,p, [107], respectively.
(ii) Under the assumption that0 < 6 < min{ zrz 51] L[ZZT]Z} energy contraction (4.23) and

the lower bound in the norm-energy equivalence (4.26) are even equivalent, i.e.,
(4.23) < (4.26).

To see this, recall that the proof of energy contraction (4.23) in Lemma 4.10 exploits (4.26).
The converse implication is obtained as follows: First, energy contraction yields

™) —swr) <qi[8(wy -] =2 {[Ewy ) — @)+ [EWH*) - ewp)]}
(4.39)
which gives rise to the a posteriori estimate

q2
[a( ) - E(uf). (4.40)

0< &™) -sw)) < — —
E

In particular, we note that the energy difference on the right-hand side is nonnegative.
Exploiting uniform boundedness (4.22), the last inequality yields that

k+1,%

k,i2 k+1,% 2 2 2
— 1y ° S My — ™ N+ My - ||| (1+(anr[6 270)°%) lluy —u@ il

(4 6)

2z,

< [8(ug) - 8f)] + [a<u£f”'*> ~sp] " ~[6@lh - sk,

~YE

This concludes the argument.

Remark 4.12. (i) The stopping criteria (4.16) and (4.17) read schematically
[accuracy criterion]| AND [iterationcriterion].

(ii) The accuracy criterion in (4.17) is heuristically motivated by the fact that the dis-
cretization error (estimated by ny(-)) shall dominate the linearization error

a k+1,i,0 4 k+1, 423) k+1,i\7 4 k+1,

2 g = RS s - ) &™) A me a2,
(4.41)

This allows a posteriori error control over the linearization error by means of computable

energy differences.
(iii) The accuracy criterion (4.16) is satisfied given that the discretization and linearization
error dominate the algebraic error in the sense of

. (4.12)  (al (4.16) (al
Mg ™ =2 < g e S = A [ e gl M- (442)
alg
Once thei-loop is stopped the equivalence (4. 26) and nested iteration u;f'o = uf 11yzeld
k 1, k-1,
ety ™ = uf O = N = g™ P = &y~ - E(uy™).
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4 semilinear AILFEM with linearization and algebraic solver

4.4 Full R-linear convergence

We prove full R-linear convergence of Algorithm 4.6 by adapting the analysis of [HPSV21;
BFM*23]. The new result extends [©AIL1, Theorem 13], where an exact solve for the Zaran-
tonello iteration (4.10) is supposed. The new proof is built on a summability argument,
but the stopping criteria (4.16)—(4.17) with iteration count criteria require further analy-
sis to prove full R-linear convergence even (and unlike [HPSV21; BEM*23]) for arbitrary
adaptivity parameters 0 < 6 < 1, Aj;, > 0 and A, > 0.

Theorem 4.13: full R-linear convergence of Algorithm

Suppose the assumptions of Theorem 4.8. Suppose the axioms of adaptivity (A1)—(A3). Let
Mins Aatg > 0,0 < 0 < 1, Cark > 1, and uy® € Xo with||lug®|ll < 2M. Then, Algorithm 4.6
guarantees full R-linear convergence of the quasi-error

Hy" o= lud = g I+ g™ = g+ me (ug™), (4.43)
i.e., there exist constants 0 < ¢, < 1 and Gy, > 0 such that
H;Z,i SCﬁﬂqﬂjt;},k,il—IE',k',i’lHlecl',i’ forall (¢, ki), (€, k,i) e Qwith|t, k', i'| <|¢, k,i|. (4.44)

The constant qy, depends only on 0, geq from (A2), q;, [6,271] from Proposition 4.4, qg
from Theorem 4.8, and g4 from (4.12). The constant Cy;,, depends onlyonM, a, Ccsa[2M],
Clgar [6;27], Atin, Galg, Aalg: Crels Cstab [107], and imin.

