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Kurzfassung

Objekte in Videos zu lokalisieren ist eine wichtige Aufgabe in dynamischen Umgebungen,
insbesondere in der Robotik, wenn sich entweder die Position und Orientierung eines
Objekts oder die Kameraperspektive kontinuierlich ändern. Methoden, die Objekte in
einem einzelnen Bild lokalisieren, versagen aufgrund der dynamischen Änderungen in
der Umgebung. Obwohl Tracking-Methoden die zeitlichen und räumlichen Zusammen-
hänge über mehrere Bilder hinweg berücksichtigen, können sich Fehler im Laufe der
Zeit akkumulieren und letztendlich zum Scheitern der Methode führen. Des Weiteren
erschweren teilweise verdeckte Objekte, beispielsweise durch Hände oder anderen Objekte,
die akkurate Lokalisation über längere Zeiträume. In manchen Szenarien, wie bei komplett
verdeckten Objekten, ist es außerdem nicht möglich, die Position und Orientierung des
Objekts visuell zu bestimmen, wodurch Tracking konsequenterweise versagt.

Während RGB(-D) Methoden große Datenmengen für das Training benötigen, schlagen
wir einen vereinfachten Ansatz vor, der 6D Object Tracking als tiefenbasiertes Aus-
richtungsproblem von niedrig aufgelösten 3D Punktwolken betrachtet. Als gemeinsame
Reinforcement Learning (RL) Aufgabe berücksichtigen wir gleichzeitig Abhängigkeiten
zwischen Bildern durch die Registrierung von aufeinanderfolgenden Beobachtungen in
den Tiefenbildern (Frame-To-Frame Registration), sowie das Kompensieren von sich auf-
summierenden Fehlern durch die Einbindung eines Modells als Referenz (Frame-To-Model
Refinement). In unserem Belohnungssystem fördern wir gleichzeitig präzisere Ergebnisse
über mehrerere Optimierungsschritte in einem einzigen Bild, als auch das langfristige,
akkurate Lokalisieren des Objektes über mehrere Bilder hinweg. Wir verwenden ein
Modell zur Berechnung von Referenz-Tiefendaten als geometrische Unsicherheit und
kombinieren dies mit einer Unsicherheits-Metrik des Netzwerks, um die Methode effizient
und autonom zu reinitialisieren.

Unsere Experimente zeigten, dass unser tiefenbasierter Ansatz den Unterschied zu ak-
tuellen RGB-D Methoden verkleinert, während gleichzeitig alle anderen tiefenbasierten
Methoden geschlagen werden. Insbesondere hat unsere gemeinsame Betrachtung von
Frame-To-Frame Registration und Frame-To-Model Refinement bessere Ergebnisse erzielt
als beide Ansätze isoliert, wodurch die Vorteile beider Methoden erfolgreich kombiniert
wurden. Als Ergänzung zu unseren Experimenten an Datensätzen demonstrieren wir
unsere Methode auch in einem Objekt-Übergabe Szenario von Mensch zu Roboter und
zeigen somit die Anwendbarkeit in der realen Welt.
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Abstract

6D object tracking is an essential task in dynamic environments, especially in applications
involving robotic manipulation, where an object’s pose is constantly manipulated or
the camera is moving. While single-frame pose estimation fails in such a scenario,
dedicated object tracking methods aim to leverage temporal and spatial coherence by
exploiting priors, however, the persistence of small errors may accumulate over longer
time horizons and contribute to the deterioration in tracking. The characteristics imposed
by the environment, e.g. partially occluded objects due to hands or other objects, further
exacerbate the challenges of accurate tracking. Moreover, heavily or fully occluded objects
may occur in some scenarios, leading to a situation where tracking is unable to recover.

While RGB(-D) tracking methods rely on vast amounts of training data, we propose to
learn 6D object trajectories from scratch as a simplified depth-only alignment problem,
utilizing limited amounts of low-resolution 3D point clouds. In a joint Reinforcement
Learning (RL) task, our novel network architecture exploits correspondences across frames
by aligning consecutive observations (frame-to-frame registration), while accumulating
errors are compensated via model-based recovery (frame-to-model refinement). Our
multi-frame reward encourages our method to achieve close alignment in a single frame,
while concurrently maintaining track of the object’s pose across longer time horizons.
Propagating the object’s mask as a depth rendering is leveraged as a geometry-guided
uncertainty metric and, in combination with the agent’s uncertainty, contributes to an
efficient and autonomous reinitialization heuristic.

Our experiments demonstrated, how our depth-only method closes the gap towards State
of the Art (SotA) RGB-D methods and outperforms all other depth-based methods. Most
importantly, fusing both subtasks contributes to improved tracking accuracy, as compared
to either subtask in isolation. In addition to quantitative analysis, we showcase the
efficacy of our tracking method in a robotic handover scenario, proving its practicability
in dynamic real-world environments.
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CHAPTER 1
Introduction

Understanding the environment is a crucial skill for any autonomous robot to fulfill its
tasks safely. Every environment consists of a variety of objects - knowing their position
and orientation relative to a specific anchor, such as a robot’s end effector or a camera
position, enables us to precisely define a robot’s task. While single-frame pose estimation
proves to be useful in static scenes, its efficacy is reduced in dynamic environments, where
object poses are constantly manipulated, e.g. by a robot manipulator or a human. 6D
object tracking extends pose estimation on this time axis, providing pose updates per
time step. Considering a dynamic hand-over task, frequent pose updates enable a robot
to follow the target and eventually execute a grasp.

Typically, dedicated object trackers exploit temporal and spatial coherence by matching
information in consecutive frames. However, the accumulating error complicates accurate
pose estimates in subsequent frames, resulting in deterioration in tracking. Conversely,
single-frame pose estimation is able to recover from such errors, but invoking it in every
frame is computationally expensive and may violate the tight time constraints of the
tracking objective. Furthermore, computing the pose from scratch in every frame fails to
exploit the temporal and spatial dependencies of object poses.

Bridging these two, we approach object tracking by 1) leveraging temporal and spatial
coherence by aligning consecutive depth observations (frame-to-frame registration) and
2) simultaneously align with an object model acting as a reference frame (frame-to-
model refinement). Besides being used for (re-)initialization, the pose estimator becomes
obsolete. A combination of Imitation Learning (IL) and RL efficiently fuses both subtasks
and enables the agent to solve 6D object tracking as a point cloud alignment problem
across multiple frames.

1
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Figure 1.1: 6D Object Tracking as a Depth-Based Alignment Problem: Our
proposed approach exploits temporal and spatial correspondences by aligning noisy and
error-afflicted depth observations from consecutive frames (frame-to-frame registration)
while simultaneously aligning with an object model (frame-to-model refinement) as
reference reduces the impact of accumulating errors. We update the pose in each frame
by predicting a unified transformation that jointly solves both tasks.

1.1 Challenges and Research Questions

A common approach for 6D object tracking is to compute the temporal and spatial
dependencies, e.g. by matching features in consecutive observations. Nevertheless, the
tracking process may diverge from the target, e.g. due to occlusion, and the aggregated
error makes future estimations a more complex problem without having any reference.
Conversely, an object model guides single-frame pose estimation by acting as a reference.
However, dismissing the temporal and spatial context of object poses by computing
everything from scratch in each frame limits the temporal consistency and causes jittering
object poses. Moreover, not relying on previous results leads to an increased computa-
tional effort and may violate the tight time constraints of the tracking objective.
The commonly chosen data modality in the field of object tracking [WB21, WTB+23,
DMX+19] and pose estimation are color images (RGB) [XSNF18, LWJ+18]. This prefer-
ence emerges from 1) the high resolution provided by widely available commercial-level
RGB cameras, and 2) leveraging the efficacy of Convolutional Neural Networks (CNNs)
or more recently Vision Transformers (ViTs) [DBK+20] previously applied to image
classification tasks. Even though rich textures of objects enable accurate pose estimation
with color information, illumination changes, and textureless objects limit the ability
to establish corresponding RGB features. Importantly, an object’s appearance in the
RGB frame is also defined by its scale and distance to the camera. However, without
exploiting depth information, ambiguities arise as various combinations of object scale
and camera distance result in the same appearance from the camera’s viewpoint. Fur-
thermore, learning-based approaches require vast amounts of annotated and real(-istic)

2



1.2. Approach and Contribution

RGB training data to learn the corresponding features.
On the other hand, features in depth data are not affected by the texture or illumination
changes. As previously demonstrated in pose refinement applications [BPV21, BPV22],
depth-based methods show stronger generalization as compared to color-based methods
at the expense of introducing geometrical ambiguities, indiscriminate of symmetrical
poses for lookalike shapes. For example, a scene with multiple box-shaped objects is
predestined to mismatches between similar-shaped, but distinct object entities, when
no accurate segmentation information is available. As a result, accurately propagating
masks to keep track of the Region of Interest (ROI) is a challenging, but vital task in
depth-based object tracking.
RGB-D methods aim to merge the best of both worlds. Extending RGB methods with the
depth modality results in a significant accuracy gain [DMX+19]. Nevertheless, processing
an additional data channel imposes further time constraints and truncates the available
time window per frame. Moreover, synchronization issues in real-world applications
result in the temporal misalignment of color and depth information and therefore pose a
challenge to methods utilizing both modalities.
Regardless of the chosen method, heavy occlusion, e.g. by other objects, limits the inlier
ratio in corresponding segments to be used for estimating the 6D pose, presenting one of
the main challenges for object tracking. Furthermore, tracking may be unable to recover
when gathered data points do not correspond to the object, e.g. due to full occlusion or a
large pose error. In such cases, a method to identify when inevitable reinitializations are
required is essential to any object tracking approach. With the absence of ground-truth
data during test time, this is a challenging task and accurately triggering reinitializations
requires a sophisticated approach to determine the plausibility of predictions.
This thesis addresses the just mentioned downsides by answering the following research
questions:

• RQ1: How to approach object tracking as a reinforcement-learning problem? And
how does this compare to SotA-approaches?

• RQ2: How to combine frame-to-frame registration with frame-to-model refinement?
What impact does this combined approach have on the tracking accuracy over
multiple frames as compared to either approach alone?

• RQ3: How robust is the object-tracker to observational noise, e.g. occlusion by
other objects or hands and imperfect segmentation?

• RQ4: How to exploit the agent’s behavior to balance the number of reinitializations
with the tracking accuracy, when no annotated data is available?

1.2 Approach and Contribution

Instead of extending the complex frameworks for 6D object tracking to tackle these
research questions, the work presented in this thesis aims to simplify the overall approach

3



1. Introduction

and view 6D object tracking as a joint task of two depth-based point cloud alignment
objectives illustrated in Fig. 1.1. This thesis proposes to embed an RL agent into a simple
tracking pipeline to reuse the previously refined pose as initialization. A fundamental
observation for this thesis is the complementary nature and joint consideration of two
depth-based subtasks. We propose a hybrid tracking approach that exploits temporal and
spatial dependencies by aligning the depth observations of two consecutive frames (frame-
to-frame registration). Simultaneously, we align the current observation with the object
model sampled under the last known pose (frame-to-model refinement). Importantly,
incorporating the frame-to-model refinement subtask robustifies our approach against
low overlap of consecutive observations by acting as a reference and additionally reduces
the impact of the accumulating error.
In contrast to related work in 6D object tracking, we utilize only depth information
for our approach. First of all, this enables us to achieve SotA performance, albeit
utilizing only a fraction of available training data, as previously shown in depth-based
pose refinement [BPV22], while the resulting network architecture remains efficient. We
maintain the robustness of depth information by rendering the object model under its
last known pose to keep track of corresponding segments. Previously, a combination
of IL and RL has been applied to iterative pose refinement by reinforcing converging
and pruning diverging steps during the refinement process [BPV22]. By extending this
concept to incorporate an additional time axis, closer alignment is reinforced not only
over refinement steps in a single frame but over longer time periods across frames.
We exploit geometric uncertainty indicators by comparing the rendered depth with the
actual depth observation. In addition to that, we interpret the agent’s predicted actions
in the final refinement iteration as a measurement for misalignment. Intuitively, point
clouds are aligned in the last refinement iteration as indicated by the agent’s prediction.
Otherwise, the predicted actions in the last step serve as a meaningful insight to indicate
offset. Eventually, combining both uncertainty metrics enables our method to balance
the number of reinitializations with the achieved tracking accuracy for finegrained tuning
to specific application-dependent requirements.
We evaluate our approach against the SotA in 6D object tracking using procedures
from related work. In addition, we carry out an in-depth ablation study on the YCB-V
dataset [XSNF18] investigating the influence of various components and evaluate it
using the standardized procedures from the BOP Toolkit [Mar23]. Moreover, we provide
qualitative results on HO-3D-r [HROL20, PPL+21] and DexYCB [CYX+21], two in-hand
object manipulation datasets.
Finally, our object tracking approach is demonstrated in a real-world setting. A KUKA
lightweight robotic arm with a RealSense RGB-D camera mounted on its end-effector
follows a target object manipulated by a human, keeping the object centered in the
robot’s point of view, i.e. in the camera frame, with a predefined safety margin of
50cm towards the front of the object. Within an emulated handover scenario, the robot
disregards the safety margin and approaches the object to maintain a position close to
the object’s proximity for a potential grasp. After a certain time window, we assume
the potential grasp to be finished and the robot reverts to the original safety margin of

4
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50cm. Continuing tracking of the object concludes the demonstration of our method in a
real-world application.
To summarize, this thesis is built on the following contributions:

• A novel network architecture exploits temporal and spatial coherence by fusing
frame-to-frame registration with frame-to-model refinement.

• Incorporating an additional time axis in the reward reinforces closer alignment not
only over multiple refinement steps but over multiple frames. Keeping track of the
corresponding segments across frames is achieved by rendering the object model
under the last known pose, resulting in a 2D mask used to extract the corresponding
object regions.

• Inevitable reinitializations are detected by a combination of uncertainty-based
triggers without relying on ground-truth data.

1.3 Organization

We provide an overview of key concepts used in this work in Chap. 2, including point
cloud registration, pose estimation, pose refinement, and object tracking. In Chap. 3, we
present a comprehensive summary of related work in all of those research fields. Our
novel object tracking approach is presented in Chap. 4, followed by an exhaustive analysis
of our contributions in Chap. 5 to evaluate against recent methods in object tracking. In
addition to our experiments on datasets, we present our tracking method in a real-world
robotic application in Chap. 6. We conclude this thesis in Chap 7 and give an outlook
for future research.
This work may be considered as the follow-up work to SporeAgent [BPV22], thereby this
thesis builds on vast amounts of the contributions of Bauer et al. presented in [BPV21,
BPV22]. We explicitly mention the adopted components.

