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Abstract
Modern  nanoelectric  devices  typically  require  the  combination  of  multiple  materi-  

als  in  a  highly  layered  structure.  The  complex  geometries  and  interfaces  are  metic-  

ulously  designed  to  optimize  the  electrical  performance  of  such  devices.  Therefore,  

it  is  of  utmost  importance  that  simulation  tools  are  able  to  model  these  struc-  

tures  and  study  the  behavior  of  charge  carriers  at  their  various  interfaces.  Among  

the  various  available  approaches  to  model  the  quantum  electron  transport  problem,  

which  are  capable  to  describe  such  phenomena,  the  particle-based  Wigner  function  

approach,  utilized  by  ViennaWD,  stands  out.  Due  to  its  representation  in  phase  

space,  this  method  allows  for  the  adoption  of  scattering  models  and  analogies  

from  semi-classical  transport,  thus  retaining  many  classical  concepts  and  notions.  

This  provides  important  advantages  for  quantum  mechanically  simulating  electron  

dynamics.  

A  quantum-mechanical  Wigner-based  simulator  should,  therefore,  be  able  to  

support  (1)  imported  external  quantities,  such  as  the  electric  potential  defined  

on  arbitrary  2D  grids,  as  well  as  (2)  transport  domains  with  different  material  

parameters.  These  two  aspects  are  represented  by  (1)  an  interpolation  problem  

of  mapping  an  externally  generated  quantity  onto  the  ViennaWD  grid  structure  

and  (2)  the  implementation  of  a  position-dependent  effective  mass  to  capture  the  

varying  charge-carrier  mobility  in  different  transport  domains.  The  means  by  

which  these  two  aspects  can  be  introduced  to  the  existing  framework  are  assessed,  

and  the  optimal  solution  is  implemented  in  ViennaWD.  

These  additions  to  ViennaWD  and  their  applicability  to  representative  encoun-  

tered  data  are  evaluated  with  the  help  of  various  simulations.  The  developed  inter-  

polation  mechanism  is  shown  to  capture  a  variety  of  different  geometries,  allowing  

for  the  import  of  diverse  external  quantities.  Further,  proof-of-concept  simula-  

tions  show that  the  effective  mass  functionality  can  be  successfully  implemented  

into  ViennaWD,  enabling  the  study  of  cutting-edge  nanoelectric  devices.
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1  Introduction

Developing  semiconductor  devices  is  a  complex  and  expensive  process  that  requires  

a  lot  of  time  and  resources.  To  support  these  efforts,  computational  electronics  

is  the  field  of  research  that  aims  to  develop  and  improve  computer  simulations  

of  semiconductor  devices  to  understand  the  physics  of  such  systems  better  and  

further  improve  upon  the  technologies  used  in  the  fabrication  of  semiconductor  

devices.  The  field  of  computational  electronics  can  be  seen  to  be  a  focus  area  of  

the  broader  field  of  computational  science  and  engineering,  a  term  defined  already  

in  the  1990s,  for  example,  by  Stevenson  and  Panoff [1]  as:

"The  interdisciplinary  involvement  in  the  identification  and  elimination  

of  unwarranted  assumptions  and  approximations  in  scientific  models  

and  the  complete  integration  of  computation  into  these  models  to  con-  

stitute  a  whole  new scientific  technique  on  a  par  with  hypothesis  and  

experimentation.  “  

Within  the  electronics  community,  simulation  tools  used  in  this  line  of  research  

are  often  coined  under  the  term  technology  computer-aided  design  (TCAD),  which  

refers  to  the  use  of  computer  simulations  to  design,  develop,  and  optimize  semicon-  

ductor  processing  technologies,  device  structures,  and  circuits  [2].  With  the  help  

of  TCAD  tools,  the  pursuit  of  high-performance,  high-reliability,  and  low-power  

consumption  semiconductor  devices  can  be  continuously  improved,  as  demanded  

by  the  extremely  high  pace  of  innovation  in  micro-  and  nanoelectronics  research.  

Current  transistors,  as  a  representation  of  one  of  today’s  most  important  semicon-  

ductor  devices,  in  modern  processors  have  been  made  with  nano-scale  dimensions  

for  more  than  a  decade  [3],  facing  increasingly  challenging  obstacles  with  respect  

to  device  dimensions  and  material  limitations,  requiring  novel  designs,  e.g.,  gate-  

all-around  field  effect  transistors  [4, 5],  novel  materials,  e.g.,  2D  materials  and
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stacks  thereof  [6],  and  novel  concepts  for  information  processing  using  quantum  

effects,  e.g.,  qubits  [7].  These  developments  require  quantum  transport  models  

to  accurately  describe  the  physical  reality  in  these  extremely  scaled  systems  [8].  

ViennaWD  provides  a  two-dimensional  (2D)  Wigner  particle  Monte  Carlo  simula-  

tor  developed  at  the  Institute  for  Microelectronics,  TU  Wien  [9].  The  theoretical  

foundation  for  the  implemented  algorithms  is  the  Wigner  description  from  the  field  

of  quantum  mechanics,  allowing  the  simulation  of  electron  transport  dynamics  in  

phase  space  and  the  study  of  decoherence  processes  [10, 11, 12].  ViennaWD  has  

been  widely  used  to  study  novel  quantum  effects  in  solid-state  single-electron  sys-  

tems  [13, 14].  However,  among  the  limitations  are  two  key  aspects  that  limit  the  

practical  usability  of  the  simulator:

• Input  electric  scalar  potential  profile  limited  to  internal  grid  data  structure:  

No  externally  provided  potential  profile  can  be  imported,  which  is  likely  

defined  on  a  different  discretization.  Consequently,  no  interface  to  external  

simulation  tools  is  possible,  thereby  not  allowing  the  simulation  of  cutting-  

edge,  practically  relevant  simulation  scenarios  defined  by  external  tools.

• Single-valued  effective  mass  applies  to  the  entire  simulation  domain:  Only  

a  single  material  for  the  entire  simulation  can  be  defined.  This,  obviously,  

does  not  allow the  simulation  of  modern  heterostructure  devices,  such  as  

2D  material  stacks,  which  would  require  the  assignment  of  different  effective  

masses  to  different  parts  of  the  simulation  domain.  

Therefore,  this  thesis  focuses  on  overcoming  these  limitations  by  advancing  the  

code  base  accordingly.  First,  an  interpolation  routine  was  implemented  to  support  

the  loading  of  externally  generated  quantities,  e.g.,  an  electric  scalar  distribution.  

The  need  for  such  a  capability  arises  from  ViennaWD’s  inherent  design,  where  the  

simulation  is  performed  on  an  equidistant  2D  grid  structure.  Therefore,  an  arbi-  

trary  imported  quantity  must  be  defined  on  the  internal  simulation  grid,  which,  

of  course,  is  not  the  same  grid  used  by  the  external  source.  To  this  end,  dif-  

ferent  approaches  to  this  interpolation  problem  were  implemented  and  rigorously  

evaluated.  Second,  to  enable  studying  transport  channels  with  different  materi-  

als,  the  effective  mass,  which  is  a  key  parameter  entering  the  Wigner  transport
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equation,  was  implemented  to  be  spatially  dependent  and  assigned  to  the  point  

elements  of  the  grid  data  structure.  Together,  these  two  advancements  enable  the  

use  of  ViennaWD  for  the  future  study  of  practically  more  relevant,  multi-material  

nanoelectronic  systems.  

This  work  is  structured  as  follows.  Chapter 2,  to  set  the  stage,  provides  a  

short  overview of  the  Wigner  formalism  and  the  defining  equation  for  quantum-  

mechanical  transport  phenomena,  the  Wigner-transport  equation  (WTE).  Fur-  

thermore,  a  brief  overview of  the  simulator  is  given,  including  software  design  

and  implementation  basics.  Chapter 3 introduces  the  theory  behind  interpolation  

techniques  and  discusses  different  implementation  approaches.  In  Chapter 4,  im-  

plementing  a  spatial-dependent  effective  mass  mechanism  to  the  simulator  will  be  

discussed,  as  well  as  certain  implications.  Simulations  will  be  discussed  using  the  

example  of  state-of-the-art  semiconductor  devices.  In  Chapter 5,  the  implemen-  

tations  are  evaluated  with  the  help  of  a  set  of  representative  simulations.  Finally,  

Chapter 6 summarizes  this  work  and  highlights  the  key  contributions.
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2  Wigner  Background  and  the  

Vienna  WD  simulator

Device  TCAD  for  ultra-scaled  devices  has  evolved  into  a  complex  endeavor,  ne-  

cessitating  the  integration  of  diverse  models  across  electrical,  optical,  and  thermal  

domains  spanning  multiple  scales  [15].  This  drives  the  need  for  multiscale,  multi-  

physics  simulations  and  robust  coupling  of  tools  and  models,  particularly  in  com-  

mercial  TCAD  development.  Furthermore,  advancements  in  models,  especially  in  

accurately  describing  physics,  propel  TCAD  development  forward.  Charge  carrier  

transport  models  are  essential  for  studying  device  electrical  performance.  Still,  

only  a  few devices  have  exploited  the  underlying  quantum  mechanical  principles,  

for  example,  resonant  tunneling  diodes  [16, 17].  However,  novel  research  fields,  

such  as  electron  quantum  optics,  exploit  the  wave  nature  of  electrons  for  informa-  

tion  processing  [18].  Understanding  and  designing  quantum  devices  necessitates  

sophisticated  simulation  tools,  specifically  electron  transport  simulation  in  semi-  

conductors,  a  foundational  capability  in  nanoelectronics  research.  

The  ViennaWD  simulator  contributes  to  tackling  this  challenge  by  utilizing  

the  Wigner  formalism  for  quantum  mechanically  modeling  electron  transport  dy-  

namics.  The  Wigner  formalism  is  an  attractive  alternative  (because  of,  e.g.,  re-  

duced  computational  effort)  to  conventional  modeling  approaches  based  on  the  

Schrödinger  equation  [19]  or  non-equilibrium  Green’s  functions  [20]  and  provides  

an  intuitive  description  of  quantum  mechanics,  allowing  the  adoption  of  mod-  

els  (e.g.,  scattering)  and  analogies  from  semi-classical  transport.  Scattering  in  

quantum  transport  is  imperative  for  studying  decoherence  processes  of  (entan-  

gled)  electron  states,  which  is  pivotal  when  utilizing  quantum  effects  for  device  

operation  [21].  Additionally,  time-resolved  quantum  transport  simulations  offer  

insights  into  the  behavior  of  highly  miniaturized  circuits  dominated  by  quantum
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effects,  such  as  oscillations,  which  would  otherwise  not  be  explainable  by  classical  

theory.  The  Wigner-Boltzmann  equation  is  the  sole  computationally  viable  for-  

malism  for  scattering-aware,  time-resolved  quantum  transport  [22].  It  has  emerged  

as  a  cornerstone  for  comprehensively  studying  electron  transport  and  decoherence  

in  nanoscale  structures.  These  simulations  provide  crucial  insights  into  the  dy-  

namic  behavior  of  quantum  devices,  thereby  advancing  our  understanding  of  na-  

noelectronic  systems  and  paving  the  way  for  developing  novel  device  designs  with  

enhanced  functionality  and  performance  [23].

2.1  Transport  Models

To  adequately  describe  the  interactions  of  semiconductor  devices  and  nanostruc-  

tures  with  their  environment  through  leads/contacts,  phonons,  or  electromagnetic  

fields,  simulation  tools  must  be  able  to  capture  these  essential  phenomena  of  

the  system.  The  effect  of  these  interactions,  especially  regarding  their  relative  

strength  compared  to  modern  device  dimensions,  necessitates  the  description  of  

charge  carriers  via  non-equilibrium  distributions  that  can  be  determined  by  solv-  

ing  a  transport  equation  describing  the  influence  of  external  forces  to  obtain  the  

correct  statistical  properties  of  the  system.  A  short  overview (Figure 2.1)  of  the  

essential  semi-classical  transport  and  quantum  transport  models  [24]  will  be  given  

before  the  Wigner  formalism,  which  bridges  the  two  limiting  transport  regimes,  is  

introduced,  and  the  Wigner  Transport  equation  is  motivated  and  presented.  

The  Boltzmann  Transport  Equation  (BTE)  (Equation  (2.1))  [25]  is  the  central  

quantity  in  the  realm  of  semi-classical  microscopic  transport  and  describes  the  

evolution  of  the  distribution  function 𝑓𝑏(r,k,  t) of  a  particle  in  phase  space r,k at  

time t.  One  of  the  main  advantages  of  the  BTE is  that  it  can  be  used  to  describe  

both  the  ballistic  and  the  diffusive  transport  regime.

𝑑𝑓𝑏
𝑑t

=
∂  𝑓𝑏
∂  t

+
𝑑r(t)

𝑑t
𝛻r𝑓𝑏 +

𝑑k(t)

𝑑t
𝛻k𝑓𝑏 = C  {𝑓𝑏(r,k,  t)} (2.1)  

But  as  mentioned  previously,  in  today’s  world  of  nano-electronics,  the  scale  

of  the  devices  is  well  below the  extent  to  which  classical  models  adequately  de-  

scribe  the  physical  phenomena  within  them.  Therefore,  quantum  transport  models
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Figure  2.1: Overview of  the  different  microscopic  transport  models  [22].

are  necessary  to  describe  the  quantum  effects  of  charge  carriers  in  nanoelectronic  

devices.  Figure 2.1 shows  some  different  approaches  to  the  quantum  transport  

problem  that  have  been  pursued  and  will  in  the  following  be  discussed  briefly.  

The  Schrödinger  equation 2.2 as  the  fundamental  equation  of  motion  describing  

the  evolution  of  a  pure  quantum  state  can  be  adapted  to  an  open  system  necessary  

to  describe  quantum  transport  [26].

iℏ
∂

∂  t
|𝜓⟩ = 𝐻 |𝜓⟩ , (2.2)  

In  Eq.  (2.2), ℏ denotes  the  reduced  Planck  constant, |𝜓⟩ is  the  wave  function  of  

the  quantum  state  and 𝐻 the  Hamiltonian  operator.  

However,  the  Schrödinger  equation  is  only  well-suited  to  describe  ballistic  trans-  

port,  and  proposed  models  that  include  out-scattering  have  proven  problematic  in  

their  numerical  implementation  [27].  

The  density  operator  formalism,  also  known  as  the  density  matrix  formalism,  is  

a  powerful  tool  in  quantum  mechanics,  particularly  for  dealing  with  mixed  states  

and  open  quantum  systems.  The  evolution  of  the  density  operator 𝜌 as  given  in  

equation 2.3,
𝜌(r, r′,  t)  = 𝜓*(r′,  t)𝜓(r,  t) (2.3)
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,  is  governed  by  the  Liouville/Von-Neumann  equation

iℏ
∂

∂  t  

𝜌 =  [𝐻  ,  𝜌], (2.4)  

where [𝐻  ,  𝜌]  = 𝐻  𝜌− 𝜌𝐻 denotes  the  commutator  bracket  of 𝜌 and 𝐻,  with 𝜌 the  

density  operator  and 𝐻 the  Hamiltonian  of  the  system.  

However,  applying  the  density  operator  formalism  to  quantum  transport  has  

some  limitations.  Such  being  the  integration  of  positive-definite  scattering  opera-  

tors  into  the  Liouville/Von  Neumann  equation 2.4 and  the  non-local  nature  of  the  

density  matrix,  which  makes  the  interpretation  of  the  results  more  difficult  [28].