Proof of Theorem 4.13. The proofis split into seven steps.
Step 1 (equivalences of quasi-error quantities). Throughout the proof, we approach
H’Lf” from (4.43) after introducing auxiliary quantities such as

HE = [8(u,") - 82 + 1m0y forall (¢,k, i) € Q (4.45)

and

Hy = [Efh) - @)1V + y neulh "2 HE forall (0,k,1) € @, (4.46)

where 0 < y < 1is a free parameter to be fixed later in (4.51) below. In the following,

i 4.46 . .
we show that Hf’l ~ Hf 429 Hy. First, note that the equivalence of energy and norm

from (4.6) (with L[27] from boundedness (4.22) and (4.4)) yields that

HE < HE + [luf* — o9 L B forall (0,k, 1) € Q. (4.47)

The a posteriori estimate (4.42) for the algebraic solver from Remark 4.12(iii), norm-energy
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4.4 Full R-linear convergence

equivalence (4.26), and the stopping criterion (4.17) show that

* 4 42) qal. k,i k,i k0
llee,”™ = e &l - Aatg [Ain e (") + |||MZL— g ||
1- alg
(4.26) 1/2 ( ki k
< 772(” )+ [S(u NH_8u u, )] / e(utii) < Hy.

With (4.47), we conclude that Hy ~ Hf ~ Hfl
Step 2 (estimator reduction). The axioms (A1)-(A2) and Dorfler marking (4.18) prove
the estimator reduction estimate (cf., e.g., [GHPS21, Equation (52)])

ki
e () < o ne(uy™) + Coap [4M] llugy — ug™lll forall € € No, (4.48)

where 4M stems from nested iteration (4.21) from Theorem 4.8. Moreover, the triangle
inequality, the equivalence (4.6), and energy contraction (4.23) give that

k,i
ety = gl < Mgy = g+ Mgy — g™l

(46) ( )1/2 [8( g+1) 8( €+1)]1/2 (—)1/ [8( ) 8( £+1)]1/2

. 1/2 *
(423) (14 131])( ) [a(u;’*)—S(”m)]l/Z'

Combined with the estimator reduction estimate (4.48) and with 1 + gg < 2, we obtain
with C; = 2 (2/a)'/? Cyap [4M] that

1/2

nm(um) < qp m(ue hyo [8(u b _&(u ] forall0 < ¢ < ¢. (4.49)

Step 3 (tail summability with respect to £). Since 1 < k[¢+1], nested iteration u?fl = uf’i

proves that

(4. 46)

i, (@2
Ho (et - 8 )] +ynea ) < 6IE (&) - & )]+ y neaugh)

(4.49) i 1/2 ,
< (qe+Cry) [8@EY — 8@ )] + g0 v ne(urh)

< max{qe+C1 7, g0} ([Euy) =8 )] P4y ne(uyh))  forall(€+1,k,i) e Q. (4.50)
With 0 < gp < 1, we choose 0 < y < (1 —¢gg)/C; < 1 to guarantee that
0<g:=max{gg+Ci7y, qo} < 1. (4.51)
With the triangle inequality, (4.50) leads us to

1/2 k,i
eyl = [8(ug+1 8(”;.;.1)] / +Yﬂe+1(ug’+£1)

(4.50) _ i _ N .
7 (&) - @] +yno(uh) + G [E(u) - Ewi)] (4.52)
qag+by forall (¢,k,i) e Q.

ING
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4 semilinear AILFEM with linearization and algebraic solver

By exploiting the equivalence (4.6) and stability (A1) (since all uf’i are uniformly bounded
by nested iteration (4.21)), the Céa lemma (4.5), and reliability (A3) prove that

1/2 (4 6)
(&) - &wi)]"

@0 [8( u, ) 8(ue)]1/2+ng(u Y~ apforall€ < ¢’ <¢” < ¢ with (¢,k,i) € Q.

g, ue/”l I||u — U ||| ne(ug) |||ug — g+ e (g

(4.53)

Hence, we infer that by.y < a¢forall0 < ¢ < ¢+ N < £ with (¢, k, i) € Q, where the hidden
stability constant Cy,, [3M] depends on 3M due to (4.4) and nested iteration (4.21).

The energy & from (POT) (and its Pythagorean identity that leads to a telescoping sum)
as well as the minimization property (4.7) for Xy = X allow for the estimate

(+N-1 -1 @)
Z b2 ~ Z [E@s) - &(uy,))] < 8w -Ewy) < Euy) - &)
(4.54)
(4 6) L 2M (A3 L[2M (4.
2 L ]||| *—ul < cfel [2 ] ne(up)? < agforauose<e+zvsg,

where the hidden stability constant Cg,, depends on 3M due to (4.4) and nested itera-
tion (4.21).