Noteworthy, the results presented in this thesis have already been published in the
following publication:

• Konstantin Röhrl, Dominik Bauer, Timothy Patten, and Markus Vincze. TrackA-
gent: 6D Object Tracking via Reinforcement Learning. In International Conference
on Computer Vision Systems, pages 323-355, 2023.

5





CHAPTER 2
Background

This chapter introduces concepts and their challenges along with definitions used in
the entire thesis. We first introduce the core concept of this work, namely point cloud
registration. Eventually, pose estimation and how it is related to pose refinement is
discussed. Finally, we give an overview of 6D object tracking and show, how it builds on
the previously discussed concepts.

2.1 Point Cloud Registration

One of the crucial concepts used in this work is point cloud registration. For the
subsequent definitions, we follow the nomenclature introduced in [BPV21]. In general,
point clouds are an unstructured set of points in the 3D space used to model surfaces and
all kinds of shapes. Point cloud registration aims to realign two point clouds gathered
from different observations in a common coordinate system. Considering an application
in 6D object tracking, observations from two consecutive frames are offset exactly by
the motion between frames, i.e. knowledge about the corresponding relative object or
camera motion - 3D translation and 3D rotation - realigns both point clouds in the 3D
space. The properties of using 3D data introduce various challenges as listed below:

• Sensor Noise: Depth data gathered from LiDAR sensors or 3D cameras is, as
with every other sensor, error-afflicted and noisy. As a result, inaccuracies in the
point clouds complicate the process of accurately determining correspondences.

• Overlapping Fraction: When observations are gathered from different viewpoints,
e.g. as a robot follows a target trajectory or an object like a banana is manipulated,
observations from different timestamps in general only partially overlap. Therefore,
not all points in the source have a correspondence with the target and vice versa.
As a result, matching the corresponding segments to estimate a transformation
becomes a more complex task with decreasing overlap.

7



2. Background

iteration 1 iteration 2 iteration 3 iteration 4

target source

Figure 2.1: Basic Concept of the ICP algorithm [BM92]: In each iteration, points
are matched to their nearest neighbor (marked in orange for a few selected points).
Eventually, a transformation is found to reduce the distance between source and target.
Once a certain convergence criteria, e.g. average point distance or the number of loop
iterations, is fulfilled, the loop stops.

• Outliers: Either due to inaccurate segmentation, occlusion, or sensor noise, out-
liers significantly deteriorate the alignment. A method to identify and mitigate
the influence of outliers leverages the robustness of any point cloud registration
algorithm. Noteworthy, outlier-rejection interplays with the overlapping fraction.
Pruning outliers too aggressively may complicate the registration process due to a
truncated overlap.

• Computational Limits: To not violate any time constraints, the resolution
of point clouds has to be constrained depending on the available resources in
an application. Otherwise, matching points in two large-scale point clouds with
a high level of detail leads to a significantly increased runtime. Recent work
has shown, that 3D features can be efficiently learned from low-resolution point
clouds [BPV21, BPV22], leading to less inference time. Therefore, the level of
detail for any application dealing with point clouds has to be balanced with the
computational capacity.

The Iterative Closest Point (ICP) algorithm [BM92] is the most fundamental work in
this field and builds on a simple, yet effective two-stage loop. First, match the closest
points in the source and target and eventually find a transformation minimizing the error
between both point clouds. This two-step loop is executed until convergence is reached
as visualized in Fig. 2.1. However, ICP may get stuck in a local optimum and therefore
must be initialized with a sufficiently good estimate.

2.2 Pose Estimation

An intensely studied problem in computer vision is estimating the 6D object pose, i.e.
3D translation and 3D rotation of an object, from RGB-D images with respect to the

8
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Figure 2.2: Illustration of the 2D/3D Correspondences. By utilizing observations
from the 2D image, the task of pose estimation is to compute the 3D rotation and 3D
translation (=6D pose) of an object relative to the camera. The observed 3D point
cloud is retrieved by leveraging the corresponding object region from the 2D depth frame.
Given an accurate pose estimate, the object model aligns with the observed point cloud
in the 3D space. Illustration inspired by [Bau21].

camera position. As illustrated in Fig. 2.2, model-based pose estimation solves the
2D/3D correspondences by aligning the observation with a 3D object model, either via
features in the color information [XSNF18], depth information [VLM18] or using both
modalities [WMTJ21, LZZ+22].
A challenge for pose estimation is the reliable detection of all objects in an image.
Furthermore, the sensitivity of color information, as utilized by the current best performing
methods [Mar23], to changing illumination conditions affects the accuracy of estimated
poses. Moreover, since the object may be located anywhere in the image, the huge
space of potential poses typically causes a pose estimator to only yield an approximate
estimate. For example, an error-afflicted pose estimate may cause a failed robotic grasp
in a handover task. The additional consideration of depth information robustifies the
estimation process, allowing to solve the scale invariance [AHS22] by exploiting the
observed and viewpoint-dependent object depth.
According to the results of the BOP Challenge 2022 [Mar23], pose estimation solely
relying on depth information caught less attention in recent years, where the current best
performing depth-based pose estimator is not competitive compared to recent RGB(-D)
methods.
Overall, pose estimation algorithms follow two main approaches to solve the 2D-3D
correspondences. Indirect methods rely on a 3D object model and establish the 2D-3D
correspondence by matching 2D key points to the 3D mesh. Commonly, the second
stage includes a variant of the PnP/Ransac algorithm to determine the 6D pose. Even
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2. Background

Figure 2.3: Partial Object Observation vs. Object Model: From Left to Right:
RGB and depth frame respectively with the spam object highlighted. The partial, noisy,
and error-afflicted object view (blue) gathered from the observation. The object model
(orange) represented as a 3D-mesh. The subsampled object model (orange) used to
establish correspondences with the observation.

though indirect methods perform better in general, the PnP/Ransac stage is typically
not differentiable, as required for learning-based approaches. Direct methods avoid
this drawback by considering a point matching loss or separating the loss functions for
different components.

2.3 Pose Refinement

Object pose refinement is an application of point cloud registration, typically used to
refine inaccurate estimations yielded from a pose estimator. Noteworthy, the approximate
pose estimate indicates the image region to be considered, allowing for a more finegrained
refinement process due to a higher percentage of inliers and a constrained pose space.
Color-based pose refinement aims to refine predictions by comparing rendered patches
of the object model under its estimated pose with the actual RGB segment [LWJ+18].
Conversely, utilizing depth data enables to realign the 3D object model with the depth
observation of the object by a point cloud registration method, e.g. the ICP algo-
rithm [BM92].
For the scope of this thesis, we focus on depth-based pose refinement. In contrast to
general point cloud registration that aligns point clouds with similar properties, the
nature of either point cloud significantly differs in pose refinement. The 3D object
model aims for a noise-free and complete representation of the object. Conversely, the
observed object depth is viewpoint-dependent and covers only a partial view. In addition,
point coordinates may be jittered due to sensor noise and outliers caused by inaccurate
segmentation skew the alignment process. Importantly, pose refinement may not converge
towards the ground-truth pose and possibly even result in a worsened estimate, e.g. when
the initial estimate is significantly offset. Fig. 2.3 visualizes the discrepancy between the
object model and a gathered depth observation.
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observation O

action-distribution
π(a|O)

- +0 - +0 - +0 - +0

Figure 2.4: Correspondence of Refinement Transformation and Predicted
Action-Distribution. On the top, misaligned sources (light-blue) and targets (gray)
are shown to form the current observation O. The bottom visualizes the corresponding
action-distribution π(a|O). The action-distribution classifies the offset between source
and target into discretized misalignment bins. For example, a large offset results in a
large action-step and similarily for smaller offsets. The zero-action indicates alignment
between source and target. This figure has been adapted from [BPV21] but is self-drawn.

2.3.1 Reinforced pose refinement

RL in general is a machine learning technique, where an agent is learning by making
decisions to interact with an environment. By receiving constant feedback about the
impact of its own actions through a reward-system, the agent eventually updates its
decision-making paradigm, i.e. its policy, aiming to maximize the received reward.
Iterative registration, as defined in Eq. 2.4, predicts n relative transformations to realign
source and target, also referred to as a refinement trajectory. Reinforced pose refinement
aims to determine this refinement trajectory by iteratively selecting the most probable
refinement action ai from a policy π to achieve closer alignment of the current source
X

′

i and target Y in each iteration i, based on the current observation O = (X
′

i , Y ).
To reinforce closer alignment over multiple refinement steps, the reward system must
encourage converging and prune diverging steps. Typically, the action space is defined by
a number of discretized steps to manipulate points on one of the six degrees of freedom,
i.e. action-distributions to select the most suitable actions from are predicted for each
axis of translation and rotation respectively.
To summarize, the goal of reinforced pose refinement is to predict an action-distribution
π(a|O) for a given observation O(X ′, Y ) to select the most suitable action to realign source
X ′ with target Y in a minimum number of steps. Fig. 2.4 visualizes the correspondence
of the action-distribution with varying offsets of source and target.

2.4 Object Tracking

6D object tracking extends single-frame pose estimation with respect to the time axis
for a continuous prediction of object poses by taking priors into account. In dynamic
environments, frequent updates of object poses enable applications in robotic manipu-
lation [MKR+19, KMI+18, THDT21], augmented reality [MUS16] or autonomous driv-
ing [ESLG10, MSL23].
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In a dynamic hand-over scenario, single-shot pose estimation fails when objects are
constantly manipulated due to being held by human hands. Additionally, if the camera is
mounted to the robot’s end effector, following the target requires frequent pose updates
to align with the camera frame.
Interestingly, the more sophisticated task of tracking hands, which involves tracking
multiple hand joints, enables the efficient creation of demonstration data used to train
a robot policy [HJN+20]. Similarly, high-frequency object poses are a prerequisite for
augmented reality to (re-)align virtual objects with their anchor in the real world. In
that field, real-time 6D object tracking makes the transition from reality to the virtual
world more seamless.
As previously mentioned, heavy occlusion poses a threat to the efficacy of object tracking
methods. The insufficient amount of inliers results in less robust correspondences and
therefore missmatches, ultimately leading to increased pose errors. Addressing this issue,
a reinitialization strategy is a crucial component for any object tracking approach. Such
a strategy enables tracking methods to recover even when an object is entirely occluded,
e.g. by hands. Since annotated data is not available during test time, either the behavior
of the method itself needs to be exploited or additional plausibility checks, such as
rendering-based verification [BPV20], are implemented.

2.5 Task Definition

2.5.1 Point Cloud Registration

Mathematically speaking, the observed source X ′ is offset from the target Y by an
unknown rigid transformation T ′ = [R′ ∈ SO(3), t′ ∈ R

3]. Moreover, the observed source
X ′ is defined as

X ′ = T ′ ⊗ X (2.1)

Similarly, the aligned source X is yielded by transforming the observed source X ′ with
the transformation T .

X = T ⊗ X ′ (2.2)

As a result, to realign both observed source X ′ and target Y , one needs to find the
transformation T = T ′−1. One-shot registration [WS19] refers to this process being
executed in a single step. Otherwise, iterative registration retrieves the corresponding
transformation T by carrying out n updates. Each update i transforms the observed
source X ′

i−1 by a transformation T ′
i .

Xi = T ′
i ⊗ X ′

i−1 (2.3)

Xn = T ′
n ⊗ ... ⊗ T ′

1� �� �
T ′

⊗X ′
0 = X (2.4)
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1
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1
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3
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1
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•
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•
t = 1

•
t = 2

•
t = 3

Figure 2.5: Relative vs. Absolute Pose Transformations: Relative transformations
(dotted lines) indicate the object motion between frames. Absolute poses describe the 3D
translation and 3D rotation of the object with respect to the camera position. Starting off
from an initially known pose T0, the absolute object pose Tτ for time step τ is computed
by a concatenation of all relative transformations in the interval t = (0, τ ].

In general, dividing the registration process into multiple substeps (iterative registration)
may yield a higher accuracy than through one-shot registration due to the potential
to correct initial errors iteratively. Still, an error-afflicted estimate in a single step
complicates reaching alignment in subsequent steps and may even result in iterative
divergence in the worst case.

2.5.2 Object Tracking

Let us assume, that the initial object pose T0 is given with respect to the camera position.
To align with the next frame, the absolute object pose T1 for the subsequent timestep
τ = 1 is computed by finding a relative rigid transformation T mot

1 describing the motion
between frames, e.g. via aligning both depth observations with a point cloud registration
algorithm. More generally, the pose Tτ for time step τ is computed by concatenating all
previous relative transformations T mot

t for t ∈ (0, τ ] to transform the initial pose T0 as
visualized in Fig. 2.5.

Tτ = T mot
τ ⊗ T mot

τ−1 ⊗ ... ⊗ T mot
1 ⊗ T0 (2.5)
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CHAPTER 3
Related Work

Building on an exhaustive literature review, we present how the concepts introduced in
Chap. 2 are approached by recent methods. Specifically, we put increased attention on
the concepts of pose refinement and object tracking, as they build the core for this thesis.

3.1 Point Cloud Registration

A substantial contribution in this field was the ICP algorithm [BM92], as explained
in Sec. 2.1. Go-ICP [YlCJ16] uses a Branch-and-Bound algorithm to determine upper
and lower bounds for the error metric, ensuring the classical ICP algorithm to not get
stuck in a local optimum. As implemented in NVIDIA’s Isaac SDK - a framework to
build virtual robotic applications [MVeSTT19] - as an object pose refinement algorithm,
Rusinkiewicz [Rus19] proposes an ICP-variant to leverage surface normals as an additional
cue for a symmetric error function to minimize the point-to-plane error. Li et al. [LHZA22]
further optimized this symmetric error function by incorporating the surface normals’
rotation, resulting in improved registration accuracy with equal computational effort.
Recent years have shown a trend towards using Deep Neural Networks (DNNs) for
the general task of point cloud registration. A crucial contribution for this field is
PointNet [QSMG17], enabling to learn a more meaningful feature representation of the
unstructured data points due to the symmetric max pooling function. The authors of
PointNetLK [AGRL19] labeled PointNet [QSMG17] as a ’learnable imaging function’
and paired it with a method used in image alignment, a modified variant of the Lucas
& Kanade algorithm, to then be applied in iterative point cloud registration. In their
work, the first stage classifies characteristics and contributes to a global feature vector
to eventually compute a suitable transformation that closer aligns source and target.
Building on the concepts of PointNetLK [AGRL19], the method of Bauer et al., namely
ReAgent [BPV21], considers point cloud registration as a classification of misalignment
and combines a simplified PointNet [QSMG17] architecture with a succeeding policy
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network. A combination of IL and RL with a Chamfer-distance guided reward results in
SotA accuracy. To robustify the matching process in partially overlapping point clouds,
Arnold et al. [AMD21] fuses self- and cross-attention to improve matching corresponding
features.