2.1.1  Wigner  Transport  Equation  (WTE)

The  Wigner  function,  related  to  the  density  matrix  through  a  unitary  Fourier  

transform,  provides  a  phase  space  description  of  quantum  mechanics.  Analogous  

to  the  semi-classical  Boltzmann  transport  equation,  the  Wigner  transport  equation  

describes  the  evolution  of  a  Wigner  function 𝑓w(r,k,  t) [29]  over  time.  Applying  

the  Wigner  transform  to  the  density  operator  yields  the  Wigner  function,

𝑓w(r,k,  t)  =

∫︁ ∞  

−∞
ds 𝑒−ik·s𝜌

(︁
r+

s

2
, r− s

2
,  t
)︁

(2.5)  

The  Wigner  function 𝑓w,  defined  over  the  phase  space r,k,  encompassing  all  

possible  combinations  of  the  position r and  the  wave-vector k assignable  to  a  

particle  [22],  like  the  distribution  function  in  the  Boltzmann  case,  represents  the  

number  of  particles  per  unit  volume  at  time  t.  However,  the  Wigner  function  

is  not  a  proper  probability  density  function  since  it  may  attain  negative  values,  

manifesting  the  uncertainty  relation  in  the  phase  space  [30].  Regardless  of  the  

above  statement,  the  critical  property∫︁  ∫︁
dr dk 𝑓w(r,k,  t)  =  1, ∀t (2.6)  

of  a  probability  distribution  is  still  retained,  which  means  that  physical  averages  

can  still  be  calculated  using  the  same  expressions  as  in  the  Boltzmann  case,  which  

classifies  the  Wigner  function  as  a  so-called  quasi-distribution  function  [22].
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To  arrive  at  the  Wigner  transport  equation  (WTE),  the  Wigner  transformation  

is  similarly  applied  to  the  Liouville/Von-Neumann  equation  (see  Equation  (2.4)),  

which  describes  the  evolution  of  the  density  matrix  and  is  given  here  already  in  

shifted  coordinates  and  with  the  expanded  Hamiltonian  operator

∂

∂  t  

𝜌
(︁
r+

s

2
, r− s

2
,  t
)︁
=  

1

iℏ

{︂
− ℏ2

2m*
∂2

∂r∂s
+
(︁
𝑉
(︁
r+

s

2

)︁
− 𝑉

(︁
r− s

2

)︁)︁}︂
𝜌
(︁
r+

s

2
, r− s

2
,  t
)︁

(2.7)  

,  where 𝜌 denotes  the  density  operator, m* the  effective  mass  of  the  charge  

carriers,  and 𝑉 the  electric  potential.  Yielding  the  evolution  equation  for  the  

associated  Wigner  function,  the  WTE (shown  here  for  the  electrostatic  case  and  

in  the  absence  of  scattering)

∂

∂  t  

𝑓w(r,k,  t)  +
ℏk
2m*

∂

∂r
𝑓w(r,k,  t)  =

∫︁
dk′ 𝑉w(r,k

′ − k,  t)𝑓w(r,k,  t) (2.8)  

where,

𝑉w(r,k,  t)  = − 1

iℏ(2𝜋)3

∫︁
ds 𝑒is·(k−k′)

{︁
𝑉 (r− s

2
)− 𝑉 (r+

s

2
)
}︁

(2.9)  

denotes  the  Wigner  potential  obtained  via  a  Wigner  transform  of  the  electric  po-  

tential 𝑉 as  shown  in  Equation  (2.7).  

Since  practical  simulations  necessitate  a  finite  domain,  limits  are  imposed  on  

the  integration  of  variables.  This  is  achieved  by  assigning  a  finite  value  to  the  

integration  variable  with |𝐿| = 𝐿.  Applying  a  finite  value  to  the  integration  

bounds ±𝐿,  termed  an  isotropic  coherence  length,  results  in  a  discretization  of  the  

momentum  space  k, k → q∆k.

𝑓w(r,q∆k  ,  t)  =  

1

𝐿

∑︁
q

𝑒−iqΔk·s𝜌(r− s, r+ s,  t) (2.10)[︂
∂

∂  t
+

ℏq∆k

m* 𝛻r

]︂
𝑓w(r,q∆k  ,  t)  =

∑︁
q′

𝑉w(r,q− q′,  t)𝑓w(r,q
′∆k  ,  t) (2.11)

𝑉w(r,q∆k)  =  

1

i𝐿ℏ

∫︁ +𝐿/2

−𝐿/2

ds 𝑒i2qΔk·s{𝑉 (r+ s, r− s)} (2.12)  

where q is  an  integer  multi-index  and ∆k = 𝜋  /𝐿,  which  denotes  the  resolution  of  

the  discretized  wave-vector  [22].
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2.1.2  Motivation  for  Wigner  formalism-based  simulations

The  Wigner  formalism,  with  its  phase-space  description,  retains  many  classical  

concepts  and  notions,  which  makes  it  a  convenient  approach  to  describing  the  

transport  phenomena  characterizing  the  evolution  of  charge  carriers  in  nanostruc-  

tures  compared  to  other  quantum-mechanical  approaches,  such  as  the  Schrödinger  

equation.  Therefore,  this  allows  for  the  adoption  of  models  (e.g.,  scattering)  and  

analogies  from  semi-classical  transport.  Incorporating  Boltzmann  scattering  mod-  

els  into  the  Wigner  equation  yields  the  Wigner-Boltzmann  equation.  The  Wigner-  

Boltzmann  equation  harmonizes  the  two  theories  and  facilitates  a  smooth  tran-  

sition  from  purely  quantum  (ballistic)  to  classical  (diffusive)  transport  depicted  

in  Fig. 2.1.  The  integration  of  this  semi-classical  scattering  model  into  the  WTE 

was  initially  suggested  in  [31].  It  was  later  justified  through  a  thorough  deriva-  

tion  for  both  phonon  [32, 33]  and  impurity  scattering,  demonstrating  that  the  

semi-classical  scattering  models  can  be  seen  as  a  limiting  case  of  comprehensive  

quantum  models  [34].  The  Wigner  formalism  allows  for  a  semi-classical  depiction  

of  extended  contact  regions  while  also  providing  a  quantum  representation  of  a  de-  

vice’s  active  region  [35].  Beyond  computational  electronics,  the  Wigner  function  is  

widely  utilized  in  numerous  research  areas,  including  quantum  physics,  quantum  

optics,  and  quantum  information  processing  [36, 37].

2.1.3  Stochastic  Solution  Techniques  for  the  WTE

The  Wigner-Boltzmann  equation  (WBE)  is  a  partial  differential  equation  (PDE)  

in  phase  space,  which  is  difficult  to  solve  analytically.  Due  to  this  high  dimen-  

sionality,  deterministic  solutions  are  computationally  expensive  and  require  large  

amounts  of  memory,  making  deterministic  solution  methods  of  the  WBE particu-  

larly  challenging  even  on  today’s  hardware.

(︂
∂

∂  t
+ v𝑔(k)

)︂
𝑓w(r,k,  t)  =

∫︁
dk′ (𝑆(r,k,k′)  + 𝑉w(r,k

′ − k))𝑓w(r,k
′,  t) (2.13)

−𝜆(r,k)𝑓w(r,k,  t) (2.14)

𝜆(r,k)  =

∫︁
dk′ 𝑆(r,k′,k)𝑓w(r,k′,  t) (2.15)

10



,  where  the  first  term  denotes  in-scattering  and  the  second  term  denotes  out-  

scattering  at  rate 𝜆.  

The  WBE,  as  shown  in  equation  Eq.  (2.13),  can  be  transformed  into  an  ordinary  

differential  equation  (ODE)  by  introducing  Newton  trajectories  [22].  The  resulting  

equation  parameterized  by  the  time  variable 𝜏 can  then  be  formally  integrated  over  

the  interval 𝜏 =  [t,  t0] yielding  the  following  equation:

𝑓w(r,k,  t0)  = 𝑓w  ,i(r,k)𝑒
− ∫︀ t0

t 𝜇(R(y),k)dy (2.16)

+

∫︁ t0

t

dt′Γ(R(𝜏),k,k′,  𝜏)𝑓w(R(t′),k′,  t′)𝑒−
∫︀ t0
t 𝜇(R(y),k)dy (2.17)

Γ(R(𝜏),k,k′,  t)  = 𝑆(R(𝜏),k,k′)  + 𝑉w(R(𝜏),k′ − k)  + 𝛾(R(𝜏))𝛿(k− k′) (2.18)  

,  here 𝛾(R(𝜏)) is  the  scattering  rate  associated  with  the  Wigner  potential  and
R(𝜏) the  trajectory  of  position.  

This  represents  the  integral  form  of  the  WBE.  By  recasting  it  as  a  Fredholm  

integral  equation,  the  concept  of  solving  the  WBE using  Monte  Carlo  methods  [38]  

is  introduced.  Integral  equations  in  the  form  of  Fredholm  integrals  can  characterize  

a  broad  range  of  physical  phenomena.  Over  time,  a  robust  theory  has  developed  

around  solving  these  Fredholm  integral  equations  using  Monte  Carlo  algorithms.  

The  computational  objective  involves  determining  the  statistical  average  of  a  

given  physical  quantity,  denoted  by 𝐴(r,k),  at  a  specific  time 𝑇 by  employing  the  

Wigner  function:

⟨𝐴𝑇 ⟩ =
∫︁

dr

∫︁
dk 𝑓w(r,k,  𝑇 )𝐴(r,k) (2.19)  

Expanding  Eq.  (2.19)  into  a  Neumann  Series  allows  the  physical  quantity  to  

be  obtained  by  stochastic  sampling  of  the  Neumann  series  using  numerical  par-  

ticles  [38].  A  particle  progresses  through  free-flight  and  scattering  until  time  T,  

selecting  a  term  in  the  series.  The  selected  term’s  contribution  is  determined  by  

sampling  its  associated  integral.  An  algorithm  for  this  task  propagates  numer-  

ical  particles  along  the  trajectories,  scatters  them  to  different  wave  vectors,  or  

spawns  additional  particles.  This  approach,  mirroring  free-flight  and  scattering  in  

semi-classical  Monte  Carlo  simulation,  allows  using  established  algorithms.
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Wigner  trajectories,  which  are  defined  via  this  formalism,  where  the  action  of  

the  Wigner  potential  operator  is  interpreted  as  scattering,  give  rise  to  the  signed-  

particle  model  where  the  Wigner  potential  is  interpreted  as  a  signed  particle  gen-  

erator  [10].

2.2  Wigner  Signed  Particle  Solution  Algorithm

As  mentioned  in  the  previous  section,  the  Wigner-Boltzmann  equation  interpreted  

as  a  Neumann  series  gives  rise  to  the  Wigner  signed-particle  model,  as  statistical  

means  of  an  arbitrary  physical  quantity  can  be  represented  by  stochastic  sampling  

of  the  Neumann  series  using  numerical  particles.  Here,  as  a  variation  of  an  affinity  

model  (for  an  overview of  particle  models  used  in  quantum  electron  transport,  

see  [8]),  only  integer  affinities  with  the  values ±1 are  considered  in  a  generation  

event.  This  leads  to  peculiarities  and  intricacies  regarding  the  implementation  and  

parallelization  of  this  algorithm.  The  following  section  will  give  an  overview of  the  

algorithm’s  structure  and,  unless  otherwise  stated,  will  follow the  description  of  

Ellinghaus  [22].

2.2.1  Program  Structure

The  program  can  be  roughly  divided  into  three  general  parts:  Pre-processing,  Sim-  

ulation,  and  Post-processing.  The  program  structure,  specifically  the  simulation  

part  and  the  evolution  algorithm,  is  illustrated  in  Fig. 2.2.

Pre-processing
Pre-processing  is  concerned  with  generating  the  required  input  files  for  the  sim-  

ulation.  This  is  also  where  part  of  this  thesis  focuses  on.  In  particular,  quantities  

must  be  mapped  to  the  regular  2D  mesh  used  in  the  simulator  to  incorporate  ar-  

bitrarily  modeled  or  experimentally  measured  quantities  needed  in  the  simulation.  

Therefore,  it  is  necessary  to  have  an  easy-to-use  pre-processing  tool  performing  

this  interpolation  and  mapping  task.
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Simulation
The  simulation  part  is  the  actual  simulation  of  the  Wigner  transport  equation.  

This  is  done  by  invoking  a  Monte  Carlo  method  and  the  Wigner  signed  particle  

approach.  The  basic  steps  of  the  solution  process  are  initializing  the  system  from  

the  input,  setting  up  the  geometry  and  potential  profile,  and  setting  the  parame-  

ters.  To  study  and  understand  the  system’s  evolution  through  a  change  in  material  

parameters,  the  simulation  also  needs  to  set  up  the  effective  mass  profile  for  the  

system.  This  is  the  second  part  of  the  thesis  focused  on.  The  interpolation  tool  

is  also  introduced  here  within  the  simulation  setup  to  allow for  a  more  automated  

approach  to  the  task  mentioned  earlier.  

The  simulation’s  main  part  is  the  evolution  of  the  particles,  which  repeats  within  

a  time  loop  until  the  total  simulation  time  is  reached.  Since  the  problem  is  high-  

dimensional  and  the  simulation  is  computationally  expensive,  it  is  running  in  a  

distributed  fashion.  Fortunately,  semi-classical  Monte  Carlo  codes  parallelize  effi-  

ciently  due  to  independent  particles,  but  Wigner  Monte  Carlo  codes  require  syn-  

chronized  communications  for  the  critical  annihilation  step.  The  ViennaWD  [39]  

implementation  uses  an  MPI-based  domain  decomposition  on  a  distributed  mem-  

ory  architecture,  dividing  the  global  simulation  domain  and  particle  ensemble  into  

uniformly  sized  subdomains  and  sub-ensembles.  Each  MPI  process  manages  a  sub-  

domain  and  its  corresponding  sub-ensemble  to  minimize  communication  demand  

from  scattering  events.  Since  the  algorithm  works  via  a  Monte  Carlo  method,  

the  simulation  is  stochastic  in  nature,  and  therefore,  the  distribution  process  boils  

down  to  non-interacting  particles,  sampling  the  initial  distribution  function,  be-  

ing  distributed  to  the  subdomains.  Post-annihilation,  each  process  checks  for  and  

exchanges  particles  in  overlapping  subdomain  boundaries,  reducing  the  particle  

ensemble  size  and  communication  load.  

Therefore,  the  time-loop  consists  of  the  evolution,  growth  prediction,  annihila-  

tion,  and  particle  transfer  steps  as  depicted  in  Fig. 2.2.

Initialization: Initially,  the  distributor  process  loads  the  inputs  that  describe  

the  geometry  and  other  parameters,  such  as  the  electric  potential  and  the  effective  

mass.  It  then  sets  up  an  ensemble  of  N  particles,  which  represent  the  initial  con-  

dition  of  the  evolution  problem,  by  assigning  appropriate  position  and  momentum

13



Figure  2.2: Flowchart  of  ViennaWD,  based  on  Ellinghaus  [22].

values.  Following  this,  the  distributor  process  distributes  these  particles  to  the  

receiver  processes  based  on  the  domain  decomposition,  along  with  the  potential  

profile,  effective  mass  profile,  and  additional  global  parameters.  Each  process  sub-  

sequently  initializes  localized  versions  of  the  necessary  data  structures  using  the  

initial  values  specific  to  its  subdomain.  A  commonly  used  initial  condition  is  the  

Gaussian  minimum  uncertainty  wave  packet.

𝑓w(r,q)  = N 𝑒xp

[︂
−(r− r0)

2

𝜎2

]︂
𝑒xp

[︀−(q∆k − k0)
2𝜎2

]︀
(2.20)  

where r0 and k0 represent  the  mean  position  and  the  mean  wave-vector,  respec-  

tively; 𝜎 is  the  standard  spatial  deviation  and N represents  a  normalization  con-  

stant.

