
AUTOMATION & CONTROL INSTITUTE

INSTITUT FÜR AUTOMATISIERUNGS-

& REGELUNGSTECHNIK

Implementing Automation Services for a Process
Plant via OPC UA

DIPLOMARBEIT

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs (Dipl.-Ing.)

unter der Leitung von

Univ.-Prof. Dr.sc.techn. Georg Schitter
Dipl.-Ing. Martin Melik-Merkumians

eingereicht an der
Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik
Institut für Automatisierungs- und Regelungstechnik

von
Yegor Chebotarev, BSc.
Matrikelnummer: 1329200

Wien, im März 2024

Advanced Mechatronic Systems Group
Gußhausstrasse 27-29, A-1040 Wien, Internet: http://www.acin.tuwien.ac.at

Abstract

In the modern world, technologies change at an incredible speed, leading to
a wide variety of products and their short lifetimes. Nowadays, industries need
to adapt to this situation and possess the capability to produce various products
with different batch sizes. The best approach to achieve this is through flexible
Smart Factories that can be fast reconfigured according to new requirements. This
has led to the search for new, modern approaches in the industry. The Plug and
Produce strategy, based on the skill-based approach, is an innovative, promising,
and challenging solution that can help achieve the required level of flexibility and
redefine future standards in factory design.

This thesis attempts to take a step forward in this direction. It provides a brief
overview of the main industrial trend - Industry 4.0. The theoretical part of the
thesis represents the state of the art and provides a description of a concept. The
practical part contains the implemented concept based on collected information
and an evaluation of results.

The designed and implemented concept was tested on an existing laboratory
setup. The setup consists of a redundant pipe system, which contains a large
number of valves and two pumps. This pipe system connects several tanks, each
equipped with its own set of sensors and additional equipment, such as heaters and
mixers.

i

Zusammenfassung

In der modernen Welt ändern sich Technologien mit unglaublicher Geschwin-
digkeit, was zu einer breiten Palette von Produkten und ihrer kurzen Lebensdauer
führt. Heutzutage müssen sich Industrien dieser Situation anpassen und die
Fähigkeit besitzen, verschiedene Produkte in unterschiedlichen Chargengrößen
herzustellen. Der beste Ansatz, um dies zu erreichen, sind flexible Smart Factories,
die schnell gemäß neuen Anforderungen neu konfiguriert werden können. Dies
hat zur Suche nach neuen, modernen Ansätzen in der Industrie geführt. Die
Plug-and-Produce-Strategie, basierend auf dem kompetenzbasierten Ansatz, ist
eine innovative, vielversprechende und herausfordernde Lösung, die dazu beitragen
kann, das erforderliche Maß an Flexibilität zu erreichen und zukünftige Standards
in der Fabrikgestaltung neu zu definieren.

Diese Arbeit versucht, in diese Richtung einen Schritt vorwärts zu machen. Sie
bietet einen kurzen Überblick über den Haupttrend der Industrie - Industrie 4.0.
Der theoretische Teil der Arbeit stellt den Stand der Technik dar und liefert eine
Beschreibung eines Konzepts. Der praktische Teil enthält das umgesetzte Konzept
auf Grundlage gesammelter Informationen und eine Auswertung der Ergebnisse.

Das entworfene und umgesetzte Konzept wurde auf einem bestehenden Lab-
oraufbau getestet. Der Aufbau besteht aus einem redundanten Rohrsystem, das
eine große Anzahl von Ventilen und zwei Pumpen enthält. Dieses Rohrsystem
verbindet mehrere Tanks, von denen jeder mit seinem eigenen Satz von Sensoren
und zusätzlicher Ausrüstung wie Heizungen und Mischern ausgestattet ist.

iii

Contents

Acronyms vii

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Industry 4.0 . 1

1.1.1 Smart Factory . 3
1.2 Scope of the thesis . 4

2 State of the Art 7
2.1 Service Oriented Architecture . 7

2.1.1 Services . 8
2.1.2 Loose coupling . 11

2.2 Agent, Task and Solution . 12
2.3 Skill-based Approach . 14

2.3.1 Skill-based Engineering . 15
2.3.2 Plug and Produce . 19

2.4 Search Algorithms . 23
2.4.1 Graph . 23
2.4.2 Dijkstra’s algorithm . 24
2.4.3 Bellman-Ford algorithm . 26
2.4.4 Floyd-Warshall algorithm 28
2.4.5 Johnson’s algorithm . 29
2.4.6 A* search . 30

2.5 IEC 61512 / ISA-88 . 31
2.5.1 Batch process . 31

v

vi Contents

2.5.2 Classification by physical structure 33
2.5.3 Recipes . 34

2.6 OPC Unified Architecture (OPC UA) 38
2.7 Research questions . 41

3 Concept overview 43
3.1 Problem statement . 43
3.2 Basic overview . 43
3.3 Skill-based approach . 45
3.4 Path Planning Algorithm . 47
3.5 Graphical user interface . 48

4 Implementation of the concept for the batch process 51
4.1 Hardware setup . 51
4.2 Skills implementation overview . 52
4.3 Shortest path algorithm skill . 53
4.4 Open/Close skills . 55
4.5 Flow control skill . 56
4.6 Heater composite skill . 56
4.7 Mixer composite skill . 57
4.8 User interface . 58
4.9 OPC UA communications . 60
4.10 Safety measurements implementation 63

5 Evaluation of results 67
5.1 Path planning algorithm . 67
5.2 Manual pump control . 67
5.3 Execution of the "Add" phase . 69
5.4 Temperature control and parallel workflow 70

6 Conclusion and Further work 73

Bibliography 76

Acronyms

AI Artificial intelligence.

ANSI American National Standards Institute.

AutomationML Automation Markup Language.

CoAP Constrained Application Protocol.

CPS Cyber-Physical System.

EAS Evolvable Assembly Systems.

ECC Execution Control Chart.

ERP Enterprise Resource Planning.

FB Function Block.

GUI Graphical User Interface.

HTTP HyperText Transfer Protocol.

IDEAS Instantly Deployable Evolvable Assembly System.

IEC International Electrotechnical Commission.

IIoT Industrial Internet of Things.

IoT Internet of Things.

ISA International Society of Automation.

vii

viii Contents

IT Information Technology.

MQTT Message Queuing Telemetry Transport.

MRA The Machine Resource Agent.

OPC UA Open Platform Communications Unified Architecture.

ORA Ontologies for Robotics and Automation.

PFC Procedure Function Chart.

PLC Programmable Logic Controllers.

SCADA Supervisory Control and Data Acquisition.

SEM Skill-based Engineering Model.

SOA Service Oriented Architecture.

UML Unified Modeling Language.

URI Uniform Resource Identifier.

List of Figures

1.1 Laboratory setup . 4

2.1 Conceptual model of a SOA architectural style 8
2.2 Configuration and a visual example of Services 10
2.3 Decoupling by using different data types 12
2.4 An example of an agent interacting with an environment 13
2.5 The role of representations in solving tasks 14
2.6 Key components of Skill-based Engineering 15
2.7 Examples of ontologies usage. 17
2.8 Problem definition of skill allocation methodology with patterns . . 18
2.9 The architecture that utilizes OPC UA Discovery for service discovery 21
2.10 A Skill modeled as an OPC UA program finite state machine 22
2.11 Different types of graphs . 24
2.12 Problem solving by graph searching 25
2.13 Execution of the Dijkstra algorithm 26
2.14 Execution of the Bellman-Ford algorithm 27
2.15 Execution of the Johnson’s algorithm 30
2.16 Process and equipment view of IEC 61512/ISA 88 32
2.17 Single-path structure. It represents a group (or a single unit) of

sequentially connected units and has a single, predetermined path
that defines the sequence of actions and operations to be performed
[62]. 34

2.18 Multiple-path structure. The process can follow different routes, each
with its own set of actions or operations. The units can share raw
materials and product storage. Several batches may be in progress
at the same time. [62]. 35

2.19 Network structure . 35
2.20 ISA-88 Recipe Model . 36

ix

x LIST OF FIGURES

2.21 Elements of PFC . 38

3.1 The scheme of the concept . 44
3.2 Representation of the recipe as a sequence of skills. 46
3.3 Search path problem . 48
3.4 A planned functional of a SCADA 49

4.1 The Piping and Instrumentation diagram of the plant 51
4.2 Separation of the skills within a project 53
4.3 Representation of the redundant pipe system in a graph form 54
4.4 Execution order for Open and Close skills 55
4.5 Flow control composite skill . 56
4.6 Heater composite skill . 57
4.7 Mixer composite skill . 58
4.8 User interface of the SCADA system 59
4.9 Basic scheme of communication between particular parts of the project 61
4.10 Example of nodes implementation in 4diac IDE 62
4.11 Example of nodes connection in TwinCAT 63
4.12 Example of a UDT tag . 64
4.13 Composite skill for the heater and fuse protection 65

5.1 Result of the shortest path algorithm 68
5.2 Manual pump control . 69
5.3 Execution of "Add" phases . 70
5.4 Parallel execution of "Heat" and "Mix" phases 71

List of Tables

4.1 Signal table of the two tank Festo demonstrator setup. 52
4.2 Signal table of the five tank Festo demonstrator setup. 52

xi

CHAPTER 1

Introduction

This chapter provides an understanding of Industry 4.0 and the concept of
Smart Factories, emphasizing their impact on manufacturing through advanced
automation, digital technologies, and real-time production flexibility for small
batches and individual items.

1.1 Industry 4.0

With the evolution of human society humanity passed through four evident
and clearly observable industrial revolutions:

The First Industrial Revolution - which occurred in the second half of the 18th
century. The key feature of this industrial revolution was based on the introduction
of mechanical equipment driven by water and steam-powered machines, and the
introduction of more optimized forms of working, e.g., mechanized cotton spinning
(power loom), and stationary steam engine [1–3].

The Second Industrial Revolution - in the early part of the 20th century, was
characterized by the introduction of steel and the use of electricity in factories. This
revolution based on new concepts of mass production such as the first conveyor
belt was introduced as a way of increasing productive output [1–3].

The Third Industrial Revolution - also called digital, slowly began in the second
half of the 20th century along with the development of technology and based on
the use of electronics and digital technology in factories to further automate and
increase the capacity of manufacturing [1–3].

The Fourth Industrial Revolution, or Industry 4.0 - that has come about over
the last few decades, promotes a trend of automation through the use of digital
technology and new levels of interconnectivity with the aid of the Internet of Things

1

2 1.1. Industry 4.0

(IoT) and cloud computing, allowing real-time access to data and the introduction
of cyber-physical systems [1, 3].

A vision of “Industry 4.0” was first time announced and presented to a wide
audience at the Hanover Fair in the spring of 2011 by senior IT scholars and
political representatives. It was announced as a far-reaching industrial paradigm
shift for Germany based on new digital technologies [4]. The primary characteristics
of Industry 4.0 include the establishment of significantly automated sectors by
facilitating interaction between humans and machines. The adoption of Industry 4.0
is poised to enhance operational efficiency in terms of time, cost, and productivity
for industries [5].

Technologically, the concept of Industry 4.0 is based on two main elements.
A very flexible and largely autonomous network between physical systems and
components of various types (production and products) with distributed and
intelligent software systems and global data networks. The vision is aimed at the
intelligent and purposeful use of data obtained during production and sales, using
sensors and advanced assessment methods [4, 6].

Emerging concepts, such as digitalization, Internet of Things (IoT), and Cyber-
Physical System (CPS), have gained significance across various industries, including
manufacturing. These terms play a defining role in the Fourth Industrial Revolution
[5]:

• Enterprise Resource Planning (ERP): ERP tools facilitate the management
of organizational information and business processes.

• IoT : IoT represents the connectivity between physical objects, such as sensors
and machines, and the Internet.

• IIoT : IIoT encompasses the interconnections between people, data, and
machines in the context of manufacturing.

• Big data: Big data refers to extensive sets of structured or unstructured data
that can be collected, stored, organized, and analyzed to uncover patterns,
trends, associations, and opportunities.

• Artificial intelligence (AI): AI pertains to a computer’s ability to perform
tasks and make decisions that would traditionally require human intelligence.

• M2M : M2M stands for machine-to-machine and denotes communication
between two separate machines through wireless or wired networks.

• Digitization: Digitization involves the process of gathering and converting
various types of information into a digital format.

1. Introduction 3

• Smart factory : A smart factory strategically employs Industry 4.0 technology,
solutions, and methodologies.

• Machine learning : Machine learning signifies the capacity of computers
to autonomously learn and enhance their performance through artificial
intelligence, without explicit programming.

• Cloud computing : Cloud computing involves the use of interconnected remote
servers on the Internet for storing, managing, and processing information.

• Real-time data processing : Real-time data processing signifies the ability of
computer systems and machines to continuously and automatically process
data, providing real-time or near-time outputs and insights.

• Cyber-physical systems : Cyber-physical systems, sometimes referred to as
cyber manufacturing, describe Industry 4.0-enabled manufacturing environ-
ments that offer real-time data collection, analysis, and transparency across
all aspects of manufacturing operations [6, 7].

Industry 4.0 is driving a profound transformation in manufacturing by promot-
ing highly automated industries and facilitating human-machine interaction. This
transformation is enabled by the flexible and autonomous network between physical
systems, intelligent software systems, and global data networks. With Industry 4.0
manufacturing is evolving into a smart, interconnected ecosystem where real-time
data processing and analysis are essential, ultimately reshaping the way businesses
operate and innovate.

1.1.1 Smart Factory

With everyday increasing amount of customers and their expectations, there
is a need for more flexible production. It can be achieved by developing more
multipurpose factories. Dynamic reconfigurability and adaptability are crucial
features of the future manufacturing systems [8]. In this way, a new level of
automation should be achieved, by the introduction of methods of self-optimization,
self-configuration, self-diagnosis, cognition, and intelligent support of workers in
their increasingly complex work [9]. These terms are used in defining so-called
concept of a Smart Factory. At some point, Smart Factory is a key point of Industry
4.0 because it should contain all other aspects that were described previously for
successful operation. It is a symbiosis of network and software technologies in a
way that all parts and components have intelligent communication with each other,
and they are able to work and automatically coordinate with each other without
or with only slight human influence.

4 1.2. Scope of the thesis

Smart Factories are appealing due to their ability to handle small batches,
even individual items. Industry 4.0 brings real-time, zero-setup-time production
flexibility, meeting the need for personalization and mass customization in both
consumer and business contexts. This means manufacturing thousands of identical
parts and a single unique piece on the same line without extra costs or setup time
[10].

1.2 Scope of the thesis
The modern market of technologies evolves with incredible speed. Together

with a short lifecycle of goods, it leads to the production of fast-changing in-size
batches of different products. The classical factory is designed for the long-term
production of one type of product on an assembly line, and that is why incapable
of a fast adaptation of a process. An upgrade or a reconfiguration of a plant takes
a lot of time and oftentimes impossible without stopping for the entire service
period. All these requirements demand to be flexible and have a possibility for a
fast reconfiguration without the necessity to stop the facility which causes dead
time and money losses [11].

(a) Two tanks laboratory setup. (b) Five tanks laboratory setup.

Figure 1.1: The left setup consists of several valves, a pump, and two tanks. The
first tank (left tank) has a level sensor. The second (right tank) has a mixer, a
heater, and a temperature sensor. The right system has a redundant pipe system,
one pump, several valves, and five tanks. Each tank has a level sensor.

This work is focused on developing a flexible system for a batch process based
on the current trends in the industry. The system should offer capabilities for

1. Introduction 5

fast reconfiguration, be fault-tolerant, and provide a user interface. The user
interface should contain manual control, real-time visualization of a process, and
data storage. This work is inspired by the work of M. Baierling [12], yet it uses
alternative methodologies and solutions to address the research objectives.

This thesis is structured in the following manner. The second chapter provides
an overview and analysis of modern concepts such as the Skill-based approach
and Service Oriented Architecture. It also gives an idea of basic concepts such
as batch processes, search algorithms, and graph analysis. The third chapter
provides a theoretical description of a concept for the batch process that should be
implemented and applied in a laboratory setup shown in Figure 1.1. It describes
the problem statement, possible problems during implementation, and ways to
solve them. The fourth chapter is a description of development tools, such as
software, and also describes in detail the principle of operation of each key part of
the project. The fifth chapter provides an analysis based on the results obtained
after running the developed concept on the provided laboratory setup. Finally, the
sixth chapter contains conclusions, analyzes the pros and cons of the concept, and
gives an outlook for future work.

CHAPTER 2

State of the Art

This chapter gives an analysis of the related to the thesis topic paradigms,
concepts, industrial standards, and possible solutions for the further implementation
of a concept based on a flexibility and batch production approach. First, Service
Oriented Architecture (SOA) is presented as an initial point for a flexible system.
After that, the skill-based approach shows an effort to adapt the SOA paradigm for
an industry application domain. A subchapter with various searching algorithms
has the aim to solve a shortest path problem that can occur in a redundant pipe
system. In the last part of the chapter, an overview of batch processes as well as
batch recipes is given by virtue of relevant industrial standards.