3.2 Pose Estimation

By discretizing the pose space, Kehl et al. translated pose estimation to a classification
problem [KMT+17]. Inspired how humans learn properties in the real world from a
2D perception without annotations, Self6D [WML+21] utilizes differentiable rendering
to contribute to a self-supervised learning framework by aiming for 1) visual and 2)
geometrical alignment with the observation.
Focus was also put on making the PnP/Ransac stage differentiable for indirect meth-
ods [BR19]. However, this tradeoff causes a more complex training strategy. On the
other hand, Hu et al. replaced the PnP/Ransac stage with a neural network inspired by
PointNet [QSMG17] to regress the 6D pose.
The winner of the BOP challenge 2022 [Mar23], namely GDRNPP [WMTJ21, LZZ+22],
fuses direct and indirect methods together into one approach. In the first step, the
network takes the ROI, estimated by an object detector, as input and predicts geometric
feature maps. A subsequent Patch-PnP CNN directly regresses the 6D object pose from
dense correspondences based on the initially predicted geometric feature maps. In the
BOP Challenge 2022 [Mar23], GDRNPP achieves the highest accuracy for RGB-only
compared to all other competitors. Additionally, it also has been the fastest approach in
its category.
2D object detections are of high relevance for 6D pose estimation, as they are typically
used in the first stage to identify object instances. ZebraPose [SSF+22] matches a hierar-
chical binary encoding of the object’s surface to a precomputed surface code to eventually
solve for the 6D pose using a Ransac/PnP stage.

3.3 Pose Refinement

DeepIM [LWJ+18] uses a CNN to iteratively predict relative transformations by rendering
the object under its currently estimated pose and matching it with the observed RGB
image. To increase robustness for small objects, DeepIM operates on zoomed-in and
up-sampled image patches to compare with the rendering. PoseRBPF [DMX+19] uses
rao-blackwellized particle filtering in combination with an auto-encoder network to
estimate the 6D object pose. Each particle corresponds to a translation hypothesis to be
compared with the observation, while a rotation likelihood is computed by matching with
precomputed embeddings. Treating pose refinement as an action-decision process, Busam
et al. [BJN20] refine estimated poses by selecting suitable actions in each iteration for
closer alignment of the RGB observation with a rendered reference. As the follow-up
work for ReAgent [BPV21], SporeAgent [BPV22] incorporates physical constraints to
robustify their depth-only pose refinement in multi-object scenarios such as in the YCB-V
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dataset [XSNF18]. Considering non-floating and non-intersecting objects along with
their symmetry axes contributes to more plausible object poses, while the approach
itself only utilizes a hundredth of the available YCB-V training data. Building on the
classical matching of RGB observations with its rendered counterpart, RePOSE [ILK+21]
optimizes the rendering process by substituting RGB textures with a learnable feature
texture to directly obtain a feature map. Especially in multi-object scenes, the achieved
runtime is affected by the computational cost of feature extraction. However, the authors
of RePOSE [ILK+21] achieved significantly reduced runtime as compared to other recent
methods by fusing rendering and feature extraction into a single step. DeepRM [AS23]
builds on the DeepIM framework and utilizes a network with recurring connections,
allowing to leverage and propagate information across refinement steps. Similarly,
RNNPose [XLZ+22] exploits recurrent network connections for building a correspondence
field based on learned 2D/3D correspondences to predict the pose best describing the
observation.

3.4 Object Tracking

From a broader perspective, all object tracking approaches solve a pose estimation/re-
finement problem at their core. Vice versa, algorithms solving single-frame pose estima-
tion/refinement algorithms can be embedded into simple tracking pipelines by reusing
the previous frame’s estimate as initialization.
A crucial component for any object tracker is an approach to identify when tracking
deteriorates. Intuitively, the pose error decreases with each iterative update, therefore
the last refinement iteration ideally yields the identity matrix, i.e. does not manipulate
the pose. The authors of DeepIM exploit this fact and trigger a reinitialization as soon
as the average translation and rotation in the last refinement iteration over the last
10 frames exceed a certain threshold. Specifically dedicated to the tracking objective,
PoseRBPF [DMX+19] incorporates a motion model to propagate particles to the current
step by exploiting motion priors.
In recent years, the acquisition of synthetic datasets including annotated 6D poses
through the utilization of a photorealistic renderer [DSW+19] gained significant popu-
larity. However, transferring knowledge from a simulation to the real world remains a
challenge due to uncertainties, imperfections and other influences not grasped by the
simulation. Wen et al. addressed this issue in se(3)-tracknet [WMRB20] with a smart
feature-encoding disentanglement technique that refines the ability to generalize to real
data from simulation data (sim2real gap) using domain randomization. Aiming to reduce
the sim2real gap, physical constraints are considered during the object placement, and
synthetic depth frames are post-processed to mimic the artifacts caused by a real depth
sensor.
The authors of ICG [SST22] fuse two probability density functions (PDFs), for color
and depth information respectively. Forming the region-based PDF, color histograms
distinguish the object from the background to calculate correspondence lines for the
object’s contour. Heavily inspired by ICP [BM92], geometric cues in the depth image are
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used to contribute to the depth-based PDF. In a joint optimization, the most plausible
pose is found for the current frame.
BundleTrack [WB21] enables 6D object tracking for novel objects without relying on an
object model. Relative transformations are found by matching key points in consecu-
tive frames. A keyframe memory pool stores distinct object views, allowing for global
optimization of previously computed poses. Wen et al. fused the BundleTrack pipeline
with a neural object field to autonomously reconstruct objects in the follow-up work
BundleSDF [WTB+23]. The neural object field grabs all distinct views of the object to
concurrently model the geometric shape and its texture.
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CHAPTER 4
TrackAgent: Reinforced Object

Tracking

Within this chapter, we explain the link from pose refinement to 6D object tracking
as an introduction to the concept of our method. We start by giving an overview of
our TrackAgent pipeline to eventually discuss our contributions. To combine frame-
to-frame registration with frame-to-model refinement, we present three fusion variants
with varying complexity. Moreover, we extend the reward system of a single-frame pose
refinement method [BPV22] to additionally achieve closer alignment across longer time
horizons across frames. Exploiting information within our pipeline for an autonomous
reinitialization heuristic concludes this chapter.

4.1 From Pose Refinement to 6D Object Tracking

To achieve accurate results in the field of pose estimation, a typical procedure is to utilize
a pose estimation method for yielding an approximate estimate, to be refined by a pose
refinement method. Such a procedure stems from the characteristics of both a pose
estimation and pose refinement method.
A pose estimator has to identify and localize object entities in the entire image region,
resulting in a huge set of potential object poses and consequently difficult to solve
accurately. Moreover, changing illumination, occlusion, and noise further complicate
obtaining precise estimates.
In contrast, the initial guess by the pose estimator constrains the pose space and enables
refinement methods to focus on a specific image region, e.g. by rendering the object
model under the initial estimate to yield a 2D mask. Even though outliers are still likely
to be present, their ratio compared to inliers is significantly decreased in contrast to
operating on the entire image, as pose estimation must do. Consequently, pose refinement
leverages the error-afflicted estimate for a more finegrained alignment process to predict
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4. TrackAgent: Reinforced Object Tracking

Figure 4.1: Refining Object Poses from Approximate Estimates: This graphic
illustrates the estimates generated by a pose estimator [XSNF18] (green contours) and
refined by a pose refinement method [LWJ+18] (red contours). Without the additional
refinement step, applications like grasping would fail. For our tracking approach, we obtain
a rough estimate in the current frame by leveraging the previously refined pose, resulting
in less computational effort by exploiting prior information. Taken from [LWJ+18].

precise object poses.
As illustrated in Fig. 4.1, an approximate estimate serves as a meaningful cue on the image
region to be considered, but the accuracy is insufficient for applications like grasping
and therefore requires an additional processing step. Similarly to refining approximate
pose estimations by a pose estimator, we consider the refined pose of the previous frame
as a sufficiently accurate initialization for the current frame, eventually to be refined to
align the object pose with the current frame. Such an approach enables us to 1) invoke
the pose estimator only when inevitable, i.e. for (re-)initialization, resulting in lower
computational effort and 2) induce temporal correspondences by reusing the previous
pose.

4.2 TrackAgent - Contributions

This thesis proposes to embed an RL agent used for pose refinement into a tracking pipeline.
By reusing previous pose estimates as initialization for the current frame, the tracking
pipeline builds on previous computations while the pose estimator is only required for (re-
)initializations. A hybrid architecture for the RL agent fuses frame-to-frame registration
and frame-to-model refinement to approach 6D object tracking as a depth-based point
cloud alignment problem across frames. The joint solving of both subtasks stems from
its complementary nature. Temporal and spatial coherence is ensured by registering
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consecutive depth observations from the same (noisy) distribution via frame-to-frame
registration . Simultaneously, the frame-to-model refinement subtask incorporates an
object model as a reference, reducing the impact of accumulating error for our method. By
acting as a guidance for the alignment process, the object model additionally robustifies
the frame-to-frame registration subtask to low-overlap of corresponding observations,
enabling tracking even when establishing correspondences across frames fails.
Recently, iterative pose refinement methods [BPV22] leverage RL to reinforce closer
alignment over multiple steps for a single frame. For the tracking objective, it is desired
to maintain close alignment over multiple frames, not only steps in a single frame. For
our reward system, we achieve such a behavior via a joint consideration of the obtained
alignment 1) over multiple refinement steps in a single frame and 2) across multiple
frames by considering the final estimates per frame. While this allows our method to
keep track of the pose across longer time periods, maintaining track of the corresponding
image segments is also crucial to (depth-based) object tracking. We yield a 2D mask for
the object by rendering the object model under its previously estimated pose, allowing us
to segment the observation as a point cloud from the current depth frame. Importantly,
this mask is predestined to include outliers, as it only leverages the refined pose from the
previous frame instead of the current one. To address this issue, we incorporate strategies
in our method to classify and reject outliers, resulting in a mitigated influence of outliers
on the overall alignment process.
Since object tracking may deteriorate in challenging scenarios, e.g. due to heavy occlusion
or inaccurate segmentation, our method considers its own uncertainty to autonomously
reinitialize implausible poses. We control the number of reinitializations with the achieved
tracking accuracy by a joint consideration of 1) the geometric uncertainty stemming from
a comparison of the observed depth with a rendered reference and 2) the agent’s own
uncertainty indicated by the predicted action-distribution

4.3 Defining the Subtasks

We define the depth frame at time step t as Dt. We retrieve the object observation as a
3D point cloud Pt from the depth frame Dt using the rendered mask Mt and the cam
intrinsics. As a reference, the object model O is uniformly sampled under the previously
known pose Tt.
The frame-to-frame registration subtask is defined as realigning consecutive observations,
i.e. align Pt with Pt−1, by finding a suitable transformation T reg

t . As defined in Eq. 2.5,
the object’s pose Tτ for time step τ is computed by a concatenation of all prior relative
transformations over t ∈ (0, τ ] for a given initial pose T0. Analogous for frame-to-model

refinement, the goal is to find a transformation T ref
t to realign the observation Pt with

the object model sampled under the previously refined pose Ot = Tt−1 ⊗ Ot−1.
By fusing these two, our goal is to compute a single transformation T mot

t , that simultane-
ously fulfills the objectives of either subtask, i.e. T mot

t = T ref
t = T reg

t . We characterize
this as a guided registration process, where realigning consecutive observations is guided
by, and concurrently adjusted to align with, the object model as a reference.
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Figure 4.2: Overview of the TrackAgent-Pipeline: Using the last known pose and
the object model enables us to render a mask to obtain the point cloud Pt from the current
depth frame. The subsampled object model Ot and previous depth observation Pt−1 are
transformed with the last refined pose. In a joint task, TrackAgent iteratively finds a
unified transformation to closer align both observations (frame-to-frame registration) as
well as the current observation with the object model (frame-to-model refinement). The
current observation Pt is forwarded to the next frame t + 1 to align with the observation
in the next frame.

4.4 The Tracking Pipeline

We initialize our pipeline, for the sake of comparison, with the ground-truth pose and
a 2D mask segmenting the object region. In every frame Dt, we obtain a 2D mask Mt

by rendering the object model under the last known pose, enabling us to keep track of
the corresponding segment in the depth frame to extract a point cloud Pt. TrackAgent
iteratively predicts actions for translation and rotation to closer align the object pose
with the current frame by finding a joint alignment of the current observation Pt with
1) the previous observation Pt−1 (frame-to-frame registration) and 2) the object model
Ot (frame-to-model refinement), both sampled under the last known pose Tτ . As an
additional cue, TrackAgent takes the object category as input. After 10 iterations, our
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4.5. Fusion Variants

Figure 4.3: Network-Architecture of ReAgent: Global features in the point clouds
are classified using two encoders with shared weights in the embedding stage. Concate-
nating the embeddings of both point clouds contributes to the current state vector to
be processed by a subsequent policy network to predict action-distributions for rota-
tion and translation. Our proposed key points for fusing frame-to-model refinement and
frame-to-frame registration are highlighted in red. The illustration is taken from [BPV21].

final result, the relative transformation T mot
t , is derived from the predicted actions,

allowing to retrieve the absolute object pose Tτ with respect to the camera. The object
pose is reused as an initialization in the next frame. Moreover, TrackAgent utilizes the
manipulated current observation Pt for the frame-to-frame registration objective in the
next frame. An overview of our pipeline is illustrated in Fig 4.2.
Noteworthy, TrackAgent is self-supervised and considers its own uncertainty along with
a geometrical uncertainty to identify, when tracking is deteriorating.

4.5 Fusion Variants

Our novel network architecture stems from recent methods that consider point cloud
registration as an RL task, previously applied to point cloud registration [BPV21]
and reinforced pose refinement [BPV22]. The architecture in both methods may be
grouped into two separate stages. First, an embedding stage uses two PointNet-alike
encoders [QSMG17] to classify global features per point cloud for a more robust data
representation. Concatenating both global feature vectors contributes to the state vector.
The subsequent second stage, the policy network, processes the state vector and predicts
two separate action-distributions to pick the most favorable actions for translation and
rotation respectively, resulting in closer alignment of source and target.
Within this thesis, we are extending this two-stage pipeline to incorporate an additional
point cloud as input to simultaneously solve two point cloud alignment tasks. For the
fusion of both subtasks, we consider potential key points 1) at the input side (early-
fusion), 2) after the embedding stage (mid-fusion) and 3) after the policy embeddings
(late-fusion). Serving as a baseline for our fusion-variants, Fig. 4.3 illustrates the
architecture of ReAgent [BPV21], along with our proposed key points.
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Figure 4.4: Early-Fusion Variant: We fuse both subtasks at the input side by incor-
porating an additional encoder, allowing the features of the previous observation Pt−1 to
contribute to the state vector. Sharing weights across all encoders jointly encodes the
frame-to-model refinement and frame-to-frame registration subtasks, however, the ability
for finegrained optimization to either subtask is limited.