14



Evolution: Each  process  performs  the  evolution  of  its  ensemble  of  particles  for  

a  single  time  step  in  the  evolution  step.  Each  particle  separately  evolves  in  time  

by  the  drift  and  scattering  steps.  During  the  drift  phase,  the  particle  propagates  

a  Newtonian  trajectory  with  no  forces  acting  on  it,  and  the  wave  vector  remains  

constant.  The  new position  is  calculated  by:

∂r =
ℏq∆k

m* min {𝜏  ,  𝛿  t} (2.21)  

This  implies  that  the  particle  continues  to  drift  until  either  the  current  time  

step  concludes, 𝛿  t represents  the  remaining  time  in  the  time  step ∆t,  or  the  next  

scattering  event  occurs,  symbolized  by  the  free-flight  time 𝜏 .  The  value  of 𝜏 is  

established  by  generating  a  uniformly  distributed  random  number r,  a  character-  

istic  feature  of  the  Monte  Carlo  method.  As  per  Eq.  (2.21),  the  particle  is  first  

propagated  and  then  scattered.  A  scattering  event  is  selected,  again  through  a  

random  variable r,  from  a  normalized  scattering  table.  This  event  could  be  either  

a  phonon-scattering  event  or  a  particle-generation  event.  In  the  former  case,  the  

particle  is  scattered  according  to  the  chosen  scattering  mechanism,  altering  its  

wave  vector k.  In  the  latter  case,  two  additional  particles  with  signs ±1 and  wave-  

vectors k± l are  generated,  with  the  offset l determined  by  the  Wigner  potential.

Growth  Prediction: In  the  growth  prediction  step,  each  process  predicts  the  

growth  of  its  ensemble  of  particles  after  the  evolution  step.  This  becomes  nec-  

essary  as  continuous  particle  generation  results  in  an  exponential  increase  in  the  

number  of  particles  present  in  the  simulation.  This  would  lead  to  an  infeasible  com-  

putational  burden;  therefore,  an  annihilation  step  is  later  introduced  to  reduce  the  

number  of  particles.  

To  determine  if  this  annihilation  procedure  will  be  performed  in  a  subsequent  

time  step,  each  process  performs  a  growth  prediction  for  its  sub-ensemble  of  par-  

ticles  after  the  evolution  step  and  compares  if  the  number  of  particles  exceeds  a  

specific  maximum.  It  is  advisable  to  overestimate  the  particle  increase.  Therefore,  

the  maximum  value  of  the  generation  rate 𝛾 for  all  particles  is  used,  which  yields  

an  upper  bound  on  the  particle  growth:

𝑁t+Δt = 𝑁t

(︁
1  +  max

i
𝛾(ri)∆t

)︁
(2.22)

15



where 𝑁t+Δt and 𝑁t represent  the  number  of  particles  at  times t +  ∆t and t,  

respectively,  and ∆t is  the  time  increment  between  two  consecutive  time  steps.

Annihilation: In  the  annihilation  process,  all  processes  must  simultaneously  ex-  

ecute  their  local  annihilation  step  for  particles  within  the  subdomain,  which  is  

crucial  for  maintaining  the  global  statistics  of  the  Wigner  function.  All  processes  

must  reciprocate  if  any  process  necessitates  an  annihilation  step  based  on  its  local  

growth  prediction.  This  synchronized  operation  is  ensured  by  communicating  each  

process’s  growth  prediction  result  to  the  distributor  process  via  an  annihilation  

flag.  The  distributor  process  collects  these  flags  and,  if  any  are  true,  broadcasts  a  

global  annihilation  flag,  prompting  all  processes  to  perform  an  annihilation  step.  

If  all  flags  are  negative,  no  annihilation  occurs.  The  actual  annihilation  is  executed  

based  on  phase  space  cells,  each  associated  with  a  specific  wave  vector  value  as  per  

the  semi-discrete  Wigner  equation  (2.13).  If  two  particles  with  opposite  signs  are  

in  the  same  cell,  they  annihilate  each  other  and  are  removed  from  the  ensemble,  

as  all  particles  within  a  cell  are  considered  identical  and  indistinguishable  because  

of  the  Markovian  nature  of  the  Monte  Carlo  method.

Particle  Transfer: After  the  annihilation  step,  a  synchronization  barrier  ensures  

that  all  transfers  of  particles  located  in  the  overlapping  boundaries  of  the  subdo-  

mains  are  complete  before  the  next  time  step  commences.  Performing  the  transfer  

of  particles  after  an  annihilation  step  dramatically  reduces  the  size  of  the  particle  

ensemble  to  be  transferred,  which  is  beneficial  for  the  communication  burden.

Post-Processing
The  distributor  process  does  not  issue  a  global  reduction  step  to  collect  the  

resulting  data  to  avoid  a  central  communication  bottleneck  at  the  end  of  the  sim-  

ulation.  Instead,  at  each  output  time  step,  each  process  writes  the  simulation  

results  of  each  subdomain  to  disks  locally.  This  design  decision  necessitates  merg-  

ing  the  simulation  results,  handled  by  external  scripts,  in  the  post-processing  step.  

After  all  data  has  been  merged,  different  post-processing  steps,  such  as  analysis,  

examination,  and  evaluation,  can  then  take  place  to  reproduce  the  desired  physical  

quantities  and  visualize  the  simulation  results.
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2.3  Parallel  Computing

Optimizing  the  numerical  calculations  in  scientific  computation  is  paramount  to  

obtaining  simulation  results  in  a  reasonable  amount  of  time.  Since  the  increase  

in  clock  speed  of  single-core  processors  has  stagnated  [40]  since  the  start  of  the  

millennium,  parallel  computation  is  now the  primary  method  to  speed  up  or  even  

enable  expensive  computational  tasks.  

In  principle,  Monte  Carlo  methods  stand  out  for  their  "embarrassingly  paral-  

lel"  nature,  which  indicates  a  high  level  of  parallel  efficiency  that  can  be  readily  

achieved.  This  attribute  arises  from  handling  smaller  subensembles  independently  

across  separate  computational  units  without  necessitating  communication.  How-  

ever,  parallelizing  the  here-considered  Wigner  Monte  Carlo  implementation  en-  

counters  complexities  due  to  the  annihilation  step,  which  poses  challenges  on  two  

fronts.  The  annihilation  step  mandates  synchronization  among  computational  

units.  This  introduces  a  need  for  communication  and  synchronization  among  com-  

putational  units,  detracting  from  the  ideal  scenario  of  independent  parallelization.  

The  enormity  of  the  numerical  particles  in  the  simulated  particle  ensemble,  typi-  

cally  ranging  from 106 to 108,  underscores  the  need  for  a  parallel  solution  scheme  

to  attain  practical  simulation  runtimes.  Consequently,  parallelization  techniques  

become  indispensable  to  enhance  application  performance.  

Modern  system  architectures  for  high-performance  computing  (HPC)  most  com-  

monly  consist  of  several  nodes,  each  comprising  several  processing  units  [41].  These  

processing  units  can  typically  be  a  multi-core  central  processing  unit  (CPU),  

a  graphics  processing  unit  (GPU),  or  a  specialized  accelerator  such  as  a  field-  

programmable  gate  array  (FPGA).  An  efficient  utilization  of  high-performance  

computation  resources  requires  consideration  of  the  memory  layout  and  the  com-  

munication  between  the  processing  units.  Since  large  (HPC)  applications  mainly  

involve  a  distributed  memory system,  the  following section  provides a  brief  overview 

of  the  Message  Passing  Interface  (MPI),  one  of  the  most  commonly  used  paral-  

lelization  techniques  in  scientific  computing  and  used  for  the  parallel  execution  of  

ViennaWD.
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Message  Passing  Interface  (MPI) The  stochastic  solution  method  of  Vien-  

naWD  is  considered  to  necessitate  data  transfers  between  the  computing  units  

since  they  cannot  access  the  same  memory  on  a  distributed  memory  system.  

MPI  [42]  is  a  standard  that  the  MPI  Forum  maintains.  It  provides  a  commu-  

nication  layer  for  so-called  processes,  and  software  vendors  provide  different  im-  

plementations  of  the  standard.  An  MPI  process  manages  the  scheduling  of  op-  

erations  and  the  allocation  of  processor  resources  [43].  Each  process  is  assigned  

to  a  distinct  rank  within  an  MPI  communicator  with  which  it  can  be  uniquely  

identified.  A  straightforward  approach  initializes  an  MPI  program,  and  the  work-  

load  is  distributed  using  the  distributor-receiver  model.  Here,  one  process  called  

the  distributor  manages  the  input  and  output,  broadcasts  instructions,  receives  

results  from  the  receivers,  and  performs  reduction  operations  at  the  end  of  a  simu-  

lation.  The  receivers,  including  the  distributor  process,  perform  their  instructions  

in  parallel  before  returning  the  results  to  the  distributor  process.  

The  distributor-receiver  model  is  also  used  in  ViennaWD  (Section 2.2.1),  with  

an  important  distinction  being  that  the  distributor  process  does  not  perform  the  

reduction  step  at  the  end  of  the  simulation,  but  this  is  handled  by  external  scripts,  

which  collect  the  results  from  the  individual  processes  and  merge  them  into  a  single  

file  as  described  in  the  paragraph  Post-Processing  in  Section 2.2.1.
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3  Interpolation

Interpolation  plays  a  fundamental  role  in  various  scientific  and  engineering  appli-  

cations,  serving  as  a  tool  to  estimate  values  within  a  set  of  known  data  points.  

In  computational  tasks,  interpolation  routines  are  indispensable  for  generating  

continuous  functions  from  discrete  data,  facilitating  analysis,  visualization,  and  

prediction.  The  aim  of  implementing  an  interpolation  routine  into  ViennaWD  is  

to  provide  the  possibility  to  perform  a  mapping  of  imported,  arbitrary  quantities  

needed  for  a  simulation  onto  the  simulator’s  grid  data  structure  as  described  in  

Section 2.2.1.  

The  focus  will  be  on  importing  an  electric  potential  or  effective  mass  distribution  

into  ViennaWD  since  those  are  the  main  two  quantities  that  will  regularly  be  pro-  

vided  externally  through  experimental  measurements  or  modeling.  This  problem  

can  be  tackled  by  first  interpolating  the  quantity  on  the  external  grid,  also  often  

called knots or support  knots in  the  mathematical  literature  [44].  This  results  in  

an  interpolating  function  whose  values  are  known  not  only  at  the  support  knots  

but  also  in  the  total  domain  of  the  quantity.  Then,  the  interpolating  function  is  

evaluated  at  the  desired  ViennaWD  grid  points.  The  following  sections  will  briefly  

introduce  the  theory  behind  interpolation,  provide  a  short  overview of  the  inter-  

polation  techniques  used  in  this  thesis,  explain  the  reasoning  behind  the  choice  of  

interpolation  techniques,  and  provide  a  short  overview of  the  implementation  of  

the  interpolation  routines.

3.1  Interpolation  Background

Interpolation  serves  as  a  fundamental  concept  in  mathematics,  providing  a  means  

to  estimate  values  between  known  data  points.  It  encompasses  a  diverse  range  of
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techniques  aimed  at  constructing  continuous  functions  or  curves  that  pass  through  

or  approximate  given  discrete  data  points.  The  theoretical  foundation  of  interpo-  

lation  draws  upon  various  mathematical  principles,  including  polynomial  interpo-  

lation,  spline  interpolation,  and  radial  basis  function  interpolation,  among  others.  

These  methods  leverage  mathematical  constructs  such  as  polynomials,  piecewise  

functions,  and  radial  basis  functions  to  interpolate  data  points  and  approximate  

the  underlying  behavior  of  a  function  or  dataset.  Through  interpolation,  data  

can  be  analyzed,  predicted,  and  visualized  with  enhanced  accuracy  and  precision,  

making  it  a  cornerstone  of  computational  sciences.  Though  the  term  interpolation  

is  used  in  a  variety  of  contexts,  its  core  objective  is  the  following  [45]:

Definition. Given (xi,  𝑓i),  i =  0,  .  .  .  ,  n,  find

p ∈  K : p(xi)  = 𝑓i,  i =  0,  .  .  .  ,  n (3.1)

In  other  words,  the  goal  is  to  find  an  interpolating  function p,  belonging  to  some  

fixed  class  of  functions K that  are  defined  at  least  on ∆  =  [𝑎,  𝑏] (e.g., 𝑓 ∈  Pn the  

set  of  algebraic  polynomials  of  degree ≤ n),  that  matches  the  given  data  points
(xi,  𝑓i) for i =  0,  .  .  .  ,  n,  where p(xi)  = 𝑓i are  given.  

Here, xi is  a  set  of  points,  and 𝑓i are  the  function  values  at  those  points.  Applica-  

tions  are,  for  example:

• “Extrapolation”:  typically 𝑓i = 𝑓(xi) for  an  (unknown)  function 𝑓 .  For
x̄ /∈ x0,  .  .  .  ,  xn the  value p(x̄) yields  an  approximation  to 𝑓(x̄).

• “Dense  output/plotting  of  f”,  if  only  the  values 𝑓i = 𝑓(xi) are  given  (or,  e.g.,  

function  evaluations  are  too  expensive)

• Approximation  of  f:  integration  or  differentiation  of 𝑓 → integrate  or  differ-  

entiate  the  interpolating  function p

As  motivated  in  the  introduction  to  this  chapter,  the  second  example  listed  above  

reflects  the  use  case  for  this  work.  The  interpolation  of  an  arbitrary  quantity  to  

the  desired  parameters  of  the  simulation  grid  is  an  application  of  interpolation  in  

the  sense  of  a  dense  output  of 𝑓 .
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Although  the  interpolated  arbitrarily  varying  quantity  considered  will  not  be  rep-  

resented  as  an  analytical  function  on  the  domain,  it  will  still  be  referred  to  as 𝑓

in  the  following.  The  function 𝑓 is  given  by  a  set  of  points (xi,  𝑓i) for i =  0,  ...,  n,  

where 𝑓i = 𝑓(xi) are  given.  

Many  interpolation  methods  exist,  each  tailored  to  specific  requirements  such  as  

accuracy,  computational  efficiency,  and  smoothness  of  the  interpolated  function.  

Classical  techniques  include  [45]

• 0-th  Order  Interpolation:  Constant  interpolation

• 1-st  Order  Interpolation:  Linear  interpolation

• n-th  Order  Interpolation:  Polynomial  interpolation  

While  these  methods  are  straightforward  and  widely  applicable,  they  may  suffer  

from  limitations  such  as  overfitting  or  oscillations,  especially  with  sparse  or  noisy  

data  [46].  To  address  these  challenges,  more  advanced  interpolation  techniques  

have  been  developed  [47].  Splines,  for  instance,  provide  a  flexible  and  smooth  

interpolation  by  fitting  piecewise  polynomial  functions  to  subsets  of  data  points.  

Cubic  splines,  in  particular,  are  widely  used  due  to  their  simplicity  and  ability  to  

maintain  smoothness  while  passing  through  all  data  points  [44].  

In  addition  to  spline-based  methods,  radial  basis  function  interpolation  offers  

an  alternative  approach  [48],  employing  localized  basis  functions  centered  at  each  

data  point  to  construct  the  interpolated  function.  This  technique  is  particularly  

effective  for  irregularly  spaced  data  or  when  the  underlying  data  distribution  is  

not  well-behaved.  

Furthermore,  machine  learning-based  interpolation  methods,  such  as  Kriging  

and  Gaussian  processes  [49],  have  gained  popularity  for  their  ability  to  capture  

complex  relationships  in  data  while  providing  uncertainty  estimates.  These  tech-  

niques  leverage  statistical  models  to  interpolate  data  points  and  make  predictions  

based  on  the  underlying  covariance  structure.  However,  these  are  not  further  con-  

sidered  in  this  work  but  provide  alternative  avenues  for  future  research.  

Overall,  the  choice  of  interpolation  routine  depends  on  the  characteristics  of  the  

data,  the  desired  accuracy,  and  computational  constraints.  In  practice,  combining
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multiple  methods  or  adapting  existing  techniques  to  specific  problem  domains  often  

leads  to  optimal  interpolation  results.  The  following  sections  will  provide  a  short  

overview of  the  interpolation  methods  investigated  in  this  thesis.

