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Kurzfassung

Das Problem eine große Anzahl an Treffen für mehrere Parteien zu planen tritt in vielen
Szenarien auf. Dies geht von der Organisation privater Treffen über Social Media bis hin
zu Geschäftsterminen oder dem Erstellen eines Stundenplans in der Schule. Normalerweise
ist es nötig für jedes dieser Szenarios eine große Anzahl an Bedingungen zu berücksichtigen.
Dies macht das Lösen solcher Probleme für gewöhnlich schwer.
Nehmen wir als Beispiel an, man müsste einen Stundenplan für eine Schule erstellen.
Abgesehen von allgemeinen Bedingungen, wie der Tatsache, dass jede Klasse ihre Unter-
richtsstunden mit passendem Lehrpersonal zugewiesen bekommen muss, müsste man beim
Erstellen eines solchen Plans auch individuelle Präferenzen der Lehrer oder Schüler, sowie
die Verfügbarkeit der Klassenräume, berücksichtigen. Für ein Individuum würde eine
solche Aufgabe schnell überwältigend werden. Selbst unter Zuhilfenahme von Computern
kann es immer noch schwer sein, exakte Lösungen für Probleme dieser Art zu finden.
Aus diesem Grund fokussieren wir uns in dieser Arbeit auf einen heuristischen Zugang.
Wir gehen das Problem an indem wir zuerst eine Formulierung angeben, welche geeignet
ist, um eine große Zahl an Terminplanungsproblemen (meeting scheduling problems) zu
modellieren. Die Formulierung ist durch viele Beispiele änhlicher Problemstellungen aus
der Literatur motiviert.
Als nächstes bringen wir einen verteilten Algorithmus vor, welcher solche Probleme
heuristisch lösen kann. Er ist mithilfe eines Multiagentensystems implementiert um die
teilnehmenden Parteien zu simulieren. Der Algorithmus hat den Vorteil, dass er gut auf
größere Probleminstanzen skaliert, gleichzeitig gute Resultate liefert und dabei einen
gewissen Grad an Privatsphäre ermöglicht. Um dies praktisch zu testen, wurde ein In-
stanzengenerator entwickelt. Die so generierten Instanzen basieren auf Daten aus Studien
zu Geschäftsterminen in Amerika. Das bedeutet, dass gewisse Schlüsseleigenschaften, wie
Beispielsweise die Länge der Termine, aus Verteilungen entnommen werden, welche auf
den erwähnten Daten basieren.
Die Resultate der Auswertung unseres Algorithmus auf den generierten Instanzen sind
vielversprechend. Sie zeigen, dass unser Algorithmus gute Ergebnisse erzielen kann und
gleichzeitig auch in der Praxis gut auf größere Probleminstanzen skaliert. Die Resultate
erlauben auch eine genauere empirische Analyse des Algorithmus selbst. In diesem Kontext
tragen wir auch Methoden vor, um den Algorithmus an spezielle Problemstellungen
anzupassen.
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Abstract

The problem of scheduling a large number of meetings for multiple parties can be found
in many scenarios from organizing private events via social media to business meetings or
timetabling in school. Usually each of those scenarios requires to take into consideration
a large number and variety of constraints, which usually makes it hard to solve such
problems.

Take, for example, the problem of creating a class timetable for a school. Apart from
general constraints, such as that every class needs to have all of their respective lessons
with the right teacher scheduled, one would also have to take into consideration individual
preferences of teachers or students, availability of the classrooms etc.. This can quickly
become insurmountable for an individual to handle. Even when using computers, it can
still be hard to find exact solutions for problems like that. Therefore, we focus on a
heuristic approach in this thesis.

We start to tackle this issue by first providing a formulation which is suitable to model a
large number of meeting scheduling problems. The formulation is motivated by many
examples of similar problem statements in the literature.

Next, we propose a distributed algorithm to tackle the meeting scheduling problem using
a heuristic approach. It is implemented through the means of a multi-agent system
simulating the different participating parties in an instance. The algorithm has the benefit
of scaling well to larger instances while still providing decent privacy and social welfare.
In order to test that, an instance generator is further developed. The generated instances
are based on data from real-life studies on meetings in corporate America. Meaning that
key properties, such as the meeting length, are generated from distributions based on
that data.

The results of an evaluation of the aforementioned algorithm using the generated instances
are promising. They show a high social-welfare for our algorithm, while it still scales well
for larger problem instances. The results also allow for a deeper empirical analysis of the
various aspects of the algorithm. In that context we also propose methods on how to
optimize the algorithm for specific tasks.
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CHAPTER 1
Introduction

The problem of scheduling a large number of meetings for multiple parties can be found
in many scenarios from organizing private events via social media to planning business
meetings or timetabling in school. For each of these different applications there is usually
a large number of individual constraints to take into account. The difficulties of tackling
the meeting scheduling problem therefore lie in finding a common framework that is
suitable for most varieties of the problem and then solving the problem by taking all
these constraints into consideration simultaneously.

Take, for example, the problem of having to create a class timetable for a school. First,
the creator would need to make sure that every class has their respective lessons scheduled
with the right teacher. In addition to that, one also would have to take into consideration
the availability of classrooms at any given time. These are some of the more strict
constraints that would apply to such a problem.

In addition to the constraints mentioned above, class timetables usually follow some
less strict rules as well. For example, (especially in lower-grade) lessons in the morning
are generally preferred over lessons in the afternoon. Also, some teachers might have
individual preferences for certain weekdays. Altogether, even for a smaller school, that
would amount to a large number of constraints to handle.

In order to be able to properly put together such a schedule, someone would need to take
into account all of these constraints. Needless to say, for larger instances this problem
would quickly become insurmountable for an individual to handle without significantly
neglecting some constraints.

Clearly, we can use computers to automate or at least assist with this task. This way we
can significantly speed up the process. To do this, a centralized approach is often easiest,
where all preference data is collected in one central entity and then the schedule is built
there. While finding optimal solutions for large meeting scheduling problems is very
time consuming, we can find appropriate solutions within a reasonable timeframe. This,

1



1. Introduction

centralized approach, however, usually requires each user to expose their preferences to
the other users or at least some central entity, which leads to a possibly unwanted loss of
privacy. In order to tackle this issue many distributed algorithms have been proposed in
the past.
Most of these algorithms can only handle smaller meeting scheduling problems without
exceeding a reasonable runtime or neglecting user preferences significantly. This leads
to the need for a decentralized algorithm that keeps the exposure of personal data or
preferences to a minimum while still achieving appropriate solutions within a reasonable
timeframe.
In [DFRF19] the authors introduced a distributed algorithm for the assignment problem.
The mentioned algorithm fulfills all criteria above in that it does not explicitly share
data between the agents while still achieving good results for the problems given in the
paper. The ideas of that algorithm can now be used to build a new algorithm for the
meeting scheduling problem.

1.1 Aims of this Thesis
This thesis aims to give insight into the (distributed) meeting scheduling problem by
first giving a short overview of related works and also providing a general formulation for
the problem that can be used to describe a wide variety of different meeting scheduling
problems.
Secondly, we aim to describe and implement an algorithm using a multi-agent system
that uses the general idea of [DFRF19] to heuristically solve instances of the meeting
scheduling problem. We also want to look at possible alternations and improvements for
this particular algorithm.
Lastly, we aim to test and evaluate said algorithm by using it to solve instances inspired
by real-life situations. Since it is hard to find data in the exact format needed, we will also
aim to provide an instance generator that creates random instances based on real-world
observations. To properly evaluate our algorithm we will also implement other algorithms
for comparison. We will use those to not only look into the quality of our results, but
also further investigate performances with respect to runtime, fairness and privacy.

1.2 Contributions
The first contribution of this thesis is our formulation of the meeting scheduling problem,
which has the benefit that it lets us model a variety of different real-life problems and
also enables a lot of personalization through its highly customizable soft constraints.
In addition to that, the formulation is held very general which also allows for further
constraints to be added easily in order to adapt to more specific problems.
The main contribution of this thesis is focused around the distributed algorithm to
heuristically solve meeting scheduling problems specified by our formulation. It is
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1.3. Structure

implemented through the means of a multi-agent system simulating the different users
in an instance. The algorithm is based on the novel altruistic approaches described in
[DFRF19] and [DF20]. It has the benefit of scaling well to larger instances while still
providing decent privacy and social welfare. Furthermore, it is designed in a way that
allows users a high degree of individualization for their preferences. This not only gives
users the ability to encode meeting- or time-specific constraints but also gives them the
possibility to transmit obscured preferences to improve privacy with little downside.

An instance generator is further developed to test the algorithm on a diverse array
of instances. Those are based on data from real-life studies on meetings in corporate
America. Meaning that key properties, such as the meeting length, are generated from
distributions based on that data. It also simulates the forming of groups for participants
of meetings. At the same time, the generator allows to set varying problem sizes and
consequently degrees of difficulty.

The evaluation of the aforementioned algorithm against a number of other approaches on
those instances underlines the strengths of the proposed algorithm. The results allow for
a deeper empirical analysis of the various aspects of the algorithm. In that context we
also propose methods on how to optimize the algorithm for specific tasks. Some of these
results were also published at the IJCAI Conference 2021 in [DWF21].

1.3 Structure
This thesis is structured as follows. In Chapter 2 we look into literature related to the
meeting scheduling problem. We also introduce the altruistic matching algorithm in
that chapter. In Chapter 3 we introduce our formulation for the meeting scheduling
problem as a constraint satisfaction problem. Furthermore we give a brief analysis of the
formulation and draw first parallels to the assignment problem. Chapter 4 is dedicated
to the detailed description of our algorithm to tackle the meeting scheduling problem.
We also look into certain aspects of that algorithm such as privacy and runtime. In
Chapter 5 we describe how the instances, that are later used to test the aforementioned
algorithm, are generated. In Chapter 6 our algorithm is then evaluated on said instances.
The results are then used to compare our algorithm with other approaches. Chapter 7
gives a final summary of the thesis and its results.
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CHAPTER 2
Related Work

Since computers are clearly a helpful tool to tackle the meeting scheduling problem, or
scheduling problems in general, they have been studied in this context since the earlier
days of computing. An early example can be found in [GM86]. More recently Gelain et
al. [GPR+17] have published a paper considering a centralized approach. The authors
apply local search techniques to try and optimize the soft constraints of the meeting
scheduling problem.

The research on solvers for meeting scheduling problems quickly shifted its focus on
distributed algorithms. In [SD91] the authors describe the meeting scheduling problem as
“inherently distributed”, due to the need to consider individual preferences and privacy.
In [GS96] the authors claim that their experiments show that keeping certain information
private in meeting scheduling can even lead to more stable results.

Most state-of-the-art methods for distributed meeting scheduling involve multi-agent
systems. Multi-agent systems are distributed computing systems where each individual
node is represented by an intelligent i.e. autonomous agent. These agents work towards
a, possibly common, goal. In the case of meeting scheduling, for example, the agents
would negotiate with each other in order to yield a satisfying schedule. Intelligence
in the context of multi-agent systems usually refers to an agents ability to observe its
environment and autonomously act within it. The authors of [DKJ18] define an agent
as “an entity which is placed in an environment and senses different parameters that
are used to make a decision based on the goal of the entity. The entity performs the
necessary action on the environment based on this decision.” The ability to learn and
self-improve is common in this context as well, however, it is not a necessary requirement
for an agent.

