
Automated Scheduling for
Automotive Supplier Paint Shops

and Teeth Manufacturing

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Felix Winter
Registration Number 0825516

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

The dissertation has been reviewed by:

Andrea Schaerf Guido Tack

Vienna, 3rd November, 2021
Felix Winter

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Felix Winter

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. November 2021
Felix Winter

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor Priv.-Doz. Dr. Nysret Mus-
liu. Writing this thesis would not have been possible without his ongoing support,
encouragement and his deep knowledge in the field.

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs,
the National Foundation for Research, Technology and Development and the Christian
Doppler Research Association is gratefully acknowledged. Furthermore, I would like to
thank all people who were my project colleagues during my PhD studies. Their comments
and feedback helped me to improve this thesis in many places.

Deepest gratitude goes to my wife Eni, my parents, and my brother, who have supported
me throughout my life and aided me through many hard times. Without their help,
finishing this work would not have been possible.

v

Kurzfassung

Viele Fabriken der heutigen Zeit verwenden einen hochautomatisierten Produktionsprozess
um täglich große Stückzahlen an Artikeln effizient und ressourcenschonend produzie-
ren zu können. Die dadurch entstehenden komplexen Produktionsabläufe machen eine
manuelle Produktionsplanung zu einer schwierigen Aufgabe und erfordern oftmals den
Einsatz von automatischen Lösungsverfahren. In der wissenschaftlichen Literatur wurden
in der Vergangenheit viele industrielle Produktionsplanungsprobleme untersucht und
algorithmisch gelöst. Durch die Vielzahl an unterschiedlichen Produktionsumgebungen
die in den verschiedenen Industriesparten zu finden sind, gibt es allerdings nach wie vor
NP-schwere Planungsaufgaben für die noch keine automatischen Planungsalgorithmen
vorgeschlagen wurden.

Diese Dissertation stellt zwei wichtige neue Produktionsplanungsprobleme vor, wel-
che in den Lackieranlagen der Automobilzuliefererindustrie sowie bei der Produktion
von Zahnprothesen auftreten. Beide Probleme sind NP-schwer und unterscheiden sich
von verwandten Aufgabenstellungen durch eine Menge von einzigartigen Restriktionen
sowie Optimierungszielen, welche die Entwicklung von neuen effizienten Lösungsme-
thoden erfordern. Aus diesem Grund stellt diese Arbeit zusätzlich zu einer formalen
Problemspezifikation und Komplexitätsanalyse erstmals eine Reihe von neuen exakten
und heuristischen Problemlösungsverfahren für beide Probleme vor.

Außerdem identifiziert und löst die Dissertation wichtige Teilaufgabenstellungen der unter-
suchten Produktionsplanungsprobleme. Dabei stellt sich heraus, dass die vorgeschlagenen
Lösungsmethoden der Teilprobleme auch für die Herangehensweise an andere NP-schwere
Probleme aus der Literatur von Nutzen sein können. Zum Beispiel wird eine neue Neben-
bedingung bezüglich der Editierdistanz zwei gegebener Zeichenketten in dieser Arbeit
gemeinsam mit einem Lösungsverfahren vorgestellt, welche auch zur effizienten Lösung
eines komplexen Problems außerhalb des Bereichs der Produktionsplanung verwendet
werden kann.

Schließlich inkludiert diese Arbeit Ergebnisse einer umfassenden Evaluierung aller vor-
geschlagenen Methoden. Dabei wurde zur Auswertung eine neu eingeführte Sammlung
an Probleminstanzen verwendet, die realistische Planungsszenarien aus den Produkti-
onsstätten der Automobilzuliefererindustrie und der Zahnprothesenherstellung abbilden.
Die experimentellen Ergebnisse zeigen, dass die entwickelten exakten Lösungsverfahren
in der Lage sind optimale Lösungen sowie untere Schranken für mehrere Instanzen zu

vii

produzieren. Außerdem lässt sich aus der durchgeführten Evaluierung schließen, dass die
vorgeschlagenen Heuristiken hochqualitative Lösungen für alle ausgewerteten realistischen
Instanzen finden konnten.

Abstract

Nowadays, many modern day factories have migrated towards a highly-automated
production process to efficiently create large quantities of products every day. Thus,
production scheduling tasks are often challenging for human planners and there is a
strong need for automated solution methods to find optimized schedules. Although
various practical scheduling problems have been studied in the literature, still many novel
NP-hard problems that originate from the industry remain to be investigated due to the
unique requirements that arise from different application domains.

This thesis introduces two important scheduling problems that arise from real-life appli-
cations in the paint shops of the automotive supply industry and in the manufacturing
of artificial teeth for dentures. Both investigated problems, which are called the paint
shop scheduling problem and the artificial teeth scheduling problem, are NP-hard and
include unique constraints as well as solution objectives that cause the need for efficient
novel solution methods to solve large-scale problem instances. Therefore, the thesis
proposes a range of innovative exact techniques, metaheuristics, hybrid methods, and
hyper-heuristic solution approaches in addition to providing a formal specification and
complexity analysis.

Moreover, this work identifies and solves important sub-problems that appear within
the investigated real-life production scheduling problems and can also be useful when
approaching other NP-hard problems. For example, the thesis introduces an important
novel global constraint that captures restrictions on the edit distance between two strings
and can be used to model the paint shop scheduling problem. The work further proposes
an efficient propagation algorithm for this constraint which could be successfully used to
improve state-of-the-art results on another challenging problem from the literature.

To experimentally evaluate all the proposed solution methods, the thesis provides a
collection of benchmark instances that include real-life scheduling scenarios from factories
of the automotive supply industry and teeth manufacturing. Computational results
show that the introduced exact techniques could be successfully used to achieve several
optimality results and can provide lower bounds for many instances. An extensive
empirical evaluation further demonstrates that the proposed metaheuristics and hybrid
techniques can be successfully used to produce high-quality schedules even for large
real-life scheduling scenarios.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Aims of This Thesis . 2
1.2 Contributions . 3
1.3 Publications . 5
1.4 Organization . 6

2 The Paint Shop Scheduling Problem 9
2.1 Problem Description & Background 9
2.2 Formal Specification . 14
2.3 Related Literature . 22
2.4 Complexity Analysis . 24
2.5 Benchmark Instances . 26

3 A Constraint Programming Approach for the Paint Shop Scheduling
Problem 29
3.1 Modeling the Paint Shop Scheduling Problem with CP 29
3.2 Modeling the Problem with DFAs . 38
3.3 Empirical Evaluation . 40

4 Heuristic and Hybrid Approaches for the Paint Shop Scheduling
Problem 49
4.1 A Construction Heuristic Algorithm for Paint Shop Scheduling 49
4.2 A Local Search Based Approach for Paint Shop Scheduling 52
4.3 A Large Neighborhood Search Approach for the Paint Shop Scheduling

Problem . 56
4.4 The Paint Shop Color Change Problem 57
4.5 Solution Methods . 61

xi

4.6 A Large Neighborhood Search Approach for the Paint Shop Scheduling
Problem . 66

4.7 A Novel Construction Heuristic for the PSSP 71
4.8 Empirical Evaluation . 75

5 String Edit Distance Constraints 89
5.1 Preliminaries . 89
5.2 Related Literature . 91
5.3 Propagating Lower Bounds on the Minimum Edit Distance 93
5.4 Explaining Propagation . 95
5.5 Experimental Evaluation . 99

6 The Artificial Teeth Scheduling Problem 105
6.1 Problem Description . 105
6.2 Formal Specification . 107
6.3 Related Literature . 110
6.4 Benchmark Instances . 111

7 Constraint Modeling and Heuristic Solution Methods for the Artificial
Teeth Scheduling Problem 113
7.1 Constraint Programming Approach . 113
7.2 Construction Heuristic Approach . 117
7.3 Metaheuristic Approach . 119
7.4 Computational Results . 122

8 A Hyper-Heuristic Approach for Artificial Teeth Scheduling 127
8.1 Background & Related Work . 127
8.2 Low-Level Heuristics for the Artificial Teeth Scheduling Problem . . . 130
8.3 Evaluated Hyper-Heuristic Approaches 133
8.4 Computational Results . 133

9 Solver-Independent Modeling for Workforce Scheduling Problems 141
9.1 Background . 141
9.2 Problem Description . 143
9.3 Related Work . 144
9.4 Direct Model . 145
9.5 Global Constraints . 147
9.6 Modeling with Global Constraints . 148
9.7 Translation for Solving . 150
9.8 Computational Results . 154

10 Conclusion 167
10.1 Future Work . 169

Bibliography 171

CHAPTER 1
Introduction

Production scheduling problems arise in many areas of industrial manufacturing and
nowadays many companies have started to migrate towards a highly-automated production
process where products need to be efficiently processed in a large-scale production.
Therefore, the production scheduling tasks at modern production sites become more
and more complex, which makes it challenging for human planners to design efficient
schedules and creates a strong need for automated scheduling approaches to find optimized
solutions.

Unfortunately, solving practical production scheduling problems is in general a chal-
lenging task and even basic problem variants have been shown to be NP-hard (e.g. job
shop scheduling [GJS76] and parallel machine scheduling [GJ79]). In the literature a
large variety of related problems has been studied and several methods from the areas
of Operations Research and Artificial Intelligence have been successfully used to effi-
ciently solve practical problems. These include methods from constraint programming
(CP) [RvBW06], mixed integer programming (MIP) [JLN+09], Boolean Satisfiability
(SAT) [BHvMW21], metaheuristics [GP19], hyper-heuristics [BGH+13, DKÖB20], and
hybrid techniques [VHM10].

Although this field already has been the subject of intensive research in the past, a lot of
novel scheduling problems originating from industry still remain to be investigated due to
the plethora of diverse application domains and the recent trend towards full automation.
The unique requirements of these novel problems often cause existing solution techniques
to be inapplicable or inefficient and thus require the development of novel efficient solution
approaches.

For example, in the paint shops of the automotive supply industry an innovative and
highly-automated production process is utilized every day to paint large quantities of
synthetic material pieces that are demanded by car manufacturers. There, the task of
creating efficient production schedules includes making decisions not only about the

1

1. Introduction

production sequence but also on how to efficiently group demanded items onto customized
carrying devices while at the same time fulfilling various complex resource constraints.
Furthermore, challenging solution objectives regarding carrier device setup costs and
color changes in the production sequence should be minimized in high-quality solutions.
These unique constraints and cost objectives arising in paint shops of the automotive
supply industry cause the related scheduling problem to be substantially different from
the many previously studied NP-hard problems from the automotive industry such as
e.g. car sequencing [PKW86, SCNA08]. Therefore, there is still a strong need to develop
innovative automated scheduling methods that are capable to create efficient paint shop
schedules for the automotive supply industry.

Artificial teeth manufacturing is another important application domain which nowadays
uses a highly-automated production process to produce large amounts of prosthetic teeth
in various shapes and colors. The task of finding efficient production schedules that arises
at real-life production sites in this area is related to single machine batch scheduling
problems that originate from other industrial branches (such as e.g. [PTM20, TB20])
of which many variants have been shown to be NP-hard [PK00]. However, in contrast
to previously investigated batch scheduling problems, in teeth manufacturing the set of
jobs is not predetermined and the task of creating schedules requires making decisions
about how to group customer demands efficiently into jobs while at the same time several
resource- and eligibility constraints have to be considered. Thus, the investigation of
novel efficient solution techniques is required in this area.

Finding efficient production schedules in both the paint shops of the automotive supply
industry and artificial teeth manufacturing is a task that is currently usually done by
human expert planners. However, the many requirements, constraints and minimization
objectives that have to be considered make it very challenging to find efficient schedules
manually. Therefore, the development of automated solution methods that can assist
human planners in the scheduling process has a large potential to reduce the amount of
required time spent on handling complex scheduling scenarios. Furthermore, efficient exact
and metaheuristics techniques that are able to improve manually created schedules have a
great potential to reduce costs as well as industrial waste by providing solution schedules
that minimize machine setup costs, overproduction and the production makespan.

1.1 Aims of This Thesis
The main goal of this PhD thesis is to develop innovative automated solution methods
that can efficiently solve novel real-life production scheduling problems as they appear in
the automotive supply industry and artificial teeth manufacturing. In the course of the
thesis we aim to identify and formally define new problems as well as sub-problems from
these areas. Additionally, we aspire to analyze their complexity and study their relation
to existing problems from the literature.

Furthermore, we aim to investigate novel problem formulations and modeling strategies
from the area of constraint programming and mixed integer programming which can be

2

1.2. Contributions

utilized as exact approaches with state-of-the-art solving technology from the literature.
To provide solution methods for large real-life problem instances which cannot be tackled
efficiently using exact techniques we aim to develop novel metaheuristic techniques as well
as hybrid techniques and aspire to investigate the performance of automated algorithm
selection techniques using hyper-heuristics.

The main aims of this thesis are:

• Mathematically specify new challenging production scheduling problems that origi-
nate from the automotive supply industry and artificial teeth manufacturing. In
addition to providing a formal definition for these applications, we aim to perform
a complexity analysis and analyze their relation with existing problems in the
literature.

• Provide a collection of problem instances that include a set of challenging real-life
scheduling scenarios and can be used as benchmarks to evaluate solution approaches
for these domains.

• Develop and evaluate exact methods through the investigation of different modeling
strategies from the area of constraint programming and mixed integer programming.

• Introduce novel metaheuristic methods for real-life problem instances that cannot
be solved optimally within reasonable time due to a very large search space and
complex constraints.

• Propose innovative hybrid approaches that combine the developed exact methods
with the investigated metaheuristic techniques and are thereby able to further
improve results on challenging real-life instances.

• Investigate and evaluate a hyper-heuristic approach that utilizes novel low-level
heuristics for real-life problem instances from these areas.

• Identify and solve challenging sub-problems and constraints that appear in the
investigated problems. Develop innovative solution methods for these sub-problems
that can be useful also for other application domains.

1.2 Contributions
The following are the main contributions of this thesis:

• We introduce and formally specify the paint shop scheduling problem which arises
in real-life paint shops from the automotive supply industry. In addition to a
complexity analysis we provide a set of benchmark instances that include challenging
real-life scheduling scenarios from the industry.

3

1. Introduction

• We provide two constraint modeling formulations for the paint shop scheduling
problem that can be used together with state-of-the-art constraint solving technology
as an exact solution method. Using this approach we provide optimal solutions for
9 benchmark instances.

• To efficiently solve challenging large real-life instances of the paint shop scheduling
problem, we develop several innovative construction heuristics and metaheuristic
techniques.

• We identify an important novel global constraint on string distance metrics that
appears not only in the paint shop scheduling problem, but also in another NP-hard
optimization problem that arises in the area of computational biology. Additionally,
we provide an efficient propagation algorithm for constraint programming solvers
that utilize lazy clause generation. Experimental results show that this method
can improve state-of-the-art results on instance sets for two applications.

• We identify and solve a challenging color change sub-problem that appears in the
paint shop scheduling problem using heuristic as well as exact solution techniques.
Furthermore, we introduce a hybrid approach for the paint shop scheduling problem
that can utilize a combination of heuristic approaches together with exact approaches
for this sub-problem within the framework of large neighborhood search.

• We introduce and define a novel challenging real-life machine scheduling problem
from the area of artificial teeth manufacturing which we further call the artificial
teeth scheduling problem. Furthermore, we provide a collection of benchmark
instances which includes a set of real-life scheduling scenarios.

• As an exact solution method for the artificial teeth scheduling problem we introduce
a constraint modeling approach, which we evaluate using state-of-the-art MIP and
CP solvers. Using these techniques we can provide optimal results for 4 of the
benchmark instances.

• To efficiently solve large realistic instances of the artificial teeth scheduling problem,
we introduce an innovative construction heuristic together with a metaheuristic
approach based on simulated annealing.

• We introduce novel low-level heuristic operators for the artificial teeth scheduling
problem that can be utilized within hyper-heuristic solution approaches. Further,
we perform an evaluation of the proposed low-level heuristics together with state-
of-the-art perturbation based hyper-heuristics and show that these methods can
improve results on several of the benchmark instances.

• We investigate a solver-independent constraint model for a challenging workforce
scheduling problem that also arises in similar industrial manufacturing environments
as they appear in the automotive supply industry or teeth manufacturing. We
extensively evaluate our model using state-of-the-art MIP and CP solvers on a set

4

1.3. Publications

of benchmark instances and our experiments show that the modeling techniques can
be successfully used to produce competitive results. Furthermore, we investigate an
alternative MIP encoding for the modeling of working weekend constraints which
improves the initial linear relaxation bound for the majority of the benchmark
instances from the literature.

• Several benchmark instances provided in this thesis were further submitted to
the 2019 and 2021 editions of the MiniZinc Challenge [SBF10]. This annually
hosted competition is of high value for the constraint programming community as it
provides the possibility to evaluate and improve state-of-the-art solving technology
on challenging benchmark problems.

1.3 Publications
The contributions that are presented in this thesis have been included in the following
publications:

• Journals

– Felix Winter and Nysret Musliu. Constraint-based Modeling for Schedul-
ing Paint Shops in the Automotive Supply Industry, ACM Transactions
on Intelligent Systems 2021 [WM21a]

– Felix Winter and Nysret Musliu. A Large Neighborhood Search Ap-
proach for the Paint Shop Scheduling Problem, Journal of Scheduling
2021 [WM21b]

– Emir Demirović, Nysret Musliu, Andreas Schutt, Peter J. Stuckey, Felix Winter.
Solver-Independent Models for Employee Scheduling, (currently under
submission) [DMS+21]

• Conferences

– Felix Winter, Christoph Mrkvicka, Nysret Musliu and Jakob Preininger. Au-
tomated Production Scheduling for Artificial Teeth Manufacturing,
ICAPS 2021 [WMMP21]

– Felix Winter, Nysret Musliu, Peter J. Stuckey. Explaining Propagators
for String Edit Distance Constraints, AAAI 2020 [WMS20]

– Felix Winter, Nysret Musliu, Emir Demirović and Christoph Mrkvicka. Solu-
tion Approaches for an Automotive Paint Shop Scheduling Problem,
ICAPS 2019 [WMDM19]

The work presented in Chapter 8 is planned to serve as the basis for another publication
in future work. Furthermore, during the time of his PhD studies the author of this thesis
coauthored another publication on the paint shop scheduling problem as well as two

5

1. Introduction

additional papers that investigate automated problem-solving methods for other real-life
applications:

• Wolfgang Weintritt, Nysret Musliu, Felix Winter. Solving the paintshop schedul-
ing problem with memetic algorithms, GECCO 2021 [WMW21]

• Tobias Geibinger, Lucas Kletzander, Matthias Krainz, Florian Mischek, Nysret
Musliu, Felix Winter. Physician Scheduling During a Pandemic, CPAIOR
2021 [GKK+21]

• Johannes Vass, Nysret Musliu, Felix Winter. Solving the Production Lev-
eling Problem with Order-Splitting and Resource Constraints, PATAT
2021 [VMW21]

1.4 Organization
In the following chapter we formally introduce the paint shop scheduling problem and
review literature on related problems. Furthermore, we study the problem’s complexity
and provide a set of realistic benchmark instances. Afterwards, in Chapter 3 we model
the problem using two constraint programming formulations and discuss the results of
an extensive evaluation of the models.

Chapter 4 then proposes heuristic and metaheuristic methods to approach challenging
large real-life instances of the paint shop scheduling problem. In addition to providing a
constructive heuristic and local search based approach, we further identify and solve a
NP-hard coloring sub-problem of the paint shop scheduling problem. Then, we utilize
the proposed solution methods to introduce a large neighborhood search operator for the
paint shop scheduling problem that is able to hybridize exact and heuristic techniques.
At the end of Chapter 4, results of an extensive experimental evaluation with all heuristic
solution methods for the paint shop scheduling problem are summarized.

We introduce a novel string-edit-distance global constraint which appears in the paint
shop scheduling problem in Chapter 5, where we further propose an efficient propagator
as well as an explanation strategy for this constraint. Additionally, we evaluate the
efficiency of the novel global constraint based on experiments with two applications.

In Chapter 6 we introduce the artificial teeth scheduling problem, provide an overview
on related problems from the literature, and give a set of real-life problem instances.
Chapter 7 then introduces exact and heuristic solution methods for the artificial teeth
scheduling problem which are evaluated based on a set of experiments at the end of the
chapter.

Afterwards, in Chapter 8 we propose several low-level heuristic operators that can be used
to solve the artificial teeth scheduling problem using hyper-heuristics. We further show
empirically the effectiveness of state-of-the-art hyper-heuristics on the set of evaluated
benchmark instances.

6

1.4. Organization

Chapter 9 investigates a solver-independent constraint modeling based solution approach
for workforce scheduling. Afterwards, we describe constraint programming and mixed
integer programming encodings of the model and discuss experimental results on a set of
benchmark instances from the literature.

Finally, in Chapter 10 we give concluding remarks and discuss future work.

7

CHAPTER 2
The Paint Shop Scheduling

Problem

In this chapter we introduce a novel and challenging scheduling problem originating from
paint shops of the automotive supply industry which we call the paint shop scheduling
problem (PSSP). First, we provide an informal problem description as well as some
background on the problem. Afterwards, we give a formal problem specification followed
by an overview of related literature. At the end of this chapter we prove that the decision
variant of the PSSP is NP-complete and provide a collection of benchmark instances for
the problem.

2.1 Problem Description & Background
A typical automotive supply company will serve not only one, but many car manufacturing
companies and therefore produces a large variety of different products that need to be
painted before delivery (e.g. bumpers and other exterior systems). Because of the short
manufacturing cycles caused by the commonly used concept of just-in-time manufacturing
in the automotive industry [SKCU77], it is of high importance to create production
schedules that are able to fulfill all due dates requested by car manufacturers. Therefore,
the main goal of the paint shop scheduling problem we introduce in this thesis is to
determine a technically feasible production sequence that produces all ordered products
within the given due dates.

Furthermore, two minimization criteria should be considered to reduce waste and save
costs: First, the schedule should minimize the required color changes in the production
sequences whenever possible. Second, the schedule should ensure the efficient utilization
of the carrying devices used to transport the raw material components through the paint
shop.

9

2. The Paint Shop Scheduling Problem

Figure 2.1: Schematic showing three carriers of two different carrier types.

Material Gate

Carrier Gate (In)Carrier Gate (Out)

Carriers (Unpainted) Carriers (Painted)

Painting Cabins

Figure 2.2: Schematic showing a paint shop layout that is commonly used in the
automotive supply industry.

All items scheduled for painting need to be placed on customized carrier devices that
move through the paint shop’s painting cabins on a conveyor system. In each cabin,
several painting robots apply paint on the carried automotive components. Carriers
come in many types, each of which can transport certain configurations of demanded
materials. Hence, different carrier device types need to be used in production. Although
combinations of different raw material items may be transported by a single carrier,
scheduling products that should be painted with different colors on a single carrying
device is impossible. Figure 2.1 shows a schematic of two carrier types and three possible
material configurations. The carrier shown on the left uses a material configuration that
transports two triangular and two square components, the middle carrier transports
two circular and two square components, and the carrier on the right side transports
three circular and three square components. The figure illustrates how the same carrier
type (the left and middle carriers are similar, whereas the right carrier is of a different
type) can be used to transport different material type combinations through the paint
shop as long as all pieces on a single carrier are painted with the same color (e.g., white,
light-gray).

The paint shops of the automotive supply industry are designed to support an almost
fully automated production process. Therefore, any scheduled carrying devices are
automatically moved through the paint shop on a circular conveyor belt system. Carriers
can be inserted into and removed from the conveyor belt at two carrier gates. One of
the gates is used to insert carrying devices while the other one can be used to remove

10

2.1. Problem Description & Background

carriers from the circular conveyor belt system. Once a carrier has been inserted, it moves
through the cyclic paint shop system, wherein it repeatedly passes by the painting cabins,
the carrier gates, and a material gate until the schedule selects it for ejection at the
output gate. At the material gate, unpainted raw materials may be placed on any empty
carrying device by paint shop employees. A loaded carrier then moves to the painting
cabins, where the scheduled color is applied on all carried items. Whenever a loaded
carrier arrives at the material gate after having completed a full round, another employee
takes off the painted material pieces and may place new unpainted raw materials onto
the carrier for painting in the succeeding round.
Figure 2.2 shows a schematic of a paint shop’s layout and visualizes the movement of
carriers through the paint shop. Carriers are displayed as circles in the figure, and some
of them carry unpainted automotive components, which are visualized as small white
squares. Carrying devices that have passed by the painting cabins are marked with black
squares (which represent painted materials) in the graphic.
As the paint shop maintains a circular layout, the painting schedule is organized in rounds
that are processed sequentially. Within each painting round, several carrier units are
painted one after the other in a sequence that is predetermined by the schedule. However,
the number of processed carriers per round and the exact sequence do not necessarily have
to be equal for each round. A schedule therefore sets the painting sequences for multiple
rounds and determines the raw material and color configurations for each scheduled
carrying device. Note that in practice, the processing of a single paint shop round takes
a fixed amount of time that does not depend on the number of carriers scheduled for the
round (as long as the number of carriers per round stays within the specified boundaries).
Therefore, the scheduling horizon of a problem instance is specified as the number of
rounds to schedule, and due dates are expressed as due rounds in the problem input. The
planner then needs to schedule carrier configurations into rounds so that all components
are produced on time. In practice, schedules are usually planned weekly using a rolling
horizon approach.
Note that this particular paint shop environment and production scheduling procedure
is used at production sites all around the world from one of our industry partners. So
far, we have not collaborated with other industry partners that could directly apply
the solution methods that we propose in this chapter. However, the technical layout
of the paint shop (including the painting robots, the circular conveyor belt, and the
carrier devices) was implemented and designed in a similar way as it is used for different
manufacturing processes from the automotive supply industry. Therefore, we believe that
the paint shop scheduling problem that we model and solve in the following sections can
be useful also for other problem variants from the industry that use similar automated
paint shop environments.
To represent a candidate solution to the paint shop scheduling problem we derive a
table where each column represents the scheduling sequence for a single round. Each
table cell then assigns the carrier type, material configuration, and color that should be
scheduled in the associated round sequence (from top to bottom). Figure 2.3 illustrates a

11

2. The Paint Shop Scheduling Problem

R1 R2 R3

1 a a a

2 a a a

3 a a a

4 a a a

5 a a

A1

A1

A2

B1

B2

A2

A2

C1

B2

C1

C2

C3

B1

B2

Figure 2.3: Example of a painting schedule with three rounds. Each column represents
the scheduled carrier sequences scheduled within a single round.

R1 R2

1 a a

2 a a

3 a a

A

B

C

C

A

B

Feasible

R1 R2

a a

a a

a a

A

B

C

C

A

B

Infeasible

R1 R2

a a

a a

a a

A

B

C

C

A

B

Optimal

Figure 2.4: Three options to reuse carriers between two consecutive rounds.

toy problem solution for a scheduling horizon of three rounds. In the schedule shown in
the figure, the carrier sequence (A1, A1, A2, B1, B2) scheduled for the first round (R1)
includes five carriers. The first three carriers of this round sequence use a type A carrier
with item configurations 1 and 2 and should be painted in a light gray color. Carriers 4
and 5 in R1 are of type B, and require a dark gray color and item configurations 1 and 2.

When all carrier configurations and colors that can be scheduled for production are
considered, a large number of different schedules can be created. However, numerous
constraints imposing due dates and technical requirements regarding feasible carrier
sequences need to be fulfilled (Note that sequence constraints also apply to round
overlapping sequences. In other words, sequence constraints must also hold between the
last carriers of a round and the first carriers of the succeeding round.):

R.1 All material demands must be scheduled for production on time.

R.2 Carrier type availabilities must be considered in each round (e.g., if 10 physical
instances of carrier type A are available, then this carrier can never be scheduled more
than 10 times in a single round).

R.3 Minimum/maximum carrier capacities must be considered in each round: The
number of carriers scheduled for each round needs to fall within the minimum and maximum

12

2.1. Problem Description & Background

boundaries to ensure an efficient production cycle (empty carriers may be scheduled if
necessary).

R.4 Forbidden carrier type sequences must not appear in the schedule: For logistical
reasons at the material gate, certain carrier types are not allowed to directly follow another
carrier type in the production sequence (e.g. a type A carrier must never directly follow a
type B carrier in the production sequence).

R.5 Minimum and maximum carrier blocks must be considered: Similar to the
consideration of the forbidden carrier type sequence constraints, logistical restrictions
impose minimum and maximum block sequence constraints on scheduled carrier sequences.
In other words, whenever a carrier of type t is scheduled, the same carrier type needs
to or may be used for the next consecutive carriers until the given minimum/maximum
block length is reached (e.g., to illustrate the minimum block length, let the minimum
block length for type t1 be three and let the previously scheduled carrier type sequence
be ⟨t3, t3, t2, t1⟩; to satisfy the minimum block length, at least the next two carriers in the
sequence need to be of type t1).

R.6 Forbidden color sequences must be respected: For certain pairs of colors c1, c2, a
number of carriers need to be painted in a different color before a switch from color c1 to
another color c2 is legal in the production sequence.
For example, let this number for colors c1 and c2 be three. Then, the color sequences
⟨c1, c2⟩ and ⟨c1, y, c2⟩ would be illegal while the color sequence ⟨c1, y, y, y, c2⟩ would be legal
(assuming that y ̸= c1 and y ̸= c2).

A multi-objective function further includes two minimization criteria for the paint shop
scheduling problem. The first optimization goal is to minimize color changes in the
production sequence while the second optimization goal is concerned with the efficient
utilization of carrying devices. In the following paragraphs, we further explain the second
minimization goal.

As a paint shop schedule usually does not use the same carrier type sequence in each
round, the carriers need to be removed from and inserted to the conveyor belt system
between rounds. However, if carriers of the same type are scheduled in two consecutive
rounds some of them may be reused as long as the sequence of the kept carriers is
compatible with the scheduled carrier sequence in the succeeding round. As the insertion
and removal of carrier units to and from the circular track might lead to delays and are
generally not doable in parallel, the number of such operations should be kept as low
as possible. Note that for any given two consecutive rounds, the minimum number of
required carrier insertions and removals can be calculated by determining the minimum
string edit distance (ED) [WF74] between two carrier type round sequences.

Two consecutive rounds of carrier type sequences may be viewed as two strings: the
minimum number of required carrier changes corresponds to the ED with only the
insertion and deletion operations considered. Figure 2.4 visualizes three alternative ways
to reuse carriers between two consecutively scheduled round sequences, each of which

13

2. The Paint Shop Scheduling Problem

uses three carriers (R1: A, B, C and R2: C, A, B). The graphic shows how the ED
determines the minimum number of required carrier changes.

The feasible option shown on the left side of the figure reuses only a single type C carrier
and requires a total of two carrier insertions and two carrier removals. The infeasible
option shown in the middle of the figure suggests retaining type B and C carriers between
two consecutive rounds. However, this is technically not possible as C cannot be placed
on an earlier position than B in the next round if it is reused (also due to the definition
of edit distance no edge crossings are allowed). The option shown on the right side of the
figure requires the fewest number of carrier insertions and removals, that is, one insertion
and one removal; this requirement corresponds to the minimum string ED in this case.

Finally, note that in practice production scheduling is performed in a rolling horizon
manner. Therefore, the last round that was processed at the production site before the
current scheduling horizon (we from now on refer to this round as the history round)
must also be considered regarding carrier changes, color changes and forbidden sequences.
Figure 2.5 shows example schedules for three consecutive days to illustrate the concept
of the history round.

At the top of Figure 2.5, we can see a schedule that is created for the first day of
production, where exactly three rounds are scheduled that are labeled as R1, R2, and
R3. Furthermore, there is also a history round labeled History (R0) which displays the
carrier configurations and colors that were processed before the scheduling horizon of the
first day. Afterwards, in the middle of Figure 2.5, we see the schedule created on the
second day which includes the rounds R4, R5, and R6 in its scheduling horizon. Note
that in this example rounds R1–R3 were already processed on the first day, and therefore
R3 is considered as the history round for the problem instance that occurs on the second
day. Finally, on the third day another problem instance with a scheduling horizon of
three rounds has to be solved, however, this time R6 is the history round.

2.2 Formal Specification
In this section we provide a formal specification of the paint shop scheduling problem.

2.2.1 Input parameters

The following parameters describe instances of the problem:

Set of carrier types: T

Set of colors: C

Set of materials: M

14

2.2. Formal Specification

History (R0) R1 R2 R3

A1

A1

A2

B2

A1

A2

C2

A1

A1

A2

C1

A2

B3

A3

A3

C2

A1

1. Schedule created on first day

History (R3) R4 R5 R6

A3

A3

C2

A1

B2

A3

C2

A1

B2

A3

C2

A1

B3

B2

A3

C2

A1

B3

2. Schedule created on second day

History (R6) R7 R8 R9

B2

A3

C2

A1

B3

B1

A3

C2

A1

A1

B2

A2

C1

A2

A2

B3

A3

C2

A1

3. Schedule created on third day

Figure 2.5: Example schedules created on three consecutive days, where on each day
exactly three rounds are scheduled and processed.

Set of carrier configurations: K

A carrier configuration is always associated with a single carrier type and provides
information about the materials that are placed on this carrier.

Number of rounds to schedule: n

Set of all rounds to schedule: R = {1, . . . , n}

Maximum number of carrier slots per round: s

Set of carrier slots per round: S = {1, . . . , s}

Minimum number of carriers that have to be scheduled in each round: q

15

2. The Paint Shop Scheduling Problem

Number of available carriers of type t in round r: ar,t, ∀r ∈ R, t ∈ T

The number of available carriers is an input parameter because in practice some carriers
will be scheduled for cleaning and maintenance from time to time (independently of the
production schedule).

Set of demands: D ⊆ {(a, m, r, c)|a ∈ N>0, m ∈ M, r ∈ N>0, c ∈ C}
Each demand will ask for a number a of materials m in color c that have to be scheduled
by round r. The set of demands may contain optional demands that are due by future
rounds lying outside the scheduling horizon.

Number of pieces of material type m that can be placed on configuration k:
uk,m, ∀k ∈ K, m ∈ M

Carrier type of each carrier configuration: vk ∈ T, ∀k ∈ K

Number of carriers scheduled in the round previous to the scheduling horizon
(history round): p

Carrier type of the scheduled carrier at position i of the history round:
pti ∈ T, ∀i ∈ {1, . . . , p}

Used color at position i of the history round: pci ∈ C, ∀i ∈ {1, . . . , p}

Set of forbidden carrier type sequences. All elements in F define forbidden
carrier type sequences of length two that may not appear anywhere in the
schedule: F ⊂ {(t1, t2)|t1, t2 ∈ T, t1 ̸= t2}
As carriers are loaded manually by paint shop employees, mistakes are likely to happen
when certain carrier types that use similar configurations appear directly after each other.
In practice, it suffices to forbid carrier sequence of length two to prevent mistakes in the
loading process.

Minimum block length for carrier type t: bmin
t , ∀t ∈ T

Whenever a carrier of type t is scheduled, the same carrier type has to be used for the
next consecutive carriers until the given minimum block length is reached. (For example
let bmin

t1 = 3 and the previously scheduled carrier type sequence be ⟨t3, t3, t2, t1⟩, then to
satisfy the minimum block length at least the next two carriers in the sequence have to
be t1).

Maximum block length for carrier type t: bmax
t , ∀t ∈ T

16

2.2. Formal Specification

The number of carriers that have to be painted in a different color before
a switch from color c1 to color c2 becomes legal in the scheduled sequence:
oc1,c2 ∈ N, ∀c1, c2 ∈ C

For example let ov,w = 3 for colors v and w. Then the color sequences ⟨v, w⟩ and ⟨v, y, w⟩
would be illegal while the color sequence ⟨v, y, y, y, w⟩ would be legal (assuming that
y ̸= v and y ̸= w).

Function that assigns color transition costs for all pairs of colors: fc : {C ×
C} → N

2.2.2 Decision variables
We define the following decision variables for the paint shop scheduling problem:

The carrier configuration scheduled in round i and position j, where λj1 is any configura-
tion that is associated to the corresponding carrier type which is scheduled in the history
round at position j1:1

xi,j ∈ K ∪ {ϵ}, ∀i ∈ {0, . . . , n}, j ∈ S

x0,j1 = λj1 (where v(λj1) = ptj1), ∀j1 ∈ {1, . . . , p}
x0,j2 = ϵ, ∀j ∈ {p + 1, . . . , s}

If the value ϵ is assigned, the position is empty and no carrier will be scheduled at the
position.

The color that is used in round i at position j:

ci,j ∈ C ∪ {ϵ}, ∀i ∈ {0, . . . , n}, j ∈ S

c0,j1 = pcj1 , ∀j1 ∈ {1, . . . , p}
c0,j2 = ϵ, ∀j ∈ {p + 1, . . . , s}

If the value ϵ is assigned, the position is empty and will not be painted.

2.2.3 Helper Variables for Hard Constraints
To formulate the problem’s hard constraints, we introduce the following helper variables
and functions:

The number of carriers that are scheduled in round i (i = 0 refers to the history round):
pi ∈ {0, . . . , s}, ∀i ∈ {0, . . . , n}
p0 refers to the number of carriers scheduled in the history round.

1The input parameters do not specify any information about the configurations used in the history
round. For simplicity, we fix the corresponding decision variables for the history round to any configuration
λj1 that is compatible with the used carrier type in the history round at position j1.

17

2. The Paint Shop Scheduling Problem

The total number of carriers scheduled in the entire schedule, excluding the history round:

pt ∈ {0, . . . , n · s}
Sequence coordinate helper function:

fs(i, j) = p + r∈{2...i} pr−1 + j

This helper function converts the two-indexed scheduling coordinates (round and position
within rounds) into a one-indexed scheduling coordinate. For example let exactly 100
carriers be scheduled in round 1, then f2(2, 3) will be set to the value 103.

The carrier configuration that is scheduled at the one-indexed position coordinate i:

seqxi ∈ K ∪ {ϵ}, ∀i ∈ {1, . . . , p + n · s}

The color that is scheduled at the one-indexed position coordinate i:

seqci ∈ C ∪ {ϵ}, ∀i ∈ {1, . . . , p + n · s}

2.2.4 Hard Constraints

1. Unplanned carrier positions must always be scheduled last in a round:

(xi,j = ϵ) ⇒ (xi,j+1 = ϵ), ∀i ∈ R, j ∈ {1, . . . , s − 1} (2.1)

2. Any scheduled carrier position must also assign a color and any unscheduled position
must not assign a color:

(xi,j ̸= ϵ) ⇔ (ci,j ̸= ϵ), ∀i ∈ R, j ∈ S (2.2)

3. Force the correct number of scheduled carriers to the associated helper variables:

p0 = p

pr = |{j ∈ {1, . . . , s}|xr,j ̸= ϵ}|, ∀r ∈ R

pt =
r∈R

pr

(2.3)

4. Bind the values of the decision variables to the associated one indexed sequence
helper variables:

18

2.2. Formal Specification

seqxj = x0,j ∧ seqcj = pcj , ∀j ∈ {1, . . . , p}
xi,j ̸= ϵ ⇒

(seqx(fs(i,j)) = xi,j ∧ seqc(fs(i,j)) = ci,j),
∀i ∈ R, j ∈ S

(k > p + pt) ⇔ seqxk = ϵ,

∀k ∈ {p + 1, . . . , p + n · s}

(2.4)

5. All demands must be satisfied in time (overproduction is allowed):

{(da,dm,dr,dc)∈D| dm=m∧dr<=r∧dc=c}
da ≤

{i∈{1,...,n},j∈{1,...,s}|ci,j=c}
u(xi,j),m

∀r ∈ R, m ∈ M, c ∈ C

(2.5)

6. Carrier availabilities must be respected in each round (X here refers to the set of
all xi,j variables):

|{xi,j ∈ X|i = r ∧ v(xi,j) = t}| ≤ ar,t, ∀r ∈ R, t ∈ T (2.6)

7. The minimum round capacity must be fulfilled in each round:

pr >= q, ∀r ∈ R (2.7)

8. Forbidden carrier type sequences must not appear in the schedule:

v(seqxi) ̸= t1 ∨ v(seqxi+1) ̸= t2,

∀(t1, t2) ∈ F, i ∈ {p, . . . , (p + n · s − 1)} (2.8)

9. Minimum carrier block length restrictions must be fulfilled:

(v(seqxi) ̸= t ∧ v(seqxi+1) = t) ⇒
j∈{2,...,bmin

t }
(v(seqxi+j) = t),

∀t ∈ T, i ∈ {1, . . . , (p + n · s − bmin
t − 1)}

(2.9)

¬(v(seqx
p+n·s−bmin

t
+1) ̸= t ∧ v(seqx

p+n·s−bmin
t

+2) = t)

∀t ∈ T
(2.10)

19

2. The Paint Shop Scheduling Problem

10. Maximum carrier block length restrictions must be fulfilled:

j∈{0,...,bmax
t }

(v(seqx(i+j)) ̸= t),

∀t ∈ T, i ∈ {1, . . . , (p + n · s − bmax
t)}

(2.11)

11. No forbidden color sequences should occur in the schedule:

(seqci = c1) ⇒
j∈{1,...,o(c1,c2)}

(seqc(i+j) ̸= c2),

∀c1, c2 ∈ C, i ∈ {1, . . . , (p + n · s − o(c1,c2) + 1)}
(2.12)

2.2.5 Helper Variables and Constraints for the Objective Function
To formulate the problem’s minimization function, we introduce the following helper
variables:

The amount of color change costs occurring in round r of the schedule:

ccr, ∀r ∈ R

The number of required carrier type changes between round r and r + 1:

scr, ∀r ∈ {0, . . . , n − 1}

The number of carriers that will not be changed after round r and reused in
round r + 1:

skr, ∀r ∈ {0, . . . , n − 1}

Edge helper variables:

er,k,l ∈ {0, 1}, ∀r ∈ {0, . . . , n − 1}, k ∈ S, l ∈ S

Boolean edge variables are used to represent whether a carrier should be reused between
two consecutive rounds. Previously, in Figure 2.4 an illustrated example of such edges
between two rounds was presented and discussed in Section 2.1. The edge variables are
set to true whenever a carrier from round r at position k is reused in round r + 1 at
position l.

The following hard constraints are used to assign values to the helper variables:

1. Sum up the color change costs per round in the associated helper variables. The
value includes a potential color change cost that occurs between the last position of
the previous round to the first position of the target round (We assume here that if
the value ϵ is assigned to any parameter of fc, the function will return 0):

20

2.2. Formal Specification

ccr =
j∈{1,...,s−1}

fc(c(r,j), c(r,j+1))+

fc(c(r−1,(pr−1)), c(r,1)), ∀r ∈ R

(2.13)

2. The number of necessary carrier changes between two given rounds are calculated
with the helper variables skr that determine how many carriers can be kept after
each round:

scr = pr − skr + pr+1 − skr, ∀r ∈ {0, . . . , n − 1} (2.14)

3. The skr variables are assigned by summing up the number of associated edge
variables that are set to 1. Note that each edge variable set to 1 will represent a
carrier that is kept between two consecutive rounds:

skr =
k,l∈S

er,k,l, ∀r ∈ {0, . . . , r − 1} (2.15)

4. The following constraints enforce that edges between carriers of consecutive rounds
(carriers connected by an edge will be reused) are only allowed if the carrier types
at both positions are equal and not set to ϵ:

(er,k,l = 0) ⇐ (xr,k = ϵ ∨ xr+1,l = ϵ),
∀r ∈ {0, . . . , n − 1}, k ∈ S, l ∈ S

(2.16)

(er,k,l = 1) ⇒ (v(xr,k) = v(xr+1,l)),
∀r ∈ {0, . . . , n − 1}, k ∈ S, l ∈ S

(2.17)

5. The following constraint forbids crossings between selected edges of two consecutive
rounds. These crossings have to be forbidden to enforce the correct order of kept
carriers.:

(er,k,l = 1) ⇒

m∈{1,...,k−1},
n∈{l,...,s}

(er,m,n = 0) ∧
m∈{k,...,s},
n∈{1,...,l−1}

(er,m,n = 0)

∀r ∈ {0, . . . , n − 1}, k ∈ S, l ∈ S

(2.18)

2.2.6 Objective function
The objective function aims to minimize the number of carrier changes (sc) and color
change costs (cc). The sums are squared, since it is preferable to distribute the required
changes over the scheduling horizon and to avoid peaks of many changes within a single
round.

21

2. The Paint Shop Scheduling Problem

minimize
r∈{0,...,n−1}

sc2
r +

r∈R

cc2
r (2.19)

Note that the objective function is essentially a multi-objective function that combines the
color change and carrier change objectives as a weighted sum of squared changes per round
(using identical weights of value 1). This function was formulated with support from
expert-practitioners to reasonably capture the cost factors in real-life automotive paint
shop settings; thus, we do not consider additional alternative multi-objective functions in
the current work.

We want to point out that color change costs and the number of carrier changes are in
similar orders of magnitude for all practical problem instances used in our experimental
evaluation. Therefore, we do not discuss the normalization of the two objectives.

