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Abstract

This paper is concerned with a modified entropy method to establish the large-time con-
vergence towards the (unique) steady state, for kinetic Fokker—Planck equations with
non-quadratic confinement potentials in whole space. We extend previous approaches by
analyzing Lyapunov functionals with non-constant weight matrices in the dissipation func-
tional (a generalized Fisher information). We establish exponential convergence in a weighted
H '-norm with rates that become sharp in the case of quadratic potentials. In the defective case
for quadratic potentials, i.e. when the drift matrix has non-trivial Jordan blocks, the weighted
L2-distance between a Fokker—Planck-solution and the steady state has always a sharp decay
estimate of the order (’)((1 +1)e™/ 2), with v the friction parameter. The presented method
also gives new hypoelliptic regularization results for kinetic Fokker—Planck equations (from
a weighted L2-space to a weighted H !-space).
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1 Introduction

This paper is devoted to the study of the long time behavior of the kinetic Fokker—Planck
equation

!8,f+v-fo—VxV-va:vdivv(vf)+oAvf, x,veR", t>0 o

f@=0)= foeL'®R™

describing the time evolution of the phase space probability density f (¢, x,v), e.g. in a
plasma [30]. Applications range from plasma physics [13, 29] to stellar dynamics [17, 18].
Here V = V(x) is a given smooth, bounded below confinement potential for the system,
and v > 0, 0 > 0 denote the friction and diffusion parameters, respectively. This equation
is associated with the Langevin stochastic differential equation

dx, = Utdl
dvy = —vvidt — VV(x)dt + ~/20d By,

where {B;};>¢ is a Brownian motion in R” with covariance (B;, By) = 8;_.
Since the equation conserves mass, i.e.,

f(t, x,v)dxdv = / folx,v)dxdv, t >0,
RZ!Z RZn

we shall always assume (without restriction of generality) that / Jo(x,v)dxdv = 1. The
R2n

unique normalized steady state of (1) is given by

v v
foo(x,v) = cye o VOTTL 0y 1y e RN, 2)

where cy is a positive constant such that fRQ,, foo(x, v)dxdv = 1. The following equation
is also considered as the kinetic Fokker—Planck equation:

oh+v-Vih =V, V.- Voh=0Ah—vv-Vyh, x,veR", t>0, 3)

and to switch from (1) to (3) it suffices to set 2 := f/ foo.-

It was shown in [22] that, if V € C*®(R"), (3) generates a C* regularizing contrac-
tion semigroup in L*(R?, fx) := {g: RY — R : g is measurable and [, g* focdxdv <
oo}, d = 2n. For well-posedness with non-smooth potentials, we refer to [31, Theorems 6,
7].

The long time behavior and exponential convergence of the solution to the steady state has
been studied and there are various results: in [19], algebraic decay was proved for potentials
that are asymptotically quadratic (as |x| — oo) and for initial conditions that are bounded
below and above by Gaussians. The authors used logarithmic Sobolev inequalities and entropy
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Exponential Stability and Hypoelliptic Regularization... Page3of45 51

methods. In [24], exponential decay was obtained also for faster growing potentials and
more general initial conditions. That proof is based on hypoellipticity techniques. By using
hypoelliptic methods, Villani proved exponential convergence results in H!(R?, fso) :=
{g € L2(R?, fx) : |[Vg| € L2(RY, foo)} [31, Theorem 35] andin L>(R?, fs) [31, Theorem
37]. The main conditions in Villani’s theorems above, as well as in [9, 10, 14, 15, 20, 32],
are the validity of the Poincaré inequality (5) and the criterion

3%V (x)
ax2

3C>0 : ‘ <C(+|VV(X)]), VxeR, 4)

32V (x)

ax2

32V (x)
x2

where

‘ denotes the Frobenius norm of

When %27‘2/ is bounded, Villani also proved that the solution converges to the steady state
exponentially in the logarithmic entropy [31, Theorem 39]. This result was extended in [16]
to potentials V satisfying a weighted log-Sobolev inequality and the condition that V=2 ?)27‘2/
is bounded for some n > 0. Even though Villani’s result allows for a general class of
potentials, the growth condition (4) is not satisfied by potentials with singularities. This type
of potentials, such as Lennard—Jones type interactions with confinement, are considered in
[10] and their method relies on an explicit construction of a Lyapunov function and Gamma
calculus. In [20], Dolbeault et al. developed a method to get exponential decay in L2 for a
large class of linear kinetic equations, including (1). Their method was also used to study the
long time behavior of (1) when the potential V' is zero or grows slowly as |x| — oo, see [11,
12]. Based on a probabilistic coupling method, Eberle et al. [21] obtained an exponential
decay result in Wasserstein distance.

The associated semigroup of the kinetic Fokker—Planck equation has instantaneous reg-
ularizing properties which is called hypoellipticity [26]. This hypoelliptic regularization is
obvious when the confining potential V is zero or quadratic as the fundamental solution

can be explicitly computed (see [26, 28]). For potentials such that %27‘2/ is bounded, Hérau

[23] obtained short time estimates for a Lz(Rd , foo) > H 1 (Rd, foo) regularization by con-
structing a suitable Lyapunov functional. Based on interpolation inequalities and a system of
differential inequalities, Villani [31, Appendix A.21] extended Hérau’s result for potentials
satisfying (4).

We provide a new method to establish exponential decay of the solution to the steady state
in HY(R?, f.) for a wide class of potentials: Our method extends [1, 3, 31] by allowing
for more general Lyapunov functionals. Generalizing the previous approaches, the weight
matrix in the dissipation functional (a generalized Fisher information) may now depend on
x and v. This leads to a new criterion on the potential V. For this entropy method we need
the time derivative of the dissipation functional, but we also provide its (x, v)—pointwise
analog, in the spirit of the Gamma calculus [9]. We provide a formula to estimate easily the
exponential decay rate depending on the parameters of the equation, the constants appearing
in the Poincaré inequality (5) and the growth condition on the potential (see (6) below). As a
test of the effectiveness of our method, we show that our estimate on the decay rate is sharp
when the potential is a quadratic polynomial. Moreover, our method lets us obtain estimates
on the hypoelliptic regularization for potentials that are more general than in [23].

The organization of this paper is as follows. In Sect. 2, we define the assumptions on the
potential, state the main results, and present concrete examples of such potentials. In Sect. 3,
we present the intuition and explain our method. Section4 contains important lemmas about
matrix inequalities which are important to construct suitable Lyapunov functionals. The final
section presents the proof of the main results.
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51 Page4of45 A. Arnold, G. Toshpulatov

2 Main Results

We make the following assumptions.
Assumption 2.1 There exists a constant Cp; > 0 such that the Poincaré inequality
2o
/ hzfoodxdv — </ hfoodxdv> < — (|Vxh|2 + |Vvh|2)foodxdv 5)
2n 2n CPI R2n
holds for all 1 € H'(R?, fxo).

Sufficient conditions on the potential appearing in f, so that the Poincaré inequality holds,
e.g. the Bakry—Emery criterion, are presented in [8, Chapter 4].

Assumption 2.2 There are constants ¢ € R and 7 € [0, v) such that the following R"*"
matrix, m:=n(n + 1),

v<3 Ve 1) 0 0 _%w
(©6)
0 0 v(a Ve + 1) LM
19205 VE) 1 9205 V() 20, V@) (92V()
T2 o T a2 —j o 20( v —l—cI)

is positive semi-definite for all x € R", where I € R"*" denotes the identity matrix.

Roughly speaking, Assumption 2.2 essentially means that the second order derivatives of

V control the third order ones. It implies that i V(X) + ¢ is positive semi-definite for all

x € R", and hence the eigenvalues of 0 BV(ZX) are umformly bounded from below. We note

that, in contrast to the Bakry—Emery strategy [7], the eigenvalues here may take negative
values.

Let a(x) € R denote the smallest eigenvalue of 323‘;(2)6) at x € R". Then the following
condition implies Assumption 2.2. For its proof see Appendix 6.1.

92 V(x)

Assumption 2.2’ There are constants ¢ € Rand t € [0, v) such that +cl is positive

semi-definite and'

2 2 2
no dx na

forall x e R" andi € {1, ...,n}.
We denote

ap:= inf o(x) ®)
xeRn
and assume in the sequel that 9 > —oo. Hence Assumption 2.2 can only hold for some
c = —o.
In the following results, we require that }% € L*(R?", fu,) which implies fy € L'(R>*)

2
because of the Holder inequality [, fodxdv < \/(f]RZn 'ff.—;’odxdv)(fRz,, foodxdv) and

! For two matrices A and B € R"<" A > B means that A — B is positive semi-definite.
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fRz,, Sfoodxdv = 1. We now state our first result, i.e. exponential decay of a functional that
is a linear combination of the weighted L?-norm and a Fisher information-type functional:

Theorem 2.3 Let V be a C* potential in R" satisfying Assumptions 2.1 and 2.2. Let Cpy,
¢, T, and oo be the constants in (5), (6) and (8). Suppose the initial data fo satisfies

]{ e HY®R?, fo0) and / < Jo ) v ( Jo ) foodxdv < co. Then there are explicitly

e} ax2 foo
computable constants C > 0 and A > 0 (independent of fy) such that the solution f(t) of

(1) satisfies
f ? (f(t)> :
L 1) faodxd v, (L2
R2"(f ) f xv+/RZ" foo
/ V7 (f(t)> (—+(1— 0)1>V,,<J;(t)>food dv
§Ce2“|:/2 (i_l) foodxdv+/ v, (;0)
+ /Rz"v (}%) (—+(1—a0)1) (J{;)foodxdv} )

forallt > 0. Moreover, we have:

foodxdv

foodxdv

. V2 V2
(a) lfa0>Z, cffj,thenDL:ufr;

2
(b) ifc:—a0=—%,lhenZA:v—t—sforanysE(O,v—r);
. V2 2
(c) lfc>—7, c+2a0>7,then

2 2
C+UT 1 c+2
V-1 — ifv—1>A] 4
Je+ag , i =4 T =T
20 = (v—1)Jc+ —(c—i—"T)(,/l—i—s%—sl) . » C+% s
= ifv—1t <A +M
4/c+a0+A131<c+7)
\)2 2
L+ +etag+ (5 +etap—1) +2
where A} = ,
20Cpy
212
A et5) e :
—0)A1 =2
241 (c+ ) VeFam if (v —1)A;
s = 1 I |\/(c+£)2 ) +v2 B
v—T — 3 — ‘T .
v <v—r)A:—2‘ ey~ T2 = DA ’(””)2’<<v—r>A1—3>¢c+To} T A2
. V2 V2
(d) lfc>—I, c+2a0§T,then
v—1 — /12 — 4 ifvfrzAgqu v2 — 4o
20 = v—r—\/u2—4a0<,/l+s%—sz) . 5 s
ifv—t <A, ++Vv:—4da
14+ Axso/v2 — 4oy 2
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2
1+——a0+\/(—2—a0—1) 2

where Ay = 0 C
aCpy

B

2(12_agn)—
A3( o) 1 ifv—1)Ay =2

59 1= 2424/ v —4ag .
4 .
vlr 8}) 32; 1 ‘ \/Vz dap +2(v — T)Az - (v - T) (:/ r)AoaOZ)j| UC(V —1)A 75 2

(e) if V(x) is a quadratic polynomial of x and < 8 557 s positive definite, then Assumptions
2.1 and 2.2 are satisfied witht = 0, ¢ = —ao [ this rules out the conditions in the case
of (c)]. Moreover, the decay rates A in (a) and (d) are sharp and, in the case of (d),
v > A;l ++/v2 — dag holds and so 2A = v — \/v2 — 4ay. In the case of (b), the decay
rate 2). = v — ¢ is sharp in the sense that (9) holds with the rate 2). = v — ¢ for any
small fixed ¢ € (0, v), but it does not hold with the rate 2\ = v.