3.1.1  Piece-wise  interpolation  /  Splines

Since  the  problem  considered  is  not  to  interpolate  an  analytical  function 𝑓 but  

rather  an  arbitrarily  varying  quantity,  there  is  no  imperative  for  using  polynomial  

interpolation  routines  of  any  order  standalone  of  the  shortcomings  as  mentioned  

above.  Therefore,  spline  interpolation,  where  for  each  subset  of  points  to  be  inter-  

polated  through,  a  polynomial  of  order k is  calculated,  which  in  the  most  abstract  

case  can  be  of  any  order  necessary  to  fit  the  data,  is  a  promising  approach.  

Splines  are  piece-wise  polynomials  on  a  partition ∆ of  an  interval [𝑎,  𝑏].  The  

partition ∆ is  described  by  the  knots 𝑎 = x0 <  x1 < ·  ·  · xn = 𝑏.  The  elements  in  

this  partition  between  the  knots  are  denoted  by 𝐼i =  (xi,  xi+1),  i =  0, ·  ·  · ,  n − 1.  

For  a  partition ∆,  described  by  the  knots xi,  i =  0,  .  .  .  ,  n) and p,  r ∈ 𝑁0,  the  spline  

space 𝑆p,r(∆) is  defined  as

Definition.
𝑆p,r(∆)  :=

{︀
u ∈ 𝐶r([𝑎,  𝑏]) |u|𝐼i ∈  Pp ∀i}︀ (3.2)

Given  values 𝑓i,  i =  0, ·  ·  · ,  n, s ∈ 𝑆p,r(∆) is  said  to  be  the  interpolating  spline  if

s(xi)  = 𝑓i,  i =  0,  .  .  .  ,  n

The  classical  cubic  spline  space  is  given  by  the  choices p =  3 and r =  2,  meaning  

that  the  piecewise  polynomials  are  of  third  order;  therefore,  in P3 and  that  the  

overall  interpolating  function  is  twice  continuously  differentiable  therefore  in C2.  

The  interpolation  problem  is  therefore:

Definition.

Given 𝑓i,  i =  0,  .  .  .  ,  n, (3.3)  

find s ∈ 𝑆3,2(∆) (3.4)  

such  that s(xi)  = 𝑓i,  i =  0,  .  .  .  ,  n (3.5)
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Since  Eq.  (3.5)  represents  a  system  of n+  1 equations  and 𝑑im𝑆3,2(∆)  = n+  3

there  have  to  be  additional  constraints  imposed.  Equation  (3.5)  yields n+1 inter-  

polation  conditions.  Hence,  two  more  conditions  have  to  be  imposed.  These  two  

extra  conditions  are  selected  depending  on  the  application.  One  of  the  following  

four  choices  is  typically  made  [45]:

1. Complete/clamped  spline:  The  user  provides  two  additional  values 𝑓 ′
0,  𝑓  n′ ∈

ℝ and  imposes  the  following  two  additional  conditions:

s′(x0)  = 𝑓 ′
0,  s′(xn)  = 𝑓 ′

n. (3.6)

2. Periodic  spline:  one  assumes 𝑓0 = 𝑓n and  imposes  additionally

s′(x0)  = s′(xn),  s′′(x0)  = s′′(xn). (3.7)

3. Natural  spline:
s′′(x0)  =  0,  s′′(xn)  =  0. (3.8)

4. “not-a-knot  condition”:  one  requires  that  the  third  derivative  (jerk)  of s at  

the  knots x1 and xn−1 to  be  zero:

lim
x→x1−

s′′′(x)  =  lim
x→x1+

s′′′(x), lim
x→xn−1−

s′′′(x)  =  lim
x→xn−1+

s′′′(x) (3.9)  

In  particular,  the  spline  interpolation  problem  is  uniquely  solvable  in  each  of  

these  cases.

3.1.2  Radial  Basis  Functions

Radial  Basis  Functions  (RBFs)  stand  as  a  formidable  tool  in  the  realm  of  inter-  

polation,  offering  a  versatile  and  powerful  approach  to  approximating  unknown  

functions  from  scattered  data  points  [48].  Their  widespread  adoption  stems  from  

their  unique  ability  to  capture  complex  relationships  between  data  points  while  

circumventing  some  of  the  limitations  associated  with  traditional  interpolation  

techniques  [50].  RBFs  are  especially  known  for  their  use  in  mesh-free  interpola-  

tion.  Although  the  interpolation  problem  discussed  is  not  inherently  mesh-free,  the
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added  convenience  and  reassurance  of  this  functionality  are  not  to  be  overlooked.  

RBF  interpolation  originated  in  the  1970s  [51]  and  has  since  been  successfully  used  

in  a  variety  of  fields  such  as  geophysics,  computer  graphics,  medical  imaging,  fi-  

nance,  environmental  modeling,  aerospace  engineering,  and  machine  learning  [52].  

This  highlights  the  versatility  of  RBFs  in  diverse  interpolation  scenarios.  

The  interpolant  takes  the  form  of  a  weighted  sum  of  RBFs  where  the  approxi-  

mating  function y(x) is  represented  as  a  sum  of n RBFs,  each  associated  with  a  

different  center xi,  and  weighted  by  an  appropriate  coefficient 𝜆i.  Therefore,  the  

interpolation  problem  takes  the  form:

Definition.

Given 𝑓i,  i =  0,  .  .  .  ,  n, (3.10)  

find s(x), x ∈ ℝ𝑑 (3.11)  

such  that s(xi)  = 𝑓i,  i =  0,  .  .  .  ,  n (3.12)

s(x)  =
n∑︁

i=1

𝜆i𝜑(|x− xi|), x ∈ ℝ𝑑 (3.13)  

with
n∑︁

i=1

𝜆i𝜑(xj − xi)  = 𝑓j (3.14)

Some classical  choices for  RBF  kernels can  be  seen  in  Table 3.1 with r = ‖x− xi‖.

Radial  Basis  Function 𝜑(x)

Gaussians 𝑒−(𝑐r)2

Polyharmonic r2k−1

r2kl  o𝑔(r)

Mulitquadratics
√
r2 + 𝑐2

Table  3.1: Classic  types  of  RBFs
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3.2  Implementation

Considering  the  circumstance  that  the  externally  provided  quantities  will,  in  gen-  

eral,  not  represent  an  analytical  function  and  further  that  we  can  not  make  any  

assumptions  on  the  sampling  of  the  quantity,  meaning  we  cannot  assume  whether  

the  provided  quantity  will  satisfy  any  particular  conditions  as  to  spacing  or  den-  

sity,  the  choice  was  made  to  use  spline  interpolation  techniques  and  RBFs  going  

forward.  Bivariate  spline  interpolation  and  RBF  interpolation  were  chosen  as  they  

are  of  considerable  interest,  in  particular,  in  scattered  data  fitting,  the  construc-  

tion  and  reconstruction  of  surfaces  [53, 48]  and  further,  since  there  exist  many  

well-maintained  and  optimized  libraries  that  have  these  methods  of  interpolation  

implemented.  Two  choices  arise  for  the  implementation.  They  are  (1)  integrating  

an  implementation  routine  into  the  simulator  and  (2)  a  standalone  implementation  

used  in  a  pre-processing  step.  For  the  standalone  implementation,  it  was  decided  

to  work  with Python [54]  as  it  is  already  in  use  in  the  simulator’s  post-processing  

step.  For  the  implementation  focused  on  integration  within  Vienna  WD  itself,  it  

is  therefore  evident  that  it  was  implemented  in  C [55],  as  this  is  the  program-  

ming  language  that  the  Vienna  WD  simulation  kernel  is  written  in.  A  readily  

available  and  well-maintained  library  for Python is  the SciPy library  [56],  which  

offers  an  interpolate  module  with  all  the  discussed  methods  in  place.  In  C,  the  

off-the-shelf  available  resource  for  interpolation  is  the GSL library  [57].  However,  

for  bivariate  interpolation, GSL only  offers  the  possibility  of  spline  interpolations  

of  linear  and  cubic  order.  Therefore,  these  will  be  the  only  methods  compared  to  

the Python implementation.  In  the  following,  both  approaches  will  be  presented,  

with  a  discussion  of  the  implications  on  the  workflow of  each  approach  and  the  

findings  presented  later  in  Chapter 5.  The  workflow of  each  implementation  is  

visualized  in  Fig. 3.1 as  a  flowchart  and  will  be  used  in  the  following  to  present  

the  algorithms  and  explain  their  workings.  A  flowchart  is  a  type  of  diagram  that  

represents  a  workflow or  process  [58],  in  this  case,  a  diagrammatic  representation  

of  an  algorithm,  a  step-by-step  approach  to  solving  a  task.  In  Fig. 3.1,  trapezoidal  

nodes  describe  input  from  the  user  that  is  necessary  when  invoking  the  program,  

and  yellow nodes  describe  the  sections  where  the  program  interacts  with  the  out-  

side  through  input  from  the  user  or  output  to  the  operating  system.  Grey  nodes
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describe  the  different  stages  within  the  program,  where  the  interpolation  step  is  

highlighted  in  a  darker  shade.

(a) Python (b) C

Figure  3.1: Flowcharts  describing  the  program  algorithm  for  the  implementation  

of  different  interpolation  routines  in Python (a)  and C (b).

3.2.1  Interpolation  using SciPy in Python

As  previously  mentioned  in  Section 3.2,  two  different  types  of  interpolation  within  

the Python  SciPy library  are  looked  into.  These  are  the  previously  mentioned  

spline  interpolations  where  the SciPy library  offers  the RectBivariateSpline method  

for  interpolating  an  arbitrary  quantity  on  a  rectangular  mesh.  The  other  inter-  

polation  method  investigated  is  the  RBF  interpolation,  where SciPy provides  the
RBFInterpolator method.
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The  implementation  of  both  methods  will  be  presented  collectively  in  the  follow-  

ing,  while  only  the  key  differences  of  the  specific  method  used  for  the  interpolation  

itself  will  be  pointed  out.  The  implementation  of  the  interpolation  routine  was  

done  as  standalone Python script interpolation.py and  further  as Python note-  

book  [59] interpolation.ipynb.  Since  both  implementations  are  identical  in  their  

functionality,  only  the  standalone  script  will  be  discussed  in  the  following.  The  

script  is  divided  into  three  parts:

1. The  first  part  is  concerned  with  the  import  of  the  necessary  modules  and  

data.

2. The  second  part  is  concerned  with  the  interpolation  of  the  quantity  using
SciPy routines  from scipy.interpolate.

3. The  third  part  is  concerned  with  plotting  and  exporting  the  interpolated  

quantity.

Import  of  modules  and  data
The  import  of  modules  and  user  data  is  visualized  in  Fig. 3.1a as  the  yellow 

node  at  the  top  of  the  flowchart.  The  modules  imported  are  shown  in  Listing 3.1:

• os:  for  extraction  of  file  arguments

• sys:  for  the  handling  of  command  line  arguments

• numpy:  for  the  handling  of  arrays

• scipy.interpolate:  for  the  interpolation  routines

• matplotlib.pyplot:  for  the  plotting  of  the  interpolated  quantity

1 import os

2 import sys

3 import numpy  as  np

4 from scipy.interpolate import RectBivariateSpline  as  RBS

5 from scipy.interpolate import RBFInterpolator  as  RBF

6 import matplotlib.pyplot  as  plt

Listing  3.1: Import  of  necessary  modules
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The  first  module  to  be  imported  is os.  It  is  used  to  discern  whether  the  command  

line  argument  for  the  input  file  has  the  correct  extension. sys is  used  to  provide  

the  functionality  of  using  command  line  arguments  within  the Python program.
NumPy [60]  included  as numpy,  provides  essential  numerical  computing  capabilities  

to Python.  Specifically,  it  is  an  array  object  capable  of  handling  multiple  dimen-  

sions  alongside  a  plethora  of  associated  objects.  Complementing  this, NumPy
boasts  an  extensive  collection  of  functions  tailored  for  swift  operations  on  arrays  

encompassing  mathematical,  logical,  sorting,  selection,  input/output  operations,  

and  beyond.  The  sub-package scipy.interpolate is  part  of  the SciPy library.
SciPy is  a  comprehensive  collection  of  mathematical  algorithms  and  convenience  

functions  built  on  top  of NumPy,  adding  high-level  commands  and  classes  for  

data  manipulation  and  visualization.  Specifically, scipy.interoplate provides  

us  with  interpolation  classes,  functions,  and  the  accompanying  evaluation  meth-  

ods. matplotlib.pylot provides  the  visualization  interface  from Matplotlib [61].  

After  importing  all  necessary  libraries  and  packages,  the  script  proceeds  to  de-  

clare  all  the  variables  needed  for  the  interpolation  routine,  depending  on  the  com-  

mand  line  arguments.  This  is  done  using  the  length  of sys.argv and  the  command  

line  arguments  themselves,  as  shown  in  Listing 3.2.  The  command  line  arguments  

are:

• sys.argv[1] data:  Data  to  be  interpolated

• sys.argv[2] working path:  Path  to  write  results  to

• sys.argv[3] mesh_size:  Mesh  size  for  the  evaluation

1 print(f"USING {sys.argv [1]} WITH MESH SIZE {sys.argv [3]}

2 WRITING TO {sys.argv [2]}")

3 data  =  np.genfromtxt(sys.argv[1],  delimiter=’ ’,

4 skip_header =1)

5 working_path  =  sys.argv [2]

6 mesh_size_x  = float(sys.argv [3])

7 mesh_size_y  = float(sys.argv [3])

Listing  3.2: Data  import  from  command  line  arguments
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The  data  to  be  interpolated  is  read  from  the  file  given  in sys.argv[1] using numpy  

.genfromtxt and  stored  in  the  variable data.  This  is  represented  in  Fig. 3.1a by  

the  grey,  rectangular  node  after  the  yellow initialization  node.  Data  is  assumed  

to  arrive  as  a  CSV,  as  used  in  the  simulator.  This  is  checked,  and  if  the  provided  

file  is  not  of  the  right  type,  the  program  raises  an  error  and  returns  as  shown  in  

Listing 3.3.

1 if file_extension.lower ()  != ’.csv’:

2 print("Error: The file is not a CSV file.")

3 sys.exit (1)

Listing  3.3: File  extension  check

The  working  path  is  given  in sys.argv[2] and  is  used  to  write  the  interpolated  

quantity  to  the  filesystem.  To  construct  the  evaluation  grid,  the  mesh  size  is  

given  in sys.argv[3] and  is  used  to  create  the  evaluation  grid  for  the  interpolation  

routine.  Though  the  mesh  size  is  given  as  a  single  value,  the  interpolation  routine  

could  support  different  mesh  sizes  in  the x and y directions.  Therefore,  the  mesh  

size  is  split  into  two  values mesh_size_x and mesh_size_y,  which  are  then  used  to  

create  an  evaluation  grid.  This  is  done  to  future-proof  the  routine  for  the  case  

that  different  mesh  sizes  in  the x and y directions  are  needed  at  a  later  point  in  

the  development  of  ViennaWD.

Interpolation
The  second  part  of  the  script  is  concerned  with  the  interpolation  using  the SciPy

routine RectBivariateSpline or  the SciPy routine RBFInterpolator provided  

in  the scipy.interpolate package.  To  this  end,  the  routines  require  the  grid  

points  or  support  knots  as  well  as  the  values  of  the  quantity  considered  at  those  

grid  points.  Therefore,  the  data  is  later  split  into  the x and y values  of  the  quantity  

and  the  quantity  values  themselves  according  to  the  respective  requirements  of  the  

routines RectBivariateSpline and RBFInterpolator.  

