I. General Fokker-Planck equations

Fokker-Planck equations describe the time evolution of a many-particle system undergoing diffusion

$$
\left\{\begin{array}{l}
\partial_{t} f=\operatorname{div}_{\xi}\left(D \nabla_{\xi} f+f(D+R) \nabla_{\xi} E(\xi)\right), \xi \in \mathbb{R}^{d}, t>0 \tag{1}\\
f_{t=0}=f_{0} \in L^{1}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

- $f(t, \xi)$ is the distribution function of the particles, i.e., $f(t, \xi)$ is the probability of having one particle at time t and position ξ.
- $D \in \mathbb{R}^{d \times d}$ - symmetric, positive semi-definite
$R \in \mathbb{R}^{d \times d}$ - skew-symmetric, i.e., $R^{T}=-R$.
- $E: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a given smooth function s.t. $E(\xi) \rightarrow+\infty$ as $|\xi| \rightarrow+\infty$.
- $f_{\infty}(\xi)=c e^{-E(\xi)}$ is the unique (normalized) stationary solution or equilibrium, i.e.,

$$
\operatorname{div}_{\xi}\left(D \nabla_{\xi} f_{\infty}+(D+R) \nabla_{\xi} E f_{\infty}\right)=0, \forall \xi \in \mathbb{R}^{d}
$$

- (1) is called non-degenerate if $\operatorname{rank}(D)=d$, degenerate if $\operatorname{rank}(D)<d$.

II. Important examples

$d=2 n, \xi:=\binom{x}{v} \in \mathbb{R}^{2 n}, D=\left(\begin{array}{ll}0 & 0 \\ 0 & I\end{array}\right) \in \mathbb{R}^{2 n \times 2 n}, R=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right) \in \mathbb{R}^{2 n \times 2 n}$

- If $E=V(x)+\frac{|v|^{2}}{2}$, then (1) is called the kinetic Fokker-Planck equation:

$$
\left\{\begin{array}{l}
\partial_{t} f+v \cdot \nabla_{\chi} f-\nabla_{x} V \cdot \nabla_{v} f=\operatorname{div}_{v}(v f)+\Delta_{v} f, t>0 \tag{2}\\
f_{t=0}=f_{0} \in L^{1}\left(\mathbb{R}^{2 n}\right)
\end{array}\right.
$$

The stationary solution $f_{\infty}(x, v)=c e^{-\left[V(x)+\frac{\left[v^{2}\right.}{2}\right]}$

- If $E=V(x)+\phi(x)+\frac{|v|^{2}}{2},-\Delta_{x} \phi=\int_{\mathbb{R}^{n}} f d v$, then (1) is called the nonlinear Vlasov-Poisson-Fokker-Planck system:

$$
\left\{\begin{array}{l}
\partial_{t} f+v \cdot \nabla_{x} f-\left(\nabla_{x} V+\nabla_{x} \phi\right) \cdot \nabla_{v} f=\operatorname{div}_{v}(v f)+\Delta_{v} f, t>0 \\
-\Delta_{x} \phi=\int_{\mathbb{R}^{n}} f d v, \quad f_{t t=0}=f_{0} \in L^{1}\left(\mathbb{R}^{2 n}\right) .
\end{array}\right.
$$

The stationary solution $f_{\infty}(x, v)=c e^{-\left[V(x)+\phi_{\infty}(x)+\frac{v^{2}}{2}\right]}$, where ϕ_{∞} is a solution of

$$
-\Delta_{x} \phi_{\infty}(x)=\frac{e^{-\left[V(x)+\phi_{\infty}(x)\right]}}{\left.\int_{\mathbb{R}^{n}} e^{-\left[V\left(x^{\prime}\right)+\phi_{\infty}\left(x^{\prime}\right)\right]}\right] d x^{\prime}}
$$

$\star D$ is positive semi-definite with $\operatorname{rank}(D)=n<2 n$.

III. Goal

When $\operatorname{rank}(D)<d$, find sufficient (possible necessary) conditions on D, R and E so that

$$
f(t, \cdot) \rightarrow f_{\infty} \quad \text { as } \quad t \rightarrow \infty
$$

and obtain explicit and constructive estimates on rates of convergence.
In particular, solve it for

- the kinetic Fokker-Planck equation
- the nonlinear Vlasov-Poisson-Fokker-Planck system