Remark 2.4 1. It is possible to make weaker regularity hypothesis on the potential V, but
we maintain the assumption that V € C* to keep the presentation simple.

2. Smce + (1 —ap)I > 1, (9) implies that the solution converges exponentially to the

f&V

steady state in H'(R?", fx). If the eigenvalues o are uniformly bounded, then (9)

is equivalent to the exponential decay of the solutlon to the steady state in H' (R?", fxo).
Due to the Poincaré inequality (5), the L2-term on the right hand side of (9) could be
omitted.

3. If V satisfies Assumption 2.2 with some constants ¢ € R and t € [0, v), then V also
satisfies Assumption 2.2 with any ¢ > c and T € [t, v). Therefore, these constants are not
unique. But the exponential decay rate A obtained in Theorem 2.3 depends on the choice
of ¢ and 7. To obtain a better rate, one has to optimize A = A(c, ) with respect to all ¢
and t satisfying Assumption 2.2.

4. In Theorem 2.3 (b), the constant C in (9) depends on ¢, and C = C(¢) — oo as ¢ — 0.

5. The highest exponential rate is 5 which can be attained by the quadratic potentials V with

When V is a quadratic polynomial as in Theorem 2.3 (e), we prove the following sharp
estimates.

Proposition 2.5 Let V be a quadratic polynomial and 3327‘2/ be positive definite. Let g > 0

be the smallest eigenvalue of (;2)6‘2/ , then®
_yy . p2
e 2, lfOl() > b
() 1 2(ga v ) >

sup ||f /foo “L (RY, fso) - (1+t)e 2[’ lfO(():VT as  — oo.
2@l gy 0/ fo m @iy | g
o e 2 ) l‘fOlO < b
(10)

We shall use this proposition to prove the sharpness of the decay rates in Theorem 2.3 (e).

When V is a quadratic polynomial and —cg = 42 =:c, Theorem 2.3 (e) shows that the
decay in (9) can be e =" "®)" for any small fixed & € (0, v), but it can not be e~ . In this case,
it is natural to expect a decay between e~ and e == : Proposition 2.5 shows that this is
indeed the case for the square of the L2-norm, with the decay (1 +¢)2e~"’. But an analogous

2 For functions @ =¢()and ¢ = @(t), p < past — oo means ¢ = O(¢p) and p = O(p) ast — oo.
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extension of this result for the functional on the left hand side of (9) (i.e., to replace the term
Ce~ =9 with C(1 + 1)2e~"" ) has not been obtained so far.

Remark 2.6 Under assumptions of Proposition 2.5, we can construct special solutions f ()
(see [3, Section 6]) which satisty

[S]

i if g >

<

4

(1 — 1|72(pa ¢ _y . 2
||f:&()/f00 ||L (RY, fo) - (1+t)€ 2[7 lf(XOZVT as 1 — oo,

1o/ foo=Wl@e s | ovim,

e 2 , ifag <

Our next result is about the estimates on the hypoelliptic regularization.

Theorem 2.7 Assume V is a C* potential on R" and there are constants ¢ € R and t > 0
such that the matrix (6) is positive semi-definite for all x € R". Suppose the initial data

2 (] 52
fo satisfies /Rzn (]% - 1) oV

ox2
explicitly computable constants C1 = C1(ty) > 0 and Cy = Ca(t9) > 0 (independent of fo)
such that the inequalities

0 c1 fo LV
oo (G2 S L (1)
fON (V| f@
fowr (52) (o wa-amn) . (52) s

2
<2 C2 (ﬁ - 1) (‘ VI 1) Foodxdv (12)
R2 \ foo

ox2
hold for all t € (0, to].

foodxdv < oo. Then, for any to > 0, there are

92V

ax2

+ 1) foodxdv (11)

and

In Theorem 2.3 we assumed that the initial data fo/ fso is in H (RY, fso). If we use the
estimates in Theorem 2.7, this condition can be relaxed:

Corollary 2.8 Let V be a C*™ potential in R" satisfying Assumptions 2.1 and 2.2. Suppose the
fo NV (lle2v]f
initial data fy satisfies /2 (— - 1)
R n

Joo ax2

there is an explicitly computable constant C = C(to) > O (independent of fo) such that
[ (G2 =) manae [ o (F2)]
o (52) (G (52)
3’V
see (7]

9x2
holds for all t > ty with ) defined in Theorem 2.3.

+ 1) foodxdv < co. Then, for any ty > 0,

Frodxdv

2
+ 1) Foodxdv (13)

Remark 2.9 1. In contrast to Theorem 2.3, Theorem 2.7 holds even if the Poincaré inequality
(5) is not satisfied by f~,. Also, T can be larger than v.
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51 Page8of45 A. Arnold, G. Toshpulatov

2. The exponents of 7 in (11) and (12) are optimal when V' is a quadratic polynomial (see
[32, Appendix A]).

To illustrate our result, we present concrete examples of potentials V' satisfying our

Assumptions 2.1 and 2.2:

Example 2.10 (Polynomial confining potentials) (a¢) As mentioned in Theorem 2.3, if
Tar—1 . .. . . .

V(x) = "Mf" +p-x+q, x € R" with a positive definite covariance matrix M~ € R"™*",

a constant vector p € R” and a constant ¢ € R, the convergence rate is

v ifag > ¥ (case (a))
A= %, if g = "742, forany ¢ € (0,v) (case (b)) |,
A ”‘}22740(0, if g < "742 (case (d))

and it is sharp for a9 # "72, where « is the smallest eigenvalue of M~! (see Theorem 2.3

(e)).

(b) More generally, we consider potentials of the form
V@) =l + Vo)

where r > 0, k € N and Vp: R* — R is a polynomial of degree j; < 2k. Since we
have already considered quadratic potentials, we assume k > 2. V satisfies the Poincaré
inequality (5); this can be proven, for example, by showing that V satisfies one of the sufficient
conditions given in [6, Corollary 1.6]. Concerning Assumption 2.2’ we have

2

S X{ X1X2 ... X1Xp
9 2
8|x|2 = 2krx |72 4 2k(2k — 2)r|x P [ 122 B2 S g P2
X1Xp X2Xn ... x,%
Since Vj has degree j < 2k, there is a constant A > 0 such that
32 Vo (x)
2k—3 0 2k—3
+ 1+
Q) = T < A )
Therefore, we can estimate
v
; SO (2krx 2 = AP~ a) 1. (14)
X

We also observe that there exists a positive constant B such that

9% (3, V
X

92V (x)
x2

—B(1+[x[*7)1 <

foralli € {1,...,n}. (14) shows that the smallest eigenvalue of satisfies a(x) >
2kr|x|k=2— Alx|?k—3 — A. Since 2kr|x|* =2 — A|x|*—3 — A grows faster than B (1+|x|*~3)
as |x| — oo, there are constants ¢ and t € [0, v) such that (7) is satisfied. Thus, Theorem
2.3 applies to this type of potentials. In particular, it applies to double-well potentials of the
form V(x) = r| |x|4 — r2|x|2, ry, r2 > 0.

Remark 2.11 1. Our decay and regularization results above extend those of [23], where a
stronger assumption, i.e. 8 V € ﬂ ~ WPORMY foralli, j € {1, ..., n}, was made.
By contrast, we did not requlre the boundedness of the second and hlgher derivatives of
V.
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2. Most of the previous works on the exponential convergence f (1) — fs ast — oo (e.g.
[9,10,14,15,20,31,32]) used the growth condition (4) to get some weighted Poincaré type
inequalities (see [31, Lemma A.24]), which are crucial in these works—and additional
to the Poincaré inequality (5). Our technique is rather different, based on construction of
appropriate state dependent matrices and state dependent matrix inequalities so that the
(modified) dissipation functional (see (20) below) decays exponentially.

3. Most of the previous methods for proving the exponential convergence do not give an
accurate decay rate, A is typically much too small there (see [31, Section 7.2], [20, Section
1.4]). For example, in [31, Section 7.2], the exponential decay rate > = 41—0 was obtained

2
for V(x) = % and v = o = 1. Since our decay rates are sharp for quadratic potentials,
in this setting, the true rate 1 = % is given by Theorem 2.3 (a) and (e).

3 Modified Entropy Methods for Degenerate Fokker-Planck Equations

We first consider the following degenerate and non-symmetric Fokker—Planck equation [1,
2]

{atf =div(DVf + (D + R)\VEf), £ eR, ¢ >0, as)

f@=0)=foe LY®RY), [ fods =1

where D € R?*4 is a constant, symmetric, positive semi-definite (rank(D) < d) matrix,
R € R¥* is a constant skew-symmetric matrix. E : R? — R is a function which only
depends on the state variable £. We assume that E is confining (i.e. E(§) — oo for || — 00)
and smooth enough so that (15) has a unique and smooth solution. If E grows fast enough,
(15) has a normalized steady state foo = ¢ re E, cg > 0. The weak maximum principle for
degenerate parabolic equations [25] can be applied to (15) and we can prove that f(z, &) > 0
forallz > 0, & € RY. The divergence structure implies that the initial mass is conserved and
f (¢, -) describes the evolution of a probability density

/ f(t,s>ds=/ fo®)de =1, Vi = 0.
Rd ]Rd

We are interested in the large-time behavior of the solution, in particular, when rank(D) is
less than the dimension d. When D is positive definite (rank(D) = d), the large time behavior
and exponential convergence have been studied comprehensively (see [2, 4, 7]). One of the
well-known conditions which provides the exponential decay of the solution to the steady
state is called the Bakry—Emery condition (see (16) below) leading to:

2
<& — 1) foodé < 00 and

Theorem 3.1 [2, Theorem 2.6] Assume / 7
o0

Rd

82E 1 82E 1 ’ —1 d
Ir > 0 suchthat — (I +RD™ )+ |—U +RD ")) =AD", V& € R“.
&2 &2
(16)

Then

fo (fo_)2
fRd<.foo 1) Joodt = € /R oo 1) SodE
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51  Page 10 of 45 A. Arnold, G. Toshpulatov

To prove the theorem above, one considers the time derivative of the L%-norm and we see
that it decreases

d f@ 2 _ r( f f B
dt Ja (fTo_l> JoodE =2 /Rd v (E) DV (E) Joodb=: =1(f (D) fo0) = 0.
(17

I(f(t)| foo) is called the dissipation functional and since D is positive definite it vanishes if
and only if f = f. It can be proven that, under the Bakry—Emery condition,

d
77 LDl foo) = =20 (£ ()] foo)- (18)

Integrating this inequality from (¢, o) and using the convergences I (f(t)| foo) — 0 and

2
t
f (& _ 1) foodE — 0 ast — oo, it follows that
R4

Joo
d <& _ 1)2f dg < _2A/ (ﬁ — 1>2f dg (19)
dt R4 foo < - R4 foo =

and, by Gronwall’s lemma, we get the desired result.