With (4.52)—(4.54), the assumptions for the tail summability criterion from [BFM*23,
Lemma 6] are met. We thus conclude tail summability of Hy,j = Hf =~ ay, ie.,

(-1

k k

H, sH, forall0<¢<¢. (4.55)

0'=0+1

Step 4 (quasi-contraction in k). We distinguish three cases.
Case 4.1: Evaluation of (4.17) yields TRUE A FALSE. This gives rise to

o ki ki 44 k,i
g =l < Maeg M+ Mg = g =Ml < M+ Qg = uy "l
and hence, we conclude that M < |||lu) - u5’1|||. Thus,

1/2

k,i
M luy —u,~ll we 1 ,2\1/2
1:_<# < _(

/ ; .
M M = M E) (8 - &wp)]

(4.23) 2\1/2 i
< Q) e -swh)

(4.56)

We recall from (4.4) that [||u || < M and ||lu; - ujll < 2M independently of €. Moreover,
there holds quasi-monotonicity of the estimators in the sense that

. 1/2
Ne(u]) < Cmon Mo(tty)  With Cmon = [2 + 8 Cytan [2M 1% (1 + Ccea[2M]?) CZ)| 2. (4.57)

rel

cf. [CFPP14, Lemma 3.6] or [©AIL1, Equation 3.42] for the locally Lipschitz continuous set-
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4.4 Full R-linear convergence

ting. In particular, estimate (4.57) holds also for the discrete limit
space X = closure( U%:o X¢). Additionally, we note that the estimate (4.57) admits

(4. k— 1/2
ne(t) 2" Conon 10(2) < Comon 10(0) + Conon Cegan [M1 2l 5 [E(u™") — &(u)] 2
(4.58)

The estimate (4.58), stability (A1) with stability constant Cgi,p, [27] due to (4.22) and (4.4),
and energy contraction (4.23) yield that

ki, (AD 1/2
ne () S ne(u) + Coap 2] lluaf — ) % Tle(ug)+[5(u¢ h-swh]”
(458) k-1, 1/2

SET(7)

k- 12, 1/2 42 (4.59)
1,i

< e —ewn] Y + [ - sw)]* U (o)

For 0 < k' < k < k[¢], the definition (4.45), energy contraction (4.23), and (4.59) prove

(4.23) k-1,i ( 5 ) k- 1/2
HY 'S ge (8, ™) - &))" + ne(u e ) 8, ™) - &))" 060
4.23) 1y 1/2 @ I ’
< a T B - ewn] s A
This concludes Case 4.1. o

Case 4.2: Evaluation of (4.17) yields FALSE A FALSE or FALSE A TRUE. For0 < k' < k <
k[¢], the definition (4.45), the failure of the accuracy condition in the stopping criterion
for the inexact Zarantonello linearization (4.17), energy minimization (4.7), and energy
contraction (4.23) prove that

(4. 17) 12 k-1, ki 11/2
HE <7 By - 8] + 250 [6(, ™) - E@gh]
(4.7), (4.23) k-1, 1/2 (4 23) o 1/2 (4 45) o
ST B —e@p] TS g (s ~ew)]? ST gk HE.
(4.61)
This concludes Case 4.2. o

Case 4.3: Evaluation of (4.17) yields TRUE A TRUE. The equivalence (4.26), bounded-
ness (4.22), and energy minimization (4.7) prove that

(A) 1/2 k-1,

[8( u, )_S(UZ)] +llu g _ug |”+77€(ug ,1)

(4 26) 172 @.7) (4.62)

< +[e@s™M) —g@ih]'? L 2HET forall (6,k, 1) € Q.

Since k = k[¢] — 1 is covered by Case 4.1 or Case 4.2, estimate (4.62) leads to

k (4.62) qe k-1 k-1 (4.60), (4.61) k[0]-Kk 1K',

Hy < % Hy  <qgeH; < dg H, = (4.63)
This concludes Case 4.3. o
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4 semilinear AILFEM with linearization and algebraic solver

Overall, the estimates (4.60)—(4.61) and (4.63) result in

HE < gf " HEY forall (¢,k,j) e Qwith0 < k' < k < k[¢], (4.64)