2.3 Related Literature
Automated solution methods for production scheduling and sequencing problems in the
automotive industry have been thoroughly studied. One of the earliest investigated
problems from this area is the so-called car sequencing problem, which was first described
in [PKW86]. The goal of the original formulation of this sequencing problem is to find
an optimized production sequence for a given set of cars; the manufacturing process
for each car may require different assembly operations depending on the installation
options ordered (e.g., sun roof, air conditioning). As each of these options is installed
at a different station, solutions to the car sequencing problem should ensure that the
capacity of these stations is never exceeded during production. These constraints are
usually expressed as ratio constraints that restrict the number of cars having a certain
option appearing in subsequences of the solution.

In [Kis04] the car sequencing problem was identified as an NP-hard problem. Many
heuristic and exact solution approaches have been investigated to solve this problem.
One of the earliest exact approaches [DSVH88] successfully utilized a constraint logic
programming approach to solve large practical problem instances. Other exact approaches
for car sequencing have since been proposed, and they include MIP (e.g., [DK01]) and
branch-and-bound algorithms (e.g., [DKM06]). Metaheuristic and hybrid approaches
have also been investigated to tackle extremely large instances for variants of the car
sequencing problem (e.g., [PG02, MCB19]) in a reasonable runtime. In [SCNA08], the
authors provided an extensive survey of the solution approaches for the car sequencing
problem and described a widely investigated problem extension used in the ROADEF’2005
challenge. The extended problem formulation used in this challenge additionally considers
the painting process and includes the minimization of the costs caused by necessary color
changes in the car sequence. The investigated solution methods for the ROADEF’2005
problem include exact approaches based on MIP (e.g., [PR08]) as well as metaheuristics
such as ant colony optimization and local search (e.g., [GGP06, PR08]).

22

2.3. Related Literature

Another sequencing problem originating from automotive paint shops focuses solely on
the minimization of costs induced by color changes [EHO04]. The main goal of this paint
shop problem is to find an optimal coloring for a given sequence of jobs that minimizes
the required color changes. An NP-hardness proof and an exact approach using dynamic
programming (under bounded instance parameters) were investigated in [EHO04]. Linear
programming and local search based approaches to tackling practically sized instances of
the problem were studied in [MN12].

A sequential ordering problem in automotive paint shops was described in [SGV04].
Similar to other paint shop problems, this sequential ordering problem aims to find a
production sequence that minimizes the necessary color changes. However, this variant
considers the utilization of so-called selectivity banks, in which multiple cars are grouped
together in banks, as is often the case in automotive paint shops. The authors of [SGV04]
proposed a model as a sequential ordering problem and introduced an exact method
based on a branch and bound algorithm. Further studies on the topic also investigated
heuristic techniques to quickly produce efficient solutions (e.g., [SFSZ15, SH17]).

Similar to previous production scheduling problems from the automotive area, the paint
shop scheduling problem we investigate is aimed at creating an optimized schedule for a
paint shop that minimizes color changes in the production sequence. However, as the
manufacturing process of this particular problem produces car components that are placed
on carrier devices, novel carrier constraints need to be considered, and the number of
carrier changes in the schedule should be minimized. In contrast to previous automotive
paint shop problems, the proposed paint shop scheduling problem introduces due date
constraints and therefore requires a prompt scheduling of the required components. These
unique properties make the proposed paint shop scheduling problem considerably different
from previous automotive sequencing problems.

Another scheduling problem from the automotive supply industry deals with component
primer painting [SYK+20]. The problem was deemed to be NP-hard in [SYK+20], and the
authors further proposed an exact solution approach that uses MIP and a metaheuristic
approach that uses tabu search. Similar to the paint shop scheduling problem, the
component primer painting problem deals with the placement of multiple automotive
components on hanger devices. However, solution methods for this problem cannot
be compared with the methods we investigate in this thesis, as they do not consider
due dates, and they define different constraints and an objective function that includes
capacity loss, mixing costs (when different item categories are placed on a hanger) and
workload costs. Furthermore, the component primer painting problem does not consider
the minimization of color changes or carrier changes and related constraints, all of which
appear in the paint shop scheduling problem.

Table 2.1 presents an overview of the properties of the problems related to the paint shop
scheduling problem investigated herein.

Columns 1–5 display from left to right the name of the related problem, considered
constraints, considered solution objectives, example papers describing exact solution

23

2. The Paint Shop Scheduling Problem

Problem Constraints Objective Function Exact Methods Heuristics

Car Sequencing
[PKW86, SCNA08]

Capacity Constraints,
Color Batch Size

Color Changes,
Capacity Violations

[DSVH88, DK01]
[DKM06, PR08]

[PG02, PR08]
[MCB19]

Paint Shop Problem
[EHO04] None Color Changes [EHO04, MN12] [MN12]
Sequential Ordering
in Paint Shops
[SGV04]

Precedence Constraints Color Changes [SGV04] [SFSZ15, SH17]

Component Primer
Painting [SYK+20]

Hanger Eligibility,
Hanger Capacity

Capacity Loss,
Mixing Costs,
Workload

[SYK+20] [SYK+20]

Paint Shop
Scheduling

Due Dates,
Resource Capacity,
Forbidden Sequences

Color Changes,
Carrier Changes – –

Table 2.1: An overview on the literature on related problems to the paint shop scheduling
problem.

methods, and example papers investigating heuristic solution methods. The final row of
the table shows the properties of the paint shop scheduling problem investigated in this
thesis.

2.4 Complexity Analysis
In this section, we show that the decision variant of the paint shop scheduling problem is
NP-complete. This problem variant asks whether a feasible schedule with an objective
value ≤ t can be found. We prove the following:

Theorem 1. The decision variant of the paint shop scheduling problem is NP-complete.

Proof. We provide a polynomial time reduction from the set cover problem [Kar72] to
the paint shop scheduling problem.

Consider an arbitrary instance of the set cover problem consisting of the universe of
elements U = {1, . . . , w}, an integer k, and a set S that denotes the collection of z sets.
The union of all sets in S is equal to the universe U = {1, . . . , w}. The question is
whether a set covering of size k or less is available or not.

We construct an instance of the paint shop scheduling problem as follows. We set the
scheduling horizon to a single round (R = {1}) and set C = {1} as only one color to
be considered for scheduling. The set of materials M is set to match all items of the
universe U , M = {1, . . . , w}. The maximum number of allowed carrier devices per round
is set to k while the minimum number of required carrier devices per round is set to
q = 1. We only consider a single carrier type and therefore set T = {1}. The set of all
demands D that need to be scheduled is given as D = {(1, i, 1, 1)|i ∈ {1, . . . , w}} (we
schedule each material exactly once with a due date of round 1). We further create z
carrier configurations, each of which corresponds to a single set in S: K = {1, . . . , z}. All
configurations belong to the same carrier type. Therefore, we set vk = 1, ∀k ∈ K. The

24

2.4. Complexity Analysis

materials contained within each configuration should be equal to all elements contained
in the associated set. Hence, we set ∀x ∈ K, m ∈ M :

ux,m = 1, if m is contained in the associated set of configuration x

0, otherwise

Furthermore, we set the number of carriers in the history round to p = 0. Then, we
set all color costs to 0 and disable all sequence-dependent hard constraints and the
carrier availability constraint by setting fc(1, 1) = 0, bmin

1 = 1, bmax
1 = k, o = 0, f = 0 and

a1,1 = k. Note that by setting color costs to 0 and not using sequence constraints, we do
not interfere with the original specification but instead, we simply build legal instances
to the problem by modifying the input parameters.

We now prove the following:

Theorem 2. There exists a set cover of size k or less if and only if there exists a feasible
paint shop schedule with total costs lower than or equal to k2.

Proof. As we set all color transition costs to 0 and the history round contains 0 carriers,
the objective function of the paint shop scheduling problem becomes equal to the squared
number of scheduled carriers in round 1 (any carrier needs to be inserted). As we have
set the number of maximum carriers per round to k, any feasible paint shop schedule
fulfilling the maximum round capacity hard constraint will have an objective value ≤ k2.
Furthermore, because we have disabled all hard constraints, except the demand constraint,
in the paint shop scheduling instance, any schedule that satisfies all demands becomes a
feasible schedule.

Let S be a set cover using k′ sets (where k′ ≤ k). Then, all elements of the universe
U are contained in at least one of the selected sets. Through our reduction, the paint
shop scheduling problem is constructed in such a way that each element of the universe
has to be scheduled at least once in round 1. For each set s ∈ S, there exists a carrier
configuration that carries each element in s exactly once. Therefore, there exists a set of
k′ carrier configurations that can be scheduled in any sequence to fulfill all demands.

At this point, we prove the opposite direction. Let P be a feasible paint shop schedule.
Then, any material must be scheduled exactly once in round 1. Therefore, any repeatedly
used configurations can be removed from P in such a way that each carrier configuration
scheduled in P is used exactly once without violating the demand constraint. As we have
set the maximum carriers per round to k in our reduction, we have k′ (where k′ ≤ k)
carriers in the schedule. Given such a schedule that uses k′ carriers, we can construct a
feasible set covering of size k′ by using the sets corresponding to the configurations used
in P .

25

2. The Paint Shop Scheduling Problem

We then show that the decision variant of the paint shop scheduling problem is in NP.
Suppose that we have given a candidate solution P . We show below that we can verify
in polynomial time whether P is a feasible solution to the problem.

The number of carriers in P cannot be larger than |S| · |R| (see input parameters in
Section 2.2). We can simply check the carrier availability and round capacity constraints
by counting the number of carriers in each round. Similarly, the sequence constraints
(minimum/maximum block length of consecutive carrier types, forbidden carrier types and
color sequences) can be checked by iterating over the scheduled sequence. Furthermore,
we can check the demand constraint by verifying that Equation 3.5 holds. We have
to perform not more than |R| · |M | · |C| comparisons to check this equation. For each
comparison, we need to consider at most d demands and |S| · |R| positions to calculate
the sums.

To calculate the total color change costs of P , we iterate over the scheduled sequence,
similar to our approach to the sequence-dependent hard constraints. Finally, we need
to determine the maximum number of carriers that can be reused between any two
consecutive rounds in the schedule to calculate the total carrier change costs. As
mentioned previously, we can establish this number by solving the corresponding string
ED problem for each pair of consecutive rounds (the polynomial time algorithms for
calculating the minimum ED were described in [WF74]).

2.5 Benchmark Instances
We generated 24 instances for the paint shop scheduling problem based on actual
planning scenarios from the automotive industry2. Instances 13–24 have been generated
by processing scheduling scenarios as they have recently appeared at a real-life production
site of our industrial partner. Those instances describe six different planning horizons of 7,
20, 50, 70, 100 and 200 rounds. For each horizon length we generated two instances: One
instance which includes forbidden sequence constraints and one instance without forbidden
sequence constraints. Early experiments with the instances showed that exact methods
could not provide any solutions to these instances (the solvers ran out of memory on a
machine with 48GB RAM), and we therefore decided to manually scale down Instances
13–24 by randomly selecting roughly 5% of the materials, colors, configurations and
demands to create the smaller Instances 1–12.

Table 2.2 summarizes the size parameters for the 24 benchmark instances, where every
row contains parameters for a single instance.

Columns 2 and 3 include information about the total number of rounds (Rounds) as well
as the maximum capacity of carriers per round (Round Capacity), whereas Columns 4–6
display the total number of colors (Colors), carrier types (Carrier Types), and demands

2All instances are publicly available: https://www.dbai.tuwien.ac.at/staff/winter/ps_
instances.zip

26

https://www.dbai.tuwien.ac.at/staff/winter/ps_instances.zip
https://www.dbai.tuwien.ac.at/staff/winter/ps_instances.zip

2.5. Benchmark Instances

Instance Rounds Round Capacity Colors Carrier Types Demands Forbidden Seq.

I 1 7 19 6 2 2 no
I 2 7 19 7 2 0 yes
I 3 20 19 7 2 0 no
I 4 20 19 4 2 4 yes
I 5 50 19 4 3 22 no
I 6 50 19 6 2 0 yes
I 7 70 19 4 4 55 no
I 8 70 19 8 2 5 yes
I 9 100 19 6 2 39 no
I 10 100 19 6 2 35 yes
I 11 200 19 6 3 118 no
I 12 200 19 7 4 384 yes
I 13 7 480 20 46 108 no
I 14 7 480 20 46 108 yes
I 15 20 480 20 46 238 no
I 16 20 480 20 46 238 yes
I 17 50 480 20 46 1055 no
I 18 50 480 20 46 1055 yes
I 19 70 480 20 46 1743 no
I 20 70 480 20 46 1743 yes
I 21 100 480 20 46 2469 no
I 22 100 480 20 46 2469 yes
I 23 200 480 20 46 5907 no
I 24 200 480 20 46 6057 yes

Table 2.2: Overview of instance size parameters for the 24 publicly available benchmark
instances for the PSSP.

(Demands) that are specified by the instances. Finally, Column 7 indicates whether
forbidden carrier and color sequence hard constraints are imposed by the instance.

Note that instances 1–12 are considered to be small instances, as the round capacity
as well as the number of colors, carrier types, and demands are much smaller than
for instances 13–24. Instances 13–24 on the other hand represent real-life scheduling
scenarios from a large-scale industrial paint shop, therefore they all use the same round
capacity, colors and carrier types.

27

CHAPTER 3
A Constraint Programming

Approach for the Paint Shop
Scheduling Problem

In this chapter we propose an exact approach for the paint shop scheduling problem
using constraint modeling. We first introduce a direct modeling approach, and afterwards
propose an alternative modeling of the sequence constraints using deterministic finite
automatons. Finally, we perform an in-depth evaluation of our models using several
programmed search strategies together with state-of-the-art CP and MIP solvers.

3.1 Modeling the Paint Shop Scheduling Problem with CP
In this section, we briefly provide an overview on CP, prior to proposing a direct CP
model for the paint shop scheduling problem.

Note that the direct CP formulation that we propose in this chapter models the problem
similarly as it was done for the formal problem specification that was given earlier in
Section 2.2. The main aim of the problem specification in the previous chapter was to
mathematically specify the problem in a way that it is easy to understand for the reader.
On the other hand, the constraint models given in this chapter are meant to serve as a
high-level formulation of the problem that can be utilized by constraint solving technology.
Therefore, some details about the input parameters and constraint specifications are
formulated differently in the direct CP model than in Section 2.2 to allow an efficient
encoding for CP solvers (especially regarding the formulation of sequence-dependent
constraints and the carrier change objective).

In addition to the direct CP formulation we propose an alternative model for some of
the problem’s constraints in Section 3.2.

29

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

3.1.1 Preliminaries
CP is a paradigm for solving combinatorial search problems using a wide range of
techniques from areas such as artificial intelligence, computer science, and operations
research. CP has been successfully applied to solve problems from many domains,
including scheduling, vehicle routing, and planning.

In CP, users declaratively state the constraints that restrict feasible solutions to a search
problem. In the case of optimization problems, an associated objective function that
determines the cost of a solution is declared.

Formally, a constraint optimization problem is defined as follows:

Given a set X of variables (x1, x2, . . . , xn), a set D of domains for each variable
(D1, D2, . . . , Dn), a set C of constraints (ci ⊆ (D1 × D2 × · · · × Dn), ∀ci ∈ C), and
an objective function f : (D1 × D2 × · · · × Dn) → R, a constraint optimization problem
is the problem of finding an assignment xi = di ∈ Di, ∀i ∈ {1, 2, . . . , n} such that all
constraints are satisfied and the objective function is optimized.

In solving constraint optimization problems with CP, standard methods utilize a com-
bination of backtracking search and constraint propagation, in which users can specify
customized problem-specific branching strategies. Further information about CP is
available in [RvBW06].

High-Level Modeling In this thesis, we use a high-level CP modeling notation to
propose CP models. Most parts of the models are directly solvable by CP. However,
we implicitly make use of constraint reification to express conditional sums and logical
implications. To illustrate how logical implications can be translated into low-level
clauses, we consider a constraint of the form (x1,1 = 0) ⇒ (x1,2 = 0). We can translate
this constraint into the following clauses: b1 ⇔ (x1,1 = 0), b2 ⇔ (x1,2 = 0), ¬b1 ∨ b2,
where b1, b2 are Boolean variables.

We also implicitly make use of the element constraint to use variables as indices for array
access in our models.

Further information on constraint reification and the element constraint is available
in [RvBW06].

3.1.2 Input parameters
The following parameters describe instances of the problem:

Set of carrier configurations: K

Set of carrier types: T

Set of colors: C

30

3.1. Modeling the Paint Shop Scheduling Problem with CP

Set of materials: M

Set of all rounds to schedule: R

Set of carrier positions per round (maximum number of positions per round):
S

Minimum number of carriers that have to be scheduled in each round: q ∈ N>0

Number of available carriers of type t in round r: ar,t ∈ {1, . . . , |S|}, ∀r ∈ R, t ∈ T

Set of demands: D

Each demand will request a number a of materials m in color c that have to be scheduled
by round r. The set of demands may contain optional demands that are due by future
rounds (i.e. rounds lying outside the scheduling horizon).

Number of requested items per demand: ad ∈ N>0, ∀d ∈ D

Material type of demand: md ∈ M, ∀d ∈ D

Due round of demand: rd ∈ N>0, ∀d ∈ D

Color of demand: cd ∈ C, ∀d ∈ D

Number of pieces of material type m that can be placed on configuration k:
uk,m ∈ N, ∀k ∈ K, m ∈ M

Carrier type of each carrier configuration (v0 will be set to 0):

vx ∈ {0, . . . , |T |}, ∀x ∈ {0, . . . , |K|}

Number of carriers scheduled in the round previous to the scheduling horizon
(history round): p ∈ N

As already mentioned in the previous chapter, production in the paint shop will process
one round of carriers after the other and therefore the conveyor belt system will never be
empty. For this reason, whenever we need to create a new paint shop schedule we are
given the carriers and colors used in the latest previous round of production as an input,
so that the amount of carrier and color changes within the first round of the scheduling
horizon can be determined.

Carrier type of the scheduled carrier at position i of the history round:
pti ∈ T, ∀i ∈ {1, . . . , p}

31

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

Used color at position i of the history round: pci ∈ C, ∀i ∈ {1, . . . , p}

Forbidden carrier type sequences: F

First carrier type of forbidden sequence f : t1
f ∈ T, ∀f ∈ F

Second carrier type of forbidden sequence f : t2
f ∈ T, ∀f ∈ F

Minimum block size of consecutive carriers with type t: bmin
t ∈ N>0, ∀t ∈ T

Whenever a carrier of type t is scheduled, the same carrier type needs to be used for
the next consecutive carriers until the given minimum block length is reached. (e.g., let
bmin

t1 = 3 and let the previously scheduled carrier type sequence be ⟨t3, t3, t2, t1⟩; to satisfy
the minimum block length, at least the next two carriers in the sequence need to be of
type t1).

Maximum block size of consecutive carriers with type t: bmax
t ∈ N>0, ∀t ∈ T

Set of forbidden color sequences: O

First color of forbidden color sequence o: c1
o ∈ C, ∀o ∈ O

Second color of forbidden color sequence o: c2
o ∈ C, ∀o ∈ O

The number of carriers that have to be painted in a different color before a
switch from color c1 to color c2 becomes legal for sequence o: jo ∈ N>0, ∀o ∈ O

For example let jo = 3 for colors c1
o = v and c2

o = w. Then the color sequences ⟨v, w⟩ and
⟨v, y, w⟩ would be illegal while the color sequence ⟨v, y, y, y, w⟩ would be legal (assuming
that y ̸= v and y ̸= w).

Color transition costs for all pairs of colors: fc1,c2 ∈ N, ∀c1, c2 ∈ C

3.1.3 Decision Variables
Scheduled carrier configuration in round i and position j:

xi,j ∈ {0, . . . , |K|}, ∀i ∈ R, j ∈ S

If the value 0 is assigned, the position is empty and no carrier will be scheduled at the
position.

32

3.1. Modeling the Paint Shop Scheduling Problem with CP

Scheduled color configuration in round i and position j: yi,j ∈ {0, . . . , |C|}, ∀i ∈
{0, . . . , |R|}, j ∈ S

If the value 0 is assigned, the position is empty and will not be painted.

3.1.4 Auxiliary Variables

Number of scheduled carriers per round: pi ∈ {0, . . . , |S|}, ∀i ∈ {0, . . . , |R|}

Number of totally scheduled carriers: ps ∈ {0, . . . , |S| · |R| + p}

Sequence variables that will convert a given round index i and position
index j into a one dimensional position index: seqi,j ∈ {0, . . . , |S| · |R| + p}, ∀i ∈
{0, . . . , |R|}, j ∈ S

For example let exactly 100 carriers be scheduled in round 1 and the length of the history
round p be 5, then seq2,3 will be set to the value 108. seqi,j will be set to 0 if and only if
no carrier is scheduled at position j in round i.

3.1.5 Hard Constraints

In the following we propose the set of hard constraints for our model. Note that all of
them are essential and that we do not use any redundant constraints in our formulation.

(a) Bind the correct number of scheduled carriers to the associated helper variables:

p0 = p

pi =
{j∈S|xr,j ̸=0}

1 ∀i ∈ R

ps =
i∈{0,...,|R|}

pi

(3.1)

(b) Set correct values to sequence variables:

seq0,j = j ∀j ∈ {1, . . . , p}
seq0,j = 0 ∀j ∈ {p + 1, . . . , |S|}

seqi,1 = p + 1 +
z∈{1,...,i−1}

pz ∀i ∈ R

seqi,j = seqi,j−1 + 1 ∀i ∈ R, j ∈ {2, . . . , |S|} where xi,j ̸= 0
seqi,j = 0 ∀i ∈ R, j ∈ S where xi,j = 0

(3.2)

33

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

(c) Unplanned carrier positions should always be scheduled last in a round1:

(xi,j = 0) ⇒ (xi,j+1 = 0) ∀i ∈ R, j ∈ {1, . . . , |S| − 1} (3.3)

(d) Any scheduled carrier position must also assign a color and any unscheduled position
must not assign a color:

(xi,j ̸= 0) ⇔ (ci,j ̸= 0) ∀i ∈ R, j ∈ S (3.4)

(e) All demands must be satisfied in time, where overproduction is allowed (this
constraint models requirement R.1 from Section 2.1):

{d∈D| md=m∧rd<=r∧cd=c}
ad ≤

{xi,j |i∈{1,...,n}∧j∈{1,...,|S|}∧yi,j=c}
u(xi,j),m

∀r ∈ R, m ∈ M, c ∈ C

(3.5)

(f) Carrier availabilities must be respected in each round (models requirement R.2):

{j|j∈S∧v(xr,j)=t}
1 ≤ ar,t ∀r ∈ R, t ∈ T (3.6)

(g) The minimum round capacity must be fulfilled in each round (models require-
ment R.3):

pr >= q, ∀r ∈ R (3.7)

(h) Forbidden carrier type sequences must not appear in the schedule (models require-
ment R.4):

(v(xi,j) ̸= t1
f) ∨ (v(xi,j+1) ̸= t2

f) ∀f ∈ F, i ∈ R, j ∈ {1, . . . , |S| − 1} where j < pi

(v(xi,(pi)) ̸= t1
f) ∨ (v(xi+1,1) ̸= t2

f) ∀f ∈ F, i ∈ {1, . . . , |R| − 1}
(pt ̸= t1

f) ∨ (v(x1,1) ̸= t2
f) ∀f ∈ F

(3.8)

(i) Minimum carrier type block size restrictions must be fulfilled (models require-
ment R.5)2:

1This constraint breaks symmetric solutions that would be possible if unused carrier positions could
appear anywhere in the variable arrays. However, it is still not a redundant constraint, as other parts of
the model rely on this restriction.

2For simplicity, we omit an additional corner case that has to be regarded: The last carrier type and
color that appears in the history round also needs to be checked regarding the sequence constraints. This
can simply be modeled by adding additional constraints for the history round.

34

3.1. Modeling the Paint Shop Scheduling Problem with CP

z∈{j+2,...,|S|}
(seqi,z = 0 ∨ seqi,z ≥ seqi,j+1 + bmin

t ∨ v(xi,z) = t)∧

y∈{i+1,...,|R|},z∈S

(seqy,z = 0 ∨ seqy,z ≥ seqi,j+1 + bmin
t ∨ v(xy,z) = t)∧

z∈{j+1,...,|S|}

(seqi,z = seqi,j + bmin
t ∧ v(xi,z) = t)∨

y∈{i+1,...,|R|},z∈S

(seqy,z = seqi,j + bmin
t ∧ v(xy,z) = t)

∀t ∈ T, i ∈ R, j ∈ {1, . . . , |S| − 1} where j < pi ∧ v(xi,j) ̸= t ∧ v(xi,j+1) = t

(3.9)

z∈{2,...,|S|}
(seqi+1,z = 0 ∨ seqi+1,z ≥ seqi+1,1 + bmin

t ∨ v(xi+1,z) = t)∧

y∈{i+2,...,|R|},z∈S

(seqy,z = 0 ∨ seqy,z ≥ seqi+1,1 + bmin
t ∨ v(xy,z) = t)

z∈{1,...,|S|}

(seqi+1,z = seqi+1,1 + bmin
t − 1 ∧ v(xi+1,z) = t)∨

y∈{i+2,...,|R|},z∈S

(seqy,z = seqi+1,1 + bmin
t − 1 ∧ v(xy,z) = t)

∀t ∈ T, i ∈ {1, . . . , |R| − 1} where v(xi,pi

) ̸= t ∧ v(xi+1,1) = t

(3.10)

Equation 3.9 models the minimum carrier type block size requirement for all
positions in the schedule that start a new carrier type block, except if this happens
at the last carrier position of a round (Equation 3.10 models the same requirement
similarly for carrier type blocks that start at the last position of a round).
The first big conjunction over z ∈ {j + 2, . . . , |S|} ensures that succeeding positions
within the same round are valid if they are unused (i.e. set to 0), if they lie outside
the minimum block size, or if they are matching the carrier type of the block.
The second big conjunction over (y ∈ {i + 1, . . . , |R|}, z ∈ S) ensures the same
requirements for positions in succeeding rounds.
Finally, the disjunctions enclosed in parentheses ensure that there must exist a
position in the schedule that fulfills the minimum block size with the correct carrier
type assignment to prevent the assignment of blocks that are too short at the end
of the schedule.

(j) Maximum carrier type block size restrictions must be fulfilled (models require-
ment R.5):2

35

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

z∈{j+1,...,|S|}
(seqi,z > seqi,j ∧ seqi,z ≤ seqi,j + bmax

t ∧ v(xi,z) ̸= t)∨

y∈{i+1,...,|R|},z∈S

(seqy,z > seqi,j ∧ seqy,z ≤ seqi,j + bmax
t ∧ v(xy,z) ̸= t)

∀t ∈ T, i ∈ R, j ∈ S, where j ≤ pi ∧ v(xi,j) = t ∧ seqi,j =≤ ps − bmax
t

(3.11)

(k) No forbidden color sequences should occur in the schedule (models
requirement R.6):2

z∈{j+1,...,|S|}
(seqi,z = 0 ∨ seqi,z > seqi,j + jo ∨ yi,z ̸= c2

o)∧

x∈{i+1,...,|R|},z∈S

(seqx,z = 0 ∨ seqx,z > seqi,j + jo ∨ yx,z ̸= c2
o)

∀o ∈ O, i ∈ R, j ∈ S where j ≤ pi ∧ yi,j = c1
o

(3.12)

3.1.6 Auxiliary Variables for the Objective Function
The amount of color change costs occurring in round r of the schedule:

ccr ∈ N, ∀r ∈ R

The number of required carrier type changes between round r and r + 1:

scr ∈ {0, . . . , |S| · 2}, ∀r ∈ {0, . . . , |R| − 1}

The number of carriers that will be reused between round r and round r + 1:

skr ∈ {0, . . . , |S|}, ∀r ∈ {0, . . . , |R| − 1}

Information on the position of the kept carrier sequence in the next/previous
round:

kept1
i,j ∈ {0, . . . , |S|}, ∀i ∈ {0, . . . , |R| − 1}, j ∈ S

kept2
i,j ∈ {0, . . . , |S|}, ∀i ∈ R, j ∈ S

3.1.7 Hard Constraints for Objective Function
Calculate color changes per round: 3

cci =
j∈{1,...,|S|−1}

f(yi,j),(yi,j+1) + f(yi−1,pi−1),(yi,1) ∀i ∈ R (3.13)

3We assume that color costs from and to 0 will always be 0

36

3.1. Modeling the Paint Shop Scheduling Problem with CP

All kept carrier type sequences between consecutive rounds have to be legal:
4

In Figure 2.4 in Section 2.1, we show which carrier types may be reused between two
consecutive rounds by drawing edges that connect the associated positions. We initially
experimented with a modeling approach that introduces variables for all possible edges
and tries to maximize the number of selected edges without causing any edge crossings to
capture the ED between two consecutive rounds. However, using this model in practical
instances is not efficient. Therefore, we propose a modeling approach that introduces
variables to store the positions of all reused carriers in equations 3.14, 3.15, and 3.16.
For example, if the second reused carrier that is scheduled on position four in the current
round sequence should be reused in the next round sequence at position three, the
associated variables store the values three and four (kept1

i,2 = 3, kept2
i,2 = 4, where i could

be any round index). A value of zero is assigned to a kepty
i,x variable when less than x

carriers are kept between the corresponding round (where y ∈ {1, 2}). Table 3.1 shows
example variable assignments that correspond to the edge examples that are showcased
in Figure 2.4.

kept1
i,j > kept1

i,j−1 ∀i ∈ {0, . . . , |R| − 1}, i ∈ {2, . . . , |S|} where kept1
i,j ̸= 0

kept2
i,j > kept2

i,j−1 ∀i ∈ R, i ∈ {2, . . . , |S|} where kept2
i,j ̸= 0

(3.14)

kept2
1,j ≤ p ∀j ∈ S where kept2

1,j ̸= 0
kept1

i,j ≤ pi+1 ∀i ∈ {0, . . . , |R| − 1}, j ∈ S where kept1
1,j ̸= 0

kept2
i,j ≤ pi−1 ∀i ∈ {2, . . . , |R|}, j ∈ S where kept2

1,j ̸= 0
kept1

0,j = 0 ∧ kept2
1,j = 0 ∀j ∈ {p + 1, . . . , |S|}

kept1
i,j = 0 ∧ kept2

i+1,j = 0 ∀i ∈ {1, . . . , |R| − 1}, j ∈ S where j > pi

kept1
i,j > 0 ⇔ kept2

i+1,j > 0 ∀i ∈ {0, . . . , |R| − 1}, j ∈ S

(3.15)

pt(kept2
1,j) = v(x1,(kept1

0,j
)) ∀j ∈ S where kept2

1,j ̸= 0

v(x
i,(kept2

i+1,j
)) = v(x

i+1,(kept1
i,j

)) ∀i ∈ {1, . . . , |R| − 1}, j ∈ S where kept1
i,j ̸= 0

(3.16)

Calculate the number of reused carriers after each round:

ski =
{j|j∈S∧kept1

i,j ̸=0}
1 ∀i ∈ {0, . . . , |R| − 1} (3.17)

4For simplicity, we omit a special condition that handles the corner case of an empty history round.
In this case one can simply add a constraint that forces all carriers of round 1 to be inserted if p = 0.

37

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

Feasible
x kept1

1,x kept2
2,x

1 1 3
2 0 0
3 0 0

Infeasible
x kept1

1,x kept2
2,x

1 3 3
2 1 2
3 0 0

Optimal
x kept1

1,x kept2
2,x

1 2 1
2 3 2
3 0 0

Table 3.1: Table shows the kept1
i,j , kept2

i,j variable values that correspond to the three
options to reuse carriers between two consecutive rounds as shown in Figure 2.4.

Count the total number of required carrier changes between two rounds:

sci = pi − ski + pi+1 − ski ∀i ∈ {0, . . . , |R| − 1} (3.18)

3.1.8 Objective Function
The objective function of the paint shop scheduling problem aims to minimize the number
of carrier changes (sc) and color change costs (cc) per round.

The sums are squared because the required changes should be distributed over the
scheduling horizon and peaks of many changes within single rounds should be avoided.

min
i∈R

cc2
i +

i∈{0,...,|R|−1}
sc2

i (3.19)

Note that Equation 3.19 models the objective in the same way as it was done for the
mathematical specification in Section 2.2.6.

3.2 Modeling the Problem with DFAs
In this section, we propose a different way to model the sequence constraints (require-
ments R.4, R.5, and R.6 from Section 2.1) by using DFAs. For this variant of the
model, we replace equations 3.8, 3.9, 3.10, 3.11, and 3.12 with automaton formulations.
All automatons process either the total sequence of scheduled carrier types or the total
sequence of scheduled colors. We can provide the total carrier type or color sequence in
our model by simply concatenating the values of all two indexed decision variables (xi,j

or yi,j , ∀i ∈ R, j ∈ S) into a one-dimensional list. The automatons can then be used to
check whether the total color or carrier type sequence can be accepted. Automaton-based
models can be directly solved by CP using the regular constraint [Pes04].

3.2.1 Forbidden carrier type sequences
For each forbidden carrier type sequence f ∈ F , we model an automaton that processes
the total sequence of scheduled carrier types (this model replaces Equation 3.8 from
Section 3.1). One state accepts all carrier types, whereas the second state does not accept

38

3.2. Modeling the Problem with DFAs

q0start q1

t1f
any x = t1f

any x ∈ {0, t1f , t2f}

t1f

0

Figure 3.1: Automaton generated for each carrier type sequence to check the forbidden
carrier type sequence constraint.

q0start q1 . . . qbmin
t

t

any x = t

t

0

t

0

any x ∈ {0, t}

0

t

Figure 3.2: Automaton constructed for each carrier type t ∈ T to check the minimum
carrier block type size constraint.

any carrier type t2
f that immediately follows a carrier of type t1

f . Figure 3.1 shows how
automatons can be constructed to check that no forbidden carrier type sequence occurs
in the schedule.

The first state q0 in Figure 3.1 accepts any carrier type. State q1 is entered whenever the
first carrier type of the forbidden sequence (t1

f) is encountered and does not accept the
second type (t2

f) before any other type is encountered. Both states are legal final states.

3.2.2 Minimum carrier type block sizes
For each carrier type t ∈ T , we model an automaton that processes the total sequence of
scheduled carrier types (this model replaces Equations 3.9 and 3.10 from Section 3.1).
Figure 3.2 shows how automatons can be constructed to check the minimum carrier type
block size constraint.

The first state q0 of Figure 3.2 accepts any carrier type that is different from t. States q1–
qbmin

t
are used to count the consecutive assignments of carrier type t. States q0 and qbmin

t

are the only legal final states.

3.2.3 Maximum carrier type block sizes
For each carrier type t ∈ T , we model an automaton that processes the total sequence of
scheduled carrier types (this model replaces Equation 3.11 from Section 3.1).

Figure 3.3 shows how automatons can be constructed to check the maximum carrier type
block size constraint.

39

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

q0start q1 . . . qbmax
t

t

any x = t

t

0

t

0

any x ∈ {0, t}

0

Figure 3.3: Automaton generated for each carrier type to check the maximum carrier
block type size constraint.

q0start q1 . . . qjo
c1o

any x = c1o

any x ∈ {c1o, c2o, 0}

0, c1o

any x ∈ {c1o, c2o, 0}

0

c1o

any x ∈ {c1o, c2o, 0}

0

Figure 3.4: Automaton generated for each forbidden color sequence to check the forbidden
color sequence constraint.

The first state q0 in Figure 3.3 accepts any carrier type that is different from t. States
q1-qbmax

t
are used to count the consecutive assignments of carrier type t. All states are

legal final states.

3.2.4 Forbidden color sequences
For each forbidden color sequence o ∈ O, we model an automaton that processes the
total sequence of scheduled colors (this model replaces Equation 3.12 from Section 3.1).

Figure 3.4 shows how automatons can be constructed to check the forbidden color
sequence constraint.

The first state q0 in Figure 3.4 accepts any color assignment that is different from c1
o.

States q1– qjo are used to assert that an assignment of color c2
o may only occur if color c1

o

has not been encountered within the previous j positions. All states are legal final states.

3.3 Empirical Evaluation
In this section, we provide a detailed description of the experimental evaluation of the
proposed CP models. First, we briefly describe the experimental setup and computational
environment (Section 3.3.1). Second, we introduce the search strategies used to program

40

3.3. Empirical Evaluation

the search for the evaluated CP solvers (Section 3.3.2). Finally, we provide a summary of
the experimental results and discuss the evaluation of the proposed models (Section 3.3.3).

3.3.1 Experimental Environment

To evaluate our models, we implemented the direct model proposed in Section 3.1
and the model using DFAs proposed in Section 3.2 by using the MiniZinc [NSB+07]
modeling language, which provides interfaces to state-of-the-art CP and MIP solvers. All
experiments were conducted on a computing cluster with 10 identical nodes, each having
24 cores, an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20 GHz and 252 GB RAM.

We evaluated the proposed models by using the set of benchmark instances that we
introduced in the previous chapter. This collection of instances includes 24 instances
based on real-life planning scenarios. Instances 1–12 model problems for a small paint
shop with a maximum capacity of 19 carriers per round. Instances 13–24 describe
problems for large-scale paint shops that allow up to 480 carriers per round. The set of
small instances and the set of large instances describe six different planning horizons
of 7, 20, 50, 70, 100, and 200 rounds (two instances for each horizon: one that does
not include forbidden carrier/color sequence constraints and another one that includes
forbidden sequence constraints).

Table 3.2 presents an overview of the size parameters for all instances (For additional
size parameters see Table 2.2). The columns show from left to right the instance ID, the
number of rounds, the length of the planning horizon in days (in the industry, about five
rounds are usually processed within 24-hour shifts), the maximum carrier capacity per
round, whether forbidden sequence constraints are included, and the number of generated
variables and constraints (# vars and # cs, respectively). To determine the number of
generated variables and constraints, we analyzed the output of the MiniZinc compiler
using the direct model (direct) and the model using DFAs (regular). A – indicates that
the compiler ran out of memory on our benchmark machine or could not finish execution
within 6 hours.

The size parameters displayed in Table 3.2 show that the model using DFAs generally
leads to a lower number of variables and constraints for instances 1–10 in comparison
with the direct model; hence, the model using DFAs has high efficiency. Furthermore, we
can see that the MiniZinc compiler was not able to encode the large instances 11–24 on
our machine within 6 hours of runtime, thereby indicating the tremendous size of the
search space of large practical problem instances.

We conducted experiments with two state-of-the-art CP solvers: Chuffed [Chu11], which
uses lazy clause learning; and Gecode [Gec19], which is a non-learning solver. In
Section 3.3.2, we provide details about the 13 programmed search strategies that we
evaluated for the CP solvers. Both solvers were run on each of the instances using both
proposed models and search strategies within a runtime limit of 6 hours. Therefore, a
total of 312 experiments were conducted for each CP solver.

41

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

#rounds days capacity forbidden seq direct #vars direct #cs regular #vars regular #cs

I 1 7 1.4 19 no 283845 289639 9237 12004
I 2 7 1.4 19 yes 399066 406964 9369 11499
I 3 20 4 19 no 3102108 3121429 25702 31801
I 4 20 4 19 yes 2891799 2912206 29312 37257
I 5 50 10 19 no 18374644 18435525 94066 124711
I 6 50 10 19 yes 19249180 19302056 66212 81411
I 7 70 14 19 no 42968894 43101797 210417 289019
I 8 70 14 19 yes 34183055 34258489 102820 129488
I 9 100 20 19 no 48323257 48439788 204091 282930
I 10 100 20 19 yes 84017220 84172576 232421 312301
I 11 200 40 19 no - - - -
I 12 200 40 19 yes - - - -
I 13 7 1.4 480 no - - - -
I 14 7 1.4 480 yes - - - -
I 15 20 4 480 no - - - -
I 16 20 4 480 yes - - - -
I 17 50 10 480 no - - - -
I 18 50 10 480 yes - - - -
I 19 70 14 480 no - - - -
I 20 70 14 480 yes - - - -
I 21 100 20 480 no - - - -
I 22 100 20 480 yes - - - -
I 23 200 40 480 no - - - -
I 24 200 40 480 yes - - - -

Table 3.2: An overview of the instance size parameters for the 24 instances that have
been used for empirical evaluation.

Using the MiniZinc compiler we were able to automatically translate the proposed CP
models for paint shop scheduling into MIP formulations, as MiniZinc provides its own
linearization library. Therefore, we could also conduct experiments with the two state-
of-the-art MIP solvers Gurobi [GO20] and CPLEX [Cor19] under the same runtime
restrictions we used for evaluating the CP solvers.

3.3.2 Programmed Search Strategies

We evaluated the performance of the CP solvers Chuffed and Gecode by using several
programmed search strategies, which are based on variable- and value selection heuristics.
Such heuristics determine the order of the explored variable and value assignments for
a CP solver and can play a critical role in reducing the search space that needs to be
enumerated by the solver. For our experiments, we implemented the search strategies
directly in the MiniZinc modeling language using search annotations.

Variable Selection

We defined the variable selection strategies for the decision variables that capture the
scheduled carrier configurations xi,j , ∀i ∈ R, j ∈ S and the scheduled colors yi,j , ∀i ∈
R, j ∈ S. Additionally, we investigated variable selection heuristics that set an order on
the assignment of auxiliary variables that capture the number of required carrier changes
between two rounds sci, ∀i ∈ {0, . . . , |R|−1}. We also experimented with search strategies
that focus on these sc variables as the calculation of the required carrier changes is one of
the more complex parts of the models. Any variables that we do not explicitly mention

42

3.3. Empirical Evaluation

in the search strategies are selected on the basis of the CP solvers’ default strategy after
all the mentioned variables have been assigned.

• default: No variable and value selection is specified, and the solver uses its default strategy.

• custom1: All carrier configuration variables are selected first, followed by all color variables
(i.e., x1,1, x1,2, . . . , xi,j , y1,1, y1,2, . . . , yi,j).

• custom2: The carrier change auxiliary variables are selected before the carrier configura-
tions and colors are assigned
(i.e., sc0, sc1, . . . , sc|R|−1, x1,1, x1,2, . . . , xi,j , y1,1, y1,2, . . . , yi,j).

• custom3: For each position in the schedule the associated carrier configuration variable is
selected first, followed by the associated color variable
(i.e., x1,1, y1,1, x1,2, y1,2, . . . , xi,j , yi,j).

• custom4: The carrier change variables are selected first; then, the process continues with
custom3
(i.e., sc0, sc1, . . . , sc|R|−1, x1,1, y1,1, x1,2, y1,2, . . . , xi,j , yi,j).

• smallest: The variables with the smallest possible domain value are chosen first (ties are
broken on the basis of the order of custom1).

• first fail: The variables with the smallest domains are chosen first (ties are broken on the
basis of the order of custom1).

Value Selection

We experimented with two different value selection heuristics:

• min: The smallest value is first assigned from a variable domain.

• split: The variable domain is bisected to first exclude the upper half of the domain.

Using the seven different variable selection strategies together with the two value selection
heuristics we conducted experiments with a total of 13 search strategy configurations for
each instance (the default variable selection uses the solver’s default value selection).

3.3.3 Computational Results
In the following, we present the computational results for the paint shop scheduling
problem that we obtained using the evaluated CP and MIP solvers. First, we provide
an overview of the detailed CP results produced with Chuffed and Gecode. Second, we
present the results produced by the MIP solvers Gurobi and CPLEX. Finally, we present
an overall comparison of the best results.

43

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

search t #best #fast #opt #prf #sol avg nodes avg rt std nodes std rt

custom1 min 6h 2 0 2 2 4 287513.5 79.96 302407.65 73.54
custom1 split 6h 2 0 2 2 4 258341 68.06 260843.21 56.77
custom2 min 6h 3 0 3 3 4 972613.33 1547.57 1022208.46 2544.58
custom2 split 6h 3 0 3 3 4 1796283.33 2657.52 1146115.93 4176.63
custom3 min 6h 2 0 2 2 4 390482 78.61 237821.22 51.71
custom3 split 6h 2 0 2 2 4 520798 89.18 35434.54 20.68
custom4 min 6h 3 0 3 3 4 2033199.67 2092.07 1686560.49 3245.35
custom4 split 6h 3 0 3 3 4 2171945.33 4536.86 1933987.52 7501.61
default 6h 3 0 3 3 3 3221216.33 4856.34 4419678.13 6773.03
ff min 6h 2 0 2 2 4 2108669 470 608751.06 63
ff split 6h 2 0 2 2 4 2204912 481.15 472642.9 61.87
smallest min 6h 4 1 4 3 4 97822.67 45.25 157924.49 33.66
smallest split 6h 4 2 4 3 4 110939 43.81 182193.95 33.21

Table 3.3: Table summarizing the experimental results achieved with Chuffed and the
direct model.