One example of an algorithm which uses a multi-agent system to solve a meeting
scheduling problem can be found in [FFRW02]. In that paper each agent represents a
user and knows the personal preferences of that user for one meeting. The agents interact
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2. Related Work

with each other in that they propose a possible meeting time, given their preferences,
and then negotiate with each other in rounds in order to find the optimal time for that
meeting to take place. After each proposal, the agents record the responses in order to
gain as much knowledge as possible and improve their actions for future proposals. While
this allows the agents to keep a certain amount of privacy, it usually takes a long time for
a large number of agents to finish these negotiations. Another downside of the algorithm
is that it can only find the optimal scheduling time for a single meeting. Therefore if
one wants to schedule multiple meetings at once(e.g. for timetabling) one would have to
repeatedly perform the algorithm on a given order of meetings. Depending on the order
the meetings are processed this most likely would not yield the overall optimal result. A
similar approach can be found in [dMGS18].

The authors of [BH07] improved on this idea by also allowing dynamic meeting scheduling,
i.e. allowing meetings to be rescheduled. Therefore, if there is a conflict between two
meetings the one with a lower utility value would be dropped and scheduled for another
time. To make this possible, said paper also introduces preferences between the meetings,
i.e. each user has to give a preference order for the meetings to be scheduled. Furthermore,
the authors also claim that this algorithm minimizes the number of messages passed
between the different agents. This algorithm also serves as a base for a reference
implementation in Section 6.1.

Other modern approaches also attempt to further minimize the number of necessary
messages to pass before reaching an agreement on a timeslot for a meeting by using
machine learning methods to process knowledge about previous proposals and thereby
infer the preferences of a user. In [ZC09, NS20] specifically Bayesian Networks were used
to reason about the availability of possible meeting attendees. This can then be used
to improve the negotiation strategy. In [NS20] the authors were able to schedule events
with up to 2000 participants. The algorithm in [NS20] also allowed to define a subset of
attendees that had to attend an event and then defined the attendance of other possible
participants as a soft constraint, thereby making it possible to work with a quorum.

The meeting scheduling problem can also be formulated as a distributed constraint
satisfaction problem (DCSP). As the name suggests, DCSPs are constraint satisfaction
problems in which variables and constraints are distributed, usually in a system of
autonomous agents. The formalism is described by Yokoo et. al. in [YDIK98]. In that
paper the authors identify the cost of communication between nodes in the system as
well as privacy concerns as the main research issues of DCSPs. By now, there are various
established strategies that can then be used to solve DCSPs. This can yield the optimal
solution while preserving privacy to a certain extend, however, as with CSPs in general,
it does usually not scale well for meeting scheduling problems. Examples of this can be
found in [MTB+04, ODF12].
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2.1. ALMA

2.1 ALMA

As many parts of the design of the core algorithm for this thesis are heavily inspired by
the altruistic matching algorithm (short ALMA) as described in [DFRF19], we want to
briefly lay out the general idea of that algorithm in this section. In order to explain the
idea properly, we first need to introduce the assignment problem, which is addressed in
that paper.

Given is a set of agents A = {A1, . . . , An} and a set of resources R = {R1, . . . , Rm}.
Each agent Ai is interested in a subset of the total resources Ri. That interest is then
quantified by assigning a utility in [0, 1] to each pair (Ai, Rj), where Rj ∈ Ri. Each agent
can acquire at most one resource. The paper then considers the problem of maximizing
social welfare i.e. maximizing the sum of utilities.

In order to solve this problem, each agent first sorts its subset of resources descending by
utility. Then, the agents try to acquire resources in a round-based fashion, each starting
with the resource with the highest utility for themselves. Inspired by the concept of
altruism the main idea of the ALMA heuristic is that if two agents try to obtain the same
resource in a round, each of them considers its alternative options. If the alternatives
yield a utility that is close to the current resource, the agent would back-off with a
high probability. More specifically, each agent computes its personal loss given as the
normalized sum of the differences between the utility of the current resource and the
next k resources in the sorted list i.e.

lossi
n = 1

k

i+k	
j=i+1

un(ri) − un(rj)

where ri denotes the i-th resource in the sorted list of resources for the current agent n
and un is the utility function.

This loss is then used as an input for a non-increasing function mapping to [0,1] in
order to yield the back-off probability. If the agent decides to back-off of the currently
considered resource, it will start monitoring the next resource on its list in the following
round. If the motioning shows that the resource is still available it will try to acquire
it in the round after that. Otherwise, the agent would instead try to acquire the same
resource again in the following round. This process is repeated until a complete matching
is found.

We will see in Sections 3.3 and 4.2 how this algorithm can be applied to the meeting
scheduling problem. However, even without having a detailed formulation of the meeting
scheduling problem to work with, we can already see similarities between it and the
assignment problem. More specifically, how scheduling meetings for specific timeslots
could be considered a form of assignment and how ALMA could be used in a similar way
for that task.

7



2. Related Work

2.2 ALMA-Learning
While ALMA has been shown to yield good results in [DFRF19], one issue of the algorithm
is that it does not account for the actions of other (possibly competing) agents. For
example, when using the loss function as given in Section 2.1, an agent does not know if
the next k considered resources are actually going to be available or not. This can lead to
potentially sub-optimal results. Similarly can the results be sub-optimal if two agents try
to compete for the same resource at the start while potentially good alternative resources
get acquired by other agents in the meantime. In [DF20] the authors found a way to
tackle these issues by letting the agents learn certain parameters throughout multiple
iterations of the ALMA algorithm.

Specifically, they learn an improved loss function as well as which resource to pick at the
beginning of the algorithm. Learning the latter is achieved by introducing an expected
reward for each resource in order to determine the best resource to start with. If that
expected reward is not often met in the following rounds, the expected reward will be
decreased. In order to improve the loss function from the original ALMA (see Section
2.1) the authors adapt the expected loss of backing-off a given resource if the high-utility
alternative(s) turn out to be occupied already. More specifically, the following variables
are introduced:

• rewardHistory[R][L]: This 2D array stores for each starting resource r the L most
recent rewards received by the agent when starting with resource r. At Initialization
the utility of a resource un(r) is added to the corresponding rewardHistory.

• reward[R]: This 1D array estimates the expected reward for a given resource r by
storing the mean of the L most recent received rewards for that resource. I.e.
reward(r) ← rewardHistory[r].mean(). The starting resource rstart is then deter-
mined as argmaxr∈R reward(r).

• loss[R]: This 1D array estimates the expected loss for passing on a given resource
r. The array is initialized as the loss function given in Section 2.1. With each
iteration the loss array entry for the starting resource rstart is updated according
to the following rule:

loss(rstart) ← (1 − α)loss(rstart) + α(u(rstart) − u(rwon)),

where rwon is the ultimately acquired resource and α the learning rate. If no
resource is acquired by the agent, u(rwon) will be set to 0.

Algorithm 2.1 gives an example code of what the implementation of ALMA-Learning
would look like, given that we already have an implementation of ALMA. If we look at
the code, we can see that once we have an adaption of ALMA for the meeting scheduling
problem, we can directly apply ALMA-Learning as described here. Therefore, we will
focus on finding such an adaption.

8



2.2. ALMA-Learning

Algorithm 2.1: Example implementation of ALMA-learning.
1 initialize rewardHistory, reward, loss;
2 rstart = argmaxr reward[r];
3 foreach i ∈ 1 . . . T do
4 rwon = ALMA(rstart, loss);
5 rewardHistory[rstart].update(rwon);
6 reward.update();
7 if u(rstart) > u(rwon) then
8 loss.update(rstart, rwon, α);
9 if rstart �= rwon then

10 rstart = argmaxr reward[r];
11 end

In [DF20] the authors have proven that ALMA-Learning converges (i.e. eventually rstart

does not change anymore). Furthermore, their experiments show that ALMA-Learning
does improve social welfare over the original ALMA algorithm from [DFRF19].

9





CHAPTER 3
Problem Formulation

In order to motivate our formulation of the meeting scheduling problem we want to
consider a specific real-world scenario. Imagine a business with a number of employees
that have to regularly schedule meetings among smaller groups or departments. Once
every week the company wants to be able to generate a schedule for all necessary meetings
in the upcoming week. Each employee has preferences as to when he or she would like to
schedule any specific meeting. Additionally, we also include times when an employee is
simply not available. For example due to personal reasons or another meeting already
being scheduled. We assume that all employees assigned to a meeting have to be able to
attend in order for the meeting to be considered for scheduling at a given time. With
that knowledge we now want to generate a valid schedule for the whole week that takes
into account the preferences as well as possible.

3.1 Problem Description

We want to formalize the problem as a constraint satisfaction problem (CSP). CSPs were
first introduced by Montanari in [Mon74]. The fairly simple formalism allows to model a
wide variety of problems. Therefore it is quite common to formulate problems such as
the meeting scheduling problem as a CSP. In [Kum92] the author gives a few examples
of problems that can be formulated as CSPs as well as possible solution techniques. A
commonly used definition of a CSP would be that it consists of a set of variables with
respective domains and a number of constraints between the variables. Since we are
looking at an optimization problem we also need an objective function to maximize or
minimize. For the following formulation we will use functions with predefined co-domains
instead of variables with respective domains. It is, however, easy to see that these things
can be interchanged without any problems.
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3. Problem Formulation

3.1.1 Constants
In this section we want to start by describing the constants that define a problem instance
and are therefore considered given. First, we start out with defining the following sets
for our problem:

• A set of individuals P = {P1, . . . , Pm}. These would usually represent people in
the context of meetings scheduling e.g employees or friends in a group. They can
attend meetings.

• A set of meetings M = {M1, . . . Mn}, that we want to schedule. For each of those
meetings we will also need to define a set A ⊆ P of attendees. In this formulation
we will use a fixed set of attendees for each meeting. In order for a meeting to take
place all of them have to attend. If that is not possible, we consider the meeting
unschedulable. For comparison, other publications such as [NS20] use the concept
of a quorum to allow meetings to be scheduled even if part of the invited individuals
are not available.

To formally describe the participation of people in a given meeting, we additionally define
a function mapping each event to the set of its participants

part : M → P(P)

where P(P) denotes the power set of the set of people.

Now that we have defined the set of meetings, we need to formulate a way of scheduling
them. For that we define a calendar as a finite number of timeslots. Using those, we can
then set a meeting by assigning it to a timeslot. While timeslots like that could already
be used to formulate our problem, we want to narrow down the definition a little in order
to make it easier to work with. Therefore, instead of defining a number of timeslots
directly, we define a number of days and slots to denote the number of days and time
slots per day for a calendar that we want to use for scheduling. The slots per day are
then assumed to be of equal size. E.g. days = 7, slots = 24 would define a calendar for
one week where each slot is 1 hour long. This way we can make scheduling for meetings
easier when it comes to real-world scenarios. The downside of this is that each slot now
has the same length in that they all represent the same amount of time.

