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English Abstract 
In this work, steady, axially symmetric flow is investigated in a vertical cylinder with a 

rotating lid containing two immiscible liquids of different densities. The flow of both fluids is 

described by the Navier-Stokes equations, the interface conditions, and the boundary 

conditions. Since the position of the interface depends on the flow, it is a free boundary 

value problem. 

All occurring variables are related to suitable reference values and the equations are 

formulated in dimensionless form. In addition to the Reynolds number, the Froude number 

and Weber number as well as the density and viscosity ratio of the two liquids as well as the 

height-radius ratio of both liquid layers. In the limit case of a small height-radius ratio, the 

self-similar flow between two infinitely rotating disks is obtained.  

The Navier-Stokes equations and boundary conditions are discretized using a spectral 

collocation method with Chebyshev polynomials. The resulting equations for the function 

values at the support points are solved using a solver for nonlinear systems of equations 

from the NAG program library.  

The numerical method is tested on the case of a liquid and the solutions are compared with 

published solutions. First, self-similar solutions are discussed, then the case of flow in a 

container in the limit Fr=0, flat interface, is treated. The influence of all dimensionless key 

figures on the flow or the shape of the interface is then analyzed. It turns out that the 

Reynolds number has the greatest influence on the flow pattern. The Froude number has 

the greatest influence on the interface shape. The Weber number has rather little influence 

on the interface shape. For further stability analysis of the interface, shear stress and the 

velocity of the fluids at the interface are essential. 

  



 Abstract 
 

IV 
 

Deutsche Kurzfassung 
In dieser Arbeit wird die stationäre, axialsymmetrische Strömung in einem vertikalen 

Zylinder mit rotierendem Deckel untersucht, der zwei nicht mischbare Flüssigkeiten 

unterschiedlicher Dichte enthält. Die Strömung beider Flüssigkeiten wird durch die Navier-

Stokes-Gleichungen, die Grenzflächenbedingungen und die Randbedingungen beschrieben. 

Da die Lage der Grenzfläche von der Strömung abhängt, handelt es sich um ein freies 

Randwertproblem. 

Alle auftretenden Größen werden auf geeignete Referenzwerte bezogen und die 

Gleichungen in dimensionsloser Form formuliert. Zusätzlich zur Reynolds-Zahl ist die 

Froude-Zahl und Weber-Zahl sowie das Dichte- und Viskositätsverhältnis der beiden 

Flüssigkeiten sowie das Höhen-Radius-Verhältnis beider Flüssigkeitsschichten. Im Grenzfall 

eines kleinen Höhen-Radius-Verhältnisses erhält man die selbstähnliche Strömung zwischen 

zwei unendlich rotierenden Scheiben. 

Die Navier-Stokes-Gleichungen und die Randbedingungen werden mithilfe einer spektralen 

Kollokationsmethode mit Tschebyschow-Polynomen diskretisiert. Die resultierenden 

Gleichungen für Die Funktionswerte an den Stützpunkten werden mit einem Löser für 

nichtlineare Gleichungssysteme aus der NAG-Programmbibliothek gelöst. 

Das numerische Verfahren wird am Fall einer Flüssigkeit getestet und die Lösungen mit 

veröffentlichten Lösungen verglichen. Zunächst werden selbstähnliche Lösungen diskutiert, 

dann wird der Fall der Strömung in einem Behälter im Grenzfall Fr=0, ebene Grenzfläche, 

behandelt. Dann wird der Einfluss aller dimensionslosen Kennzahlen auf die Strömung bzw. 

die Form der Grenzfläche analysiert. Es zeigt sich, dass die Reynolds-Zahl den größten 

Einfluss auf das Strömungsmuster hat. Die Froude-Zahl hat den größten Einfluss auf die 

Grenzflächenform. Die Weber-Zahl hat eher geringen Einfluss auf die Grenzflächenform. Für 

eine weitere Stabiltätsanalyse der Grenzfläche, sind Scherspannung und die Geschwindigkeit 

der Flüssigkeiten an der Grenzfläche von wesentlicher Bedeutung.  
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1 Introduction 
The study of rotating flows originates from observations of natural phenomena, such as 

swirling water in streams and eddying winds across landscapes, which have fascinated 

scientists and engineers for ages. These swirling motions present challenges that can not be 

justified with simple explanations [1]. 

Rotating flows play a critical role in both natural processes and technological applications. In 

nature, they contribute to atmospheric circulation, ocean currents, and weather patterns. In 

technology, rotating flows are essential for the design and operation of various products, 

such as jet engines, pumps, and cyclones. Understanding and modelling rotating flows 

enables engineers to optimize the performance and efficiency of these devices [1]. 

By going deeper into the study of rotating flows, a variety of fascinating phenomena that 

challenge traditional explanations are discovered. These include the formation of vortices 

and turbulent eddies, the emergence of secondary flows driven by centrifugal and Coriolis 

forces, and the nonlinear interactions that give rise to resonant behaviours and instabilities 

[2]. Additionally, the interaction between rotating flows and solid boundaries leads to 

complex boundary layer dynamics, influencing everything from heat transfer to flow 

separation [3]. 

rotation of a cylindrical container filled with one or more fluids is a simple case of rotating 

fluids, which is not just an interesting subject for theorists but also of direct importance in 

many areas of engineering such as bearings, computer storage devices, viscometry, rotating 

machinery, and material processing units [4], [5], [6]. This phenomenon has been both 

numerically and experimentally studied by many researchers  [7], [8], [9]. 

Fujimoto et al. investigated the interface topology change between two liquids in a cylinder 

with rotating lid experimentally and it was shown the shape of interface is a strong function 

of lid speed and the fluids volume fractions and its topology can result in interfacial waves 

and instability [10]. Using experiments Sharifullin et al. studied the momentum transfer 

through the interface of two immiscible liquids and shown the circulation of lower liquid is 

like mono-liquid measurements [9].  

To simplify the governing equations for numerical or analytical solution of rotating flows, 

under certain conditions, axial symmetry flow behaviour can be assumed. Axial symmetry in 

fluid dynamics refers to a type of flow where the properties of the flow (such as velocity, 
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pressure, and density) are invariant around an axis of rotation. Axially symmetric flows often 

occur in cylindrical or conical geometries, where the flow remains consistent along the 

length of the cylinder or cone [8]. For example, in the experiments by Naumov et al. it was 

shown that under steady flow at a wide range of rotating speed axisymmetric behaviour is 

observed and a thin circulation layer in the vicinity of the interface is formed, which was also 

previously observed in the simulations [11] and confirms the validity of this assumption. 

In three-dimensional flows, two stream functions are needed to fully describe the flow, as 

there are variations in flow properties in both the radial and tangential directions. However, 

in axisymmetric flows, where the flow properties remain constant around an axis of rotation, 

a single stream function can be used to describe the entire flow field. This simplification 

allows for a more straightforward analysis of axisymmetric flows, like the approach used in 

two-dimensional ideal flow, where only one stream function is required [12]. 

Similarity solutions are often employed in fluid mechanics to simplify the analysis of complex 

flow problems. When dealing with rotating flows with axial symmetry, similarity solutions 

can provide valuable insights into the behaviour of the flow field. In such cases, the 

governing equations of motion can often be reduced to a set of dimensionless equations 

through appropriate scaling [13]. 

Salnikov et al. compared different simulation approaches for simulation of swirling non-

miscible fluids and checked them against particle image velocimetry measurements. They 

found out both lattice Boltzmann (LBM) and finite volume methods delivers reliable 

predictions in comparison with measurements but just LBM could capture the velocity shift 

on the interface [14].  

Yang et al. investigate the flow induced by a rotating disk at the bottom of a cylindrical tank 

using numerical techniques and laser-Doppler velocimetry measurements. Their study 

elucidates the toroidal flow structure and its dependence on fluid-layer aspect ratios, 

particularly in the high Reynolds number regime where the flow becomes unsteady and 

three-dimensional [15]. Rashkovan et al. present a numerical study of liquid flows within a 

vertical circular cylinder with a rotating bottom, investigating the appearance of polygon 

shapes resulting from the rotating bottom disk. Their simulations offer insights into the 

mechanisms and characteristics of polygon flow structures [16]. 

Kahouadji and Martin Witkowski studied the numerical and experimental investigation of 

flow induced by a rotating disk at the bottom of an open fixed cylindrical cavity. Their study 
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utilizes steady axisymmetric Navier-Stokes equations solved using a Newton-Raphson 

algorithm, with a particular emphasis on achieving a zero normal stress balance at the free 

surface interface. Notably, their findings reconcile discrepancies between first-order 

approximations and full numerical simulations regarding free surface deflection [17]. 

Exploring the characteristics of flows induced by rotating disks in cylindrical tanks, provided 

insights into axisymmetric steady solutions and transitions to unsteady and three-

dimensional flow regimes at high Reynolds numbers which enhances understanding of 

toroidal flow structures and spatio-temporal fluctuations [18]. 

The linear stability of confined potential vortices with free surfaces which was studied by 

Mougel et al. revealed novel resonances attributed to over-reflection phenomena in swirling 

flows driven by rotating bottom plates. This helped with understanding of instability 

mechanisms in free-surface rotating flows [19]. 

In this study, the flow in a vertical cylinder filled with two immiscible liquids of different 

densities is investigated. The rotation of the upper lid of the cylinder induces a complex flow 

pattern in the liquids. The aim is to investigate the flow dynamics in both fluids, as well as 

the displacement of the interface between them, which is known to induce instability. This 

instability is characterized by high-amplitude waves resulting from interface displacement 

[23].
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2 Problem Formulation 
In this section mathematical formulation and framework needed for the current study will 

be presented. Starting with governing equations, the needed assumptions to simplify them 

will be introduced and at the end similarity solution and its application to the current 

research will be discussed. For the sake of consistency, in this document, dimensional 

quantities are denoted with ~, while non-dimensional quantities are indicated without it. 

The main equations for resolving hydrodynamics of two immiscible fluids are continuity and 

Navier-stokes. In the following these two equations and their use for this study will be 

discussed in detail. 

Our system, as depicted in the following figure, requires a solution in cylindrical coordinates 

due to its inherent structure. This choice ensures that the equations are properly governed 

and solved within this coordinate system. 

 

  
(a) (b) 

Figure 1: Problem schematic of two non-mixing fluids in a closed vertical cylinder with rotating lid, (a) 
heavier fluid (Fluid f) and lighter fluid (Fluid g), (b) used cylindrical coordinates, interface function 

(h(r)) and fluids heights 

The utilized geometry for the simulations is a vertical cylinder with a radius of R and a height 

of H, with a lid that is rotating with angular velocity omega (ω). Inside the vessel is filled with 

two non-mixing fluids. The two fluids are assumed to have different densities (𝜌1 , 𝜌2 ), 

viscosities (𝜇1 , 𝜇2 ) and other physical properties, which can affect the flow behavior. The 

rotating lid introduces a centrifugal force, which causes the fluids to move and creates a 

variety of flow patterns, including vortices, shear layers, and boundary layers. The fluids do 
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not mix, which means that there is a distinct interface between them, and the flow 

characteristics can change significantly near this interface. When two immiscible fluids are 

rotated within the cylinder, the interface between them no longer remains flat. 

Consequently, it becomes necessary to calculate and account for the shape of this interface 

in the calculations. The movement of this interface from the flat case, denoted as 'h,' is 

depicted in Figure 1 and is a function of the radial distance 'r'. 