CP Results

We conducted experiments for instances 1–10 by using the introduced search strategies
with Chuffed and Gecode (for Chuffed, we activated the free search parameter which
allows the solver to alternate between the given search strategy and its default activity-
based search heuristic on each restart). However, Gecode was not able to produce any
feasible solution within the runtime limit. Thus, we only discuss the results produced
with Chuffed in this section.

Tables 3.3 and 3.4 display an overview of results achieved with Chuffed using the direct
model and the DFA model, respectively. Both tables present the summarized results
for each of the evaluated search strategies and time limit configurations in a single row.
The first seven columns display from left to right the used search strategy, the time
limit, the number of best results achieved within its group (“group” refers to runs using
the same model and runtime), the number of the fastest optimality proofs in the group
(i.e. the number of instances where optimality could be determined the fastest over
all experimental runs), the number of optimal solutions found, the number of proven
optimal solutions, and the number of instances where a feasible solution could be achieved.
Columns 8–11 present from left to right the average number of visited nodes in the
search tree (only for instances that could be solved to optimality), the average runtime
needed for the optimality proofs (considering only runs that could determine optimality
within the runtime), the standard deviation of visited nodes for proofs, and the standard
deviation of the optimality proof time (by optimality proof time we mean the total solving
time until optimality was determined).

The results in both tables show that different search strategies do not exert a large effect
on the number of solved instances. Nevertheless, the default search strategy seems to
be slightly weaker than the other search strategies, and the smallest variable selection
strategy leads the two models to the largest number of best solutions and optimality
proofs.

Table 3.5 displays the overall best costs achieved for instances 1–10 by using Chuffed

44

3.3. Empirical Evaluation

search t #best #fast #opt #prf #sol avg nodes avg rt std nodes std rt

custom1 min 6h 9 1 9 9 10 3133111 1286.46 7235326.43 2274.45
custom1 split 6h 10 2 9 9 10 3481850.67 1109.3 6981431.78 1896.39
custom2 min 6h 9 0 8 8 10 1013865.75 709.87 1635642.59 1482.07
custom2 split 6h 7 0 7 7 10 9037592.57 1055.71 20273523.56 2518.71
custom3 min 6h 9 0 8 8 10 1013865.75 709.87 1635642.59 1482.07
custom3 split 6h 9 0 8 8 10 1246310.63 855.64 1966662.15 1929.19
custom4 min 6h 8 0 7 7 10 13717699.29 1177.45 29593979.97 2751.27
custom4 split 6h 8 0 7 7 9 21727481.14 1497.9 52229928.06 3715.43
default 6h 6 0 6 6 7 887576.83 226.43 1221199.62 458.27
ff min 6h 9 1 8 8 10 1025480.88 604.63 1841286.56 1314.26
ff split 6h 9 0 8 8 10 1608216.25 939.78 2789085.47 2002.13
smallest min 6h 10 2 9 9 10 3443121.67 1796.47 7117553.6 3624.84
smallest split 6h 9 3 9 9 10 2324348.44 1614.02 4194724.49 3787.35

Table 3.4: Table summarizing the experimental results achieved with Chuffed and the
DFA model.

chuffed-6h proof time chuffed-reg-6h proof time
Instance 1 775* 80.96s 775* 3.10s
Instance 2 842* 29.33s 842* 0.70s
Instance 3 961* 256.95s 961* 1.84s
Instance 4 918 - 918* 26.27s
Instance 5 - - 530* 33.68s
Instance 6 - - 842* 9.78s
Instance 7 - - 844* 2410.03s
Instance 8 - - 1237* 572.40s
Instance 9 - - 975* 3622.07s
Instance 10 - - 964 -

Table 3.5: Table showing the best costs achieved for instances 1–10 using Chuffed.

with the direct model (direct) and the DFA model (reg) (we omitted the results for
instances 11–24 as the solution process ran out of memory for these instances). The
results formatted in boldface denote the overall best results, a * indicates that the solver
could prove optimal costs within the time limit, and a – denotes the instances where no
solution could be found.

We can clearly observe in Table 3.5 that the DFA-based model can solve more instances
and prove more optimality results within the runtime limit in comparison with the direct
model. For instances 1–3, for which both models were able to prove optimality, the
DFA-based model could determine optimality in much shorter runtime, indicating that
this model improves the performance of the solution process.

Integer Programming Results

As we implemented our models using the MiniZinc constraint modeling language, we
could directly use the MiniZinc compiler to convert the direct model and the DFA-based
model into MIP encodings. In the following, we present the experimental results produced

45

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

cplex-6h best bd proof t cplex-reg-6h best bd proof t
I 1 777 744 - 776 643 -
I 2 991 841 - 842 842 10992.47s
I 3 - - - 2761 961 -
I 4 - - - 12920 844 -
I 5 - - - 11085 225 -
I 6 - - - 1933 730 -
I 7 - - - - 187.4 -
I 8 - - - - 961 -
I 9 - - - - 280.25 -
I 10 - - - - 961 -

Table 3.6: Table showing the results achieved for instances 1–10 using CPLEX.

using these encodings together with the MIP solvers Gurobi and CPLEX.

Table 3.6 provides an overview of the best results for instances 1–10 with CPLEX (the
solution process with encodings for instances 11–24 ran out of memory on our benchmark
machine before any result could be produced). The columns on the left side of the table
include the results achieved using the direct formulation: the cost of the best solution
found within the runtime limit of 6 hours (cplex-6h), the best bound achieved using the
direct formulation (best bd), and the required optimality proof time in seconds. The
results in boldface denote the overall best results, and a – indicates that no solution
could be found within the runtime limit. The right side of the table similarly shows the
results achieved with CPLEX using the DFA formulation.

Table 3.6 shows that the direct formulation is only able produce solutions for the two
smallest instances within the time limit, whereas the formulation using DFAs seems to be
more efficient as it derived solutions for six instances and generated one optimality proof.

Table 3.7 provides the results achieved with Gurobi in our experiments. The results
are presented in the same way as that in Table 3.6: The left side shows the best cost
solutions produced with the direct model (gurobi-6h), followed by the best objective
bound and the required optimality proof time. The right side of the table shows the best
results achieved with the DFA-based problem formulation.

The results presented in Table 3.7 show that Gurobi can reach improved results relative
to CPLEX for all instances, except instance 5. Moreover, Gurobi can provide optimality
proofs for four instances. The DFA-based model leads to improved results relative to the
direct formulation of the problem.

Comparison of Results

The summarized results of the experiments with the evaluated CP and MIP solvers are
shown in Table 3.8. From left to right, columns 1–5 show the solver configuration (6h

46

3.3. Empirical Evaluation

gurobi-6h best bd proof t gurobi-reg-6h best bd proof t
I 1 775 768 - 775 775 6637.99s
I 2 842 842 9444.53s 842 842 127.56s
I 3 - - - 961 961 282.80s
I 4 - - - 967 862.49 -
I 5 - - - 530 530 13398.48s
I 6 - - - - 842 -
I 7 - - - 904 841 -
I 8 - - - - 964 -
I 9 - - - - 582 -
I 10 - - - - 961 -

Table 3.7: Table showing the results achieved for instances 1–10 using Gurobi.

solver # best # fast # opt # prf # sol avg nodes avg rt std nodes std rt

chuffed-6h 4 0 4 3 4 96910 43.01 158722.61 32.53
chuffed-reg-6h 10 9 9 9 10 984148.89 735.66 1625073.26 1330.49
gecode-6h 0 0 0 0 0 - - - -
gecode-reg-6h 0 0 0 0 0 - - - -
cplex-6h 0 0 0 0 2 - - - -
cplex-reg-6h 1 0 1 1 6 14375 10981.08 - -
gurobi-6h 2 0 2 1 2 2149 9276.63 - -
gurobi-reg-6h 4 0 4 4 6 110315.25 5071.33 213079.3 6269.04

Table 3.8: Table summarizing the experimental results achieved with all evaluated CP
and MIP solvers using the proposed models.

indicates the time limit of 6 hours, the DFA-based model is compared with the direct
model indicated by reg), the number of overall best cost solutions reached, the number
of overall fastest optimality proofs, the number of solutions solved to optimality, and
the number of optimal cost proofs. Columns 6–10 show the number of instances where
a feasible solution could be obtained, the number of average expanded nodes (only for
optimally solved solutions), the average proof time, the standard deviation of expanded
nodes for optimally solved solutions, and the standard deviation of proof times.

The results shown in Table 3.8 indicate that Chuffed based on the DFA formulation
clearly produces the best results for the most number of instances and provides the fastest
optimality proofs in our experiments. By contrast, the Gecode solver could not reach
any feasible solution in our experiments. Furthermore, the DFA formulation generally
leads to improved results for the MIP solvers as the number of solved instances is higher
than that of the results of the direct model.

Table 3.9 compares the overall best cost solutions achieved by the solvers within the time
limit of 6 hours (6h). The results formatted in boldface indicate the best results per
instance, and a * denotes proven optimal solutions.

The results presented in Table 3.9 show that Chuffed produced the best results in our
experiments for instances 1–10 and that it can prove optimality for instances 1–9. By

47

3. A Constraint Programming Approach for the Paint Shop Scheduling Problem

chuffed-6h cplex-6h gurobi-6h
I 1 775* 776 775*
I 2 842* 842* 842*
I 3 961* 2761 961*
I 4 918* 12920 967
I 5 530* 11085 530*
I 6 842* 1933 -
I 7 844* - 904
I 8 1237* - -
I 9 975* - -
I 10 964 - -
I 11 - - -
I 12 - - -
I 13 - - -
I 14 - - -
I 15 - - -
I 16 - - -
I 17 - - -
I 18 - - -
I 19 - - -
I 20 - - -
I 21 - - -
I 22 - - -
I 23 - - -
I 24 - - -

Table 3.9: Table showing the best results per instance produced by the exact methods.

contrast, Gecode was not able to solve a single instance. This result indicates that
lazy clause learning together with an activity-based search heuristic is able to produce
improved results for these instances relative to a non-learning solver that uses a fixed
search. CPLEX was able to prove a single optimal solution (instance 2), and Gurobi was
able to prove three optimal solutions (instances 2, 3, and 5) in our evaluation. Large
instances (instances 11–24) could not be solved by the constraint modeling approach in
our experimental setting as the MiniZinc compiler ran out of memory due to the excessive
number of required variables and constraints.

48

CHAPTER 4
Heuristic and Hybrid Approaches

for the Paint Shop Scheduling
Problem

In the previous chapter we introduced an exact approach for the paint shop scheduling
problem which was able to provide optimal results for several benchmark instances but
could not provide feasible solutions for large realistic instances within reasonable space
and runtime limitations. Therefore, we propose several heuristic approaches to tackle
large instances for the PSSP in this chapter.
First, we introduce in Sections 4.1 and 4.2 a construction heuristic approach as well
as a metaheuristic approach using local search and a set of novel neighborhood search
operators. Afterwards, in Section 4.3 we introduce a large neighborhood search approach
that can hybridize exact and heuristic techniques on an important color change sub-
problem that arises in the PSSP. Finally, at the end of this chapter we evaluate all
methods proposed on the set of benchmark instances we introduced in Chapter 2.

4.1 A Construction Heuristic Algorithm for Paint Shop
Scheduling

As real-life instances of the paint shop scheduling problem occurring at the production
sites of the automotive supply industry usually lead to a very large search-space, in
practice often heuristic approaches are required. In this section, we therefore propose
a greedy construction heuristic approach that is able to produce solution schedules in
short runtime even for large-scale instances.
The method does not guarantee to always produce feasible solutions as some hard
constraints may be violated. However, in practice the remaining violations can be repaired

49

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

by a human planner or can serve as an effective initial solution for the metaheuristic
methods we describe later on in this chapter.

4.1.1 Construction Heuristic Phase 1: Constructing a round layout
A challenging property of the paint shop scheduling problem is that demanded materials
and the associated carrier configurations have to be distributed over the rounds of the
scheduling horizon. One strategy to keep the number of required carrier and color changes
low in each round, is to minimize the number of scheduled colors per round while trying
to reuse as many carrier types as possible between rounds. The first phase of our greedy
construction heuristic algorithm follows this idea, while assigning carrier configurations
and colors to each round without considering an exact round sequence at first.

Therefore, phase 1 of the construction heuristic inserts, given a customer demand, a
carrier device with the configuration that maximizes the number of pieces for that demand.
The color is specified by the demand. Insertion in one of the rounds is done greedily, i.e.
minimize violations and costs with respect to the current state (where the current state
consists of all previously inserted configurations plus the current insertion candidate).

Customer demands are processed one after the other, where the list of demands is sorted
by the due dates.

Even without determining the exact carrier sequence, phase 1 can consider hard constraints
that do not depend on the sequence and can calculate a lower bound of the objective.
The calculation of the violations for a partial solution in the round layout phase of the
construction heuristic includes violations of constraints that can be determined without
knowing the final sequence. Therefore, round capacity violations, carrier availability
violations, and minimum carrier type block size violations are evaluated by counting the
number of excessive or missing carriers assigned to each round. Furthermore, carrier and
color change costs are determined by calculating the lower bounds on the number of
changes between two consecutive rounds (i.e. the least number of changes required for
any sequencing based on the assignments to these rounds).

After all demands are fulfilled, the minimum round capacity requirement might still
remain violated for some rounds. If this is the case, the construction heuristic continues
to generate and perform carrier configuration insertions until the capacity requirements
are met. In each iteration of this process the algorithm evaluates the violations and costs
for each possible carrier configuration and color insertion to each of the rounds (which
totals in |K| · |C| · |R| possible combinations for |R| · q iterations in the worst case), and
then selects the option that leads to the lowest costs (ties are broken lexicographically).

Algorithm 1 describes the details of Phase 1.

4.1.2 Phase 2: Determining the carrier sequence for each round
After the execution of Phase 1, the heuristic has decided which carrier configurations and
colors should be scheduled within each round. Furthermore, Phase 1 has already consid-

50

4.1. A Construction Heuristic Algorithm for Paint Shop Scheduling

Algorithm 1: Greedy Algorithm Phase 1
openDemands ← sort demands (earliest due round first)
schedule ← empty painting schedule
while openDemands not empty do

demand ← next demand from openDemands
configs ← all carrier configurations able to carry demand
c ← color of demand
r ← due round of demand
while demand is unfulfilled do

insertions ← []
forall i ∈ {1, . . . , r}, x ∈ configs do

y ← carrier insertion with configuration x and color c to round i
Add y to insertions

z ← a ∈ insertions that leads to lowest violations and costs regarding the
current state when assigned to schedule

Perform z and update schedule

while minimum round capacity is unfulfilled do
Calculate all possible carrier insertions
Perform insertion leading to the lowest violations and costs in the current
state

Update schedule

return schedule = set of carrier assignments for each round

ered hard constraints that are not sequence-dependent (due round, carrier availability,
and round capacity). Phase 2 therefore only determines the exact carrier sequence within
each round while trying to fulfill sequence-dependent hard constraints and aiming for a
low number of color and carrier type changes.

The main idea behind the second phase is to determine the carrier sequence one round
at a time. It aims to keep the sequence from the previous round as closely as possible,
i.e. carriers not used in the current round are removed. The remaining carriers are
inserted greedily. Therefore, the algorithm will start with the first round and determine
its sequence based on the scheduling sequence from the history round which is part of
the input parameters.

After the sequence has been determined for round 1 the algorithm will continue to
sequence round 2 and so on.

Further details regarding Phase 2 of the construction heuristic algorithm can be found in
Algorithm 2.

51

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

Algorithm 2: Greedy Heuristic Phase 2
r ← number of rounds in the schedule
x ← set of carrier assignments per round from phase 1
y ← []
y[0] ← carrier sequence from history round
w ← []
for i ∈ {1, . . . , r} do

y[i] ← empty sequence
y[i] ← copy carrier type assignments from y[i − 1] (remove color and
configuration, only keep carrier type)

forall c ∈ all colors used in x[i] do
z ← set of all carrier assignments from x[i] with color c
Place as many assignments from z as possible on compatible type
assignments in y[i] that have not been assigned a color and configuration
yet.

Add any remaining assignments from z to w.
Remove type assignments from y[i] that have not been assigned a color and
configuration yet.

forall u ∈ w do
Calculate costs and violations for all possible insertion positions for u in
y[i].

Insert u at the position that leads to the lowest violations and costs.

return y = carrier sequences for each round

4.2 A Local Search Based Approach for Paint Shop
Scheduling

In this section we introduce a local search based approach to solve the paint shop
scheduling problem. We propose three different types of neighborhood moves, and several
metaheuristic techniques to escape local optima.

4.2.1 Cost Function
We extend the objective function described in Equation 2.19 to also include a sum
of all hard constraint violations hv that will be multiplied with a constant M that is
guaranteed to be larger than the largest possible objective value. The sum of hard
constraint violations will be calculated independently for each constraint in a way that
captures the distance to a feasible solution. In the following, we define the distance
function to a feasible solution for each hard constraint:

• Material Demands: All material demands must be fulfilled by their due round.
Therefore, the distance function for this constraint simply counts the total number

52

4.2. A Local Search Based Approach for Paint Shop Scheduling

of material pieces that are not produced in time.

• Carrier Availabilities: As the number of available carriers is restricted for each
round, the distance function for this constraint sums up the total number of excess
carriers.

• Minimum/Maximum Carrier Capacities: The distance function for this constraint
counts the total number of missing carriers (regarding the minimum capacity) of
each round that uses fewer carriers than the minimum. The maximum carrier
capacity is always implicitly fulfilled by the solution representation.

• Forbidden Carrier Type Sequences: The distance function for this constraint counts
the number of times that a forbidden carrier type transition occurs in the schedule.

• Minimum/Maximum Carrier Type Block Lengths: For each carrier type block
that violates the minimum/maximum length requirement, the distance to the
required minimum/maximum length is included in the total distance function for
this constraint (E.g. let a carrier type block appear with length 2 in a candidate
solution, and let the minimum block length for this carrier type be set to 5. Then
a value of 3 is added to the total number of violations).

• Forbidden Color Sequences: The distance function for this constraint goes over all
carrier positions in the schedule and adds the number of all subsequent forbidden
color violations regarding the particular position to the total number of violations.
For example, let color c1 be assigned to a position in the schedule and let it be
forbidden that color c2 appears within the next 3 positions after c1. Then, the
number of times color c2 appears within the next 3 positions after the position that
used color c1 is added to the number of total violations for this distance function.
Note that the distance function considers all forbidden color sequences on each
carrier position in the candidate schedule for the calculation of the total number of
violations.

Using the total number of hard constraint violations hv, Equation 4.1 defines the extended
objective function.

minimize
r∈{0,...,n−1}

sc2
r +

r∈R

cc2
r + hv · M

M = s2 · |R| + (maxColorCost)2 · |R| + 1
maxColorCost = max {fc(c1, c2)|c1, c2 ∈ C}

(4.1)

4.2.2 Search Neighborhoods
We propose the following three neighborhood moves for local search:

53

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

R1 R2 R3

a a a

a a a

a a a

a a a

a a a

A1

A1

A2

B3

B3

A1

A2

C2

B1

B1

C1

C1

C2

B3

B1

C1

Figure 4.1: This figure shows a visualization of how the three neighborhood move types
(swapping positions, delete positions, and insert positions) can make modifications to a
paint shop schedule.

1. Carrier removal: Any carrier assignment that is placed in the schedule can be
simply removed. Whenever a carrier is removed from a round, all carriers that have
been planned after the removed position in the same round will be shifted forward
by one position.

2. Carrier insertion: A new carrier assignment can be inserted in any round that has
not reached its full capacity. Carriers that have been previously planned at or after
the newly inserted carrier’s position will be shifted backward by one position.

3. Carrier swap: Any two carrier assignments in the schedule can be swapped. In this
case both the selected carrier configurations and colors are exchanged.

The local search approach we propose will also consider block moves where multiple
consecutively scheduled carrier assignments may be inserted, deleted or swapped at once.
In our experiments we used a maximum block move size that corresponds to the largest
input parameter given with the minimum block length constraint (max {bmin

t |t ∈ T}),
since block moves will be especially effective for repairing minimum block length violations.
Figure 4.1 shows a visualization of the three neighborhood move types. In the following,
whenever we say search move we refer to a single neighborhood move that can be either
a carrier removal, insertion or swap.

4.2.3 Neighborhood Generation
Since early experiments revealed that generating the complete search neighborhood usu-
ally cannot be done within reasonable time for large instances, we propose to incorporate
elements of a min-conflicts heuristic into our local search approach to focus on promising
parts of the search neighborhood. Our algorithm will therefore track any carrier assign-
ment in a candidate solution that is causing a constraint violation, a carrier-, or a color
change. Furthermore, for constraints that require additional carrier configurations to be
inserted into the schedule we track which carrier configurations are still missing. Our
neighborhood generation routine will therefore consider two types of conflicts:

54

4.2. A Local Search Based Approach for Paint Shop Scheduling

1. Position Conflicts: All positions in the schedule that are involved in at least one
constraint violation will be considered to be in conflict.

2. Insertion Conflicts: Some constraints can be violated because of a number of missing
carrier assignments in the schedule (e.g. demand constraint, min capacity). For
those constraints we track information about what carrier configuration needs to be
inserted to repair any violation. For some insertion conflicts it is irrelevant which
color and configuration is inserted to repair the constraint violation (e.g. minimum
round capacity constraint). Our algorithm will randomly select a configuration and
color for insertion in such a case.

In addition to the conflict based moves, in each iteration we further generate a single
random neighborhood move that is uniformly sampled from the complete search neighbor-
hood. Thereby, the search has the chance to find improving moves that are not related to
insertion or position conflicts. Algorithm 3 further describes our neighborhood generation
routine.

Algorithm 3: Generate Neighborhood Moves
allMoves ← []
Calculate position and insertion conflicts
ic ← select random insertion conflict
pc ← select random position from position conflicts
sp ← generate random swap position
for i ← 1 to maxBlockMoveSize do

Add insertion of size i based on ic to allMoves
Add deletion of size i at pc to allMoves
Add swap of size i for pc and sp to allMoves

Add randomly generated search move to allMoves
return allMoves

After Algorithm 3 has generated a collection of potential search moves, we propose two
alternative methods to select the best neighborhood move. The first option always selects
the neighborhood move that leads to the lowest cost value, while the second option uses
a tabu list to prevent the repeated selection of recently performed moves (in this case the
lowest cost move which is not tabu is selected). Note however, that the second option
always selects a move that leads to a new unknown best solution even if it is contained
in the tabu list.

4.2.4 Neighborhood Move Acceptance
We further propose to use an innovative simulated annealing based acceptance function
that will decide whether a selected move should be accepted during a search iteration (if
not accepted, no move will be performed in the current iteration). In addition to the

55

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

standard homogeneous simulated annealing temperature cooling scheme [KGV83], we
incorporate a problem specific factor t′ that will adjust the acceptance probability P
based on the search progress (see Equation 4.2, where e and e′ are the current- and the
neighbor solution cost, and T is the current temperature).

P (e, e′, T, t′) = exp(−(e′ − e)/(T · t′)) (4.2)

We included the factor t′ into our algorithm due to the observation that the impact
of unit improvements on the objective function (such as reducing the number of hard
constraint violations by one or lowering the number of required color or carrier changes
by one) will depend on the current objective value. The idea is to set t′ to a value that
roughly estimates the cost improvement that would occur to the current solution if the
number of violations or required color and carrier changes is reduced by one. To calculate
t′ we do the following in each iteration: As long as the current solution violates any hard
constraint, we simply set t′ = M . However, if the current solution is feasible we instead
calculate t′ based on the current solution’s cost as described in Algorithm 4 (The values
colorCosts and carrierCosts store the sum of color- or carrier costs from the objective
function.)

The rationale behind Algorithm 4 is to normalize the acceptance rate of moves that
decrease the number of carrier or color changes during the overall search progress. This
is done by calculating the average cost improvements that would occur to the current
solution if the total number of color and carrier changes in the schedule is lowered by
one. The calculated value depends on the quality of the current solution and significantly
changes during the search progress.

Algorithm 4: Calculating t′ if the current solution does not violate any hard
constraints.

a ← colorCosts
numberOfRounds

b ← carrierCosts
numberOfRounds

c ← (
√

a + maxColorCost)2 − a

d ← (
√

b + 1)2 − b
t′ ← min (c, d)
return t′

4.3 A Large Neighborhood Search Approach for the Paint
Shop Scheduling Problem

In the previous sections of this thesis we have proposed an exact solution method as
well as a local search based approach for the paint shop scheduling problem. We now
investigate a large neighborhood search approach that can hybridize exact and heuristic
techniques to further improve results for many realistic benchmark instances.

56

4.4. The Paint Shop Color Change Problem

We first identify an important NP-hard sub-problem of the paint shop scheduling problem
regarding the minimization of color changes in the production sequence. Afterwards,
we propose heuristic as well as exact approaches for this sub-problem. Then, we utilize
the introduced techniques within a novel large neighborhood search operator that can
be used to extend the metaheuristic methods we proposed in Section 4.2. Furthermore,
we propose an innovative construction heuristic utilizing the large neighborhood search
operator that serves as an alternative approach to the construction heuristic given in
Section 4.1. At the end of the chapter we evaluate all proposed large neighborhood search
methods using the proposed set of benchmark instances.

4.4 The Paint Shop Color Change Problem

In this section we describe the paint shop color change problem (PSCCP), which appears
as a sub-problem within the PSSP. Afterwards, in Section 4.6, we will give a full
specification of the PSSP and describe, how solution methods to the PSCCP can be
utilized within a large-neighborhood search approach for the PSSP.

The main aim of the PSCCP is to find an optimized coloring of a carrier production
sequence. Thus, a predetermined sequence of different carrier device types that are used
to transport materials in the paint shop is given as input to the problem. In the paint
shop, the materials which are transported on a single carrier have to be painted using
one unique color, and therefore the aim of the PSCCP is to assign a single color to each
individual carrier in such a way that the number of color changes in the production
sequence is minimized.

A feasible coloring sequence has to ensure that all color demands are fulfilled, where color
demands are given as part of the input in terms of carrier type quantities. To model a
notion of time, the given carrier sequence which is part of the input is further grouped
into several scheduling periods which are referred to as rounds since in industrial paint
shops of the automotive supply industry carriers are usually moving on a cyclic conveyor
belt system (for further information on the paint shop environment and its round layout
see Section 2.1). In practice, processing of a single round is done within a fixed amount
of time depending on the size of the paint shop, even though each round may schedule
a different number of carriers. All color demands which are given as part of a problem
instance set a due date (which is specified in terms of rounds) that needs to be fulfilled.

As an example, consider a simple instance of the PSCCP which is illustrated at the top
of Figure 4.2.

The carrier sequence that is presented in Figure 4.2 contains three consecutive rounds
called R1, R2, and R3; where the end of each period is visualized by tick marks. The
letter in each of the cells denotes the carrier type in the sequence, so that within the first
scheduling period R1 a sequence of four carriers is scheduled: C, B, C, B.

57

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

A

2 ×
B

2 ×
A

1 ×
B

2 ×
A

1 ×
C

3 ×

C B C B C A B A B A A B

R1 R2 R3

C

Solution 1:

B C B C A B A B A A B

R1 R2 R3

C

Solution 2:

B C B C A B A B A A B

R1 R2 R3

Figure 4.2: Illustration of a simple instance for the PSCCP together with two example
solutions.

In addition to the predetermined carrier sequence for each scheduling period, an instance
of the PSCCP also defines color demands which are illustrated at the very top of Figure 4.2.
We can see that for this example two carriers of type A as well as two carriers of type B
need to be painted using a white color, whereas one carrier of type A and two carriers of
type B need to be painted in a dark gray color and so on. Note that each color demand
usually also has a due date in terms of a scheduling period. For reasons of simplicity
in the illustrated example all color demands are due until the end of the scheduling
period R3 and therefore in this case a solution is feasible as long as all color demands are
scheduled in the sequence.

The bottom of Figure 4.2 further illustrates two feasible solutions to the example instance.
Solution 1 has been assigned using a naive approach where each carrier has been colored
greedily from left to right and causes 10 color changes in total. Solution 2 on the other
hand shows an improved solution that causes only four color changes. Note that the
schedule actually contains a total of 12 carriers, whereas only 11 carriers are required
to be painted. However, this is still a valid instance of the problem, as in such a case
one of the carriers may be painted arbitrarily to minimize the overall number of color
changes. A scenario like in this example where the number of carriers appearing in the
production sequence is larger than the total number of demanded carriers can also occur
in practice as technical requirements of the paint shop conveyor belt systems might not
allow ejecting all carrier devices at once between rounds.

In the following, we provide a formal definition of PSCCP, where we for reasons of
simplicity make use of the Iverson bracket notation1.

1[P] = 1, if P = true and [P] = 0 if P = false

58

4.4. The Paint Shop Color Change Problem

4.4.1 Input parameters

An instance of the PSCCP specifies several parameters including a predetermined pro-
duction sequence, information about carrier types, colors and demands. In the following
we describe all parameters in detail:

A set of carrier types T is given as part of the input which includes all the different types
of carrier devices that appear in the production sequence.

The set of colors C specifies all colors that can be assigned to the carriers in the schedule.

The demands for an instance are given as a set D that consists of 4-tuples, where each
tuple defines the demand quantity (ad, d ∈ D), the carrier type of the demand ud, d ∈ D,
the demanded color vd, d ∈ D and the demand’s due date wd, d ∈ D. For example,
consider a demand d1 where ad1 = 10, ud1 = t1, vd1 = c1, and wd = 5. Then this demand
d1 would require 10 carrier devices of type t1 in the schedule to be painted using color c1
by round 5 (note that the due date is given in terms of paint shop rounds).

A history color h is given as part of the input which denotes the last color used in the
previous production schedule (before the production sequence of the instance). The
previous schedule is not part of the current problem, however the color assigned to the
very first carrier of the problem might cause a color change regarding the history color.

The number of scheduling rounds n, (R = {1, . . . , n}) denotes the number of rounds that
are processed in the given production sequence. For each of these rounds, the number of
scheduled carriers is given by a parameter sr, r ∈ R. Finally, the detailed predetermined
production sequence for the instance is determined by a list consisting of the scheduled
carrier type sequence for each round (li,j , ∀i ∈ R, j ∈ {1, . . . , si}).

The full list of formal input parameters is summarized in Table 4.1.

Set of carrier types: T
Set of colors: C
Set of demands: D
Quantity of demand: ad ∈ N>0, ∀d ∈ D
Carrier type of demand: ud ∈ T, ∀d ∈ D
Color of demand: vd ∈ C, ∀d ∈ D
Due date of demand: wd ∈ N>0, ∀d ∈ D
History Color: h ∈ C
Number of scheduling rounds: n (R = {1, . . . , n})
Number of carriers per round: sr ∈ N>0, ∀r ∈ R
List of scheduled carriers: li,j ∈ T,

∀i ∈ R, j ∈ {1, . . . , si}
Table 4.1: The input parameters of the PSCCP.

59

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

4.4.2 Decision Variables
The set of decision variables for the PSCCP decide which color should be used for each
scheduled carrier position in the production sequence:

Scheduled color in round i and position j

xi,j ∈ C, ∀i ∈ R, j ∈ {1, . . . , si} (4.3)

4.4.3 Hard Constraints
In feasible solutions to the PSCCP, all color demands need to be fulfilled in time:

d∈D

ad ≤
i∈{1,...,wd} j∈{1,...,si}

[xi,j = vd ∧ li,j = ud]

∀d ∈ D

(4.4)

4.4.4 Objective Function
The objective function builds a sum of all color changes in the production sequence
including round overlapping changes, and a possible change from the last color used in
the history schedule (history color):

minimize [h ̸= x1,1] +
i∈R j∈{1,...,si−1}

[xi,j ̸= xi,j+1],

+
i∈{1,...,n−1}

[xi,si ̸= xi+1,1]
(4.5)

4.4.5 Related Literature
A color change sequencing problem that is similar to the PSCCP has been studied
under the name of the paint shop problem (PSP) in the literature [EHO04]. Indeed, one
can view the PSCCP as an extension of the PSP that additionally includes due date
constraints. However, as the PSP does not consider due date violations, solution methods
for the PSP can in general not be used to find feasible solutions for instances of the
PSCCP.

The PSP essentially asks to find an optimal assignment of a given set of colored letters
to a predetermined word in such a way that color changes are minimized. In [EHO04]
the authors provide a dynamic programming algorithm that can solve the PSP in
polynomial time if the number of letters and colors are bounded and show that the
decision variant of the problem is NP-complete otherwise. A local search approach
using a swap neighborhood and an exact method based on linear programming for the
PSP have been proposed in [MN12]. The authors randomly generate 15 benchmark
instances to experimentally evaluate their methods. They conclude that the local search

60

4.5. Solution Methods

approach overall produced better results than the linear programming approach in their
experiments.

4.4.6 Complexity Analysis

If we consider instances of the PSCCP with only a single round in the sequence (i.e. the
due date constraint is not violated as long as all demands are fulfilled at any time in the
sequence) and further ignore the history color of the problem, the PSCCP is equivalent
to the PSP. Thus, the PSCCP is a generalization of the PSP. As the decision variant of
the PSP has been shown to be NP-complete in [EHO04] as long as the number of colors
and different types in the sequence are not bounded, we can argue that the decision
variant of the PSCCP also is NP-hard under the same assumptions, as we can solve the
PSP with the PSCCP by simply creating an instance for the PSCCP with a single round
in the sequence and no due date constraints.

4.5 Solution Methods
In this section, we propose two solution approaches to the PSCCP: An innovative
heuristic approach as well as an exact approach based on constraint modeling.

4.5.1 A Heuristic Solution Approach for the PSCCP

The main idea behind this heuristic approach is to greedily determine the coloring of
a single carrier in the given sequence one step at a time and thereby constructing a
solution. To find out which carrier should be colored next during each iteration of the
algorithm the heuristic essentially evaluates all possible single color assignments to the
current partially colored carrier sequence.

Figure 4.3 illustrates the main execution steps of the construction heuristic we propose
for the PSCCP.

At first, the algorithm starts with a fully unpainted production sequence and creates
an ordered list of all color demands ordered by their due dates. As long as this list is
not empty, the algorithm then iteratively processes a series of execution steps. These
steps essentially go over all demands still contained in the list and calculate how much it
would cost to color a single carrier in the production sequence to fulfill the associated
demand. The single carrier color assignment that causes the lowest cost increase with the
current state of the production sequence is selected and applied to the partial solution.
Afterwards, the quantity of the demand affected by this color assignment is updated and
in case the demand quantity is lowered to zero, the demand is completely removed from
the demand list.

Algorithm 5 provides pseudocode to describe the proposed construction heuristic algorithm
in further detail.

61

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

Start

Create list of demands
sorted by due date

Is the list of
demands empty?

Evaluate costs for a single color
assignment for each demand

Select the demand and color as-
signment causing the least changes

(break ties by demand order)

Apply selected color as-
signment to solution

Decrement the demand quan-
tity by one, if it becomes

zero remove it from the list

Assign colors to remain-
ing uncolored cells (choose
colors of neighboring cells)

stop

no

yes

Figure 4.3: Main execution steps of the heuristic solution method for the PSCCP.

62

4.5. Solution Methods

Algorithm 5: PSCCP Heuristic
fn GetBestColorPosition (demand d)

bestCost = −1
bestPos = null
seq = reversed carrier sequence starting from wd

for position in seq do
Color position with vd

cost = Evaluate costs for current sequence
Uncolor position
if bestCost == −1 or cost < bestCost then

bestCost = cost
bestPos = position

return ⟨bestCost, bestPos⟩
fn PSCCPHeuristic (demandLookAhead)

unfulfilledDemands = sort demands by due round
while |unfulfilledDemands| > 0 do

counter = 0
bestDemand = null
bestCost = ∞
bestPosition = null
for d in unfulfilledDemands do

if counter == demandLookAhead then
break

⟨cost, position⟩ = GetBestColorPosition(d)
if bestCost > cost then

bestCost = cost
bestPosition = position
bestDemand = d

counter = counter + 1
if bestDemand == null then

break

Apply color to bestPosition
Update unfulfilledDemands

for position in Sequence do
Apply color of previously colored position

63

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

The function PSCCPHeuristic is the main entry point of the heuristic and takes in
addition to the instance parameters a single positive integer parameter which is called
demandLookAhead. In a first step, the list of all demands is sorted by their due dates.
If there are multiple demands with the same due date, rare colors (which are determined
by the total requested quantity for a color over all demands) are selected first. The idea
here is that rare colors are potentially harder to group in the schedule and therefore
should be scheduled earlier on.
After all demands have been ordered, the algorithm then enters its main loop that
continuously applies single color assignments to the carrier sequence until all demands are
fulfilled. Within the loop, the heuristic goes over the next demandLookAhead demands
that are not already fulfilled by the current partially colored schedule. For each of these
demands the costs caused for any possible single color assignment that can potentially
fulfill the demand are calculated. Eventually, in each iteration the algorithm performs
the single color assignment that causes the lowest costs (Ties are broken by selecting the
best cost assignment that was encountered first).
For some instances, it can be the case that some carriers remain unpainted even after
all demands have been fulfilled. This situation can occur in some real-life instances, for
example when additional carriers are required in the schedule to fulfill minimum carrier
capacity requirements. In such a case the heuristic simply goes over the sequence and
tries to color those remaining unpainted carriers based on what colors have been assigned
to neighboring carriers to keep the number of color changes as low as possible.
Although the heuristic can find candidate solutions quickly even for large instances (for
realistic instances with several 100 demands the demandLookAhead parameter can be
lowered if necessary), in general it does not guarantee to find a feasible solution as due
round constraint violations might occur in the resulting schedule.

4.5.2 An Exact Approach for the PSCCP
To approach the PSCCP with state-of-the-art exact CP and mixed-integer programming
(MIP) solvers, we propose to model the problem with the use of the high-level constraint
modeling language MiniZinc [NSB+07]. This allows us to implement the problem
definition from Section 4.4 in a declarative way and utilize the model with state-of-the-art
CP and MIP solvers as an exact solution approach to the PSCCP.
In our constraint model, we define all the input parameters from Table 4.1 using integer
value IDs in the ranges from 1 to |T | for the carrier types, from 1 to |C| for the colors,
and from 1 to |D| for the demands. We use an additional input s = max {sr|r ∈ R}, that
is set to the maximum round length. The value s is used to define the input carrier
sequence as a two-dimensional integer array of dimensions |R| × s. Each position to the
array is either set to the scheduled carrier id, or to 0 if the position is unused.
We model the decision variables from Equation (4.3) using a two-dimensional integer
array and set the variable domain to {0, . . . , c}, where 0 will be used to mark unused
positions.

64

4.5. Solution Methods

The due date constraint from Equation (4.4) is modeled with the use of a counting
predicate that counts all occurrences of the associated color and carrier type combination
for each relevant due date in the schedule. The resulting value is then constrained to be
greater or equal to the required quantity by the due date.

Another constraint sets all unused positions in the decision variable array to 0.

Finally, the solution objective uses counting predicates to model the conditional sums
from Equation (4.5).

Listing 4.1 displays the detailed MiniZinc model for the PSCCP. For details on the syntax
of the MiniZinc language please refer to a recent version of the MiniZinc Handbook2.

% INPUT
% carrier types
int: t;
set of int: T = 1..t;

% colors
int: c;
set of int: C = 1..c;

% history color
int: h;

% rounds to schedule
int: r;
set of int: R = 1..r;

% carrier sequence
int: s;
set of int: S = 1..s;
array[R,S] of 0..t: carriers;
array[R] of S: s_r;

% carrier demands
int: num_demands;
set of int: D = 1..num_demands;
array[D] of int: d_t;
array[D] of int: d_c;
array[D] of int: d_qty;
array[D] of int: d_r;

% VARIABLES

2https://www.minizinc.org/

65

https://www.minizinc.org/

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

array[R, S] of var 0..c: x;

% CONSTRAINTS
% All demands must be satisfied in time
constraint forall(d in D where d_r[d] <= r) (
d_qty[d]
<=
count(i in 1..d_r[d], j in 1..s_r[i])(x[i,j] = d_c[d] /\
carriers[i,j] = d_t[d])

);

% set unused positions to zero
constraint forall(i in R, j in s_r[i]+1..s) (
x[i,j] = 0

);

% OBJECTIVE
solve minimize bool2int(h != x[1,1]) +
count(i in 1..r, j in 1..s_r[i]-1)(x[i,j] != x[i,j+1]) +
count(i in 1..r-1)(x[i,s_r[i]] != x[i+1,1]);

Listing 4.1: MiniZinc model code for the PSCCP

4.6 A Large Neighborhood Search Approach for the Paint
Shop Scheduling Problem

In this section, we propose an innovative large neighborhood search operator for the Paint
Shop Scheduling Problem (PSSP) that utilizes the solution methods for the PSCCP that
have been introduced in the previous section. First, we describe how solutions to the
PSCCP can be utilized to improve candidate schedules for the PSSP in Section 4.6.1.
Afterwards, in sections 4.6.2 and 4.6.3, we introduce the large neighborhood search
operator and describe how it can be used to improve local search for the PSSP.

4.6.1 Utilizing the PSCCP to Improve PSSP Solutions
Consider the example solution for an instance of the PSSP shown in Figure 4.4.
We can view the PSCCP as a sub-problem that appears within the PSSP, as once a
carrier sequence has been determined, we can solve an associated instance of the PSCCP
to find an optimized coloring for the associated carrier sequence. Figure 4.5 visualizes a
solution to the PSCCP instance that corresponds to the PSSP example schedule shown
in Figure 4.4.
We now describe how solutions methods to the PSCCP can be utilized to improve given
candidate solutions to the PSSP without changing the predetermined carrier sequence.

66

4.6. A Large Neighborhood Search Approach for the Paint Shop Scheduling Problem

R1 R2 R3 . . .

1 a a a . . .

2 a a a . . .

3 a a a . . .

4 a a a . . .

5 a a a . . .

A1

A1

A2

B1

B2

A1

A1

C2

B2

B3

C1

C2

C3

B1

B2

Figure 4.4: A simple paint shop schedule, which illustrates a candidate solution to the
PSSP.

A

2 ×
C

2 ×
B

6 ×
A

3 ×
C

2 ×

A A A B B A A C B B C C C B B

R1 R2 R3

A A A B B A A C B B C C C B B

R1 R2 R3

Figure 4.5: Visualization of a simple PSCCP instance that would be associated to the
candidate schedule for the PSSP as it is shown in Figure 4.4.

This technique has the benefit that the number of required color changes in the production
sequence can be improved without the need to consider the complex constraints of the
PSSP that are related to the creation of feasible carrier type sequences. For this purpose,
we take any candidate solution to the PSSP and create an instance for the PSCCP by
simply removing the color assignments from all carriers in the sequence. We further
generate demands for the PSCCP instance by looking at each individual carrier and
by analyzing which paint shop demands are fulfilled by this carrier. The due round of
the earliest demand that is processed by each individual carrier serves as the due round
of the associated color demand in the PSCCP instance. Similarly, a solution to the
generated PSCCP instance can be applied to the original candidate solution of the PSSP
by applying the produced color sequence to the predetermined carrier sequence.

Note that in the original PSSP each carrier type actually can be used in a number
of different configurations. Selecting a configuration can affect which and how many
product types are placed on the carrier. When we create a PSCCP instance, we may
ignore these configurations as long as we fulfill all the color demands, since we can safely
remap the previously used configurations to the associated carrier type color pairs of the
PSCCP solution later when we apply the PSCCP solution back to the PSSP schedule.

67

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

R1 R2 R3 . . .

1 a a a . . .

2 a a a . . .

3 a a a . . .

4 a a a . . .

5 a a a . . .

A1

A1

A1

B1

B2

A2

A1

C2

B2

B3

C1

C2

C3

B1

B2

A A A B B A A C B B C C C B B

R1 R2 R3

Figure 4.6: An example PSCCP solution is mapped back to the paint shop schedule for
the original PSSP.

Figure 4.6 illustrates this process by displaying a solution to the PSCCP example that
was previously shown in Figure 4.5 as well as a remapping to the PSSP schedule that
was originally shown in Figure 4.4.

The top of Figure 4.6 visualizes the solution to the PSCCP, whereas the bottom shows
the application of the solution to the PSSP schedule. Note that carrier types (which
are represented by letters) have not changed compared to the original schedule shown
in Figure 4.4. However, a carrier of type A with configuration number 2 (A2) that
was previously scheduled in R1 at position 3 now is scheduled at position 1 of R2.
Furthermore, position 3 in R1 now schedules a type A carrier using configuration number
1 (A1). The reason why the configuration numbers need to change in this example is that
the demands for the associated PSSP instance require a white carrier of configuration A2
and a light gray carrier of configuration A1. This remapping of the configurations can be
easily done algorithmically by going over all changed carrier positions and reassigning
the configurations to fulfill any missing demands of the PSSP with an earliest demands
first strategy.