2.1 Service Oriented Architecture

Service Oriented Architecture (SOA) holds various definitions, each comple-
mentary and tailored to specific audiences. When addressing IT architects, it is
perceived as an architectural solution promoting loose coupling and reusability
for integrating diverse systems. For developers, SOA is a programming paradigm
where web services and contracts take center stage in designing for interoperability.
The diversity in definitions arises from the need to convey SOA concepts to different
stakeholders, recognizing the distinct perspectives of CEOs and programmers [13].
All of them have one common point, SOA is a paradigm for improved flexibility [14].
SOA refers to a model where automation logic is decomposed into discrete units,
each constituting a distinct piece of business automation. These units, collectively
forming a larger automation logic, can be distributed individually [15]. SOA is
not a concrete architecture and not a specific tool or framework. It is a guiding
principle that shapes concrete software architecture decisions [14]. The technical

7

8 2.1. Service Oriented Architecture

concept of SOA consists of:

− Services

− Interoperability

− Loose coupling

Figure 2.1: A meta-model of a SOA architectural style [16].

Figure 2.1 shows a Unified Modeling Language (UML) diagram of the meta-
model of a SOA architectural style. This concept is grounded in an architectural
style that outlines an interaction model involving three key participants: the
service provider, responsible for publishing a service description and offering the
service implementation; a service consumer, who can either directly use the Uniform
Resource Identifier (URI) for the service description or locate the service description
in a service registry to bind and invoke the service; and the service broker, which
provides and manages the service registry, although public registries are currently
less popular [16].

2.1.1 Services

SOA promotes the autonomy of individual units of logic without isolating them
from each other. These units of logic are encouraged to adhere to principles that
enable independent evolution while maintaining a necessary level of commonality
and standardization. In SOA, these units are called services [15]. Basically, service
is a fundamental element of SOA, representing a self-contained and logical business
function in an IT. In technical terms, a service functions as an interface for one
or more messages, which provide information and/or change the state of a related
entity [13, 14]. The following list gives an overview of the main attributes:

2. State of the Art 9

• Self-Contained (independent, autonomous, autarkic). The service operates
independently, encapsulating its functionality without dependence on other
services. Despite this, certain dependencies are inevitable, e.g. services might
share basic data types like strings [14].

• Visible/Discoverable. The service is publicly exposed and can be discovered
by potential users, ensuring it is known and accessible. Often does exist a
public place where the service and all detailed descriptions about it can be
found [13, 14].

• Idempotent. The service’s operations yield consistent results, maintaining
predictability regardless of the number of invocations. Whether the service
is called once or multiple times, the result remains unchanged. In essence,
idempotence ensures that the outcome of a successfully executed request
remains unaffected by the number of times it is carried out [14, 17].

• Interoperable. The service can smoothly communicate with other services and
applications, ensuring compatibility. Interoperability is a core requirement
of SOA and refers to the capacity of two or more systems or components to
share information and effectively utilize the exchanged information [14, 18].

• Coarse-Grained. The service executes significant tasks, minimizing the need
for frequent interactions. It is generally more advantageous to have a single
service call handle the transfer of all required data between a provider and
its consumer(s), rather than having multiple service calls processing the same
volume of data [14].

• Reusable. The service’s functionality is versatile, and suitable for use in
different contexts or by multiple applications. Which means that each func-
tionality should have a single implementation. SOA contributes to improved
reusability by enabling various systems requiring a specific functionality to
invoke the same service [14, 15].

The focus of a service can range from small to large, influencing the size and
scope of the encapsulated logic. Additionally, service logic may include the logic
offered by other services, leading to the composition of one or more services into a
collective whole. As shown in Figure 2.2, when constructing an automation solution
with services, each service has the capacity to encapsulate a task performed by an
individual step or a sub-process comprising multiple steps. In certain scenarios,
a service can encapsulate the entire process logic, and in such cases, the broader
scope of these services may include the logic encapsulated by other services [15].

10 2.1. Service Oriented Architecture

Figure 2.2: Configuration and a visual example of Services. A task addressed to a
service can be small or large. That is why the size and scope of the represented
logic of the service can vary. A service logic can contain the logic provided by
other services. In this situation, a composition of one or more services is called a
collective [15].

2. State of the Art 11

2.1.2 Loose coupling

The manufacturing industry uses an extensive array of interconnected and
diverse systems, comprising numerous components that range from individual
sensors to entire control or monitoring subsystems, varying widely in complexity.
An agile automation system is expected to be a set of loosely coupled yet tightly
integrated components, aligning with the desired characteristics of a distributed
SOA system [19, 20].

SOA is designed for large distributed systems, where scalability and fault
tolerance are critical for ensuring the maintainability of such systems. The concept
of loose coupling is commonly utilized to address the demands of scalability,
flexibility, and fault tolerance in systems. Systems need to manage errors and
issues, and when they arise, it’s crucial to minimize their impact. The essence
of achieving these objectives lies in loose coupling, which involves minimizing
dependencies. With reduced dependencies, modifications have limited effects, and
the system can continue functioning even when certain parts are compromised.
Minimizing dependencies enhances fault tolerance and flexibility [14].

Asynchronous communication is the most well-known example of achieving
loose coupling in SOA. It allows services to communicate without requiring both
the sender and receiver to be actively engaged at the same time. Asynchronous
communication decouples services in time, as the sender and receiver do not need to
be synchronized, which minimizes dependencies on the timing of service invocations.
Also, services can send requests and continue their operations without waiting for
an immediate response. This asynchronous nature allows each service to operate
independently, improving flexibility. Another feature is allowing services to handle a
large number of requests simultaneously without waiting for synchronous responses.
If a service is temporarily unavailable, messages can be queued for later processing,
preventing immediate disruptions [14].

Heterogeneous Data Types. The problem for the next example of loose coupling
can be observed in a short example. A customer has a harmonized data type that
must be extended with additional attributes. In a situation where this data type
is shared with all systems, even if some of the systems are not interested in these
extensions, the whole system must be updated to take into account these changes.
With time this data type can become more complex and synchronization of the
system becomes more expensive and time-consuming [14].

In the absence of harmonized data types, the introduction of data type mappings
becomes necessary, encompassing both technical and semantic considerations. The
usual approach involves the service provider specifying the data types used by its
services, which service consumers are required to accept. It’s crucial for consumers
to avoid directly using the provider’s data types in their source code. Instead, a
recommended practice is for consumers to implement a lightweight mapping layer,

12 2.2. Agent, Task and Solution

Figure 2.3: Decoupling by using different data types. Large distributed systems
have no harmonized data types. As a result, different systems have different data
types. Data type mapping helps to solve this problem. Heterogeneous data types
can be accommodated through standardized data exchange formats such as XML
or JSON. Services can understand and process data in various formats, enabling
them to communicate despite differences in data types. Picture adapted from [14].

facilitating the translation of provider-specific data types to their own. However,
this approach encounters scalability issues and contributes to heightened complexity.
Heterogeneous data types imply that services can use different data formats or
structures to communicate. This flexibility allows services to evolve independently,
as changes in one service’s data structure do not necessarily affect others [14].

A mediator is the last observed in this chapter example of loose coupling. It
is a component that facilitates communication and coordination between services
without them being directly aware of each other. It acts as an intermediary,
promoting independence and reducing direct dependencies between services. This
helps achieve a higher level of flexibility and adaptability in the system, as changes
in one service are less likely to impact others due to the mediated communication
[14].

There are two types of mediators. The first type provides the correct endpoint
for a service call before it is sent. This type is often referred to as a broker or
name server. The second type determines the right endpoint for a request after
the consumer has sent it. In this scenario, the consumer sends the request to a
symbolic name, and the infrastructure (network, middleware) guides the call to the
appropriate system based on intelligent routing rules [14].

2.2 Agent, Task and Solution

The term action is used to describe an activity performed by an agent, encom-
passing actions like applying force, movement, perception, or communication to
bring about a change in its environment and internal state. An agent, defined as

2. State of the Art 13

any entity capable of interacting with its surroundings, acts purposefully when
driven by a specific intended goal [21]. The environment of an agent may encompass
other agents. The combination of an agent and its environment is referred to as a
world [22].

For instance, an agent might be a fusion of a computational engine with physical
sensors and actuators, commonly known as a robot, operating within a physical
environment. It could involve pairing an advice-giving computer, an expert system,
with a human who contributes perceptual information and performs tasks. An
agent may also take the form of a program that functions in a purely computational
environment, commonly called a software agent [22].

Figure 2.4: An agent interacting with an environment.The actions performed by
an agent at any given moment are influenced by: prior knowledge about both
the agent and the environment. Stimuli received from the current environment,
which can include observations about the environment, as well as actions that the
environment imposes on the agent. Past experiences derived from prior actions,
stimuli, or other data that contribute to its learning. Goals that it aims to achieve
or preferences regarding states of the world. Abilities, representing the primitive
actions it can execute [22].

Usually, the problem to be solved or the task to be executed, along with the
definition of a solution, is provided in an informal manner. The overall structure
for solving problems using a computer is illustrated in Figure 2.5. To address a
problem, the system designer needs to [22]:

− elaborate on the task and define what qualifies as a solution;

− represent the problem in a computationally understandable language;

14 2.3. Skill-based Approach

− use the computer to compute an output, whether it’s an answer for a user or
a series of actions for the environment;

− interpret the output data as a solution to the problem.

Figure 2.5: The role of representations in solving tasks. The image is from [22].

Given an informal task description, a designer should first establish the criteria
for a solution. When dealing with well-defined tasks, the consideration shifts to
the importance of accuracy and completeness in the provided answer. Often, the
emphasis is not on obtaining the absolute best solution, but rather on achieving
an adequate solution that satisfies certain criteria [22]. The four main classes of
solutions are [22]:

Optimal solution: This is the best solution based on a specific measure of
solution quality.

Satisficing solution: It is a solution that is deemed good enough according to
predefined adequacy criteria. This is suitable for situations when an agent needs
just some solution.

Approximately optimal solution: This solution comes close to the theoretically
best quality measure, offering a practical alternative to optimal solutions.

Probable solution: While not guaranteed to be a solution, it is likely to be one,
providing a precise approximation, especially in the context of satisficing solutions.

2.3 Skill-based Approach
Modern trends and an evolution of the industrial segment create conditions

for reconsideration of traditional methodologies and approaches. This chapter
discusses one of those new approaches that satisfy Industry 4.0 requirements.

2. State of the Art 15

2.3.1 Skill-based Engineering

The ongoing shift in manufacturing systems from mass production to mass
customization, even reaching the extremes of batch size one production, demands
more adaptable engineering solutions than those currently exist [23]. This adapt-
ability often prompts discussions about flexibility and changeability. In this context,
flexibility is defined as the system’s capability to automatically adjust within a
specified predefined range established during the system’s design [11]. Presently,
the majority of manufacturing systems have limited flexibility, primarily character-
ized by centralization, making it challenging to efficiently reconfigure an existing
production line for the production of diverse product variants [23]. If a current
manufacturing system’s existing configuration cannot produce a new product, the
addition or replacement of resources or software is necessary without replacing the
entire system. If this process is simple and cost-effective, it indicates a high level
of system changeability [11].

A new approach that describes relationships between Product, Process, and
Resource via Skill is called Skill-based Engineering Model (SEM). Skills can be
likened to services in SOA or methods in programming [24]. Skills are the process
capabilities offered by equipment to carry out essential steps in the assembly process
[25]. Designing systems based on the required skills for each step of the process
is the primary goal of Skill-based Engineering. In this model, skill is a common
point that satisfies the product’s requirements and resource possibilities. Skill can
represent either primitive functionality e.g., open/close valve, or less refined and
more complex functionality like a pick-and-place process [11].

Figure 2.6: Key components of Skill-based Engineering. 1) The product to be
manufactured, 2) The manufacturing process for this product, 3) The available
resources capable of executing individual steps in this process, 4) The skill that
connects these entities and is primarily associated with the desired process [11].

The way to avoid systems complexity and increase flexibility is to split complex
(composite) skills into sequences of simple (atomic) skills [11, 26, 27]. Atomic

16 2.3. Skill-based Approach

skills represent fundamental skills at the most granular level (e.g. open/close
valve), whereas Composite skills encompass a collection of elemental or lower-level
composite skills (e.g. pick-and-place process). These composite skills implement a
workflow-like sequence of processes that support sequential, parallel, and conditional
execution of skill flows [27, 28]. However, SEM does not offer any recommendations
about how raw skill descriptions should be. Furthermore, the skill’s description
represents a challenge because a detailed explanation of skills leads to increasing
flexibility and whole system complexity and vice versa, a more common explanation
makes the system less complex and less flexible. The way to solve this question
is to find a balance between flexibility and complexity. Another problem that is
linked with the skill’s description is the matching problem. This problem contains
tasks to satisfy process requirements with available skills [29].

The work [30] presents a modeling language for straightforward parameterized
skills. A skill consists of a name (e.g., Move, Drill) and a set of parameters, which
can include numerical values with defined minimum and maximum limits (e.g.,
work range from 0 to 30 mm), booleans, or enumerations (e.g., the enumeration of
possible shapes to screw) [11, 29, 30].

The work also presents a basic algorithm to resolve the matching challenge
when skills are defined using a specific language, where required and offered skills
must share the same name, and each parameter of the required skill must be part
of the set of parameters provided by the offered skill. However, this approach has a
limitation as the matching problem can only be resolved for skills sharing identical
names e.g., a Move skill can be matched with another skill named Move but not
with one named LinearMove [29, 30].

To overcome this constraint, one strategy involves establishing relationships
between skill names, such as explicitly stating that a LinearMove is a specific
instance of a Move. Ontology-based approaches address this challenge, as seen
in works like [11, 31, 32]. These approaches vary in their modeling techniques,
whether through skills (representing the sequence of tasks for product manufacturing
[31]) or by different approaches to product modeling (from an abstract symbolic
representation to a complete geometric representation [32]) [29].

Authors of [11] proposes ontologies (Figure 2.7) as a promising method for
defining and deriving composite skills from a collection of atomic skills. They also
facilitate the definition of required skills for specific processes and the assurance
of skills by particular resources. However, according to [11] ontologies have some
limitations in their current form like limited standardized ontologies for industrial
systems, computational complexity, and lack of calculation and simulation possibil-
ities. In spite of these disadvantages, some ontologies like Ontologies for Robotics
and Automation (ORA) [33] can be considered as reference [11].

Another solution for this problem is described in [26]. Because of increased

2. State of the Art 17

Figure 2.7: Examples of ontologies usage. The left image shows of skills definitions
using OWL ontologies and illustrates their application to establish a skill taxonomy
with various levels of abstraction, e.g. Actuating is a subtype of Skill, featuring a
specialization named ForceActuating. The right image is an example of resources
and skills definition and illustrates the definition of pinch gripper. It consists of
three other resources, each providing specific atomic skills. Ontologies allow to
infer this composite skill from the collection of atomic skills.

complexity in product workflows and skill requirement definitions, it was observed
that certain requirements can not be aligned with any skill. This occurs due to
the introduction of new requirements that the assembly system can not fulfill
or when requirements are specified at the composite level [26, 27]. There are
two potential solutions to this problem. The first is to integrate new skills into
the system and the second is the use of patterns. Patterns present alternative
representations of composite-level skill requirements, defining them as subsets of
skill requirements (atomic or composite) that an assembly system could potentially
fulfill, as illustrated in Figure 2.8 [26, 27].

IDEAS project is an example of the Skill-based approach implementation. The
Instantly Deployable Evolvable Assembly System (IDEAS) project [25] aimed to
offer an industrially feasible approach to Evolvable Assembly Systems (EAS). This
evolvable system relies on principles of modularity, plug and produce, and agent
(include skills) technology. The system is based on the concept of skills, which
are implemented as function blocks following the IEC 61499 standard, ensuring
a separation between data flow and process execution [26, 27]. Skills encapsulate
assembly processes provided by mechatronic agents known as Resource Agents (or
The Machine Resource Agent (MRA) [28]), tasked with overseeing the associated
equipment as shown in Figure 2.8 [27]. These resource agents contain the atomic
skills that can be performed by the mechatronic entity [28].

Another example that shows an implementation of skill skill-based engineering

18 2.3. Skill-based Approach

Figure 2.8: Problem definition of skill allocation methodology with patterns [27].

model is presented in [23]. This work is focused on using of common interface that is
independent of skill implementation and guarantees interoperability between various
tools and programming standards. This gives a possibility of the construction of
a system based on a hierarchical skill model, spanning from atomic to complex
composite skills. The project involves the operation of four distinct devices from
different vendors, communicating their skills through a common interface (OPC
UA), e.g. control of one of the equipment elements is managed by a soft-PLC
running CODESYS runtime, with its skill implemented in IEC 61131-3, while the
remainder of the application is executed in IEC 61499 [23]. The utilization of
an OPC UA interface as a shared skill description facilitates the abstraction of
low-level functionality implementation, showcasing interoperability among diverse
software implementations on various devices.

The works [34–36] also propose IEC 61499 as a standard for skills implemen-
tation. However, VDMA R+A OPC UA Demonstrator from [35] utilizes both
standards IEC 61499 and IEC 61131-3. The EnAS [34] project is based on the
SOA paradigm and has a goal to develop a flexible assembly line with a changeable
layout, integrated with a mobile robot.