Meetings, however, are in general not all the same length. Therefore we add another
property for each meeting in the form of a function mapping meetings to their length as
the number of slots needed for the meeting:

len : M → N,

where N denotes the set of natural numbers (excluding 0). This gives us the ability to
assign a variable length to each meeting. The precision for the length can be increased
arbitrarily by increasing the number of slots. Note that we do not limit the length of a
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3.1. Problem Description

meeting, which allows for events to exceed a single day and even the whole calendar, if
needed.

Finally, we need a way to enable people to specify their preference for attending certain
meetings at any given starting time. For this we define the following function:

pref : M × part(M) × {1, . . . , days} × {1, . . . , slots} → [0, 1].

This function allows each participant to set a preference as a value between 0 and 1 for
each meeting at each available timeslot. For example pref(M1, P1, 2, 6) = 0.7 would mean
that person P1 has a preference of 0.7 to attend meeting M1 starting at day 2 and slot
6. This, admittedly, quite specific function allows the participants to also differentiate
between different kinds of meetings. For example one could be available in the evening
for personal events while giving a higher preference to work-related meetings during the
day. Also priorities between different meetings could be encoded that way. Note that we
will later use constraints to define a preference of 0 as being unavailable.

3.1.2 Variables
All functions, sets and constants from the previous section are given to us for each
instance. Now we need to define variables that actually describe the assignment of
meetings to the timeslots. In other words, the goal of finding any schedule, given the
properties from above, consists of finding a function

sched : M → ({1, . . . , days} × {1, . . . , slots}) ∪ ∅
that assigns each meeting to a given starting time. This is our only variable function.
Note that we have only assigned meetings to single slots and have not used the length
property yet. This will be handled in the constraints later. Also sched(M) = ∅ means
that the meeting M is not scheduled. At this point we could already use a CSP solver for
the problem. However, one would quickly notice that the results are not very interesting
as, for example, we still have no way of avoiding overlap. In order to generate a valid
schedule, the function sched has to meet certain constraints.

3.1.3 Constraints
For this formulation of the meeting scheduling problem we demand the following hard
constraints be met:

1. No two scheduled meetings with common participants must overlap. As mentioned
before we only consider the starting time for a meeting when scheduling it. For
this constraint we now also have to take into account the length of each meeting.

2. No meeting shall be scheduled at a (day, slot) tuple if any of the participants
is not available. In order to encode the notion of not being available into this
problem we define that a preference of 0 (as given by the function pref) denotes the
unavailability of the given person for that meeting at the given (day, slot) tuple.
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More formally, the hard constraints are:

∀M1 ∈ M, ∀M2 ∈ M \ {M1} : (3.1)
(sched(M1) �= ∅ ∧ sched(M2) �= ∅ ∧ part(M1) ∩ part(M2) �= ∅)

⇒ (sched(M1) > end(M2) ∨ sched(M2) > end(M1)),
∀M ∈ M : (∃P ∈ P, ∃d ∈ [1, days], ∃s ∈ [1, slots] : (3.2)

pref(M, P, d, s) = 0 ⇒ sched(M) �= (d, s)),

where end(M) returns the ending time (last slot) of the meeting M as calculated by the
starting time sched(M) and the length len(M). Note, that since we allow meetings to
extend over a single day the ending time could also be on another day. The comparator
> needs to be defined accordingly.

3.1.4 Objective Function
In addition to finding a valid schedule we want to make sure that the preferences of the
participants are met using a suitable metric. For this work the focus lies on optimizing
social welfare i.e. the sum of the preferences for all scheduled meetings. So in addition
to satisfying the given hard constraints above, one would also have to maximize the
following expression: 	

M∈M
sched(M) �=∅

	
P ∈part(M)

pref(M, P, sched(M))

While we will use social welfare as a metric throughout this work, note that other
approaches are also possible and useful here. For example, instead we could try to look
at egalitarian welfare, where we would have to optimize the minimal sum of preferences
for each person in the system. For that, the objective function would have be such that
it would maximize the following expression:

min
p∈P

	
M∈M

sched(M) �=∅
P ∈part(M)

pref(M, P, sched(M))

3.2 Complexity
In this section we will briefly discuss the complexity of the aforedescribed problem. It
might seem obvious to some, that the meeting scheduling problem as formulated here is
NP-hard, i.e. that there is no known algorithm to solve such a problem in polynomial time.
However, we want to further support this by providing a polynomial time reduction from
the 0-1 Knapsack Problem, which has been shown by Karp in [Kar72] to be NP-complete,
to our meeting scheduling problem. For this, we start by providing the following definition
of the 0-1 knapsack problem (based on the definition in [Kar72]):
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In the 0-1 knapsack problem we are given a set of n items, each with respective weights
w1, . . . , wn and values v1, . . . , vn (for simplicity we assume non-zero, integer values and
weights). Informally, we then pack a knapsack with those items trying to maximize the
value of packed items while simultaneously trying to not exceed a given weight limit W .
Each item can be packed at most once. Formally, we solve the following integer linear
problem:

max
n	

i=1
vixi

s.t.
n	

i=1
wixi ≤ W

x ∈ {0, 1}n,

where the variable x is a binary array describing whether or not the i-th item is packed
into the knapsack.

For the reduction we are now looking for a polynomial time algorithm to convert any
instance of this problem into a new instance of the meeting scheduling problem described
above. We are therefore given a 0-1 knapsack instance i.e. a number of items n, their
values v and weights w as well as the maximum allowed weight of the knapsack W . If
we consider the items as meetings and their weights as their length, we can see that
scheduling meetings and the knapsack problem are very similar in nature with the only
difference being that in meeting scheduling we have an additional order on the meetings
i.e. a specific starting slot.

The idea is now to formulate an instance of the meeting scheduling problem such that
our items correspond to meetings and that the number of slots correspond to the weights.
This, however, leaves us with a small issue. In the formulation above we allowed meetings
to extend beyond a single day, which makes it hard to impose the strict weight limitation
from the knapsack problem as a time limitation in the meeting scheduling problem. In
order to tackle this, we add an extra meeting that in any optimized case has to occupy
the last slot, thereby preventing any meetings to exceed the original number of slots.
Formally we can now generate an instance of the meeting scheduling problem with the
following parameters:

• P = {P1}: We only have a single person for the meeting scheduling instances. This
person will be assigned to all meetings.

• M = {M0, M1, . . . , Mn}: Each meeting corresponds to one item from the 0-1
knapsack problem, where M0 is the additional meeting meant to occupy the last
slot.

• ∀i ∈ 0, . . . , n : part(Mi) = P1: Each meeting has P1 as its only participant. This
ensures that no meetings can overlap.
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• ∀i ∈ 1, . . . , n : len(Mi) = wi, len(M0) = 1: Each meeting has a length corresponding
to the weight of the respective item. M0 has a length of 1 slot.

• days = 1, slots = W + 1: We have one day and the number of slots are equal to the
maximum possible weight of the knapsack plus an additional slot to be occupied
by M0.

• ∀i ∈ 1, . . . , n ∀k ∈ 1, . . . , W + 1 : pref(Mi, P1, 1, k) = vi
n

j=1 vj+1 : Each Meeting
that corresponds to an item has a preference correlating to the respective value,
regardless of the slot. Note that this implies that the preference for any meeting
that is not M0 is lower than 1.

• ∀k ∈ 1, . . . , W : pref(M0, P1, 1, k) = 0, pref(M0, P1, 1, W + 1) = 1: The additional
meeting has preferences such that it will always be scheduled for the last slot. This
causes the last slot to be effectively blocked, therefore avoiding any meetings to
occupy more slots than available.

Given that we can now solve this instance of the meeting scheduling problem we can
again transform this solution to a solution of the 0-1 knapsack problem. To do this we
simply define the values of x as follows:

∀i ∈ 1, . . . , n : xi =
�

0 if sched(Mi) = ∅
1 else.

We can argue that for this solution the weight constraint of the 0-1 knapsack problem
is satisfied as the weight corresponds to the number of slots in the schedule. Since
there cannot be any overlap between the meetings (see Constraint 3.1) and there are
only W slots available the weight constraint has to be satisfied. It is also easy to see
that the selected meetings (i.e. the ones with be best objective value) also maximize
the objective function of the 0-1 knapsack problem, since any valid solution of the 0-1
knapsack problem is also a valid solution of our meeting scheduling formulation.

With this we have shown that our formulation of the meeting scheduling problem is
NP-hard. In simple terms this means that it is unknown whether or not a polynomial
time algorithm for the problem can exist. Therefore it is no surprise that any known
exact algorithms for this and similar problems do not scale very well. As a consequence
we are looking further into heuristics that can help us find good solutions for the meeting
scheduling problem.

3.3 ALMA
As mentioned before, this thesis focuses on using the ALMA heuristic (see Section 2.1) for
the meeting scheduling problem. ALMA was designed for the assignment problem and
essentially works by having agents negotiate with altruistic behavior. Looking back at
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the problem statement for meeting scheduling in Section 3.1 we can already see parallels
between it and the assignment problem, where each agent had to be assigned a resource.

If we consider each meeting as an agent and each starting time, i.e. (day, slot) tuple, as
a resource, the formulations look rather similar. The utility function for a meeting/agent
and the corresponding slot/resource would then be given as the sum of all preferences
of all attendees. There are, however, some important differences as well. For one, two
meetings can occur at the same time as long as their sets of respective attendees are
disjoint. Also two meetings can be conflicting without using the same exact starting
slot if one of them is long enough. However, if we detect these conflicts, the concept of
ALMA can still be applied. As we have seen in Section 2.2 this also implies that we can
apply ALMA-Learning to our algorithm as well.

3.4 Further Thoughts and Considerations
One major benefit of our formulation of the meeting scheduling problem is that it
allows users to set very specific preferences for each meeting and each slot. This makes
it possible to encode various soft constraints into a users preferences. We already
mentioned examples such as preferring private meetings over business meetings at certain
hours. Other examples would be ordering meetings by importance and giving preferences
accordingly or preferring shorter meetings over longer ones. When doing this, however,
it is important to note that since we optimize the overall social welfare, the choices of
preference of the other attendees heavily influence the results. Thereforem, it is advisable
for all users in the system to use the same scale of preferences for meetings.

However, while powerful, the soft constraints are not enough to formulate the full variety
of circumstances that can appear when trying to schedule meetings. For that we can also
easily add more hard constraints to our formulation. For example consider a situation
where a business is based in multiple cities. We would then have to additionally make
sure that there is always enough time for a person to travel between the cities in order to
attend meetings. This can easily be modeled by adding a function mapping meetings to
cities. Then we only need to add a constraint that prohibits a person from attending two
meetings in different cities in a given timeframe (depending on the chosen cities). We
will later see that our algorithm as described in Chapter 4 also makes it very easy to add
such constraints as long as they can be enforced by a single user or all attendees of a
meeting.
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CHAPTER 4
Algorithm

Now that we have a problem formulation and a motivation to tackle it using a heuristic
approach, we focus on formulating an algorithm to do just that in this chapter. As
mentioned before, we will base our approach the ALMA heuristic. Furthermore, we
will describe a multi-agent system to use for our algorithm. We have briefly introduced
multi-agent systems in Chapter 2. We will also look into possible variations of the
algorithm as well as give a short complexity analysis.
Note: From this section onward we may also refer to meetings as events.

