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Kurzzusammenfassung

Moderne Regelungssysteme nutzen das Modellwissen der ihnen zugrundeliegenden
Prozesse um zunehmend komplexere Automatisierungsaufgaben zu lösen. Diese
Komplexität und die unvermeidbaren Unsicherheiten erfordern jedoch eine Kombi-
nation von adaptiven und lernenden Methoden mit traditionellen modellbasierten
Ansätzen, um die Leistung komplexer Regelungssysteme weiter zu steigern und
weitere Funktionalitäten zu ermöglichen. In dieser Arbeit werden drei Haupt-
themen betrachtet, die beispielhaft veranschaulichen, welche Vorteile sich aus der
Kombination aus Domänenwissen mit echtzeitfähigen adaptiven und lernenden
Verfahren zur Erreichung der gewünschten Regelgüte ergeben. Zunächst wird eine
Klasse von Algorithmen zur Parameterschätzung analysiert, die in einem weiteren
Schritt für den Entwurf eines adaptiven Regelkonzeptes herangezogen wird. In
einem weiteren Kapitel wird durch die Kombination aus modellbasierter und it-
erativ lernender Regelung die absolute Genauigkeit eines Industrieroboters durch
Kompensation komplexer dynamischer Effekte, die nur schwer oder gar nicht durch
physikalisch-basierte mathematische Modelle erfasst werden können, deutlich er-
höht.
In der Literatur finden sich zahlreiche Varianten der Parameterschätzung mit Hilfe
der kleinsten Fehlerquadrate und (exponentiellem) Vergessen. Sie alle haben Vor-
und Nachteile hinsichtlich Konvergenzrate, Robustheit gegenüber Messrauschen
sowie des Parametrierungs- und Rechenaufwandes. In dieser Arbeit wird ein
allgemeiner Algorithmus zur Parameterschätzung mit Vergessen vorgestellt, auf
dessen Basis sich eine Vielzahl von Algorithmen, die aus der Literatur her bekannt
sind, durch Angabe einer allgemeinen Gewichtungsmatrix als Spezialfälle herleiten
lassen. Dieser Algorithmus dient auch als Grundlage für den Entwurf eines neuar-
tigen Parameterschätzverfahrens mit Vergessen, der vordefinierte obere und untere
Schranken für die Verstärkungsmatrix garantiert. Dieser Algorithmus kombiniert
die Vorteile des exponentiellen Vergessens und Zurücksetzens mit der Eigenwert-
modulation des selektiven Vergessens bei geringem Rechenaufwand.
Anhand dieser Ergebnisse wird ein neues adaptives Regelungskonzept zur Strom-
regelung von Elektromagnetakuatoren entwickelt. Die im Vergleich zur Literatur
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iv Kurzzusammenfassung

zusätzlich eingeführte adaptive Vorsteuerung nutzt die geschätzten Systemparam-
eter und die Modellstruktur, um die Regelgüte weiter zu erhöhen. Die Stabilität
des geschlossenen Regelkreises bestehend aus der Strecke, der Parameteridenti-
fikation und der adaptiven Regelung wird mathematisch rigoros nachgewiesen.
Die vorgeschlagene Lösung unterscheidet sich von bestehenden Ansätzen in der
Literatur durch die adaptive Vorsteuerung und die Art der Parameterschätzung.
Das Regelungskonzept wird mit gleichbleibender Reglerparametrierung auf drei
Elektromagnete unterschiedlicher Bauart mit deutlich verschiedenen Parametern
angewendet. Die experimentellen Ergebnisse zeigen eine hohe Regelgüte und
schnelle Parameterkonvergenz auch bei schlechten Anfangswerten und trotz ge-
ringer Systemanregung. Die experimentellen Ergebnisse werden auch mit zwei
aus der Literatur bekannten Regelungsansätzen verglichen, die beide von dem
vorgeschlagenen Konzept übertroffen werden.
Im Weiteren wird ein numerisch effizientes Regelungskonzept für die Verbesserung
der absoluten Genauigkeit von Industrierobotern entwickelt und experimentell va-
lidiert. Ein modellbasierter Regler, der alle verfügbaren Systemparameter nutzt,
wird mit einer iterativ lernenden Regelung (ILR) kombiniert. Diese ILR wird zur
Kompensation der unbekannten Restfehlerdynamik, die durch elastisches Verhal-
ten und Getriebeeffekte verursacht wird, eingesetzt. Der präsentierte Ansatz kom-
biniert mehrere Vorteile, darunter die Möglichkeit einer kontinuierlichen Durch-
führung von Iterationen, eine einfache Verallgemeinerung der gelernten Daten auf
unterschiedliche Ausführungsgeschwindigkeiten des Roboters und das Lernen aus
Teilversuchen. Die experimentelle Validierung an einem 6-achsigen Industrier-
oboter, bei dem die absolute Position des Endeffektors mit Hilfe eines Laser-
Trackers gemessen wird, zeigt eine Verbesserung der absoluten Genauigkeit um
95 % nach bereits zwei Versuchen. Wenn der Lasertracker entfernt wird, kann die
erreichte Genauigkeit durch die gelernte Vorsteuerung auch ohne weiteres Lernen
von Versuch zu Versuch im Wesentlichen aufrechterhalten werden.



Abstract

Modern control systems leverage intricate mathematical models of the underlying
process. However, the increasing complexity of automation tasks and inevitable
uncertainties require a combination of learning strategies with classical model-
based control to increase the performance of complex control systems further and
enhance their capabilities. This work considers three main topics, exemplifying
the benefits of combining process domain knowledge with online adaptation and
learning methods to achieve the desired system performance. First, a class of pa-
rameter estimation algorithms is analyzed and used in the second step to design
an adaptive control concept. Third, the accuracy of an industrial robot is signif-
icantly increased by compensating complex dynamical effects, which are difficult
or impossible to capture using a first-principles mathematic model, through the
combination of model-based and iterative learning control.
Many variants of the least-squares forgetting parameter estimation algorithms can
be found in the literature. They all have advantages and disadvantages regarding
adaptation rate, robustness against noise, parameter tuning, and computational
effort. This work presents a general forgetting least-squares algorithm, where many
algorithms known from the literature can be recovered by just specifying a general
weighting matrix. This also serves as the basis for designing a novel least-squares
forgetting algorithm that guarantees predefined upper and lower bounds on the
gain matrix. This algorithm combines the benefits of exponential forgetting and
resetting with the eigenvalue modulation of selective forgetting at low computa-
tional costs.
Based on these results, an adaptive two-degrees-of-freedom control algorithm for
controlling the current of solenoids is derived. An additional adaptive feedforward
controller takes advantage of the estimated plant parameters and the model struc-
ture to enhance the achieved tracking performance. The stability of the overall
closed-loop system comprising the plant, the least-squares identification, and the
adaptive control scheme is rigorously proven. The proposed solution differs from
existing approaches by the adaptive feedforward term and how the parameter es-
timation is performed based on system domain knowledge. The control concept
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vi Abstract

is applied with the same controller parametrization to three solenoids with differ-
ent designs and substantially differing parameters. The experimental results show
high tracking performance and fast parameter convergence despite poor initial es-
timates and little excitation. The experimental results are also compared to two
benchmark control designs known from the literature, which are outperformed by
the proposed control concept.
Moreover, a numerically efficient flexible control scheme for improving the absolute
accuracy of industrial robots is presented and experimentally validated. A model-
based controller that leverages all typically available parameters of the robot is
combined with an online path iterative learning controller (ILC). The ILC law
compensates for the unknown residual error dynamics caused by elasticity and
transmission effects. The proposed approach combines several benefits, including
the possibility of a continuous execution of trials, a straightforward generalization
of the learned data to different execution speeds, and learning from partial trials.
After two trials, the experimental validation on a 6-DoF industrial robot with
absolute position measurements by a laser tracker shows a 95 % improvement in
absolute accuracy. When the laser tracker is removed, the achieved accuracy can be
sustained by the learned feedforward controller even without trial-by-trial learning.
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Chapter 1

Introduction

Control systems are crucial in many engineering disciplines, such as aerospace,
robotics, and manufacturing. The main goal of control is to design and stabi-
lize the dynamics of a closed-loop system, regulate the variables of interest to
follow desired reference signals, suppress disturbances and parameter variations,
and adapt behavior of the system to changing environmental conditions. Model-
based control strategies have pushed the performance of many control applications
and facilitated increasingly complex tasks by leveraging simulations and advanced
(nonlinear) control design techniques. However, the ever-increasing complexity
of the tasks, the inevitable model uncertainties, and the demanding performance
requirements for a product portfolio with an extensive range of variants challenge
a pure model-based control approach. These challenges can be overcome by com-
bining model-based control with learning control strategies.
Adaptive control and iterative learning control are two strategies that enabled
significant advancements in control systems in a various industrial applications.
These strategies are based on the idea that the control system can learn from past
data and adapt to changes in the environment and the system itself, allowing it to
improve the control performance over time. This thesis focuses on selected online
learning and adaptation strategies that efficiently use the data measured during
operation to improve the achieved control performance.
Adaptive control is a control strategy that deals with systems whose model parame-
ters are uncertain, time-varying, or even unknown. The main idea behind adaptive
control is to estimate the system or control parameters online and use these esti-
mated parameters to adjust the control law. This approach aims to achieve a high
control performance despite the presence of uncertain or even unknown parameters
in the system.
Iterative learning control, is a control strategy where repeated trials of a task are
executed, and the gathered data is used to improve the control performance of the
control system. Here, the main idea is to leverage the encountered control error of
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2 1 Introduction

Figure 1.1: Continuously variable transmission with solenoid valves (three in the
middle section, one to the right), sensor units, and transmission control unit (bot-
tom). Picture courtesy Robert Bosch GmbH.

a trial to update the reference signal for the following trials. This approach allows
the control system to increase the precision of the task trial-by-trial. Further, it
can compensate for repetitive uncertainties and effects that are difficult to model
and thus handle with model-based control strategies.
Throughout this thesis, the proposed control concepts will be applied to two ex-
amples of industrial applications to validate their efficacy and illustrate their ad-
vantages and limitations. Additionally, the thesis will provide a thorough math-
ematical analysis to support the proposed methods and results. The adaptive
control methods are demonstrated and evaluated on solenoid actuators with un-
known parameters. The presented iterative learning concept is demonstrated on
an industrial robot performing high-accuracy repetitive motions.
Electromagnetic actuators, particularly solenoid valves, are critical components in
hydraulic systems and are widespread across various fields, such as the automotive
sector, excavators, heavy-duty vehicles, air- and spacecraft, industrial equipment,
and factories. Figure 1.1 depicts a continuously variable transmission featuring
four solenoid valves, sensors, and the control unit. Solenoid valves are commonly
controlled by a dedicated electronic control unit (ECU). The controller parameters
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Figure 1.2: Rendering of the considered industrial robot.

of the ECU have to be tuned by an expert to the nominal specification. An adap-
tive control approach can potentially supersede this individual tuning procedure,
requiring only a reference specification and online learning from measurements.
This approach also works for significant deviations from nominal product specifi-
cations due to production tolerances and uncertain environmental conditions.
An adaptive controller can achieve the desired control performance even for mul-
tiple solenoids of different designs. Furthermore, by considering the estimated
parameters, useful information about the state of the solenoid can be obtained
that can be used for predictive maintenance of critical components. This thesis
discusses some results on the achievable performance of controlling a solenoid by
adaptive control.
Industrial robots like the one shown in Figure 1.2 are essential for many manufac-
turing and production processes. While in the past these robots have been used
mainly for pick and place or product handling tasks, industrial robots have evolved
to perform complex tasks with increasingly demanding requirements. In state-
of-the-art applications, industrial robots are employed to perform high-accuracy
assembly, high-speed welding, glue or sealant dispensing, and many other chal-
lenging tasks. These applications impose increasingly stringent requirements on
the execution and contraints robots under which robots operate.
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Robots are often employed in tasks that are executed repeatedly. Thus, learning
from previous task trials can compensate for misalignment, tolerances, and dy-
namical errors. This is the main idea of iterative learning control, which can be
combined with well-known model-based control concepts to increase the achiev-
able control accuracy. A practical challenge for many iterative learning control
approaches is that data has to be processed for a complete trial in a batch-wise
operation. In this thesis, the focus is on learning approaches that can be computed
online and allow for learning from trials with variations of the execution speed.

1.1 Aim of this Thesis
This work aims to investigate two industrial applications of combining online learn-
ing control with model-based methods, develop novel approaches to improve the
system performance, and experimentally validate the results. A novel adaptive
control concept for solenoids is developed in the first two chapters. This concept
consists of a computationally efficient algorithm for adaptation and control, which
allows the control of different solenoids with identical tuning parameters. By en-
suring that the desired control performance criteria are met for multiple solenoids
of various designs, the deployment of solenoids is significantly facilitated.
First, the identification of parameters through least-squares (LS) estimation al-
gorithms is considered. The main objective is to investigate the performance
and trade-off involved with different forms of forgetting algorithms in the context
of continuous-time indirect adaptive control. The analyzed properties of various
methods known from the literature and the developed approach are validated in
simulations.
Based on these parameter estimation strategies, an adaptive controller with a
feedforward part that can achieve the same high control performance with iden-
tical tuning parameters for different solenoid types is designed. This approach is
thoroughly analyzed, and the stability of the closed-loop system is proven. The
modular indirect adaptive control concept investigated in this thesis is compatible
with a class of recursive gradient and LS adaptation algorithms. Three solenoids of
different types are used in an experimental setup to show the efficacy and flexibility
of the proposed approach.
The last chapter investigates the repetitive motion of an industrial 6-axis robot.
This investigation aims to improve the absolute accuracy of the robot traversing
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a known path repeatedly. A learning-based approach that allows for a flexible
handling of repetitive tasks is developed. Here, a data-driven learning control
approach compensates for errors caused by uncertainties and unknown dynamics,
such as joint elasticities, transmission and gearing errors, and friction effects. A
particular emphasis lies in the easy implementation of this learning method. The
algorithm facilitates learning from trials with variations in the execution speed.
The results are validated on an industrial robot using laser-tracker measurements.

1.2 Main Contributions
In Chapter 2, least-squares (LS) identification methods known from the literature
are generalized to a general forgetting LS algorithm. A proof of convergence and
the relevant properties for adaptive control are derived, revealing easy-to-check
conditions that guarantee these properties for a broad class of algorithms. This
allows the design of problem-tailored algorithms simply by specifying a general
forgetting matrix. A novel, efficient LS algorithm is proposed, combining the
benefits of other existing approaches. This algorithm is specifically designed to
guarantee a predefined upper and lower bound of the gain matrix, easy tuning,
and computational efficiency.
Chapter 3 presents a flexible, high-performance control method with low compu-
tational costs for solenoid currents. The main contributions of this chapter are
threefold: First, an indirect adaptive control strategy known from the literature
is reformulated to account for practical problems and enhance parameter conver-
gence. Second, the adaptive control strategy is extended by an adaptive feed-
forward controller, and the stability of the overall closed-loop system is proven.
Third, an experimental validation underlining the practical value of the proposed
control scheme is demonstrated by comparing the performance with two bench-
mark controllers from the literature.
In Chapter 4, a simple, efficient, and flexible learning control scheme for the abso-
lute accuracy of an industrial robot is presented. The proposed iterative learning
control (ILC) law can supplement the performance of existing control strategies
with little requirements on the computational hardware and control structure. In
contrast to many prior investigations, in this chapter, the focus lies on the ab-
solute accuracy of the robot, which is measured using a laser tracker. Since the
laser tracker may only be available for an initial learning phase, the efficacy of



6 1 Introduction

the learned ILC signals as feedforward trajectories is investigated. The presented
approach features a high flexibility and ease of practical application, as some of
the classical requirements for the ILC are softened. All calculations can be done
recursively, and a continuous learning phase is possible even with variations in
the reference trajectory speed. The straightforward learning approach does not
require any intervention between trials and achieves high accuracy for a complex
trajectory on an industrial robot.