Up to now, we have seen that the PSCCP solution methods cannot directly change
the configurations used in the corresponding PSSP schedule, but only indirectly affect
their positioning in the schedule. However, if we pass additional information about the
configurations (i.e. what product types are associated with each configuration) to an
instance of the PSCCP and specify the demands in a way to request product types instead
of carrier types we could give the solution methods more possibilities to fulfill the demands
by not only reassigning colors but also reassigning configurations in the carrier type
sequence. We initially experimented with extended variants of the PSCCP that support
the reassignment of configurations, but these variants turned out to be impractical for

68

4.6. A Large Neighborhood Search Approach for the Paint Shop Scheduling Problem

most benchmark instances with exact methods due to the largely increased size of the
search space. However, we could successfully adapt the heuristic approach to support
a reassignment of configurations without a notable loss in performance and therefore
implemented this variant for our experimental evaluation of the PSCCP heuristic. The
procedure shown in Algorithm 5 is still used with the only difference that when a position
is evaluated to be colored for a given demand, the heuristic tries to assign the best
configuration (i.e. the one which produces the most pieces for the demand) to this
position. After execution has finished, the assigned colors and configurations are then
transferred back to the PSSP solution.

4.6.2 A Large Neighborhood Search Operator for the PSSP
We now describe how the state-of-the-art metaheuristic technique for the PSSP which we
previously proposed in Section 4.2 can utilize solution methods for the PSCCP to improve
candidate schedules during local search. Therefore, we propose a large neighborhood
search (LNS) operator ΦLNS for the PSSP that takes a candidate solution, solves the
corresponding PSCCP problem to find an optimal coloring for the schedule, and then
applies the optimal coloring to the PSSP candidate solution. Although ΦLNS cannot be
used to solve the complete PSSP problem, as it is unable to make any changes on the
carrier sequence, it can effectively improve color change costs of the given schedule.

To implement ΦLNS we can directly use the solution methods we proposed in sections 4.5.2
and 4.5.1. However, in practice we need an additional time limit parameter that causes
the operator to stop if solving the associated PSCCP takes too long. In the case of
an exact solver, we can still use any intermediate solution on a timeout, whereas for
the heuristic approach we simply exit the main loop early and apply colors of adjacent
positions for unpainted positions if time runs out.

In initial experiments with ΦLNS we discovered that for many of the realistically sized
instances of the PSSP the operator usually ran out of time before any improvement could
be achieved. The main reason for this result is that the corresponding PSCCP (which is
an NP-hard sub-problem on its own) has a search space that was simply too large to be
effectively used within a local search neighborhood for the original PSSP.

Therefore, we further propose another LNS operator ΦLNS∗ that destroys only parts of
the colored carrier sequence and therefore reduces the search space for the associated
PSCCP. The main idea behind ΦLNS∗ is to leave large areas in the sequence that use
only a single color intact, as they do not cause any color changes. In consequence, only
color assignments from the remaining areas will be reassigned during the application of
ΦLNS∗. Thus, many color assignments are predetermined in the corresponding PSCCP
instances and only a smaller number of carriers needs to be colored which speeds up
the solution process of the ΦLNS∗. The intuition behind ΦLNS∗ is further illustrated in
Figure 4.7.

At the top of the figure, we see a sequence that uses six different colors (for simplicity
we omit carrier types here and assume they are similar). The carriers colored in shades

69

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

A A A B B A A B C C C B B

R1 R2 R3

B

2 ×
B

1 ×
B

1 ×

A A A B B A A B C C C B B

R1 R2 R3

A A A B B A A B C C C B B

R1 R2 R3

Figure 4.7: Example how ΦLNS∗ can reduce the number of color changes by rearranging
small color blocks in the overall sequence.

of gray are already arranged into “color blocks” of length 3, whereas the carriers using
different pattern colors (horizontal stripes, dots, and vertical stripes) are not yet well
arranged. The idea behind ΦLNS∗ is to remove only small color block assignments from
the sequence (which in this example are the pattern colors) while leaving larger color
block assignments intact (which in this example are the gray colors). This is visualized
in the middle of Figure 4.7.

Finally, solving the corresponding PSCCP instance in this example only needs to reassign
four colors and can actually find an improved solution that reduces the number of
required color changes in total (the corresponding sequence is illustrated at the bottom
of Figure 4.7).

In addition to a time limit, we introduce a second parameter k ∈ N>0 for the operator
ΦLNS∗ to configure which areas of the sequence should have their colors reassigned. The
parameter works in a way that any consecutive block of carriers that use a single color
with a length that is greater or equal to k will be left intact. In Figure 4.7 for example,
k = 3 as single color blocks of consecutive carriers with length ≥ 3 are not reassigned.

4.6.3 Integrating the LNS Operator into Local Search for the PSSP
The simulated annealing approach we proposed in Section 4.2 uses three search neigh-
borhoods to solve the PSSP: Carrier Insertion, Carrier Removal, and Carrier Swap.
These existing neighborhoods consider the insertion, removal or swapping of carriers
in the schedule and can affect either single carriers or blocks of consecutive carriers.
To incorporate the ΦLNS∗ operator into the local search approach, we simply add a
parameter α ∈ [0, 1] which defines the probability to call the LNS operator instead of a
standard neighborhood move during a local search iteration. Furthermore, we only call

70

4.7. A Novel Construction Heuristic for the PSSP

the ΦLNS∗ operator if the current solution has no hard constraint violations as the LNS
operator improves only the color change objective.

Figure 4.8 illustrates how the LNS operator is called within a local search iteration.

The candidate solution produced by application of the LNS operator is accepted by local
search (i.e. the result will be used as the current solution for the next search iteration)
if the costs of the candidate solution are either improved, or the result leads to a new
minimum color change cost. The latter is the case if a new upper bound for color change
costs has been achieved by LNS, but overall solution costs are not improved (e.g. because
a hard constraint has been violated). If this is the case, the LNS result is still used for
the next search iteration and local search may try to improve the overall best-known
solution from this point within a limited number of iterations (which is determined by
an additional parameter β). If no overall best cost solution can be achieved within β
iterations, local search resets its current solution back to the previously known best
solution. The rationale behind this fallback and the β parameter is to accept low color
cost solutions that include some hard constraint violations (e.g. unfulfilled demands) to
give local search a chance to repair these violations quickly and to potentially find a new
best solution.

Algorithm 6 presents the pseudo-code with further details on how the LNS operator is
called during local search.

4.7 A Novel Construction Heuristic for the PSSP
Previously in sections 4.1 and 4.2, we proposed a construction heuristic (CH) for the
PSSP. In this section, we propose an alternative construction heuristic (CH*) that
utilizes the solution methods for the PSCCP to color partially unpainted schedules during
the creation of an initial schedule.

The pseudo-code in Algorithm 7 presents the details about the novel construction heuristic
CH* that we propose in this chapter.

The main idea behind CH* is to first copy the unpainted carrier type sequence of the
given history round to all rounds in the schedule, essentially keeping the number of
carrier changes between each of the sequences at 0. In a second step, the construction
heuristic solves an associated instance of the PSCCP to find an optimized coloring to
the candidate schedule. After this coloring has been determined, there might still be
remaining unfulfilled demands as not all required carrier types are necessarily included in
the copied history sequence. If this is the case, the heuristic iteratively tries to insert a
new carrier into each round of the schedule to handle remaining unfulfilled demands and
again solves a partial instance of the PSCCP, where any colors that have been previously
assigned stay fixed. The process is repeated until either no new carriers can be inserted
due to resource limits or if all demands are fulfilled. Figure 4.9 illustrates the main steps
of the construction heuristic.

71

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

Start of Local Search Iteration

Current solution
violates

constraints?

random() ≤ α
Perform regular lo-
cal search move

Generate and evaluate
candidate LNS move

New best
solution found?

Accept LNS move and
update best solution

Evaluate color
change costs of

candidate solution

Current color
change costs <
best color costs?

Accept LNS move
and set repair iter-
ation counter to β

Update best color costs

New best
solution found?

Update best solu-
tion and set repair

iteration counter to -1

Decrement repair
iteration counter
by 1 (if it is > 0)

repair iteration
counter = 0?

Reset current solution
to best known solution

End of Local Search iteration

yes

no

no

yes

yes

no

no

yes

yes

no

yes

no

Figure 4.8: Main execution steps during a local search iteration for the proposed PSSP
algorithm that utilizes the LNS operator.

72

4.7. A Novel Construction Heuristic for the PSSP

History R1 R2 R3

A

A

A

B

0. Initial empty schedule

History R1 R2 R3

A

A

A

B

A

A

A

B

A

A

A

B

A

A

A

B

1. Copy history round

History R1 R2 R3

A

A

A

B

A

A

A

B

A

A

A

B

A

A

A

B

A

6 ×
B

2 ×
A

3 ×
C

2 ×

2. Color schedule

History R1 R2 R3

A

A

A

B

A

A

C

A

B

A

A

C

A

B

A

A

C

A

B

3. Insert unfulfilled demands

A

6 ×
B

2 ×
A

3 ×
C

2 ×

History R1 R2 R3

A

A

A

B

A

A

C

A

B

A

A

C

A

B

A

A

C

A

B

4. Color remaining carriers

A

6 ×
B

2 ×
A

3 ×
C

2 ×

Figure 4.9: Illustration of the main processing steps of the proposed construction heuristic
(CH*). Steps 3 and 4 are repeated until all demands are fulfilled or no more carriers can
be inserted due to resource limits.

73

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

Algorithm 6: Incorporating ΦLNS∗ within local search
lnsRepairIterationCounter = 0
while main local search loop do

if currentSolution.V iolations == 0 ∧ random.Next() ≤ α then
lnsSolution = perform ΦLNS∗(k)
if lnsSolution.Cost < bestSolution.Cost then

currentSolution = lnsSolution
bestSolution = currentSolution

else
if lnsSolution.Cost < currentSolution.Cost then

currentSolution = lnsSolution
else

colorChgCount = CountColorChanges(lnsSolution)
if colorChgCount < bestColorChgCount then

currentSolution = lnsSolution
lnsRepairIterationCounter = β

bestColorChgCount = min {colorChgCount, bestColorChgCount}
else

perform standard local search iteration
if currentSolution.Cost < bestSolution.Cost then

bestSolution = currentSolution
lnsRepairIterationCounter = 0

if lnsRepairIterationCounter > 0 then
lnsRepairIterationCounter = lnsRepairIterationCounter − 1
if lnsRepairIterationCounter == 0 then

currentSolution = bestSolution

The rationale behind CH* is to keep the number of carrier changes between the rounds
as low as possible by copying the history round, while at the same time the number
of color changes is minimized by solving corresponding instances of the PSCCP. CH*
does not guarantee to produce a feasible schedule (note that CH also does not guarantee
this), however, it is able to provide an initial schedule that is usually very low in costs
compared to initial schedules produced by CH.

Algorithm 7 and Figure 4.9 describe and illustrate the main processing steps and the core
idea of the alternative construction heuristic CH* we propose in this section. However,
at this point we want to note that we included additional minor modifications for
the construction heuristic in our implementation to consider minimum- and maximum-
consecutive carrier block constraint violations when generating the initial carrier sequence.
These constraints affect feasible carrier sequences such that numbers of consecutively

74

4.8. Empirical Evaluation

Algorithm 7: A novel construction heuristic for the PSSP
fn CreateInitialSchedule

1. copy history sequence to all rounds
2. Solve PSCCP problem to find coloring
while ∃unfulfilled demands ∨ carrier limits reached do

3. insert new carrier in all rounds
4. Solve PSCCP problem to find coloring

return colored schedule

scheduled carriers of the same type are restricted. We simply try to fix potential constraint
violations by going over the carrier sequence and insert or remove single carriers. This is
done twice in our implementation of CH*: First after the history round has been copied,
and a second time before returning the initial schedule. Please refer to Chapter 2 for
details about the minimum- and maximum-consecutive carrier block constraints.

4.8 Empirical Evaluation
In the following sections, we perform an experimental evaluation of all the heuristic
methods for the PSSP that we propose in this chapter using the set of benchmark
instances that we provided in Chapter 2.

First, we report and discuss in Section 4.8.1 experimental results produced by the
construction heuristic and metaheuristic approach we proposed in sections 4.1 and 4.2.
Afterwards, in Section 4.8.2 we perform an extensive evaluation of the large neighborhood
search based approach as well as the advanced construction heuristic that we proposed
in sections 4.6 and 4.7 before we finally compare the overall best heuristic results with
results produced by exact methods.

4.8.1 Experiments with the Metaheuristic Approach
To evaluate the local search approach that we proposed in Section 4.2, we first conducted
a set of benchmark experiments using an Intel Xeon E5345 2.33 GHz CPU with 48 GB
RAM with a runtime limit of 60 minutes.

In early experiments we evaluated our search neighborhoods with a simple random walk
move generation and standard simulated annealing techniques, however this approach
could not produce feasible solutions for the larger instances.

Afterwards, we implemented the adaptive simulated annealing scheme as well as the
conflict based neighborhood generation technique that we introduced in Section 4.2 and
early experiments showed that this approach was able to produce feasible solutions for
all but the four largest instances within the time limit. Although the greedy algorithm
was not able to find any feasible solutions on its own, we could further utilize greedily

75

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

constructed initial solutions together with the metaheuristic approach to produce feasible
solutions for all of our benchmark instances. We then decided to evaluate two variants of
the combined greedy and local search approach: One variant that will always select the
best move from the generated neighborhood and a second variant that will use a tabu
list to prevent the repeated selection of recently performed moves. Based on manual
tuning attempts in early experiments we set the following parameters: Initial temperature
t1 = 0.25, tabu list length tl = 0.001 (relative to the instance size), cooling rate α = 0.95.
Table 4.2 gives an overview of the results with the different evaluated metaheuristic
approaches and compares them to the best results produce with the exact methods from
Chapter 3.

Columns 2 and 3 of Table 4.2 show the results achieved with standard simulated annealing
compared to the other metaheuristic approaches from Section 4.2 that make use of an
adaptive simulated annealing acceptance without the greedy algorithm (in this case local
search will start from an empty schedule). The results show that the proposed local
search methods produced better results for the majority of the smaller instances (1–12)
and most of the larger instances (13–20). Although the standard simulated annealing
approach can process search iterations much faster and produced better results for two of
the small instances, the results show that the proposed local search methods were more
robust in our experiments especially when it comes to solving larger instances.

As discussed previously in Chapter 3, exact methods could produce optimal results for
nine of the smaller instances and could provide good solutions for one additional instance.
The methods we have proposed in this chapter were able to produce feasible solutions for
all instances and could provide the best results for all the large practical sized instances.
Starting from a greedily generated solution did not always have positive effects on the
results for instances 1–12, however for the larger instances 13–24 methods incorporating
greedily constructed solutions produced the best results. Adding a tabu list mechanism
to our metaheuristic approach did not lead to improved results for most of the instances,
although this technique could produce the best results for instances 15, 20 and 23.

4.8.2 Experimental Evaluation of the Large Neighborhood Search
Approach

In this section, we provide an extensive experimental evaluation of the large neighborhood
search operator and the alternative construction heuristic we proposed in sections 4.6
and 4.7. First, we describe the setup and computational environment we have used
to conduct our benchmark experiments at the beginning of this section. Afterwards,
we elaborate on how parameters for the heuristic algorithms have been selected using
state-of-the-art automated parameter tuning software. Finally, the results of all our
experiments are presented and discussed at the end of this section.

76

4.8. Empirical Evaluation

SA LS LS/G LS/G/T EM
I1 — 1028 844 882 775*
I2 896 868 932 927 842*
I3 1011 990 992 994 961*
I4 — 1016 975 1050 918*
I5 618 616 593 599 530*
I6 913 887 891 895 842*
I7 1120 1084 1088 1137 844*
I8 — 1871 1834 2553 1237*
I9 — 1767 1735 2421 975*

I10 1134 1262 1243 1269 964
I11 5236 6298 5476 6439 —
I12 6753 5723 7916 8274 —
I13 — 2097235 116235 123830 —
I14 — 1985513 118628 130552 —
I15 — 8159361 180863 172679 —
I16 — 8621490 262252 262897 —
I17 — 23320626 421777 455321 —
I18 — 23947097 581021 606917 —
I19 — 34294393 555829 576225 —
I20 — 34713814 930564 927822 —
I21 — — 917955 957854 —
I22 — — 1128716 1142530 —
I23 — — 1889804 1884125 —
I24 — — 2086450 — —

Table 4.2: Summary of the achieved objective cost values (total solution cost as defined
in Equation 2.19, — if no feasible solution could be achieved) for all instances produced
with the standard simulated annealing (SA), the metaheuristic methods and adaptive
simulated annealing acceptance (LS), the combined approach using the proposed local
search methods and the greedy algorithm (LS/G), the combined approach that also uses
a tabu list (LS/G/T), and the best results produced by exact methods (EM). The best
result within each line is formatted in boldface. Results marked with a * denote proven
optimal solutions.

77

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

Experimental Environment

To evaluate the performance of the proposed LNS operator ΦLNS∗ and the novel con-
struction heuristic CH* for the PSSP, we extended the code for the simulated annealing
based metaheuristic approach (we chose the variant that was able to find solutions for all
benchmark instances in the results shown in the previous section) to implement these
methods.

As some benchmark instances for the PSSP define hard constraints that impose forbidden
color sequences, we adapted our implementation of the PSCCP Heuristic (see Algorithm 5)
to include violations to this constraint in its cost evaluation function (i.e. the best color
position is the one which introduces the lowest number of forbidden color violations,
ties are broken by color change costs). Furthermore, we used a performance efficient
implementation of the cost evaluation function that utilizes incremental evaluation (i.e.
only areas in the schedule that have been modified since the last evaluation call will be
reevaluated).

To incorporate the forbidden color constraint in the MiniZinc model (Listing 4.1), we
initially experimented with the deterministic finite automaton encoding we previously
proposed in Chapter 3. However, early experiments showed that it was more effective
to not include the forbidden color constraint in the model so that the solution time
needed by the large neighborhood search operator is reduced. If forbidden color violations
are caused by the operator, the local search process is usually able to quickly repair
any forbidden color violations. We further used an up-to-date version of the MiniZinc
software [NSB+07] to solve instances of the PSCCP with recent versions of the CP solver
chuffed [Chu11] and the MIP solver gurobi [GO20].

As the PSSP actually uses squared color change costs per round in its objective function
instead of a simple summation of the changes, we further incorporated such a solution
objective in both the exact modeling approach and the heuristic approach for the PSCCP
by slightly changing the solution objective to consider the squared color changes per
round. Additionally, in some instances for the PSSP the costs for a single color change
may in rare cases vary depending on the specific pair of colors which are involved. We
considered these specific costs in the implementation of the heuristic PSCCP approach,
however decided to not include it in the MiniZinc model as it drastically slowed down
the model compilation and solution process in early experiments.

Initial experiments further showed that the PSCCP solution process of the exact solvers
was too time-intensive for the repeated call in CH*, which caused an impractical runtime
of the heuristic. Therefore, we evaluated only an implementation of CH* that uses the
PSCCP heuristic in our experiments. The LNS operator on the other hand was still
evaluated using both the heuristic and the exact solution methods for the PSCCP.

To compare the simulated annealing based approach from Section 4.2 as well as the
PSSP construction heuristic from Section 4.1 with the large neighborhood search based
methods, we evaluated a variety of different configurations of the LNS operator and the

78

4.8. Empirical Evaluation

Solver ID Description
LS Local search approach using simulated annealing from Section 4.2,

starting from an empty initial solution
LS/C As LS, but starting from an initial solution that was created by

the construction heuristic from Section 4.1
LS/C* As LS/C, but using the advanced construction heuristic from

Section 4.7 to create an initial solution
LNS-H As LS, but including the proposed LNS operator that uses the

heuristic solution method for the PSCCP, starting from an empty
solution

LNS-H/C* As LNS-H but starting from a solution that is created from the
advanced construction heuristic

LNS-CP As LNS-H but using the exact MiniZinc approach with the chuffed
CP solver

LNS-CP/C* As LNS-CP but starting from a solution created by the advanced
construction heuristic

LNS-IP As LNS-H but using the exact MiniZinc approach with the gurobi
MIP solver

LNS-IP/C* As LNS-IP but starting from a solution created by the advanced
construction heuristic

Table 4.3: Overview of the evaluated solution methods.

advanced construction heuristic in our experiments. Table 4.3 gives an overview of all
the different evaluated solution methods.

Column 1 of the table displays an abbreviation that will be used to refer to this method
later in this section, whereas Column 2 describes the configuration of this method. All
evaluated approaches use local search and randomly select moves, therefore we conducted
10 repeated runs for each instance and used the arithmetic mean solution costs for our
evaluations if not stated otherwise.

All experiments reported in this section were conducted on a computing cluster with 10
identical nodes, each having 24 cores, an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20GHz
and 252 GB RAM.

Parameter Configuration

To configure the heuristic methods we propose in this chapter, we need to select a number
of parameters. In a first step we selected reasonable defaults for each parameter based
on some manual tuning runs with a few realistically sized instances. Afterwards, we
used a recent version of the state-of-the-art automated parameter configuration software
SMAC [LEF+17], which we used to tune the parameters. Table 4.4 provides an overview
of all configured parameters.

79

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

Parameter Description Range Default Tuning Result

initial temperature The initial temperature used
by simulated annealing

[0.1, 0.5] 0.25 0.1297

cooling rate The cooling rate used by sim-
ulated annealing

[0.9, 0.99] 0.95 0.9462

k Configures which color as-
signments are destroyed and
repaired during a lns move

{2, 5, 10, 20, 40} 5 2

α The probability to conduct a
LNS operator move in a local
search iteration

[0.00001, 0.001] 0.0001 0.000044

β Configures how many itera-
tions can be used by local
search to find a new best re-
sult after a LNS move

{100, 200, 500,
1000, 10000}

1000 10000

demand look ahead Configures how many de-
mands are considered when
searching for a color assign-
ment in the novel construc-
tion heuristic

{1, 20, 50, 100,
150}

50 20

time limit Configures the time limit (in
seconds) for the PSCCP so-
lution method within LNS

{60, 90, 120, 180} 60 120

Table 4.4: Overview of the configured parameters and tuning results.

The first column of Table 4.4 displays the parameter name, while the second column
shows a brief description of the parameter. Column three presents the allowed parameter
range for the tuning process, and column four displays the default value given to SMAC
(we selected the ranges manually so that they include a reasonable range near the default
value).

The approach from [WMDM19] used two manually tuned parameters: The initial tem-
perature and cooling rate for simulated annealing (see the default values in Table 4.4).
We decided to tune these two parameters in a first tuning process using the simulated
annealing approach that uses the existing construction heuristic (LS/C). In a second
tuning process we tuned the parameters for the LNS method and novel construction
heuristic proposed in this chapter. Therefore, we handed the solution method that uses
the novel construction heuristic and the heuristic PSCCP solution method (LNS-H/C*)
to the second tuning process.

We executed both tuning processes with SMAC using the following settings: Instances
1–24 were used as the training set, and we set the cutoff time per instance to 30 minutes.
The overall tuning process was given a wall clock time limit of 4 full days.

Note that we use the same set of instances for the training set which is later used to
evaluate the final experimental results with the tuned parameters, as we are mainly
interested in finding strong upper bounds for the benchmark instances and therefore aim

80

4.8. Empirical Evaluation

for an optimized algorithm configuration for these instances. However, we want to point
out that using the full set of benchmark instances as a training set can cause overfitting of
the parameters regarding unseen problem instances and thereby have a negative impact
on the performance of the algorithms when dealing with instances that are not included
in the training set. Therefore, a robustness analysis of the tuned parameters with the
use of additional unseen instances (that could be generated for example with a random
instance generator or by gathering novel real-life scheduling scenarios) is an important
subject for future work.

The tuned results for all parameters are shown in Column 5 of Table 4.4. We used these
parameter settings for all of our final experiments and set the runtime limit to 1 hour.

Computational Results

An overview of the final results for the 24 paint shop scheduling benchmark instances is
presented in Table 4.5.

Columns 2–10 show the relative per instance results for each of the evaluated solvers (see
Table 4.3 for an explanation about the solver IDs). To calculate relative per instance
results, the mean solution costs (produced by 10 repeated experimental runs) were divided
by the overall best mean solution costs per row. In other words this means that a value
of 1 indicates an overall best mean cost result for an instance, and values greater than 1
display the mean costs relative to the best mean costs in our experiments.

We can see in the results shown in Table 4.5, that approaches which are starting the
search from a heuristically generated solution are able to find feasible solutions for all
24 benchmark instances, whereas approaches that start from an empty initial solution
cannot produce solutions for instances 23 and 24 within the time limit. Furthermore,
the results show that starting from a heuristically constructed schedule leads to better
results for the larger instances 13–24. However, for the small-to medium-sized instances
1–12, for some instances the best results were achieved by solution methods that started
from an empty initial schedule. This indicates that generating a good solution quickly
is beneficial especially for large-scale instances, where starting from an empty schedule
would be too time-intensive.

We can see that results produced by the metaheuristic methods from Section 4.2 are
improved for all instances by at least one of the solution methods that use the novel
construction heuristic or the LNS operator. This shows the strength of the LNS techniques,
especially for the large instances, where many results are improved by factors larger than
4.

By looking at the results produced with the LNS operator we see differences in the
quality of the results depending on the utilized PSCCP solution approach. Overall, the
approach that uses the heuristic PSCCP solution method produces the best results for
the majority of the instances, however the exact PSCCP solution approach using the CP
solver chuffed can reach the best results for many of the smaller instances. The approach

81

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

Inst.
LS/C

LS/C
*

LS
LN

S-H
/C

*
LN

S-H
LN

S-C
P

/C
*

LN
S-C

P
LN

S-IP
/C

*
LN

S-IP
I

1
1.14

1.11
1.13

1.06
1.06

1
1.05

1.07
1.06

I
2

1.12
1.05

1.03
1.08

1.03
1

1.02
1.1

1.04
I

3
1.05

1
1.05

1
1.07

1
1.04

1
1.06

I
4

1.08
1.06

1.1
1.07

1.06
1.03

1
1.03

1.07
I

5
1.11

1
1.11

1
1.19

1
1.18

1
1.19

I
6

1.03
1

1.03
1.01

1.05
1.02

1.04
1

1.05
I

7
1.22

1.01
1.22

1.01
1.28

1
1.26

1.02
1.26

I
8

1.09
1.05

1.02
1.05

1.04
1.03

1
1.2

1.06
I

9
1.13

1.12
1.09

1.1
1.06

1.08
1

1.38
1.15

I
10

1.03
1

1.03
1.03

1.07
1.01

1.05
1.04

1.04
I

11
1.4

1.08
1.38

1.09
1.49

1
1.38

1.17
1.43

I
12

1.38
1

1.11
1.08

1.24
1.02

1.2
1.21

1.2
I

13
10.82

1.07
255.51

1
205.52

1.05
283.54

1.37
261.09

I
14

9.13
1.19

145.91
1

122.31
1.04

162.4
1.67

131.98
I

15
5.25

1.54
252.21

1
193.19

1.35
254.73

1.43
248.85

I
16

2.97
1.06

107.54
1

84.6
1.22

111.05
1.16

102.74
I

17
3.16

1.32
214.34

1
171.9

1.26
219.45

1.38
218.38

I
18

1.63
1.06

47.53
1

37.9
1.23

47.83
1.01

48.17
I

19
4.19

1.57
270.05

1
222.06

1.74
272.74

1.72
271.31

I
20

1.51
1.16

53.08
1

42.62
1.29

53.54
1.25

53.61
I

21
5.65

1.07
284.26

1
226.61

1.2
285.26

1.23
284.18

I
22

2.07
1.15

60.56
1

56.32
1.1

60.73
1.27

60.89
I

23
4.04

1.23
1

1.35
1.33

I
24

1.58
1.02

1.12
1.08

1

Table
4.5:

O
verview

ofthe
relative

results
for

each
ofthe

evaluated
solution

m
ethods.

82

4.8. Empirical Evaluation

LS
/C

LS
/C
*

LN
S-
H/
C*

LN
S-
CP
/C
*

LN
S-
M
IP
/C
*

LS
/C

LS
/C
*

LN
S-
H/
C*

LN
S-
CP
/C
*

LN
S-
M
IP
/C
*

100

101

Figure 4.10: Box plots comparing the relative mean cost results produced by approaches
that use a construction heuristic to generate an initial solution.

using the Gurobi integer programming solver for the PSCCP produces similar results,
and reaches the best results for 3 of the smaller instances and the largest instance.

Table 4.6 presents the absolute best results for all evaluated approaches. The displayed
costs are the best costs out of the 10 repeated experimental runs for each method and
instance.

The best results per row are formatted in boldface. Overall, we can see that the best
cost results show a similar outcome as the relative mean results. However, as this table
presents the single best result out of ten repeated runs, we can see some outliers that do
not match the best relative mean results. For example, we can see that the traditional
local search approach is able to produce the best result for instance 8, although it did
not achieve the best score in the mean cost comparison. Furthermore, the best solution
for the largest instance in this case is produced by the LNS-CP/C* approach, although
the best relative mean cost results were achieved using the LNS-IP/C* approach.

Figure 4.10 shows a comparison of all approaches that start from an initial solution that
was generated by a construction heuristic.

The figure visualizes the relative mean cost results (using a logarithmic scale) for all 24
instances as box plots. We can see that approaches using C* overall lead to the best
results in our experiments with a median value close to 1, whereas the C boxplot has a
median value at roughly 1.5 and in general a much wider range with some outliers even

83

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

Inst.
LS/C

LS/C
*

LS
LN

S-H
/C

*
LN

S-H
LN

S-C
P

/C
*

LN
S-C

P
LN

S-IP
/C

*
LN

S-IP
I

1
822

808
849

802
825

795
798

834
794

I
2

889
865

876
929

880
844

847
937

871
I

3
988

961
990

961
1009

961
971

961
1007

I
4

966
956

994
956

953
930

943
974

951
I

5
574

530
577

530
600

531
599

530
598

I
6

875
845

863
850

888
853

872
849

879
I

7
1032

867
1033

856
1089

858
1056

882
1063

I
8

1496
1480

1426
1489

1437
1459

1485
1770

1434
I

9
1345

1321
1240

1332
1240

1308
1272

1561
1316

I
10

1077
1058

1088
1085

1121
1053

1111
1082

1099
I

11
4318

3346
4357

3268
4608

3030
4353

3595
4407

I
12

5238
3463

4168
3699

4463
3697

4625
4501

4476
I

13
74236

7379
1683619

6592
1406142

6815
1577682

9023
1788255

I
14

110714
10341

1710055
9374

1503198
9108

1923650
12460

1329706
I

15
153728

28385
7291013

25427
5590121

29240
7481155

32572
7332157

I
16

213003
47097

7690901
42765

5995974
51953

8005671
61039

5898146
I

17
323829

105397
21716866

68841
17103946

107991
22135745

95567
21884939

I
18

597419
315377

22684889
285572

17709696
381400

22764282
311956

22865284
I

19
497486

108953
32447139

96825
25871047

144226
32631108

130235
32544683

I
20

913110
491845

33061150
476506

26323904
609803

33287708
568279

33573545
I

21
937094

126750
48199455

135757
37984334

146352
48381085

157073
47520813

I
22

1674595
615530

49354821
535846

40215243
486698

49219231
690072

49633330
I

23
1714000

495635
357051

506831
522690

I
24

2609884
1209816

1290190
1141429

1327593

Table
4.6:

O
verview

on
the

best
results

produced
by

the
evaluated

m
ethods.

84

4.8. Empirical Evaluation

LS
/C
*

LN
S-
H/
C*

LN
S-
CP
/C
*

LN
S-
M
IP
/C
*

LS
/C
*

LN
S-
H/
C*

LN
S-
CP
/C
*

LN
S-
M
IP
/C
*

100

1.1×100

1.2×100

1.3×100

1.4×100

1.5×100

1.6×100

1.7×100

Figure 4.11: Box plots comparing the relative mean best results produced by approaches
that use the C* construction heuristic to generate an initial solution.

lying above the value 9.

Figure 4.11 shows box plots only for such evaluated approaches that use the C* construc-
tion heuristic.

We can see that overall the approach using a large neighborhood search operator that
utilizes the heuristic PSCCP solution method produces the best results, having a median
value close to 1 and the smallest interquartile range. When comparing the approaches
using exact PSCCP solution methods with the approach using no LNS operator, we can
see that the LNS approach using chuffed has the lowest median, followed by the existing
local search approach which has the second smallest interquartile range.

In Figure 4.12 we can see box plots for the mean costs results for instances 1–22 which
were produced by the approaches that start from an empty initial schedule.

Again the LNS approach that uses the heuristic PSCCP solution method has the smallest
median value, followed by the LNS approach using the CP solver to solve the PSCCP
before the MIP-based LNS approach and the traditional local search approach. This
indicates that the LNS techniques can improve results even when they are used without
an initial construction heuristic.

Table 4.7 displays the relative mean costs produced by local search together with the
basic construction heuristic approach in direct comparison with the LNS variant that uses
the heuristic PSCCP solution method together with the advanced construction heuristic.

85

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

LS

LN
S-
H

LN
S-
CP

LN
S-
M
IPLS

LN
S-
H

LN
S-
CP

LN
S-
M
IP

100

1.05×100

1.1×100

1.15×100

1.2×100

1.25×100

1.3×100

1.35×100

1.4×100

Figure 4.12: Box plots comparing the relative mean best results produced by approaches
that start from an empty initial solution.

We selected these two methods for a direct comparison as the former was the overall best
performing approach that does not utilize the LNS operator, and the latter is the overall
best performing approach using LNS.

The results in Table 4.7 show that the LNS approach produced the best results for all
instances in this comparison, and was even better than the existing approach in 23 out
of 24 cases.

Finally, we compare the best upper bounds on the solution costs for each of the 24
PSSP benchmark instances produced by LNS with best upper bounds achieved by exact
methods in Table 4.8.

Column 2 displays the best solutions produced with exact solution methods for the PSSP
from Chapter 3. Note that exact methods could further prove that the best results for
instances 1–9 are optimal. The best results produced by the LNS solution methods
proposed in this section are shown in Column 3. Best results per instance are formatted
in boldface.

The results in Table 4.8 show that the LNS approach is able to provide the best upper
bounds for instances 11–24. Exact methods still produce the best results for instances
1–10, but the LNS approaches are able to reach optimal results for two of the instances
and several additional nearly optimal results for small instances.

86

4.8. Empirical Evaluation

Instance LS/C LNS-H/C*
I 1 1.14 1.06
I 2 1.12 1.08
I 3 1.05 1
I 4 1.08 1.07
I 5 1.11 1
I 6 1.03 1.01
I 7 1.22 1.01
I 8 1.09 1.05
I 9 1.13 1.1
I 10 1.03 1.03
I 11 1.4 1.09
I 12 1.38 1.08
I 13 10.82 1
I 14 9.13 1
I 15 5.25 1
I 16 2.97 1
I 17 3.16 1
I 18 1.63 1
I 19 4.19 1
I 20 1.51 1
I 21 5.65 1
I 22 2.07 1
I 23 4.04 1
I 24 1.58 1.12

Table 4.7: Direct comparison of the relative mean cost results produced by the overall
best traditional local search method with the overall best LNS method proposed in this
section.

87

4. Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem

Instance EM LNS
I 1 775 794
I 2 842 844
I 3 961 961
I 4 918 930
I 5 530 530
I 6 842 845
I 7 844 856
I 8 1237 1434
I 9 975 1272
I 10 964 1053
I 11 3030
I 12 3463
I 13 6592
I 14 9108
I 15 25427
I 16 42765
I 17 68841
I 18 285572
I 19 96825
I 20 476506
I 21 126750
I 22 486698
I 23 357051
I 24 1141429

Table 4.8: Overview on the best upper bounds for all 24 PSSP benchmark instances that
were produced by exact methods and the LNS methods proposed in this section.

88

CHAPTER 5
String Edit Distance Constraints

Previously, we introduced the formal problem definition of the paint shop scheduling
problem in Chapter 2 and further explained that one of the problem’s main objectives is
to minimize carrier change costs between consecutive scheduling rounds. Furthermore, we
identified that the minimum number of required carrier changes between two consecutive
rounds can be calculated by using efficient string edit distance algorithms. Afterwards in
Chapter 3, we additionally proposed constraint modeling techniques to model the carrier
change objective function.

In this chapter, we investigate an alternative way to model such string edit distance
constraints by using a novel global string edit distance constraint. We additionally
propose an efficient constraint propagator for this constraint together with a strategy to
explain the performed propagations. Thereby, we make it possible to use our propagator
with powerful lazy clause generation solvers.

In the following sections, we first provide some preliminaries and related literature
before we later introduce the novel global constraint together with an algorithm that can
compute minimal explanations for the associated propagator. At the end of the chapter,
we experimentally show that the proposed methods can be successfully used to improve
results for the paint shop scheduling problem and another NP-hard problem from the
literature.

5.1 Preliminaries

In this section we briefly provide some background on string edit distance and lazy clause
generation, as we will later assume that the reader is familiar with these topics.

89

5. String Edit Distance Constraints

5.1.1 String Edit Distance
The notion of edit distance was first introduced in [WF74] and has been thoroughly
studied in the literature ever since e.g. [Ukk85, Nav01]. In the following we give a
short review of the definition as well as the traditional dynamic programming routine to
calculate the edit distance.

The edit distance between two given strings s and t over alphabet Σ is defined as the
minimum number of editing operations required to transform s into t (or vice versa).
Let a given string s consist of n characters s1, s2, . . . sn and another string t consist of m
characters t1, t2, . . . , tm, then we distinguish between three different editing operations:

1. si → tj denotes a change of the character at position i in string s to the character
at position j in the second string t.

2. si → ϵ denotes a removal of the character at position i in string s.

3. ϵ → tj denotes an insertion of the character at position j in string t.

The minimum edit distance between two strings s and t can be calculated with the use
of dynamic programming (where ϵ denotes an empty string, s(i) denotes the sub-string
s[1 : i] of s, that is the first i characters of the string s or ϵ if i = 0, γ denotes the cost of
an edit operation, and d(i, j) denotes the minimum edit distance between s(i) and t(j)):

d(0, 0) = 0

d(i, j) = min

d(i − 1, j − 1) + γ(si → tj)
d(i, j − 1) + γ(ϵ → tj)
d(i − 1, j) + γ(si → ϵ)

(5.1)

The dynamic programming routine can be used to compute the edit distance between
two strings as long as the following triangle inequality holds for the costs of the edit
operations:

γ(si → tj) ≤ γ(ϵ → tj) + γ(si → ϵ) (5.2)

We assume that if si = tj then γ(si → tj) = 0, that is the edit distance of making no
change is 0.

Throughout this chapter in our examples we assume γ(ϵ → c) = γ(c → ϵ) = 1 for all
c ∈ Σ and γ(c1 → c2) = 2 if c1 ̸= c2 for all {c1, c2} ⊆ Σ. Nevertheless, the presented
techniques can be applied also on any other cost assignments, as long as the triangle
inequality holds.

Example 1: As an example, consider two given strings s and t where s = ABBC and
t = ACB and assume that costs for insertion/deletion are set to 1 while substitution cost

90

5.2. Related Literature

is set to 2. We can use the dynamic programming approach shown in Equation 5.1 to find
out that the minimum edit distance between s and t is 3. To visualize the calculation of
the dynamic programming routine it is helpful to illustrate intermediate results for all
recursion steps as a matrix, where each line in the matrix represents a letter of string s
while each column represents a letter of string t (ϵ represents an empty string). Each cell
of such a dynamic programming matrix will be set to the value of d(i, j) where i is the
associated row number and j is the associated column number. Figure 5.1 illustrates the
full dynamic programming matrix for Example 1, and shows that finding the minimum
edit distance corresponds to finding the shortest path through the dynamic programming
matrix if one imagines a directed arc network that connects adjacent single cells of the
matrix. Horizontal/vertical arcs will go in rightwards/downwards direction and have
a length of one in our example, as they represent single character insertion/removal.
Diagonal arcs represent single character substitution and have a length of two if the
characters mismatch or a length of zero if two characters are equal. □

5.1.2 Lazy Clause Generation
In this chapter we propose an explaining propagator that can be used with a lazy clause
generation (LCG) solver [OSC09]. A LCG solver tracks information about the reasons
for any propagated domain changes during search and stores explanations for each
propagation. In case of a failure, these explanations can then be used to compute so
called nogoods, which record the reason for the failure in form of novel constraints. These
nogoods can then prevent the search from making similar sets of faulty decisions later.

A LCG solver furthermore uses Boolean variables to represent integer variables. For
example, a variable x with a domain D(x) = [l . . . u] will be represented by Boolean
variables x = d , l ≤ d ≤ u and x ≤ d , l ≤ d < u. We use x ̸= d to represent
¬ x = d and x ≥ d to represent ¬ x ≤ d − 1 . To explain a propagation, a LCG
solver will define clauses over these Boolean variables. We will provide some examples
later when we describe how to explain propagation for the constraint propagator that we
propose in this chapter.

5.2 Related Literature
String comparison and matching are well studied topics in computer science which have
spawned a large number of publications in the past e.g. [WF74, Ukk85, Nav01]. One
of the most widely used methods to quantify the similarity of two given strings is the
so-called string edit distance [WF74], that counts the number of required edit operations
to transform a string into another given string.

Algorithms that can compute the edit distance between two given strings have been
thoroughly studied, and several methods that use dynamic programming have been sug-
gested to efficiently calculate the minimum edit distance in polynomial time e.g. [Ukk85].
However, there also exist NP-hard combinatorial optimization problems that aim to

91

5. String Edit Distance Constraints

A C B

0 1 2 3

A 1 0 1 2

B 2 1 2 1

B 3 2 3 2

C 4 3 2 3

0

1

0

1

1

(a) DP Matrix

A − B B C

A C B − −
(b) Alignment of Strings

Figure 5.1: The dynamic programming matrix for calculating the edit distance between
two given strings s = ABBC and t = ACB is shown in Figure 5.1a, where each
insertion/deletion causes a cost of one and each substitution causes a cost of 2. It also
shows the shortest path through the dynamic programming matrix that leads to the
minimum edit distance of 3 in this case. The small number next to each arrow denotes
the cost for a single edit operation (a diagonal move denotes keeping a single character,
a downwards move will delete a single character from string s and a rightwards move
will insert a single character to string t). Figure 5.1b shows the alignment corresponding
to the edits.

92

5.3. Propagating Lower Bounds on the Minimum Edit Distance

minimize the edit distance between strings in the literature [NR03, WM21a]. In this
chapter, we propose a novel global constraint that can be used to efficiently model and
solve such problems, which require the repeated computation of the string edit distance,
using CP.

A well known problem of this kind that has been extensively studied in the literature
is the median string problem. An exact algorithm using dynamic programming for
the median string problem has been proposed in [Kru83], however, this approach has a
run-time complexity which is exponential on the instance size in the worst case. Therefore,
several other techniques have been proposed in the literature to tackle practically sized
instances e.g. [HK16, JABC03, OO08]. Although, most of these algorithms rely on
approximations or heuristic techniques [JABC03, OO08] an exact approach using integer
linear programming has been recently proposed in [HK16].

5.3 Propagating Lower Bounds on the Minimum Edit
Distance

In this section, we propose a novel global constraint propagator that propagates lower
bounds on the minimum edit distance between two strings that are represented by positive
integer arrays. Such lower bounds on the minimum edit distance, that can be efficiently
determined from a partial solution, can be especially useful when using CP solvers to
tackle optimization problems that aim to minimize the edit distance.

Assuming two positive integer variable arrays X and Y of length n (X = [x1, . . . , xn],
[y1, . . . , yn]) and a positive integer variable ed, we introduce the edit distance constraint
ED(X, Y, ed) that will constrain ed to any value greater or equal to the minimum edit
distance between X and Y (ed ≥ d(x, y)). In the following we refer to the domain of any
variable x as D(x).

The constraint ED additionally constrains all values x ∈ X and y ∈ Y to be in the
range 0..|Σ|, where a value of zero represents the end of a string and a positive value c
the cth character in an alphabet Σ. We specifically allow the use of zero values so that
the arrays X and Y can hold any string of length ≤ n including the empty string. For
reasons of simplicity and to avoid symmetries, we further specify that the constraint ED
(separately, by using a constraint decomposition into simple implication clauses on pairs
of succeeding variables) enforces that whenever a variable xi is set to 0, all variables
xj , j > i have to be set to 0 as well, similarly for yi.