To govern and solve the equations to determine the flow of both fluids, the following 

assumptions are considered: 

▪ Both fluids are Newtonian, it assumes that the relationship between the shear stress 

and the rate of strain is linear, which allows for the use of simpler constitutive 

equations. 

▪ The system is in a steady state. It means that the flow parameters do not change with 

time. This simplifies the equations by removing the time derivatives, making them 

easier to solve. 

▪ There is axial symmetry. It means that the flow properties do not vary in the axial 

direction (along the length of the cylinder). This reduces the problem from three 

dimensions to two dimensions, simplifying the equations and making them easier to 

solve.  

2.1 The Continuity Equation 

Applying mass conservation of mass to an infinitesimal volume yields the continuity 

equation [20]: 

 ∂ρ∂t + ∇ ⋅ (𝜌�⃗⃗̃�) = 0. (2-1) 

The mentioned equation is generic and can be used in any coordinate system. In the current 

study liquid flow in a cylindrical vessel is studied, therefore rewriting the equation 

considering cylindrical coordinates, makes it easier in discretization and relevant 

assumptions. The continuity equation in cylindrical coordinates looks as following: 

 1�̃� ∂(�̃��̃�)∂�̃� + 1�̃� ∂ṽ∂𝜃 + ∂�̃�∂�̃� = ∇ ⋅ �⃗⃗̃� = 0. (2-2) 
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2.2 The Navier Stokes Equations 

Dynamically describing fluid motion involves applying Newton's second law to an 

infinitesimal fluid particle of mass 𝑑 �̃� and volume 𝑑 �̃�  = 𝑑�̃�  𝑑�̃� 𝑑�̃�  This application leads to 

the derivation of the specific form of the momentum conservation equation. Writing 

Newton's second law as vector:  

 𝑑 �⃗̃� = 𝑑 �̃� 𝐷�⃗⃗̃�𝐷 �̃� = ρ𝑑 �̃�  𝐷�⃗⃗̃�𝐷�̃� . (2-3) 

The forces that act on fluid elements are body forces and surface forces, where surface 

forces include normal and shear forces.  

 
Figure 2: Stresses in x-direction on a fluid element. 

By summing the surface forces in the x-direction, the surface force on the fluid element in 

the �̃�   -direction can be determined as following:  

 𝑑 �̃�𝑆�̃� = (∂�̃��̃�𝑥∂�̃�  + ∂�̃��̃� 𝑥∂�̃� + ∂𝜏̃𝑧𝑥∂�̃� ). (2-4) 

Considering gravity as the only body force, the forces on the fluid element in the �̃� , �̃�, and �̃� directions are illustrated below: 

 𝑑 �̃�𝑥 = 𝑑 �̃�𝐵�̃� + 𝑑 �̃�𝑆�̃� = (�̃��̃�𝑥 + ∂�̃�𝑥 𝑥∂�̃� + ∂�̃��̃� 𝑥   ∂�̃� + ∂�̃�𝑧𝑥    ∂�̃� ) 𝑑 �̃�𝑑 �̃�𝑑 �̃� 

𝑑 �̃��̃� = 𝑑 �̃�𝐵�̃� + 𝑑 �̃�𝑆�̃� = ( �̃��̃��̃� + ∂�̃�𝑥 �̃�∂�̃� + ∂𝜎̃�̃� �̃�∂�̃� + ∂�̃�𝑧 �̃�∂�̃� ) 𝑑 �̃� 𝑑 �̃�𝑑 �̃� 
(2-5) 
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𝑑 �̃�𝑧 = 𝑑 �̃�𝐵�̃� + 𝑑 �̃�𝑆�̃� = ( �̃��̃�𝑧 + ∂�̃�𝑥 𝑧∂�̃� + ∂�̃��̃� 𝑧∂�̃� + ∂𝜎̃𝑧 𝑧∂�̃� ) 𝑑 �̃� 𝑑 �̃�𝑑�̃�. 
Replacing the force components from Equation (2-5) for the force components into the �̃� ,𝑦, and 𝑧 components of (2-3) yields the differential equations of motion. 

 �̃��̃�𝑥 + ∂�̃�𝑥𝑥    ∂�̃�    + ∂�̃�𝑦 𝑥∂�̃� + ∂�̃�𝑧 𝑥∂�̃� =  �̃� (∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� ) 

�̃��̃��̃� + ∂�̃�𝑥 𝑦∂�̃� + ∂𝜎̃�̃� �̃�∂�̃� + ∂�̃�𝑧�̃�∂�̃� =  �̃� (∂�̃�∂�̃� + �̃� ∂�̃�∂�̃�    + �̃� ∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� ) 

�̃��̃�𝑧 + ∂�̃�𝑥𝑧∂�̃� + ∂�̃��̃� 𝑧∂�̃� + ∂𝜎̃𝑧𝑧∂�̃� =  �̃� (∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� ). 
(2-6) 

So, the Navier-Stokes equation in coordinate free form can be written as follows [20]: 

 �̃� 𝐷�̃�𝐷 �̃� = ∇𝑆 + �̃� (2-7) 

where �̃� =  −�̃�𝐼 + �̃� represents the stress tensor, �̃� denotes the pressure, 𝐼 stands for the 

identity tensor, �̃� signifies the viscous stress tensor and �̃� is body forces such as weight. 

Writing the viscous stress tensor in cylindrical coordinates, the components are:  

 �̃��̃� �̃� = �̃� (2 ∂�̃�∂�̃� − 23 (∇. �̃�)) 

�̃��̃� �̃� =  �̃� ((1�̃� ∂�̃�∂𝜃 + �̃��̃� ) − 23 (∇. �̃�)) 

�̃�𝑧𝑧 = �̃� (2 ∂�̃�∂�̃� − 23 (∇. �̃�)) 

�̃��̃� �̃� = �̃��̃� �̃� = �̃� ( ∂∂�̃� ((�̃�𝑟 )) + 1�̃� ∂�̃�∂𝜃 ) 

�̃��̃� 𝑧 = �̃�𝑧�̃� =  �̃� (∂�̃�∂�̃� + 1�̃� ∂�̃�∂𝜃) 

�̃�𝑧�̃� = �̃��̃�𝑧 = �̃� (∂�̃�∂�̃� + ∂�̃�∂�̃� ) 

(2-8) 

To calculate the flow in a vertical cylinder, the Navier-Stokes equation in cylindrical 

coordinates is applied. The Navier-Stokes equation in cylindrical coordinates for an 

incompressible fluid with constant viscosity and density is given by [20]: 

 
�̃� (∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� + �̃��̃� ∂�̃�∂𝜃 − �̃� 2�̃� + �̃� ∂�̃�∂�̃� )

=  �̃��̃��̃� − ∂�̃�∂�̃� +  �̃� { ∂∂�̃� (1�̃� ∂∂�̃� [�̃��̃� ]) + 1�̃� 2 ∂2 �̃�∂𝜃 2 − 2�̃� 2 ∂�̃�∂𝜃 + ∂2 �̃�∂�̃� 2 } 

(2-9) 
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�̃� (∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� + �̃��̃� ∂�̃�∂𝜃 + �̃� �̃��̃� + �̃� ∂�̃�∂�̃� )
=  �̃��̃��̃� − 1�̃� ∂�̃�∂𝜃 +  �̃� { ∂∂�̃� (1�̃� ∂∂�̃� [�̃��̃�]) + 1�̃� 2 ∂2 �̃�∂𝜃 2 + 2�̃� 2 ∂�̃�∂𝜃 + ∂2 �̃�∂�̃� 2 } 

  �̃� (∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� + �̃��̃� ∂�̃�∂𝜃 + �̃� ∂�̃�∂�̃� ) =  �̃��̃�𝑧 − ∂�̃�∂�̃� +  �̃� {1�̃� ∂∂�̃� (�̃� ∂�̃�∂�̃� ) + 1�̃� 2 ∂2 �̃�∂𝜃 2 + ∂2 �̃�∂�̃� 2 } . 
 

The Navier-Stokes equations, coupled with the continuity equation, form a set of four 

coupled equations that describe the flow of fluids. These equations, involving velocity fields 

and pressure, are fundamental for understanding a wide range of fluid flow.  

In the presence of axial symmetry and under steady-state conditions, the derivatives with 

respect to the azimuthal angle (θ) and time (t) will be zero. Considering the gravity in z-

direction in a vertical cylinder, gravity forces act only in this direction. Consequently, the 

continuity equation and Navier-Stokes equations can be simplified as following: 

Continuity equation: 

 1�̃� ∂(�̃��̃�)∂�̃� + ∂�̃�∂�̃� = 0 (2-10) 

Navier-Stokes equations: 

 

�̃� (�̃� ∂�̃�∂�̃� − �̃� 2�̃� + �̃� ∂�̃�∂�̃� )  = − ∂�̃�∂�̃� + �̃� { ∂∂�̃� (1�̃� ∂∂�̃� [�̃��̃� ]) + ∂2 �̃�∂�̃� 2 } 

�̃� (�̃� ∂�̃�∂�̃� + �̃��̃��̃� + �̃� ∂�̃�∂�̃� ) =  �̃� { ∂∂�̃� (1�̃� ∂∂�̃� [�̃��̃�]) + ∂2 �̃�∂�̃� 2 }   

�̃� (�̃� ∂�̃�∂�̃� + �̃� ∂�̃�∂�̃� ) =  �̃��̃�𝑧 − ∂�̃�∂�̃� +  �̃� {1�̃� ∂∂�̃� (�̃� ∂�̃�∂�̃� ) + ∂2 �̃�∂�̃� 2 }. 
(2-11) 

To solve fluid flow problem using these equations, it’s important to carefully consider the 

appropriate boundary conditions. These conditions are crucial constraints for solving the 

mentioned differential equations. The specified boundary conditions for simulation of a 

vertical cylinder are wall and bottom cylinder which due to the non-slip condition, all 

velocity terms are zero, lid boundary at the top of the cylinder, both radial and axial velocity 

terms are zero, while the tangential velocity aligns with that of the lid and the interface 

between immiscible fluids which will be discusses in detail in the following section. 
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2.3 Interface Boundary Conditions 

The interface boundary conditions define the behaviour of the interface in simulation, 

capturing both the kinematic aspects of fluid motion and the mechanical equilibrium 

conditions at the interface. 

2.3.1 Kinematics Boundary Conditions 

These conditions describe the motion of the interface. In this case, the zero normal velocity 

condition reflects the immiscibility of the fluids and ensures that there is no velocity 

component normal to the interface. Additionally, the consistent tangential velocity terms 

ensure that there is no relative motion between the fluids and the boundary, typically 

enforced by the no-slip boundary condition. 