Details of our fusion variants are listed below:

1. Early-Fusion: The early-fusion variant fuses the subtasks at the input side and
adds another encoder to classify features in the previous observation Pt−1. Impor-
tantly, all encoders share the same weights. As a result, the early-fusion variant
has to compromise the encoder weights to ensure compatibility for both subtasks,
rather than finetuning them specifically to either of the subtask’s objectives.
Besides that, all global feature vectors are concatenated to build the state vector
of our joint solving and the subsequent policy network remains unchanged. We
illustrate the network in Fig. 4.4.

2. Mid-Fusion: Introducing two distinct encoder branches allows the mid-fusion
variant to optimize the weights for both frame-to-model refinement and frame-to-
frame registration, as the weights are not shared across all encoders. The subtasks
are fused after the encoding stage with both global feature vectors contributing to
an improved state representation. We adapt the baseline policy network to process
the concatenated state vector for a unified output. Fig. 4.5 visualizes the mid-fusion
architecture.
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Figure 4.5: Mid-Fusion Variant: We circumvent limitations in the encoding stage by
introducing two separate branches, each encoding one of the subtasks. This enables the
mid-fusion variant to adjust the encoder weights to either of the subtasks. Concatenat-
ing the resulting state vectors of both frame-to-model refinement and frame-to-frame
registration contributes to a more meaningful state representation for the policy network.

3. Late-Fusion: The late-fusion variant builds on the encoding stage of the mid-fusion
variant, but, instead of fusing the global features, the state vectors are processed
by two individual policy networks dedicated to frame-to-frame registration and
frame-to-model refinement respectively. Importantly, the components of the policy
network, i.e. the action-head, had to be split up, resulting in generating policy
embeddings via embedding-heads in the policy networks followed by merge-heads
to process both subtasks’ embeddings and predicting a joint action-distribution.
We illustrate the late-fusion variant in Fig. 4.6.

4.6 Learning 6D Object Trajectories from Scratch

The problem at the core of our method, point cloud registration, is difficult to solve
by leveraging RL and may not converge towards a global optimum, given the large
action-space. Moreover, incorporating an additional time axis for the tracking objective
and jointly learning the feature representation contributes to an even more complex task
to solve.
Recent methods [BPV21, BPV22] kickstart RL by additionally infusing IL to learn an
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Figure 4.6: Late-Fusion Variant: We further extend the encoding stage of the mid-
fusion variant with individual policy networks to predict policy embeddings per subtask. A
subsequent merge stage fuses frame-to-frame registration and frame-to-model refinement
to predict unified action-distributions for rotation and translation respectively. The
late-fusion variant, our most complex strategy, may be interpreted as cloning the baseline
network [BPV22] for either subtask to eventually merge results at the end for a unified
output.

optimal policy. IL aims to learn from demonstration, i.e. replicate the policy of an expert
that has knowledge about the current, best action.
Conversely, solely learning from an expert policy limits the agent, as actions diverging
from the expert’s reference are pruned. Without additional objectives, the agent is unable
to outperform the expert.
For our object tracking method, we adapt the learning scheme from previous meth-
ods [BPV22], which leverages a combination of RL and IL. Dedicated to the tracking
objective, we extend this reward system to simultaneously reinforce closer alignment 1)
over steps in a single frame as well as 2) over a longer time period, i.e. multiple frames.
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4.6. Learning 6D Object Trajectories from Scratch

4.6.1 Learning from Demonstration (Imitation Learning)

In IL, feedback of an expert may be received via algorithmic solutions that, for example,
exploit annotation information or via human demonstration. One of its variants is
Behavioral Cloning (BC), where, in every single step, the expert feedback serves as a
reference, similar to ground-truth labels in supervised learning.
The expert policy in [BPV22] leverages the annotated ground-truth object poses to
return a transformation, that monotonously decreases the error in every step. Previous
methods [BPV21] were challenged by symmetry axes, as they introduce multiple indis-
tinguishable views for certain objects. For example, a cylindric object may be rotated
arbitrarily around its central symmetry axis, while consistently yielding a plausible pose
for our depth-based approach. As a consequence, a symmetry-aware expert, as introduced
in [BPV22], is crucial for our object tracking approach to guide the alignment process
towards the closest, plausible pose to not cause confusion for the agent.

4.6.2 Reinforcement Learning

Instead of utilizing some form of expert knowledge, RL defines the global objective via a
reward-function that evaluates the efficacy of the current decision. Gathering the chosen
actions and their outcome enables to update the agent’s policy, aiming to maximize the
reward. This may be compared to the agent playing a game, with the constant goal of
increasing the score by learning from previous decisions and their efficacy.
In single-frame pose refinement, the main objective is to closer align the point clouds in
each step, with the overall goal of computing the relative transformation contributing
to an accurate pose estimate. Presented in [BPV21], Bauer et al. reinforced such a
behavior via a consideration of the mean Chamfer Distance di from the currently observed
source X

′

i and the ground-truth source X, given the current refinement iteration i. The
reward-function, denoted as r, is defined as follows:

r =

��
��

+0.5, di < di−1,

−0.1, di = di−1,

−0.6, di > di−1

(4.1)

Accordingly, we define the Chamfer Distance d as denoted below:

d(X, Y ) =
1

|X|



x∈X

min
y∈Y

||x − y|| (4.2)

The reward r encourages steps yielding a closer alignment (di < di−1) and prunes diverging
steps (di > di−1). Moreover, pausing steps (di = di−1) prolong the alignment and
consequently recieve, compared to diverging steps, a small penalty. To avoid oscillation,
the penalty for diverging steps is set to be larger than the reward for converging steps,
as this may be exploited by the agent to boost the achieved reward at the initial stages
of the training.
Even though close alignment is reinforced in individual frames, pose errors may accumulate
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Figure 4.7: Single-Frame Perspective and Multi-Frame Perspective for Reward
Computation: Single-frame pose refinement methods [BPV22] encourage closer align-
ment over multiple refinement steps. Similarly, we extend this approach to be suitable
for 6D object tracking by additionally considering and maintaining the alignment across
multiple frames.

over longer time horizons across frames during tracking, thereby complicating future
predictions. As illustrated in Fig. 4.7, we simultaneously address 1) achieving closer
alignment in a single frame, as defined in Eq. 4.1, along with 2) maintaining close alignment
across sequences of frames. We achieve the latter via reusing the same reward system as
defined in Eq. 4.1, but, instead of considering a sequence of steps in a single frame, we
gather the final steps across frames. Intuitively, we want to encourage estimates, that
prove themselves to be useful as initialization for the next frame. Vice versa, estimates
leading to deterioration in tracking are pruned. Reusing the same reward also favors the
simplicity of our framework, as incorporating this additional time axis only requires an
additional buffer.
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4.6.3 Fusing IL and RL using Proximal Policy Optimization

For our tracking framework, we rely on the findings of previous works [BPV21, BPV22]
and leverage Proximal Policy Optimization (PPO) [SWD+17] to fuse IL, based on a
symmetry-aware expert policy, with RL using a Chamfer Distance guided reward that
simultaneously encourages close alignment over refinement steps in a single frame and
over a wider time horizon across frames.
By solely learning from the expert policy, the agent is able to accurately (re-)align point
clouds. However, significant changes to this policy caused by RL may cause deteriorating
efficacy, therefore we desire to stick close to the policy learned by IL. PPO enables such
a behavior by truncating the policy changes in each update, allowing slight modifications
guided by the RL objective.
We adapt the algorithm presented in [BPV21] to be suitable for our tracking approach.
As listed in Alg. 4.1, we use two distinct replay buffers during training to collect samples
of 1) refinement trajectories in a single frame and 2) object pose trajectories across
multiple frames. These trajectories are gathered by following the agent’s predictions and
consequently increase in accuracy as the policy improves. The collected samples in those
buffers are then processed separately by Alg. 4.2 to optimize the policy.
We compute a cross-entropy loss of the predicted action-distribution with respect to
the ground-truth actions by the expert. For the PPO-loss, we rely on the formulation
in [BPV21]. Bauer et al. pair the PPO definition from [SWD+17] with an entropy
term to motivate exploration. The agent’s estimated value together with Generalized
Advantage Computation (GAE) contributes to calculating the advantage Â, as used for
the PPO-loss.

4.7 Keeping Track of the Object Region

We obtain a 2D mask by rendering the object’s depth using the object model and its last
estimated pose. However, as the rest of the scene is not taken into account, this mask is
insensitive to occlusion by other objects. Moreover, the relative transformation to align
with the current frame is not known yet, forcing us to base our mask on the pose of the
previous frame and consequently making our mask prone to minor spatial misalignment.
While the influence of outliers is limited for the frame-to-frame registration objective,
as it aligns observations with similar imperfections, the efficacy of the frame-to-model
refinement objective may be reduced. In general, the presence of outliers cannot be
assumed to be absent in object tracking. As a consequence, an approach to detect and
reject outliers is desired to not skew the alignment process.
We aim to mitigate their influence by either 1) using a geometry-guided mask filtering to
obtain a visibility mask or 2) incorporating a segmentation branch, as first introduced
in [BPV22], that classifies inliers and outliers within the network by learning the properties
of visible segments. We evaluate and discuss the results of our segmentation strategies in
Sec. 5.4.
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4. TrackAgent: Reinforced Object Tracking

Algorithm 4.1: Gathering single-frame and multi-frame samples. The code
is adapted from [BPV21], but modified to the needs of our tracking approach.
The changes include looping over consecutive frames, operating with three point
clouds as input and collecting multi-frame samples.
1 # initial frames to start tracking from are defined by the dataloader

2 forall initial frames do
3 # iterate all initial frames

4 for m consecutive frames do
5 # iterate consecutive frames for tracking

6 gather source Pt from current frame and target Ot

7 if initial frame then
8 # initially, previous source equals current source

9 previous source Pt−1 set to source Pt

10 end
11 for n refinement steps do
12 observation O = (Pt, Pt−1, Ot)
13 # find refinement transformation iteratively

14 agent predicts π(O) and value v

15 select action a from predicted policy π(O)
16 take action a, recieve reward r and next P ′

t

17 # collect single-frame trajectories

18 add sample to step buffer bsteps

19 if final iteration then
20 # collect multi-frame trajectories in final refinement iteration

21 add sample to frame buffer bframes

22 end
23 update source Pt = P ′

t

24 end
25 update agent’s policy from bsteps using Alg. 4.2

26 end
27 update agent’s policy from bframes using Alg. 4.2

28 end

Algorithm 4.2: Update agent’s policy using the collected samples by simulta-
neously using IL and RL. Code taken from [BPV21]

1 compute return R, shuffle buffer b

2 forall samples in buffer b do
3 agent predicts new policy π′(O) and value v′

4 # imitate expert

5 expert predicts action a∗

6 compute cross-entropy loss lIL of π′(O) and a∗

7 # reinforce

8 compute PPO loss lRL of π′(O) and π(O)
9 # update agent

10 l = lIL + α ∗ lRL

11 backpropagate combined loss l

12 end
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Figure 4.8: Computation of the Visibility Mask under an Accurate and Error-
Afflicted Pose: From Left to Right: RGB frame with estimated pose, depth frame,
object model rendered under estimated pose, depth differences, resulting visibility mask
by thresholding depth differences. From Top to Bottom: Calculating the visibility mask
under an accurate and error-afflicted pose estimation.

4.7.1 Geometry-guided mask filtering

Our rendering of the mask is, in fact, the synthetic depth of the object under the estimated
pose. We approach our geometry-guided mask filtering via a comparison of the rendered
object depth with the corresponding regions in the observed depth frame. Outliers are
rejected pixelwise as soon as the difference to the reference exceeds a threshold τseg,
yielding a visibility mask of the object.
Let us assume a perfect pose estimate, then depth differences in visible areas are
significantly smaller than in occluded areas. We empirically determined the threshold
τseg = 12mm to be the most suitable for distinguishing visible and occluded areas, e.g.
caused by fingers or other objects. Importantly, this threshold includes a small safety
margin to not prune the mask due to minor pose errors. Following that procedure
enables us to leverage the geometric constraints implicitly given by our mask propagation,
allowing us to filter implausible depth pixels prior to the generation of the point cloud.
Fig. 4.8 visualizes filtering the rendered mask to obtain the visibility mask for both a
precise and imprecise pose estimate.

4.7.2 PointNet-based Segmentation

As presented in SporeAgent [BPV22], Bauer et al. consider outlier pruning as a task for
the embedding stage. By additionally incorporating four 1D-convolution layers, outlier
points are classified and eventually rejected in the max pooling function to not contribute
to the state embedding. To learn the correct classification of inliers and outliers, the
ground-truth masks are used as labels to compute the cross-entropy loss.
We adopt this segmentation branch for our network from [BPV22]. However, as Spore-
Agent is a pose refinement method, the object model as target does not contain outliers
per definition and therefore is not embedded using the segmentation branch. In contrast,
our work simultaneously contains the object model and the previous observation as target.
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Figure 4.9: Depth-Based Segmentation within the Encoder: From Left to Right:
RGB frame, depth frame, segmented point cloud. The segmentation branch is able to
classify points in the point cloud and distinguish the object of interest (green) from
background and other objects (red), shown for the master chef can object from the
YCB-V dataset [XSNF18]. For the purpose of demonstration, an enlarged bounding box
has been used as mask (marked in yellow) for segmenting the point cloud from the depth
frame.

Consequently, to reject outliers in the previous observation as well, our network employs
the segmentation branch in all encoders, except the one dedicated to the object model.
We illustrate in Fig. 4.9, how the segmentation branch is able to distinguish the object
from background and other objects, solely utilizing the point cloud without any color
information. For the sake of demonstration, we used an enlarged bounding box as a mask
to segment from the depth frame.

4.8 Keeping Track of Self-Supervised Uncertainty

In 6D object tracking, keeping track of the object poses is the main goal. Conversely,
identifying when tracking deteriorates also contributes to keeping track of the poses, as
it revives the tracking process when it is unable to recover, e.g. due to heavy occlusion.
Especially when operating in the real world, the sensed data may be far from what
the agent has seen during training, resulting in uncertainty and consequently reduced
tracking accuracy.
We leverage implicit information derived from our previously computed results to con-
tribute to two distinct uncertainty metrics, allowing our TrackAgent to supervise itself
and autonomously trigger reinitializations. For our uncertainty metrics, we consider 1)
the geometrical misalignment of the rendered reference, as explained in Sec. 4.7.1, fused
with 2) interpreting the agent’s stepsize when alignment is expected.