1.3 Outline
This thesis is organized into three main chapters.
In Chapter 2 the estimation of uncertain or unkown parameters using LS algo-
rithms is analyzed, presenting the fundamental concepts, a comparison with meth-
ods from the literature, and the derviation of a novel algorithm. The presented
results are supported by simulation, which highlights the properties of the pre-
sented methods.
In Chapter 3, the adaptive control problem is presented. First, the adapta-
tion framework and the necessary filtering are discussed, and the two-degrees-
of-freedom adaptive control law is derived. Next, the main stability theorems
and their proofs are summarized, and two benchmark control approaches are in-
troduced. Finally, the proposed control scheme is experimentally validated and
compared with the benchmark controllers.
In Chapter 4, the ILC problem is formulated, a novel algorithm is developed and
the experimental resutls are presented for a 6-axis industrial robot.
Finally, in Chapter 5, the main results of this work are concluded, and directions
for future research are presented.



Chapter 2

Recursive Least-Squares
Identification

Designing a system identification scheme implies a trade-off between adaptation
rate and robustness against noise. While quick adaptation is required for fast
convergence, robustness can only be achieved by moderate reactions to possibly
faulty data. This chapter aims to give a general analysis of the adaptivity of recur-
sive least-squares algorithms for continuous-time adaptive control. The analysis
reveals the main aspects of algorithm design and tuning and facilitates the design
of problem-tailored solutions. Furthermore, a novel algorithm is proposed, which
combines the benefits of two approaches known from the literature. Essential parts
of this chapter are identical to the author’s publication [1].

2.1 Literature Review
It is well known that gradient algorithms converge proportional to the inverse of
the time. Second-order least-squares algorithms achieve exponential convergence
to the parameters under persistently exciting conditions, see, e.g., [2, 3, 4]. This
benefit in convergence comes at the cost of computational complexity. In least-
squares methods, the gradient and the Hessian matrix of the quadratic cost func-
tion must be calculated or approximated. The necessary forgetting mechanisms
require additional computations and, thus, need to be computationally efficient.
The excellent robustness of pure least-squares algorithms results from the estima-
tion gain converging to zero. This decay slows down the parameter convergence,
which makes pure least-squares algorithms unsuitable for adaptive control. Expo-
nential forgetting least-squares algorithms establish lower bounds for the adapta-
tion gain, resulting in exponential parameter convergence under sufficient excita-
tion. However, exponential forgetting may exhibit an unbounded growth of the
gain matrix. Therefore, the estimator becomes extremely sensitive to noise and
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susceptible to numerical and computational errors. In contrast, pure least-squares
algorithms only guarantee parameter convergence. These arguments motivate the
design of an algorithm with an upper and lower bounded gain matrix.
Albeit being a well-studied area, least-squares algorithms continue to be the sub-
ject of scientific research in many applications, such as parameter identification
[5, 6, 7], set-membership filtering [8], as well as recent theoretical advances [9, 10].
The variety of identification methods in the literature suggests no general solution
to the problem [11]. It is, therefore, important to incorporate as much problem
domain-specific information as possible into the identification algorithm. Many
recent examples exist of application-driven approaches [12, 13, 14, 15, 16, 17]. For
instance, lp-optimization using iterative reweighted least-squares concepts is widely
used in signal processing and filtering [18]. The general forgetting convergence
analysis provided in this thesis is essential for the design of tailored algorithms.
Various modifications of the exponential forgetting scheme were proposed in the
literature to limit the gain matrix of a least-squares estimator with forgetting.
Early methods restrict the growth of the gain matrix by their trace or norm,
which leads to noncontinuous gain trajectories [19]. Other approaches provide a
bounded estimator gain. However, it is not trivial to specify the bounds explicitly
[20]. An algorithm with a time-varying forgetting factor that upholds a specified
upper bound on the gain can also be found in the literature [21].
A Bayesian perspective on the identification problem reveals that a determinis-
tic forgetting scheme corresponds to a stochastic model of the parameter noise
[11, 22]. Identification algorithms derived from of a stochastic parameter model
are typically difficult to tune. Furthermore, viewed as a Gaussian process, the
least-squares identification approach can also be interpreted as a machine learning
algorithm. In this context, a forgetting scheme can be associated with the kernel
of a kernel learning machine [23, 10]. Similarly, in machine learning, small data
batches have been successfully employed in different problems, and many recent
approaches use so-called mini-batch updates [24, 25]. The learning process for a
batch size of one can be seen as recursive gradient descent updates, which has
sparked further interest in recursive optimization techniques. Besides these ap-
proaches, the forgetting algorithm can be interpreted as a regularization of the
least-squares problem, see, e.g., [26].
In general, measurement information is not uniformly distributed over all param-
eters. This results in unlimited growth of some eigenvalues of the gain matrix
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and can lead to parameter drift. The main idea of directional forgetting is that
old information should only be discarded for parameter directions for which new
data are available. The convergence of a subclass of directional forgetting algo-
rithms was analyzed, and the drawbacks of such methods were discussed [27].
The exponential convergence of recursive least-squares with forgetting factor for
multiple-output systems were recently analyzed in [28]. Another active topic is
the robustness of least-squares algorithms, see, e.g., [29, 30].

2.2 Contribution
In this chapter, a continuous-time general forgetting least-squares (GLS) algorithm
is derived. This algorithm emerges as the solution to an optimization problem in
which the original least-squares cost functional is supplemented by an additional
weighted parameter variation component. Exponential forgetting and many other
algorithms from the literature are shown to be special cases of this generic type.
Additionally, conditions are derived for which a general least-squares forgetting al-
gorithm has the convergence properties required for continuous-time adaptive con-
trol stability proofs. These conditions and proofs cover a wide range of continuous-
time forgetting algorithms. Thus, they allow the designer to rely on ad-hoc mod-
ifications incorporating prior domain knowledge of the problem at hand while
retaining a guarantee for the required convergence properties. This step is the
continuous-time equivalent of a discrete-time analysis that was started by [31] in
a very general context and applied by [32]. More recently, the relation of known
least-squares approaches was investigated in [10, 33]. In [29], a discrete-time ver-
sion of the work in this text was presented, and some results on the robustness of
the algorithms were derived.
Furthermore, a matrix forgetting algorithm, which is well suited for continuous-
time adaptive control, is presented. The algorithm allows direct specification of
an upper and lower bound of the gain matrix and does not require an eigenvalue
decomposition [31]. This bounded gain least-squares (BGLS) algorithm combines
the benefits of earlier schemes while being computationally efficient.
The main contributions of this chapter are twofold: First, the formulation of the
GLS, its convergence proof, and a proof of the relevant properties for adaptive
control are derived. It allows the design of problem-tailored algorithms solely by
specifying a general forgetting matrix. Second, the novel efficient BGLS algorithm,
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which combines the benefits of other existing approaches, is proposed. This algo-
rithm is specifically designed to guarantee a predefined upper and lower bound of
the gain matrix, easy tuning, and computational efficiency.

2.3 Notation

The derivative of a variable θ with respect to the time t is denoted by θ̇. For
the Euclidean norm of a vector and the induced 2-norm of a matrix the symbol
�·� is used. Moreover, | · | denotes the absolute value of a scalar. Furthermore, I
denotes the identity matrix of appropriate dimension. For symmetric matrices A
and B, the symbols A > B and (A ≥ B) are used if and only if A − B is positive
(semi-) definite. The space of bounded functions is denoted by L∞, and the space
of quadratically-integrable functions by L2.

2.4 Problem Statement

In this chapter, the linear regression equation

z = ϕTθ∗ (2.1)

is considered, where z ∈ R denotes the observed output, θ∗ ∈ Rn is the true
parameter vector, and ϕ ∈ Rn is the regression vector of measurements. Many
nonlinear systems can be formulated in this form, see, e.g., [34, p. 316]. The goal
of this section is to calculate a continuous-time least-squares estimate θ(t) of θ∗ at
time t given the measured output z(τ) and regression vector ϕ(τ) for 0 ≤ τ ≤ t.
Without loss of generality, the regression vector ϕ is assumed to be bounded by
1, i.e.,

�ϕ� ≤ 1 . (2.2)

Practically, this is achieved by scaling the regression equation (2.1), e.g., by
m = 1 + ϕTϕ. Details on the scaling procedure can be found in adaptive-control
textbooks, e.g., [19].
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2.5 General Forgetting Least-Squares Algorithm

In Section 2.5.1, the GLS algorithm is proposed, which is a continuous-time re-
cursive least-squares algorithm with general forgetting. Additionally, an interpre-
tation of the algorithm as the solution to a minimization problem is given and
discussed. In Section 2.5.2, the convergence properties of this algorithm for a gen-
eral forgetting scheme are analyzed. A large number of least-squares algorithms
known from the literature can be recovered by this algorithm, which will be thor-
oughly discussed in Section 2.5.4.

2.5.1 Algorithm

The general forgetting least-squares algorithm has the form

θ̇(t) = P(t)ϕ(t)�(t) (2.3a)
Ṗ(t) = −P(t)

�
ϕ(t)ϕT(t)− F(t)

�
P(t) , (2.3b)

with the parameter estimate vector θ(t), a positive definite gain matrix P(t) and
the initial conditions θ(0) = θ0 and P(0) = P0 > 0, respectively.1 Here, the
estimation error is

�(t) = z(t)−ϕT(t)θ(t) , (2.4)

which represents the difference of the measured output z(t) and the predicted
output of (2.1). The matrix F(t) is a positive semidefinite forgetting matrix, which
facilitates the design and interpretation of least-squares forgetting schemes. The
significance of this matrix will be explained in more detail later in this section.

Remark 1. It can be shown that the GLS algorithm (2.3) is the solution of the
generalized continuous-time least-squares problem

θ(t) = arg min
θ(t)

J(θ(t)) , (2.5)

1It can be shown that P(t) is positive definite for all times t > 0 if P0 is chosen to be positive
definite.
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with the augmented cost functional

J(θ(t)) =

� t

0

�
z(τ)−ϕT(τ)θ(t)

�2

+
�
θ(t)− θ0

�T P−1
0

�
θ(t)− θ0

�
(2.6)

− �
θ(t)− θ(τ)

�T F(τ)
�
θ(t)− θ(τ)

�
dτ .

The forgetting matrix F(τ) ≥ 0 rewards the difference between the estimate θ(t)

at the time t and the estimates θ(τ) at past times τ ≤ t. Thus, using a forgetting
matrix favours a variation of the estimates. In particular, for

F(τ) = β P−1(τ) , (2.7)

the least-squares functional (2.6) leads to the well-known continuous-time recursive
least-squares algorithm with exponential forgetting, see also (2.3).

2.5.2 Convergence Analysis
This section summarizes the main convergence results of the GLS algorithm (2.3)
with a general positive semidefinite forgetting matrix F(t). The analysis provides
convergence properties for the parameter estimation equation (2.3a) with the esti-
mation gain matrix (2.3b). Hereafter, the dependence of the variables on the time
t is omitted to improve readability.

Theorem 1. The GLS algorithm (2.3) guarantees that

(i.) �, θ̇,θ ∈ L∞

(ii.) �, θ̇ ∈ L2 ,

if

• the general forgetting matrix is positive semidefinite, i.e., F ≥ 0,

• the gain matrix P is upper bounded, i.e., �P� ≤ Pmax, and

• the ideal parameter vector θ∗ is constant.

Proof. In the following, we consider the Lyapunov-like function

V =
1

2
θ̃TRθ̃ , (2.8)
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with the definition of the inverse gain matrix

R = P−1 (2.9)

and the parameter error [19] defined by θ̃ = θ − θ∗. Using the identity

d
dt (PR) = 0 = ṖR + PṘ , (2.10)

it follows from (2.3) that
Ṙ = ϕϕT − F . (2.11)

The time derivative of V using (2.11) reads as

V̇ = θ̃TR ˙̃θ +
1

2
θ̃T �

ϕϕT − F
�
θ̃ . (2.12)

Because the true parameter vector θ∗ is assumed to be constant,

V̇ = θ̃Tϕ�+
1

2

�
(θ̃Tϕ)2 − θ̃TFθ̃

�
(2.13)

can be found by using (2.3a). Equations (2.1) and (2.4) yield

� = −θ̃Tϕ (2.14)

and thus equation (2.13) simplifies to

V̇ =
1

2

�
−θ̃TFθ̃ − �2

�
. (2.15)

Since F is positive semidefinite, V̇ ≤ −�2/2 ≤ 0 for all times t. Hence, V(t) ≤ V(0)
for t > 0. If V(0) is bounded, it follows that V ∈ L∞. Moreover,� ∞

0

�2(τ) dτ ≤ −2

� ∞

0

V̇(τ) dτ = 2
�V(0)− V(∞)

�
(2.16)

proves that � ∈ L2 if the initial conditions of (2.3) are chosen such that θ̃(0) ∈ L∞
and P(0) ∈ L∞. Because �P� ≤ Pmax ensures that 0 < P−1

maxI ≤ R, it follows
from V ∈ L∞ and (2.8) that θ̃,θ ∈ L∞. Furthermore, since the regression vector
and the parameter error are bounded, cf. (2.2), according to (2.14), the estimation



14 2 Recursive Least-Squares Identification

error is bounded, i.e., � ∈ L∞. From (2.3a) and the Cauchy-Schwarz inequality, it
follows that

�θ̇� ≤ �P� �ϕ� |�| ≤ Pmax�ϕ� |�| . (2.17)

Since ϕ ∈ L∞ according to (2.2) and � ∈ L∞
�L2, also θ̇ ∈ L∞

�L2 holds
true.

Remark 2. Theorem 1 can be used for algorithms without upper bound Pmax on
the gain matrix P by replacing (2.3b) with

Ṗ =

−P
�
ϕϕT − F

�
P if �P� ≤ Pmax

−PϕϕTP otherwise.
(2.18)

It is straightforward to show that, in this case, the derivative of the function V
reads as

V̇ =

−1
2
�2 − 1

2
θ̃TFθ̃ if �P� ≤ Pmax

−1
2
�2 otherwise .

(2.19)

This modification can be regarded as switching to pure least-squares, whenever the
upper bound Pmax of the gain matrix P is reached.

Remark 3. Some special cases of Theorem 1 can be regarded as Ricatti equations,
whose stability was shown in the literature, see, e.g., [35]. However, the generalized
approach with F ≥ 0 contains various possible forgetting methods not covered by
these proofs, e.g., approaches of the form (2.18) and forgetting matrices depending
on powers of P greater than two.

The properties guaranteed in Theorem 1 are those typically required by indirect
adaptive control schemes, see also Chapter 3. Therefore, any algorithm that sat-
isfies the requirements of Theorem 1 can be integrated into these schemes.
The well-known discrete-time LS algorithm is unbiased only under the assumption
that the noise is independent of the measurement distribution, see, e.g., [36, p.
205]. However, this result holds only for well-conditioned problems, where the
rank of the measurement vector equals the number of parameters.
In order to additionally ensure exponential convergence to the ideal parameters for
recursive LS algorithms, further assumptions must be satisfied. The gain matrix
P needs to be bounded from below and above. Moreover, the regression vector ϕ

has to be persistently exciting, see Definition 1 in Appendix Section A.1, i.e., the
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measurement signal must contain enough information to estimate all parameters.
Intuitively, the signal has to excite all parameters within a finite timespan T0 with
nonzero bounded energy.

Theorem 2. The GLS algorithm guarantees that θ converges exponentially to θ∗,
if the following conditions are satisfied:

• the general forgetting matrix is positive semidefinite, i.e., F ≥ 0,

• the gain matrix P is lower and upper bounded, i.e., 0 < Pmin ≤ �P� ≤ Pmax,

• the true parameter vector θ∗ is constant, and

• ϕ ∈ L∞ and ϕ is persistently exciting.

The proof of Theorem 2 is given in Appendix A.2.