2.3.2 The Dynamic Boundary Conditions in Tangential Direction 

These boundary conditions ensure the continuity of tangential shear stress between the two 

fluids. The shear stress is calculated as follows: 

The surface at the interface can be characterized by the following equation: 

 �⃗̃� (�̃�, 𝜃) = �̃�𝑒𝑟 + ℎ̃ (�̃�, 𝜃)𝑒𝑧 . (2-12) 

By considering the problem axially symmetric and removal of the theta, the equation yields: 

 �⃗̃� (�̃�) = �̃�𝑒𝑟 + ℎ̃ (�̃�)𝑒𝑧 . (2-13) 

The tangential vector in 𝑟-direction is defined as the derivative �⃗� = �⃗� (𝑟, 𝜃) with respect to 

the arc-length in that direction: 

 𝑡𝑅 = 1‖𝜕�⃗̃�𝜕 �̃� ‖ 𝜕 �⃗̃�𝜕𝑟 

𝑡𝜃 = 1‖ 𝜕�⃗̃�𝜕𝜃 ‖ 𝜕 �⃗̃�𝜕 𝜃 
(2-14) 

In the present case, they read as follows: 
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 𝑡𝑅 = 1√1 + ℎ̃𝑟2 (𝑒𝑟 + ℎ̃𝑟 𝑒𝑧 ) 

𝑡𝜃 = 1√1 + 1𝑟 ℎ̃𝜃2 (𝑒𝜃 + 1�̃� ℎ̃𝜃 𝑒𝑧 ). (2-15) 

In the axial symmetric problem, where the theta variable is removed, the tangential vector 

in the azimuthal direction (𝑡𝜃 ) and its corresponding derivatives with respect to theta will be 

removed from consideration. Therefore, only the tangential vector in the radial direction (𝑡𝑅) 

and its derivatives with respect to r will be considered. The normal vector is obtained as the 

normalized cross-product of the tangential vectors. In the present case, under axial 

symmetry assumption, the normal vector is calculated as follows: 

 �⃗⃗� = 1√1 + ℎ̃𝑟2 (𝑒𝑧 − ℎ̃𝑟 𝑒𝑟 ). 
(2-16) 

The strain rate tensor describes the local deformation of a material across time and space. In 

the cylindrical coordinate system, the infinitesimal strain tensor is represented by six 

components [21], which are shown already in Equation (2-8). Considering axial symmetry, 

they are represented as follows: 

 𝜀̇̃𝑟𝑟 = 2�̃�𝑟 

𝜀̇̃𝜃𝜃 = 2�̃� (�̃�)  
𝜀̇̃𝑧𝑧 = 2�̃�𝑧 

𝜀̇̃𝜃𝑟 = 𝜀̇̃𝑟𝜃 = (�̃�𝑟 − 1�̃� �̃�)   
𝜀̇̃𝑧𝑟 = 𝜀̇̃𝑟𝑧 = (�̃�𝑟 + �̃�𝑧 ) 

𝜀̇̃𝑧𝜃 = 𝜀̇̃𝜃𝑧 = �̃�𝑧. 

(2-17) 

The following equations represent shear rates derived from strain rate: 

Shear rate in the normal direction: 

 �̃�𝑛 = 11 + ℎ̃𝑟2 (ℎ̃𝑟2 𝜀̇̃𝑟𝑟 + 𝜀̇̃𝑧𝑧 − 2ℎ̃𝑟 𝜀̇̃𝑟𝑧 ). (2-18) 
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Shear rate in 𝑟 the direction (𝜃 =  𝑐𝑜𝑛𝑠𝑡): 

 �̃�𝑟 = 1(1 + ℎ̃𝑟2 ) ((1 − ℎ̃𝑟2 )𝜀̇̃𝑟𝑧 + ℎ̃𝑟 𝜀̇̃𝑧𝑧 − ℎ̃𝑟 𝜀̇̃𝑟𝑟 ). (2-19) 

Shear rate in the 𝜃 direction (𝑟 =  𝑐𝑜𝑛𝑠𝑡): 

 �̃�𝜃 = 1√(1 + ℎ̃𝑟2 ) (𝜀̇̃𝑧𝜃 − ℎ̃𝑟 𝜀̇̃𝑟𝜃 ). 
 

(2-20) 

These equations describe the mechanisms of deformation and shear within the fluid 

medium, particularly under the conditions of axial symmetry. Dynamic boundary conditions 

in tangential direction can be seen in Equation (2-21):  

 �̃�𝐹 �̃�𝐹 ,𝑟 = �̃�𝐺 �̃�𝐺 ,𝑟 

�̃�𝐹 �̃�𝐹,𝜃 = �̃�𝐺 �̃�𝐺,𝜃 . (2-21) 

These boundary conditions ensure continuity of the tangential shear stress between the two 

fluids, where 𝜇 represents dynamic viscosity and 𝑠 represents shear rate. 

2.3.3 The Dynamic Boundary Conditions in Normal Direction  

Considering the stress balance in normal direction. We must take into account the pressure, 

the viscous normal stresses and interfacial tension then we have dynamic boundary 

condition in normal direction which can be seen in the following: 

 −�̃�𝐹 + �̃�𝐹 �̃�ℎ̃ + �̃��̃�𝐹 ,𝑛 = −�̃�𝐺 + �̃�𝐺 �̃�ℎ̃ + �̃�𝜅 + �̃�2 �̃�𝐺 ,𝑛 . (2-22) 

With 𝜅 is the Gauss-curvature of interface. 

2.3.4 Dimensionless Formulation 

To simulate the equations of motion in dimensionless coordinates, we'll use the container 

radius �̃� as the reference length and the circumferential speed of the top lid �̃��̃� as the 

reference velocity. The pressure will be scaled accordingly by (�̃��̃� )2 �̃�. Then we have the 

dimensionless number as following: 

 𝑝𝐹 = �̃�𝐹�̃�𝐹 (�̃��̃� )2 , 𝑝𝐺 = �̃�𝐺�̃�𝐺 (�̃��̃� )2 (2-23) 
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Fr = �̃�𝐹Δ�̃� �̃� 2�̃��̃� , We = �̃�𝐹 �̃�2 �̃��̃� , Re = �̃�𝐹 �̃��̃��̃�𝐹 ,  𝜌 = �̃�𝐺�̃�𝐹 , 𝜇 = �̃�𝐺�̃�𝐹 ,   
 ℎ𝐺 = ℎ̃𝐺�̃� ,  ℎ𝐹 = ℎ̃𝐹�̃� , ℎ = ℎ̃�̃� . 

Alternative dimensionless numbers are: 

 Ek = 1Re , Bo = WeFr ,        ν =  �̃�𝐺 �̃�𝐹 . (2-24) 

When the mentioned axial symmetric steady state Navier-Stokes and continuity equations in 

cylindrical coordinates are scaled with a defined reference length, they lead to the following 

dimensionless equations: 

Continuity equation: 

 𝑈𝑟 + 1𝑟 𝑈 +  𝑊𝑧 = 0 (2-25) 

Navier-Stokes equations: 

 

 

𝑈𝑈𝑟 +  𝑊 𝑈𝑧 − 𝑉 2𝑟 =  −𝑝𝑟 +  1𝑅𝑒 (𝑈𝑟𝑟 + 𝑈𝑟𝑟 +  𝑈𝑧𝑧 − 𝑈𝑟 2 )𝑈 𝑊𝑟 +  𝑊 𝑊𝑧 =  −𝑝𝑧 +  1𝑅𝑒 (𝑊𝑟𝑟 + 𝑊𝑟𝑟 +  𝑊𝑧𝑧 )                   𝑈𝑉𝑟 +  𝑊 𝑉𝑧 + 𝑉𝑈𝑟 =   1𝑅𝑒 (𝑉𝑟𝑟 + 𝑉𝑟𝑟 +  𝑉𝑧𝑧 − 𝑉𝑟 2 ) 

(2-26) 

The dimensionless equation for the dynamic boundary condition in the normal direction is 

as follows: 

 ℎ = �̃�𝐹Δ�̃� �̃�2�̃��̃� (𝑝𝐹 − 𝜌𝑝𝐺 ) + �̃��̃� 2 Δ�̃��̃� − �̃�𝐹 �̃��̃� 2 Δ�̃��̃� (𝑠𝐹 ,𝑛 − 𝜇 𝑠𝐺 ,𝑛 ), 
ℎ = Fr(𝑝𝐹 − 𝜌𝑝𝐺 ) + FrWe⏟1

 Bo 

 𝜅 − FrRe (𝑠𝐹,𝑛 − 𝜇𝑠𝐺 ,𝑛 ). (2-27) 

These equations represent the dynamic boundary conditions in the normal direction. They 

balance the pressure, gravitational effects, viscous stresses, surface tension, and surface 

curvature between the two fluids. Where 𝜇 denotes dynamic viscosity, 𝜎 denotes surface 

tension, and 𝜅 denotes surface curvature. 
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The Gauss curvature of a surface, particularly an interface between two media, is a 

fundamental concept in differential geometry. It provides a measure of how the surface 

bends and curves within its local environment. The Gauss curvature is defined as the trace of 

the Weingarten mapping, which relates the normal vectors of points on the surface to the 

normal vectors of the surface's tangent plane[22]. 

Mathematically, let 𝑆  be a smooth surface in ℝ3with a unit normal vector field 𝑛. The 

Weingarten mapping, denoted by 𝐿, maps tangent vectors to the surface to tangent vectors 

on the surface, and it is given by [22] 

 𝐿(𝑣) = −𝐷𝑉 𝑛. (2-28) 

where 𝐷𝑉 denotes the directional derivative along the tangent vector 𝑣. The Gauss curvature 𝑘 at a point on the surface is then defined as the determinant of the Weingarten mapping 

[22]: 

 𝑘 = det (𝐿). (2-29) 

Alternatively, the Gauss curvature can be expressed as the product of the principal 

curvatures at that point. Here the surface curvature 𝜅 is calculated as follows: 

 𝜅 = − 1√1 + ℎ𝑟2 ( ℎ𝑟𝑟1 + ℎ𝑟2 + 1𝑟 ℎ𝑟 ). 
 

(2-30) 

 

To eliminate pressure from the dynamic boundary condition, it should be differentiated with 

respect to the radial component 𝜒 in computational coordinates (the computational 

coordinates will be explained in detail in section 3.1), and the equation will be expressed as: 

 ℎ𝜒 = Fr (𝑝𝐹,𝜒 − 𝜌𝑝𝐺,𝜒 + ∂∂𝜒 ( 1𝑊𝑒 κ − 1𝑅𝑒 (𝑠𝐹,𝑛 − 𝜇𝑠𝐺 ,𝑛 )))ℎ𝑟 (0) = ℎ𝑟 (1) = 0.  (2-31) 

At 𝑧 = ℎ(𝑟) the pressure term is computed as: 

  𝑝𝐹,𝜒 = 𝑝𝐹,𝑟 + ℎ ′ 𝑝𝐹,𝑧. (2-32) 

Here, 𝑘 = 2𝑟 2 ∫0𝑟  𝑟 ′ ℎ(𝑟 ′ )𝑑𝑟 ′  represents the average height of the interface over the circular 

area with radius r around the axis of rotation where: 

 𝑟2 𝑘𝑟 + 𝑘 = ℎ (2-33) 

and 𝑘 (0) = 𝑘 (1) = 0. 
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In the context of two-dimensional, incompressible fluid dynamics, the introduction of a 

stream function, denoted as 𝐹 (𝑟, 𝑧), facilitates the fulfillment of the continuity equation: 

 𝑈 =  1𝑟 𝜕𝐹𝜕𝑧      𝑊 =  − 1𝑟 𝜕𝐹𝜕𝑟 . (2-34) 

Substituting into the derived simplified dimensional Navier-Stokes equations yields the 

following expressions: 

 − 1𝑟 3 𝐹𝑧2 + 1𝑟 2 (𝐹𝑍 𝐹𝑟𝑧 − 𝐹𝑟 𝐹𝑧𝑧 ) − 𝑉 2𝑟 = −𝑝𝑟 + 1Re (1𝑟 𝐹𝑧𝑟𝑟 − 1𝑟 2 𝐹𝑧𝑟 + 1𝑟 𝐹𝑧𝑧𝑧 )         − 1𝑟 3 𝐹𝑧 𝐹𝑟 − 1𝑟 2 (𝐹𝑧 𝐹𝑟𝑟 − 𝐹𝑟 𝐹𝑟𝑧 ) = −𝑝𝑧 + 1Re (− 1𝑟 3 𝐹𝑟 + 1𝑟 2 𝐹𝑟𝑟 − 1𝑟 𝐹𝑟𝑟𝑟 − 1𝑟 𝐹𝑟𝑧𝑧 ) . (2-35) 