The definition and standardization of skills can vary between different systems
and industries. Achieving a common understanding and agreement on skill defini-
tions, especially at the composite level, may require industry-wide collaboration

2. State of the Art 19

and has to be performed by the standardization organizations [11, 37, 38]. In
summary, Skill-based Engineering provides a framework for designing agile and
adaptable automation systems that can efficiently handle the complexity and vari-
ability present in modern manufacturing environments. It focuses on the skills
required for specific tasks, promoting modularity, interoperability, and flexibility in
automation system design.

2.3.2 Plug and Produce

The current situation in the industry is characterized by an increasing variety
of products, decreasing batch sizes, and volatile demand. These conditions, coupled
with the decreasing duration of product life cycles, resulting in a scenario where the
need for adjustments and adaptations to manufacturing equipment becomes more
frequent [39]. Traditionally factories are conventionally structured to accommodate
large-scale production, with production lines frequently maintaining a consistent
configuration throughout their operation [40]. Modern manufacturing systems
commonly depend on a fixed or "hard-wired" centralized hierarchy of Programmable
Logic Controllers (PLC). Consequently, to reconfigure the system, it is necessary
to halt the plant, rewire the components, and reprogram the controllers [41].

First or one of the first mentions of the term Plug and Produce is introduced
in [42]. Derived from the familiar Plug and Play concept in computing, Plug
and Produce aims to simplify the commissioning process. This process involves
the installation of new devices and the removal of devices without impacting
others, managing the registration or deregistration of devices from the database,
and eliminating the necessity for reprogramming [40, 42]. A proper description
of mechatronic modules and their capabilities (skills) is essential for the Plug
and Produce concept. Once implemented, these modules can directly offer their
capabilities for utilization in production processes. Within this framework, skills
are assessed against skill requirements and chosen to establish a new or modified
system. Hence, they have a role akin to services in SOA [39, 43]. For successful
implementation of this type of system, [39] proposes three requirements that should
be satisfied:

• Extensibility of capability descriptions. Manufacturing equipment is typically
engineered for utilization over extended periods, ranging from 10 to 20 years
or even more. Such equipment has to be designed with a focus on later adap-
tation. This means that mechanical interfaces and software implementations,
capability models have to be created in a way that allows for changes at a
later point [39].

• Vendor neutrality and linked information. Manufacturing facilities frequently
incorporate machinery and solutions sourced from various vendors, resulting

20 2.3. Skill-based Approach

in the use of diverse tools for implementation. A representation of machines
and their capabilities should be stored in an open and vendor-neutral format,
facilitating the integration of information from disparate sources and miti-
gating challenges arising from the mentioned heterogeneity. The presence of
standards is crucial for the development of adaptable systems [39, 44].

• Distinction between abstract and executable capabilities. A distinct division
should be established between outlining a machine’s capabilities and detailing
the technical solutions available for carrying out these capabilities. Abstract
capabilities can also be articulated as a request from a plant operator seeking
technical solutions to address a specific issue. Equipment manufacturers can
then provide machines equipped with executable functions that fulfill the
requirements stipulated by the plant operator [39].

Successful Plug and Produce system implementation hinges on three crucial
aspects. First, prioritize extensibility for adapting manufacturing equipment over
its extended lifespan. Second, ensure vendor neutrality and linked information
to handle diverse machinery and solutions from different vendors, emphasizing
open, vendor-neutral formats and standards. Lastly, maintain a clear distinction
between abstract and executable capabilities, fostering effective communication
between plant operators and equipment manufacturers. These requirements form a
solid foundation for implementing the Plug and Produce system in manufacturing
environments.

The following project can be observed as an example of a Plug and Produce
system implementation. The case study, based on the EnAS demonstrator [45],
uses a product-centric control strategy. This approach involves direct product
requests to available providers for assembly and processing, eliminating the need
for offline planning. The implementation of product-centric control is executed
using IEC 61499. Also, the work integrates the SOA paradigm, using OPC UA to
dynamically discover and compose production services based on incoming product
orders and types [40].

The Open Platform Communications Unified Architecture (OPC UA) Discovery
standard is proposed as a service discovery mechanism, as illustrated in Figure
2.9. This mechanism introduces a discovery server where services can register
themselves, becoming visible to other parties after initialization and integration
into the system. Services are registered to the discovery server through the OPC
UA server, and parties with an associated OPC UA client can query the discovery
server to identify available services and take appropriate actions based on this
information [40, 46].

Another example of a Plug and Produce system is presented in [23]. This work
is based on a skill-based approach and presents a concept of how skills implemented

2. State of the Art 21

Figure 2.9: The architecture that utilizes OPC UA Discovery for service discovery
[40].

with different standards can be managed by a common interface of middleware
software. A common interface guarantees to the services easy communication and
control of the execution process of services. Authors assume the terms service and
skill as equivalent terms. The common interface is represented by OPC UA and
establishes communication between upper control levels and devices on the field to
allow a SOA-oriented design for the system. Skills are implemented with both IEC
61131-3 and IEC 61499 and mapped to OPC UA [23].

A setup consists of three color lamps controlled by three different PLCs. Two
light controls are implemented in IEC 61499 and the last one in IEC 61131-3 [23].
Each atomic skill, which turns the corresponding lamps on and off, is represented
in the OPC UA namespace that uses a program finite state machine as shown in
Figure 2.10. In OPC UA, a Finite State Machine (FSM) models the behavior of
components, specifying states, transitions, and associated actions in response to
events or conditions. It aids in describing and controlling dynamic behaviors in
industrial automation [47]. The OPC UA client manages a program by calling
methods and allows not just to trigger a skill’s execution, but also to receive a
result back and monitor intermediate results. A server runs skills and can prevent
a method’s execution by a client if it is now allowed in the current state. Utilizing
an OPC UA interface as a standardized skill description provides an abstraction of
low-level functionality implementation, showcasing interoperability across diverse
software implementations on different devices [23, 48].

As it was described before Skills are an essential part of the Plug and Produce
approach. In practical realization, the IEC 61499 standard is the most widespread
way for Skill implementation. IEC 61499 is proposed by [44], [49] and also used
in projects like EnAS [40, 45], openMOS [50], IDEAS [25]. [23] shows that the
standard IEC 61131-3 is a possible and alternative solution for skills implementation
as well.

OPC UA programs which are used in [40], [46], and [23] provide the functionality
for detecting components of a system within a network. This feature gives a

22 2.3. Skill-based Approach

Figure 2.10: A Skill modeled as an OPC UA program finite state machine. Atomic
skill is represented in the OPC UA namespace with five methods (Start, Suspend,
Resume, Halt, Reset) and state variable. Start() turns a lamp on, cancel() turns
a lamp off. Reset(), resume(), and suspend() have no effect when calling. This
modeling is fully compliant with the OPC UA programs specification. All control
methods are defined as optional [23, 48].

2. State of the Art 23

possibility to build the Plug and Produce system architecture based on OPC UA.
An additional tool, proposed in numerous papers, that can enhance and sim-

plify the development of an OPC UA information model is Automation Markup
Language (AutomationML) [51, 52]. The primary objective of AutomationML is
to integrate engineering tools across diverse domains, including process control
engineering, mechanical plant engineering, electrical design, process engineering,
robot programming, PLC programming, HMI development, and more [44, 49]. It
aims to address the bottleneck in data exchange arising from the use of various
proprietary data types and formats in manufacturing plants. [53]. When combined,
AutomationML and OPC UA enable easy integration and interoperability between
different devices and systems in a Plug and Produce environment. AutomationML
can describe the engineering details of machines, and OPC UA can facilitate the
communication and interaction between these machines by providing a standard-
ized communication platform. This integration ensures that devices from various
vendors can work together harmoniously, promoting flexibility and efficiency in
industrial processes [49, 51, 52].

The Plug and Produce concept is crucial for Industry 4.0 because it addresses
the need for flexible and adaptable manufacturing systems. With shorter product
life cycles and demand for customized products, the ability to quickly and effortlessly
integrate new equipment is essential. Plug and Produce enables manufacturers
to achieve dynamic reconfigurability, adaptability, and efficient commissioning,
ultimately contributing to increased operational efficiency and responsiveness to
changing market demands in the Industry 4.0 landscape.

2.4 Search Algorithms

The shortest path algorithms are invaluable tools in the industrial sector. Their
applications range from optimizing logistics to robotic navigation improving the
overall performance of industrial processes. A pipe system is a great example of an
application field. The complex pipe’s network looks from the top view similar to a
graph. That means the graph theory can be used to represent the pipe’s network.
The point, that the search for a shortest path is a classical problem in a graph
theory, makes it even more convenient and suitable way to solve this problem.

2.4.1 Graph

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E
is the set of edges, connecting the pairs of vertices [54]. Graphs can be classified
into several types based on their characteristics and properties. For example, an
undirected graph is a type of graph in which edges between nodes (vertices) have

24 2.4. Search Algorithms

no direction. The relationship between two nodes is mutual, and it doesn’t matter
which node is considered first. In a directed graph each edge has a direction, which
means it goes from one vertex to another. These edges are represented as arrows,
and there can be one-way or two-way connections between vertices. Another type
of graph is a weighted graph is a graph in which each edge has an associated
numerical value called a weight. These weights represent some measure of distance,
cost, or importance between the connected nodes. In contrast to weighted graphs,
unweighted graphs have edges with no associated values or weights [22, 55].

Figure 2.11: Different types of graphs. Picture 1 illustrates the undirected and
unweighted graph, where circles are nodes (vertices) and connected with edges.
Picture 2 is the directed but unweighted graph. Picture 3 is the directed and
weighted graph.

Graphs allow to solve optimization problems, design, and search for an optimal
route between a start node and a goal node. A selected path on a graph is defined
by a search strategy while the search strategy is defined by the graph’s complexity
and possible, addition requirements to a task. If the node at the end of the selected
path is not a goal node and it has no neighbors, then extending the path means
removing the path from the frontier. This outcome is reasonable because this path
could not be part of a path from the start node to a goal node [22].

2.4.2 Dijkstra’s algorithm

The Dijkstra shortest path algorithm was developed by Dutch computer scientist
Edsger W. Dijkstra in 1956. It is a widely used and efficient algorithm for finding the
shortest path between two nodes in a weighted, directed graph with non-negative
edge weights and guarantees finding the shortest path from the source node to
all other nodes in the graph. However, it does not work with graphs that have
negative edge weights. The Dijkstra algorithm has various practical applications
[56, 57]:

• Determining the shortest path for data packets in computer networks;

2. State of the Art 25

Figure 2.12: Problem solving by graph searching. The intuitive idea behind the
generic search algorithm, given a graph, a start node, and a goal predicate, is to
explore paths incrementally from the start node. This is done by maintaining a
frontier of paths from the start node [22].

• Calculating optimal routes for drivers based on road network data;

• Planning efficient routes for public transportation or delivery services.

The Dijkstra algorithm works by maintaining a set of tentative distances from
a source node to all other nodes in the graph. It repeatedly selects the node with
the shortest tentative distance and explores its neighboring nodes, updating their
distances if a shorter path is found. This process continues until the shortest path
to all nodes is determined [56, 57].

Execution of the Dijkstra Algorithm is presented in Figure 2.13 and has following
steps:

• Step 1: Initialize the distance from the source node to itself as 0 and the
distance to all other nodes as infinity. Create an empty set of visited nodes.

• Step 2: Select the node with the smallest tentative distance (initially the
source node) and mark it as visited.

• Step 3: For the selected node, examine all its unvisited neighbors. Calculate
their tentative distances through the current node, and update the distances
if a shorter path is found.

• Step 4: Repeat step 2 until all nodes have been visited or the target node is
reached [56, 57].

26 2.4. Search Algorithms

Figure 2.13: Execution of the Dijkstra algorithm. Picture 1 shows the initialization
of the distance from the source node to itself as 0. Picture 2 is the selection of
the node with the smallest tentative distance and examination of all its unvisited
neighbors. Picture 3 is a repetition of the previous steps. Picture 4 is the shortest
path from A to B.

The time complexity of the Dijkstra algorithm is O(V 2) without a priority
queue, where V is the number of nodes. With a priority queue, the time complexity
is reduced to O(V ∗ log(V) + E), where E is the number of edges. The latter case
is more efficient and suitable for larger graphs [56, 57].

2.4.3 Bellman-Ford algorithm

The Bellman-Ford algorithm is a well-known algorithm for finding the shortest
paths in a weighted directed graph and works for graphs with both positive and
negative edge weights. This algorithm operates by iteratively relaxing the edges of
the graph to find the shortest paths from a source node to all other nodes. One
of the features of the Bellman-Ford algorithm is its ability to detect the presence
of negative weight cycles. Negative weight cycles can lead to arbitrarily small
distances and make the problem of finding the shortest path ill-defined. The usage
of the Bellman-Ford algorithm can be observed in such applications as [56, 57]:

• Finding the shortest path in computer networks;

• Determining optimal routes for delivery trucks or public transportation;

• Analyzing financial networks and risk assessment.

2. State of the Art 27

Figure 2.14: Execution of the Bellman-Ford algorithm. Picture 1 shows distance
initialization to itself. Picture 2 is an iteration through all edges. The red number
is the updated distance. Pictures 3-5 repeat of previous step.

Execution of the Bellman-Ford algorithm is presented in Figure 2.14 and has
following steps:

• Step 1: Initialize the distance from the source node to itself as 0 and the
distance to all other nodes as infinity.

• Step 2: Iterate through all edges of the graph, relaxing each edge. Edge
relaxation involves checking if the distance to the target node through the
current edge is shorter than the previously known distance. If it is, update
the distance.

• Step 3: Repeat step 2 for a total of (V-1) iterations, where V is the number
of nodes in the graph. This is because the shortest path between any two
nodes in a graph with V nodes has at most (V-1) edges.

• Step 4: After (V-1) iterations, if the algorithm finds shorter distances, it
means that there are negative weight cycles in the graph, and the algorithm
can’t guarantee accurate results [56, 57].

The time complexity of the Bellman-Ford algorithm is O(V ∗ E), where V is
the number of nodes, and E is the number of edges. It can be less efficient than
algorithms like Dijkstra’s algorithm for graphs with non-negative weights. However,

28 2.4. Search Algorithms

its ability to handle negative weights and detect negative weight cycles makes it a
valuable tool in scenarios where other algorithms may not be suitable [56, 57].

2.4.4 Floyd-Warshall algorithm

The Floyd-Warshall algorithm was developed by American computer scientists
Robert W. Floyd and Stephen Warshall in the early 1960s. It finds the shortest
paths between all pairs of nodes in a weighted directed graph. Unlike Dijkstra’s
algorithm, the Floyd-Warshall algorithm can handle graphs with both positive
and negative edge weights and is capable of detecting negative weight cycles. The
algorithm is well-suited for solving problems where a complete pairwise distance
matrix is required, such as in-network routing or transportation planning. Fields
of application for the Floyd-Warshall algorithm are [56, 57]:

• Determining optimal routes for data packets in computer networks;

• Finding the most efficient routes for transportation networks;

• Measuring distances and relationships between users in a social network.

The Floyd-Warshall algorithm is based on dynamic programming and uses a
matrix to store intermediate results. It iteratively updates the matrix to find the
shortest path between all pairs of nodes [56, 57]. Execution of the Floyd-Warshall
Algorithm has several steps:

• Step 1: Initialize a matrix where each element (i, j) represents the shortest
distance from node i to node j. Initially, this matrix is filled with the direct
edge weights if an edge exists, or with infinity if there is no direct edge. The
diagonal elements (i, i) are set to 0.

• Step 2: Perform a series of iterations. In each iteration, consider a specific
node (k) as a potential intermediate node in the paths from each node (i) to
each node (j).

• Step 3: For each pair of nodes (i, j), check if the path from i to j through node
k is shorter than the current path from i to j. If it is, update the distance
matrix with the new, shorter distance.

• Step 4: Repeat Step 2 for all nodes as potential intermediaries (k). After com-
pleting all iterations, the distance matrix will contain the shortest distances
between all pairs of nodes [56, 57].

2. State of the Art 29

The Floyd-Warshall algorithm has a time complexity of O(V 3), where V is the
number of nodes in the graph. This makes it less efficient than Dijkstra’s algorithm
for graphs with non-negative edge weights. However, its ability to handle a wider
range of graph types and its capability to compute all-pairs shortest paths in a
single run makes it a valuable tool in certain scenarios [56, 57].

2.4.5 Johnson’s algorithm

Johnson’s algorithm is a specialized algorithm for finding the shortest paths
between all pairs of nodes in a weighted, directed graph, just like the Floyd-Warshall
algorithm. It was developed by American computer scientist Donald B. Johnson
in 1977 and offers a more efficient approach for certain cases compared to the
Floyd-Warshall algorithm. Johnson’s algorithm works for graphs with both positive
and negative edge weights and can handle graphs with negative weight cycles. It
is especially efficient when the graph contains only a few negative weight edges
relative to the total number of edges. Typical examples of Johnson’s algorithm
usage are [58, 59]:

• Determining the shortest path for data packets in computer networks;

• Measuring distances and relationships between users in social networks;

• Identifying important nodes or centralities within a graph.