4.1 Setup and Initialization
In order to implement an algorithm to tackle the meeting scheduling problem we are
using a multi-agent system. This provides us with the means to model the problem and
represent individuals. We are using three different agent classes for that:

• RepresentationAgent: For each individual there will be one RepresentationAgent
to work on its behalf. The agent has all necessary local knowledge and will act on
behalf of the individual by relaying information to other agents if needed.

• EventAgent: For each event there will be one agent representing it. These
agents will negotiate with each other in an ALMA-based way to find possible
slots for scheduling meetings. They will also relay necessary information to the
RepresentationAgents.

• SynchronizerAgent: Since the ALMA algorithm works in a synchronized round-
based way, we also create a special centralized agent to keep all other agents
synchronized. Note that this is not necessary as there are several other state
of the art synchronization methods, such as vector clocks, allowing for a truly
decentralized system.
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For simplicity we use the variables introduced in Section 3.1 to describe these agents. I.e.
E is the set of EventAgents and P the set of RepresentationAgents. Furthermore, from
now on we will refer to a (day, slot) tuple simply as a slot. Since each agent in P represents
an individual, they initially possess knowledge of the events that individual wants to
attend, such as their length and the corresponding personal preferences. Additionally,
each agent in P creates an empty personal calendar for events to be added later. The
agents in E on the other hand, know their set of attendees.

In order to be able to use the ALMA heuristic for negotiation, the EventAgents in E need
to have some way to quantify the preferences of their attendees. A simple way of doing
this would be for all RepresentationAgents in P to simply relay their complete preferences
to the corresponding EventAgents upon initialization. This is also the main strategy we
pursue in this thesis. However, this implies that for each meeting a central entity (i.e. the
corresponding EventAgent) has complete knowledge of the preferences for all attendees,
which might be unwanted in some cases. Therefore, we also propose alternatives to
increase privacy by adding noise to that data or even not relaying preference data at all
and instead only sending a ranking of possible slots. The latter allows the corresponding
EventAgent to choose a scale and does therefore not rely on all users resorting to the
same metric when it comes to their preferences. These and other thoughts on privacy
are laid out in more detail in Sections 4.3 and 6.2.4.

Once the agents in E receive the preference data from the RepresentationAgents (regardless
of the form) they will then combine the data. E.g. for social welfare we would simply
sum up the given preferences for each slot. Since we defined our preference such that
slots with a preference of 0 are considered unavailable, slots where one of the received
preferences is 0 will assume the value 0 instead of the sum. The slot entries will then be
converted into a list L = [L1, . . . , Ldays·slots] sorted descending by preference, where each
entry is a tuple of the form Li = �dayi, sloti, preferencei	. Entries with a preference of
0 will be dropped from that list.

Finally, as mentioned before, we need a way to synchronize our agents. In order
to implement this algorithm in a distributed fashion, we decided to use a dedicated
SynchonizerAgent. For later experiments we need a central entity to collect all the
calendar data anyway in order to be able to measure the performance of the algorithm.
Therefore, we decided to go for a dedicated centralized agent instead of other state-of-
the-art methods such as vector clocks.

The SynchronizerAgent collects that data and also makes sure that all other agents are
synchronized. In order to keep all agents synchronized we say that a round ends by the
SynchronizerAgent receiving an "end round" signal from all EventAgents and begins with
the SynchronizerAgent sending a "start round" signal to all EventAgents. This way we
make sure that no two agents operate in conflicting rounds. Before the first round it waits
until a "ready" signal is received from all EventAgents indicating successful initialization.
A pseudocode for this initialization, when relaying actual preference data, can be found
in Algorithms 4.1, 4.2 and 4.3.
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Algorithm 4.1: Pseudocode for initialization of a RepresentationAgent.
Input: Id i of the person to be represented by the current agent

1 events ← loadEvents(i) ; // load list of all events for person i
2 lengths ← [];
3 preferences ← [];
4 calendar ← new Calendar(days, slots) ; // create a new empty

calendar
5 foreach e ∈ events do
6 length ← loadLength(e) ; // load length of event e
7 preference ← loadPreference(e, i) ; // load preferences of event e

for person i
8 send(e, preference) ; // send preference data to the

corresponding EventAgent
9 lengths.add(length) ;

10 preferences.add(preference);
11 end

Algorithm 4.2: Pseudocode for initialization of an EventAgent.
Input: Id j of the event to be represented by the current agent

1 attendees ← loadAttendees(j) ; // load list of attendees for event
j

2 receive(attendees, preferences) ; // receives the preferences from
all attendees

3 preference ← sumPreferences(preferences) ; // combine preferences from
all calendars into a single calendar by summing them up.
(Entries with preference 0 will be assumed unavailable)

4 utilitylist ← sortPreference(preference) ; // convert the preferences
into a sorted list and drop entries with preference 0

5 if utilitylist.isEmpty() then
6 notify all other agents to abort this event;
7 else
8 send(sync, "ready") // ; // let the SynchronizerAgent know that

initialization was successfull

9 end

Algorithm 4.3: Pseudocode for initialization of the SynchronizerAgent.
1 events ← loadEvents() ; // load list of all events
2 receive(events, "ready") ; // receives "ready" signal from all

EventAgents
3 send(events, "start round") ; // send "start round" signal to all

EventAgents
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4.2 Strategy
In this section we will describe the strategy that EventAgents in our algorithm use to
negotiate for a slot. In simple terms, an EventAgent selects a slot and then identifies
possible collisions. If a collision is found it uses the loss function to determine its loss
and based on that will decide what to do in the following round. In this section we also
consider some variations of that strategy.

4.2.1 Identifying collisions
With this setup we can now apply the ALMA heuristic in a similar fashion as described in
Section 2.1. Our EventAgents now have a list of resources i.e. slots they want to acquire
and corresponding utility values for them i.e. the sum of preferences of the attendees.
Based on those, they will start a round by trying to acquire the slot with the highest
value in their list.

In [DFRF19] the authors use cases where collisions, i.e. multiple agents trying to acquire
the same resource at the same time, are detected through the given environment. In
our case collisions and the respective detection is based on the attendees of each event.
Therefore, we decided to let the RepresentationAgents detect possible collisions. In order
to be able to do that, the EventAgents send a message to all their attendees containing
information on which slot they would like to acquire. Once the RepresentationAgents
have received that information from all working EventAgents with events they attend,
they check for possible collisions. These are identified by taking into consideration all
simultaneous attempts to acquire slots, as well as an internal calendar for each Represen-
tationAgent that contains already scheduled slots. Afterwards, the RepresentationAgents
relay that information back to the corresponding EventAgents. Algorithm 4.5 gives a
pseudocode for collision detection and Algorithm 4.4 describes the foregoing "start round"
action of the EventAgents.

Algorithm 4.4: Pseudocode for an EventAgent to start a round.
Input: Id j of the event to be represented by the current agent

1 Event receive "start round" signal from the SychronizerAgent:
2 preferredChoice ← utilitylist[0] ; // save the first element in the

list of utilities as the prefrered choice
3 send(attendees, preferredChoice) ; // send the preferred slot to

all attendees

Leaving the decision of collision detection to the attending RepresentationAgents does
not only make sure that the relevant information for scheduling a meeting stays within
the group of participants, but also allows to enforce additional personal constraints, as
mentioned in Section 3.4. For example, if two events were impossible to attend after
another, due to locational or other constraints, an attendee could simply enforce those
by not allowing both events to be scheduled in succession.
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Algorithm 4.5: Pseudocode for collision detection of a RepresentationAgent.
Input: Id i of the person to be represented by the current agent

1 Event receive preferredChoices from all agents in events:
2 foreach proposal in preferredChoices do
3 collision ← checkCollisions(preferredChoices, proposal, calendar) ;

// check for possible collisions of the given
proposal with other proposals and the already
scheduled events in the calendar

4 send(e, collision) ; // send the information on collisions
back to the corresponding EventAgent

5 end

Furthermore this can also be used for people to improve privacy. Specifically when a person
does not want to reveal for which slots they are not available directly, they could instead
give false non-zero preferences to the EventAgents at initialization. If the EventAgent
proposed such a slot that person, or rather the corresponding RepresentationAgent, could
then block that slot.

After having proposed a slot to the RepresentationAgents, the EventAgent will wait
until it receives feedback from all corresponding attendees. In case there is no collision
for any of the participants, the EventAgent will acquire the slot by first informing its
respective RepresentationAgents and then the SynchronizerAgent. All informed agents
will delete the EventAgent from their list of working agents and the EventAgent itself
will terminate.

4.2.2 Altruistic collision handling
If there is a collision, we work in the same way as ALMA, described in Section 2.1. That
is, we calculate the loss as the mean difference in preference between the current option
and the k next best alternatives.

lossi
n = 1

k

i+k	
j=i+1

un(ri) − un(rj)

The back-off probability is then determined as f(loss), where f can be any non-decreasing
function with f [R] ⊆ [0, 1]. At this point it is important to note that the preference for
an EventAgent is not in [0,1] as in Section 2.1, but is instead bound by the number of
attendees as a result of summing up the individual preferences. Therefore, the loss is also
not in [0,1] anymore which, depending on f , could cause some issues. As a consequence,
we also considered the possibility of normalizing the preferences in later experiments in
Section 6.2. One such option is to simply divide the preference sum by the number of
attendees. This has the downside, that it distorts the comparability of loss between the
agents significantly since events with fewer attendees would be considered as important
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as ones with more participants, even though the latter usually contributes more towards
social welfare. Another option is to find a global variable to use for normalization. For
example one could use the maximum number of attendees over all events or the highest
preference value for any event. This would require each EventAgent in our system to
share at least one property globally, which in our case can be easily accomplished by
using the centralized SynchronizerAgent.

We want our probability function f to be designed in such a way that it inversely correlates
with the loss function. The optimal form of the function, the slope and other properties
are to be determined by experiments later. Since the properties we need for f are similar
to the ones of a cumulative distribution function (cdf) we used some common cdfs as a
motivation for possible candidates for f . This resulted in the following candidates:

f(loss) = 1
1 + e−γ(0.5−loss) (4.1)

f(loss) = e−loss·λ · 1(0,∞)(loss) (4.2)

f(loss) = 1 − 1
σ

√
2π

� loss

−∞
e− (t−µ)2

2σ2 dt

(4.3)

f(loss) =

����
1 − ε, if loss ≤ ε,

ε, if 1 − loss ≤ ε,

1 − loss otherwise.
(4.4)

Where (4.1) and (4.4) are inspired by their previous use in [DFRF19] and are based
on a logistic function and the cdf of a uniform distribution respectively. Furthermore
(4.2) is based on the cdf of an exponential distribution and (4.3) on the cdf of a normal
distribution. 1 is the characteristic function. Illustrations of these functions are displayed
in Figure 4.1.

Using one of the proposed functions we then back-off with the calculated probability. If
the agent does not back-off, it informs its attendees of that decision, ends the round by
sending the corresponding signal to the SynchronizerAgent and tries to acquire the same
slot again in the next round.