When D is only positive semi-definite, i.e. rank(D) < d, one observes that I (f(t)| foo)
may vanish for certain probability densities f # f. Hence the inequalities (18) and (19)
will not hold in general. Since the above problems stem from the singularity of D, one can
modify the dissipation function and define a modified dissipation functional (see also [1, 3])

sin =2 [ V(L) peve (L) ruas 0)

where P : R? — R?*? is a symmetric positive definite matrix which will be chosen later.
Extending the approach of [1, 3], we allow the matrix P here to depend on & € R?. Our goal
is to derive a differential inequality similar to (18) (like the dissipation functional satisfied
for non-degenerate equations), i.e.

d
ZS(f(t)) < =2A8(f (@), (21)
for some A > 0 and a “good” choice of the matrix P. If this holds true, we would obtain

S(f(1) < S(foye ™.
If we can choose such P = P(£) > nl for some > 0 and all £ € R?, under the validity of

the Poincaré inequality (5) for foo(§) = ¢ ge E® (where (i) in (5) is replaced with &) we

£ 2 1 (f(t))
L) foodE < —— ve (L2
/Rd ( Joo ) Jooddd = Cpr Jrd ¢ foo

which implies the exponential decay of the L?-norm

AN ? 1 —2ar
/Rd < foo 1) foodt = ZCPIUS(fO)e '

have
2

Jood§ < S(f(@),

2Cpin

@ Springer



Exponential Stability and Hypoelliptic Regularization... Page 110f45 51

More generally, since the quadratic entropy is also a decreasing function of time #, instead
of proving (21), we can consider the functional

2
S(f(1))=y /R d (% - 1) FoodE + S (1)

L ke (L ren ()
=y [ (L2 1) mae 2 [ v (L) pev (L) rmae

and choose a suitable parameter ¥ > 0 and a matrix P such that

dOf (1) _

o —20P(f(1) =0 (23)

for some A > 0. This idea and method were successfully applied in [3] to (15) when the
potential E is quadratic.
We shall apply this method to the kinetic Fokker-Planck equation with non-quadratic

V (x). First, we denote £:= <x> € R¥, E(§) := L[V(x) + 1) foo = e~ E. Then the
. , =} , = L . feo .

kinetic Fokker—Planck equation (1) can be written in the form of (15),

8 f = dive(DVs f + (D + R)VEEf) (24)
with
_ 00 2nx2n _ E 0-1 2nx2n
D_(001>€R and R_v I 0 ceR . (25)

The rank of the diffusion matrix D is n < d = 2n. Thus, (1) is both non-symmetric and
degenerate and the arguments above apply to the equation.
We will develop a modified entropy method. We will choose &-dependent matrix P in the
modified dissipation functional (20) so that (23) holds and A > 0 is as large as possible.
We also mention that when the potential E is quadratic in (15), the question about the
long time behavior can be reduced to an ODE problem:

Theorem3.2 Let 0 £ D € R4*4 pe positive semi-definite, R € RY*4 be skew-symmetric

andR? 5 € - E(§) = % for some positive definite matrix K. Assume (D + R)K!
is positive stable and there is no non-trivial subspace of KerD which is invariant under
l(D R).Iffi lS the solution of (15) and &£(t) € RY is the solution of the ODE £@) =

—K’i (D+ R)K™ 25 with initial datum £(0) = &, then

11 @)/ foo = Ulr2wd 1) sup [1E@I2

= , (26)
1#%61‘2@@;{‘&0) [1fo/ foo — 1||L2(Rd,foo) 0#£E)eR4 [1€0ll2

Proof See [5, Theorem 3.4]. O

One consequence of Theorem 3.2 is that the decay estimate of the ODE-solution carries over
to the corresponding Fokker—Planck equation.
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4 The Choice of the Matrix P

For future reference (in the proof of Theorem 2.7) we shall now also allow the matrix P to
be time dependent. Hence we shall next consider the generalized functional

S, f) = 2/Rd vl (f%) P(1,8)Vs (f%) foodE.

The following lemmas will play a crucial role in our arguments.

Lemma4.1 Let P : [0, 00) x R? — R¥*2" pe smooth and f be the solution of (1), then
d n
80, f(1) =40 /RZ” {;(Bviu)TPaviu} foodxdv

—2/ uT{QP—l—PQT}ufoodxdv

RZn

—2/ ul {[VoV - Vy—v-Vy4vv-V, —0Ay — 1P} ufsodxdv,
R2n

©2))

0 I
where u: =V , (fioo) 0= Q@)= ( 2V vl) L and [VyV -V — v - Vy + 00 - Vy —
‘ o

o Ay—0;] denotes a scalar differential operator that is applied to each element of the matrix
P =P, x,v).

Proof We denote u:=V, (%) LU=V, ( f
J oo

—) , then u and u» satisfy
foo

n n n 2
Vv
iUl = oAyuy — vaiaviul + Zaxivav,.ul — l;u,-ax,.ul + ﬁuz,

i=1 i=1

n n n
oty = o Ayuuy — v Z Vi 0y, U2 + Z Ox; V Oy uz — Zviaxiuz —up — vuo.

i=1 i=1 i=1

These equations can be written with respect to u = (ul) :
2

n n n
o =oAyu —v Zviaviu + Z Oy, V oy, u — Z VO, U — QTu.
i=1 i=1 i=1
It allows us to compute the time derivative of the modified dissipation functional

d
—S(t, (1)) =4/ uTPatufoodxdv—t—Z/ ul 3 Pufaodxdv
dt R2n R2n

n
:40/ uTPAvufoodxdv—4v E / uTPaviuvifoodxdv
R2n : R2n
i=1

n n
+4)° /RZn ul P8y, udy, V foodxdv — 4ZfRz" ul Pouv; foodxdv
i=1 i=1

- 2/ u{QP + PO  ufsodxdv + 2/ ul 9, Pufsodxdv. (28)
RZ;I ]RZn
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First, we consider the term in the second line of (28) and use 9, foo = —gv,- foo:
n n
4o Z Azn uTPE)UZI_UI_ Ufoodxdv — 4v Z /Rzn uTPaviuvifoodxdv
i=1 i=1
n n
= —4o Z/ dy,u” Py ufsdxdv — 4o Z/ u” 3y, P)dyufoodxdv.  (29)
. R2n N R2n
i=1 i=1
By integrating by parts the last term of (29) we obtain
n
_4 T8y, P)0y, t foodxd
U;/Rzn” (0y; P) 0y u foodxdv
n n
=40 Z/ u” (3y; P)dy; tfoodxdv + 4o Z/ ul (9%, P)ufsodxdv
— JR2 e~ |r2n ivi
i=1 i=1
n
—4v Z/ u” (3y; PYuv; foodxdv
‘ R2n
i=1
and we find
n
— 4o Zf ul 8y, P)dy, ufoodxdv = 20/ ul (Ay P)ufoodxdv
iz R2n R2n
n
—2v ; /Rz” ul (v;8y, P)ufoodxdv.
If we use this equality in (29), we get
n
40/ uTPAvufoodxdv —4v Z/ uTPviaviufoodxdv
R2n N R2n
i=1
n
= —do Zf (8 )T Py, ufoodxdv — 2/ ul {[vv - Vy — 0 Ay Pufsodxdv. (30)
i R2n R2n
Next, we integrate by parts in the terms in the third line of (28):
n
4 TPoy udy. Vfoodxd
;[RZ"M i U0y; V foodxdv
n
=4 Zl: fRz,, ul Py udy, V foodxdv
n 4y n
— 42/ u” (3y; PYudy, V foodxdv + — Z/ ul Pud,, Vv foodxdv,  (31)
izl R2n (o2 izl R2n

n
— 42/;@1 uTPaxiuv,-foodxdv
i=1
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n
= 42/;@1 uTPBXiuvifoodxdv
i=1

n n
4
o+ 42/ u” (3, Pyuv; frodxdv — — Z/ ul Pudy, Vi foodxdv. (32)
el R2n o i R2n
(31) and (32) show that the third line of (28) equals
n n
-2 Z/ u” 8y, PYudy, V foodxdv + 2 Z/ u” (35, PYuv; foodxdv
. R2n " R2n
i=1 i=1

= —2/ ul {[VyV - Vy — v - V] Pufoodxdv. (33)
R2n
Combining (28), (30), and (33) we obtain the statement (27). ]

Remark 4.2 We give now a (formal) generalization of the above result (27) to Markovian
evolution equations using the Gamma calculus, see, e.g., [§-10]:

First, let L be the generator of some Markovian evolution on R? with corresponding
invariant measure fo.d&. Let P = P (&) be a smooth matrix function (but it does not have
to be symmetric or positive definite). We define the first order bilinear form

P (g, h):=Veg” PV
and
1
Iy (g, h>:=5(LF”<g, h) — TP (Lg, h) —T" (g, Lh)).

For a solution A(¢) of 0;h = Lh, these definitions give

d
EFP(h, hy =TP(Lh,h) + TP (h, Lhy = =2TF (h, h) + LT P (h, h), V& e RY.

(34)
We use I'? to define the modified dissipation functional
o P oS
S(f):=2 LY (h, h) foodé withh = —.
R4 Joo
We obtain by integrating (34):
d
S0y =—4 / I3 (h ) foods, (35)
t R

where we used that [pq LT'? (h, h) food€ = 0.
In particular, let L be the generator of the kinetic Fokker—Planck equation (3), and we

recall that &:= (T}) . Then, a straightforward (but lengthy) computation shows that

n
20 (hoh) = 20 Y @) Poyu +u” (QP + PO )u+u (LPu

i=1

n n
+20 ) @) By Phu+40 Yy u” 3y, P)dyu.

i=1 i=1
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One can check (by integrating by parts the term 4o [pq > u” (3, P)dy, u foodé in the right
hand side of (35)) that (35) coincides with (27). Hence, (35) reproduces (27). But in contrast
to (27), the preceding statement (34) is local in & and therefore stronger.

The key question for using the modified entropy dissipation functional S(f) is how to
choose the matrix P. To determine P we shall need the following algebraic result:

Lemma 4.3 For any fixed matrix Q € R4*? et u := min{Re(B) : B is an eigenvalue of Q}.
Let {B : 1 < m < mo} be all the eigenvalues of Q with i = Re(f), only counting their
geometric multiplicity.

(a) If By is non-defective for all m € {1, ..., mo}, then there exists a symmetric, positive
definite matrix P € R with

oP + PQT > 2uP.

(b) If By is defective for at least one m € {1, ..., mp}, then for any ¢ > 0 there exists a
symmetric, positive definite matrix P(g) € R4*? with

QP(e) + P()Q" > 2(u — &) P(e).
Proof See [3, Lemma 4.3]. O

‘We consider the matrix function

0 1
Qx):= (_ 92V (x) vl) , x €R" (36)

dx2

which appears in (27). We want to construct a symmetric positive definite matrix P (x) such
that Q(x) P(x) + P(x) QT (x) is positive definite and

Q) P(x) + P(x) Q" (x) = 2P (x)

for some p > 0 and for all x € R". We recall

_ o V()
a(x):= min {;(x) : o;(x) is an eigenvalue of ,
ie{l,...n} 0x2
o= inf a(x),
xeR”
ni= inf {Re(Bi(x)) : Bi(x) is an eigenvalue of Q(x)}.
xeR" iegfl,..,n}
Lemma 4.4 (1) The matrix Q(x) is positive stable at any fixed x € R", if and only if aza‘j((zx)

is positive definite.
2
(2) Let % be positive definite for some x € R". Then:

2 . . .. . .
(a) If g > UT’ then 1 = % and there exists a symmetric positive definite matrix P(x) such
that

Q) P(x) + P(x)0" (x) =21 P(x).