The Johnson algorithm is based on the idea of transforming the original graph
with potentially negative edge weights into a modified graph with non-negative
edge weights. This transformation allows the use of a faster algorithm (basically
Dijkstra’s algorithm) for finding the shortest paths between all pairs of nodes [58,
59].

Execution of the Johnson’s algorithm is presented in Figure 2.15 and has
following steps:

• Step 1: Create a new, temporary source node, and connect it to all other
nodes in the graph with zero-weight edges.

• Step 2: Run the Johnson’s algorithm starting from the source node to calculate
the shortest paths from the source node to all other nodes. This step detects
and eliminates negative weight cycles in the graph.

• Step 3: After the Johnson’s step, edge weights in the original graph should
be reassigned by removing the source node and using the calculated distances
from the source node to adjust the weights in the form: Newweight =
originalweight+ startnode− endnode.

30 2.4. Search Algorithms

Figure 2.15: Execution of the Johnson’s algorithm. Picture 1 shows the original
graph. Picture 2 illustrates the temporary source node and calculated distances
from this node to all other nodes in the graph. Picture 3 shows the graph with
recalculated weights, e.g. for the edge AB the new weight is: -2+0-(-2)= 0
(Newweight = originalweight+ startnode− endnode).

• Step 4: For each node in the modified graph, Dijkstra’s algorithm is used
to find the shortest paths to all other nodes. This can be done efficiently
because the modified graph has non-negative edge weights [55, 58].

The time complexity of Johnson’s algorithm mainly depends on the underlying
algorithm used for the shortest path calculations, typically Dijkstra’s algorithm.
In the worst case, Johnson’s algorithm has a complexity of O(V 2 ∗ log(V) + V E),
where V is the number of nodes and E is the number of edges. It is more efficient
than the Floyd-Warshall algorithm for graphs with relatively few negative weight
edges [55, 58].

2.4.6 A* search

The A* algorithm is an efficient pathfinding algorithm commonly employed in
graph traversal and pathfinding problems. It’s particularly effective for finding the
shortest path between two points in a graph or grid. This algorithm was developed
by American computer scientists Peter Hart, Nils Nilsson, and Bertram Raphael in
1968, and is used in robotics, GPS navigation, and other fields [21, 22, 58].

A* contains elements of the Dijkstra’s algorithm and uses a heuristic to estimate
the cost of reaching the goal from each node, making it a more informed search
than Dijkstra’s algorithm. The algorithm maintains a priority queue of nodes to
explore and selects the next node to visit based on a cost function that balances
both actual path cost and estimated remaining cost [21, 22, 58].

2. State of the Art 31

The key component of the A* algorithm is a cost function. It evaluates each
node based on a cost function f(n), which is the sum of two components: f(n)
= g(n) + h(n). The first is the actual cost of the path g(n) from the start node
to node n. The second is the heuristic function h(n) estimate of the cost from
node n to the goal. The choice of heuristic can significantly impact the algorithm’s
performance [21, 22, 58].

The time complexity of A* is highly dependent on the choice of heuristic and
the specific problem instance. In the worst case, the time complexity is exponential.
However, A* is usually very efficient in practice, especially when a good heuristic
is available. To summarize the previous chapter, the right choice of the shortest
path algorithm is crucial and depends on the specific characteristics of the task.
It involves considering the graph type, edge weights, presence of negative weights,
and heuristics. There is no universal solution, and the choice of the shortest path
algorithm should be tailored to the unique characteristics and demands of the
problem.

2.5 IEC 61512 / ISA-88

Today, the entire modern industry operates under the auspices of technological
standards. In the process industry ANSI/ISA S88 and its equivalent IEC 61512
provide domain specific models for the design and control of batch production
processes, as well as describes the norms for recipes of the technological process
[60].

2.5.1 Batch process

Industrial processes can be categorized as continuous, discrete, or batch op-
erations. In brief, continuous processes involve a continuous outflow, such as
energy, paper, or steel production. Discrete processes are characterized by distinct,
individually identifiable outputs, e.g. car manufacturing, where each car and its
components can be tracked separately. Batch processes combine attributes of both
continuous and discrete processes, resulting in batch outcomes, and managing such
processes is known as Batch Control [61–64].

Batch processes are an integral component of the chemical process industries
and find widespread use in the production of top-quality goods. Their widespread
adoption can be primarily attributed to their flexibility in managing diverse product
grades by altering initial conditions and input trajectories. Generally, a batch
process comprises the following primary stages [65]:

• The reactor is filled with specified ingredients as per a predetermined recipe.

32 2.5. IEC 61512 / ISA-88

• A transformation process is executed over a finite time interval.

• Ultimately, the process concludes upon satisfying specific predefined criteria.

In the early 1990s, a standard known as ISA S88 was developed and published,
with a primary focus on batch processes and their control. This standard introduces
terminology and concepts that simplify the design and operation of batch plants
[61]. The core idea of ISA 88 is the separation of product knowledge from the
equipment. The standard proposes a set of seven models as shown in Figure 2.16
to describe a batch process in varying levels of granularity from process and control
engineering points of view [66].

Figure 2.16: Process and equipment view of IEC 61512/ISA 88 [66].

From the process view, planning starts with a Process model. The Process
model encompasses the dynamic and functional behavior of the batch process. It
describes how the materials and substances are transformed, mixed, reacted, or
otherwise processed as they move through the equipment defined in the Physical
Model. The Process Model focuses on the key parameters, conditions, and control
strategies that govern the actual process dynamics. It is concerned with variables
like temperature, pressure, flow rates, and chemical reactions. The Process Model
helps in understanding and controlling the real-time behavior of the batch process
[62, 66–68].

The transition from a general recipe to a specific control recipe is progressively
refined to align with the batch plant’s requirements. The resulting Procedural

2. State of the Art 33

control model focuses on the sequencing and organization of actions, tasks, and
procedures that need to be carried out to execute a batch process. It defines the
order in which specific actions and unit procedures must occur to produce a product
or achieve a desired outcome. The Procedural Model outlines the recipe structure,
which includes master recipes, product recipes, and process recipes. It provides
a step-by-step description of how the process should be executed, including the
allocation of resources and timing of actions [62, 66–68].

The Physical model refers to the physical equipment, devices, and components
involved in a batch process. It defines the actual physical assets, such as tanks,
pumps, valves, sensors, and other equipment, that are used in the manufacturing
or production process. The Physical Model describes the hardware and instrumen-
tation that interact with the substances and materials being processed. It serves
as the foundation for understanding the layout and configuration of the industrial
plant or system [62, 66–68].

These three models are interrelated and collectively form the foundation for
designing, simulating, and controlling batch processes. The Physical Model defines
the equipment, the Procedural Model outlines the sequence of actions, and the
Process Model addresses how the substances are transformed during the process.
Together, they provide a comprehensive framework for developing and managing
batch control systems [62, 66–68].

The standard was originally developed with a specific focus on batch processes.
However, its applicability extends to continuous and discrete processes that demand
a degree of flexibility. It provides a standardized terminology aimed at enhancing
communication to prevent situations where different individuals use varying terms
for the same concept or, conversely, employ the same term for distinct concepts.
Furthermore, an essential facet of ISA S88 is its emphasis on modularity. This
modularity allows for the development of process equipment and procedures that
can be reused across various applications [61, 64].

2.5.2 Classification by physical structure

The IEC 61512 standard provides a framework for designing and modeling
batch processes and allows to choose the most appropriate structure based on
the complexity and requirements of the specific process. This choice impacts
how the batch recipe is executed, monitored, and controlled, making it a critical
consideration in batch control system design.

A single-path structure represents a straightforward, sequential approach
to executing a batch process (see Figure 2.17). This structure has a single, prede-
termined path that defines the sequence of actions and operations to be performed.
The process follows a linear and unidirectional flow, with each step occurring one
after the other. It is often used for simple batch processes with well-defined and

34 2.5. IEC 61512 / ISA-88

fixed procedures [62].

Figure 2.17: Single-path structure. It represents a group (or a single unit) of
sequentially connected units and has a single, predetermined path that defines the
sequence of actions and operations to be performed [62].

A multiple-path structure is shown in Figure 2.18. It allows for branching
and the execution of different paths or alternatives within a batch process. This
means that at certain decision points or conditions, the process can follow different
routes, each with its own set of actions or operations. Multiple-path structures
are useful for batch processes that require flexibility, adaptive decision-making, or
handling of various scenarios [62].

A network structure is shown in Figure 2.19. It is the most complex and
flexible of the three. It allows for the creation of a network of interconnected paths
and actions within a batch process. In this structure, different unit procedures,
operations, and phases can be linked in a non-linear, interdependent manner. The
network structure is highly versatile and suitable for complex batch processes that
involve intricate interdependencies, parallel operations, or simultaneous execution
of multiple tasks [62].

2.5.3 Recipes

A recipe, in the context of manufacturing, serves as a comprehensive set of
instructions that precisely defines the production requirements for a particular
product. This is an analog of a cooking recipe but designed for the production of
goods. Within the framework of the IEC 61512 standard, four distinct recipe types
are discussed: the general recipe, site recipe, master recipe, and control recipe (see
Figure 2.20). Each of these recipe types contains specific information related to the
production process of a particular product. The significance of these recipes lies
in their ability to enable batch processing equipment to produce various products
without necessitating the reconfiguration of equipment controls for each product.
In other words, these recipes streamline the manufacturing process by providing a
standardized blueprint for creating multiple products efficiently [61, 62].

2. State of the Art 35

Figure 2.18: Multiple-path structure. The process can follow different routes, each
with its own set of actions or operations. The units can share raw materials and
product storage. Several batches may be in progress at the same time. [62].

Figure 2.19: Network structure. The most complex and flexible structure that
allows for the creation of a network of interconnected paths and actions within a
batch process [62].

36 2.5. IEC 61512 / ISA-88

Figure 2.20: ISA-88 Recipe Model. The general recipe is a basis for lower-level
recipes and not equipment specific. The site recipe is a combination of site-specific
information and a general recipe. The master recipe is equipment and product-
specific. It is targeted to a process cell or a subset of the process cell equipment but
not specific to batch. The control recipe is specific to a single batch and contains
scheduling and operational information [62].

2. State of the Art 37

The general recipe serves as the foundational recipe for lower-level recipes. It
is designed without specific knowledge of the production equipment employed for
manufacturing the product. The general recipe outlines the raw materials, their
relative quantities, and the necessary processing steps, all without tying them to a
particular facility or its available equipment [62, 69].

The site recipe is adapted to a particular production facility, combining facility-
specific information with the enterprise-level recipe. Typically derived from a
general recipe recipe, it customizes the conditions to meet the requirements of a
specific production site. This level of detail is essential for facility-specific, long-term
production planning but doesn’t specify the particular equipment combinations.
Multiple site recipes can be derived from the same general recipe, each encompassing
a part of the process that can be implemented in a particular facility [62, 69].

The master recipe details the process engineering implementation of a process
outlined in the general recipe. It requires precise information about the process flow,
production scale, equipment types, and the level of automation. Multiple process
implementation recipes can be derived from a site recipe, each encompassing
a part of the site recipe that can be executed in a specific unit. This level
includes all the data from the site recipe, along with production instructions and
procedural requirements for specific process segments. The master recipe is no
longer equipment-neutral because it contains process and automation details about
the process flow [62, 69].

The control recipe is created from the master recipe, the control recipe is gen-
erated based on the requirements for executing production on a specific production
facility. It includes order-specific information like production dates, quantities,
material batches, and batch numbers, as well as details about planned start dates,
duration, and subunit assignments. The control recipe also incorporates all data
and values relating to quantity, quality, and the progression of the process [62, 69].

The second part of the standard, IEC 61512 Batch Control Part 2: Data
Structures and Guidelines for Languages [70], present Procedure Function Chart
(PFC). PFC is a graphical representation used to define, document, and illustrate
the procedural elements and control logic within a batch process. It provides a
visual overview of how a batch procedure is structured and executed. It includes
various graphical symbols and annotations to depict the different components and
elements of a batch procedure, such as unit procedures, control functions, sequences,
and the relationships between them [66, 68, 70]. Figure 2.21 as an example of PFC
from [66] and table of graphical elements.

Procedures are the highest-level set of instructions for a batch process, consisting
of various Unit Procedures. Unit Procedures, in turn, are composed of Operations,
and Operations can be further broken down into Phases. This hierarchical structure
allows for a systematic and detailed representation of batch processes, making it

38 2.6. OPC Unified Architecture (OPC UA)

Figure 2.21: Elements of PFC. The top image shows an example of implementation
for a filling operation of a reactor adapted from [66]. The image below illustrates
different graphical elements of PFC from IEC 61512.

easier to control and execute complex industrial operations [62].
PFC serves as a valuable tool for operators, engineers, and other stakeholders

involved in batch processes, as it offers a clear and intuitive representation of the
sequence of actions and decision points within a batch recipe. The main purpose of
PFC is to make batch procedures more understandable and manageable, enabling
efficient execution and control of batch processes. It plays a crucial role in ensuring
that batch operations are carried out accurately and consistently, in line with the
defined procedures and control strategies [66, 68, 70].

2.6 OPC Unified Architecture (OPC UA)

The Industry 4.0 and the Internet of Things brought various new concepts. In
scenarios covering a wide array of application domains and their requirements, it is
hard to name a single network protocol for every situation. An attempt to choose
a single communication protocol reduces the flexibility of a system and cuts off the
possibility of using the benefits of a certain protocol [71, 72].

Effective communication within the context of Industry 4.0 requires flexible
and adaptable connections between integration layers and information layers. To
avoid this lack of flexibility a useful multi-protocol communication protocol, which

2. State of the Art 39

can help to solve a compatibility problem, should be selected [71]. OPC UA is a
potential candidate to be one of the key standards within the context of Industry
4.0. It helps to solve the problem of data accessibility between industrial controllers
from different vendors and ensures compatibility with a wide range of embedded
devices [73].

With OPC UA, all data and resources are accessible to every authorized
application at any time in the address space (collection of visible information on
a Server [74]). This function is independent of the manufacturer from which the
applications originate, the programming language in which they were developed, or
the operating system on which they are used [75].

An example of enhanced flexibility with the help of OPC UA is presented in [76].
The topic focused on the migration of legacy systems in an industry into compatible
with Industry 4.0 systems. A legacy RFID system consists of four independent
stations. Each contains an industry robot, PLC, actuators, and sensors. Usage of
Industry 4.0 standards such as OPC UA combined with a cloud computing platform
(Microsoft Azure) helps to provide the legacy system with a digital interface. The
authors propose that the implemented architecture has modular properties and
easily can be extended with additional equipment (i.e. antennas, PLCs). Another
example of communication between devices from various vendors is presented in
[73]. The paper proposes an OPC UA client/gateway-based architecture that
is implemented as a multiple OPC UA server connection to a single OPC UA
client (gateway) device. The OPC UA client connects three different components:
cloud services (Microsoft Azure and Amazon Web Services), PLCs, and embedded
system controllers (Raspberry Pi controller). This architecture is aimed to simplify
smart factories design and give engineers additional flexibility during the system’s
components choice. Both [76] and [73] works show how the OPC UA protocol can
help traditional PLCs be more compatible with Industry 4.0 standards.

An approach proposed in [71] shows how can be achieved interoperability
between OPC UA and SOA protocols. This provides integration of IoT devices
with legacy automation systems. In this approach, the OPC UA is used as a
translator and to perform the role of a service. It works with standard IoT
protocols (i.e. HyperText Transfer Protocol (HTTP), Constrained Application
Protocol (CoAP), and Message Queuing Telemetry Transport (MQTT)) and allows
access from non-OPC UA-based IoT applications to OPC UA nodes [71]. A concept
in [77] shows an attempt to achieve the advantages of both protocols by extending
OPC UA with MQTT. The semantic data model of OPC UA is extended with
MQTT in accordance with the OPC UA publish/subscribe framework, allowing
for broker-based data exchange. Addressing the divergent messaging concepts of
OPC UA and MQTT, this work successfully resolves the data mapping challenge
between these two protocols. These two works give an idea of OPC UA usage in

40 2.6. OPC Unified Architecture (OPC UA)

tandem with other common protocols to enhance the flexibility of a system.
OPC UA is the interoperability standard that provides the secure and reliable

exchange of data in the industrial automation domain. It is platform-independent
and provides a seamless data flow between devices from multiple vendors [75]. OPC
UA is developed by the OPC Foundation and standardized in IEC 62541. The
OPC Foundation is also responsible for the development and maintenance of this
standard [75, 78]. It outlines services that OPC UA clients use for interaction with
information models maintained on the server [71].

OPC UA is extensively utilized in industrial applications for connecting equip-
ment across various networks and at different tiers of the automation hierarchy.
This protocol offers object-oriented data modeling and organizes the address space
of these objects within the server [72, 79]. It allows the creation of variables of
certain data types within each object on the server, allowing clients to read variable
values or to subscribe to variables for which they would like to receive updated
values [71].