On the other hand, if an EventAgent decides to back-off, it will delete the currently
selected slot from its list of possible slots, then inform the attendees, or rather the
respective RepresentationAgents, of its decision and finally end the round by sending the
corresponding signal to the SynchronizerAgent. It will try to acquire the next slot in
the following round. Once all agents have ended their round, the SynchronizerAgent will
start the next round. Algorithms 4.6 and 4.7 show the decision making process of the
EventAgents as well as the following handling of that decision by the RepresentationAgents.
Additionally Figure 4.2 displays the messages passed between the agents for this process
as well as a few simplified intermediary steps.

The algorithm terminates once all EventAgents have terminated. This happens either if
an EventAgent successfully schedules a meeting or if the list of possible slots becomes
empty i.e. when it has unsuccessfully tried to acquire all initially considered slots.
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a) Illustration of (4.1) for γ = 7.
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b) Illustration of (4.2) for λ = 2.
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c) Illustration of (4.3) for µ = 0.5,
σ = 0.2.
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d) Illustration of (4.4) for ε = 0.1.

Figure 4.1: Illustrations of the candidates for the back-off probability function.

4.2.3 Alternations to the Strategy

Some small alternations to the strategy described in this section were also considered for
the experiments later. One such alternation was to modify the strategy such that the
agent would not directly try to acquire the next slot in the following round but instead
only monitor it. If the monitored slot was free, the agent would try to acquire it in the
round after that. Otherwise it would move on to monitor the next slot. This small change
allows agents to revisit slots. So it would be possible that instead of removing slots after
backing off, we could add them to the end of the list so that they would eventually be
reconsidered and the agents loop over the available slots until either an available slot is
found or all slots are taken.
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Figure 4.2: Sequence diagram for the negotiation protocol. Displays the communication
between EventAgents and multiple RepresentationAgents as well as some simplified
intermediary steps.
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Algorithm 4.6: Pseudocode for the decision process of an EventAgent.
Input: Id j of the event to be represented by the current agent

1 Event Receive collisionInformation from all attending RepresentationAgents:
2 if collision ∈ collisionInformation then
3 status ← "continue" ; loss ← calculateLoss(utilitylist[0..k]) ;

// calculate loss based on the k next slots in
utilitylist

4 backOffProb ← f(loss) ; // calculate back-off probability
based on loss

5 x ← uniformRandom(0,1) ; // generate uniform random
distributed variable

6 if x < backOffProb then
7 utilitylist.delete(0) ; // remove current slot from

consideration if we decide to back-off
8 if utilitylist.isEmpty() then
9 status ← "abort" ;

10 send(attendees, "abort") ; // inform attendees if no
more slots are available

11 else
12 send(attendees, "backoff") ; // inform attendees about

the decision to back off

13 else
14 send(attendees, "continue") ; // inform attendees about the

decision to not back off

15 else
16 status ← "acquired" ;
17 send(attendees, "acquire" + preferredChoice) ; // inform attendees

about the decision to acquire slot

Note: In the original strategy revisiting slots is not possible as it could end in a
deadlock. That happens if two or more agents try to acquire the same slot and have only
that one slot left to consider. In that case those agents would collide every round and
never be able to either acquire the slot or remove it from consideration.

Another modification that was considered to the original protocol is to change the way
an agent backs off. Instead of directly deleting the current slot and going to the next
one, the agent would spend another round simply monitoring the current slot and not
compete for it. If, in that round no other agent tried to acquire the slot, then the agent
would go back to competing for it in the following round. This would prevent situations
where multiple agents back-off from a slot at the same time and then no one acquires
that (potentially high utility) resource. On the other hand this reduces the solution space
and therefore could yield worse results as well.
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Algorithm 4.7: Pseudocode for the decision handling of a RepresentationAgent.
Input: Id i of the person to be represented by the current agent

1 Event Receive decision message from all agents in events:
2 foreach e ∈ events do
3 msg ← message received from e ;
4 if msg contains "acquire" then
5 calendar.addEvent(msg.getPreferredchoice()) ; // Adds the

preferred choice contained in msg to the internal
calendar

6 events.remove(e); // Remove current EventAgent from
consideration

7 else if msg == "abort" then
8 events.remove(e) ; // Remove current EventAgent from

consideration

9 send(e, "ok");
10 end

4.2.4 ALMA-Learning

Now that we have a finished algorithm using ALMA we can easily integrate ALMA-
Learning as well. Looking back at the description in Section 2.2 we can see that we
only need to add a few extra variables for ALMA-Learning to work. We have to replace
the loss function with the respective array that learns its values over time via value
iteration. Additionally, we have to keep the reward history for each starting slot in order
to be able to determine the best slot to use in future iterations. With that setup we can
then execute ALMA-Learning by repeatedly running our algorithm and updating the
respective variables after each run. That process is then repeated until a certain exit
condition is met. In this thesis we have used a fixed number of steps for that in order to
keep things simple and consistent for the evaluation later. Other possible exit criteria
would look at the change in values for e.g. the starting slot and terminate once no agent
changes starting slots anymore.

4.3 Privacy

In previous sections we have already mentioned the importance of privacy and have
also hinted at possible ways of achieving it to some degree. In this section we will
further look into a variety of different privacy enhancing methods as well as possible
downsides to them. Since our algorithm has two agent classes that might want to keep
their information private, we will look at both of them separately.
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4.3.1 RepresentationAgent Privacy
The RepresentationAgents know all the preferences of the respective user. Therefore, in
order to provide privacy they would have to keep the preferences to themselves. However,
as part of the algorithm they have to share that information with the given EventAgents
to some degree. If those are not considered secure, we will have to find a way to let the
EventAgents select suitable slots without directly giving them the preference values. One
simple way would be to obscure the existing preferences. This could be done by adding
gaussian noise to the data and then transmitting the noisy preferences. Alternatively,
the RepresentationAgent could relay a ranking of slots, thereby obscuring the detailed
preferences. Since our algorithm also allows us to block slots during runtime we are even
able to obscure the occupied slots that way at initialization.

There are several other methods one could choose to improve privacy. For example the
agents could only relay their n most preferred slots to the EventAgent. This keeps most
of their other data private while still providing a good overview of the preferences for the
EventAgent. The RepresentationAgents could alternatively also find preferred days or
time-ranges through negotiation and then relay their data only for those slots. These
and various other methods can be used to make sure that the EventAgents only gain
little knowledge about the preferences of the RepresentationAgents while still providing
enough data to make it possible for them to schedule a meeting. However, we also want
to make sure that the EventAgents each keep their information.

4.3.2 EventAgent Privacy
In order to make sure that the privacy of the attendees is guaranteed the EventAgents
have to keep their personal utility function i.e. the preference values for the slots private
as well. Our algorithm already provides a high degree of privacy as there is no direct
communication of any kind between EventAgents and agents that are not assigned to
the corresponding meeting. Therefore information regarding the attendees preferences
should stay mostly within the group. However, the order in which slots are visited is
deterministic and therefore privacy cannot be guaranteed. This aspect is exploited in the
use of ALMA-Learning for example.

For that reason Panayiotis et al. designed a privacy-preserving version of ALMA (PALMA)
in [DTF21]. In simple terms, instead of always acting true to their own preference, agents
also perform random resource selection or randomly back-off with a certain probability.
The authors have shown that their approach yields good results in terms of social welfare
for the considered scenarios, while also giving strong privacy guarantees.

One thing that all of the methods mentioned above have in common is that they all
usually worsen the social welfare to some degree. That is no surprise, since they all
reduce the knowledge we have for finding a solution to a given problem or add some
randomness to our actions. Therefore, it is always important to keep in mind that there
is a trade-off between privacy and social welfare. This is why it is crucial to investigate
that trade-off for any given method before using it in practical scenarios. In our case we
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have performed some experiments with noisy data. The results can be found in Section
6.2.4.

4.4 Convergence and Runtime Considerations
For the algorithm in the pseudocode it is easy to find a bound on the expected number of
rounds to finish. For that we define p as the lowest back-off probability for this instance.
In the worst case scenario an agent would consider to acquire each slot but never succeed.
As given by the negative binomial distribution, the expected number of steps until that
agent backs-off from a slot is given as 1/p. In the worst-case scenario we have to repeat
that process for each slot. Therefore the number of rounds for an agent to finish can be
bound by O(R

p ), where R is the number of slots.

This bound does, however, not hold if we modify our algorithm. Especially if we allow
events to be reconsidered instead of deleting them after backing off. In [DFRF19] the
authors have considered that strategy for their problem and were able to bound the
expected number of rounds for the algorithm to converge with

O
�

R
2 − p∗

2(1 − p∗)

� log N

p∗ + R

��
, (4.5)

where N is the number of agents, R the number of slots and p∗ = min(pmin, 1 − pmax),
with pmin and pmax being the smallest and biggest back-off probabilities respectively.

Furthermore the authors have shown that the expected number of rounds until an agent
converges can be even bound by the convergence time of the sub-system said agent
belongs to. Therefore we can replace N in (4.5) with N∗ the maximum number of agents
competing over any single resource at the same time. We can also replace R in the same
equation with R∗ the maximum number of resources to be considered by any agent. The
new equation would then be

O
�

R∗ 2 − p∗

2(1 − p∗)

� log N∗

p∗ + R∗
��

. (4.6)

While this might seem like a minor improvement over the runtime mentioned before. The
authors have later gone on to find several test cases where the values R∗ and N∗ are
naturally bound leading to a constant runtime for the algorithm.

Going back to our adaption of the ALMA heuristic for the meeting scheduling problem,
we want to investigate what quantities N∗ and R∗ would correspond to.

• R∗: Since resources roughly correspond to timeslots in the meeting scheduling
problem, R∗ corresponds to the maximum number of possible slots for any event.
That number is technically only bound by the number of all available timeslots.
However, it is often impractical to consider all timeslots. Given a large calendar, it
is more feasible for attendees to only give preferences for a bound number of slots.
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The EventAgent could also disregard events with a low utility. Those steps would
lead to a runtime improvement.

• N∗: In the meeting scheduling case two agents have a conflict if they want to set
a meeting where the timslots as well as the sets of attendees overlap. Therefore,
N∗ is the maximum number of events competing for a timeslot with overlapping
attendee sets. If we could now assume that we can cluster our total set of people
into smaller groups such that either inter-group events are rare or preferred meeting
times of groups do not overlap, then we could describe N∗ as the maximal number
of events of any such group. This form of clustering naturally occurs in many
situations. People in the corporate world often build clusters by their work hours
or their respective departments.

To summarize, the number of rounds is bound by the number of possible timeslots per
event and the number of events per cluster, if a clustering exists. Furthermore we should
also note that given the necessary communication between RepresentationAgents and
EventAgents one round takes at least O(E∗ + A∗) steps, where E∗ is the maximum
number of events for any single attendee and A∗ the maximum number of attendees for
any single event.