The vorticity 𝐺 (𝑟, 𝑧),  is defined as the curl of the velocity vector field. Eliminating the 

pressure from the momentum equations yields the vorticity transport equation, which is 

expressed as: 

 𝐺 = 𝑈𝑧 − 𝑊𝑟 . (2-36) 

The similarity forms are defined in the following: 

 𝐹 = 𝑟 2 𝑓 𝑉 = 𝑟𝑣 𝐺 = 𝑟𝑔. (2-37) 

After replacing the vorticity function and applying the similarity forms 𝐹 = 𝑟 2 𝑓 , 𝑉 = 𝑟𝑣 and 𝐺 = 𝑟𝑔 into the derived equations, they will look as following: 

 

(𝑟(𝑓𝑧 𝑣𝑟 −  𝑓𝑟 𝑣𝑧 ) +  2𝑓𝑧 𝑣 − 2𝑓 𝑣𝑧 ) = 1𝑅𝑒 (𝑣𝑟𝑟 +  1𝑟 𝑣𝑟 + 𝑣𝑧𝑧 )   (𝑟(𝑓𝑧 𝑔𝑟 −  𝑓𝑟 𝑔𝑧 ) +  2𝑔𝑧 𝑓 − 2𝑣𝑣𝑧 ) = 1𝑅𝑒 (𝑔𝑟𝑟 +  3𝑟 𝑔𝑟 + 𝑔𝑧𝑧 )𝑔 = (𝑔𝑟𝑟 +  3𝑟 𝑓𝑟 + 𝑓𝑧𝑧 ).                                                                       (2-38) 

These equations, which are derived from Navier-Stokes equations, show the relationship 

between the stream function, vorticity, and tangential velocity.  

The equations are valid for ℎ(𝑟, 𝑡) < 𝑧 < ℎ𝐺 . However, −ℎ𝐹 < 𝑧 < ℎ(𝑟, 𝑡), 𝜈 must be 

replaced by 1. 

2.4 Self-Similar Flow Between Infinite Discs 

Considering the similarity solution for the flow between two infinitely extended parallel 

rotating disks, which leads to the independence of the functions f, g, and v with respect to 

'r', the following ordinary differential equations (ODE) can be derived: 
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 2𝑓𝑧 𝑣 − 2𝑓 𝑣𝑧 = 𝐸𝑘𝑤 (𝑣𝑧𝑧 ) 2𝑔𝑧 𝑓 − 2𝑣 𝑣𝑧 = 𝐸𝑘𝑤 (𝑔𝑧𝑧 ) 𝑔 = 𝑓𝑧𝑧 . (2-39) 

Which satisfy the subsequent boundary conditions: 𝑓𝑧 (0) = 𝑓 (0) = 𝑣 (0) = 𝑓𝑧 (1) = 𝑓 (1) = 0,    𝑣(1) = 1. 
And the Reynolds number is calculated based on the distance between the disks. 

 𝑅𝑒 =  �̃�2 ℎ̃�̃�  (2-40) 

The similarity solutions transform the partial differential equation (PDE) into an ordinary 

differential equation, simplifying the system. These equations are then solved for both a 

single fluid and two fluids between the disks. 
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3 Numerical Methods 
In this section, numerical methods for solving partial and ordinary differential equations will 

be discussed. Firstly, the necessity of introducing new coordinates and how the equations 

are derived in these coordinates will be explained. Next, it will be shown that to numerically 

solve the equations, they need to be discretized. For this purpose, the spectral method 

based on Chebyshev polynomials will be employed. The discretized equations, either in 

computational or cylinder coordinates, will be implemented in a C program. Subsequently, 

they will be solved using the NAG library, with boundary conditions applied. 

3.1 Computational Coordinates 

By rotating two immiscible fluids in a cylinder, the interface between the two fluids is not a 

flat surface anymore and the shape needs to be calculated and considered in the 

calculations. To fulfill the previously mentioned boundary condition on the interface, the 

coordinate system needs to be shifted to comply with the new shape of the interface. 

Introducing coordinates that align with the interface simplifies the description of interface-

related phenomena. This alignment makes the mathematical formulation more intuitive and 

straightforward, leading to a clearer understanding of the physical processes occurring at the 

interface. Overall, the introduction of such coordinates significantly enhances the ability to 

study and analyze the complex dynamics of the interface between immiscible fluids. In the 

following the computation of the new coordinate system and the calculations of different 

derivatives are explained. 

The new coordinate system is designed to align tangentially and perpendicularly to the 

interface. This can be done by aligning one coordinate axis with the direction along the 

interface and making the other axis orthogonal to it. This new coordinate, denoted as (𝜒, 𝜉 

or 𝜒, 𝜁, for lower or upper fluid respectively), is determined as follows by considering the 

axis and radius of the cylinder (physical coordinates 𝑧, 𝑟). 

 𝜒 = 𝑟 𝜁 = 𝑧 − ℎ(𝑟)ℎ𝐺 − ℎ (𝑟) = 1 − ℎ𝐺 − 𝑧ℎ𝐺 − ℎ   for ℎ (𝑟) < 𝑧 < ℎ𝐺 

𝜉 = 𝑧 + ℎ𝐹ℎ𝐹 + ℎ(𝑟) − 1 for − ℎ𝐹 < 𝑧 < ℎ(𝑟). (3-1) 
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For the velocity field 𝑉 (𝑟, 𝑧), two cases are considered based on the value of 𝑧: 

 𝑉(𝑟, 𝑧) = {⎪⎨
⎪⎧�̃� (𝑟, 1 − ℎ𝐺 − 𝑧ℎ𝐺 − ℎ (𝑟)) , ℎ(𝑟) < 𝑧 < ℎ𝐺 ,�̂� (𝑟, 𝑧 + ℎ𝐹ℎ𝐹 + ℎ(𝑟) − 1) , −ℎ𝐹 (𝑟) < 𝑧 < ℎ(𝑟). (3-2) 

In the new coordinate system, the first derivatives are calculated as following: 

 ∂𝑉∂𝑟 = ∂𝜉∂𝑟 ∂�̂�∂𝜉 + ∂�̂�∂𝜒 

∂𝑉∂𝑧 = ∂𝜉∂𝑧 ∂�̂�∂𝜉  . 
 

(3-3) 

 

For the first and second derivatives, the computations for 𝜁 followed a similar approach as 

those for 𝜉 . Such as the first derivatives, the second derivatives can be calculated as 

following: 

 ∂2 𝑉∂𝑟 2 = ∂2 𝜉∂𝑟 2 ∂�̂�∂𝜉 + (∂𝜉∂𝑟 )2 ∂2 �̂�∂𝜉 2 + 2 ∂𝜉∂𝑟 ∂2 �̂�∂𝜉 ∂𝜒 + ∂2 �̂�∂𝜒 2 ∂2 𝑉∂𝑧 ∂𝑟 = ∂2 𝜉∂𝑟 ∂𝑧 ∂�̂�∂𝜉 + ∂𝜉∂𝑟 ∂𝜉∂𝑧 ∂2 �̂�∂𝜉 2 + ∂𝜉∂𝑧 ∂2 �̂�∂𝜒 ∂𝜉 ∂2 𝑉∂𝑧 2 = (∂𝜉∂𝑧 )2 ∂2 �̂�∂𝜉 2  

(3-4) 

Derivatives of the coordinate transformation for upper fluid (referred as gas): 

 𝜁𝑧 = 1ℎ𝐺 − ℎ (𝑟) , 𝜁𝑟 = + 𝑧 − ℎ𝐺(ℎ𝐺 − ℎ(𝑟))2 ℎ ′ = 𝜁 ℎ ′ℎ𝐺 − ℎ(𝑟),  
𝜁𝑧𝑧 = 0,  𝜁𝑟𝑧 = ℎ ′ (𝑟)(ℎ𝐺 − ℎ(𝑟))2  , 
𝜁𝑟𝑟 = 2 𝑧 − ℎ𝐺(ℎ𝐺 − ℎ (𝑟))3 ℎ ′ (𝑟)2 + 𝑧 − ℎ𝐺(ℎ𝐺 − ℎ(𝑟))2 ℎ ′′ (𝑟) = 2𝜉 ℎ ′ (𝑟)2(ℎ𝐺 (𝑟) − ℎ (𝑟))2 + 𝜉 ℎ ′′ (𝑟)ℎ𝐺 − ℎ(𝑟)  

 

(3-5) 

And for lower fluid (referred to as liquid - Flüssigkeit): 

 𝜉𝑧 = 1ℎ(𝑟) + ℎ𝐹 ,  𝜉𝑟 = − 𝑧 + ℎ𝐹(ℎ(𝑟) + ℎ𝐹 )2 ℎ ′ = −𝜉 ℎ ′ℎ (𝑟) + ℎ𝐹 

𝜉𝑧𝑧 = 0,              𝜉𝑟𝑧 = − ℎ ′ (𝑟)(ℎ (𝑟) + ℎ𝐹 )2 , 
𝜉𝑟𝑟 = 2 𝑧 + ℎ𝐹(ℎ(𝑟) + ℎ𝐹 )3 ℎ ′ (𝑟)2 − 𝑧 + ℎ𝐹(ℎ(𝑟) + ℎ𝐹 )2 ℎ ′′ (𝑟) = 2𝜉 ℎ ′ (𝑟)2(ℎ(𝑟) + ℎ𝐹 )2 − 𝜉 ℎ ′′ (𝑟)ℎ(𝑟) + ℎ𝐹 . 

(3-6) 
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3.2 Spectral Collocation Method 

To solve the differential equations systems mentioned so far, numerical methods are utilized, 

requiring discretization. Spectral methods are employed for discretization and after applying 

relevant boundary conditions, the discretized equations are solved using the NAG library in C 

[23]. 

Spectral collocation methods are popular for solving differential equations. Instead of using 

local interpolants like finite difference and finite element methods, spectral methods employ 

a global interpolant (e.g., a polynomial) of high degree. The unknown solution is 

approximated by this interpolant, and its derivatives are computed using spectral 

differentiation matrices [2].  

The spectral method will be employed to solve the differential equations derived from the 

Navier-Stokes equations in cylindrical coordinates. This method is an approach for solving 

partial differential equations, like the Navier-Stokes equations, employing basis functions 

[24]. These methods offer superior accuracy for problems with smooth solutions, converging 

exponentially faster than finite difference and finite element methods. However, they come 

with the drawbacks of full matrices (not sparse), tighter stability restrictions, and less 

flexibility with irregular domains [2]. 