IV. Bakry-Emery or Entropy method: $\operatorname{rank}(D)=d$

- Theorem ([1]). Assume $D \in \mathbb{R}^{d \times d}$ is positive definite $(\operatorname{rank}(D)=d)$,
$\exists \lambda>0$ such that $\frac{\partial^{2} E}{\partial \xi^{2}}\left(I+R D^{-1}\right)+\left(\frac{\partial^{2} E}{\partial \xi^{2}}\left(I+R D^{-1}\right)\right)^{T} \geq 2 \lambda D^{-1}, \quad \forall \xi \in \mathbb{R}^{d}$. Then

$$
\int_{\mathbb{R}^{d}}\left(\frac{f(t)}{f_{\infty}}-1\right)^{2} f_{\infty} d \xi \leq e^{-2 \lambda t} \int_{\mathbb{R}^{d}}\left(\frac{f_{0}}{f_{\infty}}-1\right)^{2} f_{\infty} d \xi .
$$

Proof:
The key idea is to obtain a Grönwall inequality for the dissipation functional:

- $\frac{d}{d t} \int_{\mathbb{R}^{d}}\left(\frac{f(t)}{f_{\infty}}-1\right)^{2} f_{\infty} d \xi=-2 \int_{\mathbb{R}^{d}} \nabla_{\xi}^{T}\left(\frac{f(t)}{f_{\infty}}\right) D \nabla_{\xi}\left(\frac{f(t)}{f_{\infty}}\right) f_{\infty} d \xi=:-l[f(t)] \leq 0$, $I[f(t)]$ is called the dissipation functional.
- Bakry-Emery condition implies:

$$
\frac{d}{d t} I[f(t)] \leq-2 \lambda /[f(t)] \quad \Longrightarrow \quad I[f(t)] \leq e^{-2 \lambda t} /\left[f_{0}\right] .
$$

- Integrating over (t, ∞) :

$$
\frac{d}{d t} \int_{\mathbb{R}^{d}}\left(\frac{f(t)}{f_{\infty}}-1\right)^{2} f_{\infty} d \xi \leq-2 \lambda \int_{\mathbb{R}^{d}}\left(\frac{f(t)}{f_{\infty}}-1\right)^{2} f_{\infty} d \xi .
$$

\star If D is semi-definite (i.e., $\operatorname{rank}(D)<d$), this method does not work!

V. IDEA: MODIFIED ENTROPY METHOD, $\operatorname{rank}(D)<d$

- If $\operatorname{rank}(D)<d$, the dissipation functional $I[f(t)]$ is 'lacking information' on some partial derivatives. We define the modified dissipation functional

$$
I_{P}[f(t)]:=2 \int_{\mathbb{R}^{d}} \nabla_{\xi}^{T}\left(\frac{f(t)}{f_{\infty}}\right) P \nabla_{\xi}\left(\frac{f(t)}{f_{\infty}}\right) f_{\infty} d \xi
$$

with a positive definite matrix $P=P(\xi) \in \mathbb{R}^{d \times d}$.

- We want to choose a positive definite matrix $P \in \mathbb{R}^{d \times d}$ and make appropriate assumptions on D, R, E such that I_{P} is a Lyapunov functional and
$\frac{d}{d t} I_{P}[f(t)] \leq-2 \lambda I_{P}[f(t)], \quad \forall t>0 \Rightarrow I_{P}[f(t)] \leq e^{-2 \lambda t} I_{P}\left[f_{0}\right], \quad \forall t>0$
- Lemma: For any positive stable matrix Q, there is a positive definite matrix P such that

$$
Q P+P Q^{T} \geq 2 \mu P
$$

where $\mu>0$ is the smallest real part of the eigenvalues of Q.

VI. Results

Result 1: General Fokker-Planck equation (1) with $E(\xi)=\frac{\xi^{\top} K \xi}{2}$

- Theorem ([2]). Let $D \in \mathbb{R}^{d \times d}$ be positive semi-definite, and $E(\xi)=\frac{\xi^{\top} K \xi}{2}$ for some positive definite matrix K. Assume $Q:=(D-R) K$ is positive stable. Let $\lambda>0$ be the minimal real part of the eigenvalues of $(D-R) K$. Then the solution $f(t)$ of (1) satisfies

$$
\left\|\frac{f(t)}{f_{\infty}}-1\right\|_{H^{1}\left(\mathbb{R}^{d}, f_{\infty}\right)} \leq C e^{-\lambda t}\left\|\frac{f_{0}}{f_{\infty}}-1\right\|_{H^{1}\left(\mathbb{R}^{d}, f_{\infty}\right)}, \quad C>0 .
$$

Proof: P is chosen such that $Q P+P Q^{T} \geq 2 \lambda P$.