The fundamental element of the information model is a Node, an object-
oriented entity. Each node is unique and is identified by a Nodeid, which contains
a Namespace index and a Node name. Relationships between nodes are established
through references, creating meaningful associations. Standardized interactions
between an OPC UA client and server are facilitated by a suite of server-provided
services. These services enable access to and control of nodes, encompassing
tasks such as node and information model management, data reading and writing
(including query and subscription-based operations), and the establishment of
communication channels for subsequent requests [71].

Client-server communication follows the design paradigm of service-oriented
architecture (SOA), with which a service provider receives requests, processes them,
and sends the results back with the response [80, 81].

The Publish-Subscribe model (PubSub according to [82]) provides an alternative
mechanism for data and event notification. It has been optimized for many-to-many
configurations, while in Client-Server communication each notification is for a single
client with guaranteed delivery [80, 83]. It provides easier communication between
two or more devices by organizing data exchange using nodes. A Subscriber is
an equipment or service which is interested in receiving the data. A publisher is
an equipment or service that wishes to send or publish information in the topic.
Published messages distribution to subscribers equipment are done via the server
[72]. With the Publish-Subscribe model, OPC UA applications do not directly
exchange requests and responses. Publishers send messages to a Message Oriented
Middleware without any knowledge about Subscribers which may or may be not
there. Subscribers express interest in specific types of data, and process messages
that contain this data, with no need to know where it came from [75, 82].

2. State of the Art 41

2.7 Research questions
The modern world and the technologies it encompasses change at an incredible

speed. To meet customer requirements, industries face the challenge of producing
personalized products with small batch sizes. The solution lies in flexible plants
that can be quickly updated or reconfigured.

Taking a step in this direction, the standard IEC 61512 was analyzed. It
provides a strong theoretical basis for batch processes while not imposing strict
rules for their implementation. A combination of the Skill Engineering Model and
Service Oriented Architecture presents promising candidates for implementing a
batch process, as these approaches share a common feature with the standard -
breaking down a complex task into a sequence of simple actions. OPC UA, as
a communication tool, should complement and enhance flexibility, providing an
element of Plug and Produce capabilities.

As a result, this thesis seeks to find answers to the following questions:

Question 1:
What kind of advantage/disadvantage has detailed refining of an action into a
sequence of atomic skills over a more common skill description?
Question 2:
Does this approach potentially able to increase the flexibility of the plant?

CHAPTER 3

Concept overview

This chapter gives a general overview of a system as well as possible solutions
for its implementation for automatic planning of a batch process. The concept
also should be able to provide an operator with a suitable interface for monitoring
the state of the process and give alarming functions to prevent accidents during
process execution. The concept description may contain some specific details, but
it should be suitable for different types of domains with some minor changes. The
goal of the chapter is to present a system that can be easily adapted to different
industries and types of processes while ensuring safety and reliability of the plant.

3.1 Problem statement
The task is to develop a concept for a batch process that allows to run and

modify the process. The graphical interface should provide monitoring of the
current state, storage of information, as well as manual control of the process. The
process includes pouring liquids from containers, mixing, and heating them. For
more flexible operation, the system must support the parallel execution of some
stages of the process. To ensure stable and safe operation, the system should have
an alarming potential.

3.2 Basic overview
This concept is based on the ISA-88/IEC 61512 - Batch control standard, which

emphasizes the separation of physical equipment from production instructions
in batch processes. While the standard does not provide specific guidance on
its implementation (only recommendations), this separation is a key element in

43

44 3.2. Basic overview

achieving flexible batch process control. Furthermore, a crucial feature of the
standard is modularity, allowing process equipment and procedures to be easily
reused in different applications.

Skill-based Engineering Model has the same goals and is, therefore, an excellent
candidate for implementing batch processes. In SEM, skill represents actions
requested by the recipe processing algorithm and must include all necessary pa-
rameters. SEM also allows the implementation of skills independent from an
equipment level. The second chapter shows examples of skills implementation using
different programming languages and various PLCs from different vendors within
one project.

Figure 3.1 shows a scheme of the concept where a field level consists of sensors
and actuators as well as PLCs. A PLC has the only task of controlling actuators
and collecting data from sensors. The rest of the routine such as batch recipe
processing, skills execution, data storage, visualization, and operator control are
tasks of an orchestrator (supervising computer) on the control level.

Figure 3.1: The scheme of the concept. The control level is represented as an
orchestrator (supervising computer). The orchestrator performs recipe processing,
skills execution, and user interface (containing manual control, data storage, and
data visualization). The field level consists of sensors, actuators, and PLCs to read
sensors and control actuators.

3. Concept overview 45

3.3 Skill-based approach

Understanding a process is a key point for a recipe implementation. The task
considered in this concept can be formulated as follows: To become a batch of liquid
C, X ml of liquid A should be mixed with X ml of liquid B. This mixture should be
uniformly heated up to X degree Celsius. It is obvious that the task consists of 4
specific actions such as:

• Adding process to transfer some volume of liquid from one place to another(two
times);

• Mixing process to get a uniform mix ;

• Heating process.

By knowing this information and all necessary input parameters the standard
IEC 61512 - Batch control[62] allows to design a recipe for a batch process. For
the recipe design, a Procedure Function Chart (PFC)[70] is used. It is a modeling
technique that provides a visual representation of the sequence and logic of various
functions or steps involved in a specific procedure or process. Figure 3.2 shows
the recipe itself. The recipe consists of a set of phases and conditions for their
successful execution. However, the recipe is just an instruction that shows how the
batch process should be executed.

To implement this recipe as an executable algorithm a skill-based approach
is used. As mentioned in the previous chapter it is a method of designing and
implementing automation systems that focuses on breaking down the functionality
of the system into smaller, reusable building blocks called skills. These skills are
function blocks that represent specific functions or tasks that can be performed by
the system, such as controlling a motor or measuring a temperature.

Atomic skills provide a basic level of functionality and are used to perform
simple tasks (e.g. opening or closing a valve). Composite skills are composed of
several other skills (in theory can include both atomic or other complex skills) and
provide a higher level of functionality to perform more complex tasks.

For example, to execute the adding process the system should know an initial
tank (from where to take the required liquid), a target tank (where to put the
required liquid), and the required amount. A search algorithm of find path skill
provides the system with knowledge of the valves that should be opened, but it
does not have the functionality to open them. At the same time, the open valve
skill has the ability to perform an action in the real world, but it does not know
which valve should be opened. The combination of these two atomic skills builds
a complex skill with the ability to build a calculated path. An additional skill
can calculate the volume of pumped liquid. The heating process is less complex

46 3.3. Skill-based approach

Figure 3.2: Representation of the recipe as a sequence of skills. The left picture is
a recipe itself. The right picture shows how the recipe is represented with the help
of SEM. The dashed box is one of the recipe phases. The yellow box presents a
complex skill, and the blue one is an atomic skill. As it shows each phase consists
of one or several skills. Since both add phases have equal functionality the set of
skills is presented only for the first add phase.

but also requires several actions. This phase consists of the skill that controls
the heater itself and the skill that checks the current temperature in a tank. The
mixing process can be represented just as one skill because according to the task,
this phase does not contain any specific conditions. The mixer should just work
during the whole heating process. Figure 3.2 illustrates a representation of the
recipe as a sequence of skills.

The batch process phases are not the only skills for implementation in the
system. Section 5 of the standard IEC 61512 - Batch control [62] discusses exception
handling in the context of batch manufacturing control. Exceptions are events that
deviate from normal or desired behavior. It is essential in batch manufacturing and
often makes up a significant portion of control definitions. Examples of events that
trigger exception handling include material shortages, equipment problems, and
process issues. From a control perspective, handling exceptions involves detecting
an event, evaluating it, and generating a response.

Assuming that the plant equipment is known within this concept, several
possible exceptions such as responses for them can be identified:

• Tank overfilling. In this case, an operator should receive an alarm notification
and the pumping process should be stopped;

3. Concept overview 47

• Excessive draining of tanks. This can cause air to enter pipes and damage a
pump. This exception has the same response as the previous one;

• Heater protection. The possibility to turn on the heater should be blocked if
a liquid level is lower than the heater itself.

3.4 Path Planning Algorithm

Before starting to pump a liquid from point A to point B, the system should
know how to reach point B. In the case of a redundant pipe system, it is not a
trivial task because there are many possible ways with different efficiencies, and
poorly designed solutions can even form a loop without an endpoint.

The main task of a searching algorithm is to find the optimal path between
an initial and a target tank. The shortest path is not always optimal because it
only considers the distance between nodes, but it does not take into account other
factors that may affect the overall performance of the system. For example, in a
batch processing system, the shortest path may not be the best path in terms of
resource utilization. A path that is longer in distance but uses specific resources in
the right order may be a better option.

Another factor that could make the shortest path not optimal is the existence
of constraints or limitations. Some paths may be shorter in distance but may not
be accessible due to technical constraints, such as the capacity of a pipe or the
availability of a valve. Under the assumption that the pumping process involves a
working pump, it means that the searching algorithm must build a path in a way
that includes at least one pump.

Figure 3.3 illustrates the problem statement of the searching path between
Tank A and Tank B. The first path [Tank A - N1 - N2 - Tank B] has a weight
equal to 20, and the second path [Tank A - N1 - Pump - N2 - Tank B] has a weight
of 24. This means that the first path is the shortest, but this path does to allow to
execution of a pumping process. The right choice is to choose the second path for
the further process execution even if it is not the shortest, but it is optimal for the
current task.

One of the possible ways to force a searching algorithm to build a path through a
specific node is the use of negative weights on a graph. Negative weights significantly
expand the applicability of shortest path problems as a model for solving other
problems. However, it is not enough just to set the weight of the edge for the
specific node as a negative number. The choice of negative weight values should
align with the current problem. Also, negative weights can create negative-weight
cycles in a graph. All this leads to an increase in the complexity of the graph and
also increases the time it takes to change it if new elements are added.

48 3.5. Graphical user interface

Figure 3.3: Search path problem. The searching algorithm has found two paths
between Tank A and Tank B, with the first path being the shortest but not allowing
for a pumping process to occur. The second path, although longer, includes a pump
and is therefore the optimal choice for the current task of executing a pumping
process. This illustrates the importance of considering not only the shortest path
but also the specific constraints and requirements of the system when determining
the optimal path.

Another way to solve this problem was introduced by M. Baierling in [12]. The
idea is to split a desirable path into two subpaths with one common node, which
contains a pump. First, the algorithm searches the shortest path from the initial
node to the desirable pump, then does the same for the path from the pump to the
target node. If a system contains more than one pump this procedure should be
executed for each pump. In this case, a path with the lowest sum of two subpaths is
the shortest. This approach uses only nonnegative weights, is simple to implement,
and makes it easy to change the graph. As was described in the previous chapter
Dijkstra’s Algorithm [55] is the best candidate for graphs with non-negative edge
weights to find the shortest path.

3.5 Graphical user interface

A Graphical User Interface (GUI) is a mandatory attribute of any management
system. The visual aspect makes it easier for operators to interpret data. While a
GUI is valuable for visualizing data and making manual inputs, it often falls short
in addressing the complexities of batch process control. Batch processes involve
multiple stages, intricate sequences, and the need for real-time monitoring, alarming,
and data acquisition. Supervisory Control and Data Acquisition (SCADA) goes
beyond a simple GUI by providing comprehensive capabilities for process control,
data collection, historical data analysis, alarm management, and remote access.
Section 6 of the standard IEC 61512 - Batch control [62] describes functions that
could be implemented for successful management and control of a batch process.

3. Concept overview 49

Some of these functions can be implemented as functions of SCADA.
For successful batch process execution, a system must know recipe parameters

such as the amount of liquid for an add phase and temperature. For that reason,
SCADA should be provided with input boxes. After starting the process it executes
automatically phase by phase. However, operators must have the ability to respond
to some situations like routine adjustments or emergency conditions. This is a task
for manual control which is described in the standard as the ability to manipulate
equipment entities directly by the operator.

Data collection is the next and important component within the domain of
Process Control. This includes gathering and storing data from various sources,
including sensors, derived values, and events. This historical record serves as
a valuable resource for analysis. Stored data can be used for quality control
and process improvement. Visualization of real-time and collected data can be
implemented in a plot form which offers a dynamic and graphical representation
of system parameters. It can help to quickly grasp trends and patterns aiding in
informed decision-making.

Another thing that the standard describes is unpredictable events. Unpre-
dictable events refer to incidents within a batch process that are not planned
(alarms, equipment failures). These events are typically driven by irregular process
conditions or physical factors. In the case of process alarms, the standard also
offers the data related to these events (e.g., time of activation, time of acknowledg-
ment, alarm limit). Figure 3.4 summarizes and shows the planned and previously
described functionalities.

Figure 3.4: A planned functional of a SCADA. Manual control gives the possibility
to turn on/off devices (e.g. mixer, pump) for test purposes or in case of an
emergency situation. Recipe parameters input and Recipe parameters update are
responsible for entering and updating information about process parameters. Real-
time monitoring and Real-time trends provide visual information about the current
state of the system in different forms. Data storage write data into a database
for later usage and analysis. Alarming log displays all unpredictable events in the
system.

CHAPTER 4

Implementation of the concept for the batch process

This chapter describes the implementation of the concept of batch process
control. It provides a detailed overview of the software used in this work and
explains the principle of operation for each particular part of the project.

4.1 Hardware setup

To perform the process correctly, the proper connection, whether at the device
or software level, is crucial. The laboratory setup consists of two connected to each
other tank stations. Figure 4.1 depicts the Piping and Instrumentation diagram
(P&ID).

M

B351

T350

T102

T101

E104

T340 T330 T320 T310

LI
B351

LI
B341

LI
B331

LI
B321

LI
B311

YS
V353

YS
V352

YS
V351

YS
V343

YS
V342

YS
V341

YS
V333

YS
V332

YS
V331

YS
V323

YS
V322

YS
V321

YS
V313

YS
V312

YS
V311

YS
V3R6

YS
V3R3

YS
V3R7

YS
V3R8

YS
V3R5

YS
V3R2

YS
V3R4

YS
V3R1

FI
B301P301

YS
V3L6

YS
V3L3

YS
V3L5

YS
V3L2

YS
V3L4

YS
V3L1

YS
V103

YS
V104 YS

V102

YS
V101

FI
B102

P101

LAH
S111

LAL
S113

TI
B104

LS
S114

LS
S112

LI
B101

E105

Figure 4.1: The Piping and Instrumentation diagram of the plant.

51

52 4.2. Skills implementation overview

The first station comprises two tanks, T101 and T102. Tank T102 is equipped
with one level sensor and one level switch. Tank T101 includes a heater, a mixer,
and three level switches – two for indicating low and high liquid levels, and the last
one to indicate if the liquid level is below the heater. The second station comprises
five vessels, each equipped with level sensors. Additionally, each station is equipped
with one pump, one turbine flowmeter, and several valves. To control the process a
supervising laptop is used as the Master device and two EL1100 EtherCAT couplers
as slave devices. Communication is performed via the EtherCAT protocol. Table
4.1 and Table 4.2 show how signals are split between the setups.

Module Signal

DO EL2008 valves V101-V109, pump P101
DO EL2008 mixer E105, heater E104
AO EL4004 pump speed controller P101N
DI EL1018 reed switch T101, float switch T102, cap. sensors B113, B114
AI EL3702 flow sensor B102, temperature sensor B104

Table 4.1: Signal table of the two tank Festo demonstrator setup.

Module Signal

DO EL2008 pump P301, valves V3P1, V3L1-V3L6
DO EL2008 valves V311-V332
DO EL2008 valves V333-V353, V3R1
DO EL2008 valves V3R2-V3R8
AO EL4004 pump speed controller P301N
AI EL3064 flow sensor B301, level sensors B311-B331

AI 3174-0002 level sensors B341, B351, B101

Table 4.2: Signal table of the five tank Festo demonstrator setup.

4.2 Skills implementation overview
For this project, 4diac IDE and 4diac FORTE are used to develop skills in the

form of function blocks. It provides a development environment for creating control
applications for industrial automation systems. To run these applications 4diac
FORTE is used. 4diac IDE and 4diac FORTE are open-source software frameworks
for industrial automation and control. They are based on the IEC 61499 standard
for distributed automation systems. Both 4diac and FORTE are designed to be

4. Implementation of the concept for the batch process 53

used in industrial automation systems, such as Programmable Logic Controllers
(PLC) [84].

The skill-based approach focuses on breaking down complex tasks into smaller,
simpler skills that can be easily implemented as function blocks. To maintain this
approach and avoid increasing system complexity, only Simple Function Blocks
(FB) are used for creating composite skills without using advanced features such as
the Execution Control Chart (ECC) in 4diac IDE. This approach allows for easy
reconfiguration, scalability, and robustness of the system. It also allows for the
easy integration of new skills or modification of existing skills.

Not all of the necessary skills can be implemented as a function block because
of the complexity of the skill task. Some of them are implemented as a service
with the Python programming language. It does not mean that it is impossible to
implement them as a function block, but this kind of implementation causes an
unjustified increase in the system complexity which decreases in robustness and
flexibility and significantly reduces the potential for reconfiguration.