2 v—/12—4aq
(b) If0 < g < %, then p = —Y5—=

1
matrix P(x) such that

and there exists a symmetric positive definite

Q) P(x) + P(x)QT (x) > 2P (x).
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(c) Ifag = 4 , then . = 5 and, for any € € (0, v), there exists a symmetric positive definite
matrix P(x, €) such that

Q)P (x,6) + P(x,£)Q" (x) = 2u — &) P(x, ¢).

Proof Part 1) Let x be any point of R”, we compute the eigenvalues 8(x) of Q(x).If B(x) # 0
we have the condition

det( Q) — BN = | ve
e — = 2
S N OO
1 ﬂ(x)l . 0
T B |-EER SV 4 gy - B
52y

_ (—1)"det< T 4 )(v—ﬂ(x))l>

=0.
Let wi(x) € R, i € {1, ..., n} denote the eigenvalues of 9 dVS‘) , then the above eigenvalue

condition reads

[ B = vBx) + ei(x)) = 0.

i=1
Hence the non-zero eigenvalues of Q(x) are

+./v2—4q; .
ENP TR Uz a(x), if V2> 4o (x)

+ _ .
ﬂi (-x) - viim i 2 , L€ {17 seey n}v (37)
2 b

if v° < 4da;(x)

wherei = 4/—1. Moreover, 8(x) = 0can be an eigenvalue of Q (x) iff one of the eigenvalues
of 02 V(x)

is zero. This shows that Q(x) is positive stable (i.e.,the eigenvalues f;(x) have

posmve real part) iff 9 a‘;gx) > 0.

For Part 2) we shall construct matrices P (x), which relies on the proof of Lemma 4.3
(Lemma 4.3 in [3]).

(a) Let g > ‘:TQ. In this case, because of (37) the matrix Q(x) is positive stable and

=5 > 0. We define the matrix

21 vl
P(x):= bl 22V |
ox

and for this choice, it is easy to check that

Q) P(x)+ P(x)Q" (x) = vP(x) = 2P (x).
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To make sure that P (x) is positive definite, we compute the eigenvalues n(x) of P(x) at each
x € R" : For n(x) # 2 we have the condition

@—nepl v
e I
_ 1 2 =nGxnI 0
Ty | v =) (2542 —nwr) - v

2
— det ((2 —n(x)) (2&;") - n(x)1> — vzl) —0.
0x

n(x) = 2 is not an eigenvalue of P (x) and so the eigenvalues of P (x) satisfy

n

[T — @+ 20 () ) + deti () — 1) = 0.

i=1

We conclude that the eigenvalues are

nE@) =1+ 000 £v(@i (x) + 1)? = @Gai(x) —v2), i €(1,...,n).

. 2 . . ..
Since we assumed o; (x) > a(x) > ag > VT foralli € {1, ..., n}, the eigenvalues are positive
and satisfy

ni= inf }nii(x) =1+ay— V(o + 1)2 — (4ag — v2) > 0.

xeR"iel,...,n
Thus, P (x) is positive definite and P(x) > n/ for all x € R".

(b) —(c) Let0 < g < %. Then (37) shows p = M2 —2%0 “}22_40(0. Let ¢ > 0 be a fixed small
number. We define

. 2
ag, ifag < VT
w:= 2 2
& : Vv
ao— 7, ifap =5

and consider the matrix
p 21 vi
=1, 28V 4 (12 — 4wl )

We compute its eigenvalues 7(x) by a similar computation as above:

nF ) = 14600 £ V(@G0 + D2 — @5x) —v2), (38)

where ¢; (x):=a; (x) + % — 2w > "TZ. We also have

inf + 1 2, 2 1) 4020
1= e x) = teot oL (ao—i—?— @ ) tve =0

Thus, P(x) is positive definite and P(x) > n/ for all x € R". Then we compute
Q) P(x)+ P(x)Q" (x)

21 (v+ V2 —dw)!
— _Jy2 = /p2 —
= 0oV )P v o ((v + Vv — o)l 2—”;‘2/ + V12 —do(v+ VI = 4a))]> ‘

(39
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2%y

Since o wl, the second matrix in the last line of (39) is bounded below by
21 (v + V2 —do)I
(v + V2 —do)I 20+ Vv2 —dw(v + V2 —dw)]
_ 21 (v+ V12 —dw)l -0
N (v + V2 —dw)I %(v + V2 —4a))21 -

Consequently, we get

Ox)P(x) + P(x)QT(x) > (v —VvZ— 4a))P(x) forall x € R".

m}
Lemma 4.4 shows that, if % is not positive definite at some x € R”" (and hence
ap < 0), then Q(x) is not positive stable. In this case, it is not possible to find a positive
constant p and a positive definite matrix P (x) such that Q(x) P (x)+ P (x) 0T (x) > nP ).
If «g is just finite and not necessarily positive, we have the following modified inequality.

Lemma4.5 Let g > —oo. Then there exist y > 0, § € [0, v), and a symmetric positive
definite matrix function P (x) such that

Q(x)P(x)+P(x)QT(x)+yD > —-56)Px), Vx eR?, (40)
00 2nx2n ; ; ;
where D = 0ol eR is the matrix defined in (24).

2 . .
Proof Leta > 0 be any constant such that a + a¢ > 2. We consider the matrix

PO 21 vl
X).= a2 .
vi 2% +2al

In analogy to (38) we find its eigenvalues as

) = 14660 £ V(@G0 + D2 = @5x) —v2),

where ¢ (x) = oj(x) +a > a + ay > ‘2‘—2, and o;(x) € R, i € {1,...,n} denote the

. 92
eigenvalues of % We also have

4<a+a0—‘:‘—2)
1+a+a+/(a+ag—1)2+12

Thus, P(x) is uniformly positive definite and P(x) > nI for all x € R".
Next we compute

= inf £(x) =
1 xeRie(l, ..., n}n’ x)

> 0. 1)

0 2al
T _
QP+ PO +yD_vP+(2aI (2va+y0)l>

(42)

( 251 (v8 + 2a)l )
=@W—-8)P+ J

W8 +2a)1 QLY +2al) + Qua + yo)I
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where § € [0, v) will be chosen later. We compute the (real) eigenvalues 6 of the symmetric
matrix
281 W8 +2a)l
32y (43)
(v8 +2a)1 8Q2LY +2al) + (2va + yo)I

which appears in (42):
For 6(x) # 25 we have the condition

25 —-0)1 W8 +2a)1
W8 +2a)1 522 +2al) + Qva +yo —O)1
| 25 —0)1 0
T 20— 6)" |(v8 +2a)] (26— 6) (5(2 PV 1 2al) + 2va + yo — 9)1) — (8 +2a)%1

a2V
= ‘(25 —0) (‘WW +2al) + Qua + yo — 9)1) — (V8 +2a)%1
X

n
-T1 (92 — 0 [28(cti(¥) + @) + 28 + 2va + yo | + 482 (@i (x) + a — v2/4) + 28y — 4a2) =0

i=1
Let us consider the following equations with i € {1, ..., n} :
02 —0[28 (o (x)+a)+28+2va + yo ]+[48 (i (x)+a — v?/4) + 28yo — 4a’] = 0,

(44)
and we shall show that they have non-negative solutions for an appropriate choice of § and
y. To this end we see first that

sv?
25(ai(x) +a) +26 +2va+ yo > 26(xg +a) + 26 > > +25 > 0.

Next, we choose

2
1
§=4(a,y)= Yo +02_L >0,
2 02 2
atao— 4Ja+ao— 7 4y/a+ao— 5
(45)
which satisfies
2
482(a g — ?) +28y0 —4a® = 0. (46)
Hence, the last term of (44) satisfies
2 2

2( . v 4.2 2 v 42
46“(aj(x) +a 7 +28yoc —4a” > 46 (a + oo 7 +28yoc —4a” =0

foralli € {1, ..., n}. Therefore, the quadratic equations (44) have non-negative coefficients
and so their solutions, i.e. the eigenvalues of (43), are non-negative. Consequently, we get
(40).

We note that § from (45) satisfies, for any fixed a > % —agp, 8(a,y) > 0asy — oo.
Hence, choosing y large enough, we have § € [0, v). O
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Remark 4.6 1If ap > 0, we can take y = 0 in Lemma 4.5. This follows by choosing in the
proof of Lemma 4.5

2 . 2
0, if g > "7 0, if g > UT
2 2 2
_ £ : _ v — & 1 — v
a= 72,4 lf0l0—4 . §= 7 if g T 2,
L if0 < < Vv —dag, if0<ap <Y

with any ¢ € (0, v). Therefore, Lemma 4.5 includes the second part of Lemma 4.4. However,
if g < 0, we have to choose y > 0.

5 Proofs
5.1 Proof of Theorem 2.3

Proof We denote u:=V; (i> , U=V, (i) cand u:= <”1> )
foo Joo u
We consider the modified dissipation functional

S(f(0) =2/2 ul (1) Pu(t) foodxdv
R n

for some symmetric positive definite matrix P = P (x, v) € R¥*?". By Lemma 4.1 (for a
t-independent matrix P) we have

d n
S(f(0) =—4o /Rz" {;(Bviu)TPSUiu} foodxdv

- 2/ ul {QP + PQT}ufoodxdv
R

— 2/ ul {[ViV - Vy—v-Vy 410V, — 0 AP ufaodxdv,  (47)
RZn

0 1
with Q(x) = ( P2V () 1) .Letc € Rand t € [0, v) are the constants such that Assump-
oV
tion 2.2 is satisfied. Since (6) is positive semi-definite, 323‘2(;”
and so % > —cI for all x € R". We define the matrix P depending on the constant c.
Case (a) : Assume ¢ < —"—2, g > %. By Lemma 4.4 (2a) and by its proof, the matrix

21 vl )
P(x).= satisfies

32V (x)
vl 278)62

+c1 is also positive semi-definite

Q(x)P(x)+ P(x)QT(x) = vP(x) and P(x) > nl

forallx € R" and n:=1+ g — \/(ao + 12 — (4ag — v2) > 0. For this choice of the matrix
P,

0 0
[ViV -V, —v-Vi4+vv-V, —0cA]P(x) = (O _232(v~VXV)> . (48)

9x2
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Then (47) can be written as

d n
TS (1) = ~4o /RM [;(aviu)TPawu] Foodxdv

T 7 (9 0
—2v u" Pufeodxdv +4 w |l 2evon Ufoodxdv
R2n R2n T

=4 By 1) Py ut foodxdv —vS
"/R[;( 0 ,u]f xdv = vS(f @)