The  data  points  of  the  interpolation  data  are  stored  in  the  variable data,  and  

the  evaluation  grid  is  created  using  the  mesh  size  given  in sys.argv[3].  Therefore,  

the x and y values  are  scanned  for  their  minimum  and  maximum  values,  and  the  

evaluation  grids  are  created  using  the  mesh  sizes,  represented  in  Fig. 3.1a by  the
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second  light  grey,  rectangular  node.  This  is  done  via  the numpy.arange function,  

which  creates  an  array  of  values  from  a  given  start  value  to  a  given  end  value  with  

a  given  step  size,  which  in  our  case  is  the  mesh  size.  The  new data  points  are  then  

stored  in  the  variables Xnew and Ynew and  are  used  to  further  create  the  evaluation  

mesh  grids  via numpy.meshgrid,  where numpy.meshgrid returns  a  list  of  coordinate  

matrices  from  coordinate  vectors.  This  is  shown  in  Listing 3.4,  where  further  the  

mesh  grid  is  then  saved  as xnew and ynew.

1 x_min ,  x_max  =  data [: ,0][0] ,  data [: ,0][ -1]

2 y_min ,  y_max  =  data [: ,1][0] ,  data [: ,1][ -1]

3
4 Xnew  =  np.arange(x_min ,  x_max+mesh_size_x ,  step=mesh_size_x)

5 Ynew  =  np.arange(y_min ,  y_max+mesh_size_y ,  step=mesh_size_y)

6 xnew ,  ynew  =  np.meshgrid(Xnew ,  Ynew)

Listing  3.4: Evaluation  grid  setup

The  interpolating  function  is  then  constructed  using  the RectBivariateSpline
and RBFInterpolator routines  from the package scipy.interpolate respectively.  

At  this  stage,  the  invocation  of  the  two  functions,  visualized  by  the  dark  grey  node  

in  Fig. 3.1a,  differs  slightly.

• scipy.interpolate.RectBivariateSpline requires  the  unique x and y values  

of  the  original  grid  in  strictly  ascending  order  as  1-D  arrays’  of  size nx and
ny,  respectively,  to  set  up  the  support  knots  for  the  interpolating  function  

and  the  function  values  are  to  be  supplied  as  a  2D  array  of  function  values  

at  those  grid  points  of  size (nx,  ny),  where nx,  ny is  the  number  of  gridpoints  

in  each  dimension

• RBFInterpolator,  on  the  other  hand,  requires  the  grid  points  to  be  passed  as  

a  2D  array  with  dimensions (nx · ny, 2).  Therefore,  the  function  values  must  

also  be  supplied  in  the  same  manner  as  a  1-D  array  of  size (nx · ny, 1).  

For  the  spline  interpolation,  the  order  of  the  underlying  spline  space  can  be  chosen  

at  this  point,  and  for  the  RBF-Interpolator,  the  underlying  RBFs 𝜑(x).  The  

interpolating  function  is  then  stored  in  the  variable interpf to  avoid  unnecessary
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recalculation  of  the  interpolation  function  when  evaluation  at  different  intervals  is  

necessary.  

For  the  evaluation,  the  interpolating  function interpf is  called  with  the  evalu-  

ation  mesh  grids xnew and ynew as  arguments  for  the  spline  routine RBS and  with
new_grid for  the  RBF  routine RBF,  as  the  interpolating  function  again  requires  dif-  

ferent  invocations.  This  process  step  is  visualized  as  the  last  grey  node  in  Fig. 3.1a.  

The  function  call  and  evaluation  for  both  the  spline  and  RBF  methods  are  shown  

in  Listing 3.5 and 3.6,  respectively.

1 interpf  =  RBS(x,  y,  z,  kx=order ,  ky=order)

2 interp_data  =  interpf(xnew ,  ynew ,  grid=False)

Listing  3.5: Interpolation  and  Evaluation  of  the  spline  method

1 interpf  =  RBF(XY ,  Z,  kernel=order ,  epsilon =0.5)

2 interp_data  =  interpf(new_grid)

Listing  3.6: Interpolation  and  Evaluation  of  the  RBF  method

Plotting  and  exporting
The  third  part  of  the  script  is  concerned  with  plotting  and  exporting  the  inter-  

polated  quantity.  A  new filename  for  the  output  is  constructed  using  the  working  

path  given  in sys.argv[2],  the  filename  of  the  input  data  given  in sys.argv[1],  

and  the  mesh  size  given  in sys.argv[3].  The  interpolated  data  is  then  saved  to  

the  new file  using numpy.savetxt as  shown  in  Listing 3.7.

1 file =  sys.argv [1]. split("/")[-1]. split(".")[0]

2 save_file  =  working_path  + file +

3 "_intp_RBF_ {}_{}. csv".format(order ,  mesh_size_x)

4 np.savetxt(save_file ,

5 np.concatenate ((xnew.reshape(xnew.size ,  1),

6 ynew.reshape(xnew.size ,  1),

7 interp_data.reshape(xnew.size ,  1)),  axis =1),

8 fmt  = ’%1.4e’,  delimiter=’ ’,  newline=’\n’,

9 header=’x y z’,  comments=’’)

Listing  3.7: Data  export  to  file  system
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Finally,  the  interpolated  quantity  is  plotted  using matplotlib.pyplot and  saved  to  

the  working  path  using matplotlib.pyplot.savefig as  shown  in  Listing 3.8.  As  

this  process  requires  outside  communication  with  the  filesystem,  it  is  visualized  

as  the  bottom  yellow node  in  Fig. 3.1a.  This  is  done  via  the  use  of  a  boolean  

variable plot,  which  is  set  to False by  default.  It  would  allow the  use  of  another  

command  line  argument  if  deemed  necessary.  Since  the  feature  of  plotting  the  

input  and  output  data  is,  however,  only  of  use  for  debugging  reasons  and  is  not  

needed  for  the  interpolation  itself  in  a  production  environment,  the  feature  was  

not  implemented.

1 if plot:

2 save_plot_output  =  working_path  + file +

3 "_output_RBF_ {}_{}. png".format(order ,  mesh_size_x)

4 fig  =  plt.figure(figsize  =  [12 ,12])

5 ax  =  plt.axes(projection=’3d’)

6 ax.plot_surface(xnew ,  ynew ,  interp_data ,  cmap=’viridis ’)

7 ax.set_xlabel(’x’)

8 ax.set_ylabel(’y’)

9 ax.set_zlabel(’z’)

10 fig.savefig(save_plot_output)

Listing  3.8: Visualization  of  data

3.2.2  C  -  GSL

For  the  interpolation  using C,  the GSL subroutine gsl/gsl_interp2d.h and
gsl/gsl_spline2d.h from  the GSL library  was  used.  The  routine  uses  an  instance  

of  bicubic  or  bilinear  splines  (gsl_interp2d_bicubic, gsl_interp2d_bilinear)  

together  with  the  number  of  support  knots  in  each  dimension  to  create  an  inter-  

polation  object  consisting  of  an  underlying  spline  supported  on  these  knots.  

The  interpolation  routine  was implemented  as  a  standalone C script interpolation.c
and,  further,  as  a  feature  to  be  used  within  the  simulator.  Since  both  implementa-  

tions  are  identical  in  their  functionality,  only  the  standalone  script  will  be  discussed  

in  the  following.  Figure 3.1b shows  the  program  flow for  the  standalone  imple-  

mentation  in C,  with  a  short  note  on  the  simulator  implementation  at  the  end  of
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the  chapter.  The  script  is  divided  into  three  parts:

1. The  first  part  is  concerned  with  the  import  of  the  necessary  modules.

2. The  second  part  consists  of  the  different  functions  used  in  the  main  routine.

3. The  main  routine  itself.

Import  of  modules
The  first  part  of  the  script  is  concerned  with  the  import  of  the  necessary  modules,  

as  shown  in  Listing 3.9.  The  modules  imported  are:

• stdio.h:  for  the  handling  of  command  line  arguments

• stdlib.h:  for  the  handling  of  arrays

• gsl/math.h:  for  the  interpolation  routine

• gsl/gsl_interp2d.h:  for  the  interpolation  routine

• gsl/gsl_spline2d.h:  for  the  interpolation  routine

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <gsl/gsl_math.h>

4 #include <gsl/gsl_interp2d.h>

5 #include <gsl/gsl_spline2d.h>

Listing  3.9: Inclusion  of  necessary  headers

stdio.h provides  the  necessary  functionality  to  handle  the  input  provided  when  

invoking  the  program. stlib.h provides  the  required  functionalities  for  dynamic  

memory  allocation.  Specifically,  the  function malloc and  the  data  type size_t.
gsl/math.h is  needed  to  calculate  the  new grid  structure. gsl/gsl_interp2d.h

and gsl/gsl_spline2d.h are  the  header  files  from  the GSL library  that  are  needed  

to  perform  the  interpolation  task. gsl/gsl_spline.h provides  the  basis  spline  

object  that  is  used  within gsl/gsl_interp2d.h to  set  up  and  calculate  the  inter-  

polating  spline  function.
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Functions
The  second  part  of  the  program  is  concerned  with  the  different  functions  used  

for  the  main  routine.  The  functions  are:

• read_csv(x_array,  y_array,  z_array,  filename,  scan,  size)

• countDistinct(array,  N)

• configure_spline(x_array,  y_array_y,  z_array,  n_x,  n_y,  spline)

Since  within C for  dynamic  memory  allocation,  defined  as  a  procedure  in  which  

the  size  of  a  data  structure  is  changed  during  the  runtime,  necessitates  a  call  to  

either malloc or calloc,  the  function read_csv,  shown  in  Listing 3.10,  is  called  

several  times.  The  function  is  called  with  pointers  to  the  containers  for  the x,  y

and z values  (xp, yp, zp),  the filename as  provided  via  command  line  input,  an  

integer scan used  to  discern  whether  to  read  or  to  scan  the  file,  as  well  as  an  

integer  pointer size for  use  if  the  function  is  called  to  scan  a  file.  

The  initial  call  to  the  function  scans  the  file  for  the  number  of  lines  and  stores  it  

in  the  variable size.  This  is  done  to  allocate  the  memory  for  the  arrays x, y,  and
z,  which  is  done  in  the  main  routine  and  accomplished  via  the  boolean  variable
scan that  either  initiates  a  scan  of  the  file  and  writes  the  resulting  number  of  lines  

to size or  reads  the  content  and  writes  it  to  the  appropriate  container.  After  

reallocating  the  memory  associated  with  the  pointers x, y,  and z,  the read_csv

function  is  called  again  to  read  the  data  from  the  file  and  store  it  in  the  respective  

arrays.

1 void read_csv(double*  xp , double*  yp , double*  zp ,

2 char*  filename , int scan , int*  size)

3 {

4 float nodePositionX ,  nodePositionY ,  quantity;

5 FILE*  fp  =  fopen(filename , "r");

6 int line  =  0;

7
8 if (!fp)  printf("Can’t open file %s\n",  filename);

9
10 int retval  =  fscanf(  fp , "%*[^\n]\n" );
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11 if(retval  ==  -1)  printf("[ERROR ]\n" );

12
13 if(scan){

14 while (  fscanf(fp , "%f %f %f\n",  &nodePositionX ,

15 &nodePositionY ,  &quantity)  !=  EOF  )

16 {line ++;}

17 *size  =  line;

18 }

19 else{

20 while (  fscanf(fp , "%f %f %f\n",  &nodePositionX ,

21 &nodePositionY ,  &quantity)  !=  EOF  )

22 {

23 xp[line]  =  nodePositionX;

24 yp[line]  =  nodePositionY;

25 zp[line]  =  quantity;

26 line ++;

27 }

28 fclose(fp);

29 }

30 }

Listing  3.10: Function  to  read  or  scan  CSV  from  file

Since  the  number  of  distinct  values  in  the  arrays x and y,  which  are  the  number  

of  support  knots  in  each  direction,  cannot  be  known  in  advance,  it  is  necessary  to  

calculate  them  separately.  The  function countDistinct (Listing 3.11)  is  used  to  

count  the  number  of  distinct  values x and y in  the  arrays x and y and  return  the  

respective  number  of  unique  entries  for  later  use  in  the  main  routine.  The  routine  

is  called  with  the  array arr and  the  size  of  the  array n to  be  inspected.

1 size_t  countDistinct(double*  arr ,  size_t  n)

2 {

3 int res  =  1;

4 for (int i  =  1;  i  <  n;  i++)  {

5 int j  =  0;

6 for (j  =  0;  j  <  i;  j++)
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7 if (arr[i]  ==  arr[j])

8 break;

9 if (i  ==  j)

10 res ++;

11 }

12 return res;

13 }

Listing  3.11: Function  to  count  number  of  distinct  values  in  an  array

The  function configure_spline (Listing 3.12)  configures  the  spline  object  used  

for  the  interpolation  routine.  To  this  end,  the  function  takes  the  arrays x, y,  and
z as  well  as  the  number  of  support  knots  in  the x and y direction  (nx, ny)  and  a  

spline  object spline as  arguments.  With gsl_spline2d_set,  the  structure  of  the  

interpolating  polynomial  on  the  support  knots  is  created,  and  each  support  knot  is  

assigned  a  value  from  the  array z.  With gsl_spline2d_init,  the  spline  object  is  

then  initialized  to  the  given  values  of  the  support  knots,  i.e.,  their x and y values  

in  the  original  grid.

1 void configure_spline( double*  x, double*  y, double*  z,

2 int nx , int ny ,  gsl_spline2d  *spline  )

3 {

4 size_t  i,  j;

5 double *z_smth  =  malloc(nx  *  ny  * sizeof(double));

6 double *xvals  =  malloc(nx  * sizeof(double));

7 double *yvals  =  malloc(ny  * sizeof(double));

8
9 for (i  =  0;  i  <  nx;  i++)  {

10 for (j  =  0;  j  <  ny;  j++)  {

11 gsl_spline2d_set(spline ,  z_smth ,  i,  j,  z[j*nx  +  i]);

12 }

13 }

14
15 j  =  0;

16 for (i  =  0;  i  <  nx*ny;  i++)  {

17 if (i%ny  ==  0)
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18 {

19 xvals[j]  =  x[i];

20 j++;

21 }

22 }

23 for (i  =  0;  i  <  ny;  i++)

24 {

25 yvals[i]  =  y[i];

26 }

27 gsl_spline2d_init(spline ,  xvals ,  yvals ,  z,  nx ,  ny);

28 }

Listing  3.12: Function  to  configure  spline  object

Main  routine
The  program  requires  the  following  arguments  to  be  supplied  when  invoking  

it.  These  are  the  quantities  to  be  interpolated,  supplied  as  a CSV file  with  three  

columns,  where  the  first  two  columns  describe  the  grid  point  and  the  third  column  

the  value  of  the  quantity  at  each  grid  point.  The  first  two  columns,  meaning  the
x and y values  of  the  grid,  are  required  to  be  in  strictly  ascending  order.  This  is  

necessary  because  the GSL routines  for  the  interpolation  require  the  provided  grid  

points  to  be  in  strictly  ascending  order.  Therefore,  this  constraint  on  the  input  

is  imposed  to  avoid  a  costly  sorting  algorithm  within  the  implementation.  The  

second  user  input  required  is  the  new mesh  size  to  generate  the  evaluation  grid  on  

which  the  interpolating  function  shall  be  evaluated.  The  third  user  input  required  

is  the  path  to  which  the  interpolated  quantity  is  written.  

Via  the  variables inputFile, working_path,  and mesh_size_x/y,  the  user  input  

when  calling  the  program  is  saved.  The  main  routine  then  begins  to  initialize  all  

necessary  objects  and  allocate  all  necessary  memory  (Listing 3.13).  The  required  

external  input  to  the  program  is  given  by  the  grey  trapezoidal  node  in  Fig. 3.1b,  

while  the  initialization  is  represented  by  the  yellow node.