Figure 4.2 shows how skills are divided inside the project. Each column indicates
the project area to which a specific skill belongs. Blue skills are skills executed in
a Python IDE, yellow in 4diac IDE, and orange in SCADA.

Figure 4.2: Separation of the skills within a project. (M) stands for manual control,
(R) is for reserve protection measures.

4.3 Shortest path algorithm skill

The laboratory setup consists of a complex network of pipes and valves. In
order to perform any action, such as an "Add" action, the system must be able to
build a path between point A and point B and determine which valves need to be
opened to construct this path.

As an efficient solution for this type of system, the representation of the
redundant pipe system as a graph is chosen. Most valves allow fluid to flow in both

54 4.3. Shortest path algorithm skill

directions, so the system must take this into account. The "Add" phase implies
that the liquid must be transferred from one tank to another, so the path should
contain not just a list of valves but also a pump for a successful execution of the
process.

Figure 4.3 illustrates a directed graph of the entire system. Green nodes
represent tanks, blue nodes represent pumps, and light blue nodes represent valves.
Orange nodes represent pipe connections and play no role outside of the path
planning algorithm.

Figure 4.3: Representation of a redundant pipe system in a graph form

For the implementation of the directed graph in Python, the NetworkX package
is used [85]. The graph is represented as a list of edges in the form:
edgeList =[[’T101’,’V103’ ,6],[’V103’,’T101’ ,6],[’V104’,’T101’ ,10],

...
[’N335’,’N336’ ,10],[’N336’,’N335’ ,10],[’N336’,’N337’ ,10]]

where the first term represents the initial node of the edge, the second is the
target node of the edge, and the last one represents the weight of the edge. The
length of the pipe is used as the weight of the edge. One set of arguments in brackets
describes the edge in only one direction, so to build a bidirectional edge, a second
set of brackets with the same weight but opposite order of nodes is required. Each
node name must contain a specific letter (e.g. "V" stands for a valve, "T" - tank,
"N" - node, and "P" - pump). This naming is strict and can not be changed for
the successful execution of all designed skills in Python. From the list of supported
by NetworkX algorithms, Dijkstra’s algorithm is chosen as a search algorithm since
it is the best and most efficient solution for weighted graphs with non-negative
weights.

The pipe system has two pumps, but only one is needed for the "Add" phase
execution. To define the best option for the path, the algorithm first looks for
a sub-path and its weight from the source tank to one of the pumps, then the
second sub-path from the pump to the target tank, as the one proposed in [12].

4. Implementation of the concept for the batch process 55

The algorithm then performs the same steps for the remaining pump and compares
the weights. The path with the smallest weight is considered the shortest and is
returned for further processing in the form of a list of nodes from the initial to the
target tank.

4.4 Open/Close skills

These skills are responsible for the physical implementation of the path planning
algorithm. Skills can open or close the path depending on the current task. Both
skills use the list of nodes (an output of the shortest path algorithm) as an input
parameter.

The basic principle of these skills is the same. After the execution of the shortest
path algorithm, the skill receives the list of nodes. In the case of valves, skill search
all nodes with the letter "V" in a node name, and subscribe to the directory where
nodes of this type are placed. After that, the skill sends the command to change
the value of these nodes according to the task (open or close). Same procedure
but with "P" for pumps. The main difference between these skills is the order of
execution. Figure 4.4 shows that in the case of the "Open" skill, it opens valves
first and then the pump, whereas the "Close" skill does the same in reverse order
to prevent any possible emergencies with the pressure (e.g. hydraulic shock) in
closed pipes.

Figure 4.4: Execution order for Open and Close skills

56 4.5. Flow control skill

4.5 Flow control skill
The flow control skill is the last part of the implementation of the add phase

in the recipe. Two previous chapters explain how to find and build a path for
a pumping process. The task that this skill performs is a volume calculation of
a pumped liquid and task completion notification. It is a composite skill and is
implemented as a composite Function Block (FB) type in 4diac IDE. As is shown in
Figure 4.5 it contains several atomic skills. Each atomic skill has a simple (contains
one algorithm) FB type.

Figure 4.5: Internal structure of the flow control composite skill. Each FB is an
atomic skill, provides encapsulated logic, and is implemented as a Simple FB in
4diac IDE.

When the shortest path is found, valves are opened, and a pump is turned
on, the "Add" phase is ready to be executed. The triggering of the active pump
state input indicates that one of the pumps is turned on and the "Add" phase
is started. The active pump input contains the exact name of the turned-on
pump. P101 and P301 receive the information from the flow meters. The FLOW
SELECTOR function block decides which flow should be considered for a volume
calculation. The ADD block calculates the amount of transferred liquid, and then
the FLOW CONTROL compares the current and desired volumes. The outputs
of the composite block pump state show if the pump is on or off and endOfadd
indicates if the current task is finished. When the task is finished the system can
call Close skill to turn off the pump and close the valves. Once the first "Add"
phase is done, the RESET event resets the block. After that, the second "Add"
phase can be started.

4.6 Heater composite skill
After the full execution of two add phases, when both liquids are in the desired

tank, this mixture must be mixed and heated. Heater skill perform one of these

4. Implementation of the concept for the batch process 57

tasks. Basically, for the successful execution of the heat phase, this skill should
just check whether the current temperature in a tank matches the one in the task,
and send a command to control the heater. However, the current implementation
contains additional features. The idea behind this is to develop a core functionality,
which can be improved with additional FBs. This should help to improve flexibility
and help to fine-tune skills in a process. Figure 4.6 shows the internal structure
and as with the previous FB, this one is also a composite FB, contains several
atomic skills inside, and has the same FB types in 4diac IDE.

Figure 4.6: Internal structure of the Heater composite skill. Each FB is an atomic
skill, provides encapsulated logic, and is implemented as a Simple FB in 4diac IDE.

The desired temperature comes from the recipe temp input by triggering the
start button and update button inputs, respectively. The TEMP UPDATE
function block decides if an update is possible, e.g. if the new temperature is equal
to the current task temperature or less than the temperature in the tank, it ignores
the update command. The RECIPE TEMP CHECK function block verifies if
the initial task temperature is correct and sends an error message to the SCADA
by using the invalid recipe temp output if it is not.

The CONDITION CHECK function block controls the heater state with
the corresponding on off output. It receives the temperature data from the sensors
and compares it with the desired temperature. Once the desired temperature is
reached, the heater is turned off.

4.7 Mixer composite skill

According to the task, two liquids must be mixed to create a homogeneous
solution. The mix phase is one of two phases that should be executed in parallel
according to the recipe from the third chapter. The basic task is simple, this
phase should be always active when the heat phase is active. Mixer composite skill
performs mix phase and as the heater skill has extended functional to increase
flexibility. Figure 4.7 shows the internal structure of the mixer skill.

58 4.8. User interface

Figure 4.7: Internal structure of the Mixer composite skill. Each FB is an atomic
skill, provides encapsulated logic, and is implemented as a Simple FB in 4diac IDE.

The current implementation can offer two working modes: series mode and
parallel mode. The reason for that is to make this skill more useful outside of the
current recipe, e.g. when liquid should be mixed during the exact amount of time
to become desired consistency. The mode can be set through the corresponding
input event.

The parallel mode (three lower FBs in Figure 4.7) keeps the mixer turned on if
the heater is on. The CHECK CYCLE block checks every second the status of
the heater. If the heater is on, the mixer is also turned on.

The series mode runs the mixer for a predefined time interval. In this project,
these values can be set via SCADA. The RECIPE TIME and RECIPE UP-
DATE function blocks send these time values (in seconds) through string-to-time
data type converters to the TIME UPDATE function block. When the desired
time is set, the mixer is turned on until the end of the timer. The time can be
updated even during the active mixing phase. The e105 output controls the mixer,
and the go to heat phase output informs that the mixing is done and the process
can further proceed.

4.8 User interface

In order to control, observe, and modify the flow of the process, the proper
user interface with sufficient functionality should be developed. Ignition SCADA
by Inductive Automation is a great tool for developing this kind of interface.

Ignition SCADA by Inductive Automation is a software platform that is used
for industrial automation and control systems. SCADA stands for Supervisory
Control and Data Acquisition (SCADA). It is designed to provide real-time data
collection, monitoring, and control of remote industrial assets, such as machines,
pumps, valves, and sensors. Ignition SCADA software provides a variety of features,

4. Implementation of the concept for the batch process 59

including a web-based interface, built-in drivers for connecting to various industrial
protocols, alarming, reporting, and scripting capabilities. It can be used in a wide
range of industries, including manufacturing, energy, water and wastewater, and
transportation [86].

Figure 4.8 shows an implemented interface of the SCADA system. The
schematic pipe system visualizes the flow of the process. It shows the status
of valves and pumps with color indication, and displays values of the temperature
sensor and flow meters. In addition, it shows the status of the reed switch and
capacity sensors. Tank icons indicate the current level of the liquid.

For manual control, the SCADA can offer two sliders for pump speed control.
Four buttons in the middle show the current status of the device (red - off, green -
on) and provide manual control for devices. Three blue buttons are responsible for
starting/updating the process and resetting all valves. The area on the right side
serves for entering recipe-related information (e.g. temperature, amount of liquid
for each phase).

Figure 4.8: User interface of the SCADA system. Implemented SCADA can offer
visualization, manual control, alarming, data input, real-time plotting capabilities,
and data storage.

To provide data storage, an Ignition gateway is connected to an SQL lite
database. It collects information about liquid levels, temperature, flow, and status
of mixers, pumps, and heaters. The "Plots" tab on the top left corner provides
access to real-time and history plots. All data can be exported in a CSV file.
The alarming window below indicates such emergency events as tank overfilling,

60 4.9. OPC UA communications

excessive draining of a tank, and liquid level below the heater. The alarm log
contains information about time, priority, description of event, and status if this
alarm was acknowledged by an operator or not.

It is also worth noting that UaExpert [87] third-party client was used to test the
operation of the algorithm, intermediate values, and also as a main client to control
the process before the above-described SCADA system was fully implemented (and
as an additional and auxiliary after). It allows to explore the address space, read and
write data, invoke methods, and monitor variables in OPC UA servers. Additionally,
UaExpert provides features for testing and validating OPC UA implementations,
which are discussed in the next section.

4.9 OPC UA communications

As previously mentioned, OPC UA is designed to provide a unified, secure,
and reliable way for industrial devices to share information with each other and
with higher-level systems such as SCADA systems. OPC UA uses a client-server
model. Initially, the server of the Ignition gateway was considered the main
candidate, however, all software and libraries in this work are free or open-source
with varying levels of support. This can lead to compatibility problems. As a
result, the open62541 [88] server integrated into FORTE shows fewer problems
with communication than other candidates.

As described in Chapter 4.2 skills execution is divided between three different
parts. Figure 4.9 shows the basic communication relationships between the specific
modules of this project. The upper area represents an orchestrator (a laptop), and
the lower part represents the physical plant. Data transfer between the plant and
the laptop works via the EtherCAT protocol.

The TwinCAT module receives, converts (from analog 16-bit values to SI system
units), updates data about the current state of the plant on the OPC UA server (e.g.
temperature, flow, liquid level), and sends output control signals to the actuators.

The Ignition SCADA, 4DIAC, and Python blocks take the actual information
they need via the OPC UA protocol right from the server and do not interact with
each other. Nodes update their values continuously and regardless of the needs of
other modules. Database SQL Lite block stores values and timestamps of tags for
reports and plots.

Open62541 is an open-source implementation of the OPC UA communication
protocol. It is written in the C programming language and is designed to be
portable, memory-safe, and efficient. It can be used to create OPC UA clients
and servers or to integrate OPC UA-based communication into existing software
applications, and it is compatible with a wide range of operating systems and
platforms [88]. In this project, FORTE is compiled with the open62541 source code.

4. Implementation of the concept for the batch process 61

Figure 4.9: Basic scheme of communication between particular parts of the project.
The upper part is proceeded on an orchestrator, lower part is a physical plant.
Data transfer between the plant and orchestrator works via EtherCAT protocol.
TwinCAT reads data from sensors, sends all these data to the OPC UA server (e.g.
temperature, flow, liquid level), and sends output control signals to actuators. The
SCADA, 4DIAC, and Python blocks take the actual information they need right
from the server and do not interact with each other. Database SQL Lite contains
values and timestamps of tags for the reports and plots.

62 4.9. OPC UA communications

During this process, two main settings should be taken into account: an endpoint
and an update rate. The endpoint is basically a port on the computer that the
OPC UA server will use (e.g. opc.tcp://localhost:4842/). The update rate is the
frequency of data updates on the server and for this project, this value is equal to
200ms. To add nodes on the server 4diac IDE is used. One full functional node
requires four FBs: SUBSCRIBE, PUBLISH, and two converters (e.g. INT2INT)
FBs. The SUBSCRIBE and PUBLISH FBs contain specific information about
the node such as name, place on the server, and type. Converters FBs tell which
datatype the created variables should have (e.g. integer in case of INT2INT).
Figure 4.10 shows the example of implementation for four boolean nodes.

Figure 4.10: The picture displays the implementation of four boolean nodes in
4diac IDE. In this example, the SUBSCRIBE and PUBLISH FBs each have four
outputs/inputs, which reduces the total number of FBs in the project. Consequently,
each FB must include information about all four nodes. The BOOL2BOOL
converters indicate that the data type used is boolean.

By default, TwinCAT does not support OPC UA functionality. To establish
the connection, the additional software package TF6100-OPC-UA from the official
website needs to be installed [89]. This addon allows to installation of a virtual
OPC UA device to send and receive data. When the endpoint is set, all required
tags should be connected manually to a special OPC UA variable in TwinCAT as
shown in Figure 4.11. Then this variable can be connected to any other normal
variable in TwinCAT.

Ignition can connect to third-party OPC servers via OPC UA by using the
OPC COM module. This built-in module tool provides both server and client
functionality and opens up the possibility of connecting Ignition to any device with
servers [90]. Basically, the connection procedure is the same as in TwinCAT but
Ignition provides a tool to automate this process and save time, e.g. UDT tags.

4. Implementation of the concept for the batch process 63

Figure 4.11: Example of nodes connection in TwinCAT. The figure shows a
connected OPC UA virtual device, tag for the pump P101. It is shown that the
input value of this tag is connected to the GVL.P101 OPC UA variable.

UDT stands for User Defined Type. A UDT is a feature that allows users to define
custom data types in Ignition’s Tag system. It enables the grouping of related
parameters into a single user-defined type, making it easier to manage and organize
complex data structures. Figure 4.12 shows the example of the implementation of
UDT for a tank. This UDT contains such parameters (with different data types)
as temperature, level, heater state, and high and low alarms. Each UDT has a
changeable parameter (e.g. TankID in this particular case) which is used for the
automatic creation of UDT instances. This is very similar to the data type mapping
that is described in Chapter 2.1.2. Once UDT is created it can be automatically
generated and connected to data on the OPC UA server for each equipment of
the same type. UDTs can contain not just data from different servers but also
information about scripts which are discussed in Chapter 4.10.

Python module uses the Opcua-asyncio library. It is an open-source, asyn-
chronous OPC UA client and server based on the IEC 62541 standard. The library
supports common OPC UA features such as data types, security, and subscriptions
[91]. The connection procedure here is similar to the procedure in 4diac. The
library requires all specific information about every node such as name, place on
the server, type, etc.

4.10 Safety measurements implementation

Modern automation systems should be able to prevent accidents during the
process execution to ensure reliability and safety of the plant. To keep a high
level of scalability and to avoid increasing system complexity, most of the safety
measurements are implemented in Ignition.

For advanced implementation, Ignition offers a scripting feature [92]. It allows
to creation of a script (a service according to SOA) that runs on an OPC UA tag
change. The scripting provides functionality that executes every time a node changes
its value, even if the SCADA application is closed (but the Gateway, Ignition’s
core that proceeds data, must stay active). This is useful for implementing safety

64 4.10. Safety measurements implementation

Figure 4.12: Example of a UDT tag. It can be observed that the parameter
Temperature in the UDT description contains all the information (red right box)
for the proper data mapping, e.g. port of the OPC UA server, namespace, and
tag name in form t(TankID)temp. For example, the temperature tag for tank 101
(blue box) has a value of 24. As a result, this value is linked to the parameter
Temperature (red left box) for UDT with TankID - 101.

measures that are always active, even when the SCADA is not being used. Python
language is used for script implementation. An example of the script for tank
overfilling event is shown below:

def valueChanged(tag ,tagPath ,previousValue ,currentValue ,
initialChange ,missedEvents):
currentVolume = currentValue.value
paths = ["[default]/ Errors/capacityOftankID.value"]
tankVolumeOverall = system.tag.readBlocking(paths)
tankVolumeCrit = 0.95 * tankVolumeOverall [0]. value
if currentVolume >= tankVolumeCrit:

system.tag.writeBlocking (["[default]/ Pumps/P101",
"[default]/ Pumps/P301"], [0 ,0])

The script turns the pumps off when the value of the tag that shows the current
volume (currentVolume) in a tank shows 95 percent of the overall tank volume
(tankVolumeOverall). This script is implemented for each tag of the corresponding
tank by changing capacityOftankID. Measurements for preventing excessive draining
of tanks are also implemented with scripting.