Example 2: Let arrays X = [1, 1, 2, 0, 0] and Y = [1, 2, 2, 1, 1] represent two strings AAB
and ABBAA. The ED constraint would then propagate ed ≥ 4 and remove any values
smaller or equal to 3 in D(ed), as 4 is the minimum edit distance in this example. Another
example array X = [1, 0, 1, 2, 0] would violate the constraint independently of the values
assigned to Y and ed, since the zero values of array X are not properly aligned at the
end. □

93

5. String Edit Distance Constraints

We now propose an adaption of the standard dynamic programming routine to propagate
lower bounds on the edit distance between two variable arrays. The idea is to build an
“optimistic” dynamic programming matrix similar to the example shown in Figure 5.1,
where we assume the best case for variables that are unfixed (in other words we will
assume a zero cost diagonal move is possible when any character still appears in both
corresponding variable domains). In addition to the standard dynamic programming
routine previously defined in 5.1, we also have to include exceptional cases for insertion and
removals of empty string characters as the variable arrays X and Y may contain less than
n characters. Therefore, whenever a variable domain contains the value zero which denotes
an empty string character, we will assume that the insertion or removal costs of an empty
character will be 0, i.e. γ(ϵ → 0) = γ(0 → ϵ) = 0 and γ(0 → c) = γ(c → 0) = 1, ∀c ∈ Σ.
Algorithm 8 describes the detailed propagation function and Figure 5.2 further shows
how a dynamic programming matrix can be used to calculate a lower bound on the edit
distance between two integer variable arrays.

Algorithm 8: Propagate Edit Distance Lower Bound
fn PropagateEditDistance (X, Y, ed)

d = CalculateDpMatrix (X, Y)
lb = d(length(X), length(Y))
D(ed) = {x|x ∈ D(ed) ∧ x ≥ lb}

fn CalculateDpMatrix (X, Y)
n = length(X)
m = length(Y)
d(0, 0) = 0 ▷ d is a (n + 1 × m + 1) matrix
for j = 1 to m do

insCost = min{γ(ϵ → c) | c ∈ D(yj)}
d(0, j) = d(0, j − 1) + insCost

for i = 1 to n do
remCost = min{γ(c → ϵ) | c ∈ D(xi)}
d(i, 0) = d(i − 1, 0) + remCost

for i = 1 to n; j = 1 to m do
insCost = min{γ(ϵ → c) | c ∈ D(yj)}
remCost = min{γ(c → ϵ) | c ∈ D(xi)}
subCost = min{γ(cx → cy) | cx ∈ D(xi) \ {0}, cy ∈ D(yj) \ {0}}

d(i, j) = min

d(i, j − 1) + insCost

d(i − 1, j) + remCost

d(i − 1, j − 1) + subCost

return d

The figure shows the dynamic programming matrix for calculating a lower bound for the
edit distance between two given variable arrays X = [x1 = {1}, x2 = {2}, x3 = {1}, x4 =

94

5.4. Explaining Propagation

{2, 3} {2, 3} {1} {0, 1}

0 1 2 3 3

{1} 1 2 3 2 2

{2} 2 1 2 3 3

{1} 3 2 3 2 2

{3} 4 3 2 3 3

2
1

1

1

1

0 0

1

1
0

0

1

0

1

0

1

Figure 5.2: The dynamic programming matrix for calculating a lower bound for the edit
distance between two given variable arrays X = [x1 = {1}, x2 = {2}, x3 = {1}, x4 = {3}]
and Y = [y1 = {2, 3}, y2 = {2, 3}, y3 = {1}, y4 = {0, 1}].

{3}] and Y = [y1 = {2, 3}, y2 = {2, 3}, y3 = {1}, y4 = {0, 1}]. Each row in the matrix
represents a variable of array X while each column represents a variable of array Y (ϵ
represents an empty string). In the first column/row of the matrix the domains of the
corresponding variables are shown. All possible shortest paths through the matrix that
lead to the lower bound for the edit distance of 3 in this case, are also shown on the
figure as arrows. As not all variables are fixed, the best case (i.e. a possible match in
characters, or a 0 cost insertion) is assumed several times in this example.

5.4 Explaining Propagation
In a LCG solver we need to provide an explanation clause which the solver can use to
build an inference graph. When a conflict occurs during search, the solver can then find
nogood constraints that are automatically created by analyzing the inference graph. In
the following we will describe how inferences made by the edit distance propagator can
be represented as an explanation clause.

Whenever a lower bound lb on the ed variable is propagated, essentially what we have
to achieve is to enforce the corresponding Boolean variable ed ≥ lb to be set to true.
A correct explanation expl therefore consists of a set of literals so that the following
proposition is implied by the constraint (i.e. the proposition evaluates to true for any
legal assignment to the variables):

l∈expl

l → ed ≥ lb (5.3)

95

5. String Edit Distance Constraints

Furthermore, an explanation is considered to be minimal, whenever it is not possible to
remove any single literal l from expl without invalidating Equation 5.3. In the following
we show how a minimal explanation can be generated for inferences on the lower bound
of the edit distance.

If we consider the example shown in Figure 5.2 we can see that in this case a lower bound
of 3 has been determined for the edit distance and therefore the associated Boolean
variable ed ≥ 3 would be set to true as a result of the propagation. To explain this
inference, we can think about what could possibly be changed in the domains of variable
arrays X and Y to allow an edit distance ≤ 2, and then negate such changes in our
explanation.

If we look at the possible shortest paths in Figure 5.2, we can observe that we need to
reduce the cost of at least one of the edges towards the end of the matrix that have
a cost ≥ 1. For example if x4 and y4 would allow the same value assignment in their
domain we could take another diagonal 0 cost move and improve the lower bound to 2.
More generally speaking, improvements to the edit distance can be achieved if moves are
possible that reduce the length of the shortest path through the matrix.

The algorithm for generating a minimal explanation is shown in Algorithm 9. It works
backwards over the matrix of (i, j) values starting from (n, m) collecting the constraints
C which must hold to ensure the lower bound lb. It stores in s the minimal edit cost
from a position to reach (n, m) under the current set of constraint C in the explanation.
The algorithm is based on a priority queue (heap) which stores node positions that are
reachable under the current assumptions. We take the (lexicographically) largest node
position (i, j) off the heap, and then consider what characters c in the domain of yj

would allow a smaller lower bound via a path from (i, j − 1). We add a constraint yj ̸= c
preventing this. The remaining characters are used to update the cost s for position
(i, j − 1), and it is pushed onto the heap. Note if a node is pushed multiple times it only
appears once on the heap. Afterwards, we consider paths via (i − 1, j) similarly. We only
consider 0 edit operations (γ(ϵ → 0), γ(0 → ϵ)) as long as no constraint xi ̸= 0 , yi ̸= 0
has been added to C since the rules of correct string representation would not allow any
additional 0 operations then. Finally, we consider paths via (i − 1, j − 1). Here when
a substitution (cx → cy) would lead to a path which is shorter than lb we can enforce
xi ≠ cx or yj ̸= cy. In practice, we make choices dependent on the current domains of
xi and yj . If xi is fixed and D(xi) = {cx} then we choose the restriction on yj and if
D(xi) = {c}, c ̸= cx we choose the restriction on xi. Similarly if yj is fixed. If only one of
the disequations holds in the current domain we choose that (note that it is impossible
that both do not hold, otherwise lb would not be the lower bound). In the remaining
cases we can choose arbitrarily.

The result of the code is to return C such that C → ed ≥ lb . Note that we can simplify
C by replacing a set of disequations xi ̸= c , 0 ≤ c < l by xi ≥ l and similarly a set of
disequations xi ̸= c , u < c < |Σ| by xi ≤ u .

Example 3 : Consider generating the explanation for the case shown in Figure 2. We

96

5.4. Explaining Propagation

Algorithm 9: Generate disequalities for minimal explanation
fn GenerateExpl (X, Y, d, lb)

n = length(X)
m = length(Y)
for i = 0 to n; j = 0 to m do

s(i, j) = lb + 1
s(n, m) = 0
C = {}
H = []
H.push(n, m)
while H is not empty do

(i, j) = H.popMax()
if s(i, j) ≥ lb then continue
if j − 1 ≥ 0 then

T = Σ ∪ {0 | ¬∃xk ̸= 0 ∈ C, k ≥ j}
for c ∈ T do

if d(i, j − 1) + γ(ϵ → c) + s(i, j) < lb then
C.add(yj ̸= c)

else
s(i, j − 1) = min(s(i, j − 1), s(i, j) + γ(ϵ → c))
H.push(i, j − 1)

if i − 1 ≥ 0 then
T = Σ ∪ {0 | ¬∃xk ̸= 0 ∈ C, k ≥ i}
for c ∈ T do

if d(i − 1, j) + γ(c → ϵ) + s(i, j) < lb then
C.add(xi ̸= c)

else
s(i − 1, j) = min(s(i − 1, j), s(i, j) + γ(ϵ → c))
H.push(i − 1, j)

if i − 1 ≥ 0 ∧ j − 1 ≥ 0 then
for cx ∈ Σ, cy ∈ Σ do

if d(i − 1, j − 1) + γ(cx → cy) + s(i, j) < lb then
C.add(xi ̸= cx) OR C.add(yj ̸= cy)

else
s(i − 1, j − 1) = min(s(i − 1, j − 1), s(i, j) + γ(cx → cy))
H.push(i − 1, j − 1)

return C

97

5. String Edit Distance Constraints

s {2, 3} {2, 3} {1} {0, 1}

3 2 2 3 4

{1} 2 1 1 2 3

{2} 1 2 1 1 2

{1} 2 1 0 1 1

{3} 3 2 1 0 0

d {2, 3} {2, 3} {1} {0, 1}

0 1 2 3 3

{1} 1 2 3 2 2

{2} 2 1 2 3 3

{1} 3 2 3 2 2

{3} 4 3 2 3 3

i ii

iii

vi

iv
v

i ii

iii

vi

iv
v

i: x1 = 2 , x1 = 3 , y1 = 1

ii: x1 = 2 , x1 = 3 , y2 = 1

iii: x3 = 2 , x3 = 3 , y2 = 1

iv: x4 = 1 , x4 = 2 , y4 = 3

v: x4 = 0

vi: y3 = 0

Figure 5.3: The matrices s and d at the end of the explanation algorithm (Algorithm 9)
together with six determined disequalities for example variable arrays X = [x1 = {1}, x2 =
{2}, x3 = {1}, x4 = {3}] and Y = [y1 = {2, 3}, y2 = {2, 3}, y3 = {1}, y4 = {0, 1}].

start by setting s(i, j) = lb + 1 = 4 everywhere, then resetting s(4, 4) = 0 and pushing
(4,4). We pop off (4, 4). Since d(4, 3) = 3 we cannot get a path of length ≤ 2 via it.
We set s(4, 3) = 0 (for the case that y4 = 0 and push (4, 3)). Since d(3, 4) = 2 we can
get a path of length ≤ 2 via it if x4 = 0, so we add x4 ̸= 0 to C. We set s(3, 4) = 1
since all other deletions cost 1 and push (3, 4). Since d(3, 3) = 2 we can get paths of
length ≤ 2 via this position if the characters for x4 and y4 are the same. We need
to add one of each pair x4 ̸= c or y4 ≠ c for all c ∈ 1..3. We choose x4 ̸= 1 ,
y4 ̸= 3 , because of the values in the current domains of x4 and y4. The remaining

choice is arbitrary: say we add x4 ̸= 2 to C. We set s(3, 3) = 2 and push (3, 3).
We pop off (4,3). Since d(3, 3) = 2 we could get a path of length ≤ 2 if x4 = 0, but
we already inserted a constraint of the form x4 ̸= 0 , so we do not consider 0 edit
operations in that direction any longer and do not change the cost to of s(3, 3). Since
d(3, 2) = 3 there is no path less than lb possible, we set s(3, 2) = 0 and push it. Since
d(4, 2) = 2 we can get a path of length ≤ 2 via it if y3 = 0, so we add y3 ̸= 0 to
C and push (4,2) as other insertions all cost 1. We pop off (4, 2) and its treatment is
similar, followed by (4, 1) and (4, 0). Next we pop (3, 4) and will set s(2, 4) = 2 and push
(2, 4) as we cannot directly improve the lb. Similarly, we set s(2, 3) = 1 and s(3, 3) will
have its assigned value changed to 1, since we can reach (4,4) quicker via (3,4). The
process continues eventually collecting C = { x1 ̸= 2 , x1 ̸= 3 , x3 ̸= 2 , x3 ̸= 3 , x4 ̸=
0 , x4 ̸= 1 , x4 ̸= 2 , y1 ̸= 1 , y2 ̸= 1 , y3 ̸= 0 , y4 ≠ 3 }. It can be simplified to
{ x1 ≤ 1 , x3 ≤ 1 , x4 ≥ 3 , y1 ≥ 2 , y2 ≥ 2 , y3 ≥ 1 , y4 ≤ 2 }. □

Figure 5.3 visualizes matrix s after generating the explanation for Example 3 and
summarizes which constraints have been produced.

The matrix on the left of Figure 5.3 visualizes the contents of matrix s at the end of the
explanation algorithm (Algorithm 9) that is called for two variable arrays X = [x1 =
{1}, x2 = {2}, x3 = {1}, x4 = {3}] and Y = [y1 = {2, 3}, y2 = {2, 3}, y3 = {1}, y4 =
{0, 1}], an edit distance lower-bound of 3 and the matrix d which is shown in the middle.

98

5.5. Experimental Evaluation

Additionally, six sets of disequalities that are determined by the explanation algorithm
are listed on the right. For each set of generated disequalities the corresponding edit
operation is also visualized in the two matrices by solid arrows highlighting the operations
that could lower the edit distance bound if their cost would be reduced. The dotted
arrows on the other hand indicate operations that also would need to be lowered together
with operations (ii or iii), to reach a reduced lower-bound. However, since the explanation
algorithm aims to minimize the number of generated explanation clauses and it is sufficient
to only produce disequalities for the operations that actually cause a shortest path lower
than the current lower-bound in Algorithm 9, no sets of disequalities are inserted for the
dotted arrows.

We can argue that the explanation produced by GenerateExpl is minimal since the only
time we add constraints to C is when otherwise there would be a path to (n, m) of length
less than lb. Removing any explanation would cause such a path to exist, thus making
the explanation incorrect, hence it is minimal.

5.5 Experimental Evaluation
We implemented the constraint propagation and explanation algorithms proposed in this
chapter for use with version 0.10.3 of the lazy clause generation solver Chuffed [Chu11].
Afterwards, we evaluated our constraint propagator on two NP-hard problems that utilize
the edit distance constraint described in this chapter.

All of our experiments have been conducted on an Intel Xeon E5345 2.33 GHz CPU with
48 GB RAM, using a single CPU core.

5.5.1 Paint Shop Scheduling
The evaluation of setup costs for paint shop scheduling we introduced in Chapter 2
requires calculating the edit distance between two consecutive cycles, as the required
change in production utilities corresponds to the minimum edit operations between the
two scheduling sequences. The paint shop scheduling problem defines the following edit
operation costs: γ(ϵ → c) = γ(c → ϵ) = 1 forall c ∈ Σ and γ(c1 → c2) = 2 if c1 ̸= c2
forall {c1, c2} ⊆ Σ.

For our experiments we used the 12 smaller benchmarks instances that we previously
introduced in Chapter 2. We used the CP model from Chapter 3 and replaced the edit
distance constraint decomposition with the global constraint propagator proposed in
this chapter. For each of the instances we used the same programmed search strategies
that were used for the final experiments in Chapter 3. Afterwards, we ran the Chuffed
solver with both the existing decomposition model and a model that uses the propagator
proposed in this chapter on all 12 instances within a time limit of 1 hour. The results of
these experiments are shown in Table 5.1. We see in the table that the model using the
global constraint produces equally good or improved results for all the benchmark instances
compared to the results produced by the previously proposed constraint decomposition.

99

5. String Edit Distance Constraints

CP CP+global
Instance Cost Runtime Cost Runtime
I1 775* 9.95 775* 3.63
I2 842* 1.30 842* 0.57
I3 961* 3.76 961* 1.75
I4 918* 178.46 918* 25.05
I5 530* 126.64 530* 51.03
I6 842* 9.76 842* 5.31
I7 1046 ∞ 1040 ∞
I8 1237* 2915.83 1237* 445.43
I9 1006 ∞ 992 ∞
I10 973 ∞ 966 ∞
I11 — ∞ — ∞
I12 — ∞ — ∞

Table 5.1: Results for the experiments conducted on benchmark instances 1–12 for the
paint shop scheduling problem. Columns 2 and 3 show the best objective value achieved
within one hour as well as the run-time needed to prove an optimal solution in seconds for
the CP model from Chapter 3 (CP). Similarly, Columns 4 and 5 show the results achieved
with the CP model that uses the global constraint propagator proposed in this chapter
instead of the constraint decomposition for the edit distance constraint (CP+global).
The best result within each line is formatted in boldface and results marked with a *
denote proven optimal solutions. ∞ represent a timeout (1 hour), while — means that
no solution at all could be found within the time limit.

Both models are able to prove optimality for 7 of the 12 instances and can produce 3
upper-bounds within 1 hour, however all the upper bounds produced with the global
constraint propagator are improved compared to the upper bounds achieved with the
decomposition. When we compare run-times for instances where both solvers could prove
optimality, we can clearly see that the global propagator requires less run-time to find
optimal solutions. Both methods are not able to produce any solutions for the two largest
instances (I11 and I12) within one hour.

To investigate the effect of the global propagator without lazy clause learning, we further
repeated all experiments with the paint shop scheduling instances without clause learning
(we set the nolearn parameter for chuffed). The results produced without the explanation
algorithm are shown in Table 5.2. Without clause learning, the constraint propagator
produced improved results compared to the constraint decomposition for four instances
and could further reduce the required runtime to prove optimality for two instances. The
results indicate the effectiveness of the constraint propagator even without lazy clause
generation.

100

5.5. Experimental Evaluation

CP nolearn CP+Global nolearn
Instance Cost Runtime Cost Runtime
I1 3282 ∞ 775* 1617.15
I2 842* 13.24 842* 0.57
I3 961* 519.41 961* 1.76
I4 — ∞ 918* 79.77
I5 — ∞ — ∞
I6 17234 ∞ 842* 6.25
I7 — ∞ — ∞
I8 — ∞ — ∞
I9 — ∞ — ∞
I10 — ∞ 973 ∞
I11 — ∞ — ∞
I12 — ∞ — ∞

Table 5.2: Results for the experiments conducted on benchmark instances 1–12 for the
paint shop scheduling problem without clause learning. Columns 2 and 3 show the best
objective value achieved within one hour as well as the run-time needed to prove an
optimal solution in seconds for the CP model from Chapter 3 (CP nolearn). Similarly,
Columns 4 and 5 show the results achieved with the CP model that uses the global
constraint propagator proposed in this chapter instead of the constraint decomposition
for the edit distance constraint (CP+global nolearn).

5.5.2 The Median String Problem
To evaluate our constraint propagator we also consider the median string problem, which
has been thoroughly studied in the literature (e.g. [Koh85, HK16]).

The median string problem is formulated as follows: Given a set of n strings S (all
strings of length ≤ k) over a finite alphabet Σ, find a string that minimizes the global
edit distance to each of the given strings.

The global edit distance D(s, S) between a string s and a set of strings S over the finite
alphabet Σ is defined as follows:

D(s, S) =
s′∈S

d(s, s′) (5.4)

Then a median string is defined as any string m over Σ where D(m, S) ≤ D(w, S) holds
for any string w over the alphabet Σ.

We generated many instances following the instance generation procedure that has been
proposed in [HK16] to evaluate the performance of different exact solution approaches:
Our instance generation routine considered different numbers of strings n = [2, 4, 6, 10, 15]
as well as different maximum string lengths k = [3, 5, 8, 13, 20]. We used a simple
alphabet consisting of 4 different characters Σ = {1, 2, 3, 4} to randomly generate 10

101

5. String Edit Distance Constraints

different instances for each of the possible |n × k| configurations, totaling 250 benchmark
instances. To randomly generate 10 different instances per configuration we implemented
two procedures: Five of the instances are generated by randomly assigning the letters
si

j at positions j ∈ {1, . . . , k} for each string i ∈ {1, . . . , n}. Each letter is assigned to
si

j = min (1 + ⌊|α|⌋, |Σ|), where α follows a normal distribution with mean 0 and variance
1. The other five instances of each configuration are generated by performing 100 random
single character edit operations on an initial string of length k that initially contains
only the first letter of the alphabet Σ. In each of the 100 edit iterations we randomly
select a feasible single character insertion, single character removal or single character
substitution.

We compare the performance of our edit distance constraint propagator (CP+global) on
the median string problem with an existing MIP formulation from [HK16] as well as a
CP model that uses the same edit distance constraint decomposition as for the paint
shop scheduling to solve the median string problem. In our experiments we use the edit
operations costs that are known as levensthein distance, as these costs have often been
used for median string problems e.g. [HK16]: γ(ϵ → c) = γ(c → ϵ) = 1 forall c ∈ Σ and
γ(c1 → c2) = 1 if c1 ̸= c2 forall {c1, c2} ⊆ Σ.

We performed experiments with all the 250 benchmark instances under a time limit of 10
minutes, using a recent version of the Chuffed solver [Chu11] for the CP model and the
CP model that uses our propagator, as well as Gurobi 8.0.1 [GO20] for experiments with
the MIP model that was previously proposed in [HK16].

Table 5.3 and Figures 5.4 and 5.5 summarize the results of our experiments with the
median string benchmarks.

Looking at the results shown in Table 5.3, we can see that the CP model that uses the
global edit distance propagator produces the largest number of best found solutions
as well as the largest number of optimal solutions found. Furthermore, the approach
can prove optimality faster than the MIP model and the CP model without the global
propagator for all instances that can be solved to optimality. When comparing the
decomposition based CP model with the MIP model, the results show that the MIP
model requires less runtime to prove optimality and can find better solutions for a larger
number of instances.

Figure 5.4 compares the quality of solutions where not all of the three considered
approaches produced an equal result within 10 minutes. The results show, that except
for a few outliers the approach using the constraint propagator always produced the best
results, while the MIP model seems to overall produce better results regarding solution
quality than the CP model which uses a constraint decomposition.

Figure 5.5 compares the run-time required to prove optimality for those instances where
all three approaches could prove optimality within 10 minutes. The box plots show that
the approach using the propagator always proved optimality within the shortest run-time
in our experiments. Furthermore, it seems that the decomposition based CP model

102

5.5. Experimental Evaluation

MIP CP CP+global
opt 208 180 227
proven opt 197 169 227
best 213 180 246
fastest proof 0 0 227
avg time 143.16 219.12 61.61
std dev time 243.37 277.52 175.66

Table 5.3: Summarized experimental results for the median string problem. Column 2
displays results achieved with the MIP formulation from [HK16], while column 3 displays
results achieved with the edit distance constraint decomposition from Chapter 3. Column
4 shows results for the global constraint propagator proposed in this chapter. Line 1 shows
the number of optimal solutions found, line 2 shows for how many instances optimality
could be proven within the time limit, and line 3 shows the number of solutions that have
the overall best found objective value. Line 4 displays for how many instances the method
could provide the fastest optimality proof and lines 5 and 6 show the average required
runtime, as well as the standard deviation of all required runtimes in the experiments.

●●●●●●
●●

●●

●●

●●

●●

●●1.2

1.6

2.0

CP CP + Propagator MIP

S
ol

ut
io

n
co

st
 /

be
st

 k
no

w
n

co
st

Figure 5.4: Box plot displaying the differences in quality of solutions for median string
experiments, omitting 70 instances where all three approaches gave equal results. The
vertical axis represents the relative objective value (objective value of solution divided by
best found objective). Except for three outliers, the best solution cost was produced with
the global propagator. Some outliers with values higher than 2.5 for the CP approach
without the propagator have been omitted for a better visualization.

103

5. String Edit Distance Constraints

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●
●●

●●

●●

●●

0

100

200

300

CP CP + Propagator MIP

S
ol

ut
io

n
tim

e
/ f

as
te

st
 o

pt
im

al
ity

 p
ro

of

Figure 5.5: Box plot comparing the run-times for the 178 instances where all methods
proved optimality. The vertical axis represents the required run-time divided by the
overall shortest optimality proof time for each instance. The fastest optimality proof was
in all cases achieved with the CP model that uses the constraint propagator proposed in
this chapter. Some outliers with values higher than 300 for the CP approach without the
propagator and the MIP approach have been omitted for a better visualization.

performs similarly to the MIP model when it comes to proving optimality, although the
majority of instances have a shorter run-time with the CP model.

104

CHAPTER 6
The Artificial Teeth Scheduling

Problem

In this chapter we introduce a novel single-machine batch scheduling problem arising
from teeth manufacturing which we further call the artificial teeth scheduling problem
(ATSP). We first present some background together with an informal description of the
problem before we provide a detailed formal problem specification. Afterwards, we give
an overview on related literature from the recent past and clarify what distinguishes
the artificial teeth scheduling problem from existing single-machine batch scheduling
problems. Finally, we introduce a set of benchmark instances that includes real-life
problem scenarios from the industry.

6.1 Problem Description
Modern-day artificial teeth manufacturing uses an automated production process to
produce large quantities of teeth in a variety of different shapes and colors. To efficiently
handle a large-scale production, product moulds are usually grouped in batches which are
then simultaneously processed on a single machine. However, due to resource constraints
and the requirement that different machine programs have to be used depending on
varying product families, creating cost-efficient batches becomes a very challenging task.
To efficiently produce a large number of artificial teeth, many teeth are usually processed
simultaneously in batches. Therefore, each job in a production schedule uses a number of
different product moulds to produce teeth. Such a mould essentially produces a certain
tooth shape and is associated to a product line so that all moulds that belong to the same
line form a family of related shapes. However, a job in the schedule needs to additionally
decide which color should be applied to each of the produced teeth and therefore the final
tooth product type is determined not only by its product line but also by the applied
color.

105

6. The Artificial Teeth Scheduling Problem

M1 × 5, L1

M2 × 2, L1

M3 × 3, L2

J1: P1

M1 × 4, L1

M2 × 2, L1

M3 × 4, L2

J2: P1

M4 × 4, L3

M4 × 4, L3

M5 × 4, L4

J3: P2

t1 t2 t3 t4 t5 t6

Figure 6.1: A small example schedule for the ATSP.

Each job is further configured by a length- and production program parameter. The
length parameter sets the number of production cycles of the job that determines the
total number of produced teeth. Note that each cycle produces the same teeth using the
moulds which are assigned to the job. The production program parameter determines how
many moulds are simultaneously processed by the job, which mould types are compatible,
and the processing time of a single production cycle. As every production program
requires a fixed amount of moulds to be processed per cycle, it might be necessary to
produce more teeth than necessary in some job cycles. Usually this cannot be completely
avoided, therefore one of the problem’s goals is to minimize the amount of waste caused
by excessively produced teeth. Consecutively scheduled jobs may either use different
production programs or share the same program with a different set of mould and or
color assignments. In any case a setup time is required between jobs, however if different
production programs are used a longer setup time is required.

Finally, the main goal of the ATSP is to create a schedule that fulfills all given customer
demands by creating jobs in a way that the makespan, total tardiness, and produced
waste is minimized. Figure 6.1 further illustrates the problem, by visualizing a schedule
with three jobs for a small example instance.

The figure shows three jobs J1, J2, and J3 being scheduled on the horizontal time line.
Time points t1, t3, and t5 indicate the starting times of each job, whereas timepoints
t2, t4, and t6 denote the corresponding job end times (in this case the total makespan
is t6-t1). Jobs J1 and J2 both use the production program P1, whereas job J3 uses a
different program P2. Note that the setup time between jobs J1 and J2 (visualized by the
lengths of the horizontal arrows between jobs) is much smaller than it is between J2 and
J3, as J1 and J2 both use program P1, but J2 and J3 use different programs. Furthermore,
the horizontal length of the jobs indicates the number of assigned production cycles.
Therefore, J2 uses more cycles than J1.

As the production program defines the total number of assigned moulds, we can see in
Figure 6.1 that J1 and J2 both use a total of 10 moulds, whereas J3 uses a total of 12
moulds. Mould types M1, M2, and M3 are in this case compatible only with program

106

6.2. Formal Specification

P1, and mould types M4 and M5 are associated to P2. We can further see in the figure,
that each mould type is associated to a certain product line (e.g. M3 corresponds to
line L2), and that the same mould type may be used with different colorings within the
same job (e.g. in J3 mould type M4 is used in white color and gray color). Note that any
two colors may only be used within the same job if they are compatible. Which pairs of
colors are compatible is specified as part of the problem’s input.

6.2 Formal Specification

We now provide the full formal specification of the ATSP in the following sections. For
simplicity, we make use of the Iverson bracket notation1.

6.2.1 Input Parameters

The following parameters describe instances of the problem:

Description Parameter
Set of colors C
Set of programs P
Set of mould types M
Set of product lines L
Set of demands D
Setup time between identical programs sj ∈ N
Setup time between different programs sp ∈ N
Max product types per job w ∈ N>0
Min cycles per job cmin ∈ N>0
Max cycles per job cmax ∈ N>0
Number of available moulds per type am ∈ N ∀m ∈ M
Number of mould slots per program amp ∈ N ∀p ∈ P
Cycle time per program tp ∈ N>0 ∀p ∈ P
Admissible program per mould type pm ∈ P ∀m ∈ M
Product line of each mould type lm ∈ L ∀m ∈ M
Requested mould type per demand dmd ∈ M ∀d ∈ D
Requested mould quantity per demand dqd ∈ N>0 ∀d ∈ D
Due date of each demand ddd ∈ N ∀d ∈ D
Requested color for each demand dcd ∈ C ∀d ∈ D
Set of compatible colors per color compc ∈ 2C ∀c ∈ C

Table 6.1: Input parameters of the ATSP

1[P] = 1, if P = true and [P] = 0 if P = false

107

6. The Artificial Teeth Scheduling Problem

6.2.2 Variables
We define the following variables for the ATSP:

• Number of assigned jobs: j ∈ N J = {1, . . . , j}
• Program assigned to each job: jpi ∈ P ∀i ∈ J

• Length of each job (i.e. the number of cycles):

jli ∈ N>0 ∀i ∈ J

• The number of mould types (with color) assigned to each job:

jmi,m,c ∈ N ∀i ∈ J, m ∈ M, c ∈ C

• The total number of mould types (with color) produced by each job:

totaljmi,m,c = jmi,m,c · jli ∀i ∈ J, m ∈ M, c ∈ C

6.2.3 Constraints
Several constraints impose restrictions on feasible schedules:

• The number of moulds assigned to each job must be equal to the number of mould
slots of the job’s program:

m∈M c∈C

jmi,m,c = am(jpi) ∀i ∈ J

• The number of scheduled moulds per job must not exceed mould availability:

c∈C

jmi,m,c ≤ am ∀i ∈ J, m ∈ M

• The number of different product types within a single job must be less than or
equal to the allowed maximum:

c∈C l∈L m∈M

([lm = l] · [jmi,m,c > 0]) ≤ w ∀i ∈ J

• All demands need to be fulfilled:

d∈D

[dmd = m ∧ dcd = c] · dqd ≤
i∈J

totaljmi,m,c ∀m ∈ M, c ∈ C

108

6.2. Formal Specification

• Job moulds must be compatible with the job’s program:

c∈C

jmi,m,c · [jpi ̸= pm] = 0 ∀i ∈ J, m ∈ M

• A single job must not use incompatible colors:

m∈M

jmi,m,c1 > 0 ≤
m∈M

jmi,m,c2 = 0

∀i ∈ J, c1 ∈ C, c2 ∈ (C \ compc1)

6.2.4 Objective Function
For the formal definition of the objective function we introduce the following auxiliary
variables:

• The processing time for each job: jti ∈ N>0 ∀i ∈ J

• The finishing time for each job: jei ∈ N>0 ∀i ∈ J

• The finishing job for each demand (after completion the demand is fulfilled):
djd ∈ J ∀d ∈ D

Several constraints set the values of the auxiliary variables:

• Set the job processing times: jti = jli · t(jpi) ∀i ∈ J

• Set job finishing times:

jei = jt1 +
i

k=2
(jtk + sj + [jpk ̸= jpk−1] · (sp − sj)) ∀i ∈ J

• For each demand, a constraint ensures that the corresponding demand finishing
job auxiliary variable is set to a feasible value:

djd

i=1
totaljmi,m,c ≥

d′∈D′
dqd′ ∀d ∈ D where m = dmd,

c = dcd, D′ = {d′ ∈ D|ddd′ ≤ ddd ∧ dmd′ = m ∧ dcd′ = c}
The left hand side of the constraint sums up the total number of moulds that have
the correct type and color for the associated demand and are produced by all jobs
that are scheduled before the end time of the demand finishing job (which includes
the demand finishing job itself). This sum must be greater or equal to the total
quantity of all demands that require the same mould type and color and have a
due date that is smaller or equal to the demand which corresponds to the demand
of the finishing job variable (this total quantity is specified on the right hand side
of the constraint).

109

6. The Artificial Teeth Scheduling Problem

Using these auxiliary variables, the objective function aims to minimize three solution
objectives:

1. The last job should be finished early to minimize the total makespan of the
schedule: ms = jej

2. The number of excess moulds which are not consumed by any demand are considered
to be waste and should be minimized:

waste =
i∈J m∈M c∈C

totaljmi,m,c −
d∈D

dqd

3. The total tardiness of all demands in the schedule should be mimized:

tard =
d∈D

max(0, je(djd) − ddd)

Finally, we aggregate all three objectives in a normalized weighted sum where the
objectives marked with * denote the costs of a given reference solution and w1−3 are
weight parameters:

minimize
w1 · ms

ms∗ + w2 · waste

waste∗ + w3 · tard

tard∗

Parameters w1−3 are then used to configure the relative importance of the three individual
objectives. In practice, the weight parameters and reference solution costs can be
configured according to the practical use case.

6.3 Related Literature
A variety of batch scheduling problems, which share the goal to efficiently schedule
batches of jobs onto machines, have been the subject of intensive study in the past.
In [PK00] an overview and categorization of earlier NP-hard batch scheduling variants for
several single machine and parallel machine environments was given. However, although
the basic problem variants have been extensively studied in the past, there is still the
need to investigate innovative solution methods for challenging real-life batch scheduling
problems, due to the large variety of constraints and optimization objectives that arise
from different application domains.

For example, a recent publication [PTM20] studied a just-in-time batch scheduling
problem that aims to minimize tardiness and earliness objectives and was shown to
be NP-hard in [HKS14]. Another practical single machine scheduling problem from
the steel industry has recently been investigated in [ZLZ+20]. The problem considers
sequence-dependent setup times, release time as well as due time constraints where
batches of jobs are predetermined in advance.

110

6.4. Benchmark Instances

Inst. C M D L P Vars CS
I 1 5 38 20 4 2 12649 14243
I 2 4 28 24 3 1 15475 17442
I 3 4 16 7 1 1 3242 4045
I 4 5 38 4 4 2 5849 6048
I 5 4 28 9 3 1 6840 7646
I 6 3 16 1 1 1 1247 1447
I 7 22 153 799 4 2 621749 583209
I 8 18 114 390 3 1 372409 337268
I 9 18 64 285 1 1 135664 149647
I 10 22 153 190 4 2 373599 302936
I 11 18 114 224 3 1 294675 253199
I 12 13 64 36 1 1 50463 45298

Table 6.2: Size parameters of the used benchmark instances.

Further NP-hard single machine scheduling problem variants that do not include batching
decisions but consider similar objectives as in artificial teeth manufacturing such as
tardiness and setup time minimization, have been recently investigated for example
in [NSD+19] and in [dWBH20].

In this thesis we introduce the artificial teeth scheduling problem (ATSP), which is a
novel single machine batch scheduling variant that appears in real-life production plants
of the artificial teeth manufacturing area. While previous single machine batch scheduling
problem variants are given a predetermined set of jobs as an input and aim to efficiently
group these jobs into batches, instances of the ATSP include customer demands but do
not specify any job information. Therefore, solutions to the ATSP do not only need to
design efficient batches, but are further required to create jobs that efficiently fulfill all
customer demands. Furthermore, solution methods to the ATSP have to consider several
constraints which impose restrictions on feasible schedules as well as an innovative cost
objective that aims to minimize waste caused by overproduction.

6.4 Benchmark Instances
We received 6 problem instances from industry partners that represent real-life scheduling
scenarios as they appeared at production sites of artificial teeth manufacturing. Early
experiments with these instances showed that all of them have a very large search
space, which makes it hard for exact methods to reach results within reasonable runtime.
Therefore, we additionally generated 6 smaller instances by randomly selecting 25% of
the colors and mould types together with associated demands for each of the realistic
instances. Table 6.2 displays size parameters of all 12 benchmark instances, where
instances I1–I6 form the small instance set and instances I7–I12 are the large real-life
scheduling scenarios.

Columns 2–6 from Table 6.2 provide information about the number of colors, mould

111

6. The Artificial Teeth Scheduling Problem

types, demands, production lines and programs. Furthermore, columns 7 and 8 display
the number of generated variables using the bilinear CP model that we introduce later in
Section 7.1.

112

CHAPTER 7
Constraint Modeling and Heuristic
Solution Methods for the Artificial

Teeth Scheduling Problem

In this chapter, we first propose a CP formulation that we utilize as an exact approach
for the ATSP. Afterwards, we introduce an innovative construction heuristic as well
as a metaheuristic based on local search to quickly solve large-scale realistic instances
that cannot be efficiently solved using the proposed exact techniques. At the end of the
chapter, we evaluate all proposed solution methods using the set of benchmark instances
that we introduced in the previous chapter.

7.1 Constraint Programming Approach
In this section, we provide a CP formulation for the ATSP using the input parameters
that were given in Table 6.1 of the previous chapter.

7.1.1 Model Variables
The model we propose uses several arrays of decision variables, where the length of many
arrays is dependent on the maximum number of jobs that can be scheduled. The problem
instances do not set any restrictions on the number of jobs, however an arbitrary number
of jobs can lead to an unnecessary blow up of the variables in the model. Therefore, we set
the maximum number of possible jobs based on a user defined model parameter max_jobs
and in the following refer to the set of possible job IDs as J = {1, . . . , max_jobs}. In
practice the construction heuristic can be used to find reasonable values for the max_jobs
parameter by simply taking the number of heuristically constructed jobs or increasing
the number by a low value. We define the following variables:

113

7. Constraint Modeling and Heuristic Solution Methods for the Artificial
Teeth Scheduling Problem

• jpi ∈ {0, . . . , |P |} ∀i ∈ J

• jli ∈ {cmin, . . . , cmax} ∀i ∈ J

• jmi,m,c ∈ {0, . . . , max{amp|p ∈ P}} ∀i ∈ J, m ∈ M, c ∈ C

• tjmi,m,c ∈ {0, . . . , max{amp · cmax|p ∈ P}}
∀i ∈ J, m ∈ M, c ∈ C

Variable arrays jp and jl determine the selected program, as well as the number of
selected cycles for each job. Note that the domain of jp includes 0 to indicate that a
job variable should be ignored, allowing the formulation to use less than the maximum
number of jobs. Variable arrays jm and tjm determine which moulds and colors are
assigned to each job. The upper bound of these variable domains is calculated by the
maximum number of possible program slots.

In addition to the mentioned variables, the model we propose uses a set of auxiliary
variable arrays that are used in the formulation of the cost objectives. To efficiently set
the domains of these auxiliary variables, we calculate several lower and upper bounds
based on the input parameters:

• lb_end = cmin · min{tp|p ∈ P}
• ub_end = max_jobs · cmax · max{tp|p ∈ P} + max_jobs · sp

• ub_time = max{tp|p ∈ P} · cmax

• ub_waste = max{amp|p ∈ P} · cmax · max_jobs

• ub_tardiness = d∈D max{0, ub_end − ddd}

lb_end and ub_end define lower and upper bounds on the job end times in the schedule
based on the minimum and maximum values regarding the number of cycles and cycle
processing times. ub_time defines a bound on the maximum job processing time, whereas
ub_waste and ub_tardiness provide upper bounds on the total waste and tardiness
costs based on the maximum number of scheduled moulds and the maximum job end
time. We then define auxiliary variables:

• jei ∈ {lb_end, . . . , ub_end} ∀i ∈ J

• jti ∈ {0, . . . , ub_time} ∀i ∈ J

• ded ∈ J ∀d ∈ D

• ms ∈ {lb_end, . . . , ub_end} ∀d ∈ D

• waste ∈ {0, . . . , ub_waste} ∀d ∈ D

114

7.1. Constraint Programming Approach

• tard ∈ {0, . . . , ub_tardiness} ∀d ∈ D

The je, jt, and de variable arrays capture the job end times, job processing times,
and demand end jobs. The ms, waste, and tard variables capture the individual cost
objectives.

7.1.2 Model Constraints
We use a high-level CP modeling notation to declare the constraints of the problem.
Most parts of the model are directly solvable with CP solvers, however at some points
we implicitly make use of constraint reification to express conditional sums and logical
implications. Furthermore, we implicitly utilize the element constraint to use variables
as indices for array access, and make use of the maximum global constraint.

The following constraints are used in our formulation:

• We break symmetrical job assignments by aligning unused jobs at the end of the
schedule and setting the length of unused jobs to the minimum domain value:

(jpi = 0) ⇒ (jpi+1 = 0) ∀i ∈ {1, . . . , max_jobs − 1}
(jpi = 0) ⇒ (jli = cmin) ∀i ∈ J

• Check that the amount of assigned job moulds is compatible with the program (we
set am0 = 0):

m∈M c∈C

jmi,m,c = am(jpi) ∀i ∈ J

• The amount of available moulds must not be exceeded:

c∈C

jmi,m,c ≤ am ∀i ∈ J, m ∈ M

• The number of product types must not be larger than the allowed maximum:

c∈C l∈L m∈M

([lm = l]jmi,m,c) > 0 ≤ w ∀i ∈ J

• Channel the tjm and jm variables:

tjmi,m,c = jmi,m,c · jli ∀i ∈ J, m ∈ M, c ∈ C

• As the channeling constraints for the tjm variables are bilinear, we additionally
included an alternative linearized version of these constraints. We use an additional

115

7. Constraint Modeling and Heuristic Solution Methods for the Artificial
Teeth Scheduling Problem

set of auxiliary variables to achieve a binary encoding of the bilinear constraints as
described in [GACD13]:

k = ⌊log2(max{amp|p ∈ P})⌋ + 1
zi,m,c,x ∈ {0, 1}, vi,m,c,x ∈ {0, . . . , cmax − cmin + 1}

∀i ∈ J, m ∈ M, c ∈ C, x ∈ {1, . . . , k}
jmi,m,c =

x∈{1,...,k}
2x−1 · zi,m,c,x

∀i ∈ J, m ∈ M, c ∈ C

tjmi,m,c =
x∈{1,...,k}

2x−1 · vi,m,c,x

∀i ∈ J, m ∈ M, c ∈ C

(zi,m,c,x = 1) ⇒ (vi,m,c,x = jli)∧
(zi,m,c,x = 0) ⇒ (vi,m,c,x = 0)

∀i ∈ J, m ∈ M, c ∈ C, x ∈ {1, . . . , k}

• Ensure that all demands are fulfilled:

d∈D

[dmd = m ∧ dcd = c]dqd ≤
i∈J

tjmi,m,c∀m ∈ M, c ∈
d∈D

dcd

• Moulds have to be compatible with the job’s program:

(jpi ̸= pm) ⇒ (jmi,m,c = 0) ∀i ∈ J, m ∈ M, c ∈ C

• Only compatible colors may be assigned to the same job:

(
m′∈M

jmi,m′,c1 > 0) ⇒ (jmi,m,c2 = 0)

∀i ∈ J, m ∈ M, c1 ∈ C, c2 ∈ C \ compc1

• Set the job time variables:

(jpi = p) ⇒ (jti = jli · tp) ∀i ∈ J, p ∈ P

(jpi = 0) ⇒ (jti = 0) ∀i ∈ J

• Set the job end time variables:

(jpi > 0) ⇒
jei = jt1 +

i

k=2
(jtk + sj + [jpk−1 ̸= jpk] · (sp − sj))

∀i ∈ J

(jpi = 0) ⇒ (jei = 0) ∀i ∈ J

116

7.2. Construction Heuristic Approach

• Set demand end job variables:

jp(ded) > 0 ∀d ∈ D

ded

i=1
tjmi,(dmd),(dcd) ≥

d′∈D′
dqd′ >

ded−1

i=1
tjmi,(dmd),(dcd)

∀d ∈ D, D′ = {d′ ∈ D|ddd′ ≤ ddd ∧ dmd′ = dmd ∧ dcd′ = dcd}

• Set the makespan: ms = maximum(je)

• Set the total waste:

waste =
i∈J m∈M c∈C

tjmi,m,c, −
d∈D

dqd

• Set total tardiness: tard = d∈D maximum({0, je(ded) − ddd})

7.1.3 Model Objective Function
The objective function aggregates the ms, waste, and tard variables in a normalized
weighted sum the same way as we have described it in the problem specification in
Chapter 6.

7.2 Construction Heuristic Approach
In this section we propose a construction heuristic to quickly build solution schedules for
instances of the ATSP.

The main idea is to consecutively create jobs by greedily fulfilling the demands which
are ordered by their due dates. In other words, the next job is configured to fulfill the
next most urgent demand as quickly as possible, using feasible mould type and color
assignments.