{0 o0
+4Az u 0 32(U-VAV) ufoodxdv. (49)
" 3x2

We shall now consider each term of this equation. First we compute

5 7%V
S(f@) =2 20uy|” 4 2vuy - up + 2u; ——5 U2 foodxdv
R2n 0x

—4/ 1 + ~uzl? foodxd +4/ (Vv foodxd
- R2n “ 2“2 oo XAy R2n MZ 8)62 4 12 Jood XAV
>4/ r (Vv foodxd (50)
- R2n uz 3x2 4 “2JooG 24V
Then
n
4 3y 1) PO, dxd
J/sz[;( i U) vl”]fooxv

n 2
3’V
=do f : > <2|8U[u1 2 4+ 208y, - By uz + 2(8Uiu2)T3viu2>} foodxdv
R2n 0

. x2
i=1

n

v
= 8o /Rzn [Zlaviul + 2aviu2|2} foodxdv

i=1

! s (VW2
+ 80 /]RZ > @y u2) (W - ZI) dy;tts § foodxdv

i=1
2

n 2
°V v
> 8 By u))T | — — —1) 8, dxdv. 51
> o/RZn[i}_lj( tt2) <8x2 . ) v,uz}foo xdv 51)

Now we consider the last term in (49)

0 0 -V, V
4-‘/]Rz uT (0 82(U-VXV)) ufoodxdv = 4/ u%%uzfoodxdv
" 9x2

RZn
n n

= / Z U ;v - VXV,'J‘MZJ‘ foodxdv = 4/ Z ”2,ikaijku2,j Sfoodxdv

RZn - ]RZn o

i,j=1 i,j.k=1

4o -
=-— D uaiVijkua,j (B, foo) { dxdv

v RZn

i,j,k=1
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4o -
=— 1 2 dwluaiua Vi t foodxdv
R¥ i k=1
40
=— | 1 2 @umiuaVijk +u2i @z j)Viji f foodxdv
R¥ 1y k=1
8o -
= Y @uuzua jVije p foodxdv
VIR e
J =
8 920y, V
S Z(avk U A ( V) }foodxdv, (52)
v R2n
where we integrated by parts and used 9, foo = —ka foo and the notations u ; :=0,, (f%) ,

Viji=02,, V. Vije=03 ., V. By (49), (51), (52), and (50) we obtain

d
2500+ =D)S(f 1) = —TS(f (1)

2
— 8o /Rh {Z(a,,,uz) ( >3vlu2} foodxdv

2
. {Z(av,@) (@ xl } foodxdv

2V 12
—4t ub (== — =1 )u foodxdv
E R2n 2 axz 4 2Joo
" 2
27V v
— 80 /Rln {Z(av’uz) (T - 4 1> 81),‘”2} foodxdv
8%(d
[Z(av, N = ( - V) }foodXdU
v oJgr2 |2

o 32V 2 32(dy, V)
———Z/ V(@ u)" | =1 ) dyua— @y u2)" — U | foodxdv
v iz R2n 0x 4

ax2

8o LAY 2v 2
A S
2\ox2 4

I) U3 foodxdv.

v Jron 20

The right hand side of this inequality is a quadratic polynomial with respect to dy,u2, i €
{1, ..., n}, and uy. The corresponding matrix of this quadratic polynomial is

v 2 1920y V)
v (55 - 51) 0 0 120y
P2v 2 1920, V)
0 v ((‘)xz b 1) 0 120
(53)
2V 12 19205, V)
O 0 U(W_TI) ) ax2
1970y V) 1970,V _120yV) v (22v w2y
2 9x2 2 9x2 2 ax2 20 \ 9x2 4
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The assumption —V ‘szI > d—v + ¢I and the Assumption 2.2 imply that (53) is positive

dx2
semi-definite.
Thus we have obtained

d
ES(f(I)) +—=0S(f) =0
and by Gronwall’s lemma

S(f(0) < e S(fo). (54)
The estimate P (x) > nl and the Poincaré inequality (5) imply

M - ’ ; ; —(v—1)t
/]RZn ( ™ 1> foodxdv < 2CP”]S(f(t)) = o’ S(fo). (55)

The matrix inequalities (see Lemma 6.1 in Appendix 6.2)

1 I 0
P < 2
1+ a0+ V(I —ag)? + 12 (0 5 +a —ao)1>
1+a0+\/(1 —(xo)2+v2

4oy — 12

(56)

show that S(f(¢)) is equivalent to the functional

JONE T<f(r))< ~ ) <f(t)>
A@Zn V, ( - ) Sfoodxdv+ /;%2" v, i > +(1—ao)l | Vy o Sfoodxdv.

This equivalence, and (55) let us obtain ).

Case (b) : Assume ¢ = —o = —"—
Then by Lemma 4.4 (2¢), for any & € (0, v — 1), the matrix

21 vl
P(x):= vl 2 V(x)+ 2]

Q) P(x) + P(x) Q" (x) = (v —&)P(x) and P(x) > nl (57)

satisfies

forall x € R" and mi=1 + Y422 — J(422 _ )2 42 = 0. With this matrix we have

Voo, T 92V 22— )2
S(f()) =4 |u1 + —us|” foodxdv + 4 uy | —5 + ————1 | uz foodxdv
2 R dx2 4

82V 262 — )2
> 4/]1{2’1 uy (8x2 + fl) U3 foodxdv, (58)
n
4 8y )T PO, dxd
afR{Zl( ) vlu}foo xdv
:sg/Rzn {Z'a”‘"l+ — By, 2] }foodxdv

2y g2 )2
8o /Rzn :Z(avr’”) ( t—! ) 3u,-uz} foodxdv, (59)
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and by using (48), 3y, foo = — 2 Vi foo -
— 2/ ul {[V,V - Vy—v -V, +vv-V, — o Ay]PYufsodxdv
R2n

[Z(au, 2)Ta (x‘ & }foodxdv. (60)

Vv R2n

47), (57), (58), (59), (60), and similar estimates as for Case a) show that

d
23U+ v =7 —8)S(£ ()

92 V 26212 7028y, V)
Z u(av,uz) T Oy, U2 —(0y; U2) o 12 Soodxdv

8o ™ (82V 262 — 2

Uy sy 1 I> U3 foodxdv.

v Jrm 20

The right hand side of this inequality is a quadratic polynomial with respect to d,,u>, i €
{1, ..., n}, and u,. The corresponding matrix of this quadratic polynomial is

92V | 26202 1 82(8” V)
v (W+Tl 0 0 2 ax2
92V | 2622 1 9%(0x, V)
0 v(EE+EFE) 0 T
2622 o _19%05 V)
0 0 v (ax +222) 186y7)
1970y V) 19705,V 19 (ax,,V) w (2V 4 26202
2 9x2 2 gx2 2 3x2 20 \ 9x2 4

(61)

Because of ‘327‘2/ + #1 a—v + c¢I and Assumption 2.2, (61) is positive definite and we
get

d
ST+ =1 =&)S(f(1) <0
and by Gronwall’s lemma
S(f() < e 7T fo). (62)

Similar to (55), we have

2
/ (M )foodxclv< LSUO) = 5 L) @)
R2n foo 2 PN

The functional

[l ()
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and S(f(¢)) are equivalent because of (see Lemma 6.1 in Appendix 6.2)

1 b (1 0 )
92V

1+ 24262 +\/(1 _ v2+2£2)2+ v2 0 ax% + (1 —a)!

4 4

1+ v2-',‘-‘2£2 +\/<] _ 1)2-;282>2+V2

< P. 64
< > (64)

This equivalence, and (63) imply (9).
Case (c) and (d), exponential decay: Assume ¢ > ——2 For some y > 0 to be chosen
later, we consider the functional

2
q>(f(f))I=7// (i - 1) Joodxdv + S(f (1))
R2 \ foo

2
:y/ (L _ 1) Sfoodxdv + 2/ ul Pufoodxdv. (65)
RZn ,fOO RZ"

Using (17) and (47) its time derivative reads

do(f (1))
—— =- /Rz” {Z(av,u) Pdy,u ]foodxdv

—2/ u” {QP +poT —l—yD}ufoodxdv
R2n

— 2/ ul {[VoeV - Vy —v-Vy 410 Vy — 0 AP} ufoodxdv. (66)
R2n

Let a, to be chosen later, be any number such thata > ¢ + "742 > 0and a + oy > ”742. We
consider the matrix
Pir): 21 vl &7
(x):= 28 V(X) +2al (67)
Then, by Lemma 4.5 we have
Q(x)P(x)+P(x)QT(x)+yD2 (v—=38)P(x), Vx e]Rd, (68)

with a constant § defined in (45). If y is large enough, (45) shows that § € (0, v — 7).
The choice of the matrix P in (67), (66), and (68) lets us estimate

% < —4o /RZM {Z(av,u) Pav,u} Foodxdv

0 0
— (= OS(f(1) + 4 /R ' (0 P, m) U foodxdv. (69)

9x2
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Similar computations as for Case (a) as well as (58) (but with &2 = 24) lead to
d
EGJ(f(t)) +OV=38-)8S(f(®)

80 92V da —? 32(3y, V)
_T Z/RZ {U(aviMZ)T <8x2 + TI) 81},‘142 - (aviMZ)TTx’zMQ} foodxdv
i=1

8o ™ or 92V da —H?
uz —_—
ax2 4

1) U3 foodxdv.

Vv R2n 20

The two integrands of the right hand side are together a quadratic polynomial of 9,,u>,
i €{l,...,n}, and uy, and its corresponding matrix is

411 v 1 32(3x1 V)

( Y 4+ 1) 0 0 1%
4a v 1 82(3)(2 V)

0 ( Y 1) 0 — 1 20y
4g v 1923y, V)

0 0 (3x2 + 1) _i 0x2

1920, V) 19205, V) _ 1920, v> w + da= v2 g
2 9x2 2 9x2 2 9x2 20 x2

(70)

Because of a — VT > ¢ and Assumption 2.2, the matrix (70) is positive semi-definite, thus,
we have

d
72O+ =1 =9)S(f(1) =0. (71)

The estimate P(x) > nl (n > 0 defined in (41)) and the Poincaré inequality (5) imply

2
/ (i - 1) foodxdv < !
R2n fOO 2 C

1
——5  ®(f(®) =S(f().

I+ 2nCpr

S(f(@)
PI

and so

This estimate and (71) let us conclude

d
EQ(f(t)) +20P(f(1) <0 (72)
for
v—1—9§
20 = ——-— > 0. (73)
1+ 2'7%”

By Gronwall’s lemma we obtain
O(f (1) < e D (fo). (74)
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One can check that (see Lemma 6.1 in Appendix 6.2)

1
P
a+ayg+14+(a+ay—1)2+12
1 0 1 —1)2 2
2y <a—|—060+ —l—\/(a+ot0 ) +v p (75)
Ow—i—(l—ao)l 4(a + og) — v?

Hence, S(f(¢)) is equivalent to the functional

f® T(f(t))( B ) (f(t)>
fRva (foo> foodd+/Rz”VU 7 S +(1—ag)] T foodxdv.

Subsequently, ®(f(¢)) and the functional on the left hand side of (9) are equivalent. This
equivalence and (74) let us obtain (9).