~

where the hidden constant depends only on M, Cg,,[27], @, L[2M], Cc¢a[2M ], Crel, Atins

and gg. Furthermore, we recall from (4.53) that [&(u) ) - 8(u;)]1/ ? < Hf_ .- Together
with nested iteration uf o= u? = ue *, this yields that

1/2 ki 12 .k k
H) = [8( Uy 1) &(up)] / +ne(ugt) s [E(uiy) - E(u)] / +H,_, <Hg,

and thus

H) < HY | forall (¢,0,0) e Qwith ¢ > 1. (4.65)

Step 5 (tail summability with respect to ¢ and k). The estimates (4.64)—(4.65) from
Step 4 as well as (4.55) from Step 3 and the geometric series prove that

k[e] ¢ )
, B = N , (. 64) =
K _ Hr 0
2, Hi= ), Hiw ) Z I
(0',k"i)eQ k’'=k+1 =0+1 k’=0 0/ =0+
[€7,k,i|>€,k,i| (4.66)

(4. 65) (4. 55) (4.64)
Z HE, KpHE S HE forall (¢,k,0) € Q.

Step 6 (contractionin i). Fori = 0 and k = 0, we recall that uo = ug L= u?’* by definition

(4.6) . . k- .
and hence H(g,o ~ Hg. For k > 1, nested iteration u;f 0 — ue = ! contraction of the exact

Zarantonello iteration (4.11), and energy equivalence (4.6) 1mply that

k 1,
Meg™* =g Ol < Mug = wy ™Il + g - e (anr[é 3M] +1) fllug - s 2H;
Therefore, by using the equivalence (4.6) once more, we obtain that
HF? <H*V+ forall (¢,k,0) €Q, where (k - 1), := max{0, k - 1}. (4.67)
Let (¢, k,i) € Q. It holds that
Hy U= g = w4+ Mg ™ = wg M+ me (g™
(A1) ;
< HP' 4 (24 Cap[107]) [l — w1 (4.68)
(4. 12) (4.43) i
< HP T+ (24 Coap[10T]) (Gaig + D g™ —ug ™' s HY™

where Cg,5[107] stems from the uniform bound (4.24) from Theorem 4.8. Hence, we
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4.4 Full R-linear convergence

obtain
Hy' s Hy' ~ gl Hy™ forall (6,k,i) € Qwith 0 < i’ < i < imin.

Forall0 < i’ < imin < i < i[¢, k], we obtain with an a posteriori estimate based on
the contraction of the Zarantonello iteration (4.11) (where ‘72 = qg 100 27] depends on
7 from (4.22)), the a posteriori estimate (4.42) for the algebraic solver, the failure of the
accuracy criterion of (4.16), and the contraction of the algebraic solver (4.12) that

;i (4.43) i ; ;
HEDU27 g — wl I+ W™ = i+ me g’y < g — wl* 1+ 2 Mul* = wl i+ ne(ufh
qgar[a ] k-1,i ( anr[5 ] ki k,i
< Jzalm Tl - + 2+—) N+ ,
l—qz*ar[ﬁ 2] Ml =, =g 527 Meel™ — wf il + e (ufh)
(44 ) k 1,
lluf' - £|||+||| uy'” 1|||+Tle(u )
(41) kl 1 ki-1 i it prk,i’
lleef s s - ity @ qal g™ = ug Il < gl H', (4.69)

Altogether, the combination of (4.68)—(4.69) proves that

CPHET forall (0,k, i) e@Q  with 0<i’ <i<i[t k], (4.70)

k,i
H S qalg

where the hidden constant depends only on g7, [8;27], Galg, Aalg Cstab[107], and imin-

Step 7 (tail summability with respect to ¢, k, and i). Finally, we observe that

i[e,k] kel [0k 0 Kk[e']i[e k]
HE < S Y S e 3 NS
0 keQ i'=i+1 —k+l i'=0 =0+1 k'=
[0k i[>0,k
(4.70) klel 4 (4.67
Dupie 3w ST S g
k'=k+1 0=+ (k" )eQ
[k, i|>]€,k,i]

(4. 66)

(4 47) (4
< HM 4 HE HY 4+ {o H’” forall (¢, k, i) € Q.