In all expressions above, describing the expected number of rounds, we can see that it
grows with small p or p∗. When experimenting with several hyperparameters, specifically
for the different candidates for f , we noticed that, with the exception of (4.4), the curves
can become very steep and therefore p∗ can indeed reach very small values. That leads
to high runtimes where there is no progress for thousands of rounds. While it would
be simple to not consider such steep curves, we also noticed that for some instances,
where the algorithm actually terminated, good results were achieved. Therefore the
decision was made to instead slowly reduce the steepness of the curve with increasing
rounds. Since we only wanted to significantly change the steepness of the curve for high
round numbers, we chose a modifier that grows slowly in the beginning. Specifically that
modifier value was chosen to be exp(rounds/10000). That value was then used to modify
the parameters responsible for steepness λ, γ and σ accordingly.
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CHAPTER 5
Instance Generation

The first step in evaluating our model is to find some data to properly test it on.
Unfortunately, we were not able to find real-world data for the meeting scheduling
problem that contained information (e.g preference data) to the extend that would have
been needed for this algorithm. Therefore, the decision was made to generate our own
data. For this task we wanted to design a generator that allows us to variably set the
number of events, the number of people in the system, the number of days and the
number of slots per day. Based on those parameters the generator is supposed to create
a random instance of the meeting scheduling problem for our algorithm to solve.

The generator was designed with situations for corporate meeting scheduling in mind.
All people in the system are considered employees of a company that wants to schedule
several meetings in a given timeframe. In order to properly portray the average company
meeting schedule, we inspired some choices for possible parameters by the data published
in [RN01]. The paper contains data on various studies with information on meetings in
corporate America in the 80s such as meeting lengths, number of attendees, etc..

As mentioned before, we generate our instances for the meeting scheduling problem with
a given number of meetings and people as well as a calendar i.e. given number of days
and slots per day. Based on that we can generate a problem instance by generating and
assigning properties for each event one-by-one. The properties we have to assign are
length, a set of attendees and preferences for each attendee (see Section 3.1.1).

5.1 Assigning Length
First, we assign a length to the event. That number is based on the data published in
[RN01]. More specifically, the paper looks at several intervals of meeting lengths (e.g.
0-30min, 30-60min, etc.) and gives us the percentage of observed meetings with a length
in the respective interval. We then use those datapoints to fit a logistic curve. That
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logistic curve is in turn used as a base for a random generator to generate meeting lengths
with a distribution corresponding to the data. The function is additionally designed such
that the maximum number of hours was 11. According to the data, less than 3% of
meetings exceeded that limit. Note that the data from [RN01] is in hours or minutes
and our algorithm works only with slots. Therefore we have to discretize the distribution
based on the number of slots selected. After the length is assigned, the event gets further
processed by assigning attendees.

5.2 Assigning Attendees

In order to chose attendees for an event, we first decide on the number of people to take
part in the given event. That number again gets randomly generated based on data
published in [RN01]. In this case the paper has data on intervals of meeting sizes (e.g.
1-5,6-10,etc.). Again, that data is fitted using a logistic curve which then is used for a
random generator to return random meeting lengths following the distribution from to
the data. No more than 90 people are chosen for an event at a time as there is only
a small percentage of meetings exceeding that number in the data.1 Additionally, for
instances where the number of people in the whole system is below 90, that bound is
reduced accordingly.

Now, that we have the size of the meeting, we want to think about how to properly assign
attendees. A simple way would be to just pick the required number of attendees from the
pool of people in the system completely at random. As we have already briefly mentioned
in Section 4.4 this is usually not a natural way to assign attendees. When thinking about
the problem in terms of a corporate scenario, for example, one would be quick to see
that this is not how meetings are usually set, as a meeting across a number of different
faculties or departments in a company is arguably rather rare. In this and many other
scenarios there are usually specific groups that tend to have meetings with each other.
In the corporate scenario these groups are usually defined by departments. In a social
environment these groups could simply be groups of friends. However, that grouping is
usually also not absolute. Sometimes groups invite new people or departments have a
common meeting. We therefore need to find a way to assign attendees to each meeting
that somehow simulates these conditions.

5.2.1 Generating Clusters

Our idea for this problem was to simulate a sort of clustering of people by assigning a
point on a 1 × 1 plane to each person in our system in such a way that clusters start to
form. These clusters would then represent a department or a group of friends. Then, the
assignment of people to an event would work in such a fashion that people which are
closer are much more likely to attend the same meeting. This would more or less mimic

1Note: The median is significantly lower.
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the behaviour we wanted to create, as groups are more likely to be in the same meeting
while rarely also selecting outsiders to attend.

In more detail, we create the points in an iterative way. The first person is assigned
to a uniformly random point on the plane. For each following person there is a 30%
probability that they also get assigned a uniformly random point. With a 70% probability
the person would be assigned a point based on a normal distribution centered around
one of the previously created points. Which of these previous points would be chosen
as the center is decided based on the time of creation. I.e. a recently created point is
exponentially more likely to be chosen as the center than an older one. In our experiments
this method with the mentioned parameters has caused the desired building of clusters.
The randomness and preference of more recent points when adding a new point avoids
that a single cluster grows too big. Figure 5.1 displays the resulting points after a few
steps of such an iteration.

After each person is assigned a point on the plane we then choose a host for our meeting
at random. Further attendees are then selected for the event based on the distance to
the host such that people with closer points are significantly more likely to be chosen for
the event.

5.3 Assigning Preferences
Finally, we have to assign preferences for the event to all of the attendees. Again we want
the instance data to roughly reflect the situation of a corporate meeting. Unfortunately,
thr previously cited paper [RN01] does not contain data to suggest when meetings usually
take place. However, assuming that the people in our system work an office job we can
consider a generic 9-to-5 workday schedule. We generate a preference table by combining
values obtained from two independent functions:

• Slot Preference: This function is designed to roughly reflect the time available
for a meeting on an average workday. For a given time of day (or respective slot) it
returns a preference value. It only depends on the time slot and is independent
of the day. Given that we assume a rough 9-to-5 workday, we usually have high
preference values during that time, while returning a low value in the evenings. For
example the preference for someone to take a meeting at 10am might be higher
than for 2am. The exception to this rule would be a small lunch break at noon
where our function returns a lower preference value.

• Day Preference: This function focuses on the preference for a given day while
disregarding the slots. For a given day it returns a preference value. For this
function the preference is meant to decrease over time. This should reflect that in
many cases it is preferable to schedule meetings sooner rather than days or weeks
into the future. Another possible function here would be a step-function that would
indicate a significant decrease in preference after a given day. That could be used
to represent a deadline.
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a) p = 10 b) p = 50

c) p = 100 d) p = 200

Figure 5.1: Generated datapoints on the 1 × 1 plane for p number of people.
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Figure 5.2: Heatmaps displaying the distributions used for generating preference data.
The image on the left displays the distribution of preference throughout a workday. The
image on the right displays the distribution of preference throughout a week.

For each user and event we then generate a preference by using these preference functions.
Specifically the preference values are generated by calling both functions for each combi-
nation of slots and days and then multiplying the respective results. This way, however,
every person would always have the same preferences for each slot. In order to add some
randomness we therefore use a normal distribution with the aforementioned preference
as mean and 0.1 as standard deviation and assign the result as the preference. Figure 5.2
displays what each of the preference functions looks like when the normal distribution
is applied this way. When looking at the images we notice that due to the use of the
normal distribution we might end up with preference values above 1 or below 0. For
those cases we reject the values and repeat the previous step until the result lies in [0,1].

Finally, we need to simulate already scheduled meetings or other obstacles that would
cause people to reject slots for a meeting. To do this, we simply blocked a random
number (from a given range) of timeslots for each person given the event. This was
simply achieved by setting certain slot preferences to 0. The actual slots to block this
way were determined by the preference function for a day described above. I.e. a slot
with a high preference is also more likely to get blocked.

Ultimately, additional slots were blocked in such a way that for each event only the 24
most valuable slots would remain available. This effectively limits R∗ the maximum
number of slots for any event and therefore, according to our thoughts in Section 4.4,
should also improve our runtime.
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CHAPTER 6
Evaluation

In this chapter we will look deeper into the actual application and evaluation of the
algorithm described in Chapter 4. For that we briefly introduce the tools used to
implement and evaluate the algorithm using the instance generator described in Chapter
5. We will also give some motivation for our choice of the used hyperparameters and
tools. Furthermore, we implemented a few simple algorithms to use as a baseline to
test our algorithm against. Beyond social welfare we will also look into other metrics
such as fairness, the number of scheduled meetings and the number of rounds needed for
the algorithm to terminate. Lastly, we are also going to examine the effects that some
privacy-preserving methods can have on our results.

6.1 Reference Algorithms
In order to be able to evaluate the performance of our algorithm we implemented a few
other algorithms for comparison.

6.1.1 Centralized Greedy Algorithm

The first algorithm implemented is a centralized algorithm that schedules meetings in
a greedy fashion. The initialization works the same way as it does for our algorithm
(described in Section 4.1). Afterwards, however, the SynchronizerAgent collects the
preferences from all the EventAgents and then schedules the events in a greedy manner.
I.e. we select the event with the highest possible preference and then try to assign it
to the corresponding slot. If that is possible, we schedule and then remove that event
from consideration. If scheduling is not possible, we instead remove that slot from
consideration for the selected event. We repeat this process until no more meetings can
be scheduled.
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6.1.2 ILOG CP Solver
The second algorithm used for comparison is also centralized. Here we used the ILOG
CPLEX Optimization Studio [CPS] and the corresponding IBM ILOG CP Optimizer
[CPO] 1 to formulate and solve the meeting scheduling problem as a CSP. In order to save
time the previously yielded result from the greedy approach was used to warm-start the
solver. Since that approach still takes very long for larger instances, we also limited the
available amount of time to t minutes. For smaller problem instances this usually yielded
the optimal solution, while for larger instances it often did not improve the original
greedy result a lot. One benefit of this solver is that it also yields an upper bound for
the optimal solution.

6.1.3 Distributed Greedy Algorithm
The next algorithm used for comparison is a distributed greedy algorithm. Once again
the initialization works as described in Section 4.1. However, in order to preserve the
decentralized nature of the problem we do not collect the preferences in one place. Instead
a random EventAgent is chosen and gets to schedule its event for the slot with the highest
possible preference that is still available. This step is repeated until all EventAgents had
their turn.

6.1.4 MSRAC-based Algorithm
The last algorithm used for comparison is based on the MSRAC algorithm presented in
[BH07]. The authors used that algorithm to solve a meeting scheduling problem similar
to the formulation in Section 3.1. The key differences are:

• The version of the problem they considered does not assign a length to each event
and therefore each event has a given length of 1 slot.

• Each person only has one preference per timeslot. Unlike our formulation, where a
preference for each timeslot and event is allowed.

• Each event is assigned an importance value in order to give priority to more
important events.

These differences are mostly limitations from our problem formulation. We have already
discussed in Section 3.4 how such importance values could be encoded into the users’
preference data. Despite the limitations of the problem formulation, the MSRAC
algorithm also has a few advantages over our ALMA-based approach. For one, it works in
a dynamic way, i.e. it allows the addition of new events at any time and can change the
calendar accordingly whereas our algorithm has to schedule all events at once. Another
advantage is that it works asynchronous and therefore eliminates the need for centralized
synchronization.