2.5.3 Desired Properties

It is desirable for continuous-time adaptive control applications [19] that the fol-
lowing properties of the GLS algorithm are satisfied:

1. bounded error, parameter estimates and gain matrix �,θ, θ̇,P ∈ L∞

2. quadratic integrable estimation error and parameter variation �, θ̇ ∈ L2

3. exponential parameter convergence under sufficient excitation, i.e., θ con-
verges exponentially to θ∗ if ϕ is persistently exciting

4. upper bounded gain matrix, P ≤ PmaxI for a prespecified bound Pmax

5. lower bounded gain matrix, P ≥ PminI for a prespecified bound Pmin

6. exponential resetting, i.e., eigenvalues of unexcited directions tend to Pmax

7. small number of tuning parameters

8. low computational effort.
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Different algorithms known from the literature cover all of these specifications,
but to the best of the authors’ knowledge no single algorithm features all these
properties together. Specifically, the selective forgetting algorithm [31] guarantees
many of these benefits, but at high computational costs. Therefore, in Section 2.6,
a new algorithm called bounded gain least-squares algorithm (BGLS) is proposed
by specifically designing the general forgetting matrix F in the GLS algorithm (2.3).
This algorithm combines the benefits of exponential forgetting and resetting with
smooth bounds on the gain matrix at low computational costs.

2.5.4 Relation of GLS to Existing LS Algorithms

This section shows that well-known least-squares forgetting algorithms are special
cases of the GLS algorithm. To this end, only the general forgetting matrix F has
to be specified accordingly. Moreover, the resulting properties of these algorithms
will be discussed.

Modifications

A simple approach to satisfy the conditions of Theorem 1 is the modified LS
method. Here, the forgetting matrix is chosen as

F =

 βR if �P� ≤ Pmax

0 otherwise ,
(2.20)

which upper bounds P by switching between a pure LS and an exponential for-
getting LS algorithm. It is an example of an algorithm of the type (2.18) with
exponential forgetting. However, forgetting is applied equally in all directions, and
the gain matrix P does not change smoothly. Furthermore, there is no lower bound
on the gain matrix P such that even good excitation may lead to slow adaptation.

Time-varying Forgetting Factor

Some schemes are based on a time-varying forgetting factor [37, 21]. There, the
value of a scalar forgetting factor β(t) can be varied such that the gain matrix P
remains bounded. An example of such an algorithm is the Bounded-Gain Forget-
ting algorithm [21]. This exponential forgetting scheme uses the forgetting matrix
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F = β(t)R . (2.21)

The corresponding forgetting factor is given by

β(t) = β0

�
1− �P(t)�

Pmax

�
, (2.22)

where β0 > 0 and Pmax > 0 are the maximum forgetting factor and the desired
upper bound on P. This algorithm guarantees that �P(t)� ≤ Pmax and exhibits
exponential convergence when the regression vector ϕ is persistently exciting [21].
However, a lower bound on the gain matrix P cannot be specified.

Directional Forgetting

Intuitively, forgetting should be higher in directions where new information is
available and lower in directions where new data is lacking. This concept is known
as directional forgetting [27, 38, 37, 31, 20]. Early works on directional forgetting
[38, 37] use a Bayesian viewpoint to suppress obsolete information. Although these
algorithms bound the gain from above, slow adaptation may occur since they are
not lower-bounded [27].

Information Matrix Decomposition

A directional algorithm can also be achieved by decomposing the information
matrix [27]. There, the forgetting matrix is a projection of the information matrix
onto the regression vector with exponential forgetting

F = βRϕϕTRT/(ϕTRϕ) . (2.23)

This algorithm does not require substantial computational effort and was shown
to have an upper and lower bounded gain matrix. However, these bounds cannot
be specified [31] or calculated [20]. An inherent drawback of the algorithm is
that although the information in some directions may be old, the gain in these
directions does not increase.
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Resetting

In contrast, increasing the gain when data is old is known as (exponential) reset-
ting, which is a key property of the exponential forgetting and resetting algorithm
[20]. This algorithm guarantees that the gain matrix P is bounded from both above
and below. However, these bounds cannot be directly set. This algorithm has to
be tuned by four interdependent design variables. The corresponding forgetting
matrix reads as

F = −γI + βR + δR2 , (2.24)

with the design constants γ, β, δ and an additional scaling αϕϕT of the measure-
ments.

Selective Forgetting

The selective forgetting LS algorithm [31] is based on an eigenvalue decomposition
of the gain matrix. With this approach, the eigenvalues can be explicitly bounded
from above and below. The main drawback of this approach is the high computa-
tional effort associated with performing an eigenvalue decomposition at each time
step.

Multiple Forgetting

Many recent papers consider parameters with different rates of change, such as
[39]. For this type of problem, individual forgetting factors can be employed for
each parameter. Further methods [10] can be represented by the GLS algorithm
using

F = ΛRΛ , (2.25)

where the exponential forgetting factor matrix Λ ≥ 0 contains forgetting factors
for each parameter. This matrix can be interpreted as a kernel matrix in the
context of machine learning [23].

2.6 Bounded Gain Least-Squares Algorithm
In this section, a novel least-squares forgetting algorithm is presented, which com-
bines the benefits of exponential resetting with smooth bounds on the gain matrix.
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Furthermore, the algorithm is easy to tune and allows for the explicit specifica-
tion of the desired bounds on the gain matrix. The main idea is to combine the
favorable properties of exponential forgetting and resetting with the eigenvalue
modulation of selective forgetting. Since no eigenvalue decomposition is required
for online computation, the calculation costs are kept low.

The desired properties 1–3 from Section 2.5.3 follow from Theorem 1 and The-
orem 2 if the general forgetting matrix F is positive semidefinite and the gain
matrix P is bounded from below and above. In order to ensure this, a quadratic
polynomial in R = P−1 is used as the forgetting matrix

F = αR2 + βR − γI , (2.26)

with positive parameters α, β, and γ, similar to the discrete-time algorithm [20].
A quadratic polynomial is sufficient to guarantee an upper and lower bound on
the gain matrix, and requries the minimum number of tuning parameters. With
a positive definite initial condition P(0) = P0, the update law (2.3b) with (2.26)
reads as

Ṗ = −PϕϕTP + αI + βP − γP2 (2.27)

and P remains symmetric for all times t ≥ 0.

Since P will be forced to be positive definite for all times t ≥ 0, there is a well-
defined eigenvalue decomposition

P(t) =
n%

i=1

µi(t)vi(t)vT
i (t) (2.28)

for all times t ≥ 0. Here, µi(t) is the i-th eigenvalue of the matrix P(t), and vi(t)

is its corresponding eigenvector of unit length, i.e., vT
i (t)vj(t) = δi,j with δi,j = 1

for i = j and δi,j = 0 otherwise, at the time t.

The positive parameters α, β, and γ will be chosen such that the eigenvalues µi(t),
i = 1, . . . , n of P(t) satisfy the condition

µmin ≤ inf
t
µi(t) ≤ µi(t) ≤ sup

t
µi(t) ≤ µmax (2.29)

for all times t ≥ 0 and chosen values µmin > 0 and µmax > 0. Clearly, if (2.29)
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holds true, the quadratic form xT(t)P(t)x(t) is bounded from below and above

µmin�x(t)�2 ≤ xT(t)P(t)x(t) ≤ µmax�x(t)�2 (2.30)

for all times t ≥ 0 and any vector x(t). Moreover, P(t) is bounded by the spectral
matrix norm satisfying the conditions for Theorem 1 and Theorem 2. In particular,
µmin ≤ �P�2 ≤ µmax holds.

First, the condition for the upper bound µmax is formulated. For the orthonormal
set of eigenvectors vi, the following relations hold

I =
n%

i=1

vi(t)vT
i (t), P2(t) =

n%
i=1

µ2
i (t)vi(t)vT

i (t) . (2.31)

Substitution of (2.28) and (2.31) into (2.27) yields

Ṗ ≤
n%

i=1

f(µi)vivT
i , (2.32)

with
f(µi) = α + βµi − γµ2

i . (2.33)

Since the forgetting matrix F(t) from (2.26) must be positive semidefinite, the
relation f(µi) ≥ 0 must hold for all times t ≥ 0. Thus, whenever an eigenvalue
µi(t) tends to µmax, it must not further increase. This condition is guaranteed if

α + βµmax − γµ2
max = 0 . (2.34)

Analogously, assumption (2.2) is exploited for the lower bound, which leads to
ϕϕT ≤ I, and thus (2.27) can be written in the form

Ṗ ≥ −P2 + PFP = αI + βP − (1 + γ)P2 . (2.35)

Substitution of (2.28) and (2.31) into (2.35) yields

Ṗ ≥
n%

i=1

�
α + βµi − (1 + γ)µ2

i

�
vivT

i . (2.36)

If an eigenvalue µi(t) reaches the lower bound µmin, it must not further decrease.
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This can be guaranteed if the condition

α + βµmin − (1 + γ)µ2
min = 0 (2.37)

or equivalently f(µmin) = µ2
min holds. Figure 2.1 shows the function (2.33) satisfy-

ing condition (2.34) and (2.37). The conditions for the upper bound (2.34) and the

0 µmin µmax
0

µ2
min

µi

f
(µ

i)

Figure 2.1: Forgetting function of the eigenvalues of the gain matrix P.

lower bound (2.37) on the gain matrix P determine two of the three parameters α,
β, and γ of (2.27). A third condition is introduced to specify the third parameter
using the upper and lower bounds on the gain matrix µmin and µmax. Here, we
choose that exponential forgetting is the dominant forgetting term, i.e.,

βR ≥ F . (2.38)

Hence,
α
1

µ2
i

− γ ≤ 0 , (2.39)

for all µi, and thus
α− γµ2

min = 0 . (2.40)

The desired properties of the gain matrix P were formulated as algebraic equations
of the parameters α, β, and γ. The condition

µminI ≤ P ≤ µmaxI (2.41)

and (2.38) are thus satisfied for a set of parameters α, β, and γ that fulfill (2.34),
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(2.37), and (2.40). These equations have the unique solution

α =
µmax µ

3
min

µ2
max − µ2

min
(2.42a)

β = µmin (2.42b)

γ =
µmin µmax

µ2
max − µ2

min
, (2.42c)

with the desired upper bound µmax and lower bound µmin on the eigenvalues of the
gain matrix P, cf. properties 4) and 5) of Section 2.5.3, respectively.

Remark 4. Note that enforcing (2.38) causes the lower bound on the gain µmin to
be equivalent to the least-squares exponential forgetting factor β, see (2.42b).

Remark 5. It can be shown that the cost functional (2.6) is convex and has a
unique solution if (2.38) is satisfied.

The bounded gain least-squares (BGLS) algorithm can be summarized as follows

θ̇ = Pϕ� (2.43a)
Ṗ = −PϕϕTP + αI + βP − γP2 , (2.43b)

with appropriate initial conditions θ(0) = θ0 and P(0) = P0 > 0 and parameters
α, β, and γ from (2.42).
By construction, this estimator features all the desired properties mentioned in
Section 2.5.3. The computational effort is kept low since the matrix differential
equation (2.43b) is symmetric and can be calculated efficiently and no eigenvalue
decomposition is needed.

2.7 Simulation Results
In this section, a simple numerical demonstration example is presented to highlight
the practical benefits of the theoretical properties of the BGLS algorithm presented
in the previous section. Simulations with higher-order systems and different noise
and input scenarios were investigated and similar results were attained. Further-
more, the tuning parameters of the algorithm are explained in more detail. In the
following, the BGLS algorithm is compared to two classical LS approaches from
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the literature. The simulation scenario includes output measurements corrupted
by measurement noise, switching parameters, and periods of low excitation.
In this example, the linear time-invariant system

y =
b

s+ a
u (2.44)

is investigated, where u and y are the system input and output, respectively, and
s denotes the Laplace variable. The derivative signal sy is realized by filtering
the input and output of the system (2.44), denoted with a subscript f , using a
first-order linear filter with the pole at −2.5 rad/s. The regression equation of the
form (2.1) is obtained from (2.44) as

syf =
�
uf −yf

� �b
a

�
= ϕ̃Tθ∗ , (2.45)

and the equation is normalized by m = 1 + ϕ̃Tϕ̃. This yields the normalized
quantities ϕ = ϕ̃/m and z = syf/m. The ideal parameters are a = 1.5 and
b = 0.5 and are switched to a = 2 and b = 0.75 after 5 s. All simulations are
initialized with θ(0) = [1 1]T and P(0) = 100 I.
Figure 2.2 shows the time evolution of the system output y and the input u for a
series of input steps together with the corresponding filtered signals yf and uf , as
well as ẏf . White Gaussian noise with a standard deviation of 0.03 was added to
the output to simulate measurement noise.

Upper Bound on the Gain Matrix

The first simulation scenario shows the effects of the upper bound on the gain
matrix compared to the classical exponential forgetting least-squares algorithm.
Figure 2.3 shows the estimated parameters for the BGLS algorithm (2.43) with
two parameter sets calculated using (2.42). Simulations 1 and 2 were carried
out with the lower bound µmin,sim1 = µmin,sim2 = 0.6. The upper bound on the
eigenvalues of the gain matrix P for simulation 1 and 2 is µmax,sim1 = 100 and
µmax,sim2 = 1000, respectively. Simulation 3 was conducted using the classical
exponential least-squares algorithm according to (2.3) with (2.7). The forgetting
factor was chosen β = 0.6 due to the analogy (2.42b).
Note that in steady-state, the system is not sufficiently excited. In this case, only
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Figure 2.2: System output and input and their filtered time evolutions denoted by
the index f .
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Figure 2.3: Estimated parameters and ideal values.

the ratio a/b is identifiable, while their individual values cannot be inferred from
measurements. Therefore, the parameters drift due to the measurement noise, and
the quotient a/b converges to the ideal value.
The estimates of all three simulations quickly converge to the ideal values for each
input step. This can be explained by the exponential forgetting, which leads to
large eigenvalues of the gain matrix, see Figure 2.4. From this figure, it can be
seen that the BGLS algorithm ensures that the eigenvalues of the gain matrix P
comply with their upper bounds. A smaller bound leads to slower adaptation.
However, the estimates are more stable in phases of low excitation. The exponen-
tial forgetting LS algorithm does not provide bounds on the gain matrix, leading to
exponential unbounded growth of the gain with insufficient excitation, also known
as blow-up in the literature. The high gain leads to a rapid drift of the parameters
during periods of low excitation.
For the BGLS algorithm, the parameters show only little drift even after a sudden
change in the system parameters at 5 s without sufficient excitation. This behavior
is a direct consequence of the upper bound on the gain matrix µmax. Between
5 s and 25 s, the gain matrix increases in the direction of one eigenvector due
to the lack of excitation. This effect leads to increased noise sensitivity and a



26 2 Recursive Least-Squares Identification

0 5 10 15 20 25 30
0

500

1,000

time in s

ei
g(

P)
µi,sim1
µi,sim2
µi,sim3
µmax,sim1
µmax,sim2

Figure 2.4: Eigenvalues of the gain matrix P.

drift in the estimated parameters. The tuning of simulation 1 allows for less
drift due to the smaller upper bound µmax on the gain matrix. Under sufficient
excitation, the parameters quickly converge to the ideal values even after changes
in the system parameters, e.g., at 5 s. The corresponding decrease in the gain
matrix is called resetting. The parameters of simulation 2 and 3 quickly converge
with new excitation due to the high gain at 25 s. Compared to simulation 2,
simulation 1 shows less drift under insufficient excitation. Hence, the robustness
of the BGLS algorithm to noise can be traded off with the convergence speed by
selecting appropriate values for µmin and µmax. Due to the equivalent exponential
forgetting factors, the growth of the gain matrix under insufficient excitation is
similar in all three simulations. Since the BGLS algorithm provides smooth bounds
on the gain, the growth is successively reduced as the eigenvalues approach the
upper bound.