The unknown functions in differential equations are approximated by interpolating the 

function with a polynomial at the Chebyshev-Gauss-Lobatto nodes [2]: 

 𝑥𝑗 ≔  cos 𝜋𝑗𝑁 ,   𝑗 = 0,1, … , 𝑁  where −1 < 𝑥𝑗 < 1. (3-7) 

The unknown function 𝑓 is approximated  by projecting it onto a polynomial basis using the 

following expression[2]: 

 𝑃𝑁 (𝑥) =  ∑ 𝜆𝑘𝑥 − 𝑥𝑘𝑁𝐾=0 𝑓𝑘𝜆𝑘𝑥 − 𝑥𝑘 . (3-8) 

The 𝜆𝑘 is determined by [2]: 

 𝜂𝑘 = ∑ ln|𝑥 − 𝑥𝑘 |𝑁
𝑗= 0𝑗 ≠𝑘

 , 𝜆𝑘 = (−1)𝑘 𝑒 −𝜂𝑘  (3-9) 

To compute the first-order differentiation matrix: 

 𝐷𝑖𝑗 = 1𝑥𝑖 − 𝑥𝑗 𝜆𝑗𝜆𝑖   for 𝑖 ≠ 𝑗. (3-10) 
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𝐷𝑖𝑖 = − ∑ 𝐷𝑖𝑗 ,𝑁𝑗=0,𝑗≠𝑖  𝑖 = 0,1, … , 𝑁. 

And for higher-order differentiation matrices: 

 𝐷𝑖𝑗 𝑙 = 𝑙𝑥𝑖 − 𝑥𝑗 (𝜆𝑗𝜆𝑖 𝐷𝑖𝑖 𝑙 −1 − 𝐷𝑖𝑗 𝑙 −1 )  for 𝑖 ≠ 𝑗. 𝐷𝑖𝑖 𝑙 = − ∑ 𝐷𝑖𝑗 𝑙 ,𝑁𝑗=0,𝑗≠𝑖  𝑖 = 0,1, … , 𝑁 
(3-11) 

The equation provided is used to determine the approximated first derivative of the function 𝑓.  A similar formula is utilized for higher-order derivatives: 

 �̇�𝑗 =  ∑ 𝐷𝑖𝑗𝑁
𝑖 =0 𝑓𝑗  (3-12) 

This equation computes the first derivative of �̇�𝑗, where 𝑓𝑗  represents the derivative, and 𝐷𝑖𝑗 denotes the differentiation matrix. Continuing, the application of the spectral method for 

solving the system of partial equations can be exemplified. Considering axial symmetry in 

the cylindrical coordinate system the theta dimension can be excluded. The unknown 

function 𝑓 , which serves as an unknown variable in a partial equation, has two independent 

variables 𝑟 and 𝑧 within the domain 0 < 𝑟 < 1 and 0 < 𝑧 < ℎ. For computational purposes, 

nodes are required in both the radial (𝑟) and axial (𝑧) directions. Specifically, nodes are 

established for the radial direction and axial directions. After determining these nodes in 

each dimension, they are mapped onto their respective domains. The mapping process 

involves determining 𝑟𝑗  for the radial direction and 𝑧𝑗  for the axial directions. The mapping 

utilizes the cosine function to transform 𝑥𝑗 into the desired domain. To derive 𝑟𝑗 , 𝑥𝑗 is 

determined by: 

 𝑥𝑗 ≔  cos 𝜋𝑗𝑁𝑟 ,   𝑗 = 0,1, … , 𝑁𝑟  where −1 < 𝑥𝑗 < 1. (3-13) 

Here, 𝑁𝑟 signifies the count of nodes in the radial dimension. The mapping of 𝑥𝑗 to the 

domain [0, 1] yields 𝑟𝑗. To find 𝑧𝑗 ,  𝑥𝑗 is defined as: 

 𝑥𝑗 ≔  cos 𝜋𝑗𝑁𝑧 ,   𝑗 = 0,1, … , 𝑁𝑧  where −1 < 𝑥𝑗 < 1. (3-14) 

Here, 𝑁𝑧 denotes the count of nodes in the 𝑧 direction and the mapping of 𝑥𝑗 to the domain 

[0, ℎ] yields 𝑧𝑗 . The total nodes are 𝑁𝑟 × 𝑁𝑧 , the partial derivatives for each nodes should be 

determined, so The differentiation matrices for each variable 𝑟 and 𝑧 will be calculated 

analogously to Equations (3-10) and (3-11). Then, the partial derivatives can be computed 

following Equation (3-12). By substituting the unknown function and its derivatives into the 

system of partial equations at each node, excluding those located on the boundaries, and 
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applying boundary condition equations for nodes situated on the boundaries, the equations 

system is obtained to solve. The values of the function 𝑣, 𝑓 , 𝑔 at the nodes (𝑟𝑖 , 𝑧𝑗 )  where  𝑟𝑖 ∈ [0,1] and 𝑧𝑗 ∈ [0, h] are used a as unknowns. Thus, in case of a single fluid in a 

container, we have 𝑁𝑒𝑞 =  3 (𝑁𝑟 + 1) × (𝑁𝑧 + 1) unknowns and the same number of 

equations. In case of two fluids for Fr=0 (fixed surface) we have 𝑁𝑒𝑞 =  (𝑁𝑟 + 1) × (3𝑁𝑧1 +3𝑁𝑧2 + 6) unknowns (𝑁𝑧1 and 𝑁𝑧1 represent the number of nodes in the z-direction for 

each upper and lower fluid, respectively). Finally in case of a free interface, we must 

consider the deviation ℎ(𝑟) of the interface form the equilibrium position at the nodes 𝑟𝑖 as 

additional unknowns then we have 𝑁𝑒𝑞 =  (𝑁𝑟 + 1) × (3𝑁𝑧1 + 3𝑁𝑧2 + 8) numbers of 

unknowns. 

3.3 Testing the Numerical Method 

Here, the focus is on testing the described numerical method. The NAG (Numerical 

Algorithms Group) library is a collection of mathematical and statistical algorithms, designed 

to be used by developers and researchers in various fields of science, engineering, and 

finance. It is a comprehensive library that provides a wide range of numerical routines for 

solving various mathematical problems, such as linear algebra, optimization, numerical 

integration, and differential equations. In this study the NAG library will be used for solving 

the discretized equations. In continue a brief overview of the code for solving differential 

equations using the Chebyshev spectral methods and the c05qbc solver is provided. It 

highlights the key components and their roles in the numerical solution process: 

a) Solver c05qbc: 

The nag_zero_nonlin_eqns_easy function (c05qbc) offers a straightforward solution 

for solving a system of nonlinear equations, utilizing a modified version of the Powell 

hybrid method [25]. The system of equations is formulated as follows: 

 𝑓𝑖 (𝑥1 , 𝑥2 , … , 𝑥𝑛 ) =  0    𝑖 = 1,2, … , 𝑛. (3-15) 

This solver effectively handles stiff differential equations outlined in the diffgl 

function (explained in the following - 3). It employs advanced techniques to 

efficiently solve these equations. The solver iteratively refines the solution until 

reaching a specified tolerance level, ensuring high accuracy in the final solution. 
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b) setmatrices Function 

The setmatrices function implements differentiation matrices using Chebyshev-

Gauss-Lobatto collocation. Here is a breakdown of the code of the function in 

mathematical terms for a single fluid in similarity form: 

a) Initialization: 

• Initialize necessary variables and arrays. 

• Set up the Chebyshev-Gauss-Lobatto collocation points 𝑠𝑖  using the 

formula: 

 𝑠𝑖 = −𝑐𝑜𝑠 (𝑖𝜋𝑁 ) (3-16) 

 where N is the number of points and −1 < 𝑠𝑖 < 1. Consequently, the 𝑠𝑖  values will be mapped to the interval [0, 𝑧]. 
b) Calculation of Weighting Functions: 

• Calculate the weighting functions 𝜆𝑖 using the formula from [2]: 

 𝜆𝑖 = (−1)𝑖 𝑒𝑥𝑝 (− ∑ log ∣ 𝑠𝑖 − 𝑠𝑗 ∣𝑁
𝑗=0,𝑗≠𝑖  ) (3-17) 

c) First Derivative Matrix D1: 

• Calculate the first derivative matrix entries 𝐷1(𝑖, 𝑗) using the formula: 

 𝐷1𝑖𝑗 = 1𝑠𝑖 −𝑠𝑗 𝜆𝑗𝜆𝑖   for 𝑖 ≠ 𝑗. (3-18) 

• Use the negative sum trick to calculate the diagonal entries:  

 𝐷1𝑖𝑖 = − ∑ 𝐷1𝑖𝑗𝑁𝑗=0,𝑗≠𝑖  (3-19) 

d) Second Derivative Matrix 𝐷2: 
• Calculate the second derivative matrix entries 𝐷2(𝑖, 𝑗) using the formula:  

 𝐷2𝑖𝑗 = 2𝑠𝑖 −𝑠𝑗 (𝜆𝑗𝜆𝑖  𝐷1𝑖𝑖 − 𝐷1𝑖𝑗 )  for 𝑖 ≠ 𝑗. (3-20) 

• Use the negative sum trick to calculate the diagonal entries:  
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 𝐷2𝑖𝑖 = − ∑ 𝐷2𝑖𝑗𝑁𝑗=0,𝑗≠𝑖  (3-21) 

   

3. diffgl Function 

The diffgl function in the code serves as the user-defined equivalent of the fcn 

function required by the NAG library's c05qbc solver. The fcn function must be 

implemented by the user to enable the solution of nonlinear equations using c05qbc. 

Here's the definition of fcn: 

 
Figure 3: Definition of fcn 

and  Its arguments include: 

▪ n (Integer): Number of equations. 

▪ x: Components of the point for function evaluation (not to be confused with 

'x' representing Chebyshev-Gauss-Lobatto nodes, as depicted in the original 

documentation of the NAG library; here, it is presented in its original form). 

▪ fvec: The function values 𝑓𝑖 (𝑥1 , 𝑥2 , … , 𝑥𝑛 ). 

▪ comm: Pointer to communication structure. 

▪ iflag: Acts as a status flag, potentially used to terminate execution. 

In the diffglg function, the array y represents the unknown variables in our system of 

equations, akin to the array x in the fcn function. The f array stores the corresponding 

function values. So, the diffglg for a single fluid in similarity form works as follows: 

a) Calculation of First and Second Derivatives: 

For each dependent variable 𝑦𝑗 - which in this similarity solution can be 

represented by the 𝑓, 𝑔 or 𝑣 function from equation (3-22), calculate its first 

derivative and second derivative 𝑑2 𝑦𝑗𝑑𝑧 2  with respect to the independent variable 𝑧. 

In this similarity solution, we only have 𝑧  as the independent variable. 

 𝑑𝑦𝑗𝑑𝑧 = ∑ 𝐷1𝑗𝑘 𝑦𝑘𝑁
𝑘 =0   

𝑑2 𝑦𝑗𝑑𝑧2 = ∑ 𝐷2𝑗𝑘 𝑦𝑘𝑁
𝑘=0  

(3-23) 
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b) Express the array f as the system of differential equations for solving 𝑓, 𝑣, and 𝑔 

from equation (2-39). 

c) Implementing boundary conditions for the similarity form of equations system, 

considering only one fluid in the container. 

For validation, an analogous code was employed to simulate the flow of two immiscible 

fluids in a cylindrical container with a free interface. Surface displacements at the interface 

across various mesh sizes were compared using the root mean square (RMS) method to 

understand any differences. Results indicated that the mesh size used to solve the equations 

(𝑁𝑟 =  25, 𝑁𝑧 =  60) achieved an acceptable level of accuracy, as evidenced by close 

overlap in surface displacements across different mesh sizes. 

 
Figure 4: Surface displacement of the  Interface Between Two Immiscible Fluids at Reynolds 
= 1000, with a Density Ratio of 2 and Dynamic Viscosity Ratio of 1. Utilizing Different Mesh 

Grids. 

Additionally, the root mean square (RMS) method was employed to quantify the discrepancy 

between different mesh sizes, ensuring consistent conditions and precise error assessment. 