[4 [4

Since Q is countable and linearly ordered, [CFPP14, Lemma 4.9] applies and proves R-
linear convergence (4.44) of H’g". This concludes the proof. ]

Given full R-linear convergence from Theorem 4.13, then convergence rates with respect
to the degrees of freedom coincide with rates with respect to the overall computational
cost, where we recall cost (¢, k, i) from (4.19). Since all essential arguments are provided,
the proof follows verbatim from [BFM*23, Corollary 16].

Corollary 4.14 (rates = complexity). Suppose full R-linear convergence (4.44). Recall
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cost(l, k,i) from (4.19). Then, for anys > 0, it holds that

M(s):= sup (#T)*H{' < sup cost(,k,i)  HY' < Coost M(s), 4.71)
(€,k,i)eQ (€,k,i)e@Q

where the constant C.os; > 0 depends only on Cyy, qiin, and s. Moreover, there exists sy > 0
such that M (s) < o forall0 < s < sy. m]

4.5 Optimal complexity

Aformal approach to optimal complexity relies on the notion of approximation classes [BDD04;
Ste07; CKNS08; CEPP14], which reads as follows: For s > 0, define

* N : *
U a. = su N+1)° min (U
lu*La, = sup [(N+1)" min nopi(14550],

where ug, denotes the exact discrete solution associated with the optimal triangulation
Topt € Tn(7T). For s > 0, we note that |u*| 4, < co means that the sequence of estimators
along optimally chosen meshes decreases at least as fastas (N + 1) ~ N5,

Finally, we are in the position to present the third main result of this paper, namely opti-
mal complexity of Algorithm 4.6. Its proof relies, in essence, on perturbation arguments.
More precisely, sufficiently small 6 and Ay, are required to ensure that Algorithm 4.6 guar-
antees convergence rate s with respect to the overall computational cost (and time) if the

solution u* of (4.2) can be approximated at rate s in the sense of |u* |4, < .

Theorem 4.15: optimal complexity

Definet .= M +3M(@)1/2 > 4M with M from (4.4). Let0 < § < min{—L[éﬂ, TToZ 2a_1 to

[27]°
ensure validity of Theorem 4.8. Define

a(l-q})
ag

/1*

in = Min {1’ ( )1/2/Cstab [3M]}. (4.72)

Suppose the axioms (A1)~(A4). Let0 < 6 < 1,0 < Ayg, and0 < Ay, < Aﬁn such that

(02 + Min/Af)?

lin

(1 = Aiin/Af5)?

lin

< 0* = (14 Cyp[2M]* Co) ™ < 1. (4.73)

0< Hmark =

Then, Algorithm 4.6 guarantees, for all s > 0, that

sup cost(€,k,i)* Hy < Cope max{|u*|a, HJ®}. (4.74)
(€,k,j)eQ

The constant Cope > 0 depends only on gg, a, Csap [107], Crel, Cdrel, Cmarks Cmesh» Clin Glin
#70, and s. In particular, there holds optimal complexity of Algorithm 4.6.

To prove the theorem, we require the following results on the estimator, which relies on
sufficiently small adaptivity parameter A;;, > 0.
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4.5 Optimal complexity

Lemma 4.16 (estimator equivalence). Suppose the assumptions of Theorem 4.8. Recall
AL, from (4.72). Then, for all (€, k, i) € Q with k[£] < oo, it holds that

.
ne(uf) < (1+ Agin /%) me(uy™), (4.75a)

and, for0 < Ay < A, we furthermore have that

ki

(1 /lhn//lhn) e (uzl) < e (uZ) (4.75b)
For0 < A, < /1hn Dérfler marking for uy with parameter Oy, from (4.73) implies
Dorfler marking for u;f'£ with parameter 0, i.e., foranyR, C T¢, there holds theimplication

Omark 10 (u)? < me(Riup)? = One(ue™)? < ne(Re; up ). (4.76)

Proof. The proof consists of two steps.
Step 1. First, we obtain from Remark 4.12(ii) that

@ g — e 42 A e

2
; A e,

E

Exploiting this together with stability (A1), nested iteration (4.23), and boundedness of
the exact discrete solution (4.4), we obtain for any U, C 7, that

(A1) ki i
ne(Uesuf) < ne(Ues ™) + Coap[3M] e = g

(4.41) 25 \122 k.
< Tle((ue,ug %) + Min Cotab [3M] (a(l——qu)) ne(uw,’ D! 4.77)
E

ki k,i
= e (Ue; uy™) + Aiin/ Ay, me (g ™).
The choice U, = 7; yields (4.75a). The same arguments prove that
Ne(Ue; uy™) < no(Ues uf) + Ain/ A, 10 (™). 4.78)