Lower Bound on the Eigenvalues of the Gain Matrix

The lower bound guarantees a minimal convergence speed under persistence of
excitation. The parameter µmin determines the exponential forgetting factor ac-
cording to (2.42b). This value guarantees a minimum parameter tracking speed
and prevents the eigenvalues of the gain matrix from converging to zero. It can be
tuned analogously to conventional exponential forgetting LS approaches. Recall,
that in this case λ = 1− βTs holds, with λ the discrete-time forgetting factor and
Ts the sample time.
The following second simulation scenario is based on the system signals depicted
in Figure 2.2. Here, the BGLS algorithm is compared to the BGF algorithm.
Simulation 4 and 5 are carried out with the upper bound µmax,sim4 = µmax,sim5 =
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1000. The lower bounds on the eigenvalues of the gain matrix P for simulation
4 and 5 are µmin,sim4 = 0.6 and µmin,sim5 = 0.3, respectively. Simulation 6 was
conducted using the BGF algorithm according to (2.3) with (2.21) and (2.22).
The forgetting factor in (2.22) was chosen β0 = 0.6, and the bound on the gain
matrix is Pmax = 1000.
From Figure 2.5, it can be seen that due to the equal tuning, the algorithms lead
to very similar parameter trajectories. However, from Figure 2.6, it is clear that
this algorithm does not guarantee a specified lower bound on the gain matrix.
Thus, no guarantees on the transient bahavior of the algorithm can be stated even
under persistance of excitation. Due to the lower factor µmin,sim5, the growth of the
largest eigenvalue for this simulation is limited. These simulations show that the
exponential forgetting factor should be tuned depending on the expected duration
of phases with insufficient excitation.
This demonstration example shows that the BGLS algorithm has a fast conver-
gence rate due to its exponential forgetting. After long periods of insufficient
excitation, the algorithm quickly converges as soon as new data is available. The
lower and upper bound on the gain matrix provide easy means to tune the trade-off
between robustness and convergence for this estimation algorithm.
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2.8 Conclusions
In this chapter, a general approach for continuous-time least-squares forgetting
algorithms is presented. A large number of algorithms known from the literature
can be recovered by this algorithm by choosing an appropriate positive semidefinite
forgetting matrix. Important properties for convergence and stability necessary for
continuous-time adaptive control were rigorously proven for this general algorithm.
These properties are used in Chapter 3 to prove the stability of an adaptive control
strategy with a LS parameter estimation algorithm.
A novel bounded gain least-squares (BGLS) forgetting algorithm was derived,
based on the generalized LS framework. It combines the favorable properties
of exponential forgetting and resetting with the eigenvalue modulation of selec-
tive forgetting at low computational costs. With this algorithm, it is possible to
explicitly specify the desired lower and upper bounds of the gain matrix. In an
illustrative simulation example, the exponential resetting and boundedness prop-
erties of the BGLS algorithm were demonstrated. Furthermore, the algorithm was
compared to other algorithms from the literature.



Chapter 3

Adaptive Control of a Solenoid

The primary focus of adaptive control is to achieve a high tracking performance
of the closed-loop system by adaptin the controller based on measurements of
the system. Adaptive controllers can be categorized into direct methods, adapt-
ing the controller parameters directly, and indirect methods, where the uncertain
parameters are estimated and based on an updated model, a new control law is
parametrized. In this thesis, the concept of indirect adaptive control is investi-
gated, since further model information can be included in the controller and due
to the flexibility to use various adaptation algorithms, as indicated in the previous
chapter.
Adaptive control can mitigate control performance degradation due to manufac-
turing tolerances. In contrast to robust control, adaptive control aims to achieve
high control performance even with time-varying, uncertain, or unknown system
parameters. Moreover, adaptive control allows the same controller to be employed
within a class of structurally comparable systems. Due to the adaptive scheme,
no manual adjustment of the controller parameters is necessary.
Parameter variations are expected for solenoids, widely used in pneumatic and hy-
draulic drive systems for utility vehicles such as excavators and cranes, in vehicle
powertrains, and braking systems, e.g., [40, 41, 42, 43, 44]. Further fields of ap-
plication include air- and spacecraft applications, industrial hydraulic actuators,
and many applications of electro-mechanical actuators. In these applications, an
adaptive controller can alleviate individual tuning procedures for different types
of solenoids without compromising the tracking performance. In the following, an
extension to existing adaptive control approaches is presented that achieves a high
control performance for systems with uncertain or unknown parameters. Three
solenoids of different types are used in an experimental setup to show the efficacy
and flexibility for a maintenance-free application of the presented approach.
The main parts of this chapter have already been published in the author’s publi-

cation [45].

29
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3.1 Literature Review

3.1.1 A Brief History of Adaptive Control

Several control methods are at the boundaries of adaptive control, such as sliding-
mode control, reinforcement learning, and iterative learning control. Compared
to robust control techniques, adaptive control aims at optimal performance by
explicitly considering the uncertainty in the adaptation, rather than tolerating
a degradation in performance to maintain stability. In classical iterative learning
control, the system trajectory is known a priori and repeatedly traversed, such that
the acquired knowledge about the process can be iteratively improved. Adaptive
control has a specifically rich intersection with reinforcement learning, which can
be seen as an adaptive optimal control problem, e.g., [46].
Historically, the evolution of adaptive control was driven by different challenges
encountered in practical applications. In the 1960s, adaptive mechanisms were
investigated in search of a control algorithm for the wide range of conditions en-
countered by high-performance aircrafts. This challenge led to the model-reference
adaptive control and what later became known as the MIT-rule in [47]. This con-
cept is based on a gradient adaptation of a parametric controller, see, e.g., [48, 49].
Following these promising results, in the 1980s and 1990s, the field shifted towards
providing stability proofs to ensure stable operation for time-varying parameter
controllers. Several seminal results were achieved using Lyapunov’s theory that
inspired new algorithms and techniques. Many important survey papers, such
as [50], were followed by classical textbooks, such as [48, 19, 4, 49, 51]. At the
same time, the deterministic model-reference adaptive control and the stochastic
self-tuning regulators evolved, and applications in various dynamic systems were
addressed in the literature.
Another milestone in the evolution of adaptive control was improving the robust-
ness of the proposed algorithms to perturbations and unmodelled dynamics. Sem-
inal works developed methods based on feedback linearization, backstepping, and
averaging, see, e.g., [21, 51]. A more detailed view of the evolution of the field of
adaptive control can be found in [52].
It is worth noting that there has been a vigorous rise in activities in the area in
the past five to ten years. Recent developments in adaptive control addressed the
areas of transient adaptation performance, alleviating requirements on the excita-
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tion of the system, and hybrid approaches, see, e.g., [52, 53, 54, 55, 1, 33]. The
parameters of adaptive control algorithms are used to improve the performance of
control systems with unknown parameters and to actively monitor critical system
parameters. With the advance of distributed control systems and local mainte-
nance requirements, adaptive control is essential in practical process control and
automation.

3.1.2 Literature Review on Adaptive Control of a Solenoid
In the literature, different control approaches, such as classical proportional-in-
tegral (PI) control, proportional-integral-derivative (PID) control, internal model
control (IMC), or sliding mode control (SMC) were investigated for the current
control problem of solenoid valves. PID control and IMC are well-known standard
control methods that result in equivalent output control structures and are thus
comparable in terms of their robustness and tracking performance. The main idea
of SMC is the robust control of a system using a discontinuous feedback law, see,
e.g., [56, 57, 58, 59]. This approach can robustly handle parameter variations but
typically requires tailored tuning for a given system to meet the high demands of
the closed-loop performance. A high performance without individual tuning can
be achieved by using adaptive control.
The adaptive output feedback control design problem for linear systems is well
established and was solved in the late 90s, see, e.g., the textbooks [60, 19, 4, 3].
Therein, three main approaches are distinguished: The first is model reference
adaptive control (MRAC), the adaptive version of the well-known model reference
control (MRC) design. Here, the objective is to design a feedback controller to
eliminate the output error between a reference model and the plant. The other two
approaches refer to direct and indirect adaptive control [60]. In direct adaptive
control, the control parameters are adjusted directly to improve the control perfor-
mance. Direct adaptive control approaches have the drawback that the parameters
typically used for adaptation can hardly be interpreted from a physical point of
view. In contrast, in indirect adaptive control, the plant parameters are estimated
online, and the control parameters are adjusted based on these estimates. These
estimated plant parameters are not only instrumental for the parametrization of
the controller but can also be employed for fault diagnosis and monitoring. New
advances in hybrid and event-triggered adaptive control have targeted specific
system classes, such as systems with exogenous inputs in [61], or provided non-
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linear methods that are numerically more expensive compared to classical control
schemes, including the adaptive control strategy proposed in this chapter, see, e.g.,
[15].
The primary purpose of adaptive control is to achieve high tracking performance
despite unknown and changing system parameters. A well-known strategy to im-
prove tracking performance is based on the idea of adding a feedforward path to an
existing feedback control algorithm. Feedforward control is widely adopted, partic-
ularly in nonlinear adaptive control based on feedback linearization, e.g., [4, 62]. In
these approaches, the parameter adaptation is mostly based on Lyapunov’s theory,
which guarantees convergence from a theoretical point of view but often results in
an unsatisfactory slow convergence behavior in practical applications. Parameter
adaptation based on least-squares methods ensures a balanced convergence rate
across all parameters, see, e.g., [15]. These methods exhibit faster (second-order)
convergence than typical Lyapunov-based approaches. Regularized recursive least-
squares algorithms, see, e.g., [21, 1], mitigate the effect of noise on the parameter
estimates by modifying the objective function and thus the gain matrix update
to prevent the blow-up due to insufficient excitation [63, 64]. In recent works
on robust least-squares system identification, non-asymptotic confidence intervals
were computed [65, 66, 67, 68]. In addition, modifications of the least-squares
algorithm known from the literature can account for problem-specific challenges,
such as structural uncertainties or unknown constraints, see, e.g., [69, 70, 1].

3.2 Contribution
In this chapter an indirect adaptive two-degrees-of-freedom control scheme for
solenoids without position measurements at low computational costs is presetend.
It consists of an adaptive feedforward and a feedback path to fully utilize the
estimated plant parameters. The plant parameters are estimated using a regular-
ized least-squares adaptation law. Here, a reformulation and a modification of an
adaptive control scheme are proposed to avoid the practical problems encountered
when using the classical approach known from the literature, i.e., the indirect
adaptive control from [19, 4]. These modifications ultimately lead to a significant
improvement in the control performance while maintaining the flexibility and ease
of tuning the original method.
The flexibility and performance of the control scheme are experimentally demon-
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Figure 3.1: Mechanical and electrical schematics of a solenoid.

strated using three different solenoid types. Moreover, the proposed current control
method is experimentally compared to other benchmark control methods from the
literature. It is shown that a robust second-order sliding mode controller requires
retuning to achieve adequate control performance across multiple solenoid types.
Furthermore, a nonlinear model reference adaptive control method is a benchmark
for the assessing the proposed control concept. The experimental results demon-
strate that this benchmark controller is outperformed by the proposed control
scheme in both parameter convergence and control performance.
In summary, the main contribution of this chapter is threefold: First, an indirect
adaptive control strategy known from the literature is reformulated to account
for practical problems and enhance parameter convergence. Second, the adaptive
control strategy is extended by an adaptive feedforward controller. The stability
of the overall closed-loop system is proven. Third, an experimental validation
underlining the practical value of the proposed control scheme is provided by
comparing the performance with two benchmark controllers from the literature.

3.3 Problem Statement

An adaptive current controller for solenoids is designed. A key concern is the
achievable control performance without knowledge of the solenoid parameters. To
reduce the costs, only the current i is measured, whereas the plunger position
is not measured. Furthermore, since the nonlinear effects of a solenoid strongly
depend on the respective design, these effects are not modeled.
Figure 3.1 shows the simplified mechanical and electrical schematics of a solenoid.
The setup comprises the moving plunger and the magnetic core with the associ-
ated coil. Both the plunger and the magnetic core are made of highly-permeable
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material with a relative permeability µr � 1. The coil of the electromagnet is
attached to the core and has N windings. Applying a voltage v to the terminals of
the coil results in a current i, which in turn yields a magnetic field in the air gap g

between the core and the position of the plunger. The coil voltage is typically pro-
vided by a high-side driver circuit. The generated pulse-width modulated (PWM)
voltage signal switches between the supply voltage vbat and 0 V. Mathematically,
the pulse-width modulated (PWM) voltage reads as

v(t) =

vbat for kTpwm < t ≤ (k + δ)Tpwm

0 V for (k + δ)Tpwm < t ≤ (k + 1)Tpwm
(3.1)

for k = 1, 2, 3, . . ., where 0 ≤ δ ≤ 1 is the duty cycle, and Tpwm is the fixed
modulation period.

For the magnetic flux linkage

ψ = L(g, i)i , (3.2)

Faraday’s law yields
dψ(g, i)

dt = v −Ri, (3.3)

with the inductance L(g, i) and the electrical terminal resistance R. Substituting
(3.2) in (3.3) results in the current dynamics�

L(g, i) +
∂L(g, i)

∂i
i

�
� �� �

L̄

di
dt = v −

�
R +

∂L(g, i)

∂g
ġ

�
� �� �

R̄

i . (3.4)

In practice, L̄ and R̄ are unknown nonlinear functions of the current i and the
air gap g, which depend on the specific solenoid design. Recall that the objective
of interest is to design an adaptive control strategy for (3.4) that exhibits the
same closed-loop performance independent of L̄ and R̄. Since we do not have
any information about the exact characteristics of L̄ and R̄, we assume for the
controller design that L̄ and R̄ are unknown but constant. Note that this is
a common assumption in the context of adaptive control in the literature, see,
e.g., [54, 53] and the references therein. Thus, in the following, we focus on the
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simplified controller design model

L̄
dy
dt = u− R̄y , (3.5)

with the average input voltage u(t) = vbatδ(t), the unknown constant parameters
L̄ and R̄, and the measured output current y(t), which corresponds to the current
i(t) averaged over one modulation period.

Remark 6. It is worth noting that an adaptive controller that ensures stability
and the desired closed-loop performance for (3.5) does not guarantee that this also
holds true for (3.4). However, in this work, an adaptive two-degrees-of-freedom
control concept is presented where the feedforward part strongly predominates over
the feedback part of the control input signal; see also the experimental results
in Section 3.7.3. This shows that the simplified model (3.5) together with the
proposed parameter estimation approach is able to closely capture the dynamics of
the original system (3.4). It is well known from the literature, see, e.g., [71, 72],
that parameter estimation schemes based on least-squares concepts with exponential
forgetting exhibit a certain robustness to unmodeled nonlinear dynamics and time-
varying parameters.

3.4 Adaptive Control Concept
The proposed overall adaptive control structure is depicted in Figure 3.2. The
input u and the output y are filtered by the linear low-pass filter Λa to generate
the signals for the parameter adaptation. The reference signal r, which is assumed
to be two-times continuously differentiable, specifies the desired time evolution of
the output current y. The estimated parameters θ are fed back to parametrize
the feedforward and feedback controller, denoted by Cff and Cfb, respectively. No
disturbances affecting the plant are considered in the setting shown in Figure 3.2.

3.4.1 Adaptation Scheme

To compute the time derivative of the current y = x and to mitigate high-frequency
measurement noise and unmodeled effects, (3.5) is filtered by the linear low-pass
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Figure 3.2: Overall adaptive control structure with the filter Λa, the adaptive
feedfoward controller Cff, and the feedback controller Cfb.

filter
Λa(s) =

λa

s+ λa

, (3.6)

with the Laplace variable s and the filter constant λa > 0. The input-output
behavior of the plant is preserved by filtering both signals

ua = Λau and ya = Λay . (3.7)

To apply a recursive least-squares algorithm, the model (3.5) is rewritten in the
standard form with ua as the scalar least-squares output, namely

ua = ϕTθ∗ =
�

d
dtya ya

� �L̄
R̄

�
, (3.8)

where θ∗ ∈ R2 is the true parameter vector, and ϕ ∈ R2 is the regression vector

ϕ =
�

d
dtya ya

�T
, θ∗ =

�
L̄ R̄

�T
. (3.9)

Remark 7. In the classical formulation of adaptation algorithms, the highest
derivative of the system is chosen as the adaptation output, i.e., ϕTθ∗ = d

dt ia,
see, e.g., [19, 4], which simplifies the mathematical treatment. In this case, the
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parameter vector reads as θ∗ =
�
1/L̄, R̄/L̄

�T
. Practical experiments showed that

the resulting coupling between the inductance and resistance parameters drastically
degrades the estimation performance. Compared to other formulations, in θ∗ of
(3.9), the resistance and inductance can be estimated independently. In particular,
since the resistance can be estimated in steady-state conditions, this formulation
significantly improves the robustness to parameter drifts caused by low excitation.
Additionally, projection methods can guarantee strict bounds on the individual
parameters.