4.8.1 Defining Geometrical Uncertainty

Refining the mask, as explained in Sec. 4.7.1, is not only beneficial to remove outliers, but
is considered by us as a geometrical uncertainty cue. Illustrated in Fig. 4.8, the fraction
of mask inliers, i.e. the visibility of the object, significantly drops under imprecise pose
estimates due to the geometrical mismatch of rendered and observed depth. However, the
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Figure 4.10: Expected Action-Steps under Best- and Worst-Case across Re-
finement Iterations: Intuitively, the misalignment and consequently the predicted
action-steps decrease in each iteration until alignment is reached and therefore the zero-
action is predicted (left). Conversely, losing track implies error-afflicted segmentation.
As a consequence, our agent is unable to establish correspondences and tends to predict
larger stepsizes, as TrackAgent is confident about not being aligned (right).

same effect is caused when objects are heavily occluded, therefore solely relying on this
metric may be susceptible to falsely triggering reinitializations caused by heavy occlusion.

4.8.2 Defining Action-Based Uncertainty

Alternatively, the agent’s prediction serves as a meaningful insight to the agent’s own
uncertainty. Our agent categorizes misalignment into action-steps to iteratively align the
point clouds more closely. Ideally, the selected action-step is reduced in each iteration
until alignment is reached. Therefore, our agent is supposed to predict a so called
zero-action in the last refinement iteration, i.e. the point clouds are aligned.
However, if track is lost, the rendered mask will barely overlap with the object of interest,
resulting in compromised feature detection that hinders an effective alignment process
due to the lack of corresponding points. Rather than predicting the zero-action in the
final iteration, we observed a likelihood of the agent predicting larger step-sizes in such
cases.
We interpret the predicted misalignment, i.e. the selected action-step, in the last iteration
over multiple frames as a metric for the agent’s own uncertainty. By averaging the
predicted action-steps over multiple frames, we are able to trigger a reinitialization
as soon as a certain threshold is exceeded and simultaneously robustify this metric
against anomalies in a single frame. However, non-zero action-steps in the last refinement
iteration may also be caused by large offsets between two frames, e.g. due to fast motion,
or when data during inference differs too much from the training distribution, even
though the pose estimate is accurate.
Nevertheless, non-zero action-steps in the final iteration may also be caused by large
offsets between two frames, e.g. due to fast motion. Moreover, discrepancies between the
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inference- and training data contribute to large action-steps, even though the estimated
pose is approximately accurate.

4.8.3 Fusing our uncertainty metrics

To circumvent the weakness of either uncertainty metric, a joint consideration of both
seems the most logical to us for balancing the tracking accuracy with the number of
carried out reinitializations.
Let us assume, that the geometry-guided mask filtering fails, then considering the action-
steps actively suppresses a reinitialization and makes our TrackAgent less sensitive to
false triggers under heavy occlusion. Vice versa, when the action-based uncertainty
indicates that track is lost, we rely on our visibility mask to be robust towards large
offsets, such as caused by fast motion.
In fact, we leverage either uncertainty metric as a safety check by only initiating a
reinitialization when both indicate deterioration in tracking, ultimately making our joint
uncertainty metric less vulnerable to the weaknesses of either metric in isolation. We
consider a failure of both uncertainty metrics as an inevitable reinitialization.
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CHAPTER 5
Experiments

In this chapter, we reiterate the objectives of this thesis and provide an overview of our
experimental setup. Our method is evaluated using the BOP Toolkit [HMB+18] and
compared against other dedicated RGB-D object tracking methods, depth-only trackers,
and traditional registration methods. An extensive ablation study identifies the impact
of our proposed components. Moreover, we discuss our autonomous reinitialization
heuristic and compare it against reinitializations after fixed time intervals. Furthermore,
we provide a runtime analysis for the tight time constraints of the tracking task. At
the end of this chapter, qualitative tracking sequences are shown and failure cases are
discussed.

5.1 Objectives

Within this thesis, our objectives for the evaluation are set by our proposed research
questions. Most importantly, our experiments provide insights on how our RL-based,
depth-only object tracking approach performs in comparison to other SotA methods.
Moreover, an ablation study identifies the most suitable configuration of our proposed
network architectures from Sec. 4.5, to eventually answer how to best combine frame-to-
frame registration and frame-to-model refinement in a single neural network. In addition,
we investigate the achieved accuracy of our fusion variants compared to carrying out
each subtask independently.
To address the presence of outliers, we evaluate our method both with and without our
segmentation techniques presented in Sec. 4.7 to demonstrate how our outlier-rejection
affects tracking.
With special attention to real-world applications, we showcase the efficacy of our uncer-
tainty metrics for the tracking task. These metrics enable our method to autonomously
detect deterioration in tracking and consequently balance the number of reinitializations
with the achieved tracking accuracy.
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To summarize, the evaluation of our method answers the following Research Questions
(RQ).

• RQ1: How to approach object tracking as a reinforcement-learning problem? And
how does this compare to SotA-approaches?

• RQ2: How to combine frame-to-frame registration with (frame-to-model refine-
ment)? What impact does this combined approach have on the tracking accuracy
over multiple frames as compared to either approach alone?

• RQ3: How robust is the object-tracker to observational noise, e.g. occlusion by
other objects or hands and imperfect segmentation?

• RQ4: How to exploit the agent’s behavior to balance the number of reinitializations
with the tracking accuracy, when no annotated data is available?

5.2 Experimental Setup

This section serves as an insight into our experimental setup. We explain the used
datasets and metrics, along with implementation details for our object tracking method.
All of our results are conducted using the BOP Toolkit [HMB+18], as it is a standardized
tool for the evaluation of pose estimation methods. For our experiments, we utilize a
machine with an Intel Core i7-8700K @ 3.70GHz processor and an NVIDIA GeForce
RTX 2080 Ti graphics card.

5.2.1 Datasets

YCB-V:

Introduced in 2018, the YCB-V dataset [XSNF18] has emerged as a widely used dataset
to benchmark object tracking methods. In total, it contains 92 video sequences with 21
distinct objects. Each of these sequences captures up to six static objects on a table,
with a camera circulating around the scene. The official data split holds out 12 scenes
for testing. As depth-based features can be learned efficiently from limited data, we
subsample the real training split to contain only every 7th frame, contributing to reduced
training time. All of our quantitative experiments are conducted on the keyframes of the
evaluation split. We do not use synthetic training images.

HO-3D-r:

HO-3D-r [PPL+21] is a refactored version of the HO-3D [HROL20] dataset for object
and hand pose estimation provided in the BOP format. The refactored version provides
10 scenes for training and 44 for testing, each manipulating a single object. A total of 10
objects has been selected from the YCB-V dataset [XSNF18].
In the context of 6D object tracking, we consider the data split to be unsuitable for

36



5.2. Experimental Setup

robustly learning object trajectories due to the limited training data. Solely for the
purpose of this thesis, we define a custom data split by withholding 1-2 scenes per object
category, while the remaining scenes are utilized for training. We provide qualitative
results of our object tracking method on this dataset.

DexYCB:

The DexYCB [CYX+21] dataset is a large-scale dataset focusing on hand manipulation
and utilizing a subset of objects from the YCB-V dataset [XSNF18]. For this dataset,
1000 RGB-D video scenes each manipulating a single object have been captured from
eight different, but static viewpoints. The average video length is around 70 frames
leading to a total of 582K RGB-D frames. We provide qualitative results on this dataset,
however, our method did not achieve satisfactory results. We explain this by the large
fraction of each scene, where the object is not manipulated. Consequently, our agent is
unable to generalize well to diverse object motion.

5.2.2 Metrics

In the field of 6D pose estimation and 6D object tracking, related work utilizes the Average
Distance to Model Points (ADD) and ADD with indistinguishable views (ADI) [HLI+12]
to evaluate the accuracy of the estimated poses. The ADD is given by measuring the
average distance between corresponding model points m ∈ M under an estimated pose T̂
and the ground-truth pose T .
The ADI is especially important for objects with symmetry axis, leading to multiple,
indistinguishable views. For example, a bowl can be rotated around its center axis and
remains aligned but the ADD score is changing due to the rotational offset. For that
particular reason, the ADI metric takes the geometrical ambiguities into account by
calculating the mean distance to the nearest neighbor.
Mathematically speaking, the metrics are formulated as follows:

ADD =
1

|M |
∗



m∈M

||T̂m − Tm|| (5.1)

ADI =
1

|M |
∗



m1∈M

min
m2∈M

||T̂m1 − Tm2|| (5.2)

For all of our experiments, we report the Area under the Precision-Recall Curve (AUC)
score. A recall score is defined as the percentage of object poses within a certain error-
threshold. The AUC score is defined as the average recall across a range of uniformly
spaced error-thresholds.
Noteworthy, we consider the ADI AUC score as the more meaningful metric for our
experiments, as our depth-only approach is unable to differentiate indistinguishable views
by explicitly not considering textural information.
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5.2.3 Implementation Details

Agent:

Following the definition in [BPV22], our agent aligns point clouds in the normalized
model space such that the distance to the farthest point is at most 1. This constrains the
potential inputs and thereby making our approach less sensitive to varying object scales.
Furthermore, points outside the unit sphere formed by the normalized model space are
implicitly labeled as either misaligned or outliers. A strong geometrical cue in addition
to the raw point coordinates are surface normals, thereby we adapt prior work [BPV22]
and extend our inputs to also incorporate surface normals.
For each of the axes, our agent manipulates point clouds by predicting an action-
distribution, formed by an action-step vector [0.00066, 0.002, 0.006, 0.018, 0.054] in
positive and negative direction along with a zero-action, when alignment is reached.
Using an exponential series enables a wide range of action-steps, allowing to refine large
offsets as well as fine-grained adjustments. For translation, the action-steps refer to units
in the normalized model space, where the longest distance equals one. On the rotation
axis, we interpret the action-steps as radians.
Per frame, TrackAgent predicts action-steps over ten refinement iterations to estimate the
relative transformation necessary for realigning the pose. For the sake of comparison, we
always initialize the trajectories with the ground-truth pose during training and evaluation.

Hyperparameters:

For blending IL and RL, prior work [BPV22] scales the RL-loss term by the factor α = 0.2,
identified to be the best configuration for YCB-V. We define our reward according to
the notion in Eq. 4.1, denoted as r = (0.5+, −0.10, −0.6−). This definition is used for
concurrently optimizing the policy for single-frame refinement steps as well as multi-frame
object trajectories.
Parameters for the segmentation branch are adapted from prior work [BPV22] that scales
the loss term by β = 7.

Training:

Our agent learns object trajectories from scratch by estimating the relative transformation
between frames across a sequence of ten frames. During training, two replay buffers of
size 128 collect samples of 1) single-frame refinement trajectories and 2) multi-frame
object trajectories to eventually be utilized by the policy update.
We artificially generate error-afflicted point clouds with a 20% outlier ratio by adapting
the augmentation strategy from [BPV22]. We increase the variety during training by
randomly sampling trajectories from our already subsampled dataset such that the overall
number of frames per epoch only accounts for 1/5th of the available training frames.
While this significantly reduces the training time, random sampling of the trajectories also
limits overfitting and enables our agent to better generalize. We train our agent on frame-
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5.3. Tracking Accuracy on YCB-V

AUC [%] ↑ se(3)‡ ICG‡ POT† RGF† ICP§ Reg§ Ref§ ours§ ours
[WMRB20] [SST22] [WPK+13] [IWC+16] [BM92, ZPK18] [BPV21] [BPV22]

Reinitialization every nth frame None None None None 30 30 30 30 Autonomous
# Reinitializations 0 0 0 0 137 137 137 137 118

Metric ADD ADI ADD ADI ADD ADI ADD ADI ADD ADI ADD ADI ADD ADI ADD ADI ADD ADI

master chef can 93.9 96.3 66.4 89.7 55.6 90.7 46.2 90.2 78.7 94.1 84.2 92.2 80.2 91.6 76.8 92.0 75.0 91.1
cracker box 96.5 97.2 82.4 92.1 96.4 97.2 57.0 72.3 78.3 88.4 84.9 91.9 88.6 92.8 93.3 95.7 92.3 95.1
sugar box 97.6 98.1 96.1 98.4 97.1 97.9 50.4 72.7 81.0 92.2 89.8 94.9 95.7 97.4 95.6 97.0 95.6 97.0
tomato soup can 95.0 97.2 73.2 97.3 64.7 89.5 72.4 91.6 75.3 91.4 92.8 95.8 90.8 94.4 91.0 95.7 87.8 92.6
mustard bottle 95.8 97.4 96.2 98.4 97.1 98.0 87.7 98.2 88.0 94.4 94.3 96.4 96.6 97.7 96.0 97.5 96.1 97.6
tuna fish can 86.5 91.1 73.2 95.8 69.1 93.3 28.7 52.9 76.4 88.1 90.4 93.3 60.0 81.9 64.5 82.6 73.6 91.7
pudding box 97.9 98.4 73.8 88.9 96.8 97.9 12.7 18.0 81.5 91.4 93.6 96.1 89.2 94.0 94.4 96.5 94.0 96.4
gelatin box 97.8 98.4 97.2 98.8 97.5 98.4 49.1 70.7 81.3 92.0 95.7 97.1 87.6 92.9 96.9 97.7 96.9 97.7
potted meat can 77.8 84.2 93.3 97.3 83.7 86.7 44.1 45.6 81.6 89.9 75.5 80.7 77.5 80.1 78.9 82.5 83.4 88.8
banana 94.9 97.2 95.6 98.4 86.3 96.1 93.3 97.7 71.9 87.2 88.8 92.8 94.8 97.0 93.6 96.6 93.8 96.7
pitcher base 96.8 97.5 97.0 98.8 97.3 97.7 97.9 98.2 90.3 96.1 92.9 95.9 94.5 96.9 95.3 97.1 95.4 97.2
bleach cleanser 95.9 97.2 92.6 97.5 95.2 97.2 95.9 97.3 71.7 89.2 82.0 91.9 93.2 96.4 91.4 95.5 91.3 95.5
bowl 80.9 94.5 74.4 98.4 30.4 97.2 24.2 82.4 78.1 93.1 72.9 85.7 64.1 87.3 48.7 78.6 63.1 88.1
mug 91.5 96.9 95.6 98.5 83.2 93.3 60.0 71.2 81.8 93.3 84.0 89.6 93.9 96.6 94.4 96.9 94.3 96.9
power drill 96.4 97.4 96.7 98.5 97.1 97.8 97.9 98.3 78.1 90.3 90.6 94.1 94.1 96.2 92.4 95.0 94.3 96.5
wood block 95.2 96.7 93.5 97.2 95.5 96.9 45.7 62.5 71.9 90.5 83.6 91.6 89.4 95.6 91.3 95.6 91.4 95.6
scissors 95.7 97.5 93.5 97.3 35.6 4.2 16.2 20.9 38.6 39.9 73.5 57.3 69.1 70.2 79.5 72.3 80.1 90.0
large marker 92.2 96.0 88.5 97.8 35.6 53.0 12.2 18.9 51.1 70.5 50.5 66.4 45.6 64.6 54.9 68.4 67.0 94.2
large clamp 94.7 96.9 91.8 96.9 61.2 72.3 62.8 80.1 63.6 77.6 81.0 87.5 82.1 88.6 82.1 89.0 81.9 89.7
extra large clamp 91.7 95.8 85.9 94.3 93.7 96.6 67.5 69.7 60.5 80.2 80.7 88.5 78.7 88.2 89.1 94.9 90.8 95.7
foam brick 93.7 96.7 96.2 98.5 96.8 98.1 70.0 86.5 69.6 83.8 94.7 96.4 85.2 90.9 95.3 96.9 95.1 96.9