1The IBM ILOG CP Optimizer is a state-of-the-art tool to solve constraint satisfaction problems.
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Our implementation for a MSRAC-based algorithm to solve our formulation of the
meeting scheduling problem works as follows. The initialization of the MSRAC algorithm
works similar to our previous approach. If an agent wants to schedule an event he asks
all participants for the relevant preference information. Once he receives said information
the preferences are summed up and combined into a list of slots sorted by preference.
Unavailable slots, as well as slots occupied by more important events, are dropped. The
paper further proposes to relay only a ranking of slots instead of the complete preference
data in order to increase privacy. The agent that collects that information would then
have to generate a new implicit scale based on the rankings and consider that one as
the preference. If in the sorted list entries have the same preference value the authors
further recommend to choose the ordering such that the maximal distance between users’
preferences is minimized.

Now the EventAgent proposes the first slot in its sorted list to its participants. Each
participant then looks at the proposed events for that slot and keeps the one with the
highest importance value. More specifically:

• If the slot is free, accept the proposal.

• If the slot is occupied by a less important event, accept the proposal and invite the
agent of the less important event to reschedule.

• If the slot is occupied by a more important event, reject proposal and invite the
agent to propose new slot.

• If the slot is occupied by an equally important event the authors propose a few
ways of handling this case. The easiest one would be to simply choose to keep the
event with a higher utility and reject and reschedule the other one.

If any EventAgent now receives a message to reschedule, it deletes the current proposal
and proposes the next slot to its participants. This process is repeated until a stable
state is reached.

With this we can now see that the MSRAC algorithm can also handle inputs where
events are longer than 1 slot and people have more specific preferences. However, this will
invalidate some theoretical considerations made by the authors and is therefore expected
to worsen results. In order to yield an importance value for events, we simply decided
to take the average preference over all participants. However, since meetings with more
participants tend to be more important and they also contribute more to social welfare,
we decided to additionally multiply this value by the number of participants. This choice
for the importance value also makes it highly unlikely that two events have the same
importance value, which is why we did not further analyze the effects of the different
ways to handle collisions of equally important events that were originally proposed by
the authors.
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6.2 Testing

In this section we will be using the instance generator from Chapter 5 to evaluate our
ALMA-based algorithm and compare it with the algorithms introduced in the previous
section.

6.2.1 General Instances

For the first experiment we want to investigate the performance of our algorithms on
a set of random instances. We keep the instances general by not imposing any further
restrictions, beyond the ones already discussed in Chapter 5. That allows for a good
initial overview of the performance.

Setup

For the first set of experiments we used a calendar with 7 days and 24 slots per day. The
maximum number of slots to block each day b was chosen to be 4. The number of events
to schedule was chosen from {10, 15, 20, 50, 100} and the number of people in the system
from {10, 20, 30, 50, 100}. For each of those combinations an instance was generated and
evaluated.

The distributed algorithms were implemented using the JADE (Java Agent DEvelopment)
Framework [BBCP05, jad]. As the name suggests JADE is a framework for Java to assist
with building multi-agent systems. For the CPLEX CP optimizer a time limit t of 20
minutes was set. Furthermore in both our ALMA-based algorithm as well as for the
MSRAC approach we allowed the UserAgents to relay their true preference data in order
to improve comparability.

Other parameters used in the following evaluation of our ALMA-based algorithm such as
the back-off function f and its respective parameters, the number of slots to consider for
the loss function, the preference scaling as well as possible discussed modifications to the
strategy (see Section 4.2.3) were chosen with the help of the SMAC tool [HHLB11, sma].
SMAC (sequential model-based algorithm configuration) is an automated algorithm
configuration tool that uses bayesian optimization at its core to find good hyperparameters
for an algorithm.

Since hyperparameter tuning takes a long time we had to come up with a way to speed
up the process. For that we started with a large configuration space for the parameters.
Then we ran SMAC with an evaluation function that only evaluated each configuration
on a single instance (with 50 events and 30 people). The results from that were then used
to narrow down the configuration space. Afterwards SMAC was run again. This time
we used 10 instances ({50, 100} events each for {10, 20, 30, 50, 100} people) to evaluate
the parameters. Both optimizations were performed for several hours in order to yield
adequate hyperparameters.
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This resulted in the choice of f as the function motivated by the logistic function in (4.1)
with γ = 15.72. The number of resources to consider for the loss k was chosen as 13
and we scaled the loss using the highest global preference. Furthermore all modifications
mentioned in Section 4.2.3 were applied. I.e. after backing off, an agent would continue
to monitor the same slot in the next round and only move on to monitor the next slot in
the following round. We would also not remove slots from consideration after backing off
unless they were already occupied.

Additionally we also ran tests for ALMA-Learning as described in 4.2.4. We used the
parameters above for the initialization of the basic ALMA at the core of ALMA-Learning.
Motivated by the parameters in the original paper [DF20], the length of the reward
history L was chosen as 20, the learning rate α as 0.1 and the number of iterations for the
algorithm as 512. Trying to use SMAC in order to find better values for these parameters
was not very efficient due to long runtimes. However, after a small number of rounds no
significantly better alternatives to the values above were found.

Social Welfare

Figure 6.1 displays the resulting social welfare relative to the CPLEX result. The
decentralized and non-deterministic algorithms ”ALMA”, ”decentralized greedy” and
”MSRAC” ran 10 times for each instance. ”ALMA-learning” also ran 10 times per instance,
however, due to long runtimes this was reduced to 5 and eventually 3 runs for larger
instances. The values on the figures represent the means and the error bars display the
standard error of the mean. The dashed line displays the upper bound as determined by
CPLEX and the blue area the possible values for the optimum.

The results show that our ALMA-based approach can consistently outperform the
decentralized greedy algorithm and the MSRAC based algorithm most of the time. For
smaller instances it stays roughly within 95% of the optimum. For larger instances we
lie within 90% of the CPLEX result. Furthermore the results yielded from the ALMA-
Learning approach were even better. They outperformed the centralized greedy result in
most cases and mostly stayed within 95% of the CPLEX result.

Number of scheduled meetings

While we mainly focused on optimizing social welfare, we also wanted to take a look at
the number of scheduled meetings that resulted from these tests. That is displayed in
Figure 6.2. There, we can see the number of meetings scheduled for a given number of
people in the system. Again, for the decentralized algorithm the points visualize the
mean number of scheduled meetings and the error bars visualize the standard error. We
only look at instances with 100 events as most other instances have been fully scheduled
by all algorithms. The figure shows that both ALMA algorithms perform rather similar
to the centralized algorithms. The decentralized greedy algorithm slightly outperforms
the rest and the MSRAC algorithm generally yields the worst results for these instances.
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a) p = 10 b) p = 20

c) p = 30 d) p = 50 e) p = 100

Figure 6.1: Evaluation of the algorithms using generated test data. p describes the
number of people for each simulation. The number of events to be scheduled is displayed
on the x-axis while the social welfare value relative to the CPLEX result is displayed on
the y-axis.

Figure 6.2: Count of the scheduled meetings of the algorithms using generated test data.
The number of people in the system is displayed on the x-axis while the number of
actually scheduled meetings is displayed on the y-axis.

44



6.2. Testing

Fairness

One other metric we want to consider is fairness as measured by the Gini coefficient.
The Gini coefficient is a fairly common measure used to demonstrate the (in)equality
in a system. It was first introduced by Gini in [Gin12]. In order to calculate the Gini
coefficient for our system we looked at the obtained results for all algorithms and for
each result we took the utility for every person in the system. We then divided those
utilities by the number of events a given person was originally assigned to and used those
values to calculate the Gini coefficient as half of the relative mean absolute difference.

For the Gini coefficient, in general, a lower value indicates higher fairness. We look at
this metric in order to investigate the fairness of our algorithm for each individual in the
system while also taking the number of events each person may attend into consideration.
After initially evaluating the Gini coefficient we could observe two interesting things
about the fairness in connection with our data.

First, we could see that for a larger number of people and a low number of events the
allocations, regardless of the algorithm, would yield high Gini coefficient values and would,
with a growing number of events, converge towards a fairer allocation. For example for
100 people the Gini coefficient dropped from roughly 0.18 down to 0.08. This is expected
since with a low number of events it is hard to meet the preferences of a large number of
people. However, once the number of events grows, that effect will even out, eventually
resulting in a fairer state.

Secondly, we observed that the Gini coefficient values, once converged, were rather low
indicating very fair allocations. The reasons for that are not entirely clear and could be
connected to the dataset or the structure of the problem itself. We theorize that this
may at least in part be due to the nature of our generated dataset. Since all preferences
for all people are essentially generated using the same distribution, it is very likely that a
slot which satisfies one person’s preferences might do so for most attendees. That would,
in theory, lead to similar utility values among all people in the system and therefore
result in a high degree of fairness. We also experimentally verified this by evaluating the
fairness of datasets with more randomized data. Doing this resulted in lower fairness i.e.
higher Gini values at around 0.15.

Since our goal is to compare the fairness between the algorithms, we calculated and then
plotted the Gini values for the results of all algorithms for the given instances. These
results can be found in Figure 6.3. Again, all Gini values are relative to the corresponding
results from the ILOG CP Solver (CPLEX). The results show that while fairness was
never directly considered in the design of our algorithm, the ALMA and ALMA-Learning
approaches generally outperform the other algorithms for larger instances. Even the
centralized approaches yield less fair results when given instances with a high number
of events to schedule. Furthermore ALMA-Learning also outperforms the ALMA w.r.t.
fairness in most cases.
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a) p = 10 b) p = 20

c) p = 30 d) p = 50 e) p = 100

Figure 6.3: Evaluation of the fairness using generated test data. p describes the number
of people for each simulation. The number of events to be scheduled is displayed on the
x-axis while the Gini coefficient relative to the CPLEX result is displayed on the y-axis.

Learning rounds

Lastly, we also wanted to use the dataset to investigate the effect the number of rounds
we use for ALMA-Learning has on our result. That is relevant since a high number of
learning rounds significantly increases the runtime of our algorithm and therefore we
would like to keep the number of learning rounds as low as possible. On the other hand
we still need enough rounds to gain as much improvement as possible over the basic
ALMA approach. For the evaluation we captured all intermediate social welfare results
after each round. Figure 6.4 displays those results for a few instances.

From these plots we can see that, especially for a small number of people, the algorithm
may not fully converge towards a value and that at some point larger rounds may not
improve and can even worsen the result. The other plots show that while we achieve the
most benefit in the first 100-200 rounds, a higher number of learning rounds becomes
increasingly necessary for a large number of events. Looking at the case with 100 events
we can see that we might even have gotten slightly better results by continuing to run
the algorithm for a few extra rounds.
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a) p = 10 b) p = 50 c) p = 100

Figure 6.4: Evaluation of how the number of learning rounds improves the result of
ALMA-Learning. p describes the number of people for each simulation. We used 100
events in all simulations. The number of rounds is displayed on the x-axis while the
moving average social welfare (using 32 datapoints) is displayed on the y-axis.

6.2.2 Larger Datasets

A big issue with our results so far is that we need to look at larger instances in order
to make stronger statements about the performance of our algorithm. The reason why
we did not consider larger instances can be found in Figure 6.1. There, we can see that
the bound for the optimal value is simply too high for larger instances to make any
statements about the performance relative to the optimum. Therefore in this section we
want to look at a slightly different set of instances that ultimately allow us to give tighter
bounds for larger problems.