Algorithm 10 presents the detailed procedure of the construction heuristic.

The algorithm first initializes an empty schedule and sorts the list of demands by their
due date. Afterwards, the procedure creates jobs to fulfill demands in a loop until the list
of sorted demands is empty. Within the outer while loop, the algorithm selects the next
most urgent demand, and determines which program the job needs to use to fulfill the
demand. Furthermore, the number of job cycles that are required to fulfill the demand is
calculated based on the number of available moulds per cycle, as well as the minimum
and maximum job length. The job is then created, and the number of used moulds
within the job is updated accordingly. Additionally, the algorithm removes the processed
demand from the list of remaining demands.

117

7. Constraint Modeling and Heuristic Solution Methods for the Artificial
Teeth Scheduling Problem

Algorithm 10: A construction heuristic for the ATSP
fn CreateSchedule

schedule = Initialize empty schedule
sorted_demands = sort demands by due date
while sorted_demands.Count() > 0 do

d = sorted_demands.GetNext()
program = p(dmd)
length = ⌈dqd

am
⌉

length = min{cmax, max{length, cmin}}
j = Create new job j
Update used moulds of j to fulfill d
Remove d from sorted_demands
for d′ ∈ sorted_demands do

if j has no more unused moulds left then
exit loop

if d′ is compatible with job j then
Update used moulds of j to fulfill d′

Update sorted_demands

while j has free remaining mould slots do
Update j to use any available mould

schedule.AppendJob(j)

return schedule

The newly created job is at this point likely to be only partially filled with moulds, and
the selected program may require further moulds to be attached to this job. The inner for
loop therefore goes over the complete list of sorted demands to look for other demands
that could be fulfilled by this job. Thereby, for each demand it has to be checked if the
required mould is still available in the job and the demanded product is compatible to
the other already scheduled products so that no hard constraint would get violated. If
the demand is compatible, the heuristic updates the remaining demand quantity as well
as the assigned job moulds accordingly.

After the for loop, it can still be the case that free mould slots are left in the job, as no
more compatible demands exist. In this case the algorithm simply fills any remaining
unused mould slots by using any available mould types. The outer while loop ends by
appending the newly created job at the end of the schedule. The overall job creating
procedure continues until no more demands are left and afterwards the schedule is
returned.

Note that this construction heuristic was developed in collaboration with domain experts
to automatize the manual planning process to mimic decisions that would normally be

118

7.3. Metaheuristic Approach

taken by a human planner. In the worst case, the inner for loop is executed |D| · |D|
times, whereas the inner while loop is executed less than |D| · max{amp|p ∈ P} times.
Therefore, the construction heuristic has a polynomial runtime complexity and can be
efficiently used to quickly produce schedules for large-scale problem instances. However,
the construction heuristic cannot guarantee feasible solutions as the procedure can run
into a situation where not enough compatible mould types are available to fill a job with
the required number of moulds. Such a case does not imply that a feasible solution does
not exist for the particular problem instance, as the construction heuristic can get stuck
by choosing color and mould assignments greedily.

For example, consider an instance where two demands that have different product types
can only be fulfilled by 4 available moulds at the same time but the required number of
mould slots for each job is 5. Furthermore, let the maximum number of product types
per job be 2 and let the mentioned two demands be the demands with the earliest due
dates. The heuristic would then try to build the first job using these two demands but
could not fill the job with the required 5 moulds. If we further assume that there is a
third demand that has a third product type with a late due date and many available
moulds, the instance could still be solvable by not creating jobs that combine the two
demands with the earliest due dates but using the third demand in combination with the
first and second demand to create feasible jobs.

7.3 Metaheuristic Approach
In this section, we propose a local search based metaheuristic approach for the ATSP.
We first describe the solution representation, cost function, and the generation of an
initial solution. Afterwards, we propose several search neighborhoods for the problem,
and describe how random neighborhood moves are generated in each search iteration.
Finally, we present our neighborhood move acceptance criteria that is used to escape
local optima.

7.3.1 Solution Representation and Cost Function
In our metaheuristic approach we represent solutions in a similar way as we did in the
constraint model by using three variable arrays to store the assigned programs for each
job, the length of each job, as well as the mould and color assignments assigned for each
job. Therefore, we need to provide a parameter max_jobs that determines the length of
these arrays and thereby limits the maximum number of jobs.

To determine the costs of candidate solutions, we use the previously defined normalized
objective function but extend it in a way that it additionally captures potential hard
constraint violations as follows:

cost(S) = ms

ms∗ + waste

waste∗ + tard

tard∗ + HC · M

119

7. Constraint Modeling and Heuristic Solution Methods for the Artificial
Teeth Scheduling Problem

The function cost(S) calculates the costs of a candidate solution S by adding the number
of total hard constraint violations HC multiplied by a big constant M to the normalized
objectives, where M should ideally be larger than the worst case normalized objective
costs. As we normalize our objectives using a reference solution it suffices to set M to a
very large integer in practice.

To determine HC we further need to define for each hard constraint how we actually
count the number of violations. Regarding mould availability, we can simply count the
number of assigned moulds that are unavailable. For unfulfilled demands, we count the
number of missing moulds. If any incompatible colorings are assigned to a job, we count
the total mould quantities that use any of the incompatible colors. We further count
any mould quantities that are incompatible with the selected program. If the number of
allowed product types is exceeded in a job, we first calculate the mould quantities for
each product type assigned to the job. Afterwards, we count the n lowest product type
quantities as violations, where n is the difference between the allowed maximum number
of product types and the actual number of assigned product types. Finally, in case too
many moulds are assigned to a job we simply count the excess mould quantities.

To generate an initial candidate solution for our metaheuristic approach we consider
two options: We can either start search from an empty schedule or use our construction
heuristic to produce an initial schedule.

7.3.2 Search Neighborhoods
In the following we propose seven search neighborhoods for our local search approach:

1. Swap two jobs: Swaps the positions of two existing jobs.

2. Increment length: Increments the cycles of a job by 1.

3. Decrement length: Decrements the cycles of a job by 1.

4. Change single mould assignment: Changes a single assigned mould type and/or
color to a different mould type and/or color within the same job.

5. Delete last job: Deletes the last job in the schedule.

6. Append new job: Appends a new job at the end of the current schedule. Move
parameters define the job program, as well as the mould quantities that should be
used in the newly created job.

7. Swap mould assignments between two jobs: Swaps a single mould type
and/or color assignment from a job with a single mould and/or color assignment
from another job.

Note that neighborhoods 2–6 would suffice to reach all possible solution. However, the
additional swap neighborhoods (1 and 7) have the advantage that they can swap mould

120

7.3. Metaheuristic Approach

assignments and reposition jobs without violating any demand constraints in intermediate
solutions.

We only allow the insertion and deletion of jobs at the end of the schedule mainly for
the purpose of an efficient move generation. Note that the insertion of jobs is mainly
motivated to handle unfulfilled demand violations, while the deletion of jobs is mainly
motivated to lower the makespan and waste objective. Therefore, the purpose of these
neighborhoods does not directly rely on the job position.

7.3.3 Neighborhood Exploration
Exploring the complete neighborhood easily becomes computationally expensive, espe-
cially when dealing with large real-life instances. Therefore, we do not explore the full
neighborhood in our approach, but instead randomly select a single move out of the
complete neighborhood in each iteration.

Which move is generated, is determined based on a random selection procedure that is
configured by parameters N1-N7. Each parameter N1-N7 defines a real value between 0
and 1 that determines the probability to consider each of the seven neighborhoods in
an iteration. We determine in each iteration a single random move in 3 steps: First, for
each neighborhood we randomly decide based on the associated parameter whether it is
considered for move generation. Afterwards, we randomly select one of the neighborhoods
that have been selected in the previous step. Finally, we uniformly sample a single move
from the chosen neighborhood.

7.3.4 Move Acceptance
Once a single random move has been generated, we evaluate the change of the current
solution’s quality that would be caused by the move. Based on the result we then
decide whether the move should be applied to the current solution. We use a move
acceptance function based on simulated annealing [KGV83]. The function ensures that
a cost improving move is always accepted, whereas a non-cost-improving move is only
accepted with a certain probability that depends on the change in solution quality as
well as a temperature value. We set the temperature value at the beginning of local
search to a user defined parameter. Afterwards, we use a geometrical cooling scheme
that decreases the temperature value after each search iteration by multiplication with a
user defined cooling rate parameter.

In our cooling scheme we further set the number of iterations per temperature to the total
number of demanded moulds of the given instance. Therefore, the number of iterations
between two consecutive cooling steps is determined relative to the instance size.

Algorithm 11 presents the full acceptance function, where cost(S) is the cost of the
current solution, cost(S∗) is the cost after the application of the randomly generated
move, T is the current temperature value, and random() is a uniformly sampled real
value between 0 and 1.

121

7. Constraint Modeling and Heuristic Solution Methods for the Artificial
Teeth Scheduling Problem

Algorithm 11: Move acceptance function
fn AcceptMove (cost(S), cost(S∗), T)

result = True
if cost(S) ≤ cost(S∗) then

p = e
−(cost(S∗)−cost(S))

T

if random() > p then
result = False

return result

7.4 Computational Results
In this section we first describe the experimental environment and parameter configuration
before we later present and discuss computational results.1 All of our experiments as
well as the parameter tuning were conducted on a computing cluster with 10 identical
nodes, each having 24 cores, an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252
GB RAM.

To evaluate the proposed solution methods for the set of real-life benchmark instances,
we decided to set w1−3 = 1 as in the particular practical scheduling scenarios all
three objectives are considered to be of similar importance. Furthermore, we use the
construction heuristic approach to generate all reference solution costs. As this method
was developed in collaboration with domain experts to automatize the manual planning
process, it represents a baseline for the quality of current practical results.

Therefore, we used our construction heuristic to produce reference solutions for all
the instances (i.e. the aggregated normalized solution cost is always exactly 3 for the
construction heuristic) in a first series of experiments. The max_job parameter was set
for the constraint model to 50 and for the metaheuristic approach to 500 (50 should
clearly suffice for all benchmark instances, however for the metaheuristic we could even
use a higher value without risking memory leaks).

To evaluate the metaheuristic approach we further have to configure several parameters.
Based on some manual tuning attempts we selected a T value of 0.001 and a α value of
0.999 and set all neighborhood probabilities to 1 as the default. Starting from the default
values, we further used the state-of-the-art parameter tuning software SMAC [LEF+17]
to automatically tune all the parameters (Parameter value ranges were restricted to
T ∈ [0.0001, 2], α ∈ [0.9, 0.9999], and N1 − N7 ∈ [0, 1]). The tuning process was then
started with the metaheuristic that starts from an initial reference solution and all 12
instances as the training set. Similar as with the parameter tuning for the paint shop
scheduling problem that was previously described in Section 4.8.2, we use all instances for
training in this case. Therefore, we want to note that a robustness analysis of the tuned

1Detailed results are publicly available online:
https://www.dbai.tuwien.ac.at/staff/winter/atsp.zip

122

https://www.dbai.tuwien.ac.at/staff/winter/atsp.zip

7.4. Computational Results

parameters on a test set consisting of unseen instances is an important subject of future
work. We further set the runtime limit for each individual run to 10 minutes and set the
overall wallclock time limit to 4 days. The resulting parameter configuration which we
used for our final experiments is as follows: T = 0.4735, α = 0.9274, N1 = 0.2042, N2 =
0.0407, N3 = 0.8522, N4 = 0.0632, N5 = 0.8630, N6 = 0.6250, and N7 = 0.3972.

To evaluate exact approaches that utilize the proposed bilinear and linearized CP model
we implemented both models using the modeling language MiniZinc [NSB+07], which
provides interfaces to state-of-the-art CP and MIP solvers (for the latter MiniZinc
automatically converts the constraint model into a MIP model).2

We then performed experiments with the MIP solvers gurobi [GO20] and cplex [Cor19],
as well as the CP solvers gecode [Gec19] and chuffed [Chu11]. As chuffed is not able to
handle floating point objectives, we simply used non normalized values in the objective
for chuffed and normalized the final objective in a post-processing step.

For gecode and chuffed we further used a programmed search strategy that first selects
all jm variables based on the smallest domain first heuristic where minimum values
are assigned first. For the remaining variables, we use the solvers’ default search and
further activated the free search parameter for chuffed which allows the solver to alternate
between the given search strategy and its default one on each restart. Further, we set
a time limit of 1 hour for each run for all evaluated exact and metaheuristic methods.
Numerical values have been rounded to two decimal places in all final results. Table 7.1
summarizes the final results produced by exact methods.

Note that Table 7.1 only displays results for instances 1–6 (I 1–6), as none of the exact
approaches were able to reach feasible solutions within the time limit for instances
7–12. Each row shows the final normalized objective value reached for the corresponding
instance with solvers cplex (Cpx), gurobi (Grb), gecode (Gce), and chuffed (Chu) using
the bilinear channeling constraints (B) and the linearized channeling constraints (L)
(note that for both versions we use the MiniZinc linearization library that automatically
converts the proposed constraint model into a linearised formulation compatible with the
MIP solvers so that only the linearized version of the channeling constraints is specified
explicitly in its linearized form). Best results for each row are formatted in boldface and
a - denotes that no solution could be found within the time limit.

The results presented in Table 7.1 show that gurobi produces overall the best results for
all instances. All approaches are able to reach the best objective value of 3 for instance 6
which is equal to the reference solution cost. As instance 6 contains only a single demand
(see Table 6.2) this is an expected result (clearly in such a case one cannot do better
then building jobs of maximum length that utilize the maximum number of moulds to
fulfill the single demand and therefore the construction heuristic provides an optimal
result). The results further show that the CP solvers gecode and chuffed seem to be not
competitive compared to the MIP solvers for instances 1–5. We see that there are only

2The models are publicly available online:
https://www.dbai.tuwien.ac.at/staff/winter/atsp_minizinc.zip

123

https://www.dbai.tuwien.ac.at/staff/winter/atsp_minizinc.zip

7. Constraint Modeling and Heuristic Solution Methods for the Artificial
Teeth Scheduling Problem

Inst. Cpx L Cpx B Grb L Grb B
I 1 2.96 4.66 2.54 2.53
I 2 2.01 3.24 1.96 2.01
I 3 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54
I 5 2.11 2.12 2.11 2.10
I 6 3.00 3.00 3.00 3.00

Inst. Gce L Gce B Chu L Chu B
I 1 - 37.53 579.59 -
I 2 - - 19.31 272.87
I 3 69.69 3.00 3.00 1123.83
I 4 37.87 37.87 99.09 619.50
I 5 43.85 45.11 10.32 -
I 6 3.00 3.00 3.00 3.00

Table 7.1: Summarized results for exact methods.

Inst. Cpx L DB Cpx B DB Grb L DB Grb B DB
I 1 1.13 1.34 1.87 2.08
I 2 0.83 0.67 0.99 1.25
I 3 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54
I 5 1.29 1.12 1.38 1.63
I 6 3.00 3.00 3.00 3.00
I 7 0.47 0.47 0.50 0.49
I 8 0.15 0.14 0.15 0.14
I 9 0.58 0.56 0.58 0.59
I 10 0.53 0.51 0.53 0.51
I 11 0.34 0.34 0.34 0.32
I 12 1.02 0.96 0.96 0.96

Table 7.2: Final dual bounds achieved by MIP methods.

small differences between the bilinear and linearized models, especially for gurobi. We
assume this is due to the fact that gurobi recently introduced improved techniques for
bilinear constraints.

Table 7.2 provides an overview on the best dual bounds (DB) by the evaluated MIP
solvers. The best dual bounds per row are formatted in boldface.

We can see that for the large instances, most of the best dual bounds can be obtained
with the linearized model. For small instances on the other hand the bilinear model with

124

7.4. Computational Results

Inst. LS B LS M LS S LSC B LSC M LSC S
I 1 2.53 2.53 0.00 2.53 2.53 0.00
I 2 1.94 1.95 0.01 1.94 1.95 0.01
I 3 2.23 2.23 0.00 2.23 2.23 0.00
I 4 2.54 2.54 0.00 2.54 2.54 0.00
I 5 2.13 2.20 0.11 2.13 2.14 0.02
I 6 3.00 3.00 0.00 3.00 3.00 0.00
I 7 - - - 2.98 3.00 0.01
I 8 - - - 2.39 2.42 0.02
I 9 - - - 2.97 2.99 0.01
I 10 5.70 6.36 0.59 2.78 2.87 0.06
I 11 - - - 2.76 2.77 0.01
I 12 6.10 6.86 0.74 2.89 2.97 0.04

Table 7.3: Overview on computational results for local search.

gurobi produced the best results. This indicates that for large problems linearizing the
constraints can be helpful to quickly obtain good dual bounds.

Table 7.3 summarizes results produced by the metaheuristic approach starting from an
empty schedule (LS) and starting from an initial reference solution (LSC). Note that the
proposed method is not deterministic, as neighborhood moves are randomly generated
in each iteration. Therefore, these results were obtained by 10 repetitive runs on each
instance and the table displays in addition to the overall best cost (B) also the mean costs
(M) and the standard deviation (S). The best mean costs per instance are formatted in
boldface and a - denotes that no feasible solution was reached.

The results presented in Table 7.3 show that starting from an initial schedule produces
the best mean costs for all instances. Furthermore, we can see that for the majority of the
instances starting from an empty solution cannot reach any feasible solution within the
runtime limit. This indicates that starting from a construction heuristic is very effective
to deliver robust and good results especially for large instances.

Finally, Table 7.4 summarizes the overall best lower bounds (LB) and overall best results
produced with exact (Exact) and metaheuristic methods (LS).

We can see in the results that the exact methods could prove optimality for instances
3, 4, and 6 and that metaheuristics could also reach optimal results in these cases. It
seems that overall the exact methods produce results of similar quality compared to the
metaheuristic approach on the smaller instances. However, we can clearly see that the
metaheuristic performed better for the large instances.

125

7. Constraint Modeling and Heuristic Solution Methods for the Artificial
Teeth Scheduling Problem

Inst. LB Exact LS
I 1 2.08 2.53 2.53
I 2 1.25 1.96 1.94
I 3 2.23 2.23 2.23
I 4 2.54 2.54 2.54
I 5 1.63 2.10 2.13
I 6 3.00 3.00 3.00
I 7 0.50 - 2.98
I 8 0.15 - 2.39
I 9 0.59 - 2.97
I 10 0.53 - 2.78
I 11 0.34 - 2.76
I 12 1.02 - 2.89

Table 7.4: Summary of the overall best results.

126

CHAPTER 8
A Hyper-Heuristic Approach for

Artificial Teeth Scheduling

In this chapter we investigate a hyper-heuristic approach for the artificial teeth schedul-
ing problem. We first provide a literature review on hyper-heuristics and give some
background on a well known flexible hyper-heuristic framework (HyFlex) that we utilize
to develop a hyper-heuristic solution method for the artificial teeth scheduling problem.
Afterwards, we propose several low-level heuristic operators for the artificial teeth schedul-
ing problem which can be used together with state-of-the-art hyper-heuristic strategies to
tackle large realistic benchmark instances. Finally, at the end of this chapter we evaluate
the performance of our low-level heuristic operators with different hyper-heuristics in a
set of computational experiments.

8.1 Background & Related Work
When developing efficient heuristic solution methods for optimization problems that arise
from real-life applications, usually problem specific domain-knowledge is exploited to
create efficient solution methods. However, traditional heuristics that strongly rely on
domain specific strategies often do not generalize well on other application domains. The
main idea behind hyper-heuristics, which is a field that has been the topic of intensive
study in the last decades, is to develop problem-independent heuristic strategies which
are able to generalize well on different problem domains.

In [PQ18], the authors differentiate between two main types of hyper-heuristic approaches:
generation based approaches that generate low-level heuristics and selection based ap-
proaches that focus on an efficient selection of low-level heuristics. Low-level heuristics
are problem-specific heuristics that are utilized by the hyper-heuristic approach to solve
instances of a particular problem domain. In the case of selection based approaches

127

8. A Hyper-Heuristic Approach for Artificial Teeth Scheduling

these low-level heuristics are designed by a domain expert, whereas generation based
hyper-heuristics aim to generate new low-level heuristics by combining existing problem-
dependent heuristics.

In this chapter we propose a set of low-level heuristics for the artificial teeth scheduling
problem which can be utilized by selection based hyper-heuristics that choose and apply
different low-level heuristics during an iterative search process. Over the recent decade
this topic has been a subject of intensive study and a large amount of work has been
reviewed in surveys such as [BGH+13] and [DKÖB20].

In the recent past several hyper-heuristic frameworks have been proposed that encour-
age the development of selection based approaches and allow researchers to measure
and compare hyper-heuristics strategies on sets of low-level heuristics from different
domains. For example, the HyFlex (Hyper-Heuristics Flexible) framework was introduced
in [OHC+12] and is a software framework that clearly separates domain specific code
such as solution representation, objective function and low-level heuristic operators from
problem-independent code concerning the hyper-heuristic approach. This allows re-
searchers to focus on the development of novel selection hyper-heuristic methods without
the need of implementing low-level heuristics. At the same time, researchers that want
to evaluate hyper-heuristic approaches on a particular problem domain can implement
new low-level heuristics for their problem and use the hyper-heuristics that have been
implemented in the HyFlex framework.

A hyper-heuristic that is implemented in HyFlex manages a pool of candidate solutions
when solving an instance of a supported problem domain. New solutions can be added
to this pool by calling problem specific low-level construction heuristics or by copy-
ing/overwriting existing solutions. Furthermore, Hyflex supports four different types of
low-level heuristics which can be called on one or two candidate solutions: Mutational,
ruin-create, local search (hill climbing) or crossover operators. Mutational heuristics
perform a random perturbation on the given solution, whereas ruin-create operators
destroy parts of the solution before repairing them again to create a feasible solution.
Local search low-level heuristics iteratively perform modifications to candidate solutions
and guarantee that the quality of the modified solutions is not reduced. Finally, crossover
operators combine parts of two candidate solutions to form a new solution.

The HyFlex framework itself provides low-level implementations for the Boolean sat-
isfiability problem, a one-dimensional bin-packing problem, personnel scheduling, a
permutation flow-shop problem, the traveling salesperson problem, and vehicle routing.
These problem domains together with associated sets of benchmark instances were used
in the Cross-Domain Heuristic Search Challenge (CHeSC 20111), where 20 different
international teams participated with various hyper-heuristic approaches. To determine
the winning teams, the results of all participants were ranked using a Formula 1 scoring
system.

1http://www.asap.cs.nott.ac.uk/chesc2011/

128

http://www.asap.cs.nott.ac.uk/chesc2011/

8.1. Background & Related Work

The first place of the competition was achieved by an algorithm called AdapHH (also
known as GIHH) from [MVDCVB12] which maintains subsets of low-level heuristics
in different stages of the search process. These sets are dynamically adapted based on
performance measures for each heuristic such as for example the number of the best
solutions found or improvements over time.

Ranked second in the competition was a hyper-heuristic approach that is based on
variable neighborhood search by [HCF12]. The approach conducts two phases, where
the first phase operates on a population of solutions and the second phase only keeps
a single best solution. Each of these phases starts with a shaking stage that focuses
on diversification and a local search stage that focuses on intensification using different
types of low-level heuristics.

A hyper-heuristic called ML [OHC+12] reached the third place of the competition. This
method uses a self-adaptive metaheuristic that utilizes reinforcement learning and multi-
cooperative agents. Furthermore, ML operates in three main stages: First a diversification
phase, then an intensification phase, and finally a move acceptance phase where moves
are accepted in case of an improvement or if no improvement could be found for a given
number of iterations.

The remaining participants use a variety of different solution concepts such as for example
iterated local search ([CXIC12]), evolutionary programming ([Mei11]), splitting the search
into a single-point and a population based strategy ([LM12]), and many others.

HyFlex continues to be an important benchmark tool for the hyper-heuristic community
even after the competition and several other approaches have been since developed within
this framework [DKÖB20].

In addition to the HyFlex framework, several other selection-based hyper-heuristic
frameworks have been proposed in the recent decade. Examples are the HyFlex 1.1
framework [AÖP13] which additionally allows the hyper-heuristics to handle batches of
instances collectively and EvoHyp [PB17] which focuses on the development of hyper-
heuristics that are based on evolutionary algorithms.

Recently, another hyper-heuristic approach that focuses on an automated combination
of given neighborhood-based heuristics was proposed in [Chu20]. The main idea behind
this work is to automatically find chains of different neighborhood operators that allow
an efficient interaction of the individual heuristic strategies. This is realized by learning
mechanisms that utilize data that is collected during the search process.

Furthermore, in [LG07] a self-adapting large neighborhood search approach for solving
scheduling problems has been proposed that implements ideas that are similar to selection
based hyper-heuristic approaches. The work uses sets of neighborhoods and comple-
tion strategies that play a similar role as the low-level heuristics from hyper-heuristic
frameworks. Additionally, a machine learning technique is utilized to learn weights
for an efficient selection of the different neighborhoods during the search process. The
idea of self-adapting large neighborhood search has further been extended in [TS18],

129

8. A Hyper-Heuristic Approach for Artificial Teeth Scheduling

where the learning mechanism not only watches the quality improvements achieved by
the neighborhood operators, but also considers the required runtime of the individual
heuristic calls.

We note that besides the related work discussed in this section, many additional selec-
tion based hyper-heuristic approaches have been investigated in the literature. For a
comprehensive overview on this topic please refer to a recent survey (e.g. [DKÖB20]).

8.2 Low-Level Heuristics for the Artificial Teeth
Scheduling Problem

In this chapter we propose low-level heuristics for the artificial teeth scheduling problem
that can be used together with the HyFlex framework. We decided to develop our
heuristics within this framework, as it has been widely used in the field and is publicly
available. Therefore, we categorize the proposed heuristics into mutational, local search,
and crossover operators as these are low-level heuristic types supported in HyFlex.

8.2.1 Mutational Heuristics
The idea behind mutational low-level heuristics is to perform small perturbative changes
to the components of a candidate solution. In the HyFlex framework a mutational
operator is further configured by an intensity of mutation parameter α ∈ [0, 1] that
controls the level of the mutation, where a higher value leads to more modifications being
performed.

We propose 7 low-level heuristic mutation moves for the artificial teeth scheduling problem
that correspond to the search neighborhoods we proposed previously in Chapter 7: Swap
Two Jobs, Increment Job Length, Decrement Job Length, Change Single Mould Assignment,
Delete Last Job, Append new Job, Swap Two Mould Assignments.

The mutational low-level operator works as follows for all 7 move types: Given is a
candidate solution that is mutated by iteratively applying uniformly random selected
moves of the selected move type. For example, a mutation low-level heuristic which uses
the Swap Two Jobs move, in its first iteration randomly selects one out of all possible
swap moves for the given candidate solution. This move is then performed to modify the
solution, and the process continues for a number of iterations.

To consider the intensity of mutation parameter we set the iteration limit to ⌊α · k⌋ so
that k moves will be performed in any mutational low-level heuristic move if α = 1.0,
where k is an additional parameter given to the mutational operator.

8.2.2 Local Search Heuristics
In this section we propose local search based low-level heuristics for the ATSP. The
HyFlex framework configures local search low-level heuristics using a depth of search

130

8.2. Low-Level Heuristics for the Artificial Teeth Scheduling Problem

parameter β ∈ [0, 1] that controls how many search iterations will be performed to
improve the candidate solution. All proposed heuristics guarantee to not reduce the
quality of the given candidate solution.

Stochastic Hill Climber

The first low-level local search heuristic we propose randomly generates moves in each
search iteration in a similar way as it has been described for the simulated annealing
approach given in Section 7.3.

After a move has been randomly selected, this heuristic evaluates the change in costs that
would be caused by this move to the current candidate solution. Then, the acceptance
function we introduced in Section 7.3 is used to decide whether the move should be
accepted using a given temperature parameter τ . Note that for this heuristic the
temperature value that is given as a parameter will not change (like it is the case with
simulated annealing), but instead is fixed to the given parameter for all search iterations.

The iteration limit for this low-level heuristic is determined by ⌊β · k⌋, where k is a
given integer parameter. Additionally, a temperature parameter tau and a time limit t
configure the fixed temperature value and a timeout. The heuristic stops if the iteration
limit or time limit is reached.

Due to the nature of the acceptance function this low-level heuristic can produce solutions
of reduced quality. However, the heuristic always returns the overall best solution found
at the end of its execution (if no improvement was found, the operator simply returns
the initial solution) and thereby can be considered as a local search operator.

Simulated Annealing

In addition to the Stochastic Hill Climber heuristic, we propose another similar low-level
local search operator that uses the simulated annealing approach exactly in the same
way as we introduced it in Section 7.3.

Similarly as with the Stochastic Hill Climber operator the initial temperature is given
as parameter τ , but here we use an additional cooling rate parameter γ to configure
the geometrical cooling schedule. Again we determine the iteration limit as ⌊β · k⌋ with
k being an integer parameter, and the time limit for the simulated annealing low-level
heuristic is set by parameter t.

Full Neighborhood Move Heuristics

In addition to the Stochastic Hill Climber and Simulated Annealing operators that both
generate random moves in each search iteration, we introduce a set of local search low-level
heuristics that consider the full search neighborhood for particular move operators.

For example, a full neighborhood move heuristic for the Swap Two Jobs move type gener-
ates moves for all possible pairs of jobs in the current candidate solution. Afterwards, the

131

8. A Hyper-Heuristic Approach for Artificial Teeth Scheduling

change in solution quality for all generated moves is evaluated and the full neighborhood
move heuristic applies the move that leads to the best solution quality (ties are broken
by the order of the generated moves). However, in case none of the generated moves
leads to an improvement no move is performed.

Following this idea, we propose four full neighborhood move heuristics:

1. Full Change Mould Neighborhood Heuristic: This low-level heuristic considers
all possible instantiations of the Change Single Mould Assignment neighborhood
operator on the given candidate solution.

2. Full Job Length Neighborhood Heuristic: This heuristic considers all length modify-
ing neighborhood operators (i.e. Increment/Decrement Job Length) for all jobs in
the given candidate solution.

3. Full Swap Job Neighborhood Heuristic: Considers Swap Two Jobs moves for all
possible job pairs in the given solution.

4. Full Swap Mould Neighborhood Heuristic: This heuristic selects the best of all
possible Swap Two Mould Assignments moves.

All four full neighborhood move low-level heuristics use no parameters as they only
perform at most a single modification on execution (if no improving move is found, the
current solution is not modified).

Note that we did not consider full neighborhood heuristics for the Append Job and Delete
Job neighborhood moves. We decided to not include these heuristics as in the case of
the Append Job operator an evaluation of all possible jobs would lead to an inefficient
generation of a very large number of jobs, and in the case of the Delete Job there is only
a single possible move (i.e. deletion of the last job) for each candidate solution anyway.

8.2.3 Crossover Heuristic
We now propose a crossover low-level heuristic that combines two given candidate solutions
for the ATSP. The main idea behind this operator is to perform a one point crossover
on the job sequences of the two given solutions. To achieve this, first a random job index
is selected. Then the resulting job sequence is built by first scheduling all jobs from the
first candidate solution that have a lower or equal job index. Afterwards, all jobs from
the second solution that have a larger job index are appended on the resulting solution.
Algorithm 12 shows the details of the crossover procedure where S1 and S2 are the given
candidate solutions.

The algorithm starts by determining the maximum length of the two candidate job
sequences. Afterwards, a random dividing job index is uniformly sampled. Finally, the
result sequence is initialized as an empty job sequence and jobs from the first and second
candidate solution are appended which are selected based on the position of the dividing
job index.

132

8.3. Evaluated Hyper-Heuristic Approaches

Algorithm 12: Crossover Low-Level Heuristic for the ATSP
fn Crossover (S1, S2)

maxNumJobs = max(length(S1), length(S2))
dividingJob = random(1, maxNumJobs)
result = new empty job sequence
for i = 1 to min(dividingJob, length(S1)) do

result.append(S1[i])
for i = dividingJob + 1 to length(S2) do

result.append(S2[i])

return result

8.3 Evaluated Hyper-Heuristic Approaches
We contacted the authors that achieved the first, second and third place of the CHeSC
2011 competition and asked them to share their implementation of the winning hyper-
heuristics so that we could include them in our evaluation. Thereby, we received an
up-to-date implementation of GIHH [MVDCVB12] which was the competition winner.
The algorithms that were ranked second and third were unfortunately not available, but
we also received an implementation of the HAHA hyper-heuristic [LM12] which scored
sixth place in the competition.

In addition to algorithms that participated in CHeSC 2011, we also evaluated a recent
hyper-heuristic approach from [Chu20] (CHUANG) as well as two hyper-heuristics
which are based on self-adaptive large neighborhood search strategies from [LG07]
(ALNS) and [TS18] (ALNS2). These three approaches have recently been adapted and
implemented for use within the HyFlex framework by [MM21].

8.4 Computational Results
In this section we present computational results for the ATSP that were achieved by the
selection based hyper-heuristic approaches mentioned in the previous section. For our
experiments we implemented all low-level heuristics proposed in this chapter within the
latest version of the HyFlex framework that is publicly available online2.

To evaluate the proposed low-level heuristics with the mentioned hyper-heuristic strategies,
we then performed a series of experiments using the benchmark instances for the ATSP
we introduced in Chapter 6. Regarding the experimental setup, benchmark machine,
and configuration of the objective function we used exactly the same configuration as in
the computational results section of the previous chapter (please refer to Section 7.4 for
details).

2http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex_download.html

133

http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex_download.html

8. A Hyper-Heuristic Approach for Artificial Teeth Scheduling

Inst. GIHH HAHA ALNS ALNS2 CHUANG
I 1 2.53 2.53 2.53 2.53 2.52
I 2 1.95 1.94 1.94 1.95 1.95
I 3 2.23 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54 2.54
I 5 2.11 2.12 2.12 2.13 2.11
I 6 3 3 3 3 3
I 7 2.86 2.85 2.95 2.88 2.89
I 8 2.47 2.46 2.47 2.39 2.49
I 9 2.87 2.86 2.91 2.86 2.9
I 10 2.68 2.67 2.76 2.72 2.74
I 11 2.77 2.76 2.81 2.8 2.79
I 12 2.85 2.79 2.95 2.96 2.9

Table 8.1: Overview on overall best results per instance.

Based on manual tuning trials we further set the parameters of the low-level heuristics
as follows: For the mutational operators, we set the iteration limit k = 100. Additionally,
we set the default intensity of mutation to α = 0.1. However, note that this is only the
initial value of α and this parameter can be controlled dynamically during search by each
individual hyper-heuristic.

For the Stochastic Hill Climber local search heuristic we set the time limit t to 60 seconds.
Further, we determine the iteration limit k dependent on instance size parameters
by calculating the product of the number of colors, the number of mould types, the
number of demands, and the total number of demanded moulds. Additionally, we set the
temperature τ = 0.01 and set the default depth of search β = 0.1

For the Simulated Annealing low-level heuristic, we use exactly the same parameters as
for the Stochastic Hill Climber heuristic, except for the initial temperature τ , which we
set to 0.4735. Further, we set the cooling rate parameter to 0.9274. Note that these two
parameter values correspond to the tuning results from Section 7.4.

As some full neighborhood move heuristics can require a large processing time when
computing all possible moves, we additionally imposed a maximum runtime limit of 10
minutes to each low-level heuristics in this category.

Using this parameter configuration we then performed 10 repeated experimental runs
for each instance and hyper-heuristic approach, where every single run was given a time
limit of 1 hour. Table 8.1 shows the overall best results per instance and hyper-heuristic.

The table shows in Columns 2–6 the best solution quality per instance produced with
the evaluated hyper-heuristic approaches. Best results for each line are formatted in
boldface. For the remainder of this section, we apply a similar formatting to all tables
unless stated otherwise. The results displayed in Table 8.1 show that HAHA is able to

134

8.4. Computational Results

Inst. GIHH M HAHA M ALNS M ALNS2 M CHUANG M
I 1 2.62 2.57 2.53 2.7 2.53
I 2 1.95 1.95 1.95 2.24 1.97
I 3 2.23 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.63 2.54
I 5 2.12 2.12 2.18 2.48 2.2
I 6 3 3 3 3 3
I 7 2.87 2.86 2.97 2.93 2.92
I 8 2.48 2.49 2.57 2.54 2.52
I 9 2.89 2.89 2.94 2.93 2.92
I 10 2.7 2.69 2.82 2.81 2.78
I 11 2.78 2.78 2.85 2.86 2.81
I 12 2.93 2.93 2.96 2.97 2.94

Table 8.2: Overview on mean objective costs per instance.

Inst. GIHH S HAHA S ALNS S ALNS2 S CHUANG S
I 1 0.18 0.13 0 0.22 0
I 2 0 0.01 0.01 0.3 0.06
I 3 0 0 0 0 0
I 4 0 0 0 0.19 0
I 5 0.01 0.01 0.12 0.26 0.15
I 6 0 0 0 0 0
I 7 0.01 0.01 0.02 0.05 0.03
I 8 0.01 0.01 0.09 0.07 0.05
I 9 0.02 0.01 0.01 0.04 0.02
I 10 0.01 0.02 0.05 0.09 0.05
I 11 0.01 0.01 0.05 0.06 0.01
I 12 0.04 0.05 0 0.01 0.02

Table 8.3: Overview on standard deviation of the objective costs per instance.

produce the best results for 9 of the 12 instances, and therefore seems to be the overall
best performing method in this comparison. However, we note that for instances 1, 5,
and 8 other methods (CHUANG, GIHH or ALNS2) can produce slightly better results
and GIHH provides solutions with only slightly higher costs than HAHA for the majority
of the instances.

Tables 8.2 and 8.3 further show the mean objective costs (M) as well as the standard
deviation (S) achieved over all 10 runs per instance.

Again we see that HAHA seems to be the overall best performing approach as it produces
the best results for 10 out of 12 instances in Table 8.2. However, GIHH also provides the

135

8. A Hyper-Heuristic Approach for Artificial Teeth Scheduling

Inst. GIHH* HAHA* ALNS* ALNS2* CHUANG*
I 1 2.52 2.53 2.53 2.52 2.53
I 2 1.94 1.94 1.94 1.95 1.94
I 3 2.23 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54 2.54
I 5 2.11 2.11 2.12 2.12 2.13
I 6 3 3 3 3 3
I 7 2.88 2.9 2.89 2.88 2.88
I 8 2.45 2.48 2.46 2.4 2.49
I 9 2.87 2.91 2.91 2.87 2.89
I 10 2.69 2.71 2.67 2.66 2.59
I 11 2.79 2.8 2.79 2.79 2.79
I 12 2.9 2.91 2.9 2.9 2.9

Table 8.4: Overview on the overall best results per instance achieved without the full
neighborhood low-level operators.

best mean objective costs for 9 of the 12 instances and comes close to most of the results
produced by HAHA. The standard deviation of the objective costs is close to 0 for most
approaches and instances with only a few exceptions. This indicates that all evaluated
hyper-heuristics are able to produce robust results regarding different random seeds.

The full neighborhood search heuristics may consume large amounts of execution time,
and actually the evaluation of the full neighborhood required several minutes just for a
single low-level heuristic call for some realistic instances in our experiments. Therefore, we
decided to conduct a second set of experiments without using the full neighborhood search
heuristics to investigate whether this has a negative effect on the overall performance of the
hyper-heuristics. To mark results that have been produced without the full neighborhood
low-level heuristics, we add a * after the identifiers of the evaluated methods in the
following.

Table 8.4 summarizes the overall best results for all evaluated strategies without the full
neighborhood low-level operators.

We can see in the results shown in the table that this time GIHH* produced the overall
best results as it could provide best costs for 10 of the 12 instances. HAHA* could not
reach best results for the majority of the instances. However, ALNS2* and CHUANG*
were able to further improve costs for instances 8 and 9 respectively.

Furthermore, tables 8.5 and 8.6 display the mean objective costs (M) and the standard
deviation (S) over all runs per instance achieved without the full neighborhood low-level
operators.

Similar as with the best per instances results, GIHH* produces the best overall mean
objective costs out of the 10 repeated runs for the majority of the instances. Only on

136

8.4. Computational Results

Inst. GIHH* M HAHA* M ALNS* M ALNS2* M CHUANG* M
I 1 2.53 2.53 2.61 2.79 2.61
I 2 1.95 1.95 1.95 2.21 1.96
I 3 2.23 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.58 2.54
I 5 2.2 2.21 2.14 2.32 2.17
I 6 3 3 3 3 3
I 7 2.89 2.93 2.91 2.92 2.9
I 8 2.49 2.52 2.50 2.51 2.5
I 9 2.91 2.93 2.94 2.92 2.92
I 10 2.71 2.75 2.72 2.76 2.69
I 11 2.8 2.82 2.82 2.82 2.79
I 12 2.93 2.94 2.94 2.95 2.94

Table 8.5: Overview on mean objective costs per instance achieved without the full
neighborhood low-level operators.

Inst. GIHH* S HAHA* S ALNS* S ALNS2* S CHUANG* S
I 1 0 0 0.17 0.22 0.17
I 2 0.01 0.01 0.01 0.23 0.06
I 3 0 0 0 0 0
I 4 0 0 0 0.14 0
I 5 0.15 0.15 0.03 0.2 0.11
I 6 0 0 0 0 0
I 7 0.01 0.02 0.02 0.03 0.01
I 8 0.02 0.02 0.03 0.06 0.01
I 9 0.02 0.01 0.02 0.03 0.02
I 10 0.02 0.02 0.03 0.07 0.05
I 11 0.01 0.01 0.01 0.04 0.01
I 12 0.03 0.02 0.03 0.02 0.02

Table 8.6: Overview on standard deviation of the objective costs per instance achieved
without the full neighborhood low-level operators.

137

8. A Hyper-Heuristic Approach for Artificial Teeth Scheduling

Inst. HAHA B HAHA M HAHA S GIHH* B GIHH* M GIHH* S

I 1 2.53 2.57 0.13 2.52 2.53 0.00
I 2 1.94 1.95 0.01 1.94 1.95 0.01
I 3 2.23 2.23 0.00 2.23 2.23 0.00
I 4 2.54 2.54 0.00 2.54 2.54 0.00
I 5 2.12 2.12 0.01 2.11 2.20 0.15
I 6 3.00 3.00 0.00 3.00 3.00 0.00
I 7 2.85 2.86 0.01 2.88 2.89 0.01
I 8 2.46 2.49 0.01 2.45 2.49 0.02
I 9 2.86 2.89 0.01 2.87 2.91 0.02
I 10 2.67 2.69 0.02 2.69 2.71 0.02
I 11 2.76 2.78 0.01 2.79 2.80 0.01
I 12 2.79 2.93 0.05 2.90 2.93 0.03

Table 8.7: Comparison of results achieved with HAHA and GIHH*

instances 5, 10, and 11 ALNS* or CHUANG* achieve better results. The standard
deviation over all runs are close to 0 for the large majority of the instances, again
indicating the robustness of the hyper-heuristics on different random seeds.

As HAHA produced overall best results with inclusion of the full neighborhood low-
level heuristics and GIHH* overall performed best without the consideration of full
neighborhoods, we further directly compare the results produced by these two methods
in Table 8.7. The table displays the best cost (B), mean cost (M), and standard deviation
(S) over all 10 individual runs per instance for both HAHA and GIHH*. Here, best mean
cost results per instance are formatted in boldface.

We clearly see that HAHA overall produces better results, as mean objective cost results
are better compared to GIHH* for all instances except instance 1. Similarly, when
comparing the best costs per instance HAHA can produce the best results for 9 instances,
whereas GIHH* only reaches best costs in 7 cases. We conclude that the inclusion of
the full neighborhood low-level heuristics overall do not have a negative impact on the
performance of the evaluated hyper-heuristics but instead can improve results for the
majority of the instances. A possible explanation for this result could be that many
hyper-heuristic strategies such as GIHH perform an online selection and performance
evaluation of the given low-level heuristics allowing them to automatically detect and
remove inefficient heuristics during the search process.

In Table 8.8, we further compare the results produced with HAHA and the simulated
annealing approach from the previous chapter.

The table displays the best cost (B), mean cost (M), and standard deviation (S) over
all 10 individual runs per instance for both the simulated annealing approach from
the previous chapter (SA), and the HAHA hyper-heuristic. Best mean cost results per
instance are formatted in boldface.

Looking at the mean cost results shown in Table 8.8, we see that HAHA improves results
for instances 5, 7, 9, 10, and 12 compared to simulated annealing. However, the simulated

138

8.4. Computational Results

Inst. HAHA B HAHA M HAHA S SA B SA M SA S
I 1 2.53 2.57 0.13 2.53 2.53 0.00
I 2 1.94 1.95 0.01 1.94 1.95 0.01
I 3 2.23 2.23 0.00 2.23 2.23 0.00
I 4 2.54 2.54 0.00 2.54 2.54 0.00
I 5 2.12 2.12 0.01 2.13 2.14 0.02
I 6 3.00 3.00 0.00 3.00 3.00 0.00
I 7 2.85 2.86 0.01 2.98 3.00 0.01
I 8 2.46 2.49 0.01 2.39 2.42 0.02
I 9 2.86 2.89 0.01 2.97 2.99 0.01
I 10 2.67 2.69 0.02 2.78 2.87 0.06
I 11 2.76 2.78 0.01 2.76 2.77 0.01
I 12 2.79 2.93 0.05 2.89 2.97 0.04

Table 8.8: Comparison of results achieved with simulated annealing and the GIHH
hyper-heuristic.