For 0 < Ayin < Aj; and U, = 7¢, the rearrangement of (4.78) proves (4.75Db).
Step 2. Let R, C 7; satisfy ern/:rk ne(uy) < ne(Re; uy). Then, (4.77)-(4.78) prove

(475b)
[1 = Ain /A%, ] 612 e (ug™h) 012 ne(ug) < ne(Re; uf)
(4.77) ki, (4.73) k,i k,i
< ne(Re; ug) + At/ Ay e (u /) = ne(Re;ug) + (012 (1A /AL,) — 0M2] me(ug™).

This yields 6'/2 n, (u 5y < ne(Re; ”e %) and concludes the proof. o

Proof of Theorem 4.15. By Corollary 4.14, it is enough to show

sup (#7;) Hy' < max{|u*|a,, Hy}. (4.79)
(0,k,i)e@
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Without loss of generality, we may suppose that |u*| 4, < o. The proofis subdivided into
two steps.

Step 1. Let 0 < Oparc = (012 + Ajin /A5 )% (1= Nyin /A% )72 < 0* = (1 + Cyqp [2M]* C2)) 7!
and fixany 0 < ¢’ < ¢ — 1. The validity of (A4) and [CFPP14, Lemma 4.14] guarantee the
existence of a set Ry € 7> with 0 < ¢’ < € — 1 such that

#Re < w1 [ne (w17, (4.80)
Omark 778’(”;:) < e (Rev, uz;),

where the hidden constant depends only on (A1)-(A4). By means of (4.76) in Lemma 4.16,
we infer that R, satisfies the Dorfler marking (4.18) in Algorithm 4.6 with 0, i.e.,
Bng/(uf,’l)z < 0 (Rer; uf,‘i)z. Hence, since 0 < 0 < Opax < 0%, the optimality of Dorfler
marking proves

l/s

#Me < Crant#Re 5 11 [me )] (4.81)

Moreover, full R-linear convergence (4.44) together with a posteriori error estimates for the
final iterates (4.41) and (4.42) which use the stopping criteria (4.16)—(4.17), norm-energy
equivalence (4.26)m and estimator equivalence (4.75) prove

0, (444 kz (4.43) ki k,* ki ki
HOL < Mo — w0+ et = wgl+ e ()
(4.42), (4.26) k,i k,0 ki11/2 k,i
S Mg — ugt + (8 (ug) = EugHY? + ne (uy) (4.82)
(4.41), (4.17) (4.75)

< nf’(ue/ ) < e’ (uk’)
Consequently, a combination of (4.81) and (4.82) concludes that

1/s

(4.81) _1/s (4.8
M LI [neCup)] S e RO (4.83)

Step 2. For (¢, k, i) € Q, full R-linear convergence (4.44) and the geometric series prove

Ly (4a4) o ) i .
(ngc,,z) 1/s < (ng,l) 1/s Z (q‘/S)|f,k,l| |e’,k’,i’| < (Hlew) l/s'

1
(0 k7)eQ (€ ki) eQ " (4.84)
e’ k",i"| <0,k [0 k"' <0,k
We recall the mesh-closure estimate [BDDO04; Ste08; KPP13; DGS23]
0-1
#T¢ — #75 < Cinesh Z #M, foralle >0, (4.85)
=0

where Cesn > 1 depends only on 7; and hence in particular on the dimension d. For
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(¢, k,i) € Q, the preceding estimates show that

-1
(4.85)
#—#T < ) #Mo

=0
-1

(483) 1 0,1 —1/8 1 k,,‘, -1 (484) 1 k,‘ -1
3 Tl 1< VRt Il 17 e € P R S 17 (O I

=0 (¢/,k',i")eQ
[€,k",1"| <] €,k

Note that 1 < #7; — #7; yields #7; — #7p + 1 < 2 (#7; — #75). Hence, we get that
(#T - #T5 + 1) HY < Ju*|la,  forall (¢,k, i) € Qwith € > 1. (4.862)