 𝑅𝑀𝑆 = √1𝑛 ∑(𝑦𝐴,𝑖 − 𝑦𝐵,𝑖 )2𝑛
𝑖 =1  (3-24) 

where 𝑦𝐴,𝑖 and 𝑦𝐵,𝑖 are the values of data sets 𝐴 and 𝐵 , respectively. Due to the different 

number of grid points, interpolation is necessary to ensure an equal number of data points 

for both data sets. The table below summarizes the Root Mean Square (RMS) values for each 

pair of data sets, facilitating a comprehensive understanding of the differences between 

various mesh sizes. 
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Table 1: Root Mean Square (RMS) Values Between Each Pair of Data Sets 

 
Nr = 15,  

Nz = 60 

Nr = 20,  

Nz = 60 

Nr = 25,  

Nz = 60 

Nr = 15,  

Nz = 50 

Nr = 20,  

Nz = 50 

Nr = 25,  

Nz = 50 

Nr = 25,  

Nz = 70 

Nr = 15, Nz = 60 0 1.3 e-04 1.3 e-04 1.7 e-05 1.4 e-04 3.0 e-04 1.3 e-04 

Nr = 20, Nz = 60 1.3 e-04 0 7.9 e-05 1.4 e-04 1.3 e-05 2.3 e-04 6.3 e-05 

Nr = 25, Nz = 60 1.3 e-04 7.9 e-05 0 1.3 e-04 8.8 e-05 2.7 e-04 2.6 e-05 

Nr = 15, Nz = 50 1.7 e-05 1.4 e-04 1.3 e-04 0 1.3 e-04 3.7 e-04 1.4 e-04 

Nr = 20, Nz = 50 1.4 e-04 1.3 e-05 8.8 e-05 1.3 e-04 0 2.3 e-04 7.0 e-05 

Nr = 25, Nz = 50 3.0 e-04 2.3 e-04 2.7 e-04 3.7 e-04 2.3 e-04 0 2.5 e-04 

Nr = 25, Nz = 70 1.3 e-04 6.3 e-05 2.6 e-05 1.4 e-04 7.0 e-05 2.5 e-04 0 
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4 Results 
In this section the results of similarity and non-similarity solutions for one and two fluids, 

considering different relative properties are presented and discussed. 

4.1 The Flow of One Fluid Between Two Infinite Rotating Discs 

In this section, the results of a similarity solution are presented, initially focusing on a single 

fluid, and then extending to two fluids, each analyzed at various Reynolds numbers. The 

numerical solution involves the utilization of eighty cells positioned between the two disks. 

In the similarity form, all functions are solved in a non-dimensional context, where they are 

characterized by a single parameter, ′𝑧 ′ . Diagrams are plotted for ′𝑧 ′ ranging from -1 to 1, 

with varying functions. The equations are solved for different Reynolds numbers, each 

represented by a distinct color in the diagrams. 

In Figure 5a Tangential Velocity concerning ′𝑧 ′ for different Reynolds numbers is shown. As 

observed in the diagram, due to the non-slip boundary condition, the tangential velocity on 

the lid (at 𝑧 =  1) equals one, while at the bottom (𝑧 =  0), it is zero. for most ′𝑧 ′ values, 

the tangential velocity maintains a constant value 𝜔 ≈ 0.4; however, deviations from this 

constant value occur near the bottom and lid. With an increase in Reynolds number, the 

tangential velocity tends to remain more constant across various ′𝑧 ′ values. 

The subsequent diagram (Figure 5b) illustrates the Radial Velocity between two disks. Once 

again, due to the non-slip boundary condition, the radial velocity at both the lid and the 

bottom remains zero for all Reynolds numbers. For most ′𝑧 ′ values, the radial velocity stays 

at zero, except near the top and bottom where it's not zero. Also, as the Reynolds number 

increases, the difference from zero radial velocity becomes smaller because of less viscosity 

at higher Reynolds numbers. 

The final diagram (Figure 5c) in the results of the Similarity solution illustrates the Axial 

Velocity. Like the previous cases, due to the no-slip boundary condition, the axial velocity is 

zero at both the bottom and the top. As one moves away from the bottom and top, the axial 

velocity reaches a constant value. This constant value decreases as the Reynolds number 

increases. 
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(a)  

 
(b) 

 
(c) 

Figure 5:Velocity Components in Single Fluid Similarity Solution with 80-Node Mesh across Various 
Reynolds Numbers. (a) Tangential Velocity (b) Radial Velocity (c) Axial Velocity 
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4.1.1 Comparison with Results from Literature 

In this section, the results of the radial velocity will be compared with those reported in the 

paper [26]. A direct one-to-one comparison is not feasible due to differences in the 

boundary conditions of our solution compared to those in the paper. The paper discusses a 

setup where both the bottom and top disks are rotated with relative angular velocity. 

However, in this study, only the top disk is rotated. Therefore, adjustments and 

considerations will be made to account for these differences during the comparison process. 

 

Figure 6: Radial Velocity Profile Obtained from this study  

 
 

Figure 7: Radial Velocity Profile Reported in Reference Paper[26] 
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By comparing the results in the paper and this study in Figure 6 and Figure 7, it can be 

observed that the radial velocity at the top is zero. By comparing the results presented in the 

paper with those of this study, as depicted in Figures 6 and 7, it becomes apparent that the 

radial velocity at the top is zero. Subsequently, it increases quadratically in absolute terms, 

then decreases until it approaches zero once more, near the midpoint of the disks. Beyond 

this point, it demonstrates a similar mirrored behavior; the velocity increases quadratically in 

the opposite direction, then decreases again until reaching zero velocity at the bottom. 

4.2 The Flow of Two Immiscible Fluid Between Two Infinite Rotating Discs 

The following diagrams illustrate the results of similarity solutions for two fluids, considering 

three different density ratios (2, 25, and 50) and two distinct viscosity ratios (1 and 0.5), 

across various Reynolds numbers. To avoid overcrowding the diagrams, only two cases are 

showcased here, with the remaining cases available for reference in the appendix. The initial 

results ( Figure 8(a and  Figure 9a) showcase the tangential velocity obtained from a 

similarity solution applied to two different fluids. The tangential velocity in the upper fluid 

mirrors the behavior observed in a scenario with only one fluid, reaching a stable value at 

high Reynolds numbers. 

As the density ratio (lower fluid density to upper fluid density) increases from 2 to 50, the 

constant value for tangential velocity in the upper fluid is observed at higher Reynolds 

numbers. For instance, with a density ratio of 2(Figure 8a), its constant value is achieved at 

Reynolds 500. Conversely, with a density ratio of 50(Figure 9a), a higher Reynolds number is 

necessary to reach its constant value. However, as the density ratio continues to climb, this 

constant value decreases. As mentioned earlier, the constant value for tangential velocity in 

a single fluid is approximately 0.4. With an increasing density ratio in two fluids, the value in 

the upper fluid decreases, converging to approximately 0.4. To clarify, at a density ratio of 2, 

the constant value for tangential velocity in the upper fluid is roughly 0.65, while with a 

density ratio of 50, it decreases to around 0.45. Indeed, an increasing density ratio signifies 

that the lower fluid becomes heavier. Consequently, the flow in the upper fluid more closely 

resembles the flow in a scenario with only one fluid situated between disks. 

In a stable scenario, the impact of viscosity is reduced. Therefore, as the Reynolds number 

increases, the influence of viscosity becomes less pronounced.  
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In Figures Figure 8b and  Figure 9b, like the tangential velocity, achieving a stable 

configuration for radial velocity requires higher Reynolds numbers as the density ratio 

increases. For instance, stability is reached at Reynolds number 5000 with a density ratio of 

2. However, at a density ratio of 50, stability is not achieved at Reynolds number 5000; a 

higher Reynolds number is required. As the density ratio increases, the radial velocity in the 

lower fluid decreases, indicating that it becomes heavier than the upper fluid. 

Simultaneously, reducing the viscosity ratio results in an increase in the radial velocity in the 

lower fluid. 
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(a) 

 
(b) 

 
(c) 

Figure 8 : Velocity components in Two Immiscible Fluids Similarity Solution with 80-Node Mesh 
Across Various Reynolds Numbers, Density Ratio 2, and Viscosity Ratio 1.(a) Tangential Velocity (b) 

Radial velocity (c)  Axial velocity 



 4 Results 
 

31 
 

 
 (a) 

 
(b) 

 

 
(c) 

Figure 9: Velocity components in Two Immiscible Fluids Similarity Solution with 80-Node Mesh 
Across Various Reynolds Numbers, Density Ratio 50, and Viscosity Ratio 0.5. (a) Tangential Velocity 

(b) Radial velocity (c)  Axial velocity 
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In Figures, Figure 8c and Figure 9c, achieving stability in axial velocity involves adjusting 

Reynolds numbers and density ratios. Higher Reynolds numbers are necessary for stability as 

the density ratio increases, analogous to the behavior observed in tangential and radial 

velocity. For example, stability may be attained at Reynolds number 5000 when the density 

ratio is 2, but not when the density ratio is 50, requiring a higher Reynolds number. 

Decreasing the density ratio leads to an increase in axial velocity in the lower fluid. In stable 

configurations, reducing the viscosity ratio generally results in higher axial velocity. However, 

at higher Reynolds numbers, the influence of viscosity on axial velocity diminishes. In 

specific cases, such as Reynolds number 5000 with a density ratio of 50, where stability is 

not achieved, the conventional relationship between viscosity ratio and axial velocity may 

not hold as expected. 

4.3 The Flow of Fluid in a Cylindrical Container 

This section is dedicated to solving equations in the non-similarity form, with a specific focus 

on a single fluid within a vertical cylinder. The functions in the non-similarity form are 

characterized by both parameters  'r' and 'z.' Like the similarity form, all functions are 

resolved in a non-dimensional context. The equations are solved for Reynolds numbers 

ranging from 500 to 6000. In this section, like the previous one, only two cases are 

presented to prevent overcrowding the diagrams. The remaining cases can be referred to in 

the appendix. Additionally, we extend our analysis to include Reynolds numbers of 50, 300, 

750 and 2000, providing a comprehensive comparison through contour plots, in line with 

existing literature. Subsequent sections will further explore the resolution of these 

equations for two non-mixing fluids within a vertical cylinder. 
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 (a) 

 
(b) 

 
(c) 

Figure 10: Velocity components in Single Fluid at Re = 500: Mesh grid (25r x 40z). (a) Tangential 
Velocity (b) Radial velocity (c)  Axial velocity 
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 (a) 

 
(b) 

 
(c) 

Figure 11: Velocity components in Single Fluid at Re = 6000: Mesh grid (25r x 40z). (a) Tangential 
Velocity (b) Radial velocity (c)  Axial velocity 

The initial functions (Figure 10a and Figure 11a) presented in this section focus on tangential 

velocity. As observed in the diagrams, on the upper surface of the fluid, which is in contact 

with the lid, the velocity is the same as the lid's velocity due to the non-slip condition. 

Consequently, at r = 0 on the top surface, the velocity is zero, and as 'r' increases on the top 

surface, the velocity also increases. Similarly, in contact with the surfaces at the bottom and 

wall of the cylinder, the velocity is zero due to the non-slip boundary condition. 
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Compared to the similarity solution, the tangential velocity function in the non-similarity 

solution exhibits similar behavior at each 'r,' especially away from the boundaries (r = 0 and 

1). This similarity increases with distance from the boundaries. 