All Frames 93.0 95.7 86.4 96.5 78.0 90.2 59.2 74.3 74.9 88.6 84.6 90.6 83.6 90.7 84.9 91.6 86.8 93.6

Table 5.1: Tracking Accuracy on YCB-V [XSNF18]: We report the average recall
for 50 uniformly distributed thresholds in the range [0, 10cm], i.e. the AUC score. The
results are taken from [SST22] for the RGB-D (‡) and two of the depth-only methods
(†). Each method (re-)initializes tracking with the ground-truth pose. Best overall AUC
per metric is highlighted in bold, best depth-based AUC per metric in italics.

batches of size 8, leading to a total of approximately 32 objects to track simultaneously,
given an average of four objects per frame on the YCB-V dataset. Our agent is trained
for 60 epochs using Adam [KB14] as an optimizer, starting with a learning rate of 0.003
and halving it every 20 epochs. On the NVIDIA GeForce RTX 2080 Ti graphics card,
the training is finished after 24 hours.

5.3 Tracking Accuracy on YCB-V

We list the achieved tracking accuracy of our hybrid approach, along with other model-
based 6D object tracking baselines in Tab. 5.1. We compare our method against SotA
RGB-D object tracking methods [WMRB20, SST22], three depth-based approaches [WPK+13,
IWC+16, BM92, ZPK18] as well as frame-to-frame registration [BPV21] and frame-to-
model refinement [BPV22] both as an individual task.
Our experiments emphasize the benefit of jointly solving frame-to-frame registration and

frame-to-model refinement, contributing to an increased tracking ADD/ADI AUC score
as compared to each task in isolation. Interestingly, frame-to-frame registration [BPV21]
and frame-to-model refinement [BPV22] both achieve a comparable overall accuracy
during tracking. However, the observed differences in accuracy at the object-category
level of the individual subtasks further motivate our hybrid approach to merge the

39



5. Experiments

strengths of frame-to-frame registration and frame-to-model refinement. By leveraging
our uncertainty metrics, we reduced the number of reinitializations and simultaneously
improved the tracking accuracy, as compared to fixed reinitializations after a certain
interval.
All of the RL methods (frame-to-model refinement [BPV22], frame-to-frame registra-
tion [BPV21], ours) outperform ICP and the other depth-based baselines [WPK+13,
IWC+16]. Noteworthy, reinitializations are disabled for POT [WPK+13] and RGF [IWC+16].
Our depth-only TrackAgent clearly closes the gap towards dedicated RGB-D meth-
ods [WMRB20, SST22]. For some objects, our method demonstrates comparable results
to se(3)-TrackNet [WMRB20] and we outperform ICG [SST22] across multiple object
categories. We want to emphasize, that se(3)-TrackNet leverages large amounts of syn-
thetic training data, while we are only using a subsampled version of the training data,
and ICG, as a handcrafted method, entirely avoids training.

5.4 Ablation Study

For our ablation study, we compare our proposed architectures that fuse frame-to-frame
registration and frame-to-model refinement 1) at the input side (early-fusion), 2) after
the encoding stage (mid-fusion), and 3) after the policy embeddings (late-fusion). We
evaluate our methods with fixed reinitializations across varying time horizons.
Moreover, we investigate the sensitivity of our approach to outliers by letting the baselines
compete against variants incorporating 1) our handcrafted geometry-guided mask filtering,
2) the segmentation branch for learning-based outlier-rejection, or 3) both in combination.
The results of all of our variants are listed in Tab. 5.2.
Dedicated to real-world applications, we employ our reinitialization heuristic to demon-
strate the efficacy of our uncertainty metrics for balancing the computational cost of
carrying out reinitializations with the desired tracking accuracy.
Addressing the time restrictions of the tracking objective, we showcase and compare the
runtimes of our proposed variants to conclude our ablation study.

5.4.1 Fusion-Variants vs. Independent Subtasks

Following the results in Tab. 5.2, we conclude that the early-fusion variant as our simplest
approach fails to leverage the benefits of our joint consideration. While being outperformed
by the more complex fusion variants, the early-fusion variant is also surpassed by the
independent subtasks, labeling the joint encoding of this variant as unsuitable for fusing
frame-to-frame registration and frame-to-model refinement despite it’s simplicity.
The late-fusion variant as our most complex variant emerges as a more accurate choice
by achieving superior accuracy compared to the standalone subtasks. However, when
compared with the mid-fusion variant, no advantage of the duplicated policy networks in
the late-fusion variant is observed.
Consequently, our results demonstrate the mid-fusion to be the best tradeoff between
network complexity and its achieved accuracy. The mid-fusion variant outperforms
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Reinitialize every nth frame 30 90 120
AUC [%] ↑ ADD ADI ADD ADI ADD ADI

Registration 84.6 90.6 80.5 86.6 78.7 84.8

+ mask filtering 80.1 88.0 71.0 80.0 68.5 77.7
+ segmentation branch 81.3 88.3 74.3 81.9 73.5 80.3
+ both 77.2 86.6 70.2 81.0 67.9 78.0

Refinement 81.9 90.2 72.3 81.9 72.8 80.5
+ mask filtering 77.0 87.4 68.2 78.4 66.0 76.3
+ segmentation branch 83.6 90.7 78.0 85.0 77.3 85.1

+ both 82.6 90.2 73.3 82.6 71.2 80.0

Early-Fusion 82.2 89.8 78.1 85.7 75.8 84.2

+ mask filtering 78.3 87.2 71.1 79.9 68.6 76.4
+ segmentation branch 74.0 86.0 66.5 77.1 63.0 73.4
+ both 71.1 83.7 60.1 69.7 55.7 66.0

Mid-Fusion 82.1 90.0 77.3 85.5 74.0 82.3
+ mask filtering 79.2 88.4 72.0 80.7 69.2 78.4
+ segmentation branch 84.9 91.6 80.0 87.3 79.3 86.6

+ both 79.9 88.3 72.0 86.7 69.1 77.8

Late-Fusion 85.1 91.3 80.3 86.5 79.5 85.4

+ mask filtering 81.3 89.4 72.0 80.6 71.8 79.9
+ segmentation branch 83.7 90.2 77.2 84.3 76.4 83.3
+ both 78.1 86.8 70.9 79.5 68.0 78.2

Table 5.2: Ablation Study on YCB-V [XSNF18]: We present results for our fusion-
variants along with the independent tasks. Moreover, we incorporate different seg-
mentation strategies to identify and reject outliers. For our ablation study, different
time intervals have been used to reinitialize tracking. Best overall AUC per metric is
highlighted in bold, best method-specific AUC per metric in italics.

not only the independent subtasks but especially all other fusion variants across all
reinitialization intervals. We conclude the distinct encoder branches to be essential
for our joint consideration, enabling the finegrained optimization to either subtask.
Processing the combined state vector by one unified policy network is shown to be the
optimal fusion-variant for leveraging the strengths of either subtask from the common
state vector.

5.4.2 Outlier-Rejection

To our surprise, none of our methods improved the achieved AUC score by incorporating
our handcrafted geometry-guided mask filtering. This issue may be explained by the
disparity of filtered point clouds during inference and unfiltered point clouds during
training, leading to confusion for the agent. Moreover, solely computing the depth
differences might prune masks too aggressively under error-afflicted poses, resulting
in an insufficient number of data points and consequently further contributing to the
deterioration in tracking.
The impact of utilizing the segmentation branch to learn the masks varies across our
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architectures. For the frame-to-model refinement subtask, the network’s ability to classify
and reject outliers significantly increases accuracy, whereas frame-to-frame registration
performs best by processing raw, unfiltered point clouds. We expect such a behavior as
defined by either subtask’s nature. Aligning a noisy source to a perfect object model
may be disrupted by the presence of outliers. Vice versa, point clouds from consecutive
observations exhibit similar imperfections and outliers. In the best case, these shared
defects serve as an additional cue for the frame-to-frame registration objective to achieve
alignment.
In our joint task, neither the early- nor late-fusion variant took advantage from learning-
based outlier-rejection. Only our mid-fusion variant leveraged the efficacy of the seg-
mentation branch, contributing to the best achieved ADI AUC scores. Especially with
less frequent reinitializations, incorporating the segmentation branch boosts the achieved
recall score by up to 4.3% for the mid-fusion variant.
To summarize, we aimed to enable our methods to detect and eventually reject outliers to
reduce their impact. The efficacy of our employed outlier-rejection strategies varies across
our proposed architectures. We observe that frame-to-model refinement as a standalone
method is the most susceptible to the influence of outliers, with the segmentation branch
having the most significant impact on this variant’s recall score. Conversely, our fusion-
variants are in general more robust to outliers due to integrating the frame-to-frame
registration objective. For example, the late-fusion variant achieves slightly lower scores
without any filtering of the point clouds as compared to the mid-fusion variant incorpo-
rating the segmentation branch. We explain this observation with a certain sensitivity
of the mid-fusion variant towards inaccurate segmentation, however, this sensitivity is
mitigated by the learned outlier-rejection, contributing to the best recall score of our
fusion variants.

5.4.3 Reinitializations

When object tracking methods are deployed in a real-world scenario, accurately identifying
deterioration in tracking becomes a more challenging problem without ground-truth data.
For our previously listed results, we employed a straightforward strategy of reinitializing
tracking after fixed time intervals. However, such a procedure may introduce additional
computational effort by reinitializing accurately tracked object instances, resulting in a
reduced frame processing rate.
Conversely, our uncertainty metrics introduced in Sec. 4.8 exploit information already
present in our pipeline as an autonomous reinitialization trigger. Visualized in Fig. 5.1,
an extensive study demonstrates computing the object visibility in interaction combined
with an action-based uncertainty as an effective reinitialization trigger when tracking is
unable to recover.
In contrast to fixed reinitializations, our autonomous reinitialization heuristic reduces
the overall quantity and consequently the computational effort, while simultaneously
improving the tracking accuracy. On the one hand, our experiments indicate a higher
visibility threshold to correspond to high recall values, consequently with frequent
reinitializations. On the other hand, setting higher stepsize thresholds actively suppresses
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Figure 5.1: Employing our Uncertainty-Metrics as Reinitialization Heuristic:
By adjusting the thresholds of our reinitialization heuristic, we control the interplay of
the executed reinitializations with the achieved recall score. We observe higher visibility
thresholds to result in frequent reinitializations. Conversely, larger stepsizes actively
minimize reinitializations, albeit at the cost of a limited recall score. For our experiments,
we count reinitializations per object instance. The results of fixed reinitializations are
shown in dashed lines, along with arrows pointing to the recall gain achieved by our
autonomous triggering.

reinitializations up to a bare minimum. However, this is paid for by a reduced tracking
accuracy.
To conclude, finetuning the thresholds of our uncertainty metrics allows to control the
balance between the carried out reinitializations and the resulting tracking accuracy.
This enables users to execute our TrackAgent in an optimal, application-dependent
configuration, e.g. to prioritize high accuracy or minimize costly reinitializations.

5.4.4 Runtime

We finish our ablation study by investigating and comparing the runtimes of our methods,
providing insights into the temporal constraints of our tracking approach.
Fig. 5.2 visualizes how the runtime of our TrackAgent pipeline scales with the amount
of tracked objects. For this experiment, we utilized our best performing model, namely
the mid-fusion variant with incorporated segmentation branch. When tracking a single
object, we observe computing the refinement transformation, i.e. tracking itself, to be
the most time-intensive step. Nevertheless, with increasing object count, the runtime
of the sequential preprocessing and rendering steps grows proportionally. In contrast,
the runtime of tracking itself scales more efficiently by harnessing the GPU for parallel
processing. When tracking at least four objects, preprocessing emerges as the slowest
component of our pipeline. Offering the most potential for improvement, this step may
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Figure 5.2: Runtime Analysis for Varying Object Counts: For tracking a single
object, the inference time of the model is the most time-consuming step. However, the
time spent for the sequential preprocessing step scales linearly with the object count
whereas tracking itself leverages parallel processing for a more efficient scaling of the
runtime. Consequently, we see the most potential for improvement in the preprocessing
step, e.g. by preparing the point clouds in parallel.

be optimized by extracting the point clouds in parallel.
Moreover, illustrating the frame processing rate in relation to the achieved tracking
accuracy in Fig. 5.3 serves as an insight to the influence of utilizing more complex network
architectures. The achieved frame rates of our baselines, i.e. without any of our proposed
outlier-rejection techniques, are all within 13-15 fps. Integrating the segmentation branch
scatters the resulting runtimes further apart, reducing the throughput by at least 0.5 fps.
Nevertheless, the runtimes match our expectations, where increased network complexity
contributes to higher latency of inference.
However, this thesis specifically focuses on how to fuse the strengths of frame-to-frame

Figure 5.3: Accuracy and Runtime Comparison: We illustrate the runtimes of our
proposed fusion variants and the isolated subtasks along with the achieved accuracy. For
each method, we list results of the baseline (•) along with additionally incorporating the
segmentation branch ( ✚). All runtimes have been collected using fixed reinitializations
after 30 frames.
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registration and frame-to-model refinement in a novel network architecture. Besides that,
we are considering the resulting processing rates as sufficient for a real-life application.
Consequently, we are prioritizing gains in accuracy over reduced runtime and therefore
consider the mid-fusion variant with an integrated segmentation branch as our most
efficient fusion-variant.