Setup

For this test we wanted to create instances that are somehow easier to solve for the ILOG
CP solver or at least allow for tighter upper bounds than the general problem instances
in Section 6.2.1. The idea was that we start by solving two different problem instances
with a low number of events, each for one week. We can then combine the two by simply
duplicating the preferences for each week. This would then result in an instance with
double the number of events to schedule over two weeks. The fact that the preferences
in that case are periodically repeating is not too far fetched as it would be reasonable
for someone to have the same preference to hold a meeting at a given day and time no
matter the week. Furthermore we can combine the previous results from solving the two
smaller instances to yield a good starting point for the combined instance.2 Given the
simplification of the instance and the starting point, we were able to find better upper
bounds for larger instances.

2For this, we additionally need to make sure that no event exceeds the given calendar. Otherwise the
combined schedule might not be valid.
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For this specific test we wanted to keep the calendar similar to the one in the previous
section. Therefore we used the same parameters for the instance generator to generate 7
1-day long sub-instances. We then combined them into one larger 1-week long instance.
This is also to keep the ratio of events to schedule to the size of the calendar comparable
to the previous experiment. For this experiment we focused on instances where there
were 100 people in the system. This way 4 instances were generated with sub-instances
of 10, 20, 30 and 40 events each, resulting in combined instances of 70, 140, 210 and 280
events respectively. For the algorithms the parameters were chosen as in the previous
experiment.

Results

Figure 6.5 displays the results of the evaluation on the new dataset. Just as wanted, the
upper bound is significantly tighter. Especially when considering that we are dealing with
much larger problem instances here as compared to Section 6.2.1. Here we can see that
even for the new instances our approach outperforms the other decentralized algorithms.
We can also see that we are still in a 90% range of the CPLEX results which would put
us at roughly 85% of the optimal solution in the worst-case. For ALMA-Learning the
results are even better with it being at worst at 90% of the optimal solution and coming
close to the centralized greedy approach. It is, however, important to note that due to
the simplified structure of these instances the results are not necessarily comparable to
the ones from Section 6.2.1. When comparing the results from the previous experiments
with 50 events to the significantly better results here with 70 events that becomes even
more apparent.

Figure 6.6 again displays the relative fairness using the Gini coefficient. Once more we
can see that ALMA-Learning is consistently fairer than the base version of ALMA and
that it is at least as fair as the centralized greedy algorithm. However, we can see that
the centralized ILOG CP solver now outperforms the other algorithms w.r.t. fairness.

6.2.3 Complexity experiments
In this section we want to experimentally verify our thoughts from Section 4.4. For
that we want to look at the number of rounds that our ALMA-based approach needs to
terminate for given instances. Here, we performed two sets of experiments. In the first
we used a fixed schedule with 7 days and 24 hours and varied the number of people and
events. For the second experiment we used a fixed number of 100 people and instead
varied the number of days in our calendar as well as the number of events. We also
adjusted the preference assignment depending on the number of days such that later
dates would be more acceptable if the calendar was longer. For each given combination
of parameters we then generated 10 random instances to solve.

Figures 6.7 and 6.8 display the results of these experiments. They show the mean number
of rounds it took to solve these instances as well as the corresponding standard error. We
can see that the number of people and the number of days do not significantly affect our
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Figure 6.5: Evaluation of the algorithms on the new dataset. The number of people in
the system is 100. The number of events to be scheduled per day is displayed on the
x-axis while the social welfare value relative to the CPLEX result is displayed on the
y-axis.

Figure 6.6: Evaluation of the fairness using the generated large testset. The number of
people in the system is 100. The number of events to be scheduled per day is displayed
on the x-axis while the Gini coefficient relative to the CPLEX result is displayed on the
y-axis.
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Figure 6.7: Number of rounds needed for the algorithm to terminate. p describes the
number of people for each simulation. The number of events to be scheduled is displayed
on the x-axis while the number of rounds is displayed on the y-axis.

complexity which is consistent with the observations from Section 4.4. Both plots also
show a slowing growth in complexity with more events. This most likely stems from the
clustering of our attendees (see Section 5.2) decreasing the number of possible conflicts
and the punishment of high round numbers (see end of Section 4.4).

In both cases we can, however, still see a small increase in complexity with a growing
number of events for any fixed number of people and fixed calendar. That could be due
to the fact that simply clustering people does not completely limit the number of events
competing for a timeslot with overlapping attendee sets N∗ (see Section 4.4). Given that
with a fixed number of people and a fixed calendar the density of events per slot and
events per person has to grow, we expect more collisions and therefore a higher runtime
or number of rounds.

6.2.4 Privacy Experiments

For the last experiment we wanted to look at the privacy of users. As mentioned before,
we are already given a certain degree of privacy since there is no direct communication of
preferences between EventAgents. However, in the previous experiments we still shared
all preference data within an event group. As we also mentioned it is possible to further
improve privacy by relaying noisy preference data or even just sending a ranking of slots
to the EventAgent. One would, however, expect these measures to have a negative effect
on the overall social welfare. In this section we investigate the effect those measures can
have on the quality of our results.
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Figure 6.8: Number of rounds needed for the algorithm to terminate. d describes the
number of days for each simulation. The number of events to be scheduled is displayed
on the x-axis while the number of rounds is displayed on the y-axis.

Setup

For this experiment we looked at the following ways of obscuring the preference of a
RepresentationAgent to improve privacy:

• Ranking: In this scenario the RepresentationAgents relay a ranking rather than
their true preferences. This method was already proposed in [BH07] in order to
provide privacy for the users. The EventAgent then creates a pseudo scale for each
slot by assigning it a preference of (numberOfSlots − rank + 1)/numberOfSlots.
We even add unavailable slots to that ranking as we can simply refuse to schedule
them later on.

• Gaussian Noise: In this scenario the RepresentationAgents add gaussian noise
with a standard deviation of σ to its preferences. This is a common method to
improve privacy (see e.g. [BW18]). For the following experiments the considered
values of σ were {0.05, 0.1, 0.2}. Any preference values exceeding our original interval
[0, 1] were rounded accordingly. Again we allow assigning nonzero preference values
to unavailable slots and then refuse to schedule them if necessary.

Otherwise using the same parameters as in Section 6.2.1 we then evaluated the algorithm
on the same dataset as in 6.2.1 once for ALMA and once for ALMA-Learning. For
the latter algorithm, however, we chose slightly different parameters. In particular we
selected the back-off function f to be the function based on a normal distribution ((4.3)
in Section 4.2.2). The corresponding parameters for f were chosen to be µ = 0.46 and
σ = 0.2 with the number of resources to consider k = 24. These parameters are also
the result of a SMAC hyperparameter search. While their performance, in terms of
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utility, were only marginally worse3, they considerably decrease the number of rounds
and therefore our runtime, which is greatly beneficial for ALMA-Learning. We used 5
evaluations per instance for ALMA-Learning.

Results

Figure 6.9 displays the results of each considered alternation to the ALMA algorithm
as well as for ALMA-Learning. Focusing on the base version of ALMA we can see a
decrease in performance, especially for high σ. We can also see that for small values of σ
we got results within 90-95% of the baseline ALMA implementation. While the ranking
approach worked rather well for a small number of events, it performed significantly
worse for a large number of events. We can also see that in some rare cases with a small
number of meetings we even managed to increase social welfare.

Focusing on the results of ALMA-Learning we can observe that the different privacy
enhancing techniques have a similar effect as for ALMA. In fact, we can see that while in
some cases ALMA-Learning still outperforms normal ALMA, sometimes the techniques
used here cause ALMA-Learning to underperform as well. This is no surprise, as changing
the preference values in the system also distorts the values we use to learn.

Fairness

Finally, we also want to visualize the effect these privacy improvements have on the
fairness of our results. Figure 6.10 shows the Gini coefficient for all relevant scenarios
relative to the one from an unobscured ALMA. There we can again see that, with
exception of the ranking method, ALMA-Learning improves fairness when compared to
their respective non-learning ALMA variants most of the time. Rarely we can observe an
increase in fairness in our scenarios, however, most of the time, we can see that it leads
to unfair results. Again, as expected, the effect is worst for high gaussian noise (σ = 0.2)
and the ranking method.

These results again underline our previous thoughts about how there is always a tradeoff
between the quality of the solution and the privacy of the users. We have, however, seen
that under the right circumstances the solutions can still be good.

3When compared to the performance of ALMA-Learning with the parameters from Section 6.2.1
and the dataset from the same section the new parameters result on average in a utility 99.3% of the
originally used one.
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a) p = 10 b) p = 20

c) p = 30 d) p = 50 e) p = 100

Figure 6.9: Evaluation of the ALMA and ALMA-Learning algorithms with obscured
preferences. p describes the number of people for each simulation. The number of events
to be scheduled is displayed on the x-axis while the social welfare value relative to the
mean of the unobscured ALMA result is displayed on the y-axis.
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a) p = 10 b) p = 20

c) p = 30 d) p = 50 e) p = 100

Figure 6.10: Evaluation of the relative fairness of ALMA and ALMA-Learning algorithms
with obscured preferences. p describes the number of people for each simulation. The
number of events to be scheduled is displayed on the x-axis while the Gini coefficient
relative to the mean of the unobscured ALMA value is displayed on the y-axis.
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CHAPTER 7
Conclusion

In this thesis we looked at the meeting scheduling problem in a distributed setting. We
defined the problem by formulating it as a Constraint Satisfaction Problem. In addition
we also investigated the complexity of the problem as well as the possibilities that our
formulation provides.

Using a multi-agent system we then developed a distributed algorithm for solving the
meeting scheduling problem. The algorithm is based on novel heuristic approaches and is
later also improved by using a learning algorithm. This allows us to solve large instances
of the problem within reasonable runtime. We also performed some theoretical analysis
of the proposed algorithm. For that we focused on the convergence and runtime as well
as privacy in order to underline the benefits of our algorithm. The analysis also served as
a motivation for potential alternations to the algorithm that could improve the solutions
even further.

To be able to properly test the algorithm an instance generator was designed with the
goal of generating test instances that properly portray a real-life scenario for meeting
scheduling in a corporation. In order to do that, the instance generator is based on data
from real-life studies.

Finally, the algorithm was evaluated using the generated instances. Our approach showed
promising results by staying close to the optimal social welfare in many scenarios while
also scaling well for larger problem instances. We could observe even better social welfare
results when using a learning approach. Other metrics such as the fairness as indicated
by the Gini coefficient also showed that our algorithm provided highly fair solutions.

While this thesis discussed and studied the meeting scheduling problem and the pos-
sibilities of our algorithm, it is by no means exhaustive. Future work could further
investigate privacy enhancing methods (e.g using PALMA) and their effects on solutions.
Alternatives to ALMA-Learning, such as Bayesian Networks, could be explored to infer
knowledge about other users in the system. Again one would have to consider the
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tradeoff between privacy and solution quality. Another aspect that might be interesting
to look at, is the handling of byzantine agents. Namely, how an agent with knowledge
of the algorithm could manipulate it by relaying specific preference values, in order to
maximize its own personal preference and how the algorithm could be changed to prevent
or discourage such behaviour.
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