Case (c) and (d), estimated decay rate: Next, we shall estimate A from (73) explicitly,
and we shall choose the parameters a and y such that A is (rather) large. By (41) and (46),
n =n(a)and § = 8(a, y) are functions of a € [c + V4—2, 00) ﬂ(‘il—2 —ap, 00)and y € [0, 00).
Since § > 0, and n is monotonically increasing up to 2, we have the following uniform
estimate and choice of the decay rate:

v—1—46(a, V—T
2h= sup I—V(J/) < sup T4 7= =VvV-—-rT
aele+2 00 (L —apoo) y=0 | T @ vzl acy

Next, we shall estimate this supremum (in fact it is a maximum). First we introduce a new

variable s := __Ys € [0, o0), then
4a/a + op — ‘2—2
8(617)/): (V1+52—S)
\a-+tog— T
1 —1)2 2
With the notations A(a) = ta +a0+\/(a + 0 )+ > 0 and B(a) :=
ZO'CP[
a > 0, we have
a+og— ‘2—2
vV—1—B@)W1+s2—5)
20 = max .

ae[c+%,oo)ﬂ(%—ao,oo),s20 1+ A(a)B(a)s

Next, we shall fix the parameter a. To estimate A as accurately as possible, we choose a as
the argmin of B(a) such that v — 7 — B(a)(+/1 4 s2 — s) is maximal with respect to a. The
minimal value of B(a) is

2
c+ 4 v?
B(a)) = —2—  if c+2a0 > —
, min , B(a) = e +oag ‘2¥ ,
»= e v
@cler i 00 (1 —e0,00) Blaz) = Vv —dag if ¢+ 200 < o

and this minimum is attained at a:=c —I— 1fc—|—2a0 > v? - (i.e.inCase (¢)), and 612:22(‘172 —
ag) if ¢ + 20 < "7 (i.e. in Case (d)).
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2 . .
If ¢ + 200 > 4, then ¢ > —ap and so a varies in
2 2 2

e+ )15 e <[ ) = [oe)

Since A(a) is increasing, both A(a) and B(a) attain their minimal values at a;. Thus, a; is
optimal, i.e.

v—1—B@)W1+s>—s) v—1—Bla)W1l+s>—5s)
e 1+ A(@)B(a)s = 1+ A@)Bays

2 2 . .. ..
Ifc+2ap < ”?, ar = 2("? — o) may not be optimal as A (a) does not attain its minimum
at this point, i.e.

v—1—B@)KW1+s2—5) Vot B(ay)(v/1+s2—5)
e 1+ A@)B(a)s = 1+ Alay) B(ay)s '

But it is the optimal choice when s = 0 and so it gives a good approximation if s is small.
From now on we assume that a is fixed as

[S)

2 .
P ai :c—{—z% ?f ¢+ 2ap > %2 . (76)
a) =2(% —ap) if ¢+ 200 <%

Note that this choice is independent of s.

— 7 —B@)(W1+s2—%)

Let A(a, s):=v and we seek its maximum with respect to
14+ A(a)B(a)s

s € [0, 0o). We compute

dsA(a,s)

B(a)
= 1— —7—RB A 241
ETRY AN (It = = - B@pa@s? +

—A@B@Ws2+1—1)— s). 17

If1—(v—1t—B(a))A(a) <0, thend;A(a, s) < 0whichimplies that A(a, s) is a decreasing
function of s and the maximum in [0, 0c0) is attained at s = 0.

Ifl1— (v —1—B(a)A(a) > 0, then 9;A(a,0) = B(a)[l — (v —t — B(a))A(a)] > 0
and A(a, s) is increasing in a neighborhood of s = 0. We also see d;A(a, s) is negative
if s is large enough (since v — t > 0). This means that A(a, s) starts to grow at s = 0
and it decreases as s — o0o. Therefore, there is a point in (0, co) at which A(a, s) takes its
maximum. Setting d; A(a, s) = 0 we obtain

[1—@—0A@IWs2+1—s+ A@B(@) =0.

It has only one solution in (0, co) given by

@ e if (V1) A()=2
sla)= _ _ .
ﬁ;[%ﬁ%%%ﬂ¢%%m+2w7nA4unf(»fn2f@:%%ﬁﬁ if (v —T)A(a) #2

(78)

and at this point A(a, s) attains its maximum with respect to s.
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Considering the computations above, we conclude that the decay rate can be estimated
by:

) v—1 — B(a) ifv—1t>A"1Y) + B 9
)\, =

—t—B(a)(x/14+s2(a)—s . _ ’

— lj-azi((ll)B-(tls)S((‘:l)) SR ifv -t < A7N@) + B(a)

where two cases correspond to the two cases discussed after (77). Moreover, a and s(a) are

defined in (76) and (78), respectively. If we denote A; := A(ay), Az := A(ay), 51 :=s(ay)
2

and 57 := s(ar) and take into account that B(a;) = 2 and B(ay) = /v2 — 4ag, we

. .o . . L+LXO
obtain the explicit decay rates stated in the theorem.

. . 2 ... . 32 (dy, V
Case (e) : Let V(x) be a quadratic function of x and 337‘2/ be positive definite. Then, (ax’z )

are zero matrices for all i € {1, ...,n}. Thus, V satisfies Assumption 2.2 with 7 = 0,
—c=0og > 0.

Ifag < ‘2—2, then ¢ + 209 = g < ‘21—2 which falls into Case (d).

The constant in the Poincaré inequality (5) equals Cp; = % min{1, ap} (see [4]). It lets

us compute A, ! explicitly:

_ 2v min{l1, o}
1
Ay =

1+”72—a0+\/("72—a0— 1)2+v2
In Appendix 6.3 we prove the following inequality:

v> Ay V2 — dag. (80)
Thus Case (d) implies

— 2 _ 4
A=¥. 81)

If g > ‘11—2, the decay rate is explicit by Case (a) and Case () :

vV : U2
A=97_. o — 2 . . (82)
- ifayg= 7, forany e € (0,v)

‘We now prove that the decay rates in (81) and (82) are sharp: From Corollary 2.8

o
/]1;2,, < . 1) Sfoodxdv

2
—2At & _ 1)
=ce /]Rz" <foc <

holds with the same A given in (81) and (82). Since ‘
implies

) sodxdv, Yt >t

dV
9x2

t -1 ~
sup NF(@®)/ fo ||L2(]Rd,foc) < Ce_M, — (83)

l;éff—o%eLz(Rd,fm) [1f0/ foo — 1||L2(]Rd,foo)

for some constant C > 0. On the one hand this means that the estimated decay rate A can
not be larger than the (true) decay rate of the propagator norm given on the left hand side
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of (83). On the other hand, Proposition 2.5 gives the sharp decay rates for this propagator
norm. The decay rates in (81) and (82) coincide with the ones in Proposition 2.5 except in

the case of ao = " . Thus, the exponential decay rates in Case (a) and Case (d) are sharp.

When oy = Proposmon 2.5 provides the sharp decay (1 + #)e™ 3 for the propagator
norm. Hence, (9) can hold with rates A = ” £ for any small fixed ¢ € (0, v), but it does not
hold for ¢ = 0. o

5.2 Proof of Proposition 2.5

Proof of Proposition 2.5 Let V be a quadratic polynomial and 2 T Y.=:M~! e R"*" be positive

definite. Then there are xo € R" andC € Rsuchthat V(x) = M—FC ,Vx e R,
Since the change x — x + xo does not affect the supremum in (10) and only the gradient of
V appears in (1), without loss of generality we assume that xo = 0 and C = 0.

Step 1, reformulation as an ODE-problem: To this end we use Theorem 3.2. We check
the conditions of this theorem for the kinetic Fokker—Planck equation. With the notation

§:<i),wewrite
v [v]? v (xTM'x v 1.7 gM_l 0 §T 'g
sy (veory ) =5 (P ) (0 )=

(34)
M~1o
: -1 ._ v
with K ._U( 0 I)'

From (25) we see that KerD = {(, 0)T : € R"}. Let (, 0)7 € KerD, then its image
under K~ '(D — R) is

Sy v\ _ (0 MY\ (v _ (O
o-n(5)=(2"%)(6)= (5
and it is in KerD iff v = 0. Therefore, there is no non-trivial K ~1(D — R)-invariant
subspace of KerD. Next we compute the eigenvalues S of K~/2(D + R)K~1/? =

0 —M-12
M2 )
_pM-l2

M~ ‘/2 w—pBI| "

0
M~ 1/2 (v _ﬂ)l _ﬂflel

=det(B(B —v)I + M) = H(ﬁ2 —vB+a) =0,
i=1
where «;, i € {1, ..., n} denote the eigenvalues of M -1, By solving the latter equation, we
find that the eigenvalues of K ~!/2(D + R)K ~'/2 are g, = ¥ — ”‘)240” B = YA "v22_4°”
i €{l,...,n}. If ap > O is the smallest eigenvalue of M~ then

)

2
. v if g > %

= min{Re(f;) : fi is an eigenvalue of K~/2(D + R)K %) = { W ifag < ;-
2z 4
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Hence p is positive, so KY2D+R)K~Y%2and (D+R)K ! are positive stable. Therefore,
Theorem 3.2 applies to the kinetic Fokker—Planck equation.
Step 2, decay rates of the ODE-solution: We consider the ODE

E(t)=—-K 2 (D+R)K™ "¢

with the initial data £ (0) = &p. Since K ~'/2(D+R)K ~/%is positive stable, the solution & (¢)
is stable. To quantify the decay rate, we continue to analyze the eigenvalues of K ~'/2(D +
R)K~Y/2. Let m; be the multiplicity of ; > 0 as an eigenvalue of M~! (now the «; with
i €{1,..., 7} are labeled without multiplicity). Since M~! is symmetric, there are linearly
independent eigenvectors ¥;; € R", j e {l,...,m;} of M -1 corresponding to «;. Then we
can check that the vectors

172

%
“HE VI eRY, el m) (85)
Vij
are linearly independent eigenvectors of K ~1/2(D 4+ R)K ~!/? corresponding to B .i€
{1, ..., n}. Moreover, these vectors form a basis of the space of eigenvectors corresponding
to B, . Similarly, the vectors

172

172

Vi eR™ e, . om). (86)
Vij
satisfy the same property for /3;“ .

Ifo; # ‘2—2 foralli € {1,...,n} (e, B # ﬂi*), the algebraic multiplicities of 8;” and
ﬁ?’ are equal to m;. Then B;” (resp. /3?' ) has m; eigenvectors given by (85) (resp. (86)). Thus,
the geometric multiplicities of 8, and ﬂi+ also equal m; . In particular, K ~'/2(D + R)K ~1/?
is diagonalizable.

If o, = ‘jli for some ig € {1, ..., 11}, then the algebraic multiplicity of 5,'; = ,B;g =3
equals 2m;,. Since the vectors (85) and (86) coincide in this case, the geometric multiplicity
of % equals m;,. Thus, in this case, % is a defective? eigenvalue of K_l/z(D + R)K_l/2 with
the corresponding eigenvectors

(-l[fioj> eR¥™, jefl,..,my). ®7)

ioj

By solving the following linear system (with respect to &)

Y1 M2 — Vi i
K~V2(D + RK~1P — “¢ = < 2 )g = ( W) , EeR™,
2 M= Vigj

we find that the solution £ = (
_‘/’ioj

0 . . . v .
2 .y is a generalized eigenvector of 5 corresponding to
v

the eigenvector ( ) . Since ¥y, j € {1, ..., m;,} are linearly independent, the vectors

0
(2% ) Jefl,...,mj) (88)
v Y]

3 An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic multiplicity.
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form a set of linearly independent generalized eigenvectors of 5. Since the vectors in (87)
and (88) are linearly independent and their total number equals 2m;, (which is the algebraic
multiplicity of %), we conclude that each eigenvector of % has only one generalized eigen-
vector. Therefore, all Jordan blocks associated to % have the same size 2 x 2. In particular, if

oy = "TZ, then the eigenvalue v = 3 is defective and the maximal size of the Jordan blocks
associated to 3 is 2.
Then, the classical stability theory for ODEs shows that

@)/ fo — Ulr2ma, 1)
100 L2 @ o) I1fo/ foo = Ulr2wd, 1)

<
[N}

e 1!, ifag > 4
X 3
N G PR T
O#EUERd ||EO||2 v v2—4¢x0t X 1)2
e 2 , ifag <
ast — oo. O

Remark 5.1 With the eigenvalues of C:=(D + R)K ~1 (see (24), (84)) obtained at the end
of Step 1 in the above proof, the sharpness of the decay rate u in the cases 1 and 3 of (10)
would also follow from [3, Theorem 6.1].