As evident in the radial velocity graphs (Figure 10b and Figure 11b), there are peaks and 

valleys near the boundaries. As the Reynolds number increases, these features shift closer to 

the boundaries. When compared to the similarity solution, the radial velocity exhibits similar 

behavior, particularly away from the boundaries (r = 0 and 1). 

The axial velocity graphs (Figure 10c and Figure 11c) display a valley near the cylinder wall. 

Increasing Reynolds number enhances the variation of axial velocity with 'r.' Like radial and  

tangential velocity, axial velocity exhibits similarity with the similarity solution, albeit in a 

narrower range, which diminishes as Reynolds number increases. 

4.3.1  Comparison with Results from Literature 

In the following, the contour plots for three parameters—stream function, vorticity, and 

azimuthal velocity—are displayed at different Reynolds numbers: 50, 300, 750, 1000, and 

2000. These plots illustrate the variation of these parameters in the cylinder and allow for 

comparison with available data. 
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        Stream Function               Vorticity   Azimuthal Velocity 

(a) 

 

   

(b) 

   

(c) 
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The stream function, a scalar function widely employed in fluid dynamics, serves to visualize 

flow patterns within a two-dimensional flow field. Contour lines on a stream function plot 

represent constant values of the stream function. Streamlines, which are lines parallel to the 

flow direction, can be visualized by drawing tangent lines to these contour lines. An 

examination of stream function diagrams Figure 12 at different Reynolds numbers reveals 

that an increase in Reynolds number causes the maximum of the stream function to shift 

closer to the wall of the cylinder. As Reynolds number increases, the changes in the flow 

pattern around the wall and bottom of the cylinder also increase. 

Vorticity is a measure of the local spinning motion of fluid particles within a fluid flow. 

According to the diagram Figure 12, as the Reynolds number increases, the change in 

vorticity, especially at points farther from the wall, decreases. Contour plots in Figure 12, 

show as the Reynolds number increases, the change in azimuthal velocity near the bottom 

of the cylinder increases. 

(d) 

   

 

(e) 

 

   
Figure 12:  Isolines of Stream Function, Vorticity, and Azimuthal Velocity for h/R=2and Reynolds 

Numbers: (a) Re=50, (b) Re=300, (c) Re=750, (d) Re=1000 and (e) Re=2000 
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To compare the results with the paper [27], the focus lies on maintaining a constant height-

to-radius ratio of one. Simulations were conducted for Reynolds numbers of 50, 500, and 

2000. However, limitations arising from the solver provided by NAG restricted the use of a 

finer grid due to memory allocation errors. Nonetheless, consistent patterns in streamlines, 

vorticity, and azimuthal velocity were noted across both datasets. The discrepancy between 

the diagrams presented in the paper and our findings warrants further investigation and is 

posed as an open question. 

        Stream Function  Vorticity   Azimuthal Velocity 

(a) 

 

   

(b) 

   

(c) 

 

   
 Figure 13:  Isolines of Stream Function, Vorticity, and Azimuthal Velocity for h/R=1 and Reynolds 

Numbers: (a) Re=50, (b) Re=500, (c) Re=2000 generated using the solver developed in this thesis. 
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        Stream Function  Vorticity   Azimuthal Velocity 

(a) 
 

   

(b) 

   

(c) 
 

   
Figure 14:  Isolines of Stream Function, Vorticity, and Azimuthal Velocity for h/R=1 and Reynolds 

Numbers: (a) Re=50, (b) Re=500, (c)Re=2000 Adapted from [22]. 

4.4 The Flow of Two Immiscible Fluids in a Cylindrical Container 

In this section, non-similarity solutions are addressed for a system involving two fluids, 

which is divided into two parts. The first part considers a flat interface between two miscible 

fluids, where the limit 𝐹𝑟 = 0 is applicable. The second part deals with a free interface, 

where 𝐹𝑟 > 0. 
4.4.1 The Limit Fr = 0 

Here is the focus on scenarios where the interface between these non-mixing fluids remains 

flat, and there is no need for explicit calculations of the interface shape. The emphasis is on 

understanding the behavior and of the non-similarity solutions in the context of two distinct 
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fluids, providing valuable insights into the dynamics of interfaces between immiscible fluids 

without the need for detailed interface characteristics computations. 

In the subsequent diagrams, similar to those in the single-fluid case, diagrams depicting 

axial, radial, and tangential velocity are presented for two cases to avoid overcrowding. The 

remaining cases can be found in the appendix. Additionally, in this section, like the single-

fluid case, counter plots for stream function, vorticity, and azimuthal velocity will be 

provided for specific cases to enhance understanding of the flow characteristics in both 

fluids. 
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 (a) 

 
(b) 

 
(c) 

Figure 15:  Velocity components in Two Immiscible Fluids at Re=500, with a Density Ratio of 2 and 
Dynamic Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30.). (a) Tangential Velocity 

(b) Radial velocity (c)  Axial velocity 
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 (a) 

 
(b) 

 
(c) 

Figure 16:  Velocity components in Two Immiscible Fluids at Re=6000, with a Density Ratio of 50 and 
Dynamic Viscosity Ratio of 0.5. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30.). (a) Tangential Velocity 

(b) Radial velocity (c)  Axial velocity 

In the above diagrams, a rise in the density ratio between fluids shows a change in the upper 

fluid's behavior, like a single fluid. Additionally, the interface between fluids behaves like a 

motionless wall. This trend was previously discussed in the similarity solution section. With 

an increase in Reynolds number, it is observed that the flow in the lower fluid increases.  
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Examining the tangential velocity diagrams in non-similarity solutions reveals that as one 

moves away from the boundaries (at r = 0 and r = 1), the solution becomes more akin to the 

similarity solution. 

The radial velocity diagrams in the upper fluid display peaks and valleys. The magnitudes of 

these peaks and valleys decrease when the upper fluid has higher viscosity. In these 

observations, the influence of density and viscosity ratios becomes evident at different 

Reynolds numbers for radial velocity. 

Increasing the Reynolds number leads to an increase in the axial velocity in the lower fluid. 

The impact of viscosity ratio on axial velocity becomes more noticeable with lower Reynolds 

numbers and in situations with smaller density differences. 

 Stream Function              Vorticity   Azimuthal Velocity 

(a) 

   

(b) 
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(c) 

   
Figure 17:  Isolines of Stream Function, Vorticity, and Azimuthal Velocity in Two Immiscible Fluids with a Density 

ratio 2 , dynamic viscosity ratio 1 and  Reynolds Numbers: (a) Re=1000, (b) Re=3000, (c) Re=6000. Mesh Grid: 
Nr=25, NzUpFluid=30, Nzdownfluid=30. 

 

 Stream Function Vorticity Azimuthal Velocity 

(a) 

   

(b) 
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(c) 

   
Figure 18:  Isolines of Stream Function, Vorticity, and Azimuthal Velocity in Two Immiscible Fluids with a 

Density ratio 50 , dynamic viscosity ratio 0.5 and  Reynolds Numbers: (a) Re=1000, (b) Re=3000, (c) 
Re=6000. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. 

According to Figure 17, in the streamlines diagram at Reynolds 1000 a vortex can be 

observed in the center, which diminishes as Reynolds increases. As Reynolds increases, the 

streamlines in the upper fluid move closer to the wall. 

By comparing the diagrams in Figures 17 and 16, it can be observed that as the density ratio 

of the two fluids increases, the behavior of the fluid in the upper fluid becomes more similar 

to that of a single fluid in a cylinder. 

4.4.2 Fr > 0: Free Interface Problem 

In this section, the interface between two immiscible fluids is analyzed. As previously 

mentioned, the solution must incorporate parameters such as pressure difference and 

surface displacement at the interface. Accordingly, the equation for pressure difference at 

the interface and the surface displacement at the interface are integrated into the system of 

equations. Initially, the surface tension and the difference in normal stress on the interface 

are overlooked in the surface displacement equation. Nevertheless, in subsequent analyses, 

both parameters are considered to assess their impact on the solution. 

In this section, our main goal is to illustrate essential interface parameters, including surface 

displacement, pressure difference, and shear stress in both radial and tangential directions. 

The investigation will encompass a range of Reynolds numbers, ranging from 500 to 6000, 

while ensuring a constant Froude number of one.  
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 In terms of numerical solution, a grid comprising 25 points is employed in the radial 

direction, along with 60 grids in the axial direction (30 for the upper fluid and 30 for the 

lower fluid). 

The analysis of surface displacement at the interface between two fluids will be undertaken 

for three distinct cases, each characterized by different density ratios and viscosity ratios. 

As seen in the surface displacement diagrams and their comparison, it is evident that the 

surface displacement at the interface approaches zero as the density difference increases 

until the Reynolds number is sufficiently large (not achieved here). Therefore, our analyses 

in the previous section, assuming a flat interface, remain valid for scenarios characterized by 

a high difference in density. Additionally, an increase in viscosity in the upper fluid results in 

a smoother displacement of the surface. The surface displacement exhibits a wave pattern, 

with peak towards the wall and valley at the center. The axial symmetry is evident in the 

zero-slope observed at the center. Furthermore, an increase in Reynolds number 

corresponds to a proportional augmentation in surface displacement. 

 
Figure 19: Surface displacement Surface displacement of Interface Between Two Immiscible 
Fluids at Different Reynolds Numbers, with a Density Ratio of 2 and Dynamic Viscosity Ratio 

of 0.5. Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 
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Figure 20: Surface displacement of Interface Between Two Immiscible Fluids at Different 

Reynolds Numbers, with a Density Ratio of 2 and Dynamic Viscosity Ratio of 1. Mesh Grid: 
Nr=25, NzUpFluid=30, NzDownFluid=30. 

 
Figure 21: Surface displacement of Interface Between Two Immiscible Fluids at Different 

Reynolds Numbers, with a Density Ratio of 50 and Dynamic Viscosity Ratio of 1. Mesh Grid: 
Nr=25, NzUpFluid=30, NzDownFluid=30. 

From this point onward, the analysis of other interface parameters between two fluids will 

exclusively concentrate on the case where the surface displacement was the most 

pronounced, as observed in the latest diagrams. 

Because the Froude Number is fixed at one, and both surface tension and normal stress 

differences between the two fluids at the interface are disregarded in the system's surface 

equation, the behavior of the pressure difference closely mirrors that of the surface 

displacement. This correspondence is evident in the case presented below.  
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Figure 22: Pressure difference across the  Interface Between Two Immiscible Fluids at 

Different Reynolds Numbers, with a Density Ratio of 2 and Dynamic Viscosity Ratio of 1. 
Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 

In both the tangential and radial shear stress diagrams, there are observable peaks that, as 

the Reynolds number increases, shift towards the wall. The tangential and radial shear 

stresses exhibit an upward trend with increasing Reynolds numbers. 

 
Figure 23: Tangential shear stress across the  Interface Between Two Immiscible Fluids at 
Different Reynolds Numbers, with a Density Ratio of 2 and Dynamic Viscosity Ratio of 1. 

Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 
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Figure 24: Radial shear stress across the  Interface Between Two Immiscible Fluids at 

Different Reynolds Numbers, with a Density Ratio of 2 and Dynamic Viscosity Ratio of 1. 
Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 

In the following diagrams Figure 25, the results of velocity components at the interface are 

shown. 

 
 (a) 
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For better comprehension, velocity components at r = 0.75 with respect to z-axis of the 

cylinder are presented in Figure 26. 