Another approach for the implementation of safety measurements is to use
both function blocks and scripting tools. Heater protection skill prevents the
heater from turning on if the liquid level is lower than the heater and protects

4. Implementation of the concept for the batch process 65

a relay from multiple triggering. A temperature sensor noise can cause multiple
triggering of the relay when the temperature value is a condition for a heater’s
work. Implementation of this composite skill in 4diac IDE is shown in Figure 4.13.

Figure 4.13: Composite skill for the heater and relay protection

This skill receives the heater level switch state (crit_low_lvl) and information
if the heater was activated before (relay_trigger). SCADA latch a tag if the
previous state of the heater is ON and it changes to OFF. This tag unlatches itself
when a new recipe begins. If at least one of the conditions is not met, the skill
does not pass the control signal further. This approach shows how different tools
can be combined. It can help combine the strengths of each approach and create
more complex solutions for some tasks. Overall, the use of both scripting and
function blocks in 4diac IDE allows for flexible and efficient implementation of
safety measurements in the batch process control system.

CHAPTER 5

Evaluation of results

This chapter describes the implementation of a skill-based approach for batch
process control. It presents an evaluation of OPC UA implementation, and the
path planning algorithm and provides an overview of the manual control possibility.
Additionally, the functionality of each phase of the recipe is discussed.

5.1 Path planning algorithm
The path planning algorithm shows proper work as expected. Figure 5.1 shows

an execution log of the Python shortest path algorithm. The algorithm calculates
the path and weight for each pump. Then, it compares the weights and chooses as
the output the optimal list of nodes (the one with the smallest weight). In this
particular case, the path between tanks T340 and T101 through pump P301 may
appear longer (18 nodes for P301 versus 16 nodes for P101). However, this path
has a slightly smaller weight (220 versus 227), which means that it is physically
shorter, and that is why it is chosen as the optimal path. Furthermore, this list is
used in such simple tasks as "Open valves" and "Close valves".

5.2 Manual pump control
Figure 5.2 shows the ability for manual flow control. The flow control occurs

by changing the position of sliders, one for each pump, via the SCADA interface.
The picture demonstrates full freedom during control. With the maximum output
of the 16-bit analog signal (0-32767), the flow meter shows 45-46 ml/sec of flow,
which is equal to 2.7 L/min. After turning off the pump, an exponential decay is
observed.

67

68 5.2. Manual pump control

Figure 5.1: The result of the shortest path algorithm. The top picture shows the
final path through the pump P101. This path contains 16 nodes and has a weight
of 227. The bottom picture is for the pump P301. It has 18 nodes and has a weight
of 220. This means that even though the second path appears longer because of
the greater number of nodes, it is actually physically shorter and, therefore, the
optimal choice.

5. Evaluation of results 69

One of the possible reasons for this is flowmeter characteristics. Turbine
flowmeters have different characteristics and response times. Another reason is
pressure distribution. When the pump is turned off, the pressure in the system
starts to decrease. The relationship between the fluid flow rate and pressure can be
nonlinear. Residual flow reflected from a closed valve leaf can cause slight backflow.
This backflow can influence the flowmeter readings after the pump is turned off.
Each factor separately or their combination could cause an exponential decay.

Figure 5.2: Manual pump control. The upper plot shows pumping speed control,
the lower plot shows the on/off signal. The plot demonstrates the possibility of
free control. On maximum pumping power, the pump achieves 45-46 ml/sec. After
turning off the pump, an exponential decay of the flow is observed.

5.3 Execution of the "Add" phase
After the shortest path is calculated for a particular part of the "Add" process,

it is ready to be used for further processing. The list of nodes contains the names
of all valves for path construction and the name of the pump that should be opened
for the "Add" phase execution.

Figure 5.3 illustrates the execution of two "Add" phases. The task is to add 150
ml of a liquid to tank T102 during the first phase and then add an additional 300
ml. The result of the task is equal to 156 ml and 304 ml, respectively. The delay

70 5.4. Temperature control and parallel workflow

between "Add" phases is artificial and set for the purpose of differentiating the
two processes for clear and simple analysis. This pause duration can be modified
manually as needed.

Figure 5.3: Execution of "Add" phases. The task is to add 150 ml of a liquid to
tank T102 during the first phase and 300 ml during the second phase. On the top
plot, the red line shows the tank level and the blue shows the flow. The bottom
image shows the pump state. It can be observed that the final amount of pumped
liquid is equal to 156 ml for the first phase, and 304 ml for the second.

5.4 Temperature control and parallel workflow

As soon as "Add" phase is complete the next step is the "Mix" phase in series
mode or "Mix" and "Heat" in case of parallel mode. Figure 5.4 demonstrates a
parallel execution of "Mix" and "Heat" phases with the task of heating a liquid up
to 25◦C degrees. The picture shows that the heater is turned off at a temperature
of 24.8◦C degrees. This can be explained by the write rate of the database. The
temperature sensor value changes quickly within a small range, and the number
of these values is much higher than the number of values the database can save
in a time interval, causing the database to skip some values. However, the heat
controller does not have this issue, which means that at this timestamp, the function
block received the desired value of 25◦C degrees and turned off the heater.

Figure 5.4 illustrates that the temperature continues to increase up to an
additional 1◦C degree even though the heater is turned off. This effect is caused by
residual heat retained in the heater after it is turned off.

5. Evaluation of results 71

It is also noticeable that there is a small time difference between the turning
on/off of the heater and mixer. The duration of this delay is 1 second, which
corresponds to the update rate of the mixer function block. The condition for the
mixer during parallel mode is the current status of the heater. In simple terms,
the mixer is active only when the heater is active.

Time [s]

Te
m

pe
ra

tu
re

 [C
]

S
ta

te
 O

N
/O

FF

22,5

23,5

24,5

25,5

26,5

0

1

0 50 100 150 200

Temperaure Mixer Heater

Figure 5.4: Parallel execution of "Heat" and "Mix" phases. The lower plot shows
the current status of actuators. Residual heating of the heater. The figure shows
that in spite of the task to heat a liquid up to 25◦C, the temperature keeps increasing
around up to 26.3◦C. This effect causes a residual heat of the heating element.

CHAPTER 6

Conclusion and Further work

This thesis demonstrates the implementation of a recipe-based batch process
using a combination of Service-Oriented Architecture and a Skill Engineering Model.
This approach implies implementing a process as a sequence of independent entities
with encapsulated logic skills. In a similar way, the IEC 61512 Batch control
standard describes the design of a batch process. This makes refining a complex
task into a sequence of simple actions a common feature, making this approach a
suitable candidate for implementation. The project itself was successfully tested
on a laboratory setup.

Research question 1: What kind of advantage/disadvantage has detailed refining
of an action into a sequence of atomic skills over a more common skill description?

The level of refining for a skill describes the flexibility and reusability that
this skill offers to a system. Atomic skills with simple functions can be easily
reused across different composite skills, e.g. cycles (E_CYCLE FB), and switches
(E_SWITCH FB). This reduces efforts for the development of the same func-
tionality in comparison to a more common skill description. In case a process
evolves under new requirements, the process stage can be extended or modified
with existing atomic skills without affecting the entire process as shown in heat
phase implementation. It was also noticed during development that in the case
of detailed refining is much easier to identify and fix problems in an algorithm.
However, the usage of skills with primitive functions seems excessive and contradicts
to coarse-grained attribute of a service in SOA. In theory, an excessive refinement
can also lead to increased complexity of the system due to the need to manage and
coordinate multiple atomic skills for a single action, but the current project is not
huge enough to verify this theory.

73

74

Research question 2: Does this approach potentially able to increase the flexibility
of the plant?

The answer is definitely positive. The module system allows specific process
modifications without affecting other parts of the system because each implemented
module is independent. A similar situation with skills and services. Each of them
encapsulates its own functionality which means that changes in a particular skill
or a service have no effect on the rest of the system. 4DIAC IDE with its runtime
environment FORTE ensures execution of algorithm even without physical PLC
which is the case of the current work and allows to use of skills implemented by
different developers without compatibility problems.

Using OPC UA as middleware software introduces this project an element of
Plug and Produce functionality to the system but under the assumption of proper
naming of tags and strict data structure on the OPC UA server. OPC UA provides
communication and data exchange to different software components like 4DIAC
IDE, Ignition, TniwCAT, and Python. Its availability across different programming
languages (e.g. Python, C++, Java), different PLCs vendors (e.g. Beckhoff, ABB,
Siemens, etc.), and operational systems increase the number of possible tools for
the implementation of additional modules. The example of UaExpert client usage
shows that a new component can be simply connected to the server at any time.
Updating an old version of a module can be accomplished within seconds simply
by connecting a new version of the module to the OPC UA server.

Ignition offers features for fast reconfiguration of a user interface, e.g. UDT in
combination with template views. This can be very useful when a large number of
similar elements exist in a system. For example, only one UDT and template view
should be implemented for the implementation of visual components for 39 valves
in the system.

As the next step for further project implementation, the option to modify the
graph online is a viable choice. In the case of an emergency, this capability can
assist in isolating the damaged area of the pipe system or a single faulty valve,
preventing the shutdown of the entire plant. Implementing the ability to execute
two or more parallel recipes will significantly enhance the plant’s efficiency.

Despite the fact that 4DIAC can establish a robust connection via OPC UA,
the current state of OPC UA functionality is limited. This limitation can be
problematic in situations where system updates/changes are necessary and plant
downtime is unwelcome. The current implementation requires stopping the 4DIAC
module first and then reloading it to apply changes. Additionally, the fact that
a single OPC UA tag requires four function blocks, even if it is not used by the
4DIAC module, results in a massive and poorly adaptable OPC tag structure.
Implementing this functionality as services for a Python module could offer a

6. Conclusion and Further work 75

solution to this problem.
However, even the current state of the implementation shows a strong poten-

tial for the development of flexible, scalable systems for batch processes based
on the combination of the Skill-based Engineering Model with Service-Oriented
Architecture.

Bibliography

[1] G. Marzano and A. Martinovs, “TEACHING INDUSTRY 4.0,” SOCIETY.
INTEGRATION. EDUCATION. Proceedings of the International Scientific
Conference, vol. 2, p. 69, May 20, 2020.

[2] O. A. Shvetsova and A. D. Kuzmina, “Development of engineering personnel
in the era of the fourth industrial revolution,” in 2018 Third International
Conference on Human Factors in Complex Technical Systems and Environ-
ments (ERGO)s and Environments (ERGO), St. Petersburg: IEEE, Jul. 2018,
pp. 45–48.

[3] F. Sherwani, M. M. Asad, and B. Ibrahim, “Collaborative robots and industrial
revolution 4.0 (IR 4.0),” in 2020 International Conference on Emerging Trends
in Smart Technologies (ICETST), Karachi, Pakistan: IEEE, Mar. 2020, pp. 1–
5.

[4] H. Hirsch-Kreinsen, “Industrie 4.0,” in Handbuch Innovationsforschung, B.
Blättel-Mink, I. Schulz-Schaeffer, and A. Windeler, Eds., Wiesbaden: Springer
Fachmedien Wiesbaden, 2020, pp. 1–16.

[5] E. Gizem, “How to define industry 4.0: The main pillars of industry 4.0,”
Nov. 2017.

[6] Y. Lu, “The current status and developing trends of industry 4.0: A review,”
Information Systems Frontiers, Nov. 9, 2021.

[7] EPICOR, What is industry 4.0—the industrial internet of things (iiot)? Oct.
2020.

[8] U. D. Atmojo, Z. Salcic, K. I.-K. Wang, and V. Vyatkin, “A service-oriented
programming approach for dynamic distributed manufacturing systems,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 1, pp. 151–160, Jan.
2020.

77

78 Bibliography

[9] F. Herrmann, “The smart factory and its risks,” Systems, vol. 6, no. 4, p. 38,
Oct. 26, 2018.

[10] L. Bassi, “Industry 4.0: Hope, hype or revolution?” In 2017 IEEE 3rd In-
ternational Forum on Research and Technologies for Society and Industry
(RTSI), Modena, Italy: IEEE, Sep. 2017, pp. 1–6.

[11] S. Malakuti, J. Bock, M. Weser, P. Venet, P. Zimmermann, M. Wiegand, J.
Grothoff, C. Wagner, and A. Bayha, “Challenges in skill-based engineering of
industrial automation systems,” in 2018 IEEE 23rd International Conference
on Emerging Technologies and Factory Automation (ETFA), Turin, Italy:
IEEE, Sep. 2018, pp. 67–74.

[12] M. Melik Merkumians, M. Baierling, and G. Schitter, “A service-oriented
domain specific language programming approach for batch processes,” in 2016
IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA), Berlin, Germany: IEEE, Sep. 2016, pp. 1–9.

[13] K. Holley and A. Arsanjani, 100 SOA questions: asked and answered. Upper
Saddle River, NJ: Prentice Hall, 2011, 242 pp.

[14] N. M. Josuttis, SOA in practice, 1st ed. Beijing ; Sebastopol: O’Reilly, 2007,
324 pp.

[15] T. Erl, Service-oriented architecture: concepts, technology, and design, 9. print.
Upper Saddle River, NJ Munich: Prentice Hall PTR, 2009, 760 pp.

[16] A. Arsanjani, Service-oriented modeling and architecture, 2004.
[17] IETF, Hypertext transfer protocol (http/1.1): Semantics and content, 2014.
[18] K. A. Sedek, M. A. Omar, and S. Sulaiman, “Interoperable SOA-based

architecture for e-government portal,” in 2012 IEEE Conference on Open
Systems, Kuala Lumpur, Malaysia: IEEE, Oct. 2012, pp. 1–6.

[19] N. Kaur, R. Harrison, and A. A. West, “A service-oriented approach to
embedded component-based manufacturing automation,” in 2015 IEEE In-
ternational Conference on Industrial Technology (ICIT), Seville: IEEE, Mar.
2015, pp. 2964–2969.

[20] R. Harrison, R. P. Monfared, and L. Lee, “Business driven engineering for
powertrain industry,” in 2009 IEEE Conference on Emerging Technologies &
Factory Automation, Palma de Mallorca, Spain: IEEE, Sep. 2009, pp. 1–4.

[21] M. Ghallab, D. S. Nau, and P. Traverso, Automated planning and acting.
New York, NY: Cambridge University Press, 2016.

[22] D. L. Poole and A. K. Mackworth, Artificial intelligence: foundations of com-
putational agents, second edition. Cambridge New York, NY Port Melbourne
Delhi Singapore: Cambridge University Press, 2018, 792 pp.

Bibliography 79

[23] K. Dorofeev and A. Zoitl, “Skill-based engineering approach using OPC
UA programs,” in 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN), Porto: IEEE, Jul. 2018, pp. 1098–1103.

[24] K. Dorofeev, C.-H. Cheng, M. Guedes, P. Ferreira, S. Profanter, and A.
Zoitl, “Device adapter concept towards enabling plug&produce production
environments,” in 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Limassol: IEEE, Sep. 2017,
pp. 1–8.

[25] M. Onori, N. Lohse, J. Barata, and C. Hanisch, “The IDEAS project: Plug &
produce at shop-floor level,” Assembly Automation, vol. 32, no. 2, pp. 124–134,
Apr. 6, 2012.

[26] S. Cavin, P. Ferreira, and N. Lohse, “Dynamic skill allocation methodology
for evolvable assembly systems,” in 2013 11th IEEE International Conference
on Industrial Informatics (INDIN), Bochum, Germany: IEEE, Jul. 2013,
pp. 218–223.

[27] S. Cavin and N. Lohse, “Multi-level skill-based allocation methodology for
evolvable assembly systems,” in 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), Porto Alegre RS, Brazil: IEEE, Jul. 2014,
pp. 532–537.

[28] J. Ferreira, L. Ribeiro, P. Neves, H. Akillioglu, M. Onori, and J. Barata,
“Visualization tool to support multi-agent mechatronic based systems,” in
IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics
Society, Montreal, QC, Canada: IEEE, Oct. 2012, pp. 4372–4377.

[29] K. Evers, J. R. Seyler, V. Aravantinos, L. Lucio, and A. Mehdi, “Roadmap to
skill based systems engineering,” in 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain:
IEEE, Sep. 2019, pp. 1093–1100.

[30] A. Bayha, L. Lúcio, V. Aravantinos, K. Miyamoto, and G. Igna, “Factory
product lines: Tackling the compatibility problem,” in Proceedings of the
Tenth International Workshop on Variability Modelling of Software-intensive
Systems, Salvador Brazil: ACM, Jan. 27, 2016, pp. 57–64.

[31] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and A. Knoll,
“Intuitive instruction of industrial robots: Semantic process descriptions
for small lot production,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Daejeon, South Korea: IEEE, Oct.
2016, pp. 2293–2300.