5.3 Proof of Theorem 2.7 and Corollary 2.8

Proof of Theorem 2.7 Step 1, an auxiliary inequality: As we assume the matrix (6) is positive
semi-definite, then the following submatrices of (6) are positive semi-definite:

923y, V
v ?9 > +CI) _% (axg ) 2nx2n
Y= 9. v ) e R , kefl,..,n}
_1204V) o (92v +el
2 9x2 20 ax2 ¢

Letting § > 0, we consider

1 81 3’V Y el 85 +5cl X om
Xs.—<8162>®<32+cl> (835(‘/4—81823{ V82 eR .
X is positive semi-definite as it is the Kronecker product [27, Corollary 4.2.13] of two
positive semi-definite matrices. Hence, we have for all k € {1, ..., n} :

1/2

Te(Xy* Y X,/%) = Tr(XsY)
. 2V :
(U + ) 7)T (W +C1>
92V 323, V)
STr | (25 4 er ) 22222 | >,
r[(@ﬂ e ) ox2 ]—
This implies
200 + 827 92V 2 92V 92(3,, V)
S, | I >Tr||—5 +cl | —%—= 89
206 r[(afrc) r[<3x2+c> ox2 ] (89)
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and by minimizing the constant on the left hand side of (89) with respect to § (i.e., by choosing

8 =,/%2), we obtain
2712 92V 2 32V 92(8y,, V
Ay @) T @ ) EOV T x e R,
o ax2 ax2 ax2
(90)
O

t
Step 2, growth estimate for the r.h.s. of (11), (12): We denote u;:=V, <%>
o0
t t
=V, & ,and u:= “ . Since & — 1 satisfies
bk uz f

a(f(t) 1) :—u-vx<&—1)+vvv<f() 1)
foo Joo foo

+0Av<&—1>—vv-vv<m—l>
Joo foo

and by integrating by parts, we obtain

d (t 2
— (f( ) 1) foodxdv = —20/ |u2|2foodxdv. on
R\ Soo R
Next, we compute (with || - || denoting the Frobenius norm)
2
d () 21192V
el - ( e 1) el +cl|| foodxdv
2
f@ f@ Vv
=2 — -1 — 1) || 1 dxd
A@: ( Joo foo ax? e Joodxdv

:2/ (M_1>[_U.v(&_1)
B2\ foo \ fx

2

+vvv<f(’) 1)”82V+1 dxd
T 2 c Jfoodxdv
2 2
w2 (%_1)[ (%_1) Vi (%4)” S el|| fuedxdv.
92)
Integrating by parts with respect to v, we obtain
2 2
2/Rzn (% — 1) |:0A (J;(t) 1) Vv -V, (J;(t) 1)” 2—2 +cl|| foodxdv
2V :
= 20 /zn Y +cl|| foodxdv. 93)

@ Springer



51  Page 34 of 45 A. Arnold, G. Toshpulatov

Next, we work on the term in the second line of (92):

2 2
(e (22 (120
R2n 00 00 o0
0 \? f@o N\ ?
:/Rzn (foo_1> +vvv(foo 1))‘8152_'—61 Foodxdy

2f V,V-V P’y
o0 X v 8x2

2
) foodxdv

2 2
/ <&—1> |:v - Vy <‘ u—i—cl +cl
R2n 8)62

2
foo>i| dxdv

2

2
f(t) ) by (‘ 2V
RZn

82—i—cl

2y
+cl

2
) Sfoodxdv

_ 2 (f(z) 1) . (\ ?
vV JR2n foo

dx 0.2

2

2 £ - 32V
=7 [ (2 ) Kt (‘ e

4 f @
:7“ ., (fTo ) Zu 2k Z(am V 480007 (04 V) | foodxdv, — (94)

+cl

2
) foodxdv

i,j=1
where we integrated by parts twice, and used —%v foo = Vi foo and the notations

NaL0) if =
”2”"_8“k<foo> and 8”_{0 i

Using the identity
n 2 2
-V 07 (0x, V)
2 Xk
”221( V—}—B,/c)a (aka)—Tr |:<8 > + I) 2 j|

the estimate (90), and the discrete Holder inequality, (94) can be estimated as

n

4o f@®
- (7_1> D wak(@] V48007 (94 V) ¢ foodxdv

v Joo i,j.k=1
4o f@ - a2V 32(dy, V)
= ~ - (f? — 1) [;uzykTr [(W —|—c1> Bxg:H foodxdv
n 2 2
<4201 . <% — 1) :Zluz,ler |:<8a ‘2/ +c1> :|}f°°dXdU
R\ Joo k=1

2 2
<aV2otn (f() ]>|u2|Tr|:<a‘2/ +c]> :|foodxdv
R2n . 0x

2V ?
< cr/ u|>Tr (—2 + cl) Sfoodxdv
2n 0x
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2 2 2
+ 8tn /]R?n (% — 1> Tr {(2;2/ —|—c1) i| Sfoodxdv. (95)

Combining the equations from (92) to (95) and the identity

il +cl ’ T v +cl 2
— +4c =Tr||—5 +¢ ,
ax? a2 ¢
we get
d ¢ 21192y :
o (—];() — l) Y +cl|| foodxdv
R2n 00 X
2 21142 2
3%V t 3’V
< —a/ |u2|2 ———cl foodxdv—i—Srn/ &—1 —+cl|| foodxdv.
R2n sz R2n foo 8)62
(96)
(96) can be reformulated as
d £(0) 21192V z
— 6_8””/ — -1 — +cl|| foodxdv
dt R2n fOO 8x2
92V :
< —ge 8 / lua|> || =—= + cI|| foodxdv. 97)
R2n axz

Step 3, r-dependent functional W: In order to prove the short-time regularization of (11) and
(12) we introduce now an auxiliary functional that depends explicitly on time. Our strategy
is the generalization of the approach in [31, Theorem A.12], [23, Theorem 1.1], [3, Theorem
4.8].

For t € (0, 9], we consider the following functional

2 2 2
! 7V
W, f(1) = / IO Y (e sem vetll +0n) fodnde
R \ foo 0x2
+/ u” Pufdxdv, 98)
R2n
with the 7- and x-dependent matrix in R¥"*2",
p_p 28331 2127 o
= t,x)= .
Co=1 22 28t1+t(%27‘2/+c1) 99)

&, Y1, and y; are positive constants which we shall fix later. We note that, for all ¢ € (0, #9],

b 331 0 331 0 0 100
f,x) > >
(t, %) 0 1Y ventert)\ 0 12 yen (100)

@ Springer



51  Page 36 of 45 A. Arnold, G. Toshpulatov

as &Y —1— cl is positive semi-definite. Thus, W (¢, f(¢)) is non-negative and satisfies

2
W, f0) > /R } ($_ 1) (me-sm

+83l‘3/2 Iullzfoodxdv

2

\%
+cl

2
Y™ + V2) foodxdv

a%v
-I—t/ ut (—2 +(c+e)1> us foodxdv. (101)
R2n ax

Our goal is to show that W (¢, f(¢)) decreases. To this end we estimate the time derivative of
the second term in (98). First, (27) yields

d
o - ul Pufsodxdv

- _20/ {§ (D) Pavlu} Foodxdv —/ ul {QP +pro’ — a,P} wfoodxdv
RZ!Z Rln
— / ul {[ViV - Vy—v-Vy4vv-Vy — 0 AP} ufaodxdv, (102)
R2n
. 0 7 .
with Q = V) oIl ‘We consider each terms of (102). Because of (100), the first term

. ax2
can be estimated as

n
—20/ {Z(aviu)TPav,.u} froodxdv
RZV( i
n 82‘/
< —2to/ Z(av,uz) ——i—cl Oy, U2 ¢ foodxdv. (103)
R2n

i=1

For the third term of (102) we have

0 0
[ViV -V, —v-Vy+vv-V, —0Ay]P = (0 _tazw‘vxv))
2

ax

and using vfoo = — %V, foo yields

—/ u’l {[VxV -V, —v -V +vv-V, —0Ay]P}ufeodxdv
RZVI

2
i :Z(av,uz)Ta © 5 4 }foodxdv. (104)

vV R2n
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For the second term of (102) we compute

_/ ”T{QP+PQT—3tP}Mfoodxdv
R2n
ur)’ 0 (2639 (2Y ter)
B _/RZn (”D ((r 26317 )( = +c1) (=1 + 20t — 26212 Z(L\zur )) (Z;) Joodxdv

T
_ uj 25%2(1 —3e)1 [2ce313 + ve 212 4 2(1 — e)et]l (u1> fodxdy
g \U2 [2ce313 + ve2i? +2(1 — e)et]] [2ce2i? + devt — 2¢e]l ug) /> )

m

(105)
Using the estimates
—(t— 283t3)/ uj ( + cI) U3 foodxdv
1— 2632 22V :
< 321 — 2634 / i faodxdv + 2 [ 2 122Y et fdidu
R2n 483 R2n 3)62
and
32y
— (=14 2vt — 2821‘2)/ ( + c1> U2 foodxdv
2.2 2 *V
< |1 —2vt+2&°t7| [us| —z—i-cl foodxdv,
R2n ax
we get
—/ ul {QP +proT - a,P} U foodxdv
]RZn
1 — 2632 :
5/ |142|2 & + |1 — 2v1 + 26°t | +c1 Sfoodxdv
20 2¢3 0x2

B uy T 26212(1 — 3¢ — g|1 — 26242|)1 [2c&3t +vat +2(1 —g)et]ll < )f dxd
o \uz ) \2e383 40622 1201 — el [206% + deve — 2611 oodXav.
(106)

We fix ¢ = e(#p) > O so that the element in the upper left corner of the matrix in (106) is
positive for ¢ > 0; more precisely we require

1—3e—¢|l —=26%t%| >0 forall 7€ l0,1)]. (107)
Then, the matrix in the last line of (106) can be estimated as

26212(1 — 3¢ — g|1 = 262121 [2¢8313 + ve2t2 +2(1 — e)et]]
[2¢6383 + ve2t? +2(1 — e)et]] [2ce21? + 4evt — 2¢)l

0 0
z 2,2 [2ce?24ver+2(1-9)% 5 | -
(O [2ce“t= + d4evt — 2¢]l — 0 3e—e[1-2:77]) 1
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Using this matrix inequality, we obtain from (106):

—f u"{oP+PoT - 8,P} U foodxdy
R2n

- o 1 — 28372
- 2n 2 2 3

[2¢6212 + vet + 2(1 — &))?
—2ce%t? —dgvt +2 dxdv. 108
S T v T e T Kt (10%)