1 const gsl_interp2d_type  *T  =  gsl_interp2d_bilinear/

gsl_interp2d_bicubic;

2 char*  inputFile  =  argv [1];
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3 char*  working_path  =  argv [2];

4 double mesh_size_x  =  atof(argv [3]);

5 double mesh_size_y  =  atof(argv [3]);

6
7 int Nx ,  Ny;

8 int i,  j;

9 int nx ,  ny;

10
11 const int PATH_LENGTH  =  256;

12
13 int scan  =  1;

14 int*  size  =  malloc(sizeof(int));

15
16 double range_x;

17 double range_y;

18
19 FILE  *filePntr;

20 char filenameINTP[PATH_LENGTH ];

21
22 double*  xa  =  malloc(sizeof(double));

23 double*  ya  =  malloc(sizeof(double));

24 double*  za  =  malloc(sizeof(double));

Listing  3.13: Initialization  from  user  provided  arguments  and  declaration  of  

necessary  variables

The  arrays xa and ya will  contain  the x and y values  of  the  original  grid,  and  

the  array za will  contain  the  value  of  the  externally  provided  quantity  to  be  in-  

terpolated  at  those  points.  As  mentioned  previously,  via  the  use  of  the  boolean  

variable scan,  the  function read_csv is  called  twice,  with  the  appropriate  memory  

allocation  in  between.  This  is  represented  in  Fig. 3.1b by  the  first  two  grey  nodes  

after  the  yellow initialization  node.  The  data  is  then  read  from  the  file  and  stored  

in  the  arrays xa, ya,  and za,  which  are  in  a  further  scan  used  to  count  the  number  

of  distinct  values  in  the  arrays xa and ya as  shown  in  Listing 3.14.
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1 read_csv(xa ,  ya ,  za ,  inputFile ,  scan ,  size);

2 xa  =  realloc(xa ,  *size  * sizeof(double));

3 ya  =  realloc(ya ,  *size  * sizeof(double));

4 za  =  realloc(za ,  *size  * sizeof(double));

5
6 if (xa  ==  NULL  ||  ya  ==  NULL  ||  za  ==  NULL)

7 {  printf("Error reallocating memory\n");  }

8
9 scan  =  0;

10 read_csv(xa ,  ya ,  za ,  inputFile ,  scan ,  size);

Listing  3.14: Reallocation  of  data  array  memory  as  ascertained  by read_csv

The  number  of  distinct  values  in  the  arrays xa and ya is  then  stored  in  the  variables
nx and ny.  This  is  done  with  the  previously  mentioned  function countDistinct

and  is  represented  in  Fig. 3.1b as  a  grey  node.  This  step  allows  us  to  extract  

our  grid  from  the  input  data.  With  this  information,  the  spline  object  can  now 

be  set  up  (Listing 3.15).  A gsl_spline2d instance spline is  declared  using  the
gsl_spline2d_alloc function.  It  is  called  with  the  desired  type  of  spline 𝑇 and  

the  number  of  support  knots  in  the x and y directions.  Further,  two  accelerator  

objects  are  created  using  the gsl_interp_accel_alloc function.

1 nx  =  countDistinct(xa ,  *size); /* x grid points */

2 ny  =  countDistinct(ya ,  *size); /* y grid points */

3
4 gsl_spline2d  *spline  =  gsl_spline2d_alloc(T,  nx ,  ny);

5 gsl_interp_accel  *xacc  =  gsl_interp_accel_alloc ();

6 gsl_interp_accel  *yacc  =  gsl_interp_accel_alloc ();

7
8 configure_spline(xa ,  ya ,  za ,  nx ,  ny ,  spline);

Listing  3.15: Determination  of  grid  structure  and  initialization  of  spline  and  

accelerator  objects

The  method  with  which the  spline  object  is  initialized  is  either gsl_interp2d_bilinear
for  piecewise  linear  interpolation  or gsl_interp2d_bicubic for  the  classic  cubic  

spline  interpolation  method.  The  spline  object  is  configured  using  the configure_spline
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function  as  shown  in  Listing 3.15,  line  8.  It  is  called  with  the  containers  containing  

the  grid  data  (x, y)  and  the  value  at  each  grid  point  (z),  as  well  as  with  the  pre-  

viously  calculated  number  of  support  knots  in  each  direction  (nx, ny)  and  the  

created  spline  instance spline.  Again,  this  represents  the  grey  node  in  Fig. 3.1b
directly  above  the  dark  grey  interpolation  node.  

The  number  of  grid  points  in  each  direction  for  the  evaluation  grid, Nx, Ny,  

is  calculated  using  the  mesh  size  provided  via  user  input  through  the  variables
mesh_size_x, mesh_size_y as  shown  in  Listing 3.16.

1 range_x  =  xa[*size -1]  -  xa[0];

2 range_y  =  ya[*size -1]  -  ya[0];

3 Nx  =  floor(range_x  /  mesh_size_x)  +  1;

4 Ny  =  floor(range_y  /  mesh_size_y)  +  1;

Listing  3.16: Calculation  of  evaluation  grid  dimensions

The  interpolated  quantity is  evaluated  on  the  evaluation grid  using gsl_spline2d_eval.  

The  evaluation  points  are  constructed  in  a  nested  loop  using  the  previously  calcu-  

lated  dimensions Nx, Ny as  shown  in  Listing 3.17.  The  function  is  called  with  the  

spline  object,  the x and y values  of  the  evaluation  grid,  and  the  accelerator  objects  

as  arguments.  In  Fig. 3.1b,  this  is  represented  by  the  dark  grey  node  above  the  

bottom  yellow node  where  the  interpolated  data  is  written  to  a  file  using fprintf.

1 for (i  =  0;  i  <  Nx;  ++i)

2 {

3 double yj  =  ya[0]  +  (ya[nx -1]  -  ya[0])  *  i  /  (Ny -1);

4 for (j  =  0;  j  <  Ny;  ++j)

5 {

6 double xi  =  xa[0]  +  (xa[*size -1]  -  xa[0])  *  j  /  (Nx -1);

7 double zij  =  gsl_spline2d_eval(spline ,  yj ,  xi ,  xacc ,  yacc

);

8 fprintf(filePntr , "%e %e %e\n",  xi ,  yj ,  zij);

9 }

10 fprintf(filePntr , "\n");

11 }

Listing  3.17: Evaluation  of  interpolating  spline
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Integration  into  ViennaWD
To  incorporate  the  functionality  into  ViennaWD,  the  decision  was  made  to  in-  

clude  a  variable  in  the  input LUA file, interpolate,  to  discern  whether  the  in-  

terpolation  routine  shall  be  called  or  not.  The LUA file  is  used  to  communicate  

all  relevant  simulation  parameters,  e.g.,  mesh  size,  size  of  the  simulation  domain,  

boundary  conditions,  etc.,  to  the  simulator  and  is  passed  as  a  command  line  argu-  

ment  when  the  simulation  program  is  invoked.  The  additional  variable  internally  

is  added  as  an  additional  integer  member  to  the C struct geometry_t,  which  is  a  

composite  data  type  that  defines  a  physically  grouped  list  of  variables  under  one  

name  in  a  block  of  memory.  Specifically,  in  this  case,  the  struct geometry_t groups  

the  necessary  variables  to  describe  the  device  geometry  as  shown  in  Listing 3.18.

1 { char is2D;

2 char bcType [4];

3 unsigned short int Kmax [3];

4 unsigned short int nNodes [2];

5 unsigned short int nNodes_global [2];

6 unsigned short int domain_overlap;

7 unsigned short int kDimensions;

8 unsigned short int annihilationSpatialScaling;

9 double meshSize;

10 double cellVol;

11 double deviceWidth;

12 double Lx[2];

13 double Ly[2];

14 double Lx_global [2];

15 double Ly_global [2];

16 double Lcoh;

17 double Lcutoff;

18 double delK;

19 double hbarDelkM;

20 unsigned short int eff_mass_profile;

21 int interp ;}  geometry_t;

Listing  3.18: Geometry  struct  used  in  ViennaWD
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Depending  on  this  variable,  the  interpolation  is  triggered.  The  interpolation  

result  is  then  again  written  to  the  filesystem  so  that  the  interpolated  quantity  

is  available  for  inspection  after  the  simulation  has  been  completed.  In  this  con-  

text,  the  main  routine  from  the  standalone  implementation  has  been  substituted  

by  the  function interpolate shown  in  Listing 3.19. interpolate has  the  same  

functionality  as  the  standalone  implementation  with  the  important  distinction  

that  it  is  not  provided  with  command  line  input  but  rather  with  the  following  

parameters. inputFile,  which  is  the  variable  that  has  the  quantities  filename  

stored, working_path for  writing  the  interpolated  quantity  to  the  filesystem,  and
geometry,  which  is  the  struct  mentioned  before,  that  holds  the  information  about  

the  required  mesh  size  as  a  member meshSize.

1 void interpolate( const char *inputFile ,

2 const char *working_path ,

3 const geometry_t  *geometry  )

Listing  3.19: Interpolation  function  called  in  the  setup  process

The  routine  is  called  in  the  setup  process  of  the  simulator.  The  distributor  process  

is  responsible  for  setting  up  all  the  necessary  data  structures  before  populating  

them  with  the  input  data  and  then  broadcasting  them  to  the  receiver  processes.  

Therefore,  when  the  distributor  process  initially  initializes  the  electric  potential,  

the  routine  is  triggered  depending  on  the  aforementioned  newly  introduced  variable
interpolate before  the  program  continues  as  normal  to  read  the  now interpolated  

quantity  from  the  file  system.
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4  Effective  Mass

Serving  as  a  fundamental  concept  in  condensed  matter  physics,  semiconductor  

physics,  and  materials  science,  the  effective  mass  encapsulates  the  behavior  of  

charge  carriers  within  a  material  [62, 63].  Its  meticulous  consideration  within  sim-  

ulations  facilitates  a  deeper  understanding  of  complex  phenomena,  enabling  re-  

searchers  and  engineers  to  make  informed  decisions  and  predictions  regarding  the  

performance  and  behavior  of  materials,  devices,  and  systems.  Modern  nanoelec-  

tronic  devices,  such  as  gate-all-around  field  effect  transistors  (GAAFETs),  consist  

of  many  different  materials.  This  is  because  different  properties  are  needed  for  each  

specific  part  of  such  devices.  With  semiconducting  2D  materials  currently  in  con-  

tention  to  potentially  outperform  silicon  [64]  based  field-effect  transistors  (FETs),  

with  dimensions  scaled  down  to  a  few atomic  layers,  these  new nanoelectronic  

devices  have  to  operate  at  high  electric  fields  and  therefore  require  suitable  insula-  

tors.  At  such  minuscule  scales,  defects  are  inevitable  at  the  interfaces  between  the  

materials.  However,  such  interfacial  defects  substantially  increase  the  leakage  cur-  

rents  through  the  gate  insulators  and  thus  degrade  the  desired  performance  gain  

of  such  designs  [6].  Figure 4.1 shows  the  effects  of  interfacial  defects  as  scattering  

centers  and  how they  can  severely  degrade  the  mobility  and  substantially  increase  

the  leakage  currents  through  hexagonal  boron  nitride  (hBN)  insulator  layers.  To  

study  these  and  other  effects,  a  modern  simulator  must  be  able  to  simulate  the  

transport  of  charge  carriers  through  different  types  of  materials.  The  mobility  of  

charge  carriers,  electrons,  and  holes  in  these  different  materials  is  characterized  by  

their  effective  mass  [65].  In  many  semiconductors  (Ge, Si, GaAs,  ...),  the  band  

structure  for  ideal  lattices,  without  crystal  defects  or  impurities,  can  be  locally  

expressed  as

𝐸(k)  = 𝐸0 +
∂2𝐸

∂k2
(4.1)
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Figure  4.1: Interface  of  black  phosphorus  (P,  purple)  with  SiO2  (Si,  yellow;  O,  red),  

illustrating  the  effect  of  hexagonal  boron  nitride  (hbN)  interlayers  to  

sufficiently  suppress  Coulomb  scattering  and  remote  phonon  scattering  

in  the  underlying  oxide  to  assure  high  mobilities.  [6].  Reprinted  with  

permission  from  Knobloch  et  al.,  Nature  Electronics  4.2  (2021),  pp.  

98–108,  Copyright  2021  Springer  Nature.

Thus,  in  these  simple  cases,  the  effective  mass  is  given  by  the  curvature  of  the  

band  structure  at  the  local  extremum  [65]:

m* = ℏ2
1

∂2𝐸
∂k2

(4.2)  

The  description  of  charge  carriers  with  their  respective  effective  masses m* allows  

them  to  be  treated  with  the  Wigner  equation,  introduced  in  Eq.  (2.13),  describing  

ballistic  carrier  transport.  In  this  simple  assumption,  the  effective  mass  is  taken  to  

be  isotropic  over  each  material.  This  allows  for  the  implementation  of  the  effective  

mass  into  the  simulator  on  a  grid-based  approach.  

In  Fig. 4.2,  again,  a  flowchart  for  ViennaWD  is  presented  where  dark  grey  nodes  

highlight  the  process  steps  in  which  adaptations  have  been  made  to  incorporate  

the  effective  mass  into  the  simulator.
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Figure  4.2: Flowchart  describing  the  additions  and  effects  of  the  effective  mass  

functionality  into  Vienna  WD.
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4.1  Implementation

The  following  data  structures  were  amended  to  support  the  functionality  in  the  

simulator.  The  struct physical_quantities combines  quantities  defined  at  each  

mesh  node,  such  as,  for  example,  the  potential,  the  effective  mass,  but  also  the  

density  and  the  current. physical_quantities were  augmented  by  the  mem-  

ber effective_mass to  provide  the  appropriate  storage  container.  The  struct
geometry was  augmented  with  an  identifier eff_mass_profile to  either  trigger  

the  effective  mass  routine  or  set  it  to  default  at  each  grid  point.  This  is  visualized  

in  Fig. 4.2 in  the  first  dark  grey  node  at  the  top  of  the  flowchart.  The  simulator  

had  to  be  extended  with  routines  that  were  implemented  in  a  standalone  module
eff_mass.c,  that  introduces  the  following  functions:

• Initialization  function: iiiEffMassProfile

• Extracting  function: readEffMass

• Reset  function: resetEffMass

• Global  allocation  function: globalEffMassAlloc

Initialization  function  (iiiEffMassProfile) is  called  by  the  distributor  process  

of  the  main  routine,  and  the  function  header  is  shown  in  Listing 4.1.  It  takes  as  

parameters  the  structures physical_quantities,  which  are  needed  to  later  store  

the  information  from  the  input  file  in  the  according  container, geometry with  the  

information  whether  an  effective  mass  profile  was  loaded  or  not  and  for  further  

use  in  the  save  function.  Further  parameters  are  the inputFile that  holds  the  

information  where  the  effective  mass  will  be  read  from  the  file  system  and  working  

path,  again  needed  for  the  save  function.

1 void iiiEffMassProfile(  phys_quant_t  *phys_quants ,

2 geometry_t  *geometry ,

3 const char *inputFile ,

4 const char *working_path  )

Listing  4.1: Initialization  function  for  the  point-based  effective  mass
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The  above-mentioned  save  function  for  the  effective  mass  (saveEffMass)  function-  

ality  is  added  to  the  respective  module save_funcs.c and  handles  the  output,  in  

this  case  of  the  effective  mass,  to  the  filesystem.

Extracting  function  (readEffMass) reads  the  effective  mass  from inputFile.  

The  function  first  goes  on  to  check  whether  the  file  can  be  opened  and  then  further  

if  the  file  contains  information.  If  both  are  true,  the  function  then  proceeds  to  read  

line  by  line  from inputFile,  and  the  data  is  saved  to  the  member effective_mass
of  the  struct physical_quantities.  The  function  header  is  shown  in  Listing 4.2.