Inst. LB Exact SA HAHA
I 1 2.08 2.53 2.53 2.53
I 2 1.25 1.96 1.94 1.94
I 3 2.23 2.23 2.23 2.23
I 4 2.54 2.54 2.54 2.54
I 5 1.63 2.10 2.13 2.12
I 6 3.00 3.00 3.00 3.00
I 7 0.50 - 2.98 2.85
I 8 0.15 - 2.39 2.46
I 9 0.59 - 2.97 2.86
I 10 0.53 - 2.78 2.67
I 11 0.34 - 2.76 2.76
I 12 1.02 - 2.89 2.79

Table 8.9: Comparison of the best bounds achieved with exact methods, simulated
annealing, and the HAHA hyper-heuristic.

annealing approach reaches better mean costs for instances 1, 8, and 11. Comparing
the best cost results per instance, we further see that HAHA is able to reach equal
or better results than simulated annealing for all instances except instance 8. This is
further illustrated in Table 8.9, where the best bounds for all instances achieved by exact
methods, simulated annealing and HAHA are summarized.

Table 8.9 displays in Columns 2–5 from left to right, the best lower bound achieved by
exact methods (LB), the best upper bounds achieved by exact methods (Exact), the
best upper bounds achieved with simulated annealing (SA), and the best upper bounds

139

8. A Hyper-Heuristic Approach for Artificial Teeth Scheduling

achieved with HAHA.

We conclude that the evaluated hyper-heuristics which utilize the proposed low-level
heuristics could be successfully used to reach equal or improved results compared to
simulated annealing for the large majority of the instances. Thereby, the methods could
provide improved upper bounds for four realistic benchmark instances.

140

CHAPTER 9
Solver-Independent Modeling for
Workforce Scheduling Problems

Besides the task of scheduling jobs onto machines that we have investigated in previous
chapters, in many real-life factories and other areas there further arises the need of finding
efficient workforce schedules. In this chapter we propose and evaluate a solver-independent
model that can be utilized as an exact approach to a variant of the workforce scheduling
problem. This particular variant can appear in a wide area of application domains such
as industrial manufacturing, transportation or the medical sector.

At the beginning of this chapter we provide some background on the problem and
provide a problem description as well as an overview of related work. Afterwards, we
introduce a solver-independent high-level model for workforce scheduling which does
not rely on solver specific low-level encodings and can therefore be directly used with
solver-independent modeling languages such as MiniZinc [NSB+07]. However, to provide
further insight on how the solver-independent model can be automatically processed for
use with state-of-the-art CP and MIP solvers, we additionally describe the translation
to low-level CP and MIP encodings. Finally, at the end of the chapter we extensively
evaluate our models with the use of state-of-the-art CP and MIP solvers on a well known
set of benchmark instances from the literature.

9.1 Background

Employee scheduling problems arise whenever there is a need for effective management
and distribution of workforce over periods of time. Unfortunately, even basic variants
have been proven to be NP-hard [CL96], and therefore it is a challenging task to find
optimized workforce rosters in reasonable time.

141

9. Solver-Independent Modeling for Workforce Scheduling Problems

Table 9.1: A two-week schedule for seven employees.
Employee Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 D D D N — — — N N N — — D D
2 D D D — — D D D — — N N N N
3 D — — N N N N — — — — D D D
4 — — — — D D D N N N N N — —
5 D D D D D — — D D D D D — —
6 N N N N N — — D D D — — D D
7 N N N — — D D — — — — D D N

The main aim of workforce scheduling (WS) is to determine a unique schedule for each
employee over a fixed time period subject to shift constraints and working time constraints.
The problem variant we study in this chapter tackles a standard problem arising in many
areas (e.g. Nurse Rostering), where we have to schedule multiple different employees
subject to different constraints. In our evaluation we concentrate on the employee
scheduling instances introduced by [CQ14]. According to the authors, those instances
were designed to describe realistic and challenging staff scheduling problems while still
being straightforward to use. The included scheduling periods range from one week up to
one year, requiring up to 180 employees and 32 shift types to be assigned. Furthermore,
these instances have been used as a benchmark for many related publications in the
literature (e.g. [BC14, DMW19, MW17, RAL17, Sme18]). Table 9.1 shows an example
WS schedule for seven employees using night (N) and day (D) shift assignments over a
scheduling horizon of two weeks.

We define two solver-independent model variants for WS, and evaluate them using a
CP and a Mixed-Integer Programming (MIP) solver. One that is rather direct, where
each constraint is separately stated and a second one that attempts to model as many as
possible of the regulations using a single regular constraint ([Pes04]), which models the
regulations as a deterministic finite automaton. We compare the variations of the models
experimentally using the two solvers, and explore good search strategies to be used with
the CP solver. To evaluate our models, we experimented with the well known standard
benchmarks that have been used to evaluate state-of-the-art methods ([CQ14, BC14]).
We show that our solver-independent models are able to achieve competitive results and
can reduce the optimality proof runtime for several instances.

We first give an informal description of the workforce scheduling problem, before we
discuss related literature in Section 9.3 and afterwards provide a direct solver-independent
model in Section 9.4. Then, in Section 9.5 we give preliminaries on global constraints
that we later use in Section 9.6 to introduce an alternative model using such constraints.
Further details on how the proposed solver-independent models can be automatically
translated to CP and MIP encodings are given in Section 9.7. Finally, we present
computational results in Section 9.8.

142

9.2. Problem Description

9.2 Problem Description
To describe the requirements of workforce scheduling we assume the following parameters:

• A set of employees E.

• The number of days in a week w which is typically seven.

• A number of days in the scheduling horizon h and a set D = {1, . . . , h}. We assume that h
is a multiple of w, that is the length of the schedule is exactly h

w full weeks.

• A set of all shift types T . We include another (artificial) shift type O representing a day
off, and define T + = T ∪ {O}. The length in minutes of each type t is specified as lt.

We assume that schedules begin with the first normal working day of the week, and we
is the length of the weekend, so the last we days of each week of length w are considered
as weekend days. In the variant we investigate in this chapter we have we = 2 for 7-day
weeks w = 7.

9.2.1 Single Employee Considerations
The principal decisions of workforce scheduling are assignments of shifts (including days
off) to each employee e for each day d.
Common restrictions on the sequence of shifts for each employee are:

• A set of days that employee e must be assigned a day off: Oe

• A minimum number of minutes that employee e has to work in total: bmin
e

• A maximum number of minutes that employee e can work in total: bmax
e

• A maximum number of shifts of type t that employee e can work in total: mmax
e,t

• A minimum number of consecutive working shifts that employee e must work: cmin
e

• A maximum number of consecutive working shifts that employee e may work: cmax
e

• A minimum number of consecutive days off that must be assigned to employee e: omin
e

• A maximum number of weekends that employee e may work on: amax
e

• A set of forbidden sequences of two consecutive shifts (t1, t2) ∈ F , that is, directly after a
shift of type t1 the employee cannot be assigned a shift of type t2

Another consideration, not a constraint, is the notion of preferred shifts. We consider
two kinds of preferences:

• A positive preference for employee e on day d to take shift type t is defined by a penalty
qe,d,t which accrues if this is not the case.

• A negative preference for employee e on day d to not take shift type t is defined by a
penalty pe,d,t if the employee is assigned that shift type on that day.

143

9. Solver-Independent Modeling for Workforce Scheduling Problems

9.2.2 Group Considerations
The principal group restriction of workforce scheduling is that we have a desired number
of shifts ud,t of each shift type t for each day d. In the case of the workforce scheduling
problem variant we investigate in this chapter these restrictions are soft where we accrue
an undercover penalty vmin

d,t for each employee under ud,t assigned to shift type t on day
d, and we accrue an overcover penalty vmax

d,t for each employee over ud,t assigned to shift
type t on day d.

9.3 Related Work
The workforce scheduling variant we model in this chapter was first described by [CQ14]
where the authors also provide a number of challenging and realistic benchmark instances.
The same authors propose an integer programming (IP) formulation in addition with a
branch and price algorithm from [BC14] to find optimal solutions to small to medium-
sized instances. An alternative IP formulation that uses network flows to model the
minimum and maximum consecutive shifts and day off constraints has been proposed
by [Sme18]. This approach has been successfully used to reduce the required runtime
to prove optimality for the smaller instances. In [DMW19] a Max-SAT formulation is
provided and several SAT encodings that can be used to approach the problem using
maximum satisfiability solvers are described.

Several metaheuristic solution methods have been proposed to approach the problem. An
approach from [BC14] which is based on variable neighborhood search and ejection chains
was used to provide the first solutions for the largest instances. The upper bounds for
the largest instances could be further improved by hybrid approaches [MW17, RAL17].
Recently, another approach based on simulated annealing has been applied [KM20].
In [KLSD18] the authors study how relaxed formulations of the problem influence the
solution quality of a large neighborhood search based approach.

To the best of our knowledge we investigate for the first time an exact approach using CP
based modeling for this particular variant of the workforce scheduling problem. However,
as exact solution methods based on CP were extensively investigated for related nurse
rostering problems in the past, we in the following give a short overview of previous
literature on CP methods for nurse rostering.

One of the earlier constraint-based solution approaches to a real-life nurse scheduling
problem was proposed in [DFM+95], where the aim is to find day to day shift assignments
for each nurse considering several constraints such as the number of work hours per year,
day-off requirements, and specific shift patterns on weekends. Another nurse scheduling
problem variant imposing strict cover requirements and several soft constraints regarding
shift patterns was investigated in [WHFP95]. The authors proposed a constraint model
which they utilized with CP solving technology to tackle the problem.

Based on the experiences with nurse rostering problems that appear at german hospitals,
an automatic rostering solution based on constraint optimization was studied in [MaH01].

144

9.4. Direct Model

The proposed approach integrated a branch-and-bound procedure together with local
search to provide solutions that consider a variety of constraints such as rest time
constraints and requirements regarding preferred sequences of shifts. A CP model and
search strategy to solve staff scheduling problems appearing in the health-care area
was studied in [BGP03]. The authors modeled several requirements regarding shift
demands, workload, and feasible shift patterns with global constraints to efficiently solve
a benchmark problem set originating from several hospitals with CP solvers.

Furthermore, a CP approach as well as a hybrid approach that combines CP and local
search to solve a real-life hospital rostering problem that arises at the department of
Neurology at the Udine University hospital was introduced in [CDGD06]. The work
proposed a CP formulation to model a variety of domain-specific constraints which was
then utilized by a CP solver to generate feasible solutions for the investigated problem
instances. In [MBL09], an overview of modeling techniques for nurse rostering problems
using soft global constraints was given, including several ways of expressing shift pattern
requirements with deterministic finite automatons. Another variant of the nurse rostering
problem was tackled using CP in [SCBM13]. This study modeled real-life problems that
appear at chilean mid-size health care centers as constraint optimization problems and
utilized CP solving technology in a series of computational experiments.

9.4 Direct Model
In this section we propose a direct solver-independent model that considers each of the
previously described constraints individually.

The key decisions are:

• Se,d ∈ T + for employee e which shift type is assigned for day d.

We now present the definition of each individual constraint:

Employees must have a day off on certain days.

Se,d = O, ∀e ∈ E, d ∈ Oe (9.1)

Minimum and maximum working time.

bmin
e ≤

d∈D

lSe,d
, ∀e ∈ E (9.2)

d∈D

lSe,d
≤ bmax

e , ∀e ∈ E (9.3)

Note that the variable lSe,d
is indexed by the variable Se,d rather than a constant. This

is realized using the element constraint (see next section on global constraints).

145

9. Solver-Independent Modeling for Workforce Scheduling Problems

The maximum number of shifts for each type that can be assigned to an
employee.

d∈D

[Se,d = t] ≤ mmax
e,t , ∀e ∈ E, t ∈ T (9.4)

Note the use of reification here, the expression Se,d = t evaluates to 1 if in the solution
Se,d = t and 0 otherwise.

Minimum consecutive working shifts.

(Se,d = O∧Se,d+1 ̸= O) → Se,d+s ̸= O, ∀e ∈ E, s ∈ {2, . . . , cmin
e }, d ∈ {1, . . . , h−s} (9.5)

Maximum consecutive working shifts.

d+cmax
e

j=d

[Se,j ̸= O] ≤ cmax
e , ∀e ∈ E, d ∈ {1, . . . , h − cmax

e } (9.6)

Minimum consecutive days off.

(Se,d ̸= O∧Se,d+1 = O) → Se,d+s = O, ∀e ∈ E, s ∈ {2, . . . , omin
e }, d ∈ {1, . . . , h−s} (9.7)

Maximum number of working weekends.

x∈{1,..., h
w

}
∃s∈{0,...,we−1}[Se,xw−s ̸= O] ≤ amax

e , ∀e ∈ E (9.8)

Disallowed shift sequences.

Se,d = t1 → Se,d+1 ̸= t2, ∀e ∈ E, d ∈ {1, . . . , h − 1}, (t1, t2) ∈ F (9.9)

Shift Preferences The shift preferences objective is defined by

prefer =
e∈E d∈D t∈T

qe,d,t[Se,d ̸= t] + pe,d,t(Se,d = t) (9.10)

If there are no shift preferences we simply set prefer = 0.

Cover requirements. The cover requirements are defined by

yd,t = max(ud,t −
e∈E

[Se,d = t], 0), ∀d ∈ D, t ∈ T

zd,t = max(
e∈E

[Se,d = t] − ud,t, 0), ∀d ∈ D, t ∈ T

cover =
d∈D t∈T

(vmin
d,t yd,t + vmax

d,t zd,t)

(9.11)

146

9.5. Global Constraints

Objective The objective of the direct model is simply

minimize prefer + cover (9.12)

9.5 Global Constraints
Global constraints ([vHK06]) capture complex relationships between variables, typically
by explicitly representing a subproblem. For example, the alldifferent global constraint
takes as input a set of integer variables and imposes that no two variables may take
the same value. Global constraints serve several purposes: First, they simplify the
modeling process through more expressive constraints. Second, they explicitly state the
relationship between variables, which is in some cases beneficial as specialized algorithms
may be developed that provide stronger pruning power compared to decomposing the
global constraint into a series of simpler constraints that capture the same meaning.
In this way, the structure of the subproblem is preserved and may be exploited in CP
solvers. Furthermore, global constraints enable the implementation of solver specific
decompositions.

In the following text, we define global constraints that are relevant for this chapter, and
discuss their use within the model to improve the solving process. We note that only the
necessary syntax of the constraints will be described without detailing the underlying
algorithms used within solvers.

9.5.1 Global Constraint Definitions
The element constraint

models accessing entries of an array using variables for the index rather than constants.
This is written as follows:

element(y, B, x), (9.13)

where y is an integer variable, B is an array of values, and x is a numeric variable.
The element constraint enforces that x takes the y-th value of B, i.e., x = By. For
example, given an element constraint element(y, B = [5, 4, 10, 3, 5], x), if during
search the variable assignment y = 3 takes place, the constraint enforces the assignment
x = By = B3 = 10.

The global_cardinality constraint

specifies that certain values must appear a given number of times among a set of variables.
The syntax is as follows:

global_cardinality(X, C, E), (9.14)

147

9. Solver-Independent Modeling for Workforce Scheduling Problems

where X and E are arrays of integer variables, and C is an array of integers (constants).
The constraint requires that the value Ci must be present Ei times among the variables
Xi. Formally, let [x = a] represent the expression that evaluates to one if variable x = a
and zero otherwise, count(X, a) = [{|x = a| : x ∈ X}], then global_cardinality
constrains that ∀i ∈ {1, 2, . . . , |C|} count(X, Ci) = Ei.

The global_cardinality_low_up

constraint generalizes the previous global constraints by allowing an upper and lower
bound on the number of times certain values may be assigned to variables. The syntax is
as follows:

global_cardinality_low_up(X, C, L, U) (9.15)

Here X is an array of integer variables, and C, L, and U are arrays of integers. The
global_cardinality_low_up constraint imposes that, for each i, the value Ci may
appear at least Li times and at most Ui times among the variable assignments of
the variables x ∈ X. Formally, as before, let |x = a| represent the expression that
evaluates to one if variable x = a and zero otherwise, count(X, a) = |{[x = a] : x ∈
X}|, then global_cardinality_low_up constrains that ∀i ∈ {1, 2, . . . , |C|} Li ≤
count(X, Ci) ≤ Ui.

For example, for global_cardinality_low_up([x1, x2, x3], [0, 1, 3], [0, 2, 1], [0, 3, 1])
effectively states that the variables xi ̸= 0, at least two xi = 1, and exactly one xi = 3.

The regular constraint

defines constraints in the form of automata, i.e., state-transition tables. Traditionally,
automata are defined over strings. In this case, each character of the string is represented
by an integer variable. The constraint is considered violated if the string given by the
integer variables is not accepted by the specified automata, and satisfied otherwise.
The advantage of using the regular constraint is first, the ease of modeling complex
constraints, and second, it has been shown that the representation is convenient for
translation into integer programming. In the following sections we use the regular
constraints by specifying the automata and make use of MiniZinc to translate the
automata into the specification required by the target solver.

9.6 Modeling with Global Constraints

This section describes how shift requirements can be represented by global cardinality
constraints and further presents how consecutive shift constraints can be modeled together
with the use of deterministic finite automata.

148

9.6. Modeling with Global Constraints

9.6.1 Cardinality Constraints
Several parts of the workforce scheduling problem are counting the number of occur-
rences of various shift types. Global cardinality constraints can reason about the counts
simultaneously. As this can give solving advantages, we use them to model shift- and
cover-requirements.

Shift Requirements using Cardinality Constraints

We can enforce lower and upper bounds on the shifts of each type simultaneously, replacing
Equation (9.4) by the following equation:

global_cardinality_low_up([Se,d|d ∈ D], T, [0|t ∈ T], [mmax
e,t |t ∈ T]), ∀e ∈ E

(9.16)

Cover Requirements using Cardinality Constraints

The cover requirements can be modeled directly using global cardinality constraints. We
use the cardinality constraint to count the number of shifts of type t on day d with
auxiliary variables Cd,t as

global_cardinality([Se,d|e ∈ E], T, [Cd,t|t ∈ T]), ∀d ∈ D (9.17)

and redefine the soft cover penalty (Equation 9.11) as

cover =
d∈D t∈T

(vmax
d,t · max(0, (Cd,t − ud,t)) + vmin

d,t · max(0, (ud,t − Cd,t))) (9.18)

9.6.2 Modeling Shift Sequence Constraints with Finite Automata
Given that the principle constraints of the problem are defined on the possible shift
sequences that an employee can take, finite automata are an obvious approach to model
allowable shift sequences. Therefore, in this section we build separate automata for each
employee e that can be used within regular global constraints.

We note that similar constraints for a related rotating workforce scheduling problem have
been modeled using deterministic finite automata in [MSS18]. In the following we adapt
the model from [MSS18] to be used for the workforce scheduling problem we study in
this chapter.

The states of each automaton keep track of the last encountered shift type to enforce
the forbidden shift sequence constraint. Additionally, information about how many
consecutive shifts or day off assignments have been recently processed are encoded
in the states to enforce the min/max consecutive shifts and min consecutive days off
constraints. The idea is that the automaton only accepts a given shift sequence if all
sequence-dependent constraints (Equations 9.5, 9.6, 9.7, 9.9) are fulfilled and thereby
replaces these constraints from the direct model.

149

9. Solver-Independent Modeling for Workforce Scheduling Problems

We now model a single automaton for each employee that will process the sequence of
shift and day off assignments for the employee. For each employee e ∈ E we define an
automaton Ae with Q = 1 + (cmin

e − 1) · |T | + omin
e + cmax

e · |T | states. In the following we
enclose states with brackets to avoid confusion with other parameters. Each automaton
defines an artificial start state [S] as well as day off states [Oi], i ∈ {1, . . . , omin

e } and
shift states [Nt,i], t ∈ T, i ∈ {1, . . . , cmax

e }. Additionally, we need for each shift type
special states [N∗

t,i], t ∈ T, i ∈ {1, . . . , cmin
e − 1} to handle corner cases with the minimum

consecutive shift assignments constraint at the beginning of the scheduling horizon. All
states except starting state [S] are accepting states.

State [Oi] represents that we have taken the last i shifts as days off while State [Nt,i]
represents that the last i shifts have been working shifts with the last shift of type t.
Similar to state [Nt,i], state [N∗

t,i] represents that the last i shifts have been working
shifts with the last shift of type t. However, a state [N∗

t,i] is only entered in a block of
working days that is scheduled at the immediate beginning of the scheduling horizon (∗
states are necessary to ignore the minimum consecutive working days constraint at the
beginning of the scheduling horizon).

We define the transition function d as follows (any missing transitions lead to a non-
accepting error state):

• [S]: If a day off (O) is encountered go to state [Oomin
e

], on a shift t ∈ T and cmin
e > 1

go to state [N∗
t,1]. If cmin

e = 1 go to state [Nt,1] instead.

• [N∗
t1,i]: If O is encountered go to [O1], on a shift t2 ∈ T go to either [N∗

t2,i+1] if
i + 1 < cmin

e or otherwise to [Nt2,cmin
e

] unless (t1, t2) ∈ F (if (t1, t2) ∈ F neither a
transition to [N∗

t2,i+1] nor a transitiion to [Nt2,cmin
e

] is possible).

• [Oi]: If O is encountered go to [Oi+1] if i + 1 ≤ omin
e otherwise go to [Oomin

e
]. On a

shift t ∈ T go to [Nt,1] unless i < omin
e .

• [Nt1,i]: If O is encountered go to [O1] unless i < omin
e . On a shift t2 ∈ T go to

[Nt2,i+1] unless i = cmax
e ∨ (t1, t2) ∈ F .

Figure 9.1 shows an example automaton for an employee e and shifts T = {E, L} where
cmin

e = 2, cmax
e = 4, omin

e = 2, F = {(L, E)}. For simplicity, we write the shift accepting
states as [Ei] and [Li] instead of [NE,i] and [NL,i] in the example.

9.7 Translation for Solving
The high-level solver-independent models we have specified in previous sections can be
directly used with solver-independent modeling languages such as MiniZinc [NSB+07].
Such high-level modeling tools automatically translate the solver-inpendent model into
low-level encodings which are then solvable by an underlying solver technology. In this
section we describe possible low-level translations for CP and MIP solvers.

150

9.7. Translation for Solving

Sstart

E∗
1

L∗
1

O1 O2 E1 E2 E3 E4 L1 L2 L3 L4

E

L

O

O

O

E

L

E

L

O

E

L

O

E

L

O

L

O

L

O

L

O

O

E

L

O

L

Figure 9.1: Example automaton for an employee e and shifts T = {E, L} where cmin
e = 2,

cmax
e = 4, omin

e = 2, F = {(L, E)}. An example sequence that would be accepted by this
automaton would be for instance EEELLLOOLLLL whereas LLLOOEOOLE would
be forbidden due to the minimum consecutive shift assignments and forbidden shift
successor constraints.

9.7.1 Constraint Programming

The high-level model variants we have specified above are almost directly solvable by CP
solvers, therefore we only need to examine the low level form of a number of equations.

Equations (9.2) and (9.3) use the ability to look up an array by a given variable index.
The low level translation of Equation (9.2) for one e ∈ E is:

element(Se,d, l, wtd), d ∈ D

wt =
d∈D

wtd

bmin
e ≤ wt

(9.19)

For this translation we use an integer auxiliary variable wt which captures the total
working time and auxiliary variables wtd, ∀d ∈ D that capture the working time on each
individual day in the schedule. The translation for Equation (9.3) is done similarly.

Many constraints use reification of constraints to express the constraint. A constraint of
the form b ↔ (Se,d = t) associates a 0/1 variable b with the expression. If the expression
holds b is 1, otherwise it is 0. Note the use of common sub expression eliminations means
that we will only create one 0/1 variable for each possible reified expression.

151

9. Solver-Independent Modeling for Workforce Scheduling Problems

Equation (9.6) for one e ∈ E, t ∈ T is for example translated as

bj ↔ (Se,j ̸= O), d ≤ j ≤ d + cmax
e

ss =
d+cmax

e

j=d

bj

ss ≤ cmax
e

(9.20)

Implication constraints are translated into clauses. For example Equation (9.7) for some
e ∈ E, s ∈ {2, . . . , omin

e }, d ∈ {1, . . . , h − s} is translated as

b1 ↔ Se,d = O

b2 ↔ Se,d+1 = O

b3 ↔ Se,d+s = O

b1 ∨ ¬b2 ∨ b3

(9.21)

Existentially quantified expressions are also translated using clauses. For example
Equation (9.8) for some e ∈ E is translated as

bd ↔ Se,d ̸= O, d ∈ D

ebx ∨ ¬bs, x ∈ {1, . . . ,
h

w
}, d ∈ {xw − we + 1, . . . , xw}

¬ebx ∨
d∈{xw−we+1,...,xw}

bs

ss =
x∈{1,..., h

w
}
ebx

amax
e ≥ ss

(9.22)

Cardinality constraints and automata constraints are directly representable in CP.

9.7.2 Integer Programming
In the integer programming model the decision variables Se,d are replaced by 0/1 variables
xe,d,t ↔ (Sed = t), t ∈ T , very similar to how the reified expressions are treated in CP.
The decision variables Se,d disappear from the model altogether. Note that we do not
introduce xe,d,O to represent the fact that employee e on day d has a day off, but instead
represent this implicitly as 1 − t∈T xe,d,t.

In order to assert that each person only takes a single shift on any day, the following
constraints are added to the model:

t∈T

xe,d,t ≤ 1, e ∈ E, d ∈ D (9.23)

152

9.7. Translation for Solving

Equations (9.2) and (9.3) use the xe,d,t variables to encode the element constraint. The
low level translation for one e ∈ E then is

wt =
d∈D t∈T

xe,d,t · lt

bmin
e ≤ wt ≤ bmax

e

(9.24)

Implications are converted to inequalities. For example Equation (9.7) for some e ∈ E,
s ∈ {2, . . . , omin

e }, d ∈ {1, . . . , h − s} is translated as

(1 − xe,d,O) + xe,d+1,O ≤ 1 + xe,d+s,O (9.25)

Existential quantifications are also translated to inequalities, though we need a new
variable to encode the result of the existential quantification. For example Equation (9.8)
for some e ∈ E is translated as

ebx ≥ (1 − xe,d,O), ∀x ∈ {1, . . . ,
h

w
}, d ∈ {xw − we + 1, . . . , xw}

ebx ≤
d∈{xw−we+1,...,xw}

(1 − xe,d,O)

ss =
x∈{1,..., h

w
}
ebx

amax
e ≥ ss

(9.26)

Global cardinality constraints are encoded using sums over the xe,d,t variables. For
example, Equation (9.16) for e ∈ E produces exactly the same translation as that of
Equation (9.4).

Automata constraints are encoded to integer programming using network flow encodings
that make use of the xe,d,t variables. For details on these network flow encodings see
e.g. [CGR07, BSTW16].

Alternative Network Flow Encoding for Series Constraints

An alternative network flow based encoding of the minimum and maximum consecutive
working days/day off constraints (Equations (9.5), (9.6), (9.7)) was recently proposed
by [Sme18]. The encoding has similarities to the network flow encoding of the automata
constraints, but does not encode the disallowed shift sequence constraints. However, it
uses fewer arcs and nodes to encode the consecutive shift/day off constraints. In our
experimental evaluation we examine this encoding as an alternative to the automata
based constraint encoding.

153

9. Solver-Independent Modeling for Workforce Scheduling Problems

9.7.3 Working Weekends Reformulation
The MIP translations of the solver-independent model from Section 9.7 are based on
previously proposed models from [CQ14] and a network flow reformulation from [Sme18].
However, we slightly reformulate the working weekend constraint.

Using additional binary auxiliary variables ke,i, ∀e ∈ E, i ∈ {1, . . . , h
w }, we can reformulate

the MIP translation of Equation (9.8) as:

ke,i ≥
t∈T

xe,d,t, ∀i ∈ {1, . . . ,
h

w
}, d ∈ {xw − we + 1, . . . , xw}, e ∈ E

i∈{1,..., h
w

}
ke,i ≤ amax

e , e ∈ E
(9.27)

This is different to the existing formulation of the working weekends constraint, as
multiple constraints are defined for each weekend. Instead of Equation 9.27 previous
formulations from [CQ14] and [Sme18] have used:

ke,i ≤
t∈T,d∈{xw−we+1,...,xw}

xe,d,t ≤ 2ke,i ∀i ∈ {1, . . . ,
h

w
}, e ∈ E

i∈{1,..., h
w

}
ke,i ≤ amax

e , e ∈ E
(9.28)

9.8 Computational Results
In this section, we provide the results of our experimental study. We implemented all
models using the solver-independent MiniZinc constraint modeling language ([NSB+07])
and evaluated the results with state-of-the-art CP and integer programming solving
technology.

For the CP model we simply implemented the solver-independent high-level model and
thereby utilized the automatic translation into low-level CP encodings provided by
MiniZinc. However, for the MIP model we did not utilize the linearization library of
MiniZinc to automatically linearize the high-level constraint model for use with MIP
solvers in our final experiments. Instead, we manually performed the translations into
a linear model that we described in previous sections, as some of the problem specific
encodings are not included in the MiniZinc library and early experiments indicated that
it was more efficient to manually encode the constraints on the evaluated benchmark
instances.

All benchmark experiments on the workforce scheduling problem have been performed
using an Intel Xeon E5345 2.33 GHz CPU with 48 GB RAM. We evaluated our models
with the use of the 24 benchmark instances from [CQ14], which according to the authors
describe realistic workforce scheduling instances, and have been used as a benchmark in

154

9.8. Computational Results

many related publications. In the following, we first present the results achieved with CP
solving technology and afterwards give the detailed results produced with a MIP solver.
For the CP experiments we used Chuffed 0.10.3 ([Chu11]), whereas the MIP results have
been achieved with Gurobi 8.1.0 ([GO20]).

9.8.1 Search Strategies
We define several variable and value selection strategies that we use in our experiments:

Variable Selection Variable selection is critical for reducing the search space for any
combinatorial problem. We need to balance the criteria of driving quickly towards failure,
with getting the most possible inference from the solver. The key decisions of the model
are the schedule variables Se,d. We define our variable selection over these variables
unless stated otherwise. Ties are broken by input order.

• default: The solver’s default variable selection strategy.

• rnd: Randomly select a variable1.

• worker: Select all variables in chronological order, or in other words assign the complete
schedule for each employee before continuing with the next employee
(i.e.: S1,1, . . . , S1,h, S2,1, . . . , S2,h, . . . , S|E|,h).

• day: Process one day after the other and assign shifts for each employee on this day before
moving on to the next day (i.e. S1,1, . . ., S|E|,1, S2,1, . . ., S|E|,2, . . ., S|E|,h).

• wd: First process assignments for day one (i.e. S1,1, . . . , S|E|,1) and then continue with
worker.

• ff : Use a first fail strategy (choose variables with the smallest domains first).

Value Selection

• default: The solver’s default value selection strategy.

• val1: First assign an off shift, then assign all shifts chronologically.

• val2: First assign all shifts chronologically, then assign an off shift.

• val3: First assign an off shift, then assign all shifts in reverse chronological order.

• val4: First assign all shifts in reverse chronological order, then assign an off shift.

1The random variable selection is currently only supported with Chuffed in MiniZinc. Therefore, we
evaluated this selection strategy only with Chuffed and could not use it to specify branching priorities for
Gurobi.

155

9. Solver-Independent Modeling for Workforce Scheduling Problems

Search Strategy Direct Model Automaton Model
solver default 10 9

day/val1 10 9
day/val2 17 16
day/val3 9 10
day/val4 13 12

ff/val1 11 10
ff/val2 11 10
ff/val3 10 11
ff/val4 12 11

rnd/val1 10 10
rnd/val2 9 10
rnd/val3 10 9
rnd/val4 9 10
wd/val1 11 9
wd/val2 11 12
wd/val3 11 11
wd/val4 12 12

worker/val1 10 10
worker/val2 10 12
worker/val3 11 11
worker/val4 12 11

Table 9.2: This table shows the number of instances for which a feasible solution could
be found within a time limit of 10 minutes. The first column denotes which variable
and value selection strategies have been used, while the second and third column display
the number of acquired feasible solutions using the direct and the automaton based CP
model.

Constraint Programming Results

In a first set of experiments we evaluated all possible combinations of the previously
described variable and value selection heuristics (a total of 20 combinations without the
default strategies) within a 10 minute time limit. Additionally, we activated the free
search parameter for Chuffed which allows the solver to switch between the given search
strategy and the activity based search.

Table 9.2 displays the number of instances for which a feasible solution could be found
within 10 minutes using the direct model as well as the model that uses automata to
capture shift constraints (both models use global cardinality constraints to state cover
and shift requirements). As we can see both formulations give similar results and there
is no clear winner for all search strategies.

As no variable/value selection stood out in the results of the initial experiments, we decided
to perform additional experiments with those search strategy and model combinations
that were able to produce at least 12 feasible solutions within 10 minutes.

156

9.8. Computational Results

Instance D+day/val2 D+day/val4 D+ff/val4 D+wd/val4 D+worker/val4

I1 607* 607* 607* 607* 607*
I2 2262 957 1670 1152 1064
I3 1943 1538 1454 2658 1368
I4 2801 2774 2583 3082 2871
I5 3914 4058 4151 3807 3874
I6 6608 6666 7082 7307 6384
I7 6672 6670 6764 5955 6401
I8 11479 11295 12215 11580 11888
I9 8108 9242 8156 8656 7927

I10 17539 17774 16731 18327 17358
I11 45147 30815 43244 45364 45469
I12 — — — — —
I13 — — — — —
I14 26969 — — — —
I15 38054 — — — —
I16 16758 18217 16987 29505 17606
I17 66066 — — — —
I18 43340 47741 — 48800 48904
I19 82128 — — — —
I20 271968 289287 — — —
I21 — — — — —
I22 — — — — —
I23 — — — — —
I24 — — — — —

Table 9.3: This tables shows the best results achieved for each instance using the direct
CP model with Chuffed and selected search strategies. A * denotes proven optimal
results. Results formatted in boldface highlight the overall best results achieved using
Chuffed (see also Table 9.4).

Tables 9.3 and 9.4 present the final results achieved with Chuffed and the selected search
strategies within a time limit of one hour.

The results show that among the evaluated search strategies the day variable selection
strategy combined with the val2 value selection strategy is the most robust in our
experiments as it can provide feasible solutions for 18 out of the 24 instances. Furthermore,
this search strategy produced the best results in our CP experiments for 7 of the instances.
However, for some problem instances other search strategies were able to produce better
results. The model including the regular constraint produced the overall best results for
8 of the instances in our experiments, while experiments with the direct model produced
5 overall best results. For 6 of the instances both the regular- and the direct model
produced the best results.

Integer Programming Results

In the literature two MIP models have been proposed to solve the workforce scheduling
benchmark instances from [CQ14]: A direct formulation was described by [CQ14] (Di-

157

9. Solver-Independent Modeling for Workforce Scheduling Problems

Instance R+day/val2 R+day/val4 R+wd/val2 R+wd/val4 R+worker/val2

I1 607* 607* 607* 607* 607*
I2 1054 1049 1150 1151 1058
I3 1874 1646 1762 1648 1759
I4 2789 2882 3174 3420 2968
I5 3510 3522 4215 4928 3708
I6 6013 6702 7614 6578 6272
I7 6534 6272 6573 6764 6797
I8 12373 11608 12373 12383 11861
I9 9138 8694 7896 8654 8760

I10 16968 17232 17622 17669 16466
I11 22774 23918 25537 26281 21124
I12 — 30151 31662 — —
I13 — — — — —
I14 16195 13336 — 18199 17240
I15 38054 — — — —
I16 14698 15169 14955 — 14469
I17 66066 — — — —
I18 43340 47741 — 48901 —
I19 82128 — — — —
I20 271968 289287 — — —
I21 — — — — —
I22 — — — — —
I23 — — — — —
I24 — — — — —

Table 9.4: This tables shows the best results achieved for each instance using the CP
model that incorporates modeling the block series constraints as a regular constraint
with the chuffed solver and selected search strategies. A * denotes proven optimal results.
Results formatted in boldface highlight the overall best results achieved using chuffed
(see also Table 9.3).

rect) and a network flow reformulation of the minimum/maximum consecutive working
shift constraints was proposed by [Sme18] (NetworkFlow). We experimentally compare
the existing models with our direct solver-independent model (NewDirect), the solver-
independent model using the automata based global constraints (NewAutomata), and
the solver-independent model that uses a network flow reformulation that is similar to
the one from [Sme18] (NewNetworkFlow). Note that the main difference between the
original formulations (Direct, NetworkFlow) and the formulations from this work (NewDi-
rect, NewNetworkFlow) lies in the reformulation of the working weekends constraint as
described in Section 9.7.3.

We implemented all five formulations and conducted experiments for instances 1–20 with
Gurobi 8.1.0 ([GO20]) (Initial experiments with instances 21–24 caused out of memory
exceptions on our benchmark machine).

In addition to the default search strategy, Gurobi supports partial programming of the
search process using branching priorities. Therefore, we first evaluated all supported

158

9.8. Computational Results

Search Strategy Direct NewDirect NetworkFlow NewNetworkFlow NewAutomata

solver default 12 10 12 12 5
day/val1 13 9 10 11 4
day/val2 9 9 9 8 5
day/val3 10 11 9 9 4
day/val4 13 10 11 11 4

ff/val1 12 10 10 11 4
ff/val2 9 8 9 8 4
ff/val3 10 10 9 8 4
ff/val4 13 9 10 11 5

wd/val1 13 9 10 11 6
wd/val2 9 9 9 8 4
wd/val3 10 10 9 8 5
wd/val4 13 9 11 11 4

worker/val1 13 9 11 11 4
worker/val2 9 9 9 8 4
worker/val3 10 10 9 10 4
worker/val4 15 11 13 14 4

Table 9.5: This table presents the number of best cost solutions found using the same
MIP model with different branching strategies for Instances 1–20. Column 1 denotes the
evaluated variable and value selection strategy, while columns 2–5 display the number of
achieved best cost solutions.

variable- and value selection combinations from Section 9.8.1 using instances 1–20 using
a 10-minute runtime limit in an initial set of experiments. Table 9.5 gives an overview
on the number of best cost solutions produced with the different search strategies within
a time limit of 10 minutes.

We can see in the results shown in Table 9.5 that the worker/val4 strategy produced best
results for the most instances when used with the Direct, NetworkFlow, and NewNet-
workFlow MIP models, whereas the NewAutomata model produced the most best-cost
solutions using the wd/val1 strategy. Therefore, we evaluated these branching strategies
in addition to the solver’s default branching strategy in our final experiments with these
models.

The NewDirect model achieved best cost solutions for 11 instances with both the day/val3
and worker/val4 branching strategy in the initial set of experiments. In this case we
decided to evaluate the day/val3 strategy in addition to the default branching strategy
in the final experiments, as it produced on average a better solution quality than strategy
worker/val4 in the initial set of experiments.

The final experiments were then conducted using the selected branching strategies plus
the default branching strategy of Gurobi under a runtime limit of one hour. Table 9.6
displays the final results achieved with the direct MIP formulations.

We can see in the results that overall the Direct and NewDirect models deliver similar
results. However, in some cases the Direct formulation produced better bounds than
the NewDirect formulation and vice versa (e.g. instances 8, 13, 14, 17). Using a custom
branching strategy seems to improve results with the Direct model in some cases (e.g.

159

9. Solver-Independent Modeling for Workforce Scheduling Problems

D
irect

N
ew

D
irect

D
irect+

w
orker/val4

N
ew

D
irect+

day/val3

Instance
LB

U
B

R
untim

e
LB

U
B

R
untim

e
LB

U
B

R
untim

e
LB

U
B

R
untim

e
I1

607
607

0.38
607

607
0.35

607
607

0.38
607

607
0.35

I2
828

828
6.85

828
828

4.30
828

828
4.45

828
828

7.20
I3

1001
1001

11.99
1001

1001
7.72

1001
1001

11.56
1001

1001
7.01

I4
1716

1716
201.01

1716
1716

172.82
1716

1716
414.07

1716
1716

432.69
I5

1143
1143

754.80
1143

1143
469.56

1143
1143

476.14
1143

1143
330.51

I6
1950

1950
218.30

1950
1950

405.31
1950

1950
513.09

1950
1950

324.96
I7

1056
1056

776.79
1056

1056
1042.95

1056
1056

1121.41
1056

1056
1315.08

I8
1284

1405
3600

1280
1500

3600
1279

1402
3600

1276
1407

3600
I9

406
439

3600
413

439
3600

439
439

1165.44
406

439
3600

I10
4631

4631
126.34

4631
4631

487.32
4631

4631
133.38

4631
4631

888.38
I11

3443
3443

50.08
3443

3443
40.35

3443
3443

53.41
3443

3443
216.27

I12
4040

4043
3600

4040
4040

1730.45
4040

4040
2690.11

4040
4141

3600
I13

1345
3094

3600
1343

2957
3600

1343
3308

3600
1336

—
3600

I14
1275

1279
3600

1275
1284

3600
1278

1280
3600

1274
1282

3600
I15

3811
5681

3600
3811

5695
3600

3812
6776

3600
3804

5585
3600

I16
3216

3322
3600

3215
3419

3600
3217

3228
3600

3213
3519

3600
I17

5734
5848

3600
5733

5757
3600

5734
5848

3600
5734

5848
3600

I18
4365

4560
3600

4355
4757

3600
4354

4661
3600

4350
4952

3600
I19

2923
4017

3600
2936

3813
3600

2935
5056

3600
2928

4208
3600

I20
4748

206698
3600

4751
209034

3600
4749

202406
3600

4735
—

3600
I21

—
—

3600
—

—
3600

—
—

3600
—

—
3600

I22
—

—
3600

—
—

3600
—

—
3600

—
—

3600
I23

—
—

3600
—

—
3600

—
—

3600
—

—
3600

I24
—

—
3600

—
—

3600
—

—
3600

—
—

3600

Table
9.6:

R
esults

produced
using

the
originaldirect

M
IP

form
ulation

from
[C

Q
14](D

irect)
and

the
direct

form
ulation

we
propose

(N
ew

D
irect).

R
esults

form
atted

in
boldface

highlight
the

overallbest
lower

bounds
(LB

),upper
bounds

(U
B

),and
fastestprooftim

es
in

seconds
(Runtim

e)achieved
using

G
urobi(see

also
Tables

9.7
and

9.8).
A

—
indicates

thatno
solutions

could
be

found
w

ithin
1

hour.

160

9.8. Computational Results

instance 9, 20), however in case of the NewDirect model the branching strategy did not
lead to improved results.

Table 9.7 displays the final results achieved with the network flow based MIP formulations.

We see in the results shown in Table 9.7 that for instances that could be solved to
optimality, most of the times the NewNetworkFlow models provided the fastest proofs
in our experiments. Regarding the achieved lower bounds and upper bounds, the
NetworkFlow formulation and the NewNetworkFlow formulation overall produce similar
results, although for some instances there are differences (e.g. instances 9, 18, 19). Further,
the results show that using a custom branching strategy can sometimes improve the
proof time (e.g. instances 3,4,7,16), but had only a little effect on the produced bounds
in our experiments except for a few instances.

Table 9.8 displays the final results achieved with the solver-independent model that uses
the automata based global constraints.

The results presented in Table 9.8 show that the models using automata global constraints
could not produce competitive results when compared with the other evaluated models.
Furthermore, the NewAutomata model could not benefit from a custom branching strategy
in our final experiments.

Finally, Table 9.9 compares the overall best results achieved with existing MIP models
from the literature (Existing MIP) with the best results achieved with the models from
this work (New MIP).

The results show that the MIP models could successfully be used to reach 14 optimal
solutions within a time limit of one hour. The Direct and NetworkFlow models from
the literature could provide optimal results for 14 instances and further produce three
additional upper bounds that could not be reached by the other models (Instances 15,
18 and 20). The NewDirect and NewNetworkFlow could provide optimal results for 13
instances and further achieved two additional upper bounds that could not be reached
by the other models (Instances 13 and 19). Comparing optimality proof times, we can
see that existing models provided the fastest proofs for 4 instances, whereas the New
MIP models provided the fastest proofs for 10 instances.

The results further indicate, that for the majority of the instances the Existing MIP
models and New MIP models produce bounds of similar quality. However, we can see
that for solutions that could be solved to optimality the New MIP models provide faster
proof times in 10 out of 14 cases. Furthermore, the results show that the models and
custom search strategies from this work could produce improved lower and upper bounds
in several cases (e.g. Instances 9, 13, 18, 19, 20).