80 Bibliography

[32] A. Perzylo, N. Somani, M. Rickert, and A. Knoll, “An ontology for CAD data
and geometric constraints as a link between product models and semantic
robot task descriptions,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Hamburg, Germany: IEEE, Sep. 2015,
pp. 4197–4203.

[33] “IEEE standard ontologies for robotics and automation,” IEEE, ISBN:
9780738196503.

[34] P. Jhunjhunwala, U. D. Atmojo, and V. Vyatkin, “Applying skill-based
engineering using OPC-UA in production system with a digital twin,” in 2021
IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto,
Japan: IEEE, Jun. 20, 2021, pp. 1–6.

[35] P. Zimmermann, E. Axmann, B. Brandenbourger, K. Dorofeev, A. Mankowski,
and P. Zanini, “Skill-based engineering and control on field-device-level with
OPC UA,” in 2019 24th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), Zaragoza, Spain: IEEE, Sep. 2019,
pp. 1101–1108.

[36] K. Dorofeev, “Skill-based engineering in industrial automation domain: Skills
modeling and orchestration,” in Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering: Companion Proceedings, Seoul
South Korea: ACM, Jun. 27, 2020, pp. 158–161.

[37] N. Keddis, G. Kainz, and A. Zoitl, “Capability-based planning and scheduling
for adaptable manufacturing systems,” in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), Barcelona, Spain:
IEEE, Sep. 2014, pp. 1–8.

[38] K. Aleksandrov, V. Schubert, and J. Ovtcharova, “Skill-based asset manage-
ment: A PLM-approach for reconfigurable production systems,” in Product
Lifecycle Management for a Global Market, S. Fukuda, A. Bernard, B. Gu-
rumoorthy, and A. Bouras, Eds., vol. 442, Series Title: IFIP Advances in
Information and Communication Technology, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 465–474.

[39] A. Kocher, C. Hildebrandt, L. M. Vieira Da Silva, and A. Fay, “A formal
capability and skill model for use in plug and produce scenarios,” in 2020
25th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Vienna, Austria: IEEE, Sep. 2020, pp. 1663–1670.

[40] U. D. Atmojo, J. O. Blech, and V. Vyatkin, “A plug and produce-inspired
approach in distributed control architecture: A flexible assembly line and
product centric control example,” in 2020 IEEE International Conference

Bibliography 81

on Industrial Technology (ICIT), Buenos Aires, Argentina: IEEE, Feb. 2020,
pp. 271–277.

[41] A. Rocha, G. Di Orio, J. Barata, N. Antzoulatos, E. Castro, D. Scrimieri,
S. Ratchev, and L. Ribeiro, “An agent based framework to support plug
and produce,” in 2014 12th IEEE International Conference on Industrial
Informatics (INDIN), Porto Alegre RS, Brazil: IEEE, Jul. 2014, pp. 504–510.

[42] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota, “Agile assembly system
by “plug and produce”,” CIRP Annals, vol. 49, no. 1, pp. 1–4, 2000.

[43] P. Ferreira and N. Lohse, “Configuration model for evolvable assembly sys-
tems,” in 4th CIRP Conference On Assembly Technologies And Systems, May
2012.

[44] P. Danny, P. Ferreira, N. Lohse, and M. Guedes, “An AutomationML model
for plug-and-produce assembly systems,” in 2017 IEEE 15th International
Conference on Industrial Informatics (INDIN), Emden: IEEE, Jul. 2017,
pp. 849–854.

[45] Enas-energieautarke aktoren und sensoren. https://www.energieautark.
com, Sep. 2019.

[46] S. K. Panda, T. Schroder, L. Wisniewski, and C. Diedrich, “Plug&produce
integration of components into OPC UA based data-space,” in 2018 IEEE 23rd
International Conference on Emerging Technologies and Factory Automation
(ETFA), Turin: IEEE, Sep. 2018, pp. 1095–1100.

[47] OPC Foundation, OPC 10000-5: UA Part 5: Information Model. B.4.5
FiniteStateMachineType, https://reference.opcfoundation.org/Core/
Part5/v104/docs/B.4.5, Oct. 2023.

[48] ——, OPC 10000-10: OPC Unified Architecture. Part 10: Programs. Release
1.04. https://reference.opcfoundation.org/v104/Core/docs/Part10/
4, Nov. 2017.

[49] P. Danny, P. Ferreira, N. Lohse, and K. Dorofeev, “An event-based Au-
tomationML model for the process execution of plug-and-produce’ assembly
systems,” in 2018 IEEE 16th International Conference on Industrial Infor-
matics (INDIN), Porto: IEEE, Jul. 2018, pp. 49–54.

[50] Loughborough University, openMOS project. Deliverable: D3.1. Open Plug and
Produce Architecture Specification. https://www.openmos.eu/downloads/
deliverables/, Dec. 2020.

[51] M. Schleipen, R. Henßen, M. Damm, A. Lüder, N. Schmidt, O. Sauer, and S.
Hoppe, “Opc ua and automationml - collaboration partners for one common
goal: Industry 4.0,” in AutomationML user conference, Sep. 2014.

https://www.energieautark.com
https://www.energieautark.com
https://reference.opcfoundation.org/Core/Part5/v104/docs/B.4.5
https://reference.opcfoundation.org/Core/Part5/v104/docs/B.4.5
https://reference.opcfoundation.org/v104/Core/docs/Part10/4
https://reference.opcfoundation.org/v104/Core/docs/Part10/4
https://www.openmos.eu/downloads/deliverables/
https://www.openmos.eu/downloads/deliverables/

82 Bibliography

[52] R. Henßen and M. Schleipen, “Interoperability between OPC UA and Au-
tomationML,” Procedia CIRP, vol. 25, pp. 297–304, 2014.

[53] X. Ye and S. H. Hong, “An AutomationML/OPC UA-based industry 4.0
solution for a manufacturing system,” in 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA),
Turin: IEEE, Sep. 2018, pp. 543–550.

[54] P. E. Black and P. J. Tanenbaum, "Graph", in dictionary of algorithms and
data structures [online], last access 08 oct 2023, https://www.nist.gov/
dads/HTML/graph.html, Nov. 2020.

[55] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms, Fourth edition. Cambridge, Massachusett: The MIT Press, 2022,
1291 pp.

[56] S. S. Skiena, The algorithm design manual, 2nd ed. London: Springer, 2008,
730 pp.

[57] R. Kempepatil and V. V. Rudraswamymath, “Advanced study of shortest
route problem and its applications,” in International Journal of Scientific
Development and Research (IJSDR), Jun. 2023.

[58] A. Madkour, W. G. Aref, F. U. Rehman, M. A. Rahman, and S. Basalamah, “A
survey of shortest-path algorithms,” 2017, Publisher: arXiv Version Number:
1.

[59] M. Okwu and I. Emovon, “Application of johnson’s algorithm in process-
ing jobs through two-machine system,” Journal of Mechanical and Energy
Engineering, vol. 4, no. 1, pp. 33–38, Aug. 9, 2020.

[60] D. Ivanova, I. Batchkova, S. Panjaitan, F. Wagner, and G. Frey, “Combining
IEC 61499 and ISA s88 for batch control,” IFAC Proceedings Volumes, vol. 42,
no. 4, pp. 187–192, 2009.

[61] C. Johnsson, “White paper s88 for beginners,” in World Batch Forum, Jun.
2004.

[62] Batch control. Part 1, Models and terminology. Research Triangle Park, North
Carolina: ISA, 1995.

[63] IEC:61512-1:1997, Batch control - part 1: Models and terminology, 1997.
[64] Siemens, Engineering and automation of batch processes with pcs 7 along

isa-88 models, https://cache.industry.siemens.com/dl/files/331/
109784331/att_1052440/v2/109784331_Batch_processes_PCS_7_ISA_
88_Docu_V1_en.pdf, Jan. 2021.

[65] Modeling and control of batch processes. New York, NY: Springer Berlin
Heidelberg, 2018.

https://www.nist.gov/dads/HTML/graph.html
https://www.nist.gov/dads/HTML/graph.html
https://cache.industry.siemens.com/dl/files/331/109784331/att_1052440/v2/109784331_Batch_processes_PCS_7_ISA_88_Docu_V1_en.pdf
https://cache.industry.siemens.com/dl/files/331/109784331/att_1052440/v2/109784331_Batch_processes_PCS_7_ISA_88_Docu_V1_en.pdf
https://cache.industry.siemens.com/dl/files/331/109784331/att_1052440/v2/109784331_Batch_processes_PCS_7_ISA_88_Docu_V1_en.pdf

Bibliography 83

[66] D. Ivanova, I. Batchkova, S. Panjaitan, F. Wagner, and G. Frey, “Combining
IEC 61499 and ISA s88 for batch control,” IFAC Proceedings Volumes, vol. 42,
no. 4, pp. 187–192, 2009.

[67] A. Garcia, X. Oregui, U. Arrieta, and I. Valverde, “Methodology and tools
to integrate industry 4.0 CPS into process design and management: ISA-88
use case,” Information, vol. 13, no. 5, p. 226, Apr. 28, 2022.

[68] M. Vegetti and G. Henning, “Isa-88 formalization. a step towards its integra-
tion with the isa-95 standard,” in 6th Workshop on Formal Ontologies meet
Industry, Feb. 2015.

[69] M. De Minicis, F. Giordano, F. Poli, and M. M. Schiraldi, “Recipe devel-
opment process re-design with ANSI/ISA-88 batch control standard in the
pharmaceutical industry,” International Journal of Engineering Business
Management, vol. 6, p. 16, Jan. 1, 2014.

[70] Batch control. Part 2, Data structures and guidelines for languages. Research
Triangle Park, N.C.: ISA, 2001.

[71] H. Derhamy, J. Ronnholm, J. Delsing, J. Eliasson, and J. Van Deventer,
“Protocol interoperability of OPC UA in service oriented architectures,” in
2017 IEEE 15th International Conference on Industrial Informatics (INDIN),
Emden: IEEE, Jul. 2017, pp. 44–50.

[72] M. Silveira Rocha, G. Serpa Sestito, A. Luis Dias, A. Celso Turcato, and
D. Brandao, “Performance comparison between OPC UA and MQTT for
data exchange,” in 2018 Workshop on Metrology for Industry 4.0 and IoT,
Brescia: IEEE, Apr. 2018, pp. 175–179.

[73] A. Abdelsattar, E. J. Park, and A. Marzouk, “An OPC UA client/gateway-
based digital twin architecture of a SCADA system with embedded system
connections,” in 2022 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), Sapporo, Japan: IEEE, Jul. 11, 2022, pp. 798–
803.

[74] OPC Foundation, OPC 10000-1: UA Part 1: Overview and Concepts - 3.2.1
AddressSpace , v1.05.02, https://reference.opcfoundation.org/Core/
Part1/v105/docs/3.2.1, Oct. 2023.

[75] ——, The Industrial Interoperability Standard, https://opcfoundation.
org/about/what-is-opc/, Nov. 2022.

[76] H. Haskamp, F. Orth, J. Wermann, and A. W. Colombo, “Implementing an
OPC UA interface for legacy PLC-based automation systems using the azure
cloud: An ICPS-architecture with a retrofitted RFID system,” in 2018 IEEE
Industrial Cyber-Physical Systems (ICPS), St. Petersburg: IEEE, May 2018,
pp. 115–121.

https://reference.opcfoundation.org/Core/Part1/v105/docs/3.2.1
https://reference.opcfoundation.org/Core/Part1/v105/docs/3.2.1
https://opcfoundation.org/about/what-is-opc/
https://opcfoundation.org/about/what-is-opc/

84 Bibliography

[77] H. Raddatz, E. Mahmoud, F. Holzke, P. Danielis, D. Timmermann, and F.
Golatowski, “Evaluation and extension of OPC UA publish/subscribe MQTT
binding,” in 2020 IEEE Conference on Industrial Cyberphysical Systems
(ICPS), Tampere, Finland: IEEE, Jun. 10, 2020, pp. 543–548.

[78] IEC TR 62541-1:2020, Opc unified architecture - part 1: Overview and concepts,
Nov. 2020.

[79] T. Mizuya, M. Okuda, and T. Nagao, “A case study of data acquisition from
field devices using OPC UA and MQTT,” in 2017 56th Annual Conference of
the Society of Instrument and Control Engineers of Japan (SICE), Kanazawa:
IEEE, Sep. 2017, pp. 611–614.

[80] OPC Foundation, OPC 10000-1: UA Part 1: Overview and Concepts - 6.1
Client Server Overview, v1.05.02, https://reference.opcfoundation.
org/Core/Part1/v104/docs/6.1, Oct. 2023.

[81] ——, OPC 10000-1: UA Part 1: Overview and Concepts - 6.2 OPC UA
Clients, v1.05.02, https://reference.opcfoundation.org/Core/Part1/
v105/docs/6.2, Oct. 2023.

[82] ——, Unified Architecture. Part 14: PubSub, v1.05.01, https : / /
opcfoundation . org / developer - tools / specifications - unified -
architecture/part-14-pubsub, Mar. 2022.

[83] ——, OPC 10000-14: UA Part 14: PubSub - 5 PubSub Concepts, v1.05.02,
https://reference.opcfoundation.org/Core/Part14/v105/docs/5,
Oct. 2023.

[84] ECLIPSE foundation, 4diac IDE - IEC 61499 Compliant Development Envi-
ronment, https://www.eclipse.org/4diac/en_ide.php, Jan. 2023.

[85] NetworkX developers, NetworkX, Release 3.0, https://networkx.org/, Jan.
2023.

[86] Inductive Automation, Ignition SCADA by Inductive Automation, https:
//inductiveautomation.com/ignition, Jan. 2023.

[87] Unified Automation GmbH, UaExpert—A Full-Featured OPC UA Client,
https://www.unified-automation.com/products/development-tools/
uaexpert.html, Dec. 2022.

[88] open62541, Open62541, http://open62541.org, Jan. 2023.
[89] Beckhoff Automation, TF6100 TwinCAT 3 OPC UA, https : / / www .

beckhoff.com/en-en/products/automation/twincat/tfxxxx-twincat-
3-functions/tf6xxx-tc3-connectivity/tf6100.html, Jan. 2023.

[90] Inductive Automation, Ignition opc ua, https://inductiveautomation.
com/ignition/modules/ignition-opc-ua, Jan. 2023.

https://reference.opcfoundation.org/Core/Part1/v104/docs/6.1
https://reference.opcfoundation.org/Core/Part1/v104/docs/6.1
https://reference.opcfoundation.org/Core/Part1/v105/docs/6.2
https://reference.opcfoundation.org/Core/Part1/v105/docs/6.2
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-14-pubsub
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-14-pubsub
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-14-pubsub
https://reference.opcfoundation.org/Core/Part14/v105/docs/5
https://www.eclipse.org/4diac/en_ide.php
https://networkx.org/
https://inductiveautomation.com/ignition
https://inductiveautomation.com/ignition
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.unified-automation.com/products/development-tools/uaexpert.html
http://open62541.org
https://www.beckhoff.com/en-en/products/automation/twincat/tfxxxx-twincat-3-functions/tf6xxx-tc3-connectivity/tf6100.html
https://www.beckhoff.com/en-en/products/automation/twincat/tfxxxx-twincat-3-functions/tf6xxx-tc3-connectivity/tf6100.html
https://www.beckhoff.com/en-en/products/automation/twincat/tfxxxx-twincat-3-functions/tf6xxx-tc3-connectivity/tf6100.html
https://inductiveautomation.com/ignition/modules/ignition-opc-ua
https://inductiveautomation.com/ignition/modules/ignition-opc-ua

Bibliography 85

[91] Opcua-asyncio, Opcua-asyncio, https://github.com/FreeOpcUa/opcua-
asyncio, Jan. 2023.

[92] Inductive Automation, Ignition 8.1 manual. Scripting. https : / / docs .
inductiveautomation.com/display/DOC81/Scripting, Jan. 2023.

https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/FreeOpcUa/opcua-asyncio
https://docs.inductiveautomation.com/display/DOC81/Scripting
https://docs.inductiveautomation.com/display/DOC81/Scripting

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Industry 4.0
	Smart Factory

	Scope of the thesis

	State of the Art
	Service Oriented Architecture
	Services
	Loose coupling

	Agent, Task and Solution
	Skill-based Approach
	Skill-based Engineering
	Plug and Produce

	Search Algorithms
	Graph
	Dijkstra's algorithm
	Bellman-Ford algorithm
	Floyd-Warshall algorithm
	Johnson's algorithm
	A* search

	IEC 61512 / ISA-88
	Batch process
	Classification by physical structure
	Recipes

	OPC Unified Architecture (OPC UA)
	Research questions

	Concept overview
	Problem statement
	Basic overview
	Skill-based approach
	Path Planning Algorithm
	Graphical user interface

	Implementation of the concept for the batch process
	Hardware setup
	Skills implementation overview
	Shortest path algorithm skill
	Open/Close skills
	Flow control skill
	Heater composite skill
	Mixer composite skill
	User interface
	OPC UA communications
	Safety measurements implementation

	Evaluation of results
	Path planning algorithm
	Manual pump control
	Execution of the "Add" phase
	Temperature control and parallel workflow

	Conclusion and Further work
	Bibliography