5.5 Qualitative Results

In addition to the quantitative analysis, this section provides qualitative results of our
tracked sequences for the datasets YCB-V in Fig. 5.4, HO-3D-r in Fig. 5.5, and DexYCB
in Fig. 5.6. Noteworthy, we visualize all of our predicted poses in the RGB frame for
better visibility. Our visualization illustrates the ground-truth pose (blue), the estimated
pose (red), and the overlapping fractions (green) along with the outlines (pink) of our
visibility mask.

time t

Figure 5.4: Qualitative Results on YCB-V: In addition to the visualization of our
predictions, the bottom row provides a virtual scene representation by utilizing the
rendered depth per object.
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time t

Figure 5.5: Qualitative Results on HO-3D-r: Tracking sequences evaluated on our
custom data split.

time t

Figure 5.6: Qualitative Results on DexYCB: Our method was unable to generalize
well to the tracking objective when utilizing this dataset. We explain this by the large
fraction of frames with little or no object motion, making the zero-action very likely and
therefore reducing the efficacy in tracking.
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Figure 5.7: Failure Cases on YCB-V: We observe a likelihood of our agent mismatch-
ing similar-shaped objects. The top failure case features the master chief can being
matched onto the mug. In the bottom failure case, our agent is unable to distinguish the
two jello objects and, even though correctly initialized, fits both poses onto the object in
front.

5.6 Analysis of Failure Cases

During our experiments, we observed our agent to be sensitive to similarly shaped objects,
resulting in mismatches between distinct object categories. For example, our agent
repeatedly matches the master-chef-can object onto the mug object, highlighting the mug
handle as an insufficient geometrical cue. Similarly, our agent is unable to distinguish
the two cubic jello objects, even though the object poses are initialized correctly. These
failure cases may be effectively addressed by integrating physical constraints, particularly
by enforcing non-intersecting objects, as proposed in [BPV22].
Regarding the DexYCB dataset [CYX+21], our method did not generalize well. We
explain this by the data organization, where the object remains static over a significant
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fraction of frames per scene. Consequently, the zero-action becomes very likely as
compared to other action-steps, therefore hindering the learning process.
As a general remark for our framework, we exploit the previous pose to render a mask
for the current frame. This postulates limited motion in between frames, otherwise, the
accuracy of our mask decreases and consequently, the efficacy of our method is challenged.
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CHAPTER 6
TrackAgent in a Dynamic

Handover Scenario

In this chapter, we demonstrate the practical ability of our TrackAgent in a dynamic
handover scenario, showcasing how our depth-based tracking method may be embedded
in robotic applications using pose-based visual servoing (PBVS). Mounting a camera on
the robot’s end effector and tracking the object’s pose by utilizing the observed depth
frame allows the robot to adjust its position accordingly, keeping the object centralized
in the image frame even when manipulated. Moreover, we simulate a handover scenario
during our demonstration, where the robot approaches the object to potentially execute
a grasp. However, as grasping is a complex topic going beyond the scope of this thesis,
our focus is solely on showcasing the feasibility of such applications.

6.1 Demonstration Setup

By employing our TrackAgent in a real-world scenario, we are aiming to highlight the
relevance of object tracking in dynamic environments and especially robotic manipulation
tasks. Simultaneously, we want to showcase the practicability of our approach, in contrast
to the evaluation on datasets, in a real-world setting.
PBVS controls a robot’s pose by utilizing visual feedback from an RGB-D camera,
enabling to adjust the robot’s movements to specific observations in the environment.
By mounting an RGB-D camera on the robot’s end effector, we leverage our TrackAgent
to enable object tracking from the robot perspective, allowing to control the robot’s pose
relative to the object’s pose using PBVS [CH06]. In our real-world experiment, we utilize
a KUKA LBR iiwa 14 R820 robot with seven degrees of freedom, specifically suitable for
human-robot interactions. We structure our demonstration by defining two phases:
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• During the tracking phase, as illustrated in Fig. 6.1, the robot keeps the object
centralized in the camera view with a distance towards the object of 50cm, while
a human dexterously manipulates the object’s pose. In addition, the object’s
orientation in the image frame controls the robot’s orientation to maintain the
initial object orientation from the camera’s perspective.

• An approaching phase serves as a demonstration for simulating a potential grasp in
our dynamic handover scenario, as visualized in Fig. 6.2. The object is approached
by the robot, maintaining close distance towards the object for a specific time
interval to theoretically execute a grasp until the robot returns to the tracking
phase. Noteworthy, the object is still tracked during the approaching phase, however,
significant manipulations during this phase may cause a failure in a real grasping
scenario.

6.2 Real-World Results

We present the results of our dynamic handover scenario from four different views. Most
importantly, we provide the color- and depth-frame from the robot’s camera view, along
with the object’s outlines under the estimated pose visualized in magenta. For a better
understanding of the robot’s movements, we additionally provide a front- and side-view,
where the latter is especially important for demonstrating the approaching phase for the
simulated handover. Sequences of our TrackAgent in our dynamic handover scenario are
shown in Fig. 6.1 and Fig. 6.2.
During our experiments, we observed that TrackAgent consistently achieves accurate
pose estimates, therefore effectively guiding the robot’s movements for successful object
following. We want to emphasize the usage of a model trained on YCB-V [XSNF18],
where only the camera views are manipulated while objects remain static. In contrast,
our demonstration involves simultaneous manipulation of both the camera view and the
object, showcasing strong generalization of our method.
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Figure 6.1: TrackAgent in the Wild during the Tracking Phase: PBVS enables
the robot to adjust its position and orientation relative to the object, ensuring the object
remains centralized in the image frame. Moreover, the robot rotates accordingly with
the object to preserve the initial orientation of the object from the camera view. Best
viewed digitally.
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Figure 6.2: TrackAgent in the Wild during the Grasping Phase: We simulate
the handover of the object by approaching the object with the robot’s end effector. The
robot remains close to the object’s proximity to enable a time window for potentially
executing a grasp. The grasping phase is concluded by returning to our predefined safety
distance and continuing in the tracking phase. Best viewed digitally.
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CHAPTER 7
Conclusion and Future Work

Within this work, we have introduced TrackAgent, an RL approach stemming from
a concurrent solving of frame-to-frame registration and frame-to-model refinement to
track 6D object poses as a depth-based alignment problem. Building upon previous
work [BPV22], our contributions involve rewarding the agent from a single- and multi-
frame perspective, reinforcing closer alignment over both time horizons for improved
temporal and spatial coherence. Incorporating learning-based outlier-rejection from
prior research [BPV22] enables TrackAgent to distinguish the object region from the
background and other objects, making it more robust towards inaccurate segmentation.
Dedicated to real-world applications, exploiting information within our pipeline as our
uncertainty metrics triggers reinitializations autonomously, thereby balancing the number
of reinitializations with the desired accuracy during tracking, enabling the user to strive
for highly accurate object poses or minimize computationally expensive reinitializations.
Finally, we have demonstrated how our TrackAgent may be employed in a dynamic robotic
handover application, enabling the robot to follow the object continuously manipulated
by a human and eventually execute a potential object handover.

By evaluating on the YCB-V dataset [XSNF18], our experiments have shown a superiority
of TrackAgent compared to all other depth-only baselines. Moreover, we close the gap
towards dedicated RGB-D tracking methods. In some object categories, we achieve a
higher recall than methods utilizing vast amounts of synthetic data, while ours learns from
only a fraction of the YCB-V training data. An extensive ablation study identified early-
fusion as too simple, and late-fusion as too complex, pointing to our mid-fusion variant as
the optimal architecture for leveraging our joint consideration. Most importantly, fusing
the subtasks in our mid-fusion variant also outperforms frame-to-frame registration and
frame-to-model refinement in isolation. Furthermore, the mid-fusion variant’s ability to
classify inliers and outliers using the segmentation branch proves to be crucial, resulting
in the highest ADI AUC score over all other variants. Deploying our reinitialization
heuristic contributes to a lower frequency of reinitializations while elevating the resulting
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accuracy in tracking, as compared to fixed reinitializations. This suppresses redundant
reinitializations of accurately tracked objects, thereby reducing computational effort
compared to reinitializing after fixed intervals.

Analysis of the individual subtasks revealed the outlier-rejection to be beneficial for the
frame-to-model refinement subtask but hinders the efficacy of frame-to-frame registration.
A promising direction for future work is to investigate the influence of task-specific
activation of outlier-rejection, rather than the current approach of universally enabling
or disabling it for both encoder branches in the model. TrackAgent’s concept of joint
solving may guide future RGB methods to improve accuracy by simultaneously registering
consecutive color image patches with an RGB rendering as the reference. Heavily inspired
by BundleSDF [WTB+23], tracking object poses by (re-)aligning their consecutive depth
observations may be exploited as an implicit object reconstruction. Derived from this
observation, future researchers may focus on two key aspects - accurately reconstructing
objects during the tracking process and exploring the efficacy of replacing the object model
with the ongoing reconstruction. Such contributions would eliminate the necessity of an
object model prior to tracking, potentially enabling tracking for novel object categories.
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(dotted lines) indicate the object motion between frames. Absolute poses
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are classified using two encoders with shared weights in the embedding stage.
Concatenating the embeddings of both point clouds contributes to the current
state vector to be processed by a subsequent policy network to predict action-
distributions for rotation and translation. Our proposed key points for fusing
frame-to-model refinement and frame-to-frame registration are highlighted in
red. The illustration is taken from [BPV21]. . . . . . . . . . . . . . . . . . 23

4.4 Early-Fusion Variant: We fuse both subtasks at the input side by incorpo-
rating an additional encoder, allowing the features of the previous observation
Pt−1 to contribute to the state vector. Sharing weights across all encoders
jointly encodes the frame-to-model refinement and frame-to-frame registration
subtasks, however, the ability for finegrained optimization to either subtask is
limited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Mid-Fusion Variant: We circumvent limitations in the encoding stage by
introducing two separate branches, each encoding one of the subtasks. This
enables the mid-fusion variant to adjust the encoder weights to either of the
subtasks. Concatenating the resulting state vectors of both frame-to-model
refinement and frame-to-frame registration contributes to a more meaningful
state representation for the policy network. . . . . . . . . . . . . . . . . . 25
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4.6 Late-Fusion Variant: We further extend the encoding stage of the mid-
fusion variant with individual policy networks to predict policy embeddings
per subtask. A subsequent merge stage fuses frame-to-frame registration and
frame-to-model refinement to predict unified action-distributions for rotation
and translation respectively. The late-fusion variant, our most complex
strategy, may be interpreted as cloning the baseline network [BPV22] for
either subtask to eventually merge results at the end for a unified output. 26

4.7 Single-Frame Perspective and Multi-Frame Perspective for Reward
Computation: Single-frame pose refinement methods [BPV22] encourage
closer alignment over multiple refinement steps. Similarly, we extend this
approach to be suitable for 6D object tracking by additionally considering
and maintaining the alignment across multiple frames. . . . . . . . . . . . 28

4.8 Computation of the Visibility Mask under an Accurate and Error-
Afflicted Pose: From Left to Right: RGB frame with estimated pose, depth
frame, object model rendered under estimated pose, depth differences, resulting
visibility mask by thresholding depth differences. From Top to Bottom:
Calculating the visibility mask under an accurate and error-afflicted pose
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.9 Depth-Based Segmentation within the Encoder: From Left to Right:
RGB frame, depth frame, segmented point cloud. The segmentation branch
is able to classify points in the point cloud and distinguish the object of
interest (green) from background and other objects (red), shown for the
master chef can object from the YCB-V dataset [XSNF18]. For the purpose
of demonstration, an enlarged bounding box has been used as mask (marked
in yellow) for segmenting the point cloud from the depth frame. . . . . . . 32

4.10 Expected Action-Steps under Best- and Worst-Case across Refine-
ment Iterations: Intuitively, the misalignment and consequently the pre-
dicted action-steps decrease in each iteration until alignment is reached and
therefore the zero-action is predicted (left). Conversely, losing track implies
error-afflicted segmentation. As a consequence, our agent is unable to estab-
lish correspondences and tends to predict larger stepsizes, as TrackAgent is
confident about not being aligned (right). . . . . . . . . . . . . . . . . . . 33

5.1 Employing our Uncertainty-Metrics as Reinitialization Heuristic:
By adjusting the thresholds of our reinitialization heuristic, we control the
interplay of the executed reinitializations with the achieved recall score. We
observe higher visibility thresholds to result in frequent reinitializations. Con-
versely, larger stepsizes actively minimize reinitializations, albeit at the cost
of a limited recall score. For our experiments, we count reinitializations per
object instance. The results of fixed reinitializations are shown in dashed lines,
along with arrows pointing to the recall gain achieved by our autonomous
triggering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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5.2 Runtime Analysis for Varying Object Counts: For tracking a single
object, the inference time of the model is the most time-consuming step.
However, the time spent for the sequential preprocessing step scales linearly
with the object count whereas tracking itself leverages parallel processing for a
more efficient scaling of the runtime. Consequently, we see the most potential
for improvement in the preprocessing step, e.g. by preparing the point clouds
in parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Accuracy and Runtime Comparison: We illustrate the runtimes of our
proposed fusion variants and the isolated subtasks along with the achieved
accuracy. For each method, we list results of the baseline (•) along with
additionally incorporating the segmentation branch ( ✚). All runtimes have
been collected using fixed reinitializations after 30 frames. . . . . . . . . 44

5.4 Qualitative Results on YCB-V: In addition to the visualization of our
predictions, the bottom row provides a virtual scene representation by utilizing
the rendered depth per object. . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Qualitative Results on HO-3D-r: Tracking sequences evaluated on our
custom data split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Qualitative Results on DexYCB: Our method was unable to generalize
well to the tracking objective when utilizing this dataset. We explain this
by the large fraction of frames with little or no object motion, making the
zero-action very likely and therefore reducing the efficacy in tracking. . . 46

5.7 Failure Cases on YCB-V: We observe a likelihood of our agent mismatch-
ing similar-shaped objects. The top failure case features the master chief can
being matched onto the mug. In the bottom failure case, our agent is unable
to distinguish the two jello objects and, even though correctly initialized, fits
both poses onto the object in front. . . . . . . . . . . . . . . . . . . . . . . 47

6.1 TrackAgent in the Wild during the Tracking Phase: PBVS enables
the robot to adjust its position and orientation relative to the object, ensuring
the object remains centralized in the image frame. Moreover, the robot rotates
accordingly with the object to preserve the initial orientation of the object
from the camera view. Best viewed digitally. . . . . . . . . . . . . . . . . . 51

6.2 TrackAgent in the Wild during the Grasping Phase: We simulate the
handover of the object by approaching the object with the robot’s end effector.
The robot remains close to the object’s proximity to enable a time window for
potentially executing a grasp. The grasping phase is concluded by returning
to our predefined safety distance and continuing in the tracking phase. Best
viewed digitally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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List of Tables

5.1 Tracking Accuracy on YCB-V [XSNF18]: We report the average recall
for 50 uniformly distributed thresholds in the range [0, 10cm], i.e. the AUC
score. The results are taken from [SST22] for the RGB-D (‡) and two of
the depth-only methods (†). Each method (re-)initializes tracking with the
ground-truth pose. Best overall AUC per metric is highlighted in bold, best
depth-based AUC per metric in italics. . . . . . . . . . . . . . . . . . . . 39

5.2 Ablation Study on YCB-V [XSNF18]: We present results for our fusion-
variants along with the independent tasks. Moreover, we incorporate different
segmentation strategies to identify and reject outliers. For our ablation study,
different time intervals have been used to reinitialize tracking. Best overall
AUC per metric is highlighted in bold, best method-specific AUC per metric
in italics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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List of Algorithms

4.1 Gathering single-frame and multi-frame samples. The code is adapted
from [BPV21], but modified to the needs of our tracking approach. The
changes include looping over consecutive frames, operating with three point
clouds as input and collecting multi-frame samples. . . . . . . . . . . . 30

4.2 Update agent’s policy using the collected samples by simultaneously using
IL and RL. Code taken from [BPV21] . . . . . . . . . . . . . . . . . . . 30

61





Bibliography

[AGRL19] Yasuhiro Aoki, Hunter Goforth, Arun Srivatsan Rangaprasad, and Simon
Lucey. PointNetLK: Robust & Efficient Point Cloud Registration Us-
ing PointNet. In IEEE/CVF Computer Vision and Pattern Recognition
Conference, pages 7156–7165, 2019.