(b) 

 
(c) 

Figure 25:Velocity components across the  Interface Between Two Immiscible Fluids at Different 
Reynolds Numbers, with a Density Ratio of 2 and Dynamic Viscosity Ratio of 1. Mesh Grid: Nr=25, 

NzUpFluid=30, NzDownFluid=30.(a) Tangential Velocity (b) Radial velocity (c)  Axial velocity 
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 (a) 

 
(b) 

 
(c) 

Figure 26: Velocity components at r = 0.75, at Different Reynolds Numbers, with a Density Ratio of 2 
and Dynamic Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30.(a) Tangential Velocity 

(b) Radial velocity (c)  Axial velocity 
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In the subsequent analysis, a comparison of the stream function for the mentioned case at 

Reynolds 6000, considering the interface displacement and assuming a flat interface 

between the two fluids, will be performed. This comparison aims to reveal that at this 

Reynolds number, the interface displacement in this case does not significantly impact the 

flow in both fluids.  

 

(a) 
 

(b) 
Figure 27: Stream Function in Two Immiscible Fluids at Reynolds=6000. (a): Density Ratio of 
2 and Dynamic Viscosity Ratio of 1. (b): Density Ratio of 50 and Dynamic Viscosity Ratio of 1. 

Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 

Until now, the influence of surface tension and normal stress difference at the interface in 

comparison to the pressure difference has been overlooked. The current objective is to 

incorporate these factors and analyze the interface parameters across various Weber 

numbers. 

For this purpose, the Reynolds number is fixed at 1000, while the Froude number remains 

consistently at one. The density ratio and viscosity ratio are maintained at constant values. 

The diagram showcases the surface displacement of the interface for various Weber 

numbers, encompassing the scenario where neither surface tension nor normal stress 

difference at the interface is considered. Upon closer examination of the surface 

displacement diagram, it becomes apparent that in comparison to the pressure difference, 

the effects of surface tension and normal stress difference are relatively smaller. 

Additionally, as the Weber number increases, the influence of surface tension diminishes. 
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These observations suggest that varying the Weber number has minimal effects on the 

interface parameters, as depicted in the diagrams.  

 
Figure 28: Surface displacement Surface displacement of Interface Between Two Immiscible 

Fluids at Reynolds = 1000 and different Weber numbers, with a Density Ratio of 2 and 
Dynamic Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 

When the Froude number is set to one, the pressure difference and surface displacement 

exhibit similar behaviors at the interface. However, introducing considerations for surface 

tension and normal stress difference at the interface very slightly diminishes this similarity. 

 
Figure 29: Pressure difference across the  Interface Between Two Immiscible Fluids at 
Reynolds = 1000 and different Weber numbers, with a Density Ratio of 2 and Dynamic 

Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 

Considering the surface tension and normal stress difference at the interface between fluids, 

it appears that the pressure difference at the interface has a greater effect on the resulting 

tangential and radial stress. Therefore, it may be appropriate to ignore these effects in the 

calculation. 
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Figure 30: Tangential Shear stress across the  Interface Between Two Immiscible Fluids at 

Reynolds = 1000 and different Weber numbers, with a Density Ratio of 2 and Dynamic 
Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 

 
Figure 31: Radial shear stress across the  Interface Between Two Immiscible Fluids at 

Reynolds = 1000 and different Weber numbers, with a Density Ratio of 2 and Dynamic 
Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 

The following plot compares the magnitude of the pressure difference component with the FrWeb  𝜅 and FrRe (𝑠𝐹 ,𝑛 − 𝜇 𝑠𝐺 ,𝑛 )components of the surface displacement equation(2-27)as a 

function of radial distance from the center. 
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Figure 32: Magnitude of Surface Displacement Components in Interface Between Two 

Immiscible Fluids at Reynolds = 1000, Weber = 1000, with a Density Ratio of 2 and Dynamic 
Viscosity Ratio of 1. . Mesh Grid: Nr=25, NzUpFluid=30, NzDownFluid=30. 

The x-axis represents the radial distance from the center of the surface. The y-axis indicates 

the magnitude of each component contributing to the surface displacement equation at 

each radial distance. 

• ∆𝑝: Represents the difference in pressure at interface. 

• 𝜅: Represents the curvature of the surface. 

• ∆𝜎𝑛 : Represents the change in normal stress at the interface. 

The plot highlights the relative magnitudes of the pressure difference component compared 

to curvature and delta normal stress. Based on the comparison, if the pressure difference 

component significantly outweighs curvature and delta normal stress, simplification of the 

surface displacement equation by omitting these components can be considered. 

4.5 Comparison with Experiments  

Here we attempt to compare our results with exact experimental data[28]. For this purpose, 

our code is configured to match the experimental setup, including the density ratio, viscosity 

ratio, and the height of each fluid. The tangential velocity at the interface is investigated for 

comparison with the data. It is observed that increasing the Reynolds number reduces the 

difference between the result. 
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(a) (b) (c) 

Figure 33: Tangential Velocity at interface between two fluids to compared with experimental data (a) 
Re = 50 (b) Re = 100 (c) Re = 250 

In our comparison, we employed the simulation with a grid size of (Nr = 25 and Nz = 60). 

Unfortunately, we encountered a memory allocation error when attempting to use a finer 

grid. This limitation could potentially lead to differences in the results. Additionally, our 

numerical solutions were based on assumptions such as axial symmetry, although in reality, 

axial symmetry was not present. Furthermore, we did not adjust the Weber and Froude 

numbers in our simulation due to their absence in the paper. Despite their seemingly minor 

influence, these parameters could still impact the results. 
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5 Conclusion 
This study investigated the flow behavior of two immiscible liquids in a vertical cylinder with 

a rotating lid. By employing Navier-Stokes equations in cylindrical coordinates and utilizing 

spectral methods as a numerical solution, the flow characteristics of both fluids were 

determined.  

The research examined the velocity components behavior, including tangential, radial, and 

axial velocities, across a spectrum of Reynolds numbers and other dimensional parameters 

such as density ratio, viscosity ratio, Weber number, and more, by analyzing both similarity 

and non-similarity solutions. 

To analyse the flows in both liquids, treated as separate phases due to their non-mixing 

nature, the Navier-Stokes equations in cylindrical coordinates were applied. Certain 

assumptions, such as axial symmetry and steady state, were considered to simplify these 

equations. 

Initially, a similarity solution was employed to describe the flow between two disks of 

infinite length. This solution effectively removes any dependence on radial variables from 

the equations, leaving only the z-axis as the sole variable. Although the similarity solution 

lacked detailed insights, it provided a broad perspective on the flow characteristics in both 

single-fluid and two-fluid scenarios. 

In this thesis, the interface between fluids was addressed step by step; at first equations 

were solved under the assumption of a flat interface between the two fluids, and these 

results were subsequently used as initial values for equations resolving interfaces. 

For single-fluid cases, the similarity solution revealed consistent velocity patterns across 

Reynolds numbers, with tangential velocity reaching a constant value. Extending the analysis 

to two-fluid systems highlighted the influence of density and viscosity ratios on flow 

behavior, particularly near boundaries. As density ratios increase, it was observed that the 

upper fluid demonstrates behavior increasingly resembling that of a single fluid.  

In non-similarity solutions, counter plots for stream function, vorticity, and azimuthal 

velocity were used to better understand the flow. 

When examining free interface scenarios between two fluids, Reynolds numbers, viscosity 

ratio, density ratio, Weber, and Froude numbers were considered. It was observed that an 

increase in Reynolds number corresponded to an increase in the displacement of the 
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interface. However, this increase depends on factors such as the density ratio and other 

dimensionless numbers like the Froude and Weber numbers. For example, a higher density 

ratio between the two fluids resulted in a lower surface displacement compared to cases 

with lower density ratios. 

As a topic for future investigation the instability at the interface between the fluids is of 

special importance. This instability leads to the formation of waves with significant 

amplitudes. This phenomenon is observed e.g. in Francis turbines during the condenser 

mode, where the water level in the draft tube decreases. As a result, the turbine's runner 

rotates in the air, and this rotational movement of the rotor has the potential to generate a 

substantial surface wave with a significant amplitude [29]. This amplitude can be as large as 

the diameter of the draft tube. 
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7 Appendix 
Similarity solution for two fluids 

 
(a) 

 
(b) 

 
(c) 

Figure 34:Velocity components in Two Immiscible Fluids Similarity Solution with 80-Node Mesh 
Across Various Reynolds Numbers, Density Ratio 2, and Viscosity Ratio 0.5. (a) Tangential velocity  (b) 

Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 35: Velocity components in Two Immiscible Fluids Similarity Solution with 80-Node Mesh 
Across Various Reynolds Numbers, Density Ratio 25, and Viscosity Ratio 1. (a) Tangential velocity  (b) 

Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 36: Velocity components in Two Immiscible Fluids Similarity Solution with 80-Node Mesh 
Across Various Reynolds Numbers, Density Ratio 25, and Viscosity Ratio 0.5. (a) Tangential velocity  

(b) Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 37: Velocity components in Two Immiscible Fluids Similarity Solution with 80-Node Mesh 
Across Various Reynolds Numbers, Density Ratio 50, and Viscosity Ratio 1. (a) Tangential velocity  (b) 

Radial Velocity  (c) Axial Velocity 
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Velocity components by non-similarity solution for one fluid 

 
(a) 

 
(b) 

 
(c) 

Figure 38: Velocity components in Single Fluid at Re = 1000: Mesh grid (25r x 40z). (a) Tangential 
velocity  (b) Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 39: Velocity components in Single Fluid at Re = 3000: Mesh grid (25r x 40z). (a) Tangential 
velocity  (b) Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 40: Velocity components in Single Fluid at Re = 5000: Mesh grid (25r x 40z). (a) Tangential 
velocity  (b) Radial Velocity  (c) Axial Velocity 
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Velocity components by non-similarity solution for two immiscible fluids 

 
(a) 

 
(b) 

 
(c) 

Figure 41: Velocity components in Two Immiscible Fluids at Re=500, with a Density Ratio of 2 and 
Dynamic Viscosity Ratio of 0.5. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  

(b) Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 42: Velocity components in Two Immiscible Fluids at Re=500, with a Density Ratio of 50 and 
Dynamic Viscosity Ratio of 0.5. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  

(b) Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 43: Velocity components in Two Immiscible Fluids at Re=500, with a Density Ratio of 50 and 
Dynamic Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  (b) 

Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 44: Velocity components in Two Immiscible Fluids at Re=3000, with a Density Ratio of 2 and 
Dynamic Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  (b) 

Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 45: Velocity components in Two Immiscible Fluids at Re=3000, with a Density Ratio of 2 and 
Dynamic Viscosity Ratio of 0.5. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  

(b) Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 46: Velocity components in Two Immiscible Fluids at Re=3000, with a Density Ratio of 50 and 
Dynamic Viscosity Ratio of 0.5. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  

(b) Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 47: Velocity components in Two Immiscible Fluids at Re=3000, with a Density Ratio of 50 and 
Dynamic Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  (b) 

Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 48:Velocity components in Two Immiscible Fluids at Re=6000, with a Density Ratio of 2 and 
Dynamic Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  (b) 

Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 49: Velocity components in Two Immiscible Fluids at Re=6000, with a Density Ratio of 2 and 
Dynamic Viscosity Ratio of 0.5. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  

(b) Radial Velocity  (c) Axial Velocity 
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(a) 

 
(b) 

 
(c) 

Figure 50: Velocity components in Two Immiscible Fluids at Re=6000, with a Density Ratio of 50 and 
Dynamic Viscosity Ratio of 1. Mesh Grid: Nr=25, NzUpFluid=30, Nzdownfluid=30. (a) Tangential velocity  (b) 

Radial Velocity  (c) Axial Velocity 

 