1 void readEffMass( const char *inputFile ,

2 const geometry_t  *  geometry ,

3 phys_quant_t  *phys_quants  )

Listing  4.2: Extraction  function  used  to  read  the  data  from  file  into  the  appropriate  

member  in  struct geometry

Reset  function  (resetEffMass) resets  the  effective  mass  to  the  default  value.  

The  function  header  is  shown  in  Listing 4.3.

1 void resetEffMass( const geometry_t  *  geometry ,

2 phys_quant_t  *phys_quants  )

Listing  4.3: Reset  function

Global  allocation  function  (globalEffMassAlloc) is  a  function  that  allocates  

memory  for  the  global  effective  mass  necessary  when  running  the  program  in  a  

parallel  fashion  to  distribute  the  user  input  to  the  receiver  processes,  and  the  

function  header  is  shown  in  Listing 4.4.

1 void globalEffMassAlloc( double *** global_effMass ,

2 unsigned short int data_rows ,

3 unsigned short int data_cols ,

4 char destroy  )

Listing  4.4: Global  allocation  for  distributed  memory  calculations

47



In  addition  to  the  considerations  within  the  simulator  itself,  several  peripheral  

tools  were  introduced  and  altered.  To  construct  the  geometries  of  different  material  

structures  characterized  by  their  effective  mass,  a Python notebook  was  developed  

that  allows  the  user  to  easily  and  rapidly  prototype  new geometries  and  directly  

visualize  them  within  the  notebook,  thus  providing  an  easy-to-use  tool  in  the  setup  

of  new simulations.  Further,  the  post-processing  step  was  augmented  to  support  

the  newly  introduced  functionality.

4.2  Implications

As  already  introduced  in  Section 2.1.1,  the  effective  mass  enters  the  Wigner  equa-  

tion  as  presented  earlier  in  Eq.  (2.7).  Within  ViennaWD,  this  affects  the  propaga-  

tion  of  the  particles  that  sample  the  initial  wavefunction  and  is  shown  in  Fig. 4.2
in  the  second  highlighted  node  and  in  Listing 4.5.  At  each  time  step,  the  parti-  

cle  drifts  for  duration 𝜏 before  either  the  particle  is  scattered  or  the  end  of  the  

time  step  is  reached.  In  this  drift  phase,  the  new particle  position  is  calculated  

depending  on  the  particle  momentum  at  the  start  of  that  timestep.

1 particle_position_x  =  C  *  particle_momentum_x  /

2 effMass_factor[i,j]  *  tau

3 particle_position_y  =  C  *  particle_momentum_y  /

4 effMass_factor[i,j]  *  tau

Listing  4.5: Calculation  of  new particle  postition  depending  on  local  effective  mass

Here, effMass_factor is  the  effective  mass  at  the  current  grid  point  in  terms  of
m𝑐,  the  charge  carrier  rest  mass, particle_momentum the  particle  momentum  in
x and y direction  respectively  for  the  particle,  and 𝐶 a  constant  containing  the  

necessary  unit  conversions.  Here,  the  effective  mass  is  a  multiplier  that  enters  the  

equation  inversely.  In  the  above  equation  shown  in  listing 4.5,  a  higher  effective  

mass  effectively  reduces  the  momentum  of  the  particle,  and  therefore,  the  position  

that  the  particle  arrives  at  after  the  drift  phase  is  nearer  to  its  origin  than  for  a  

particle  that  at  its  grid  point  observes  a  lower  effective  mass.
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5  Evaluation

First,  two  very  different  test  functions  are  introduced,  which  are  representative  of  

arbitrary  quantities  that  might  be  encountered  in  a  simulation  workflow with  Vi-  

ennaWD.  Such  quantities  are,  for  example,  the  electric  potential  that  was  recorded  

externally  as  an  example  of  a  relatively  smooth  and  slowly  varying  quantity.  A  

smooth  test  function  will  be  introduced  to  validate  the  interpolation  routines  inves-  

tigated  on  such  data.  However,  noncontinuous  quantities  such  as  modeled  electric  

potentials,  effective  mass  profiles,  and  descriptions  of  geometries  might  also  be  

encountered.  A  simple  step  function  to  evaluate  the  implemented  interpolation  

routines  on  such  data  will  be  introduced  as  well.  Further,  a  measure  for  the  in-  

terpolation  error  is  introduced,  and  using  the  introduced  measure,  it  is  discussed  

visually  and  quantitatively  whether  the  interpolation  methods  investigated  hold  

up  to  the  different  challenges  faced  in  a  representative  workflow.  

Second,  ViennaWD  simulations  of  a  single  minimum  uncertainty  wave  packet  

traversing  different  materials  using  the  implemented  position-dependent  effective  

mass  routines  will  be  shown.  Different  geometries  will  be  investigated  to  validate  

the  implementation  and  explain  the  effect  a  spatially  varying  effective  mass  has  

on  such  a  wave  packet.

5.1  Interpolation

Two  very  different  sets  of  data  points  were  chosen  to  discern  the  applicability  

of  the  interpolation  to  data  that  might  be  encountered  within  a  typical  TCAD  

simulation  workflow.  A  step  function  consisting  of  two  distinct  plateaus  such  as  

might  be  encountered  when  interpolating  material  structures  such  as  an  effective  

mass  profile.  Further,  a  smooth  function  consisting  of  several  Gaussian  peaks  and
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troughs  was  constructed  to  test  the  applicability  of  the  interpolation  routines  on  

smooth  data.  Such  data  might  be  encountered  when  trying  to  fit  an  experimentally  

measured  electric  potential  onto  the  grid  necessary  to  verify  physical  quantities  

with  ViennaWD.  For  both  choices  of  the  test  function,  the  implementations  were  

tested  for  different  amounts  of  grid  refinement,  particularly  for  10,  4,  2,  and  4/3  

times  denser  grids  than  the  original.  

To  introduce  some  metric  to  compare  the  different  interpolation  techniques  

against  each  other,  the  following  measure  is  introduced:

‖𝐴‖1 =
∑︀

i,j |𝑎i,j|
‖𝐴‖ (5.1)  

Here 𝑎i,j are  taken  to  be  the  pointwise  differences  between  the  analytical  values  for  

the  test  quantity  at  gridpoint i,  j and ‖𝐴‖ is  the  size  of 𝐴,  meaning  the  number  

of  grid  points.  This  measure  ensures  that  the  calculated  sum  of  pointwise  errors  

is  appropriately  weighed  with  the  number  of  data  points,  therefore  allowing  for  a  

comparison  of  the  interpolation  approaches  on  different  grid  refinements.

5.1.1  Step

In  Fig. 5.1 (a),  (c),  and  (e)  show the  evaluation  of  the  interpolating  spline  func-  

tion  on  two  times  denser  grids  for  the Python implementation,  for  (a)  bilinear,  (c)  

bicubic,  (e)  biquintic  interpolation  order  respectively.  (b),  (d)  shows  the  evalua-  

tion  of  the  interpolating  spline  function  using  the C -GSL implementation  for  (b)  

bilinear  and  (d)  bicubic  order,  respectively.  (f)  shows  the  step  function  that  was  

used  as  input  for  the  interpolation  routines.  Figure 5.2 shows  the  evaluation  of  

the  interpolating  RBF  function  on  a  two  times  denser  grid  for  (a)  the  linear  order  

polynomial  basis  function  and  (b)  the  cubic  order  polynomial  basis  function.  (c)  

for  the  quintic  order  polynomial  basis  function.  (d)  for  the  Gaussian  basis  func-  

tion.  All  interpolations  were  performed  for  the  step  function  as  in  Fig. 5.1 (f).  

In  Fig. 5.1,  oscillations  in  the  evaluated  interpolation  functions  for  orders  of  the  

interpolating  polynomial  higher  than k =  1 are  observed.  These  oscillations  stem  

from  the  fact  that  polynomials  of  higher  order  have  the  inherent  condition  that  the  

higher  derivatives  of  the  interpolating  polynomial  have  to  be  piecewise  continuous.  

As  seen  in  Fig. 5.1 (a),  (b),  the  interpolation  using  first-order  polynomials  does
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Figure  5.1: Interpolation  results  for Python and GSL routines  for  a  step  function.

not  experience  this  behavior.  These  are  both  linear  methods.  Though  no  oscilla-  

tions  are  observed  for  these  very  simple  interpolation  routines,  it  can  be  noticed
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Figure  5.2: Interpolation  results  for  the Python RBF  implementation  for  a  step  

function.

that  between  the  grid  points  along  the x direction  closest  to  the  step,  instead  of  

a  vertical  surface,  a  linear  behavior  between  the  two  values  of  the  plateaus  of  the  

quantity  is  introduced.  

For  the  third-order  polynomial  interpolations,  which  are  Fig. 5.1 (c)  and  Fig. 5.1
(d),  minor  oscillations  of  the  interpolated  quantity  around  the  grid  points  closest  

to  the  step  are  visible.  Compared  to  the  aforementioned  relatively  slow rise  in  the
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quantity  for  the  linear  interpolation  methods,  a  steeper  rise,  reconstructing  the  

original  step  better,  is  generated  at  the  expense  of  introduced  oscillations.  A  fur-  

ther  increase  in  polynomial  order  for  the  interpolation  shows  even  more  oscillations  

present  in  the  interpolated  quantity  without  meaningful  gains  to  the  reconstruction  

of  the  step.  

Though  RBFs  are  said  to  limit  these  oscillations  [46],  they  can  still  be  observed  

in  Fig. 5.2 for  each  of  the  four  basis  functions  evaluated.  The  three  RBF  inter-  

polations  with  polynomial  kernel  Fig. 5.2 (a-c),  do  all  reconstruct  the  step  rather  

successfully.  However,  oscillations  are  introduced  not  only  perpendicular  to  the  

step  function  but  also  in  the  axis  along  the  edge.  This  can  be  attributed  to  the  use  

of  RBFs,  which  are  symmetric  about  the  grid  point  on  which  they  are  located  and  

are  known  to  experience  the  "Runge  phenomenon"  [46].  These  edge  oscillations  

reduce  visibly  for  higher  order  polynomial  RBFs  as  seen  in  Fig. 5.2 (b)  and  Fig. 5.2
(c).  However,  the  third  and  fifth-order  polynomial  RBFs  produce  noticeably  more  

oscillations  in  the  interpolated  quantity  perpendicular  to  the  step.  

Further,  a  Gaussian  kernel  was  evaluated  for  the  RBF  implementation  as  intro-  

duced  in  Table 3.1.  This  was  tested  for  a  variety  of  different  values  of  the  constant
𝑐 present  in  the  Gaussian  kernel,  with  a  value  of 𝑐 =  0.5 producing  some  of  the  

best  results.  Again,  oscillations  were  reduced  directly  at  the  edge  of  the  step;  

however,  the  oscillations  perpendicular  to  the  step  increased  noticeably.  This  phe-  

nomenon  is,  for  example,  tackled  in  [66],  but  will  not  be  delved  into  here  and  will  

be  discussed  at  the  end  of  the  chapter  in  Section 5.1.4.

5.1.2  Smooth

Figure 5.3 (a),  (c),  and  (e)  show the  evaluation  of  the  interpolating  spline  function  

on  six  times  denser  grids  for  the Python implementation,  for  (a)  bilinear,  (c)  bicu-  

bic,  (e)  biquintic  interpolation  order  respectively.  (b),  (d)  shows  the  evaluation  of  

the  interpolating  spline  function  using  the C -GSL implementation  for  (b)  bilinear  

and  (d)  bicubic  order,  respectively.  (f)  shows  the  smooth  test  function  that  was  

used  as  input  for  the  interpolation  routines.  Figure 5.4 shows  the  evaluation  of  the  

interpolating  RBF  function  on  a  six  times  denser  grid  for  (a)  the  linear  order  poly-  

nomial  basis  function,  (b)  the  cubic  order  polynomial  basis  function,  (c)  for  the
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Figure  5.3: Interpolation  results  for Python and GSL routines  for  a  smooth  func-  

tion.
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Figure  5.4: Interpolation  results  for  the Python RBF  implementation  for  a  smooth  

function.

quintic  order  polynomial  basis  function,  and  (d)  for  the  Gaussian  basis  function.  

All  interpolations  were  performed  for  the  smooth  test  function  as  in  Fig. 5.3(f).  

The  smooth  test  function  was  evaluated  on  two  different  sets  of  data  points:  once  

using  the  previously  used  30  grid  points  per  direction  and  again  using  only  ten  

grid  points  per  direction.  Visualized  in  Fig. 5.3 and  Fig. 5.4 is  the  interpolation  on  

the  sparser  dataset,  as  the  differences  in  interpolation  methods  are  more  visible.
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In  Fig. 5.3,  all  interpolation  methods  implemented  visually  perform  the  inter-  

polation  as  expected.  The  previously  observed  oscillations  do  not  arise  for  any  of  

the  spline  interpolation  methods,  regardless  of  their  underlying  polynomial  order.  

Further,  there  also  aren’t  any  oscillations  visible  for  the  implementation  of  the  

RBF  interpolation  Fig. 5.4.  Therefore,  both  interpolation  methods  are  viable  for  

interpolating  an  arbitrary  quantity  that  is  sufficiently  smooth  on  the  domain.  

Though  all  methods  now reproduce  the  test  function  without  oscillations,  there  

is  still  a  visible  difference  in  reconstruction  quality.  In  both  the  spline  and  RBF  

reconstructions,  the  linear  kernels  Fig. 5.3 (a),  (b)  and  Fig. 5.4 (a)  interpolate  

the  sampled  conglomerate  of  Gaussian  functions  Fig. 5.3 (f)  visibly  rough.  Since  

the  test  function  is  sampled  sparsely,  the  extrema  are  not  on  top  of  the  analytical  

extrema,  and  the  linear  kernels,  as  they  do  not  contain  information  about  the  

surrounding  shape  of  the  test  function,  are  therefore  not  able  to  reconstruct  the  

analytical  extrema  very  well.  In  contrast  to  the  linear  kernels  the  cubic  kernels  

Fig. 5.3 (c),  (d),  Fig. 5.4 (b)  and  the  quintic  kernels  Fig. 5.3 (e),  Fig. 5.4 (c)  

reconstruct  the  analytical  result  very  well.  In  Fig. 5.4 (d),  the  Gaussian  kernel  

again  is  not  able  to  reconstruct  the  analytical  function  very  well,  as  the  method,  

in  a  sense,  too  accurately  samples  the  test  function  and  therefore  reproduces  the  

input  very  well  without  capturing  the  overall  behavior  of  the  data.

5.1.3  Error  Analysis

In  Fig. 5.5 for  both  the  smooth  and  the  step  test  function,  the  error  measure  

introduced  in  Eq.  (5.1)  is  shown  for  different  mesh  refinements.  In  Fig. 5.5a,  the  

error  measure  is  relatively  large  when  compared  to  the  error  measures  observed  in  

Fig. 5.5b.  For  the  discontinuous  test  function,  also  referred  to  as  the  step  function,  

the  different  interpolation  methods  and  the  different  polynomial  orders  for  those  

methods  vary  significantly.  The  visual  impression  made  above  that  the  method  

of  RBFs  with  a  Gaussian  kernel  produces  the  most  oscillations  is  represented  here  

again,  as  it  can  be  clearly  seen  that  the  method  (Python  RBF:  gaussian)  performs  

slightly  worse  in  the  error  measure  compared  to  the  other  kernels.  The  two methods  

using  underlying  quintic  polynomials,  namely  the  biquintile  spline  interpolation  

and  the  RBF  interpolation  with  the  quintic  polynomial  kernel  that  visually  also
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(a) Step  function

(b) Smooth  function

Figure  5.5: Error  plots  for  both  the  step  test  function  in  (a)  and  the  smooth  

test  function  in  (b).  The  errors  shown  are  calculated  as  explained  

in  Eq.  (5.1).

did  not  perform  very  well  do  also  not  measure  well  in  their  respective  error  (Python  

RBF/RBS:  quintic).  All  three  routines  can  be  compared  for  the  methods  based  

on  third-order  polynomials,  as  this  is  also  a  supported  method  in  the GSL library.
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Figure  5.6: Error  plot  for  the  sparsely  sampled  smooth  test  function.