Result 2: The kinetic Fokker-Planck equation (2)

- Theorem ([3]). Assume $\exists \alpha \in \mathbb{R}$ such that $\frac{\partial^{2} V(x)}{\partial x^{2}}+\alpha l$ is positive definite for all $x \in \mathbb{R}^{n}$, and the eigenvalues of $\frac{\partial^{2} V(x)}{\partial x^{2}}$ grow faster than the eigenvalues of $\frac{\partial^{2}\left(\partial_{x} V(x)\right)}{\partial x^{2}}$, $i \in\{1, \ldots, n\}$, as $|x| \rightarrow \infty$. Then there are $\lambda>0, C>0$ such that the solution $f(t)$ of (2) satisfies

$$
\begin{aligned}
& \int_{\mathbb{R}^{2 n}}\left(\frac{f(t)}{f_{\infty}}-1\right)^{2} f_{\infty} d x d v+\int_{\mathbb{R}^{2 n}}\left|\nabla_{x}\left(\frac{f(t)}{f_{\infty}}\right)\right|^{2} f_{\infty} d x d v \\
& \quad+\int_{\mathbb{R}^{2} n} \nabla_{v}^{\tau}\left(\frac{f(t)}{f_{\infty}}\right)\left(\frac{\partial^{2} V}{\partial x^{2}}+\alpha l\right) \nabla_{v}\left(\frac{f(t)}{f_{\infty}}\right) f_{\infty} d x d v \\
& \leq C e^{-2 \lambda t}\left[\int_{\mathbb{R}^{2 n}}\left(\frac{f_{0}}{f_{\infty}}-1\right)^{2} f_{\infty} d x d v+\int_{\mathbb{R}^{2}}\left|\nabla_{x}\left(\frac{f_{0}}{f_{\infty}}\right)\right|^{2} f_{\infty} d x d v\right. \\
&\left.+\int_{\mathbb{R}^{2}} \nabla_{v}^{\top}\left(\frac{f_{0}}{f_{\infty}}\right)\left(\frac{\partial^{2} V}{\partial x^{2}}+\alpha l\right) \nabla_{v}\left(\frac{f_{0}}{f_{\infty}}\right) f_{\infty} d x d v\right]
\end{aligned}
$$

Proof: We choose $P=P(x)=\left(\begin{array}{cc}21 & 1 \\ 1 & 2 \frac{\partial^{2} V(x)}{\partial x^{2}}+2 a l\end{array}\right), a>0$.

Result 3: The Vlasov-Poisson-Fokker-Planck system (3)

- Theorem ([4]). Assume $n=3, \beta \in\left(\frac{1}{2}, \frac{2}{3}\right)$, there exists a constant $C>0$ such that $\left|\frac{\partial^{2} V(x)}{\partial x^{2}}\right| \leq C\left(1+\left|\nabla_{x} V(x)\right|\right), \forall x \in \mathbb{R}^{d}$. Assume

$$
\left\|\frac{f_{0}}{f_{\infty}}-1\right\|_{H_{x}^{3}\left(\mathbb{R}^{6}, f_{\infty}\right)}+\left\|\frac{f_{0}}{f_{\infty}}-1\right\|_{H_{1}^{1}\left(\mathbb{R}_{6}^{6}, f_{\infty}\right)} \leq \delta
$$

for an explicitly computable constant $\delta>0$. Then there exist explicitly computable constants $\lambda>0, C_{1}>0$, and $C_{2}>0$ (independent of h_{0}, but depending on δ) such that the solutions f and ϕ of (3) satisfy

$$
\begin{gathered}
\left\|\frac{f(t)}{f_{\infty}}-1\right\|_{H_{x}^{3}\left(\mathbb{R}^{6}, f_{x}\right)}+\left\|\frac{f(t)}{f_{\infty}}-1\right\|_{H_{2}^{1}\left(\mathbb{R}^{6}, f_{\infty}\right)} \leq C_{1} e^{-\lambda t}, \\
\left\|\nabla_{\chi} \phi(t)-\nabla_{\chi} \phi_{\infty}\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq C_{2} e^{-\lambda t} .
\end{gathered}
$$

Proof: Suitable matrix P, weighted Poincaré inequalities, hypoelliptic regularity. \star Polynomials $V(x) \approx|x|^{k}$ as $|x| \rightarrow \infty, k \in \mathbb{N}$, satisfy all assumptions.

VII. References

[^0]
[^0]: - [1] A. Arnold, E. Carlen, Q. Ju. Large-time behavior of non-symmetric Fokker-Planck type equations Communication in Stochastic Analysis 2(1) (2008), 153-175.
 - [2] F. Achleitner, A. Arnold, D. Stürzer. Large-time behavior in non-symmetric Fokker-Planck equations. Rivista di Matematica della Universitá di Parma, 6 (2015), 1-68.
 - [3] A. Arnold, G. Toshpulatov. Exponential stability and hypoelliptic regularization for the kinetic Fokker-Planck equation with confining potential. to appear Journal of Statistical Physics.
 - [4] G. Toshpulatov. Well-posedness and trend to equilibrium for the Vlasov-Poisson-Fokker-Planck system with a confining potential. to appear Kinetic and Related models