Using the estimated parameter vector

θT =
�
L̂ R̂

�
, (3.10)

the estimation error � can be introduced, based on (3.8) and (3.10), as

� =
ϕTθ∗ −ϕTθ

m2
=

ua −ϕTθ

m2
, (3.11)

with the normalization factor m2 = 1+ϕTϕ, see, e.g., [19]. Note that the normal-
ization can be omitted if ϕ ∈ L∞, i.e., the vector function ϕ is essentially bounded.
However, using the normalization factor m, the adaptation speed is normalized,
which facilitates parameter tuning of the adaptation algorithm. In addition, pro-
jection allows to handle convex parameter constraints θ ∈ S, to guarantee feasible
limits of the parameter estimates, such as positive values for the inductance and
resistance estimates. Given a convex set S, the orthogonal projection of θ on the
set S is the solution of the optimization problem

Pθ(θ) = arg min
v∈S

�v − θ�22 . (3.12)

One can define the projection of a vector z by, see [73],

Πθ(θ, z) = lim
η→0

Pθ(θ + ηz)− θ

η
, (3.13)

with the convex set S = {θ ∈ R2|g(θ) ≤ 0}, its boundary δS and interior S◦.
Herein, the inequality g(θ) ≤ 0 describes the set S in the parameter space. To es-
timate the parameter vector θ, the so-called continuous-time constrained bounded-
gain forgetting least-squares algorithm from [21] is augmented with the projection
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algorithm described above. This algorithm was shown to have comparable perfor-
mance to the BGLS algorithm from Section 2.6. It was employed here to show the
practical application of an algorithm with the well-known exponential forgetting.
Following similar steps to those in [1], this yields

d
dtθ = Πθ (θ,Pϕ�) , θ(0) = θ0 , (3.14a)

d
dtP = ΠP

�
θ, βP − PϕϕT

m2
P
�
, P(0) = P0I , (3.14b)

with

ΠP(θ, ·) =
 · ifθ ∈ S◦or

�
ifθ ∈ δS and (Pϕ�)T ∇g ≤ 0

�
0 otherwise .

(3.14c)

Herein, P is the positive definite gain matrix, θ0 and P0I > 0 are the initial
conditions, and I denotes the identity matrix. The (time-dependent) forgetting
factor in (3.14b)

β = βmax

1− �P�
Pmax

 , (3.14d)

with Pmax being an arbitrary positive constant, guarantees an upper and lower
bound on the gain matrix P and a maximum forgetting factor βmax; see (2.22)
and [21]. For a more detailed analysis of least-squares adaptation algorithms,
see Chapter 2 and [1, 74]. A practical implementation is given in Appendix A.4.
The upper bound on the norm of the gain matrix can be specified by Pmax >

0. The parameters βmax, Pmax, and the filter constant λa in (3.6) allow for an
independent tuning of the adaptation algorithm. Hence, strong filtering can be
used to suppress noise and to filter unmodeled system dynamics. Analogous to a
conventional discrete-time least-squares forgetting factor λ ∈ (0, 1], see, e.g., [75],
the continuous-time forgetting factor can be found by βmax = (1 − λ)/Ts, with
the sampling time Ts, cf. (A.40e). The maximum gain Pmax allows limiting the
gradient of the estimated parameters.
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3.4.2 Feedback and Feedforward Control

Using the certainty equivalence principle, adaptive pole placement control, see,
e.g., [19], allows to derive the adaptive PI-feedback controller

ufb = k̂pe+ k̂ixc (3.15a)
ẋc = e , (3.15b)

with the control error
e = r − y , (3.16)

and the known reference signal r. The adaptive feedback controller (3.15) consti-
tutes a PI controller with time-varying proportional and integral gains parame-
trized by adaptive pole placement according to

k̂p = L̂α∗
1 − R̂ and k̂i = L̂α∗

0 , (3.17)

with constant coefficients α∗
1 > 0 and α∗

0 > 0. To enhance the tracking perfor-
mance, the adaptive feedforward controller

uff = L̂ṙ + R̂r (3.18)

is introduced. Finally, the adaptive two-degrees-of-freedom control input is given
by

u = uff + ufb . (3.19)

Applying (3.19), with (3.15)-(3.18), to (3.5) and assuming that the certainty equiv-
alence holds, i.e., the estimated parameters L̂ and R̂ correspond to their real values
L̄ and R̄, the closed-loop error system

ë+ α∗
1ė+ α∗

0e = 0 (3.20)

is obtained. Clearly, with the constants α∗
0 and α∗

1, the closed-loop poles of the
error dynamics (3.20) can be chosen to achieve an exponentially stable behavior
with a desired rate of decay.
The feedforward and feedback control (3.19) with (3.15)-(3.18) is combined with
the parameter adaptation algorithm (3.14) to form the overall adaptive control
scheme of Figure 3.2.
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3.5 Stability Proof in a Nutshell
In this section, the main points of the stability proof of the overall closed-loop
system comprising adaptation, controller, and plant are outlined. The only as-
sumptions made are that the ideal parameter vector θ∗ is constant and that the
reference signal r is sufficiently smooth, i.e., r, ṙ, r̈ ∈ L∞. Under these assump-
tions, Theorem 3 can be stated, which guarantees bounds on certain signals of the
adaptation algorithm.

Theorem 3. The least-squares algorithm (3.14) guarantees that

(i.) �, θ̇,θ, �m,P ∈ L∞

(ii.) �, θ̇, �m ∈ L2

(iii.) g(θ) ≤ 0 ,

with L2 being the space of quadratically integrable functions and L∞ the space of
essentially bounded functions.

Proof. The proof of Theorem 3 is similar to what is shown in [19] and follows by
analyzing the function V = (θ − θ∗)T P−1 (θ − θ∗).

Finally, Theorem 4 establishes the asymptotic stability of the overall adaptive
control scheme of Figure 3.2.

Theorem 4. For the parameter estimation algorithm presented in (3.14), all sig-
nals in the closed-loop adaptive two-degrees-of-freedom control system (3.14)-(3.19)
are uniformly bounded, and the control error e converges asymptotically to zero.

Proof. The proof of Theorem 4 is performed in 4 steps:

1. The estimation error and control law are expressed as a linear time-varying
(LTV) system.

2. The exponential stability of the LTV system is shown.

3. The boundedness of all signals in the closed-loop system is proven by using
the Bellman-Gronwall lemma.

4. The control error convergence is proven using Barbalat’s lemma.
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More details of the proof of Theorem 4 are given in Appendix A.3.

Remark 8. Assuming persistence of excitation of the regression vector ϕ, the
adaptation algorithm converges exponentially to the ideal parameter vector, see
Theorem 2 and [1]. However, for the convergence of the control error e neither
persistence of excitation nor convergence of the parameters to the ideal parameter
vector is necessary, as stated in Theorem 4.

3.6 Benchmark Approaches from the Literature
In the following sections, two benchmark control approaches from the literature
are presented, and their performance is compared with the adaptive two-degrees-
of-freedom control algorithm presented in this chapter. First, in Section 3.6.1, a
second-order sliding mode controller is given as an example of a robust control
method commonly employed in solenoid control. Second, a model reference adap-
tive controller serving as a benchmark for an adaptive control method is discussed
in Section 3.6.2. In industrial applications, further measures are taken to avoid
practical problems like parameter drift under steady-state conditions, e.g., dead
zone, dynamic normalization, or anti-windup, see, e.g., [19, chap. 8] for more de-
tails. For a fair and meaningful comparison, we refrain from implementing such
measures because they can be used independently of the respective control and
adaptation methods.

3.6.1 Second-Order Sliding Mode Controller

A second-order sliding mode controller with dynamic pole placement is proposed
in [56]. The control input

u = α1

#''σ(t)'' sign(σ(t)) + α0

� t

0

3

#''σ(τ)'' sign
�
σ(τ)

�
dτ , (3.21a)

with the constant tuning parameters α0 > 0 and α1 > 0 and the control error
e(t) = r(t)− y(t) is used to stabilize the sliding surface

σ (e) =

�
d
dt + λ0 − λ1 |e|

 
e , (3.21b)
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with the constant tuning parameters λ1 > 0 and λ0 > 0. The bounds |e| < emax

and λ0 > λ1emax guarantee a stable closed-loop system.

3.6.2 Model Reference Adaptive Controller
As a benchmark for a well-known adaptive controller, the nonlinear model reference
adaptive control scheme from [4], see also [48], is applied to (3.5), which yields

θ̇ = −λ

�
y

R̂y + L̂(ṙ +Kpe)

�
e (3.22a)

u = R̂y + L̂(ṙ +Kpe) , (3.22b)

with the control error e = r − y, the parameter estimate vector (see Remark 7)

θT =
�
1/L̂ R̂/L̂

�
, (3.23)

and the constant tuning coefficients Kp > 0 and λ > 0. The control law (3.22b)
consists of a feedforward part using the time derivative of the reference signal ṙ,
a static compensation of the estimated voltage caused by the resistance of the
solenoid, and a proportional control term. As stated in the introduction, the
control law is typically augmented by an adaptation algorithm to guarantee a
decreasing Lyapunov function. Here, the commonly used quadratic functions lead
to a gradient-type adaptation law. Note, however, that in this case, the adaptation
(3.22a) is driven by the control error e rather than the estimation error �.

3.7 Experimental Validation
In this section, experimental results of the benchmark control approaches from
Section 3.6 are presented and compared with the adaptive control scheme proposed
in Section 3.4. For this purpose, three different solenoids, henceforth referred to as
solenoid A, B, and C, are used for the experiments, see Figure 3.3. The nominal
current of solenoid A is denoted by iA.
The three solenoids were taken from different fields of application and feature
different mechanical and electromagnetic designs. In particular, solenoid A is
used in a pressure control valve, solenoid B is part of a pilot valve of a hydraulic
two-stage valve, and solenoid C is employed in an automatic transmission gear.
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A

B

C

Figure 3.3: Photographs of the solenoids used for the experimental validation.

Solenoid A Solenoid B Solenoid C
R̄ RA 0.47RA 0.82RA

L̄ LA 0.15LA 0.23LA

Table 3.1: Nominal parameters of the solenoids of Figure 3.3.

Hence, there are significant differences in their nominal resistance and inductance
parameters. Their nominal parameter values are given in Table 3.1.
All experiments were conducted on a dSpace MicroLab Box at a sampling time of
Ts = 1 ms and a modulation period of Tpwm = 50 µs. The current is sampled at a
rate of 10 µs and averaged over 100 measurements in order to mitigate the effects
of the current ripple caused by switching the transistor. The battery voltage vbat

is used with a calibrated power electronics circuit to generate the PWM voltages
across the solenoid terminals.

3.7.1 Sliding Mode Control Experiments

In this section, experimental results of the sliding mode control law from [56], as
outlined in Section 3.6.1, are presented as a baseline for comparing the proposed
method with a common approach in solenoid control. Figure 3.4 shows the exper-
imental results achieved by the control input (3.21a) applied to the solenoids A
and B. The tuning parameters are listed in Table 3.2 for both cases. The peaks
in the current error at 3.1 s and 5.7 s in Figure 3.4 result from the lack of a feedfor-
ward part in this control approach. This leads to a significant delay between the
reference and the controlled current, which causes large control errors. However,
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Figure 3.4: Experimental results of the sliding mode controller for solenoid A (left
side) and for solenoid B (right side). The values are normalized to iA and vbat.



3.7 Experimental Validation 45

Control Sliding surface
α1 0.35 λ1 20
α0 0.04 λ0 100

Table 3.2: Parameters used for the sliding mode controller experiments.

the general performance of the well-tuned sliding mode controller for solenoid A is
good. In contrast, the right plots of Figure 3.4 show the experimental results for
the same sliding mode controller applied to solenoid B. Even though the sliding
mode controller is a robust control approach, the control performance is severely
degraded by the poor tuning for this solenoid. In particular, the smaller induc-
tance results in overshoots and persistent oscillations of the current. Furthermore,
the nonlinearity of the solenoid inductance leads to a larger control error at higher
current levels. It becomes clear from Figure 3.4 that the sliding mode controller
provides good results when properly tuned, but the performance may significantly
degrade if retuning is not possible.

3.7.2 Model Reference Adaptive Control Experiments

In this section, experimental results of the nonlinear model reference adaptive
control scheme from [4], as outlined in Section 3.6.2, are presented. The left of
Figure 3.5 shows the solenoid current and the control error of the algorithm from
(3.22a) and (3.22b) applied to solenoid A. The tuning parameters used in the ex-
periment can be found in Table 3.3. The nominal parameters of the solenoid are
given in Table 3.1. The reference trajectory was selected to show the performance
of the algorithm for rapid setpoint changes and for periods with insufficient exci-
tation. During these periods at about 6 s and 10 s, the reference signal is constant,
hence, the inductance and the resistance cannot be identified simultaneously. Ad-
ditionally, the inductance varies significantly with the different current levels of
the reference signal. This current- and position-dependence of the inductance is
an unmodeled nonlinear effect. The current trajectory in Figure 3.5 clearly shows
that the adaptation algorithm cannot estimate the inductance and the resistance
of the solenoid to achieve a satisfactory tracking performance. During periods of
low excitation, the gradient-based adaptation law only converges slowly. Hence, in
steady-state, the control error is slowly reduced, but the reference is not reached
even after 1 s. The control error shows a large mean error with peaks over 0.2iA.
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Figure 3.5: Solenoid current, control error and estimated parameters of the non-
linear model reference adaptive control scheme for solenoid A. The values are
normalized to iA, LA, and RA.

Control & adaptation Initial conditions
Kp 10 R̂0 0.68RA

λ 20 L̂0 2.0LA

Table 3.3: Parameters used for the nonlinear model reference adaptive control
experiment.
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Furthermore, the repeating reference signal at 11 s is not improved compared to
the tracking performance with the initial parameters at 0.1 s. Both cases show a
peak error of 0.15iA.
The estimated resistance and inductance parameters of this experiment are shown
on the right in Figure 3.5. Note that according to (3.22a), the parameter vector
is updated proportionally to the control error. Hence, large control errors are
necessary for the parameters to converge, which makes this approach sensitive
to model uncertainties such as the nonlinear inductance effects. Furthermore, the
parameter update has a constant gain λ. These two properties lead to a fluctuating
update of the estimated parameters and rapid changes, whenever a large control
error occurs. The estimated inductance values and the lack of dynamic feedback
lead to high current overshoots.
As discussed in Section 3.4.1, projection bounds cannot be formulated tightly for
the coupled parameter vector (3.23), which leads to estimates exceeding the de-
sired bounds Lmax and Rmax. At 3 s, the resistance exceeds the desired bound of
Rmax = 1.36RA. During periods of low excitation at 6 s and 10 s, both parameters
are used by the algorithm to counteract the steady-state error. However, only one
independent parameter can be identified during this time, i.e., there is no persis-
tence of excitation. Hence, the parameters drift on a one-dimensional subspace
of the parameter space. This drift is caused by the loss of observability of the
parameters, and methods such as the dead zone have been proposed to mitigate
the drift. However, it will be shown that the drift is much slower for the proposed
method. Note that the estimated parameters strongly depend on the control error
and exhibit a similar trajectory.

3.7.3 Proposed Indirect Adaptive Control Scheme
In this section, the proposed indirect adaptive two-degrees-of-freedom control
strategy is experimentally validated for all three investigated solenoids. To this
end, the controller is initialized with the same parameters for all three solenoids
depicted in Figure 3.3.
The constrained forgetting least-squares adaptation algorithm in (3.14) was dis-
cretized following [76, 77, 3], as detailed in Appendix A.4. The control parameters
and initial values can be found in Table 3.4. The controller parameters α∗

0 and α∗
1

were chosen for a time constant of 10 ms and a damping ratio of 0.5 for the closed-
loop error system (3.20). The initial parameters R0 and L0 were set to typical
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Figure 3.6: Experimental results of the indirect adaptive two-degrees-of-freedom
control algorithm for solenoid A. The values are normalized to iA, vbat, LA, and
RA.
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Control Adaptation Projection
α0

∗ 10,000 s−2 L0 2.0LA Lmin 0.2LA

α1
∗ 100 s−1 R0 0.68RA Lmax 5.0LA

λa 0.2 s−1 Rmin 0.34RA

P0 60 Rmax 1.36RA

βmax 0.6
Pmax 150

Table 3.4: Parameters used for the experiment with the proposed indirect adaptive
controller.

nominal values within the parameter range of the considered solenoids. The time
constant λa of the low-pass filter (3.6) is essentially determined by the measure-
ment noise when calculating the time derivative of the current y. The initial and
maximum gain matrix, P0 and Pmax, and the forgetting factor βmax were tuned
according to the procedure presented in Section A.4 and can be treated similar
to the classical least-squares tuning factors. The bounds for the inductance esti-
mate, Lmin and Lmax, and for the resistance estimate, Rmin and Rmax, reported in
Table 3.4, are selected to restrict the parameters to physically meaningful values.
These bounds do not influence the transient performance of the overall algorithm.