Theorem 4.13 proves that

#7; - #7 + 1) HY = HE0 Y 100 forall (0, &, i) € Qwith £ = 0. (4.86D)
Forall 7; € T, elementary calculation [BHP17, Lemma 22] shows that
HT — #T5 + 1 < #T; < #75 (#T7 — #75 + 1). (4.87)
Forall (¢, k, i) € Q, we thus arrive at
70y S (7 75+ 1* E S max(luta, OO 1)

This concludes the proof of (4.79). m]

4.6 Numerical experiments

The experiments are performed with the open-source software package MooAFEM [IP23].
In the following, Algorithm 4.6 employs the optimal local hp-robust multigrid
method [IMPS23] as algebraic solver. We remark that in our implementation the condi-
tion (4.20) is slightly relaxed to |8(uf'°) - 8(uf’i)| <1072 = tol.

Experiment 4.17 (modified sine-Gordon equation [AHW23, Experiment 5.1]). ForQ =
(0,1)?, we consider

—Au* + (w3 +sin(u*) = f inQ subjectto u* =0 o0ndQ (4.88)

with the monotone semilinearity b(v) = v® + sin(v), which fits into the locally Lipschitz
continuous framework (cf. [2AIL1, Experiment 3.28]). We choose f such that

u* (x) = sin(mx;) sin(mxy).
ForT € Tg, the refinement indicators ny (T; -) read

(T, vg)* = W5 | f + Avy - b(VH)"iz(T) +hr [[[Vvr - n]l "iz(aTmQ)' (4.89)
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6=0.3 0=0.1 ‘ 0=02 ‘ 0=0.3
/\lin
0.1 0.3 0.5 0.7 09 |01 03 0.5 0.7 09 0.1 03 05 0.7 09
/\alg

0.1 1306 650 660 660 660 | 735 639 347 347 347 | 724 659 373 373 373
0.3 928 660 660 660 660 | 545 269 269 269 269 | 505 333 (241 241 [241
0.5 654 654 654 654 654 | 534 274 274 273 273 | 462 278 262 262 262
0.7 649 617 617 617 617 | 293 262 262 262 262 | 420 298 259 259 259
0.9 676 646 646 646 646 | 268 269 269 269 269 | 422 321 247 247 247

0=04 0=0.5 0=0.6
0.1 807 643 357 357 357 816 658 337 350 350 | 882 600 332 361 361
0.3 533 375 252 252 252 | 532 448 266 266 266 | 663 466 293 293 293
0.5 464 346 253 253 253 | 572 399 278 278 278 | 643 389 292 292 292
0.7 487 37T 247 247 247 | 573 427 293 293 293 | 606 402 296 296 296
0.9 502 390 264 264 264 | 520 417 288 288 288 | 563 512 288 288 288

0=0.7 0=0.8 0=0.9
0.1 856 634 361 337 337 | 985 741 413 375 375 | 1028 710 466 344 344
0.3 663 457 321 321 321 | 673 471 328 328 328 | 735 551 349 349 349
0.5 705 446 299 299 299 | 638 452 340 340 340 | 700 542 374 374 374
0.7 630 541 338 338 338 | 752 518 343 343 343 | 680 586 352 352 352
0.9 639 518 347 347 347 | 770 579 373 373 373 | 722 667 367 367 367

Table 4.1: The weighted cost (4.90) of the sine-Gordon problem (4.88) for different adaptiv-
ity parameters Aji, Aqig, 0 € {0.1,0.2,...,0.9} and fixed damping parameter 6 = 0.3, where

the mesh refinement is stopped if 7, (uf’i) < 1074, where the 6-blockwise minimal values
are highlighted in green and the overall minimal value in red .

Forp =2, damping parameter § = 0.3, and inin = 1, we stop the computation as soon as
e (uf’l) < 1074, Table 4.1 depicts the values of the weighted cost

ng(uf'é) cost(l, k, Dp/z (4.90)

to determine the best parameter choice. We observe that the parameters 6 € {0.3,0.4} and
Alin 2 0.5 perform comparably well. The parameter Ay, may be used for fine-tuning, but for
moderate 6 € {0.2,0.3,0.4,0.5,0.6} and as soon as Ay, is set, the influence is comparably
low.