[AHS22] Mohammad Dawud Ansari, Alwi Husada, and Didier Stricker. Scale
Invariant Semantic Segmentation with RGB-D Fusion. arXiv preprint
arXiv:2204.04679, 2022.

[AMD21] Eduardo Arnold, Sajjad Mozaffari, and Mehrdad Dianati. Fast and Robust
Registration of Partially Overlapping Point Clouds. IEEE Robotics and
Automation Letters, pages 1–8, 2021.

[AS23] Alexander Avery and Andreas Savakis. DeepRM: Deep Recurrent Matching
for 6D Pose Refinement. In IEEE/CVF Computer Vision and Pattern
Recognition Conference, pages 6206–6214, 2023.

[Bau21] Dominik Bauer. Visually and physically plausible object pose estimation
for robot vision. Dissertation, TU Wien, 2021.

[BJN20] Benjamin Busam, Hyun Jung, and Nassir Navab. I Like to Move It: 6D Pose
Estimation as an Action Decision Process. arXiv preprint arXiv:2009.12678,
2020.

[BM92] Paul Besl and Neil McKay. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 239–256,
1992.

[BPV20] Dominik Bauer, Timothy Patten, and Markus Vincze. VeREFINE: Inte-
grating Object Pose Verification with Physics-guided Iterative Refinement.
IEEE Robotics and Automation Letters, pages 4289–4296, 2020.

[BPV21] Dominik Bauer, Timothy Patten, and Markus Vincze. ReAgent: Point
Cloud Registration using Imitation and Reinforcement Learning. In
IEEE/CVF Computer Vision and Pattern Recognition Conference, pages
14586–14594, 2021.

63



[BPV22] Dominik Bauer, Timothy Patten, and Markus Vincze. Sporeagent: Rein-
forced Scene-level Plausibility for Object Pose Refinement. In IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 654–662,
2022.

[BR19] Eric Brachmann and Carsten Rother. Neural- Guided RANSAC: Learning
Where to Sample Model Hypotheses. In International Conference on
Computer Vision, 2019.

[CH06] Francois Chaumette and Seth Hutchinson. Visual Servo Control Part I:
Basic Approaches. IEEE Robotics and Automation Magazine, pages 82–90,
2006.

[CYX+21] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa,
Jonathan Tremblay, Yashraj S. Narang, Karl Van Wyk, Umar Iqbal, Stan
Birchfield, Jan Kautz, and Dieter Fox. DexYCB: A Benchmark for Captur-
ing Hand Grasping of Objects. IEEE/CVF Computer Vision and Pattern
Recognition Conference, pages 9044–9053, 2021.

[DBK+20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929,
2020.

[DMX+19] Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Timothy Bretl, and
Dieter Fox. PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object
Pose Tracking. In Robotics: Science and Systems, 2019.

[DSW+19] Maximilian Denninger, Martin Sundermeyer, Dominik Winkelbauer,
Youssef Zidan, Dmitry Olefir, Mohamad Elbadrawy, Ahsan Lodhi, and
Harinandan Katam. BlenderProc. arXiv preprint arXiv:1911.01911, 2019.

[ESLG10] Andreas Ess, Konrad Schindler, Bastian Leibe, and Luc Van Gool. Object
Detection and Tracking for Autonomous Navigation in Dynamic Envi-
ronments. International Journal of Robotics Research, pages 1707–1725,
2010.

[HJN+20] Matthias Hirschmanner, Ali Jamadi, Bernhard Neuberger, Timothy Patten,
and Markus Vincze. Learning Manipulation Tasks from Vision-based
Teleoperation. In Proceedings of the Joint Austrian Computer Vision and
Robotics Workshop 2020, pages 42–47, 2020.

[HLI+12] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary
Bradski, Kurt Konolige, and Nassir Navab. Model Based Training, Detec-
tion and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered
Scenes. In Asian Conference on Computer Vision, pages 548–562, 2012.

64



[HMB+18] Tomáš Hodaň, Frank Michel, Eric Brachmann, Wadim Kehl, Anders
Glent Buch, Dirk Kraft, Bertram Drost, Joel Vidal, Stephan Ihrke,
Xenophon Zabulis, Caner Sahin, Fabian Manhardt, Federico Tombari,
Tae-Kyun Kim, Jiří Matas, and Carsten Rother. BOP: Benchmark for 6D
Object Pose Estimation. European Conference on Computer Vision, 2018.

[HROL20] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vincent Lepetit.
HOnnotate: A method for 3D Annotation of Hand and Object Poses. In
IEEE/CVF Computer Vision and Pattern Recognition Conference, pages
3196–3206, 2020.

[ILK+21] Shun Iwase, Xingyu Liu, Rawal Khirodkar, Rio Yokota, and Kris M. Kitani.
RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering.
In International Conference on Computer Vision, pages 3303–3312, 2021.

[IWC+16] Jan Issac, Manuel Wüthrich, Cristina Garcia Cifuentes, Jeannette Bohg,
Sebastian Trimpe, and Stefan Schaal. Depth-Based Object Tracking Using
a Robust Gaussian Filter. International Conference on Robotics and
Automation, pages 608–615, 2016.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. arXiv preprint arXiv:1412.6980, 2014.

[KMI+18] Daniel Kappler, Franziska Meier, Jan Issac, Jim Mainprice, Cristina Gar-
cia Cifuentes, Manuel Wüthrich, Vincent Berenz, Stefan Schaal, Nathan
Ratliff, and Jeannette Bohg. Real-Time Perception Meets Reactive Motion
Generation. IEEE Robotics and Automation Letters, pages 1864–1871,
2018.

[KMT+17] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and
Nassir Navab. SSD-6D: Making RGB-Based 3D Detection and 6D Pose
Estimation Great Again. International Conference on Computer Vision,
pages 1530–1538, 2017.

[LHZA22] Jiayuan Li, Qingwu Hu, Yongjun Zhang, and Mingyao Ai. Robust symmet-
ric iterative closest point. Journal of Photogrammetry and Remote Sensing,
pages 219–231, 2022.

[LWJ+18] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. DeepIM: Deep
Iterative Matching for 6D Pose Estimation. In European Conference on
Computer Vision, 2018.

[LZZ+22] Xingyu Liu, Ruida Zhang, Chenyangguang Zhang, Bowen Fu, Jiwen Tang,
Xiquan Liang, Jingyi Tang, Xiaotian Cheng, Yukang Zhang, Gu Wang,
and Xiangyang Ji. GDRNPP, 2022.

65



[Mar23] Martin Sundermeyer and Tomas Hodan and Yann Labbe and Gu Wang and
Eric Brachmann and Bertram Drost and Carsten Rother and Jiri Matas.
BOP Challenge 2022 on Detection, Segmentation and Pose Estimation of
Specific Rigid Objects. arXiv preprint arXiv 2302.13075, 2023.

[MKR+19] Naresh Marturi, Marek Kopicki, Alireza Rastegarpanah, Vijaykumar Ra-
jasekaran, Maxime Adjigble, Rustam Stolkin, Ales̆ Leonardis, and Yasemin
Bekiroglu. Dynamic grasp and trajectory planning for moving objects.
Auton. Robots, pages 1241–1256, 2019.

[MSL23] Jiageng Mao, Shaoshuai Shi, and Hongsheng Li. 3D Object Detection for
Autonomous Driving: A Comprehensive Survey. International Journal of
Computer Vision, pages 1573–1405, 2023.

[MUS16] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. Pose Estimation
for Augmented Reality: A Hands-On Survey. IEEE Transactions on
Visualization and Compute Graphics, pages 2633–2651, 2016.

[MVeSTT19] Filipe Monteiro, André Luiz Vieira e Silva, João Marcelo Teixeira, and
Veronica Teichrieb. Simulating real robots in virtual environments using
NVIDIA’s Isaac SDK. pages 47–48, 2019.

[PPL+21] Timothy Patten, Kiru Park, Markus Leitner, Kevin Wolfram, and Markus
Vincze. Object Learning for 6D Pose Estimation and Grasping from RGB-D
Videos of In-hand Manipulation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4831–4838, 2021.

[QSMG17] Charles Qi, Hao Su, Kaichun Mo, and Leonidas Guibas. PointNet:
Deep Learning on Point Sets for 3D Classification and Segmentation. In
IEEE/CVF Computer Vision and Pattern Recognition Conference, pages
77–85, 2017.

[Rus19] Szymon Rusinkiewicz. A Symmetric Objective Function for ICP. ACM
Transactions on Graphics, 2019.

[SSF+22] Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Rambach, Nassir Navab,
Benjamin Busam, Didier Stricker, and Federico Tombari. ZebraPose:
Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation. In
IEEE/CVF Computer Vision and Pattern Recognition Conference, pages
6728–6738, 2022.

[SST22] Manuel Stoiber, Martin Sundermeyer, and Rudolph Triebel. Iterative
Corresponding Geometry: Fusing Region and Depth for Highly Efficient
3D Tracking of Textureless Objects. IEEE/CVF Computer Vision and
Pattern Recognition Conference, pages 6855–6865, 2022.

66



[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal Policy Optimization Algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[THDT21] Marc Tuscher, Julian Hörz, Danny Driess, and Marc Toussaint. Deep
6-DoF Tracking of Unknown Objects for Reactive Grasping. International
Conference on Robotics and Automation, pages 14185–14191, 2021.

[VLM18] Joel Vidal, Chyi-Yeu Lin, and Robert Martí. 6D Pose Estimation using
an Improved Method based on Point Pair Features. In International
Conference on Control, Automation and Robotics, pages 405–409, 2018.

[WB21] Bowen Wen and Kostas Bekris. BundleTrack: 6D Pose Tracking for Novel
Objects without Instance or Category-Level 3D Models. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 8067–
8074, 2021.

[WML+21] Gu Wang, Fabian Manhardt, Xingyu Liu, Xiangyang Ji, and Federico
Tombari. Occlusion-Aware Self-Supervised Monocular 6D Object Pose Esti-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

[WMRB20] Bowen Wen, Chaitanya Mitash, Baozhang Ren, and Kostas E. Bekris. se(3)-
TrackNet: Data-driven 6D Pose Tracking by Calibrating Image Residuals
in Synthetic Domains. IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 10367–10373, 2020.

[WMTJ21] Gu Wang, Fabian Manhardt, Federico Tombari, and Xiangyang Ji. GDR-
Net: Geometry-Guided Direct Regression Network for Monocular 6D Object
Pose Estimation. In IEEE/CVF Computer Vision and Pattern Recognition
Conference, pages 16611–16621, 2021.

[WPK+13] Manuel Wüthrich, Peter Pastor, Mrinal Kalakrishnan, Jeannette Bohg,
and Stefan Schaal. Probabilistic Object Tracking using a Range Camera.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3195–3202, 2013.

[WS19] Yue Wang and Justin Solomon. Deep Closest Point: Learning Repre-
sentations for Point Cloud Registration. In International Conference on
Computer Vision, pages 3522–3531, 2019.

[WTB+23] Bowen Wen, Jonathan Tremblay, Valts Blukis, Stephen Tyree, Thomas
Muller, Alex Evans, Dieter Fox, Jan Kautz, and Stan Birchfield.
BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown
Objects. arXiv preprint arXiv:2303.14158, 2023.

67



[XLZ+22] Yan Xu, Kwan-Yee Lin, Guofeng Zhang, Xiaogang Wang, and Hongsheng
Li. RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization. In IEEE/CVF
Computer Vision and Pattern Recognition Conference, 2022.

[XSNF18] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation
in Cluttered Scenes. In Robotics: Science and Systems, 2018.

[YlCJ16] Jiaolong Yang, Hongdong li, Dylan Campbell, and Yunde Jia. Go-ICP:
A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 2241–
2254, 2016.

[ZPK18] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A Modern
Library for 3D Data Processing. arXiv preprint arXiv:1801.09847, 2018.

68


	Kurzfassung
	Abstract
	Contents
	Introduction
	Challenges and Research Questions
	Approach and Contribution
	Organization

	Background
	Point Cloud Registration
	Pose Estimation
	Pose Refinement
	Object Tracking
	Task Definition

	Related Work
	Point Cloud Registration
	Pose Estimation
	Pose Refinement
	Object Tracking

	TrackAgent: Reinforced Object Tracking
	From Pose Refinement to 6D Object Tracking
	TrackAgent - Contributions
	Defining the Subtasks
	The Tracking Pipeline
	Fusion Variants
	Learning 6D Object Trajectories from Scratch
	Keeping Track of the Object Region
	Keeping Track of Self-Supervised Uncertainty

	Experiments
	Objectives
	Experimental Setup
	Tracking Accuracy on YCB-V
	Ablation Study
	Qualitative Results
	Analysis of Failure Cases

	TrackAgent in a Dynamic Handover Scenario
	Demonstration Setup
	Real-World Results

	Conclusion and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