In direct comparison with the model reference control and the sliding mode control
scheme, Figure 3.6 shows experimental results of the proposed indirect adaptive
control algorithm (3.14)-(3.19) applied to solenoid A. Here, the control error decays
quickly after an initial convergence of the estimated plant parameters. The large
contribution of the feedforward controller uff to the overall control input u sug-
gests that the parametrized model accurately describes the physical plant. Hence,
the feedback controller is used around the reference trajectory and can be tuned
independently of the reference tracking control task. The repeated pattern of the
reference signal at 11 s underlines the improvement of the control performance
achieved by the adaptation. Here, the control performance is significantly im-
proved compared to the reference signal controlled using the initial parameters at
0.1 s. At 3 s, the feedback controller shows an increased activity caused by the high
current, which entails a decrease in the inductance. This effect is compensated by
the feedback controller and does not significantly impact the control performance.
Hence, the interaction between adaptation and integral feedback control combines
fast convergence of the parameters with robustness to model uncertainties and un-
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Figure 3.7: Experimental results of the indirect adaptive two-degrees-of-freedom
control algorithm for solenoid B. The values are normalized to iA, vbat, LB, and
RB.
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modeled effects. Additionally, the least-squares adaptation algorithm from (3.14)
uses the estimation error and can be adapted even without a control error. Thus,
control errors due to disturbances are compensated by the feedback controller,
whereas the parameters are updated when an estimation error occurs.
The estimated parameters, the normalized estimation error (3.11), and the norm
of the gain matrix are depicted in Figure 3.6 (right side). The large estimation
error and gain matrix norm in the first second of the experiment leads to a rapid
convergence of the resistance and inductance estimates. The high initial gain value
is used to reduce the estimation error quickly, while after this convergence phase,
the gain matrix of the estimation algorithm (3.14) adapts to the current excitation.
During periods of low excitation at 6 s and 10 s, the gain matrix is increased again
by the exponential forgetting. Any parameter errors accumulated during this
period are rapidly compensated for as soon as the parameters are excited again, as
indicated by the estimation error. In contrast, a least-squares algorithm without
exponential forgetting cannot neglect faulty measurements, even if new correct
data is collected afterwards. Furthermore, the estimated parameters show only
negligible drift in steady-state. In applications with long periods of insufficient
excitation, modifications like a dead zone can be added to account for the lack of
excitation in the reference signal, see, e.g., [19].
Solenoid B has approximately half the resistance and a drastically smaller induc-
tance than solenoid A. However, Figure 3.7 shows that the adaptation algorithm
of the same controller as the one used for solenoid A applied to solenoid B rapidly
converges and establishes a small control error throughout the whole reference
trajectory. Here, again, the nonlinear effect of the change in inductance at 3 s
is compensated by the feedback control term ufb. The feedforward part already
achieves precise reference tracking after the initial convergence period. This is
illustrated by the small feedback control action ufb after about 5 s. After that, the
control error stays well below 0.1iA even with rapid changes of the reference signal
and periods of low excitation. Caused by the strong deviations of the initial condi-
tions of the parameters from the real values, the controller shows some overshoots
until the parameters have converged. Similar to the results with solenoid A, the
parameters quickly converge, and after 3 s, excellent tracking performance and a
low control error are achieved, see Figure 3.7 (right side).
The experimental results for solenoid C are depicted in Figure 3.8. The large initial
value of the estimated inductance parameter causes overshoots during the first
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Figure 3.8: Experimental results of the indirect adaptive two-degrees-of-freedom
control algorithm for solenoid C. The values are normalized to iA, vbat, LC , and
RC .
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second of the experiment and around 3 s due to the nonlinear inductance. However,
from the right side of Figure 3.8, it can be seen that the inductance estimate
decreases and eventually leads to excellent control performance. Furthermore, it
should be noted that the estimated resistance parameter changes between 3 s and
4 s due to the excitation of the reference signal. After the initial convergence phase,
the small feedback control action ufb, shows a good match between the adaptively
parametrized model and the controlled solenoid.

3.8 Conclusions
In this chapter, an indirect adaptive two-degrees-of-freedom control algorithm for
the current control of solenoids is proposed in three parts.
First, an adaptive feedforward part extends the indirect adaptive pole placement
scheme known from the literature, and the formulation is modified to improve
its robustness. A thorough stability proof is provided for the overall closed-loop
system comprising the plant, the constrained bounded-gain forgetting least-squares
parameter estimation scheme, and the adaptive two-degrees-of-freedom control
concept, described in Section 3.4. The adaptive feedforward part improves the
tracking performance for rapidly changing reference trajectories, particularly for
time-varying parameters. The constrained bounded-gain forgetting least-squares
parameter estimation scheme ensures fast convergence of the parameters and does
not suffer from excessive drift during periods of low excitation. Since the control
design model does not account for the nonlinearity of the inductance and the
time-varying parameters, the derived stability proof does not ensure stability for
the nonlinear plant (3.4). However, the achieved closed-loop control performance
achieved in the experiments justifies the proposed approach.
For practical applications, additional experiments should investigate application-
specific effects, such as the characteristics of the valve opening, the fluid pressure
on the solenoid plunger, and the magnetic flux of the used solenoid. Further
research is to be conducted to improve the parameter convergence in situations of
low excitation, which is an active field of research, see, e.g., [53]. The proposed
adaptive control scheme strongly benefits from its property that the control error
convergence does not rely on the convergence of the parameters. This alleviates
the need for the persistence-of-excitation assumption and yields a good control
performance without the persistence of excitation in the presented experiments.
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Second, an experimental validation of the proposed control scheme is presented.
The feasibility and good performance of the proposed approach are demonstrated
by applying the control concept with one nominal controller tuning to three differ-
ent solenoids from various applications with strongly differing parameters. Thus,
for the whole range of different solenoids, only a single controller tuning is re-
quired, and the proposed adaptation scheme shows a robust and high-performance
operation without further adjustments. This saves time and costs, particularlry
during commissioning, and ensures high performance under changing loads and
environmental conditions.
Third, experimental results of the performance of the proposed solution are com-
pared with two well-known benchmark methods for solenoid control, taken from
the literature, i.e., a robust second-order sliding-mode controller and a nonlinear
model reference adaptive control approach. The sliding mode controller requires
retuning for every solenoid, and the model reference adaptive controller exhibits a
poor adaptation performance.



Chapter 4

Iterative Learning Control of a
Robotic Application

Industrial robots are increasingly used in applications requiring high accuracy,
such as additive manufacturing, precision machining, and medical robotics. While
state-of-the-art model-based robot control strategies exhibit a high fidelity in com-
pensating known dynamical effects, achieving sub-millimeter accuracy for dynami-
cal movements of industrial robots remains a challenge. The main sources of errors
comprise joint elasticities, the mismatched control input, friction effects, transmis-
sion errors, and kinematic errors due to tolerances, and wear, e.g., [78, 79, 80].
Compared to the uncertainties in Chapter 3, these effects are very challenging to
model and depend on many parameters, such as the robot configuration and speed,
dynamic load, transmission inconsistencies, and lubrication. Hence, in this case, a
data-driven learning approach can leverage the observed dynamic effects, without
relying on a complex dynamic model and many parameters.
Iterative learning control (ILC) can eliminate unknown, but repetitive effects by
iteratively improving the accuracy of the robotic manipulator while traversing a
path repeatedly. To improve the absolute accuracy of an industrial robot, a model-
based controller is augmented with an ILC approach in this chapter.
Essential Parts of this chapter were accepted for publication in the author’s work
[81].

4.1 Literature Review
Absolute accuracy in task-space is crucial for industrial robots in demanding ap-
plications, such as advanced machining tasks, e.g., [82, 83], medical applications,
and surgery robotics, e.g., [84]. Despite the importance of task-space accuracy,
this topic has gained little attention in the literature compared to joint-space pre-
cision and approaches based on joint encoders, see, e.g., [85, 86]. However, it is

55
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well known that significant dynamics of the robot links cannot be observed us-
ing motor-side encoders, see, e.g., [87]. Hence, the proposed method uses the full
system knowledge in a computed-torque controller with feedforward compensa-
tion based on a mathematical robot model to achieve accurate task-space control.
The controller leverages all typically available parameters of an industrial robot.
Additionally, a cascaded velocity feedback controller is employed to counteract
nonrepetitive errors. To further improve the accuracy of the control concept, an
efficient iterative learning control (ILC) scheme is employed to compensate for un-
modeled effects, such as parameter uncertainties, transmission error dynamics, and
couplings between elastic and friction effects. This is in contrast to many existing
works, where ILC is used to substitute for a model-based feedforward control, e.g.,
[88, 89]. Liu et al. [90] use a pure feedforward inverse-dynamics controller and a
joint-space proportional ILC approach to improve precision. In this thesis, a full
computed-torque is employed and since the reference path is modified by the ILC,
the presented control law can be applied easily to other control architectures. A
laser tracker system measures the absolute position of the tool center point, and
motor encoders measure the orientation of the robot.
The transmission error dynamics, which are the main focus of this work, exhibit a
nonlinear behavior and change drastically throughout the workspace. For example,
imperfections of a gear tooth, can influence the end-effector motion up to a hundred
times per joint revolution, see, e.g., [91]. Similarly, the coupling of gravitational
load, elasticities, and friction effects causes a significant hysteresis and changes
the observed damping for movements of a link with or against gravity. In contrast
to [87], where unknown weights serve as a basis for a local learning model, we
investigate trajectories spanning a large part of the workspace, and all available
information about the process is used. Therefore, the remaining error dynamics
are challenging to model, and hence, a simple data-driven proportional-derivative
(PD) ILC learning law is employed to cope with the unknown dynamics.
An additional benefit of the proposed PD ILC law is that it does not depend on the
complete trajectory and can be applied recursively, hence realizing an online ILC
approach. In the literature, online ILC approaches like [92] use a linear error model,
which does not reflect the nonlinear effects of the investigated error dynamics. In
[93], an online approach for learning dynamic motion primitives is developed, and
[94] presents a force learning task.
In order to achieve the desired absolute accuracy, the robot end-effector position
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must be measured with high accuracy at a high rate. In the industry, laser trackers
are typically used to calibrate robots to improve accuracy. Due to the high price
of a laser tracker, the ILC inputs are pre-recorded and then used as a feedforward
input. Therefore, the laser tracker is only needed in the initial learning phase. In
order to be able to apply the pre-recorded feedforward signals to different execution
speeds of the robot trajectory, the path parameter of the reference curve serves as
an index variable. Different time-scaling approaches that rely on a system model
have been reported in the literature, see, e.g., [95, 96, 97]. Compared to these
approaches, faced with complex error dynamics, we take a simple path parameter
ILC approach that allows us to scale the execution speed of the reference path.
Phase indexing approaches are reported in the literature, see, e.g., [98, 99].
Combining the online ILC with the path parameter indexing alleviates two classi-
cal ILC assumptions: the requirement of fixed-length trials and the fixed starting
point for each trial. In contrast to prior works, the combination of parameter in-
dexing and online learning allows the proposed ILC to be applied to variable speed
traversals, partially traversed paths, continuously executed trials, i.e., repetitive
control problems, e.g., [100].

4.2 Contribution
The scientific contribution of this chapter can be summarized as follows: A simple,
efficient, and flexible control scheme with learning control for the absolute accu-
racy of an industrial robot manipulator is presented. To fully leverage the ILC,
the governing dynamics of the robot are compensated by a computed-torque and
feedforward controller. The proposed ILC law can supplement the performance of
existing control strategies with little requirements on the computational hardware
and control structure.
In contrast to many prior investigations, this work focuses on the unknown trans-
mission error dynamics and uses of all typically available parameters and a detailed
robot model. Furthermore, the absolute accuracy of the robot, which is measured
using a laser tracker, is the main focus of this work. Since the laser tracker may
only be available for an initial learning phase, the efficacy of the learned ILC sig-
nals as feedforward trajectories is investigated. The proposed ILC approach is also
applied to improve the tool orientation accuracy of the robot with motor encoder
measurements only.
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Additionally, the approach features high flexibility and ease of practical applica-
tion. All calculations can be done recursively, and a continuous learning phase is
possible even with variations in the reference trajectory speed. Further, the classi-
cal requirement of strictly repeating trials for the ILC is softened. Other works in
the field, such as [87], use multiple filters that must be tuned after each trial. Here,
we only use a single straightforward learning approach that does not require any
intervention between the trials and achieves a comparable accuracy for a complex
trajectory on industrial robot.

4.3 Problem Statement

This section aims to improve the absolute positioning accuracy of an industrial
robot for a repeating trajectory by recursively learning unmodeled effects. The
ILC approach used to learn these effects does not make assumptions about the
employed control approach or the knowledge of robot parameters. To improve the
absolute accuracy of the robot, a laser tracker measures the absolute position of
the tool center point (TCP) of the robot. The experimental validation was done
with the 6-axis industrial robot Comau Racer 7-1.4 and the laser tracker Leica
Absolute Tracker AT960, depicted in Figure 4.1.

Figure 4.1: Industrial robot Comau Racer 7-1.4 and Leica Absolute Tracker AT960.
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4.3.1 Mathematical Model
The mathematical model of the rigid-body robot is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = −τf + τc, (4.1)

where M(q) is the mass matrix, C(q, q̇), the Coriolis matrix, and g(q) the vector
of gravitational torques. Furthermore, τf represents the torques caused by friction
effects, and τc are the control input torques on the robot joints. The mapping
between the joint-space coordinates q and the Cartesian task-space position x of
the TCP is given by the forward kinematics

x = f(q) , (4.2)

and the differential kinematics are defined using the manipulator Jacobian matrix
Jv(q) by

ẋ = Jvq̇ . (4.3)

4.3.2 Control Concept
Let qr, q̇r, and q̈r be a joint reference trajectory and its derivatives. The control

q

RobotPIP
qr

q̇r τm

τ̃f

τfb τcq̇c

q̇

u

--

Figure 4.2: Flowchart of the robot control structure.

input τc consists of three parts

τc = τm + τ̃f + τfb , (4.4)

with the computed-torque control

τm = M(q)q̈r + C(q̇, q)q̇ + g(q) (4.5)
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and the feedforward friction compensation term, e.g., [34],

τ̃f = Kvq̇r + Kcsign(q̇r) . (4.6)

The entries of the positive diagonal matrices Kv and Kc refer to the viscous and
Coulomb friction coefficients in the joints, respectively, and were found from mea-
surements.
In order to account for non-repetitive unmodeled effects, like transmission errors
and elasticities, a cascaded feedback controller (the term τfb in (4.4)) is employed
with a PI velocity controller in the inner loop and a proportional position controller
in the outer loop. Figure 4.2 depicts the block diagram of this state-of-the-art
control concept. The PI velocity controller reads as

τfb = Ki,v

� t

0

(ėq + q̇c) dt̃+ Kp,v

�
ėq + q̇c

�
, (4.7)

with the joint angle error
eq = qr − q (4.8)

and the positive definite controller gain diagonal matrices Kp,v and Ki,v. The
proportional position controller gives the output

q̇c = Kp(eq + u) , (4.9)

with the positive diagonal controller gain matrix Kp. Moreover, u in (4.9) serves
as input for the ILC scheme to be designed in the next section. The stability of
computed-torque controllers is analyzed, e.g., in [34].