For the following experiments, we set 6 = 0.3, 0 = 0.3, Ljip = 0.7, and Ayg = 0.3. Figure 4.2
depicts the error ||u* — uf’ﬂll and the estimator (uf’i) over cost (€, k, i) (left) and over the
cumulative time in seconds (right) for the displayed polynomial degreesp € {1,2,3}. In
both plots, the decay rate is of (expected) optimal order p/2 forp € {1,2,3}.

Experiment 4.18. We consider a globally Lipschitz continuous example from [HPW21,
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Figure 4.2: Expenment 4.17: Convergence plots of the error ||u* — ue ||| (diamond) and

the error estimator 7, (u ) (circle) over cost (¥, k, i) (left) and over computational time in
seconds (right).

Section 5.3] with Lipschitz constant L = 2 and monotonicity constanta = 1 — 2 exp(—%)
and hence 6 = a/L? ~ 0.138434919925785 is a viable choice. Ford = 2 and the L-shaped
domain (-1,1)%\ ([0,1] x [-1,0]) c R?, we seek u* € Hy(Q) such that

—div(g(|Vu*))Vu*) = f  inQ,

where f is chosen such that u* reads in polar coordinates (r, ¢) € R.o x [0, 27)

2¢
u*(r, p) =r? sm( )(1—rCOS(p)(l+rCOS(p)(l—rsm(p)(1+r81n(p) COoS .

This example has a singularity at the origin. We consider p = 1, since stability (A1) in the
quasilinear case remains open for p > 1. Moreover, the parameters are 6 = 0.3, A, = 0.7,
Aalg = 0.3, and imin = 1.

In Figure 4.3, we plot a sample solution (right) as well as convergence results of various
error components (left) over the degrees of freedom. We observe that after a preasymptotic
phase, optzmal convergence rate —1 / 2 is restored for the exact error (diamond), the quasz—
errorH” the linearization errorS(ue ) 8(u %) (triangle), and the error estimator (u D)
(czrcle)

Experiment 4.19 (singularly perturbed sine-Gordon equation). This example is a variant
of [AHW?23, Experiment 5.2]. Ford = 2 and the L-shaped domain (-1,1)%\ ([0, 1]x[-1,0]) c
R2, let e = 10~° and consider

—eAu* +u* + (u*)3 +sin(u*) =1 inQ subjectto u* =0o0ndQ,
with the monotone semilinearity b(v) = v® + sin(v). In this case, the exact solution u* is
unknown. We use the energy norm||| - |||> = e (V-, V-) + (-, -). The experiment is conducted
with damping parameter 6 = 0.1, g = 0.7, 0 = 0.3, and imin = 1. The refinement
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Figure 4.3: Experiment 4.18: Convergence plots of various error components over the
degrees of freedom (left). Right: Plot of the approximate solution u%él on Xi3 with #X13 =

10209.
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Figure 4.4: Convergence plots of the error estimator 7, (uf’i) over computational time of
Experiment 4.19. Left: Convergence plot for p = 1 Right: Convergence plot for p = 3.

indicator (4.89) is modified along the lines of [Ver13, Remark 4.14] to
(T, ve)? = 3 | f + eAvy — vy — b(VH)”iz(T) +hr |[[e Vog - n]| ”iZ(aTmQ)’

where the scaling factors hy = min{e~'/2 hy, 1} ensure e-robustness of the estimator.

In Figure 4.4, we plot the error estimator n, (uf’l) forall (¢, k,i) € Q against the computa-
tional time for Ay, € {0.1,0.2, ..., 0.9} and polynomial degrees p € {1,3}. The decay rate is
of (expected) optimal order p /2. The choice of Ay, does not play a major role in Figure 4.4
(left) for p = 1, but significantly prolongs the preasymptotic phase for p = 3; see Figure 4.4
(right). Figure 4.5 shows meshes with #nDof = 12475 for Ay, = 0.2 and # nDof = 12152 for
Ain = 0.7. We see that Ay, = 0.7 causes refinement in the interior, since less local smoothing
steps are performed. This experiment shows that Algorithm 4.6 is suitable for a setting with
dominating reaction given that a suitable norm on X is chosen. A large choice of Aj;,, seems
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Figure 4.5: Mesh plot of Experiment 4.19 for p = 3. Left: Adaptivity parameter A;;, = 0.2.
Right: Adaptivity parameter A, = 0.7.

possible, but pays off only after a long preasymptotic phase.
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