As already mentioned in Section 9.3, the main difference between the existing models
from the literature and models from this work lies in the reformulation of the working
weekend constraint. To further investigate the effect of the reformulated working weekend
constraint, we analyzed the optimal costs of the initial linear programming relaxations

161

9. Solver-Independent Modeling for Workforce Scheduling Problems

N
etw

orkF
low

N
ew

N
etw

orkF
low

N
etw

orkF
low

+
w

orker/val4
N

ew
N

etw
orkF

low
+

w
orker/val4

Instance
LB

U
B

R
untim

e
LB

U
B

R
untim

e
LB

U
B

R
untim

e
LB

U
B

R
untim

e
I1

607
607

0.95
607

607
1.57

607
607

0.64
607

607
0.60

I2
828

828
2.59

828
828

1.54
828

828
2.28

828
828

1.88
I3

1001
1001

3.63
1001

1001
3.52

1001
1001

3.80
1001

1001
2.61

I4
1716

1716
35.72

1716
1716

34.96
1716

1716
40.77

1716
1716

13.79
I5

1143
1143

18.95
1143

1143
28.51

1143
1143

26.59
1143

1143
32.85

I6
1950

1950
20.72

1950
1950

17.00
1950

1950
22.49

1950
1950

28.56
I7

1056
1056

161.96
1056

1056
134.89

1056
1056

183.75
1056

1056
127.30

I8
1297

1301
3600

1297
1300

3600
1296

1300
3600

1295
1305

3600
I9

389
439

3600
406

439
3600

406
439

3600
406

439
3600

I10
4631

4631
205.37

4631
4631

307.67
4631

4631
697.61

4631
4631

401.07
I11

3443
3443

186.80
3443

3443
149.95

3443
3443

237.44
3443

3443
152.04

I12
4040

4040
468.77

4040
4040

404.37
4040

4040
895.11

4040
4040

664.70
I13

1348
—

3600
1348

—
3600

1329
—

3600
1130

—
3600

I14
1278

1278
1108.41

1278
1278

924.98
1278

1278
2268.40

1278
1278

2399.26
I15

3816
4862

3600
3815

5492
3600

3815
5769

3600
3815

5258
3600

I16
3225

3225
1398.90

3225
3225

1056.44
3225

3225
1024.45

3225
3225

976.74
I17

5746
5746

1167.41
5746

5746
1199.21

5746
5746

2904.20
5746

5746
2175.01

I18
4370

4675
3600

4387
4580

3600
4358

4863
3600

4365
4678

3600
I19

3141
119169

3600
3103

—
3600

2945
—

3600
2944

—
3600

I20
—

—
3600

—
—

3600
—

—
3600

—
—

3600
I21

—
—

3600
—

—
3600

—
—

3600
—

—
3600

I22
—

—
3600

—
—

3600
—

—
3600

—
—

3600
I23

—
—

3600
—

—
3600

—
—

3600
—

—
3600

I24
—

—
3600

—
—

3600
—

—
3600

—
—

3600

Table
9.7:

T
his

table
show

s
the

results
produced

using
M

IP
form

ulation
that

form
ulates

block
series

constraints
as

network
flows[Sm

e18](N
etworkFlow)and

theform
ulation

from
thiswork

thatusesa
sim

ilarnetwork
flow

encoding
(N

ewN
etworkFlow).

R
esults

form
atted

in
boldface

highlight
the

overallbest
lower

bounds
(LB

),upper
bounds

(U
B

),and
fastest

prooftim
es

in
seconds

(R
untim

e)
achieved

using
G

urobi(see
also

Tables
9.6

and
9.8).

A
—

indicates
that

no
solutions

could
be

found
w

ithin
the

tim
e

lim
it.

162

9.8. Computational Results

NewAutomata NewAutomata wd/val1

Instance LB UB Runtime LB UB Runtime
I1 607 607 3.85 607 607 5.91
I2 828 828 19.66 828 828 38.98
I3 1001 1001 80.55 1001 1001 93.46
I4 1716 1716 71.73 1716 1716 310.80
I5 1040 1143 3600 783 1145 3600
I6 1950 1950 690.62 1950 1950 2690.25
I7 1056 1056 2428.77 1040 1056 3584.89
I8 1277 2208 3600 245 — 3600
I9 39 445 3600 39 539 3600

I10 1145 — 3600 50 — 3600
I11 — — 3600 — — 3600
I12 — — 3600 — — 3600
I13 — — 3600 — — 3600
I14 39 — 3600 20 — 3600
I15 — — 3600 — — 3600
I16 2950 3723 3600 2817 — 3600
I17 — — 3600 — — 3600
I18 1449 — 3600 927 — 3600
I19 — — — — — 3600
I20 — — 3600 — — 3600
I21 — — 3600 — — 3600
I22 — — 3600 — — 3600
I23 — — 3600 — — 3600
I24 — — 3600 — — 3600

Table 9.8: This table shows the results produced using the solver-independent formulation
that uses automata global constraints (NewAutomata). Results formatted in boldface
highlight the overall best lower bounds (LB), upper bounds (UB), and fastest proof times
in seconds (Runtime) achieved using Gurobi (see also Tables 9.6 and 9.7). A — indicates
that no solutions could be found within the time limit.

with the benchmark instances. Table 9.10 shows an overview of the optimal costs for
the initial LP relaxation for the Direct, NewDirect, NetworkFlow, and NewNetworkFlow
models for Instances 1–20 (The LP relaxation could not be solved for larger instances
21–24 within one hour on our benchmark machine).

The results show that for 19 out of 20 of the instances, the new working weekend
formulation can provide a tighter lower bound to the optimal integer solution when
compared to the existing working weekend formulation, which indicates the positive effect
of the reformulation regarding this bound.

Comparison of CP and MIP Results

The summarized best results produced with CP and MIP solving technology within a
time limit of one hour are presented in Table 9.11.

The results show that the best results could be reached with the MIP translations of the

163

9. Solver-Independent Modeling for Workforce Scheduling Problems

E
xisting

M
IP

E
xisting

M
IP

+
C

B
N

ew
M

IP
N

ew
M

IP
+

C
B

Instance
LB

U
B

R
untim

e
LB

U
B

R
untim

e
LB

U
B

R
untim

e
LB

U
B

R
untim

e
I1

607
607

0.38
607

607
0.38

607
607

0.345
607

607
0.347

I2
828

828
2.59

828
828

2.28
828

828
1.54

828
828

1.88
I3

1001
1001

3.63
1001

1001
3.80

1001
1001

3.52
1001

1001
2.61

I4
1716

1716
35.72

1716
1716

40.77
1716

1716
34.96

1716
1716

13.79
I5

1143
1143

18.95
1143

1143
26.59

1143
1143

28.51
1143

1143
32.85

I6
1950

1950
20.72

1950
1950

22.49
1950

1950
17.00

1950
1950

28.56
I7

1056
1056

161.96
1056

1056
183.75

1056
1056

134.89
1056

1056
127.30

I8
1297

1301
3600

1296
1300

3600
1297

1300
3600

1295
1305

3600
I9

406
439

3600
439

439
1165.44

413
439

3600
406

439
3600

I10
4631

4631
126.34

4631
4631

133.38
4631

4631
307.67

4631
4631

401.07
I11

3443
3443

50.08
3443

3443
53.41

3443
3443

40.35
3443

3443
152.04

I12
4040

4040
468.77

4040
4040

895.11
4040

4040
404.37

4040
4040

664.70
I13

1348
3094

3600
1343

3308
3600

1348
2957

3600
1336

—
3600

I14
1278

1278
1108.41

1278
1278

2268.40
1278

1278
924.98

1278
1278

2399.26
I15

3816
4862

3600
3815

5769
3600

3815
5492

3600
3815

5258
3600

I16
3225

3225
1398.90

3225
3225

1024.45
3225

3225
1056.44

3225
3225

976.74
I17

5746
5746

1167.41
5746

5746
2904.20

5746
5746

1199.21
5746

5746
2175.01

I18
4370

4560
3600

4358
4661

3600
4387

4580
3600

4365
4678

3600
I19

3141
4017

3600
2945

5056
3600

3103
3813

3600
2944

4208
3600

I20
4748

206698
3600

4749
202406

3600
4751

209034
3600

4735
—

3600
I21

—
—

3600
—

—
3600

—
—

3600
—

—
3600

I22
—

—
3600

—
—

3600
—

—
3600

—
—

3600
I23

—
—

3600
—

—
3600

—
—

3600
—

—
3600

I24
—

—
3600

—
—

3600
—

—
3600

—
—

3600

#
B

est/Fastest
17

16
3

14
16

1
17

17
6

13
14

4

Table
9.9:O

verview
on

the
bestresultsachieved

by
existing

M
IP

form
ulationsfrom

the
literature

(Existing
M

IP)and
the

best
results

produced
using

the
proposed

form
ulations

(N
ew

M
IP)

w
ith

and
w

ithout
custom

branching
strategies

(C
B

).R
esults

form
atted

in
boldface

highlight
the

overallbest
lower

bounds
(LB

),upper
bounds

(U
B

),and
fastest

prooftim
es

in
seconds

(Runtim
e).

The
finalrow

ofthe
table

counts
the

num
ber

ofbest
lower

bounds,upper
bounds

as
wellas

the
fastest

optim
ality

proofs.
A

—
indicates

that
no

solutions
could

be
found

w
ithin

1
hour.

164

9.8. Computational Results

Instance Direct NewDirect NetworkFlow NewNetworkFlow

I1 405.00 405.00 406.00 430.25
I2 715.00 716.00 718.67 725.50
I3 1000.00 1000.00 1000.00 1000.00
I4 1101.00 1202.50 1364.34 1488.15
I5 702.00 704.00 742.89 903.95
I6 1901.00 1904.00 1925.29 1938.08
I7 138.00 922.83 168.74 943.86
I8 1227.25 1228.42 1247.45 1259.70
I9 36.88 38.88 36.88 38.88
I10 4608.00 4614.50 4610.22 4622.23
I11 3412.50 3417.00 3413.50 3423.31
I12 2523.25 3622.00 2529.26 3630.48
I13 508.00 517.75 510.02 519.81
I14 1245.75 1254.50 1248.93 1260.46
I15 3737.63 3737.63 3751.50 3760.24
I16 3142.75 3150.83 3156.92 3172.56
I17 5689.50 5702.00 5699.00 5723.87
I18 4166.50 4173.75 4179.89 4211.06
I19 1968.38 2682.13 1981.66 2727.58
I20 728.88 4091.08 754.05 4127.87

Table 9.10: The optimal costs of the initial LP relaxation for instances 1–20 that have
been determined using different integer programming formulations. Columns “Direct” and
“NetworkFlow” show the relaxed costs of the direct model [CQ14] and the network flow
model [Sme18] together with the original formulation of the working weekend constraint
while columns “NewDirect” and “NewNetworkFlow” show the relaxed costs achieved
using the new formulation for the working weekends constraint.

solver-independent model as well as existing MIP formulations for each of the instances.

Overall, the experimental results show that the proposed solver-independent models
could be used to reach optimal solutions for several benchmark instances. While results
produced with CP could not compete with state-of-the-art MIP models, experimental
results indicate that Gurobi can improve the performance regarding computational speed
and solution quality with the proposed high level models for several instances compared
to the state of the art.

165

9. Solver-Independent Modeling for Workforce Scheduling Problems

CP MIP
Instance UB LB UB
I1 607 607 607
I2 957 828 828
I3 1368 1001 1001
I4 2583 1716 1716
I5 3510 1143 1143
I6 6013 1950 1950
I7 5955 1056 1056
I8 11295 1297 1300
I9 7896 439 439
I10 16466 4631 4631
I11 21124 3443 3443
I12 30151 4040 4040
I13 — 1348 2957
I14 13336 1278 1278
I15 38054 3816 4862
I16 14469 3225 3225
I17 66066 5746 5746
I18 43340 4387 4560
I19 82128 3141 3813
I20 271968 4751 202406
I21 — — —
I22 — — —
I23 — — —
I24 — — —

Table 9.11: Column 2 shows the overall best upper bounds achieved using CP, whereas
Columns 3–4 show the best lower and upper bounds achieved with the MIP formulations.
Results in boldface mark the best found solutions per instance. A — indicates that no
solutions could be found within the time limit.

166

CHAPTER 10
Conclusion

In this thesis we introduced two novel NP-hard real-life production scheduling problems
arising from the automotive supply industry and teeth manufacturing. We performed an
in-depth analysis of the problems and provided a formal specification as well as a collection
of benchmark instances that include many real-life scheduling scenarios. Furthermore,
we proposed several exact and heuristic solution methods that could successfully provide
high-quality solutions even for the largest instances of the investigated realistic scheduling
scenarios.

To efficiently approach the paint shop scheduling problem which appears in paint shops
of the automotive supply industry with exact techniques, we investigated two alternative
constraint modeling approaches together with various programmed search strategies.
An extensive empirical evaluation showed that state-of-the art MIP and CP solving
technology could provide optimal results for several benchmark instances using our
models. However, solutions to the large instances that represent real-life scheduling
scenarios could not be acquired by exact approaches within the space and runtime limits
of our experimental environment.

Therefore, we further proposed an innovative metaheuristic approach based on simulated
annealing that was able to achieve feasible solutions for all benchmark instances. Addi-
tionally, we investigated and solved an important sub-problem that aims to minimize the
required color changes in the paint shop’s production sequence. The exact and heuristic
solution methods we proposed for this problem, could further be utilized within a novel
large neighborhood search approach to the paint shop scheduling problem. Experimental
results showed that this approach, which is able to hybridize the previously introduced
exact and heuristic techniques, could produce the overall best results for the large majority
of the benchmark instances.

Through an investigation of different constraint modeling techniques for the paint shop
scheduling problem, we additionally discovered an important novel string edit distance

167

10. Conclusion

global constraint that is able to efficiently express string distance constraints that appear
in NP-hard constraint optimization problems such as the paint shop scheduling problem.
We proposed an innovative efficient constraint propagator for this constraint in addition
to constraint decomposition modeling techniques that are utilized in the constraint model
of the paint shop scheduling problem. Furthermore, we provided an algorithm that can
provide minimal explanations for the propagator, thereby making it applicable for use
together with state-of-the-art lazy clause generation solvers. A series of experiments
clearly showed the effectiveness of the proposed constraint and propagation techniques as
it could improve state-of-the-art results on benchmark instances for paint shop scheduling
and the median string problem.

To approach the artificial teeth scheduling problem, which is the second real-life problem
we introduced in this thesis, we proposed a CP model that can be utilized together
with state-of-the-art MIP and CP solvers as an exact solution method. Experiments
showed that this approach is able to produce optimal results for several instances and
can further provide lower bounds for all benchmark instances. However, similar as with
the paint shop scheduling problem the modeling approach could not provide solutions for
large practical instances on our benchmark machine. Therefore, we further proposed a
simulated annealing metaheuristic together with novel neighborhood operators that could
successfully provide solutions for all benchmark instances. Additionally, we investigated
the effectiveness of state-of-the-art hyper-heuristic strategies on the artificial teeth
scheduling problem. We proposed several low-level heuristics that utilize local-search,
mutation, and crossover operators within the well known selection-perturbation based
hyper-heuristic framework HyFlex, which allowed us to evaluate our heuristics using
several state-of-the-art problem independent heuristic strategies. Experimental results
showed that the proposed low-level heuristics could be successfully utilized to improve
the quality of solutions for many of the realistic benchmark instances when compared
with the simulated annealing approach.

Finally, we further investigated solver-independent modeling techniques for workforce
scheduling problems which in practice often arise together with production scheduling
tasks in many industrial application domains. We performed an extensive experimental
study using various search strategies on a set of benchmark instances from the literature
and studied different CP and MIP encodings of the solver-independent model. The
empirical results show that our model could produce competitive results when compared
to the state of the art. Furthermore, the proposed MIP encoding could improve results
regarding the optimality proof time for several instances.

Overall, we can conclude that exact solution methods based on constraint modeling and
local search based metaheuristics can efficiently complement each other when approach-
ing novel production scheduling problems like paint shop scheduling or artificial teeth
scheduling. On the one hand, the high-level constraint models make it simple to utilize
state-of-the-art solving technology from different areas such as CP and MIP to provide
bounds and optimality results for small- to medium-sized instances, which can be used
to evaluate the performance of heuristics techniques. On the other hand, local search

168

10.1. Future Work

based metaheuristics and hybrid methods can efficiently obtain solutions even for real-life
instances for which exact techniques cannot deliver results within reasonable space and
runtime limitations, as it was the case for both investigated problems.

10.1 Future Work
Our experimental results showed that all of the proposed methods could produce high-
quality solutions for real-life scheduling scenarios as they appear in modern day factories.
For future work it could be interesting to additionally introduce random instance genera-
tors for paint shop scheduling and the artificial teeth scheduling problem to study the
efficiency of the introduced approaches also on diverse artificially created instance sets.
Such an extended instance set could then form the basis for an investigation of advanced
algorithm selection methods that study the strengths and weaknesses of the different
algorithms depending on various instance features.

Regarding the string edit distance constraint we have shown that our algorithms can
efficiently propagate upper bounds on the minimum edit distance between given variable
arrays. As a next step, it could be interesting to investigate if also the exact distance
can be propagated efficiently. Furthermore, another possible topic of investigation could
be backwards propagation that propagates restrictions to the domains of variables that
represent the strings from a given bound on the edit distance.

Our evaluation of the proposed low-level heuristics together with hyper-heuristic ap-
proaches on the artificial teeth scheduling problem provided promising results on the
benchmark instances. In future work it could be interesting to further extend the set of
low-level heuristics for this problem with operators that implement a destroy-and-repair
scheme. This could for example be achieved using the proposed constraint model within
the framework of large-neighborhood search.

Another interesting topic could be the investigation of further advanced exact methods
that utilize problem decomposition techniques such as column generation. As the artificial
teeth scheduling problem for example considers an exponentially large number of mould-
and color patterns for the creation of jobs, it could be interesting to investigate an
approach that generates variables that select such patterns by using column generation.

169

Bibliography

[AÖP13] Shahriar Asta, Ender Özcan, and Andrew J. Parkes. Batched Mode Hyper-
heuristics. In Giuseppe Nicosia and Panos Pardalos, editors, Learning
and Intelligent Optimization, Lecture Notes in Computer Science, pages
404–409, Berlin, Heidelberg, 2013. Springer.

[BC14] Edmund K. Burke and Timothy Curtois. New approaches to nurse
rostering benchmark instances. European Journal of Operational Research,
237(1):71–81, 2014.

[BGH+13] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall,
Gabriela Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: a survey
of the state of the art. Journal of the Operational Research Society,
64(12):1695–1724, December 2013.

[BGP03] Stéphane Bourdais, Philippe Galinier, and Gilles Pesant. hibiscus: A
Constraint Programming Application to Staff Scheduling in Health Care.
In Francesca Rossi, editor, Principles and Practice of Constraint Pro-
gramming – CP 2003, Lecture Notes in Computer Science, pages 153–167,
Berlin, Heidelberg, 2003. Springer.

[BHvMW21] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 2021.

[BSTW16] Gleb Belov, Peter J. Stuckey, Guido Tack, and Mark G. Wallace. Improved
linearization of constraint programming models. In Michel Rueher, editor,
Principles and Practice of Constraint Programming – CP 2016, pages
49–65, Cham, 2016. Springer International Publishing.

[CDGD06] Raffaele Cipriano, Luca Di Gaspero, and Agostino Dovier. Hybrid Ap-
proaches for Rostering: A Case Study in the Integration of Constraint Pro-
gramming and Local Search. In Francisco Almeida, María J. Blesa Aguil-
era, Christian Blum, José Marcos Moreno Vega, Melquíades Pérez Pérez,
Andrea Roli, and Michael Sampels, editors, Hybrid Metaheuristics, Lec-
ture Notes in Computer Science, pages 110–123, Berlin, Heidelberg, 2006.
Springer.

171

[CGR07] Marie-Claude Côté, Bernard Gendron, and Louis-Martin Rousseau. Mod-
eling the regular constraint with integer programming. In Pascal Van Hen-
tenryck and Laurence Wolsey, editors, International Conference on In-
tegration of Artificial Intelligence (AI) and Operations Research (OR)
Techniques in Constraint Programming – CPAIOR 2007, pages 29–43.
Springer Berlin Heidelberg, 2007.

[Chu11] Geoffrey Chu. Improving Combinatorial Optimization. PhD thesis, Depart-
ment of Computing and Information Systems, University of Melbourne,
2011.

[Chu20] Chung-yao Chuang. Combining Multiple Heuristics: Studies on
Neighborhood-base Heuristics and Sampling-based Heuristics. thesis,
Carnegie Mellon University, May 2020.

[CL96] Hoong Chuin Lau. On the complexity of manpower shift scheduling.
Computers & Operations Research, 23(1):93–102, 1996.

[Cor19] IBM Corporation. IBM ILOG CPLEX 12.10 User’s Manual. 2019.

[CQ14] Tim Curtois and Rong Qu. Computational results on new staff scheduling
benchmark instances. Technical report, ASAP Research Group, School
of Computer Science, University of Nottingham, NG8 1BB, Nottingham,
UK, October 2014.

[CXIC12] C. Y. Chan, Fan Xue, W. H. Ip, and C. F. Cheung. A Hyper-Heuristic
Inspired by Pearl Hunting. In Youssef Hamadi and Marc Schoenauer,
editors, Learning and Intelligent Optimization, Lecture Notes in Computer
Science, pages 349–353, Berlin, Heidelberg, 2012. Springer.

[DFM+95] S. J. Darmoni, A. Fajner, N. Mahé, A. Leforestier, M. Vondracek,
O. Stelian, and M. Baldenweck. HOROPLAN: computer-assisted nurse
scheduling using constraint-based programming. Journal of the Society
for Health Systems, 5(1):41–54, January 1995.

[DK01] Andreas Drexl and Alf Kimms. Sequencing JIT Mixed-Model Assembly
Lines Under Station-Load and Part-Usage Constraints. Management
Science, 47(3):480–491, 2001.

[DKM06] Andreas Drexl, Alf Kimms, and Lars Matthießen. Algorithms for the car
sequencing and the level scheduling problem. J. Sched., 9(2):153–176,
2006.

[DKÖB20] John H. Drake, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke.
Recent advances in selection hyper-heuristics. European Journal of Oper-
ational Research, 285(2):405–428, September 2020.

172

[DMS+21] Emir Demirović, Nysret Musliu, Andreas Schutt, Peter J. Stuckey, and
Felix Winter. Solver-independent models for employee scheduling. (Under
Submission), 2021.

[DMW19] Emir Demirovic, Nysret Musliu, and Felix Winter. Modeling and solving
staff scheduling with partial weighted maxsat. Annals OR, 275(1):79–99,
2019.

[DSVH88] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solv-
ing the Car-Sequencing Problem in Constraint Logic Programming. In
Proceedings of the 8th European Conference on Artificial Intelligence,
ECAI’88, pages 290–295, USA, 1988. Pitman Publishing, Inc.

[dWBH20] Mathijs de Weerdt, Robert Baart, and Lei He. Single-machine scheduling
with release times, deadlines, setup times, and rejection. European Journal
of Operational Research, October 2020.

[EHO04] Th. Epping, W. Hochstättler, and P. Oertel. Complexity results on a paint
shop problem. Discrete Applied Mathematics, 136(2):217–226, February
2004.

[GACD13] Akshay Gupte, Shabbir Ahmed, Myun Seok Cheon, and Santanu Dey.
Solving Mixed Integer Bilinear Problems Using MILP Formulations. SIAM
Journal on Optimization, 23(2):721–744, January 2013.

[Gec19] Gecode Team. Gecode: Generic Constraint Development Environment.
2019.

[GGP06] Caroline Gagné, Marc Gravel, and Wilson L. Price. Solving real car
sequencing problems with ant colony optimization. European Journal of
Operational Research, 174(3):1427–1448, November 2006.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GJS76] Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of
flowshop and jobshop scheduling. Mathematics of Operations Research,
1(2):117–129, 1976.

[GKK+21] Tobias Geibinger, Lucas Kletzander, Matthias Krainz, Florian Mischek,
Nysret Musliu, and Felix Winter. Physician Scheduling During a Pandemic.
In Peter J. Stuckey, editor, Integration of Constraint Programming, Arti-
ficial Intelligence, and Operations Research, Lecture Notes in Computer
Science, pages 456–465. Springer International Publishing, 2021.

[GO20] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2020.

173

[GP19] Michel Gendreau and Jean-Yves Potvin, editors. Handbook of Metaheuris-
tics. International Series in Operations Research & Management Science.
Springer International Publishing, 3 edition, 2019.

[HCF12] Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu. A VNS-based
hyper-heuristic with adaptive computational budget of local search. In
2012 IEEE Congress on Evolutionary Computation, pages 1–8, June 2012.

[HK16] Morihiro Hayashida and Hitoshi Koyano. Finding median and center
strings for a probability distribution on a set of strings under levenshtein
distance based on integer linear programming. In BIOSTEC (Selected
Papers), volume 690 of Communications in Computer and Information
Science, pages 108–121. Springer, 2016.

[HKS14] Öncü Hazır and Safia Kedad-Sidhoum. Batch sizing and just-in-time
scheduling with common due date. Annals of Operations Research,
213(1):187–202, February 2014.

[JABC03] Xiaoyi Jiang, Karin Abegglen, Horst Bunke, and János Csirik. Dynamic
computation of generalised median strings. Pattern Anal. Appl., 6(3):185–
193, 2003.

[JLN+09] Michael Jünger, Thomas M Liebling, Denis Naddef, George L Nemhauser,
William R Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Lau-
rence A Wolsey. 50 years of Integer Programming 1958-2008: From the
early years to the state-of-the-art. Springer Science & Business Media,
2009.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Com-
plexity of Computer Computations, The IBM Research Symposia Series,
pages 85–103. Plenum Press, New York, 1972.

[KGV83] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization
by simulated annealing. Science, 220(4598):671–680, 1983.

[Kis04] Tamás Kis. On the complexity of the car sequencing problem. Operations
Research Letters, 32(4):331–335, July 2004.

[KLSD18] Minh Thanh Khong, Christophe Lecoutre, Pierre Schaus, and Yves Deville.
Soft-regular with a prefix-size violation measure. In CPAIOR, volume
10848 of Lecture Notes in Computer Science, pages 333–343. Springer,
2018.

[KM20] Lucas Kletzander and Nysret Musliu. Solving the general employee
scheduling problem. Computers & Operations Research, 113:104794, 2020.

[Koh85] Teuvo Kohonen. Median strings. Pattern Recognition Letters, 3(5):309–
313, 1985.

174

[Kru83] Joseph B. Kruskal. An overview of sequence comparison: Time warps,
string edits, and macromolecules. SIAM Review, 25(2):201–237, 1983.

[LEF+17] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, Stefan
Falkner, André Biedenkapp, and Frank Hutter. SMAC v3: Algorithm
Configuration in Python. GitHub, 2017.

[LG07] Philippe Laborie and Daniel Godard. Self-Adapting Large Neighborhood
Search: Application to Single-Mode Scheduling Problems. 2007.

[LM12] Andreas Lehrbaum and Nysret Musliu. A New Hyperheuristic Algorithm
for Cross-Domain Search Problems. In Youssef Hamadi and Marc Schoe-
nauer, editors, Learning and Intelligent Optimization, Lecture Notes in
Computer Science, pages 437–442, Berlin, Heidelberg, 2012. Springer.

[MaH01] Harald Meyer auf’m Hofe. Solving Rostering Tasks as Constraint Opti-
mization. In Edmund Burke and Wilhelm Erben, editors, Practice and
Theory of Automated Timetabling III, Lecture Notes in Computer Science,
pages 191–212, Berlin, Heidelberg, 2001. Springer.

[MBL09] Jean-Philippe Métivier, Patrice Boizumault, and Samir Loudni. Solving
Nurse Rostering Problems Using Soft Global Constraints. In Ian P. Gent,
editor, Principles and Practice of Constraint Programming - CP 2009,
Lecture Notes in Computer Science, pages 73–87, Berlin, Heidelberg, 2009.
Springer.

[MCB19] Ignacio Moya, Manuel Chica, and Joaquín Bautista. Constructive meta-
heuristics for solving the Car Sequencing Problem under uncertain partial
demand. Comput. Ind. Eng., 137, 2019.

[Mei11] David Meignan. An evolutionary programming hyper-heuristic with
co-evolution for chesc11. In The 53rd Annual Conference of the UK
Operational Research Society (OR53), volume 3, 2011.

[MM21] Florian Mischek and Nysret Musliu. A collection of hyper-heuristics for
the hyflex framework. Technical report, TU Wien, CD-TR, 2021/2, 2021.

[MN12] Frédéric Meunier and Bertrand Neveu. Computing solutions of
the paintshop–necklace problem. Computers & Operations Research,
39(11):2666–2678, November 2012.

[MSS18] Nysret Musliu, Andreas Schutt, and Peter J. Stuckey. Solver independent
rotating workforce scheduling. In CPAIOR, volume 10848 of Lecture
Notes in Computer Science, pages 429–445. Springer, 2018.

[MVDCVB12] Mustafa Mısır, Katja Verbeeck, Patrick De Causmaecker, and Greet
Vanden Berghe. An Intelligent Hyper-Heuristic Framework for CHeSC

175

2011. In Youssef Hamadi and Marc Schoenauer, editors, Learning and
Intelligent Optimization, Lecture Notes in Computer Science, pages 461–
466, Berlin, Heidelberg, 2012. Springer.

[MW17] Nysret Musliu and Felix Winter. A hybrid approach for the sudoku
problem: Using constraint programming in iterated local search. IEEE
Intelligent Systems, 32(2):52–62, 2017.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31–88, 2001.

[NR03] François Nicolas and Eric Rivals. Complexities of the centre and median
string problems. In CPM, volume 2676 of Lecture Notes in Computer
Science, pages 315–327. Springer, 2003.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard CP
modelling language. In Principles and Practice of Constraint Programming
- CP 2007, 13th International Conference, CP 2007, Providence, RI, USA,
September 23-27, 2007, Proceedings, pages 529–543, 2007.

[NSD+19] Shengsheng Niu, Shiji Song, Jian-Ya Ding, Yuli Zhang, and Raymond
Chiong. Distributionally robust single machine scheduling with the total
tardiness criterion. Computers & Operations Research, 101:13–28, January
2019.

[OHC+12] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A. Vazquez-Rodriguez,
James Walker, Michel Gendreau, Graham Kendall, Barry McCollum,
Andrew J. Parkes, Sanja Petrovic, and Edmund K. Burke. HyFlex:
A Benchmark Framework for Cross-Domain Heuristic Search. In Jin-
Kao Hao and Martin Middendorf, editors, Evolutionary Computation in
Combinatorial Optimization, Lecture Notes in Computer Science, pages
136–147, Berlin, Heidelberg, 2012. Springer.

[OO08] Cristian Olivares-Rodríguez and José Oncina. A stochastic approach to
median string computation. In SSPR/SPR, volume 5342 of Lecture Notes
in Computer Science, pages 431–440. Springer, 2008.

[OSC09] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via
lazy clause generation. Constraints, 14(3):357–391, 2009.

[PB17] Nelishia Pillay and Derrick Beckedahl. EvoHyp - a Java toolkit for
evolutionary algorithm hyper-heuristics. In 2017 IEEE Congress on
Evolutionary Computation (CEC), pages 2706–2713, June 2017.

[Pes04] Gilles Pesant. A Regular Language Membership Constraint for Finite
Sequences of Variables. In CP, volume 3258 of Lecture Notes in Computer
Science, pages 482–495. Springer, 2004.

176

[PG02] Markus Puchta and Jens Gottlieb. Solving Car Sequencing Problems by
Local Optimization. In EvoWorkshops, volume 2279 of Lecture Notes in
Computer Science, pages 132–142. Springer, 2002.

[PK00] Chris N. Potts and Mikhail Y. Kovalyov. Scheduling with batching:
A review. European Journal of Operational Research, 120(2):228–249,
January 2000.

[PKW86] Bruce D. Parrello, Waldo C. Kabat, and L. Wos. Job-shop scheduling
using automated reasoning: A case study of the car-sequencing problem.
Journal of Automated Reasoning, 2(1):1–42, March 1986.

[PQ18] Nelishia Pillay and Rong Qu. Hyper-Heuristics: Theory and Applications.
Natural Computing Series. Springer International Publishing, 2018.

[PR08] Matthias Prandtstetter and Günther R. Raidl. An integer linear pro-
gramming approach and a hybrid variable neighborhood search for the
car sequencing problem. European Journal of Operational Research,
191(3):1004–1022, December 2008.

[PTM20] Sergey Polyakovskiy, Dhananjay Thiruvady, and Rym M’Hallah. Just-in-
time batch scheduling subject to batch size. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference, GECCO ’20, pages
228–235, New York, NY, USA, June 2020. Association for Computing
Machinery.

[RAL17] Erfan Rahimian, Kerem Akartunali, and John Levine. A hybrid integer
programming and variable neighbourhood search algorithm to solve nurse
rostering problems. European Journal of Operational Research, 258(2):411–
423, 2017.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of
Constraint Programming, volume 2 of Foundations of Artificial Intelligence.
Elsevier, 2006.

[SBF10] Peter J. Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the
MiniZinc challenge. Constraints, 15(3):307–316, July 2010.

[SCBM13] Ricardo Soto, Broderick Crawford, Rodrigo Bertrand, and Eric Monfroy.
Modeling NRPs with Soft and Reified Constraints. AASRI Procedia,
4:202–205, January 2013.

[SCNA08] Christine Solnon, Van Dat Cung, Alain Nguyen, and Christian Artigues.
The car sequencing problem: Overview of state-of-the-art methods and
industrial case-study of the ROADEF’2005 challenge problem. European
Journal of Operational Research, 191(3):912–927, December 2008.

177

[SFSZ15] Hui Sun, Shujin Fan, Xianle Shao, and Jiangong Zhou. A colour-batching
problem using selectivity banks in automobile paint shops. International
Journal of Production Research, 53(4):1124–1142, February 2015.

[SGV04] S. Spieckermann, K. Gutenschwager, and S. Voß. A sequential ordering
problem in automotive paint shops. International Journal of Production
Research, 42(9):1865–1878, May 2004.

[SH17] Hui Sun and Jianming Han. A study on implementing color-batching with
selectivity banks in automotive paint shops. Journal of Manufacturing
Systems, 44:42–52, July 2017.

[SKCU77] Y. Sugimori, K. Kusunoki, F. Cho, and S. Uchikawa. Toyota production
system and kanban system materialization of just-in-time and respect-for-
human system. International Journal of Production Research, 15(6):553–
564, 1977.

[Sme18] Pieter Smet. Constraint reformulation for nurse rostering problems. In
Proceedings of the 12th international conference on the practice and theory
of automated timetabling, pages 69–80. PATAT, 2018.

[SYK+20] Ivan Kristianto Singgih, Onyu Yu, Byung-In Kim, Jeongin Koo, and
Seungdoe Lee. Production scheduling problem in a factory of automobile
component primer painting. Journal of Intelligent Manufacturing, January
2020.

[TB20] Tanya Y. Tang and J. Christopher Beck. CP and Hybrid Models for
Two-Stage Batching and Scheduling. In Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research, Lecture Notes
in Computer Science, pages 431–446, 2020.

[TS18] Charles Thomas and Pierre Schaus. Revisiting the Self-adaptive Large
Neighborhood Search. In Willem-Jan van Hoeve, editor, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research,
Lecture Notes in Computer Science, pages 557–566, Cham, 2018. Springer
International Publishing.

[Ukk85] Esko Ukkonen. Algorithms for approximate string matching. Information
and Control, 64(1-3):100–118, 1985.

[vHK06] Willem-Jan van Hoeve and Irit Katriel. Global constraints. In Foundations
of Artificial Intelligence, volume 2, pages 169–208. Elsevier, 2006.

[VHM10] Pascal Van Hentenryck and Michela Milano. Hybrid optimization: the ten
years of CPAIOR, volume 45. Springer Science & Business Media, 2010.

178

[VMW21] Johannes Vass, Nysret Musliu, and Felix Winter. Solving the Production
Leveling Problem with Order-Splitting and Resource Constraints. Pro-
ceedings of the 13th International Conference on the Practice and Theory
of Automated Timetabling, I:261–284, 2021.

[WF74] Robert A. Wagner and Michael J. Fischer. The String-to-String Correction
Problem. Journal of the ACM (JACM), January 1974.

[WHFP95] G. Weil, K. Heus, P. Francois, and M. Poujade. Constraint programming
for nurse scheduling. IEEE Engineering in Medicine and Biology Magazine,
14(4):417–422, July 1995.

[WM21a] Felix Winter and Nysret Musliu. Constraint-based Scheduling for Paint
Shops in the Automotive Supply Industry. ACM Transactions on Intelli-
gent Systems and Technology, 12(2):17:1–17:25, January 2021.

[WM21b] Felix Winter and Nysret Musliu. A large neighborhood search approach
for the paint shop scheduling problem. Journal of Scheduling, 2021.

[WMDM19] Felix Winter, Nysret Musliu, Emir Demirović, and Christoph Mrkvicka.
Solution Approaches for an Automotive Paint Shop Scheduling Problem.
Proceedings of the International Conference on Automated Planning and
Scheduling, 29:573–581, July 2019.

[WMMP21] Felix Winter, Christoph Mrkvicka, Nysret Musliu, and Jakob Preininger.
Automated Production Scheduling for Artificial Teeth Manufacturing.
Proceedings of the International Conference on Automated Planning and
Scheduling, 31:500–508, May 2021.

[WMS20] Felix Winter, Nysret Musliu, and Peter Stuckey. Explaining Propagators
for String Edit Distance Constraints. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(02):1676–1683, April 2020.

[WMW21] Wolfgang Weintritt, Nysret Musliu, and Felix Winter. Solving the
paintshop scheduling problem with memetic algorithms. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO
’21, pages 1070–1078. Association for Computing Machinery, June 2021.

[ZLZ+20] Z. Zhao, S. Liu, M. Zhou, X. Guo, and L. Qi. Decomposition Method
for New Single-Machine Scheduling Problems From Steel Production
Systems. IEEE Transactions on Automation Science and Engineering,
17(3):1376–1387, July 2020.

179

Felix Winter
Curriculum Vitae

Personal Data
Place and date of birth: Vienna, 29 July 1990

email: winter@dbai.tuwien.ac.at

Education
since December 2017 PhD student at Vienna University of Technology, Austria

Thesis Title: Automated Scheduling for Automotive Supplier Paint Shops and
Teeth Manufacturing

March 2013 - October 2016 Master of Science in Software Engineering & Internet Computing,
Technical University Vienna
Thesis: MaxSAT Modeling and Heuristic Solution Methods for the Employee
Scheduling Problem
pass with distinction

September 2012 - July 2013 Preliminary studies for Popular Music and Jazz Guitar, Franz Schubert
Konservatorium Vienna

September 2008 - Bachelor of Science in Software & Information
March 2013 Engineering, Technical University Vienna

pass with distinction

Work experience
since December 2017 Project assistant in the Christian Doppler Laboratory for

Artificial Intelligence and Optimization for Planning and Scheduling,
Technical University Vienna

October 2016 - November 2017 Consultant and Software Developer for Automated Planning and
Scheduling Software, MCP GmbH, Vienna

August 2015 - October 2016 Project assistant in the research project Artificial Intelligence in
Employee Scheduling, Technical University Vienna

March 2014 - January 2016 Tutor for Distributed System Technologies and Advanced
Internet Security, Technical University Vienna

October 2011 - February 2012 Junior Data Warehouse Consultant, pmOne GmbH, Vienna

Juli-September 2009 Software developer, xS+S,*x Software und Systeme,
Vienna

Languages
English: Fluent
German: Mother Language

mailto:winter@dbai.tuwien.ac.at

Publications

Felix Winter*, Nysret Musliu.
A Large Neighborhood Search Approach for the Paint Shop Scheduling Problem.
Journal of Scheduling, 2021

Felix Winter*, Christoph Mrkvicka, Nysret Musliu and Jakob Preininger.
Automated Production Scheduling for Artificial Teeth Manufacturing
31st International Conference on Automated Planning and Scheduling (ICAPS 2021)

Wolfgang Weintritt, Nysret Musliu and Felix Winter.
Solving the Paintshop Scheduling Problem with Memetic Algorithms
Genetic and Evolutionary Computation Conference (GECCO 2021)

Tobias Geibinger, Lucas Kletzander, Matthias Krainz, Florian Mischek, Nysret Musliu and Felix Winter.
Physician Scheduling During a Pandemic.
18th International Conference on the Integration of CP, AI, and OR (CPAIOR 2021)

Felix Winter*, Nysret Musliu.
Constraint-based Modeling for Scheduling Paint Shops in the Automotive Supply Industry.
ACM Transactions on Intelligent Systems and Technology, 2021

Johannes Vass, Nysret Musliu, Felix Winter.
Solving the Production Leveling Problem with Order-Splitting and Resource Constraints.
13th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2021)

Felix Winter*, Nysret Musliu, Peter J. Stuckey.
Explaining Propagators for String Edit Distance Constraints.
34th AAAI Conference on Artificial Intelligence (AAAI 2020)

Felix Winter*, Emir Demirovic, Nysret Musliu and Christoph Mrkvicka.
Solution Approaches for an Automotive Paint Shop Scheduling Problem.
29th International Conference on Automated Planning and Scheduling (ICAPS 2019)

Emir Demirovic, Nysret Musliu, Felix Winter*.
Modeling and Solving Staff Scheduling with Partial Weighted maxSAT.
Annals of Operations Research, 2017

Nysret Musliu, Felix Winter*.
A Hybrid Approach for the Sudoku problem: Using Constraint Programming in Iterated Local Search.
IEEE Intelligent Systems, 2017

A * indicates that I am the corresponding author of the publication.

Scholarships, Awards and additional info
2009-2011 Performance scholarship from TU Vienna
2014-2015 Participation at TUtheTOP, the High Potential program from TU Vienna.

TUtheTOP participants are selected among the best 20% of the students through
a multi-stage selection process.

2016 Won the Distinguished Young Alumnus Award of the faculty of informatics for the
best diploma thesis.

August 2018 Organizing committee member of the 12th International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2018).

July 2019 Participated in the ACP Summer School on Constraint Programming and won the
hackathon in the medium sized instance category as a member of the winning
team.
Won the Best Doctoral Consortium Poster Award at the 29th International
Conference on Automated Planning and Scheduling (ICAPS 2019).

September 2020/July 2021 Organizing committee member of the 17th and 18th International Conference on
the Integration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR 2020/2021).

Interests and activities
Research interests: Metaheuristic algorithms, Constraint Programming, SAT & maxSAT solving,

Hybrid approaches for optimization problems, Constraint satisfaction problems,
Automated Algorithm Selection and Configuration

Activities: Playing music with my band, Swimming, Hiking

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aims of This Thesis
	Contributions
	Publications
	Organization

	The Paint Shop Scheduling Problem
	Problem Description & Background
	Formal Specification
	Related Literature
	Complexity Analysis
	Benchmark Instances

	A Constraint Programming Approach for the Paint Shop Scheduling Problem
	Modeling the Paint Shop Scheduling Problem with CP
	Modeling the Problem with DFAs
	Empirical Evaluation

	Heuristic and Hybrid Approaches for the Paint Shop Scheduling Problem
	A Construction Heuristic Algorithm for Paint Shop Scheduling
	A Local Search Based Approach for Paint Shop Scheduling
	A Large Neighborhood Search Approach for the Paint Shop Scheduling Problem
	The Paint Shop Color Change Problem
	Solution Methods
	A Large Neighborhood Search Approach for the Paint Shop Scheduling Problem
	A Novel Construction Heuristic for the PSSP
	Empirical Evaluation

	String Edit Distance Constraints
	Preliminaries
	Related Literature
	Propagating Lower Bounds on the Minimum Edit Distance
	Explaining Propagation
	Experimental Evaluation

	The Artificial Teeth Scheduling Problem
	Problem Description
	Formal Specification
	Related Literature
	Benchmark Instances

	Constraint Modeling and Heuristic Solution Methods for the Artificial Teeth Scheduling Problem
	Constraint Programming Approach
	Construction Heuristic Approach
	Metaheuristic Approach
	Computational Results

	A Hyper-Heuristic Approach for Artificial Teeth Scheduling
	Background & Related Work
	Low-Level Heuristics for the Artificial Teeth Scheduling Problem
	Evaluated Hyper-Heuristic Approaches
	Computational Results

	Solver-Independent Modeling for Workforce Scheduling Problems
	Background
	Problem Description
	Related Work
	Direct Model
	Global Constraints
	Modeling with Global Constraints
	Translation for Solving
	Computational Results

	Conclusion
	Future Work

	Bibliography
	Personal Data
	Education
	Work experience
	Languages
	Publications
	Scholarships, Awards and additional info
	Interests and activities