4.4 ILC Algorithm
In this section, the online path ILC algorithm is discussed, and the implementation
in discrete-time is presented.
Let γ(λ(t)) : [0; 1] �→ R3 denote a parametrized desired reference path in the
task space of the robot. The user defines a desired execution speed by specifying
the path parameter λ(t) ∈ C2. The tracking accuracy of the robot should be
iteratively improved by the ILC each time the robot follows the trajectory γ(λ(t)).
Assume, without loss of generality, that the path parameter is normalized to the
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interval [0; 1] and the path is traversed in one direction, i.e., λ̇ ≥ 0. Thus, the
reference position of the TCP is given by xr(t) = γ(λ(t)). The joint-space reference
trajectory qr(t) = f−1(xr(t)) can be found by using the inverse kinematics.
The ILC law uses a proportional-derivative (PD) type update for iteration i at the
time t of the form

αi(t) = ui−1(t) + Kp,ilceq,i(λ(t)) + Kd,ilcėq,i(λ(t)) , (4.10)

with the constant positive diagonal matrices Kd,ilc and Kp,ilc. Details on the appli-
cation, robustness, and convergence of this algorithm are given e.g., in [101, 102].
The joint velocity error ėq, see (4.8), can be obtained from the high precision en-
coders of the robot. Assuming small deviations from the path, the TCP position
from (4.2) can be written by the Taylor expansion

x = xr − ∂ f(q)
∂q

''''
q=qr

eq +O(eq)2 . (4.11)

Thus, from (4.11) and (4.3), the positioning error eq can be calculated from the
laser tracker measurement in the form

eq ≈ J−1
v (qr)e , (4.12)

e = xr − x . (4.13)

The ILC update in (4.10) is parametrized by the path parameter λ(t). Since we
assume λ̇ ≥ 0, the path parameter λ(t) is a monotonic function of t and can be
used to calculate the angle correction values ui of the ILC law for the corresponding
position along the path.

Remark 9. The assumption λ̇ ≥ 0 can be alleviated by splitting the trajectory into
parts with common traversing direction and considering them as separate repetitive
control problems.

Next, the ILC input from (4.10) is filtered with the Q-filter

ui = Q ∗αi , (4.14)

which filters out nonrepetitive effects and high-frequency measurement noise. The
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filter is realized by a Gaussian filter [103]

Q =
1

σ
√
2π

exp
�
− λ2

2σ2

�
, (4.15)

with the standard deviation

σ =

$
ln (2)

2πf
, (4.16)

where the filter parameter f is the frequency at which the filter has a gain of
−3dB.

4.4.1 Orientation Error of the Wrist Axes
Since the laser tracker cannot directly measure the orientation, the orientation of
the end-effector is calculated from the motor encoder measurements. Hence, the
axis-angle error of the wrist axes is

eq,w = qw,r − qw , (4.17)

with the joint angles of the (wrist) axes 4, 5, and 6 qw = [q4, q5, q6]T and the
corresponding reference qw,r. Analogously to (4.12), the wrist joint error eq,w
can be used in (4.10) to compensate for the orientation error. The proposed ILC
concept can also be employed with a 6-dimensional measurement of the end-effector
pose.

4.4.2 Online Implementation in Discrete-Time
In this section, the online implementation of the ILC law and the Q-filter is
discussed. First, the parameter range λ ∈ [0; 1] is split into N equidistant in-
tervals of the length δ = 1/N . Let λk = λ(kTs) denote the path parameter
λ(t) at the time t = kTs with the sampling time Ts and k ∈ Z. Further,
lk = round(λk/δ) ∈ [0;N − 1] is the index value associated with the path pa-
rameter λk at the time kTs. Subsequently, any variable x as a function of the
discrete path parameter l is denoted by x[l]. The zero-order hold equivalent of
(4.15) is given by

qG[l] =
1

σ
√
2π

exp
�
− l2

2σ2

�
. (4.18)
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α
Q

u[lk −Nq]

γ(λ)

α[lk]
lk

u[l̃k+1]

l̃k+1

λk

δ

Figure 4.3: Schematic of a path γ(λ), the current robot TCP position at the path
parameter λk, the stored update data vector α, the filter Q, and the ILC input u.

This discrete-time filter is normalized over a square window with a total length of
2Nq +1 samples and applied to the ILC signal using the discrete-time convolution
over 2Nq + 1 path parameter indices, see also (4.14)

u[k] = q ∗α =

Nq%
m=−Nq

qG[m]α[k −m]&Nq

m=−Nq
qG[m]

. (4.19)

The ILC algorithm is summarized in Algorithm 1, and a schematic of the algorithm
is depicted in Figure 4.3.

Algorithm 1 Online path ILC algorithm
1: lk ←round(λk/δ)
2: if lk �= lk−1 then 3 new λ interval
3: e ← xr − x
4: α[lk] ←(4.10) 3 save α at lk
5: u[lk −Nq] ←(4.19) 3 filter at lk −Nq

6: end if
7: lk+1 ←round((λk+1 + td)/δ)
8: return u[lk+1] 3 return ILC input

Due to the discretization of the path parameter, an interval of the path parameter
can remain active for multiple time instances k. This is particularly clear when
stopping the execution, i.e., λ̇ = 0 and lk+1 = lk. Here, the algorithm is updated
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with the first encountered value for each interval. This is realized by updating
each interval once per trial and otherwise outputting the same value repeatedly,
see Line 2 of Algorithm 1. In Line 4 of Algorithm 1, the currently measured error
signal is mapped to the joint-space of the robot, and the ILC law (4.10) is applied.
The calculated update is stored in α[lk] at the current path parameter index lk, see
also Figure 4.3. Finally, the value at the path parameter index lk−Nq is filtered in
Line 5 of Algorithm 1, which yields the ILC correction value u[lk −Nq]. The time
delay td and the path parameter are used to calculate the next path parameter
value lk+1 = round((λk+1 + td)/δ). The associated joint-angle corrections u[lk+1]

serve as the ILC input signal to compensate for the time delay of the system. The
benefit of this recursive algorithm lies in the flexible calculation scheme and the
computational efficiency.

4.5 Experimental Validation
The 6-axis industrial robot Comau Racer 7-1.4 and a Hexagon AT960 laser tracker
were used for the experimental validation of the proposed online path ILC ap-
proach, see Figure 4.1. It is well known that the joint-angle offsets play an essential
role in the absolute accuracy of an industrial robot. In order to calibrate the joint
positions, the robot was moved to a point on the reference trajectory, and a static
calibration of all joints was performed by offsetting the axes to match the TCP
position measured by the laser tracker. The orientation error is measured by the
ZY X-Euler-angle representation eo of the error between the reference and actual
rotation matrix Re = Re

0,ref (Re
0)

T. The control parameters for all experiments are
summarized in Table 4.1.
Two experiments were conducted to validate the proposed ILC concept. In Exper-
iment 1, the convergence and error caused by a variation in the execution speed
of the robot is investigated. In Experiment 2, pre-recorded values are used for the
feedforward control and the ILC law is applied without further usage of the laser
tracker. In this experiment, the laser tracker measurement is used for validation
only.
In Figure 4.4, the reference path and the deviation from the path amplified by a
factor of 50 are depicted for trial 1 and trial 2 of Experiment 1. The path covers a
large part of the workspace and contains segments where ∂γ

∂λ
is small, resulting in

slow movements at a constant parameter speed. Conversely, the path also features
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Kp,v = diag(1440, 1440, 500, 20, 14, 11)
Ki,v = diag(1200, 2560, 1700, 104, 75, 65)
Kp = 20 I

Kp,ilc = 1 I
Kd,ilc = 0.01 I
Nq = 45
f = 5 Hz
Ts = 1 ms
N = 10000

Table 4.1: Control and ILC parameters.

trial �e�∞ RMS(e) �eo�∞ RMS(eo)
in mm in mm in 10−3 deg in 10−3 deg

0 3.238 1.8599 51.92 26.09
1 0.258 0.1191 23.93 10.91
2 0.166 0.0767 21.56 10.31
3 0.749 0.3923 21.15 10.12
4 0.186 0.0564 20.40 10.19
5 3.842 2.1570 46.88 24.37
6 0.183 0.0564 21.03 10.21

Table 4.2: Position and orientation error for the seven trials of Experiment 1.

fast movements where ∂γ
∂λ

is large. There are three reversing points, one in the
direction of the gravitational acceleration. These features render the reference
trajectory challenging for a high-precision application, since friction effects and
joint elasticities play an essential role in this scenario.
The position error and the corresponding ILC input of Experiment 1 are given in
Figure 4.5, where the gray-shaded areas mark the seven trials. Table 4.2 lists
the maximum and RMS errors for each trial. In Experiment 1, the maximum
error improves by 92 % after one trial. After trial 2, the path-parameter speed
is increased from λ̇ = 0.1 to 0.12 trials/s. Despite this change in the execution
speed of the robot, the maximum error of trial 3 is 76 % lower compared to trial 0.
The slightly increased error due to the change in the execution speed is reduced
to the level achieved earlier after learning at this speed for one trial. In trial 4,
the maximum error is reduced by 94 % compared to trial 0. Finally, in trial 5, the
ILC correction output and learning are deactivated to show the baseline error at
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Figure 4.4: Experiment 1: Robot trajectories with 50 times amplified deviation
from the path. The reference path is drawn in black, trial 1 in blue, trial 2 in
orange.

this execution speed and the improvement using the ILC signals again in trial 7,
where the ILC is activated. The maximum error throughout trials 2, 4, and 6 is
lower than 200 µm, and the RMS error is lower than 80 µm.
In Figure 4.6, the orientation error of Experiment 1 is depicted. After the first
learning trial, the error improves by more than a factor of 2. This significant
improvement is retained throughout trial 3, where the execution speed is increased
by 20 %. However, the orientation error does not converge further after the first
trial. This is a consequence of the joint-space orientation ILC (4.17) based on the
motor encoder measurements.
Experiment 2 is conducted with pre-learned ILC signals in a feedforward sense.
No further learning is done in this experiment, and the laser tracker was used only
to validate the accuracy that can be achieved when using the pre-learned signals
as feedforward input. Figure 4.7 shows the position error and the pre-learned ILC
feedforward input for the six trials of Experiment 2. During the trials 1, 2, 3,
and 5, a maximum accuracy below 200 µm is achieved without updating the ILC
data. The maximum position and orientation errors and RMS errors during the
six trials of Experiment 2 are listed in Table 4.3. From this table, it is clear that
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Figure 4.5: Experiment 1 (ILC active): Position error, corresponding ILC input,
and path-parameter speed for seven trials marked by the gray-shaded areas (trial
3: change in the robot’s execution speed; trial 5: ILC turned off).

the absolute accuracy of the robot can be drastically improved with the proposed
method, even if an expensive laser tracker is only used for an initial learning phase.

In trial 4, the parameter speed is increased from λ̇ = 0.1 to 0.12 trials/s, but the
feedforward signal was not changed to account for this higher execution speed.
Here, only slightly larger errors occur. The accuracy is improved by more than a
factor of 4 compared to trial 0, even with a 20 % change in the execution speed
of the robot. Finally, in trial 5, the execution speed is reduced again, and the
execution speed matches the speed when the feedfoward signal was learned. Here,
the same absolute accuracy is achieved, as in trials 1, 2, and 3.
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Figure 4.6: Experiment 1 (ILC active): Orientation error, corresponding ILC
input, and path-parameter speed for seven trials marked by the gray-shaded areas
(trial 3: change in the robot’s execution speed; trial 5: ILC turned off).

4.6 Conclusion
In this chapter, a numerically efficient flexible online path iterative learning control
(ILC) scheme was presented and practically validated. The practical experiments
confirm a rapid convergence during continuous task execution with an accuracy
improvement of 95 % after two trials. The proposed path-parameter-based ILC
can be easily employed for different and even varying execution speeds where a
significant increase in execution accuracy is retained. Similarly, learning from
partial trials is possible with the presented approach. Adaptating the ILC input
to a different execution speed can be achieved with a single trial.
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Figure 4.7: Experiment 2 (ILC only used for feedforward control): Position error,
corresponding pre-trained ILC feedforward input, and path-parameter speed for
six trials marked by the gray-shaded areas (trial 4: change in the execution speed
of the robot).

The experiments were conducted with an external laser tracker absolute measure-
ment system. It is shown that the presented method can significantly improve
the absolute accuracy of the robot. Due to the high repeatability of industrial
robots the achieved accuracy can be sustained even without this measurement
system and trial-by-trial learning. The orientation was measured using the motor
encoders of the robot, highlighting the adaptation capabilities of the approach to
different measurement scenarios. The maximum error of the orientation was re-
duced by a factor of 2. The presented approach approach shows multiple practical
advantages and can be easily deployed to different path tracking problems and
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trial �e�∞ RMS(e) �eo�∞ RMS(eo)
in mm in mm in 10−3 deg in 10−3 deg

0 3.226 1.8493 48.73 25.18
1 0.196 0.0776 19.23 9.95
2 0.192 0.0773 19.92 9.98
3 0.194 0.0782 20.22 10.04
4 0.751 0.3922 20.91 9.97
5 0.199 0.0775 20.01 10.03

Table 4.3: Position and orientation error for the six trials of Experiment 2.

robotic systems. A drawback of the presented approach is the simple ILC-law. It
is an open research question to combine a model-based learning filter with the pre-
sented path-ILC framework. Moreover, improving the achieved performance of the
method for variations in execution speed is a topic to be investigated. In addition,
applications with contacts between the manipulator and the environment present
topics for future research. Further investigations could include the generalization
of pre-learned ILC-data to different paths.



Chapter 5

Conclusion and Outlook

This thesis presents an adaptive control and a learning control scheme combined
with model-based controllers. The adaptive control scheme improves the perfor-
mance and facilitates the deployment of the current control of solenoid valves
and the learning control scheme improves the task-space accuracy of an industrial
robot. Combining domain knowledge and model information with adaptive and
learning strategies greatly benefits the closed-loop performance of the investigated
control systems. Furthermore, the presented control approaches are computation-
ally efficient and easy to deploy in practical scenarios.
The general least-squares (LS) framework presented in Chapter 2 recovers many
methods from the literature as special cases. The interpretation of the forgetting
matrix and the general least-squares cost functional proved helpful for designing
problem-tailored estimation algorithms leveraging domain knowledge. In Chap-
ter 3 it was shown how the provided proof of relevant properties of this general
parameter estimation algorithm can be exploited to guarantee the stability of the
overall closed-loop system comprising the plant, the estimation algorithm and the
adaptive controller.
Further investigations could include the behavior of these algorithms in situations,
where only limited excitation of the parameters is available for extended periods.
Additionally, an extension of the proofs with time-varying parameters is an open
research question.
In Chapter 3 a two-degrees-of-freedom adaptive control scheme was presented.
The formulation of the adaptation problem from the literature was adapted to the
given application, and a feedforward controller was added, outperforming classical
benchmark methods. The proposed concept was applied to three solenoids with
different designs in an experimental setup and exhibited high performance without
individual tuning. This application shows that combining adaptation strategies
and model-based control provides additional capabilities over pure model-based
controllers.

71
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In this context, future research topics include extending the stability proof to plants
with time-varying parameters, rapidly changing, and highly nonlinear effects.
In Chapter 4, a numerically efficient online path iterative learning control (ILC)
scheme for improving the absolute accuracy of an industrial robot was presented
and experimentally validated. The key novelties are the online update of the PD-
type ILC algorithm and the use of the path parameter for parametrizing the ILC
approach. This combination facilitates the practical application of ILC and can be
easily deployed to different path-tracking problems and robotic systems. The use
of the ILC inputs as feedforward control signals achieves a significant increase in
the absolute accuracy of the robot, even without requiring external measurements
of the absolute end-effector position by a laser tracker. This application highlights
that the performance of model-based controllers can be significantly improved by
employing a combination of model-based and learning control.
The proposed ILC scheme can also be used with different task execution speeds,
significantly improving the absolute accuracy without further learning. Generaliz-
ing the feedforward control signals trained by ILC for a specific path to different
spacial trajectories is an open research question.
In summary, this thesis presents an adaptation and learning control scheme to sig-
nificantly enhance the performance and practical application of pure model-based
control approaches. Model-based controllers achieve a high level of performance
in a wide range of applications. However, difficulties in parametrization and the
challenges with modeling complex dynamical effects pose fundamental limits to
this approach. While pure learning control can provide robust adaptation to un-
certainties, the combination of model-based control strategies and learning control
significantly improves the performance of the closed-loop system since a priori
knowledge in the form of the models and available measurement data are system-
atically exploited.
Further, due to the included domain knowledge, even computationally efficient
learning strategies can be employed to greatly enhance the performance of a con-
trol system. Similarly, the combination of learning and model-based control can
augment the capabilities of the closed loop an facilitate the practical applica-
tion. In conclusion, the combination of model-based and learning control methods
provide significant advantages compared to a pure model-based, or pure learning
control approach. The field of combined learning control holds many interesting
challenges for future research.