These  methods  (Python  RBF/RBS:  cubic  and  CPP:  bicubic)  in  the  error  measure  

perform  better,  supporting  the  previous  visual  observation.  The  RBF  with  the  

underlying  linear  kernel  is  the  best  measuring  method,  and  the  two  bilinear  spline  

implementations  for C and Python again  perform  identically.  

For  the  smooth  test  function,  the  error  measure  for  all  interpolation  methods  

is  significantly  lower  than  for  the  discontinuous  step  function.  This  supports  the  

visual  observation  made  previously.  Further,  again,  the  two  linear  spline  interpola-  

tion  methods  in C and Python perform  slightly  better  than  the  other  interpolation  

methods  investigated.  For  the  smooth  test  function,  the  interpolation  was  further  

tested  on  a  much  sparser  initial  grid  structure,  where  the  number  of  grid  points  in  

each  dimension  was  reduced  threefold.  In  Fig. 5.6,  a  clear  difference  is  now visible  

in  the  performance  of  the  different  interpolation  methods.  Again,  the  higher-order  

polynomial  kernel  for  RBF  interpolation,  as  well  as  the  higher-order  spline  in-  

terpolation,  show a  higher  error  for  all  mesh  refinements  than  the  methods  with  

underlying  linear  kernels  or  polynomials.  However,  in  contrast  to  the  measure-  

ments  before,  the  Gaussian  kernel  for  the  RBF  method  with  the  same  constant
𝑐 =  0.5 now outperforms  the  linear  kernels.
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5.1.4  Findings

From  a  measurement  point  of  view,  the  classical  cubic  spline  and  the  piecewise  

linear  spline  performed  the  best  when  applied  to  both  the  discontinuous  and  the  

smooth  test  functions.  Further,  no  evidence  has  been  found  that  higher  order  

interpolation  or  RBF  interpolation  describes  rapidly  varying  quantities  with  any  

meaningful  improvements,  if  even  when  compared  to  the  other  mentioned  meth-  

ods.  The  Gaussian  kernel  for  the  RBF  showed  great  applicability  when  the  initial  

data  was  relatively  sparse,  reconstructing  the  smooth  test  function  most  accu-  

rately.  However,  when  the  domain  is  sampled  more  often,  the  Gaussian  method  

falls  behind  other  kernels  and  methods  used,  both  visually  and  qualitatively.  Fur-  

ther,  consistent  results  of  the  method  cannot  be  guaranteed  without  tuning  the  

parameter 𝑐 to  the  specific  problem.  

Though  the  visualization  of  the  interpolated  data  has  been  implemented  in  the
Python script  as  well,  one  cannot  overlook  the  simplicity  with  which  the  tuning  

of  interpolation  parameters  can  be  achieved  using Python Notebooks.  However,  

one  clear  advantage  to  using  the  interpolation  routine  within  the  simulator  itself  

is  that  the  mesh  size  used  within  the  simulator  has  to  match  the  mesh  size  used  to  

evaluate  the  interpolating  spline.  With  the  integrated  implementation,  this  is  en-  

sured  trivially,  as  the  parameter  is  taken  directly  from  the  underlying Lua file  used  

in  the  setup  of  the  simulation.  When  using  the  stand-alone  implementations  in  a  

pre-processing  workflow,  the  operator  currently  has  to  manually  make  sure  that  

these  two  parameters  are  indeed  the  same  to  avoid  unnecessary  re-evaluations  of  

the  interpolation.  Depending  on  the  type  of  use,  the  stand-alone  or  the  integrated  

implementations  might  be  preferred,  with  a  strong  argument  for  the  stand-alone  

implementation  being  that,  especially  in  the  early  stages  of  setting  up  new simula-  

tions,  the  interpolation  might  not  be  needed  at  all  since  the  simulator  will  already  

receive  all  relevant  quantities  in  the  correct  format  and  therefore  the  design  as  a  

lean  simulator  with  only  the  core  features  integrated  might  be  preferred.  

Therefore,  the  conclusion  can  be  drawn  that  for  the  variety  of  different  quanti-  

ties  that  might  be  encountered,  linear  interpolation  methods  are  sufficient  for  the  

reconstruction  of  an  externally  provided  quantity  that  is  sufficiently  smooth.  Fur-  

ther,  they  avoid  oscillations  when  encountering  discontinuities,  therefore  sampling
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the  parts  of  the  domain  next  to  said  discontinuities  ideally,  with  the  only  drawback  

being  the  reduced  reproduction  capability  of  steep  gradients.  Both  implementa-  

tions  offer  an  acceptable  degree  of  user-friendliness.  From  a  user  interaction  point  

of  view,  it  may  come  down  to  taste  and  design  principles,  whether  one  or  the  other  

is  preferred.

5.2  Effective  Mass

To  show the  influence  of  different  effective  masses  on  the  transport  properties  of  

the  material,  proof  of  concept  simulations  were  performed  with  the  implemented  

techniques.  

All  ViennaWD  2D  simulations  were  done  with  a  single  wave  packet  traversing  

representative  geometries  and  were  initialized  as  a  minimum-uncertainty  Gaussian  

distribution  with  initial  momentum  along  the  center  line  of  the  simulation  box  in
y-direction,  with  a  FWHM of 7, 065nm.  The  simulations  were  performed  with  a  

time-step  of 0.1𝑓  s and  a  grid  size  of 0.5nm.

5.2.1  Contact

This  simulation  was  done  with  the  effective  mass  as  shown  above  in  Fig. 5.7 with  

a  value  of  0.48  for  Molybdenum  di-sulfide  (MoS2)  [67]  and  1.1  for  Gold  (Au)  [68].  

In  Fig. 5.8 the  electron  density  of  a  single  wave-packet  traversing  a MoS2 - Au
contact  at 20𝑓  s, 35𝑓  s, 55𝑓  s,  and 90𝑓  s simulation  time  is  shown.  The  simulation  

was  done  without  the  potential  to  show the  influence  of  the  effective  mass  on  

the  wave  packet.  Therefore,  a  broadening  of  the  wave  packet  due  to  the  change  

in  effective  mass  as  the  Gaussian  wave  packet  reaches  the  (MoS2)  - Au contact  

can  be  observed  Fig. 5.8 (t=55  fs).  The  wave  packet  broadens  due  to  the  change  

in  effective  mass  and  the  resulting  change  in  its  group  velocity.  Since Au has  a  

higher  effective  mass  than MoS2,  the  momentum  of  the  wave  packet  is  reduced  in  

its  direction  of  motion.
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Figure  5.7: Effective  mass  for  the MoS2-Au contact.

5.2.2  Barrier

In  Fig. 5.9,  a Au layer  was  sandwiched  between  a MoS2 and  Gallium  Arsenide  

(GaAs)  layer,  where  the  effective  mass  of GaAs is  taken  as  0.067  [69].  Again,  

in  Fig. 5.10,  the  electron  density  is  shown  at  different  representative  timesteps.  

In  Fig. 5.10 (t=30  fs),  the  wave  packet  starts  entering  the  simulation  domain  

symmetrically  in  the MoS2 layer.  In  Fig. 5.10 (t=70  fs),  the  wave  packet  then  

broadens  as  seen  previously  in  Fig. 5.8 (t=55  fs)  when  entering  the Au region  

of  the  simulation  domain.  However,  the  wave  packet  then  gets  stretched  back  

into  a  nearly  symmetrical  shape  again.  Further,  the  elongated  wave  packet  that  

was  previously  relatively  concentrated  now broadens  significantly  within  the GaAs
region.
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Figure  5.8: Electron  density  of  a  single  wave-packet  traversing  a MoS2-Au contact  

at 20𝑓  s, 35𝑓  s, 55𝑓  s and 90𝑓  s simulation  time.

5.2.3  Intricate

In  Fig. 5.11,  an  artificial  benchmark  case  with  several  different  materials  is  shown.  

The  values  for  each  distinct  region  are,  however,  no  longer  directly  correlated  to  

actual  materials  but  rather  are  within  a  range  of  effective  masses  encountered  

in  nanoelectronic  devices.  The  rationale  behind  this  particular  artificial  setup  is  

loosely  linked  to  the  fact  that  modern  nanoelectronic  devices  are  built  of  various  

intricate  shapes  and  geometries.  This  benchmark  case  is  thus  a  testament  to  this
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Figure  5.9: Effective  mass  for  the Au barrier.

development.  These  geometries  include  intricate  patterns  of  dopant  distributions,  

gate  structures,  and  interconnects  on  semiconductor  substrates,  as  well  as  isolation  

regions.  Figure 5.12 shows  the  evolution  of  the  minimum  uncertainty  wave  packet  

through  this  complex  geometry.  In  Fig. 5.12 (t=50  fs),  the  initial  symmetrical  wave  

packet  can  already  be  seen  wrapping  around  the  trapezoidal  region  to  the  right  of  

the  simulation  domain.  However,  when  we  consult  Fig. 5.11,  we  can  see  that  this  is  

a  region  of  very  low effective  mass,  meaning  that  the  mobility  of  the  charge  carriers  

in  this  region  is  a  magnitude  higher  than  in  the  surrounding  regions.  Therefore,  

the  phenomenon  observed  is  actually  that  part  of  the  wave  packet  that  reaches  

this  region  first  rapidly  crosses  it  and  reconstitutes  at  the  interface  with  the  region  

diagonally  through  the  geometry  Fig. 5.12 (t=75  fs).  In  Fig. 5.12 (t=65  fs),  at  a
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Figure  5.10: Electron  density  of  a  single  wave-packet  traversing  a MoS2-Au-GaAs
contact  at 30𝑓  s, 50𝑓  s, 70𝑓  s, 90𝑓  s, 110𝑓  s and 130𝑓  s simulation  time.
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Figure  5.11: Effective  mass  for  artificial  benchmark  case.

timestep  between  those  two  observations,  it  is  clearly  visible  that  part  of  the  wave  

function  is  located  within  the  highly  conductive  region.  In  Fig. 5.12 (t=85  fs),  the  

wave  packet  as  it  has  fully  crossed  over  into  the  middle  of  the  simulation  domain  

can  be  seen  and  now appears  as  a  spun  version.  This  appearance  can  be  linked  

to  the  different  amounts  of  time  that  parts  of  the  wave  packet  have  spent  within  

the  high  mobility  region  of  the  simulation  domain.  Finally,  in  Fig. 5.12 (t=140  

fs),  the  wave  packet  reaches  the  end  of  the  simulation  domain  with  a  region  of  

higher  charge  carrier  mobility  to  the  right  and  a  region  of  low mobility  to  the  left.  

The  final  wave  packet  is,  therefore,  a  highly  distorted  representation  of  the  initial  

symmetrical  wave  packet.
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Figure  5.12: Electron  density  of  a  single  wave-packet  traversing  intricate  patterns  

of  different  materials  as  shown  in  Fig. 5.11 at 50𝑓  s, 65𝑓  s, 75𝑓  s, 85𝑓  s,
125𝑓  s and 140𝑓  s simulation  time.
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6  Summary

Finally,  an  overview of  the  two  key  contributions  to  ViennaWD,  namely  (1)  the  

addition  of  an  interpolation  mechanism  that  can  be  used  within  the  simulator  and  

also  as  a  standalone  pre-processing  step  to  map  an  arbitrary  quantity  onto  the  

required  grid  structure  of  ViennaWD  and  (2)  the  inclusion  of  the  spatially  varying  

effective  mass  into  the  framework  of  the  simulator  is  given.  The  findings  that  

can  be  taken  away  from  the  results  presented  in  Chapter 5 will  be  discussed  in  

the  following,  with  further  implementation  ideas  and  recommendations  regarding  

the  future  development  and  possible  applications  of  the  new capabilities  will  be  

discussed.

Interpolation
In  the  previous  section  Section 5.1,  evaluations  of  different  interpolation  routines  

were  compared  using  an  appropriate  measure.  Using  linear  spline  interpolation  

provides  us  with  the  most  optimal  result  for  discontinuous  interpolation  tasks.  The  

linear  spline  interpolation  cannot  produce  any  oscillations  in  the  regions  next  to  the  

discontinuity,  and  therefore,  the  surrounding  regions  are  rendered  continuous  as  in  

the  original  geometry.  Thus,  the  lack  of  reconstruction  of  the  step  representing  the  

discontinuity  is  a  worthwhile  trade-off for  the  gained  reconstruction  of  the  other  

features.  In  light  of  the  observation  that  the  linear  spline  interpolation  in  both  the
GSL and Python implementation  performs  best  in  the  measure  used,  the  decision  

to  use  linear  spline  interpolation  as  the  default  interpolation  method  is  further  

supported.  Further  emphasis  is  added  as  the  linear  spline  interpolation  performs  

equally  as  well  as  the  other  interpolation  methods  when  measured  for  the  smooth  

test  quantity.  However,  this  measure  depends  significantly  on  the  sampling  of  the  

original  quantity.  The  number  of  grid  points  sampling  the  original  quantity  was  

chosen  to  represent  the  test  function  relatively  precisely,  which  is  also  expected
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from  any  experimentally  measured  quantities  or  previously  modeled  data  on  a  

slightly  different  grid.  RBFs  did  not  result  in  any  meaningful  improvements  to  the  

error  measure  used.  On  the  contrary,  some  choices  for  the  RBF  kernel  performed  

worse  than  the  comparable  basis  functions  for  splines.  However,  the  point  can  be  

made  that  when  the  experimental  quantity  in  consideration  is  not  sampled  at  a  

regular  grid  or  only  a  minimal  number  of  scattered  data  points  is  available,  using  

RBFs  is  more  or  less  without  option.  Therefore,  the  conclusion  is  that  the  use  of  a  

higher-order  basis  function  for  both  the  RBF  and  the  spline  interpolation  methods  

is  not  necessary  for  the  expected  quantities  that  the  interpolation  routine  will  be  

applied  to  at  the  time  of  writing  and  that  the  use  of  linear  spline  interpolation  

is  sufficient.  Further  extensions  to  this  approach  might  include  studying  different  

interpolation  methods,  such  as  the  Akima  interpolation,  or  even  machine  learning  

approaches  [49].

Effective  Mass
Implementing  the  effective  mass  (Chapter 4)  into  ViennaWD  resulted  in  the  

simulations  presented  in  Section 5.2.  For  the  example  of  three  different  geometries  

that  might  be  encountered  in  modern-day  nanoelectronic  structures,  simulations  

of  a  minimum-uncertainty  wave  packet  were  performed.  These  simulations  showed  

that  not  only  simplistic  changes  from  one  material  to  another,  as  presented  in  Sec-  

tion 5.2.1,  but  also  very  intricate  geometries,  such  as  presented  in  Section 5.2.3,  

can  be  modeled.  Not  only  was  the  implementation  of  the  effective  mass  into  

ViennaWD  successful,  as  can  be  verified  with  the  proof  of  concept  simulations  

mentioned  before,  but  an  easy-to-use Python program  now exists  to  set  up  such  

geometries.  The  simulations  showed  that  the  shape  of  a  wave  packet  traversing  

such  a  domain  can  be  manipulated  by  constructing  different  geometries.  In  fur-  

ther  research,  this  mechanism  could  be  used  in  conjunction  with  an  applied  electric  

potential  to  study  ever  more  complex  physical  phenomena.  In  particular,  intro-  

ducing  different  materials  into  ViennaWD  simulations  could  help  study  leakage  

currents  through  insulating  layers  in  currently  researched  field  effect  devices  such  

as  GAAFETs  and  FinFETs.
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