2
+ |1 = 2vr + 26213

+cl

32 ‘32

(102), (103), (104), and (108) show that

uTPufoodxdv < —Zm/
R

i oo i {Z(av,uz) <—+c1> 8U,u2]foodxdv

+ 2 {Z(avl ury? V) (8*’ 2 }fmdxdv

1% R2n
2

+/ lus|? =202V 11— 21 + 26222 V+1
u — || = C — ZV & C
i 263 ax2
[2ce21? 4+ vet +2(1 — &)]?
—2¢e%t? —devt +2 dxdv.
c eV e S T A — a1 = 2622y | T
As the matrix (6) is positive semi-definite, we have
_210/ [Z(av,uz) (— +cl> Bviuz} foodxdv
R2n
2tcr 3? (3x V)
Qy up) T — 2 dxd
N - [Z( v U uy) }foo xav
32V a2V
< 'L’t/ u2T = 4+ cl | up foodxdv < 'L’l/ —— 4 cl|| foodxdv.
R2n 8 2n 8)(2
Subsequently,
d/ TPufsdxd
—_ u u xXav
dt RZn o
1 — 2632 ? 2V
s/ luz|? 11 -2 + (1= 20t 2622 4 71) || 5= + !
R2n 283 8

[2¢6212 + vet + 2(1 — &))?
—2cet? —dgvt +2 dxdv. 109
@ eV e S 3 — el = 2e22)) | [V (109)
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Step 4, decay of the functional ¥:
We estimate the time derivative of (98): Combining (91), (97), and (109) yield

d v, f(1)

dt

1 — 26312

< _ 2 —8tnt,, |

(e
el

[2cs2z2 +vet +2(1 — o)
2(1 —3s —g|1 —2e2¢2|)

92V 2
—axz +cl

1%
—(I1 = 2vt + 26|+ 11) || =5 + I

+20 ) + 2cet? + devt — 2e —

} foodxdv.  (110)

We fix y1 > 0 and y» > 0 such that

1— 2632 || 02V ? 2
(ae_gf’”yl - |275|> ‘ el +cI|| —(—142vt— 26%12 | 4 1) —— tcl ‘
&’ x
2ce?t? t+2(1—e)?
+20V2+2682t2+48vt—28— [2ce”s” + vet + 2 £)] > (111)

2(1 — 3¢ — |1 — 26212))

for all x € R"” and ¢ € [0, tp]. We recall that we have fixed ¢ = &(fy) so that (107) holds,
which makes the above denominator positive. The existence of such y; > 0 and y» > 0
can be proven by the following arguments: We can consider the left hand side of (111) as a

quadratic polynomial of ‘ ’ +cl ‘ ‘ € [0, 00). As time ¢ varies in a bounded interval [0, 7],

the terms containing ¢ are bounded Therefore, we can choose large values for y; = y1(fp)
and y» = y2(fo) so that this quadratic polynomial is non-negative for all ¢ € [0, p].
Consequently, we obtain that

Swa, pay <o,
Hence W (¢, f(¢)) is decreasing and
W, f(1)) <W¥(O, fo) forall ¢ e [0,1]. (112)
(101) and (112) show that

2

1 f 2 z
0
A |M1| foodxa,v < 31‘3 - (f; — 1) ( ax a2 +cl + V2> foodxdv,
(113)
1 2 2y z
/ |u2|2foodxdv < — & -1 +cl|| +y2 ) foodxdv,
R2n et R2n fOO 3 2
(114)
and
92V 1 2 2y :
/ uT —+cl | up foodxdv < f/ ﬂ—l Y1 +cl|| +y2 | foodxdv.
R2n 0x 2 R2n foo ox 9x2

(115)
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It is clear that there is a positive constant C such that

92V 2 P2V
— 1 <Cl||— 1]. 116
i|lgz tel|| trs | ozl (116)
(113), a proper linear combination of (114) and (115), and (116) imply the claimed estimates
(11), (12). m}

Proof of Corollary 2.8 Theorems 2.3 and 2.7 show that, for r > 1y > 0,

fo <f( >)
— -1 sodxd
\/1%271 < fOO ) f rav + /2)1 fOO
f@) f@)
L () (5 o) s (12
2 2
< Co—2M1—1) |:/ <f]£lo) B 1) Frodxdy +/' v, (ff(m))
R2n 00 R2n o0

f (o) B f(to)
+ /RZ,,V ( o )(—4—(1 0)1) Vv< . )food dv] 117)

holds with the constant C and the rate A given in Theorem 2.3. Using (11) and (12) att = fo,

foodxdv

Joodxdv

we get
f () .G fo 2 192v |?
Lol () rasan < [ (22-1) (\axz VAt
(118)
and
[t ) < v ) <f(to)>
v )l —+Ud—=-apl |V, codxd
/1.%2" ( Joo i @) Joo f Y
Cz 2V
Combining (117), (118), and (119), we obtain (13). ]
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6 Appendix
6.1 Proof that Assumption 2.2’ Implies Assumption 2.2

Assume Assumption 2.2’ is satisfied. Let (u1, uz, ..., ;41 )T be any vector in R” 1+ \where
u; is a vector in R” for all i € {1, ..., n + 1}. We compute the quadratic form of the matrix

(6)

52
92V (x) 1 97(0x V(x))
T v( Py +c 1) 0 0 A
“l azv 02(02, V() “l
uy 0 E (")+ cl 0 L e up
2 9x2
92 vm 1 029, V ()
. 0 0 v tel) -y .
Up+1 1 32(3);1 V(x)) 1 32(8X2V(x)) 1 dz(t)x”V(X)) T (32V(x) n c[) Up+1
2 ax2 2 ax2 2 ax2 20 ax2

n a2 2¢: 2
9°V(x) 0 (dX.V(x)) TV 07V (x)
T T uT
= E {vui ( o2 +c1> uj —u; a’xz t oyt | 52 +el | upqr.

i=1

semi-definite, it is enough to show the quadratic form above is non-negative. Assumption

2.2’ implies
272 5
< luilluns1] F(a(X) +0) < v(a(x) +o)|u;]

TV )
+—(a(x) + ) |up+1]”
2no

2
ul 9°(0x, V ()

axz Un+1

therefore, we get the desired result

n 2 2
Z {vul (8 ) + CI) Ui — TW Upt1 + lI’tr7zﬂ+l (w + CI) un-H}

ax2 ax2 2no ax2

92y 32V
3o (X9 oo+ o (P ot Y| 20 0

i=1

i=1

6.2 Matrix Inequalities for Section 5.1

Lemma 6.1 Let og > —00 be the constant defined by (8), a € R be some constant such that

21 vl
a+oay > ”72, and P:= 92y . Then
vl 2M—2+2a1
p<(’ 0 <P (120)
c ; ¢
0T —ar) T

. 1 —1)2v?
holds with cy:= L >0, =0t (a+a02 S0
a+ap+144/ (a+ag—1)2+v? Hatag)—v
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Proof We consider, for some k € R to be chosen later as 2c]T’

I 0 201 = )1 Vi
A=P =2k 0 2Y 4 (1 —ag) Vi 2(1—k)(%—i—(l—ao)l)-i-Z(a-i—ao—1)1 :

We check the (real) eigenvalues 1 of the symmetric matrix A (depending on k). It is easy
to check that n = 2(1 — k) is not an eigenvalue of A. If n # 2(1 — k), then we have the
condition

201 =B =yl VI
det(A =) = VI 2(1—k)<%27‘2/+(l—ozg)l)+2(a+ot0—l)I—nI
1 20—k —nl 0
TRa=k =y Vi Q1 —k) —n) [2(1 k)( e —ao)l) +20a+ag— DI — nl] >y

2
= det ((2(1 —k)—-n [2(1 —k) (7‘/ + —a0)1> +2(a+ag— I — nl:| - VZI) =0.

If a;, i €{1,...,n} are the eigenvalues of 2%, then the eigenvalues 5 of A satisfy

62’

n

[T(0? =200 = k)i =0 +2) +a + 0 — 1]
i=1

+4(1 =% (@ —ag+ D) +4(1 —k)(a+ap — 1) —v?) = 0. (121)

Right inequality of (120): From (121), we see that A is positive semi-definite (i.e., all
n > 0) if the following three conditions hold:

1—k>0, (dueto the first minor ofA) (122)
A=k —apg+2)+a+ap—1>0, Vie{l,..,n}, (123)
41—k —ap+ D +40 —k)a+ag—1)—v> >0, Vie{l,..,n}. (124)

We set

1
ki=— > 0.
2¢o

Then, (122) holds:

Via+ag— 12+ —(@+ag—1)

l—k=
2

> 0. (125)

Using «; > o forall i € {1, ..., n} we see that (123) also holds:

A=K —ag+2) +a+ag—1>20—k) +a+ay—1=+v(@+ay—1)2+1v2>0.
To verify (124) we estimate using «; > g forall i € {1, ..., n} and (125)

41—k —ap+ 1) +4(1 —k)a+ag— 1) —v?
>4(1 — k)2 +4(01 —k)(a+ag—1) —v2 =0.

Therefore, for k defined in (125), A is positive semi-definite. Hence, the inequality on the
right hand side of (120) holds.
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Left inequality of (120): Similarly, A is negative semi-definite if the following three

conditions hold:

1-k<0,
(I -k —ap+2)+a+ay—1=<0, Viel,..n}

41—k —ap+ D +40 —k)a+ag—1)—v> >0, Vie{l,..n.

Setting
1
k=— >0
26‘1
we find
— — 2 2 _ -1
L Yata-D2+v—@tan-1
2
and

I-K)(@—a+2)+a+ay—1=<2(1-k)+a+ay—1
=—V(a+ay—1H2+12 <0.

Finally, we check using o; > « foralli € {1, ..., n} and (129)

41 — k) —ap+ 1)

+4(1 —Ka+ag—1) =12 >41 k> +4(0 —k)(a+ay— 1) —v2 =0.

(126)
(127)
(128)

(129)

Therefore, for k defined in (129), A is negative semi-definite. Hence, the inequality on the

left hand side of (120) holds.
Remark 6.2 L.emma 6.1 proves the following matrix inequalities from Sect. 5.1:

(a) Ifa =0and g > ‘2‘—2, then (120) is the matrix inequality (56).

(b) Tfa =& and g = Y, then (120) is the matrix inequality (64).
(c) (120) coincides with the matrix inequality (75).

6.3 Proof of Inequality (80)

. 2 .
We recall the assumption ag < 7. We first rewrite

2vmin{l, ap}
1+ —cxo+\/(§—a0— 1)2 4 12
4min{l, ap}
v+ 2(1 — o) + /(2 — dag) + 4(ag + D202’

4o
—Jv2 —4 :70.
b b 0 v+ v? —dag

Al =

Then (80) is equivalent to
o - min{1, oo}
v+ Vv —day v+ 2(1 —agv! + V(02 — dag) + 4(ag + D202

m}

(130)
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If min{1, g} = «p, then (130) is true because of

v+ 2(1 —ag)v " + V(02 = dag) + 4o + D202 > v + V12 — dag.
If min{1, g} = 1, then (130) is equivalent to

aov — 2ag(ao — Dy~ 4 agy/(v2 — 4ag) + 4(ap + 1202 > v 4 vv2 — 4day,

or equivalently

(@0 — D = 200)v™" + a0y (V2 = dag) + 4o + D202 = V2 — dag.
The last inequality holds since
(@ — DOV = 2a0)v™" = (@0 — DV —4a)v™" = 0

and

a0y (V2 — dap) + 4(ap + D202 > 12 — day.

These two cases show that inequality (80) holds.
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