Chapter A

Appendix

A.1 Useful Definitions and Theorems
This section contains some definitions and theorems that are used in this thesis.

Definition 1 (Persistent Excitation, see [19], p.177).—A signal ϕ(t) is persistently
exciting, if there exist constants α0, α1, T0 > 0 such that

α0I ≤ 1

T0

� t0+T0

t0

ϕ(τ)ϕT(τ) dτ ≤ α1I (A.1)

holds for all t0 > 0.

Definition 2 (Uniform Complete Observability, see [19], p.90).—The pair of ma-
trices (C(t),A(t)) of the system

ẋ = A(t)x + B(t)u (A.2)
y = C(t)x + D(t)u , (A.3)

where A(t), B(t), C(t), and D(t) are bounded functions of the time t, is uniformly
completely observable, if there exist constants β1, β2, ν > 0 such that

β1I ≤ O(t0, t0 + ν) ≤ β2I (A.4)

holds for all t0 ≥ 0, where

O(t0, t0 + ν) =

� t0+ν

t0

ΦT(τ, t0)CT(τ)C(τ)Φ(τ, t0) dτ (A.5)

is the observability Gramian, and Φ(τ, t0) is the state transition matrix associated
with A(t).
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Theorem 5 (Stability of Linear Time-Varying Systems, see [19], p.122). A nec-
essary and sufficient condition for uniform asymptotic stability of the equilibrium
xe = 0 of the system ẋ = A(t)x is that there exists a positive definite matrix Γ(t)

such that the conditions

1. γ1I ≤ Γ(t) ≤ γ2I

2. Γ̇(t) + AT(t)Γ(t) + Γ(t)A(t) + νCT(t)C(t) ≤ 0

are satisfied for all t ≥ 0 and some constants ν, γ1, γ2 > 0 and C, is such that the
pair (C(t),A(t)) is UCO.

Lemma 1 (see[19], p.221). Assume that there exist constants ν, kv > 0 for all
t0 > 0, and K ∈ Rn×l satisfies the inequality� t0+ν

t0

�K(τ)�2 dτ ≤ kv , ∀t (A.6)

then (C,A) with C ∈ Rl×n and A ∈ Rn×n is a UCO pair if and only if (C,A+KC)

is a UCO pair.

Lemma 2. Given a stable proper transfer function W (s) and two differentiable
signals t �→ a(t) and t �→ b(t) such that b ∈ L∞ and ȧ ∈ L∞

�L2, there exists a
signal ρ ∈ L∞

�L2 such that

W{aTb} = aTW{b}+ ρ . (A.7)

A.2 Proof of Theorem 2

The proof of Theorem 2 proceeds similarly to proofs for other methods in [19].
First, the parameter error differential equation is written in a linear form. Then,
the exponential stability of the equilibrium point θ̃ = 0 is established.

Proof. Because the ideal parameter vector θ∗ is assumend to be constant,

˙̃θ = Pϕ� . (A.8)
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With (2.14), this equation can be rewritten in the form

˙̃θ = Aθ̃ , A = −PϕϕT (A.9a)
� = Cθ̃ , C = −ϕT, (A.9b)

which is a linear time-varying system. From (2.15), and since F ≥ 0, the derivative
of the Lyapunov-like function (2.8) yields

2V̇ = −�2 − θ̃TFθ̃ ≤ −�2 . (A.10)

Combining this equation with (2.11) and (A.9) yields

−θ̃TFθ̃ = θ̃T
�

ATR + Ṙ + RA + CTC
�
θ̃ ≤ 0 . (A.11)

This implies that the matrix ATR+ Ṙ+RA+CTC is negative semidefinite. The-
orem 5 in Appendix A.1 with Γ = R, γ1 = P−1

max, γ2 = P−1
min, and ν = 1 guarantees

exponential stability of the system (A.9), if (C,A) is uniformly completely observ-
able (UCO), see Definition 2 in Appendix A.1. With Lemma 1 in Appendix A.1,
the UCO pair can be established by comparison to a modified system. In particu-
lar, the choice K = −Pϕ ∈ Rn×1 yields a trivial system. Using the upper bounds
�P� ≤ Pmax and �ϕ� ≤ 1 reveals that� t0+ν

t0

�K(τ)�2 dτ ≤ P 2
max ν =: kv (A.12)

and, thus, the requirements to apply Lemma 1 are satisfied for this choice of K.
The shifted system takes the form

Ẏ = A + KC = 0 (A.13)
y = CY = −ϕTY (A.14)

and the associated observability Gramian (A.5) reads as

O(t0, t0 + ν) =

� t0+ν

t0

ϕ(τ)ϕT(τ) dτ . (A.15)

Because the regression vector ϕ is persistently exciting, see Definition 1 in Ap-
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pendix A.1, there exist constants α0, α1, ν > 0 such that

α0νI ≤
� t0+ν

t0

ϕ(τ)ϕT(τ) dτ ≤ α1νI , ∀t0 > 0 . (A.16)

Equation (A.16) limits the observability Gramian (A.15), and (C,A + KC) is
UCO. According to Lemma 1 in Appendix A.1, also the pair (C,A) is UCO, and
Theorem 5 guarantees uniform asymptotic stability and, by linear system theory,
uniform exponential stability of the equilibrium θ̃ = 0. Thus, the parameters θ(t)
converge exponentially to their ideal values θ∗.

A.3 Proof of Theorem 4
The proof proceeds similarly to the proof presented in [19, p. 471]. However,
there are essential differences from the original proof, such as the integral feedback
path, the feedforward controller, and the formulation of the least-squares problem.
Therefore, in the following, the main aspects of the proof are sketched.
The filtered system input and output can be written with (3.7) as

u̇a = −λaua + λau , ua(0) = u0 , (A.17a)
ẏa = −λaya + λay , ya(0) = y0 , (A.17b)

with initial conditions u0 and y0.
Consequently, the least-squares estimation error is given by, cf. (3.11),

� =
ua − L̂ẏa − R̂ya

m2
, (A.18)

with the normalization factor m2 = 1 + y2a + ẏ2a and the estimated parameters L̂

and R̂. In addition, the control input from (3.19) can be written as

u = k̂p(r − y) + k̂ixc + L̂ṙ + R̂r , (A.19)

with the integral control error xc from (3.15b). The reference trajectory must be
chosen such that r, ṙ ∈ L∞, which is satisfied by the assumptions in Section 3.5.
The proof of Theorem 4 is performed in four steps, as listed in Section 3.5. Rear-
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rangement of (A.17), (A.18), and (A.19) yields the system

ψ̇ = A(t)ψ + b1(t)�m
2 + b2(t)r + b3(t)ṙ , (A.20)

where

ψ =

ua

ya
xc

 , b1(t) =
1

L̂

 k̂p
−1
1
λa

 , (A.21)

b2(t) =

λa(k̂p + R̂)

0

1

 , b3(t) =

λaL̂

0

0

 (A.22)

and

A(t) =


−λa − k̂p

L̂
−λak̂p +

R̂

L̂
k̂p λak̂i

1

L̂
− R̂

L̂
0

− 1

λaL̂

R̂

L̂λa
− 1 0

 . (A.23)

The input and output of the plant can be written as an output of this system by
substituting (A.20) into (A.17a), and (A.17b), yielding�

u

y

�
= C(t)ψ + d1(t)�m

2 + d2(t)r + d3(t)ṙ , (A.24)

with the output matrix and vectors

C(t) =

− k̂p

λaL̂

k̂pR̂

λaL̂
− k̂p k̂i

1

λaL̂
1− R̂

λaL̂
0

 , d1(t) =

 k̂p

λaL̂

− 1

λaL̂

 (A.25)

d2(t) =

R̂ + k̂p

0

 , d3(t) =

�
L̂

0

�
. (A.26)

Due to the projection, the adaptation algorithm (3.14) ensures that R̂ and L̂ are
bounded from below and above. In particular, 0 < Lmin ≤ L̂, which guarantees
that A(t), bi(t), C(t), and di(t) i = 1, 2, 3 are bounded.
Next, it will be shown that the homogeneous part of (A.20) is exponentially stable.
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This will be done by showing that the eigenvalues of A(t), are negative for all times
t, and the induced norm �Ȧ(t)� ∈ L2. The characteristic polynomial of A(t) reads
as

det(A(t)− sI) = (s+ λa)(s
2 + α∗

1s+ α∗
0) . (A.27)

Thus, the first pole of the system is determined by the filter of the adaptation
algorithm and the remaining two poles by the desired closed-loop dynamics. If the
poles of (3.20) are chosen to be in the open left half plane and λa > 0, then the
eigenvalues of A(t) have a negative real part for all times t.

According to Theorem 1 in Section 2.5.2, L̂, ˙̂L, R̂,
˙̂
R ∈ L∞ and ˙̂

L,
˙̂
R ∈ L2. This

together with the bound 0 < Lmin ≤ L̂, which is guaranteed by the projection
(3.14), implies that �Ȧ(t)� ∈ L∞

�L2. Thus, based on [19, Theorem 3.4.11, p.
124], the homogeneous part of (A.20) is exponentially stable.

In the next step, these results are used to establish boundedness of the system
signals using the truncated exponentially weighted L2δ norm and the Bellman-
Gronwall Lemma. Here, the procedure is similar to what is shown in [19, p.472].
Thus, by applying the Bellmann-Gronwall Lemma [19, Lemma 3.3.9, p. 103], we
conclude that m, ya, ẏa ∈ L∞, for all times t > 0. Substituting into (A.18) and
using � ∈ L∞ (by Theorem 3) leads to ua ∈ L∞. It then follows that ψ, ψ̇, y, u ∈
L∞.

In the last step, the convergence of the control error will be addressed. Here, the
parameter estimator properties, the boundedness of the system signals, and the
plant dynamics are used to prove convergence of the control error by employing
Barbalat’s lemma. Given a vector signal t �→ a(t) ∈ Rn filtered component-
wise by an LTI filter with the transfer function W (s), we denote by W{a} the
corresponding output signal. With this notation, Lemma 2 is a corollary of the
swapping lemma [19, Lemma A.1, p 774].

Using the aforementioned assumptions and theorems the estimation error equation
will now be bounded. Rearranging (A.18) and taking the time derivative results
in

d
dt (�m

2) = u̇a − d
dt

�
L̂ẏa + R̂ya

�
= u̇a − L̂ÿa − R̂ẏa + ρ1 , (A.28)
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with the rest term ρ1 ∈ L∞
�L2. Application of the filter

W =
λas

s+ λa

(A.29)

to (A.19) yields

u̇a = W

��
L̂ R̂

� �ṙ
r

�

+W

��
k̂p k̂i

� � e

xc

�

. (A.30)

Rewriting this expression using Lemma 2 yields

u̇a =
�
L̂ R̂

�
W

��
ṙ

r

�

+
�
k̂p k̂i

�
W

��
e

xc

�

+ ρ2 + ρ3 , (A.31)

with ρ2, ρ3 ∈ L∞
�L2. Substituting (A.31) into (A.28) and using (3.17) gives

d
dt

�
�m2

�
= L̂A∗Λae+ ρ̄, (A.32)

where A∗ = d
dt

2
+ α∗

1
d
dt + α∗

0 refers to the desired pole-placement polynomial, see
(3.20), and ρ̄ =

&3
i=1 ρi ∈ L∞

�L2. Rearranging for the control error e and using
the product rule yields

e =
1

ΛaA∗

 d
dt

�
1

L̂
�m2

 
+

˙̂
L

L̂2
�m2 − ρ̄

L̂

 . (A.33)

Since L̂ ∈ L∞ as well as ˙̂
L, �m2 ∈ L∞

�L2, and A∗(s) is a Hurwitz polynomial by
design, it follows that e ∈ L∞

�L2. Additionally, from a special case of Barbalat’s
lemma [19, Lemma 3.2.5, p.76], it follows that ė ∈ L∞ and

lim
t→∞

e(t) = 0 . (A.34)

We will now show that the parameter rates converge to zero. Eq. (A.28) can be
expanded to

d
dt

�
�m2

�
= u̇a − ˙̂

Lẏa − L̂ÿa − ˙̂
Rya − R̂ẏa . (A.35)

Due to (3.6), ÿa ∈ L∞ holds, and since ψ, ψ̇, R̂, L̂,
˙̂
R,

˙̂
L ∈ L∞, it can be concluded
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that d
dt(�m

2) ∈ L∞. This together with �m2 ∈ L∞
�L2 and the uniform continuity

of (A.35) leads via Barbalat’s Lemma to �m2 → 0, as t → ∞. Because m2 ≥ 1,
it can be further concluded that � → 0 as t → ∞. Using the structure of the
estimator in (3.14), and since the gain matrix P ∈ L∞, it can be concluded that
˙̂
R,

˙̂
L → 0 as t → ∞. Moreover, (3.17) implies that ˙̂

ki → 0 and ˙̂
kp → 0 as t → ∞.

This concludes the proof.

Remark 10. It is guaranteed that the estimation error � and the plant and control
parameter rates ˙̂

R,
˙̂
L,

˙̂
kp,

˙̂
ki converge to zero. It is not guaranteed that the plant

and control parameters R̂, L̂, k̂p, k̂i will converge to the true values of R̄, L̄, k̄p, k̄i.
Indeed, it is not ensured that the signals used in the estimation algorithm are
persistently exciting.

A.4 Discrete-Time Constrained Bounded-Gain
Forgetting Least-Squares Algorithm

In this section, the discrete-time implementation of the constrained bounded-gain
forgetting least-squares algorithm from Section 3.4.1 is summarized. We apply a
time discretization for t = kTs with the sampling time Ts and k = 1, 2, . . . , N .
Subsequently, the index k refers to the sampling instant at time kTs, i.e., fk =

f(kTs). For the given application, we consider box constraints of the form

S = [Lmin, Lmax]× [Rmin, Rmax] , (A.36)

with lower limits Lmin and Rmin and upper limits Lmax and Rmax. In this case, an
analytical solution to the orthogonal projection of (3.12) is given by

Pθ(θ) =

�
PL(L̂)

PR(R̂)

�
, (A.37)

with

PL(L̂k+1) =

������
Lmin if L̂k+1 < Lmin

Lmax if L̂k+1 > Lmax

L̂k+1 if Lmin ≤ L̂k+1 ≤ Lmax

(A.38)
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and

PR(R̂k+1) =

������
Rmin if R̂k+1 < Rmin

Rmax if R̂k+1 > Rmax

R̂k+1 if Rmin ≤ R̂k+1 ≤ Rmax .

(A.39)

Hence, the parameters are constrained by using the Goldstein-Levitin-Polyak pro-
jection algorithm, see, e.g., [77]. The discrete-time constrained bounded-gain for-
getting least-squares algorithm, with θk = θ(kTs) and Pk = P(kTs), reads as [76,
page 365] and [3, Chapter 3.7, page 91]

Lk =
Pk−1ϕk

λk +ϕT
k Pk−1ϕk

(A.40a)

P	
k =

1

λk

�
Pk−1 − Lkϕ

T
k Pk−1

�
(A.40b)

θk = Pθ

�
θk−1 + Lk

�
zk −ϕT

k θk−1

��
(A.40c)

Pk = Πp

�
θk,P	

k

�
, (A.40d)

with the discrete-time forgetting factor

λk = 1− Tsβmax

1− �Pk�
Pmax

 (A.40e)

and the gain matrix projection operator

Πp(θk, ·) =
P	

k if θk ∈ S
Pk−1 otherwise .

(A.40f)
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