
Unterschrift BetreuerIn

DIPLOMARBEIT

Interpolation Methods and Position-Dependent

Effective Mass for ViennaWD

ausgeführt am TU Wien - Institute for Microelectronics

der Technischen Universität Wien

unter der Anleitung von
Assoc.Prof. Lado Filipovic

Assoc.Prof. Josef Weinbub

durch

Philipp Haslhofer

Gußhausstraße 27-29 / E360

Vienna Austria

April 8, 2024
Unterschrift StudentIn

Abstract
Modern nanoelectric devices typically require the combination of multiple materi-

als in a highly layered structure. The complex geometries and interfaces are metic-

ulously designed to optimize the electrical performance of such devices. Therefore,

it is of utmost importance that simulation tools are able to model these struc-

tures and study the behavior of charge carriers at their various interfaces. Among

the various available approaches to model the quantum electron transport problem,

which are capable to describe such phenomena, the particle-based Wigner function

approach, utilized by ViennaWD, stands out. Due to its representation in phase

space, this method allows for the adoption of scattering models and analogies

from semi-classical transport, thus retaining many classical concepts and notions.

This provides important advantages for quantum mechanically simulating electron

dynamics.

A quantum-mechanical Wigner-based simulator should, therefore, be able to

support (1) imported external quantities, such as the electric potential defined

on arbitrary 2D grids, as well as (2) transport domains with different material

parameters. These two aspects are represented by (1) an interpolation problem

of mapping an externally generated quantity onto the ViennaWD grid structure

and (2) the implementation of a position-dependent effective mass to capture the

varying charge-carrier mobility in different transport domains. The means by

which these two aspects can be introduced to the existing framework are assessed,

and the optimal solution is implemented in ViennaWD.

These additions to ViennaWD and their applicability to representative encoun-

tered data are evaluated with the help of various simulations. The developed inter-

polation mechanism is shown to capture a variety of different geometries, allowing

for the import of diverse external quantities. Further, proof-of-concept simula-

tions show that the effective mass functionality can be successfully implemented

into ViennaWD, enabling the study of cutting-edge nanoelectric devices.

Acknowledgement
First and foremost, I want to thank Assoc.Prof. Lado Filipovic and Assoc.Prof.

Josef Weinbub for supervising this thesis. Their guidance and feedback through-

out the process were essential to staying on track and crafting every chapter of

this document. Further, I want to thank Mihail Nedjalkov, Mauro Ballicchia,

and Clemens Etl for our weekly group meetings, which broadened my horizons

when it came to understanding the nature of working in the academic field. The

preparations for papers that the group published, as well as the discussion of sci-

entific papers published by others, were vital and much-appreciated insights that

helped me tremendously when writing this thesis. These meetings expanded my

knowledge and increased my appreciation for the effort and passion that go into

research.

Last but not least, I want to mention the support from my parents, Rudolf and

Regina, as well as my fellow colleagues, who helped me to pursue and finish my

studies at the Technical University of Vienna. Without their support, I would

not have been able to undertake the challenges of my chosen field of studies and,

therefore, finish this very interesting and rewarding journey.

Contents
1 Introduction 1

2 Wigner Background and the Vienna WD simulator 5
2.1 Transport Models . 6

2.1.1 Wigner Transport Equation (WTE) 8
2.1.2 Motivation for Wigner formalism-based simulations 10
2.1.3 Stochastic Solution Techniques for the WTE 10

2.2 Wigner Signed Particle Solution Algorithm 12
2.2.1 Program Structure . 12

2.3 Parallel Computing . 17

3 Interpolation 19
3.1 Interpolation Background . 19

3.1.1 Piece-wise interpolation / Splines 22
3.1.2 Radial Basis Functions . 23

3.2 Implementation . 25
3.2.1 Interpolation using SciPy in Python 26
3.2.2 C - GSL . 32

4 Effective Mass 43
4.1 Implementation . 46
4.2 Implications . 48

5 Evaluation 49
5.1 Interpolation . 49

5.1.1 Step . 50
5.1.2 Smooth . 53
5.1.3 Error Analysis . 56
5.1.4 Findings . 59

5.2 Effective Mass . 60
5.2.1 Contact . 60
5.2.2 Barrier . 61
5.2.3 Intricate . 62

6 Summary 67

Bibliography i

1 Introduction

Developing semiconductor devices is a complex and expensive process that requires

a lot of time and resources. To support these efforts, computational electronics

is the field of research that aims to develop and improve computer simulations

of semiconductor devices to understand the physics of such systems better and

further improve upon the technologies used in the fabrication of semiconductor

devices. The field of computational electronics can be seen to be a focus area of

the broader field of computational science and engineering, a term defined already

in the 1990s, for example, by Stevenson and Panoff [1] as:

"The interdisciplinary involvement in the identification and elimination

of unwarranted assumptions and approximations in scientific models

and the complete integration of computation into these models to con-

stitute a whole new scientific technique on a par with hypothesis and

experimentation. “

Within the electronics community, simulation tools used in this line of research

are often coined under the term technology computer-aided design (TCAD), which

refers to the use of computer simulations to design, develop, and optimize semicon-

ductor processing technologies, device structures, and circuits [2]. With the help

of TCAD tools, the pursuit of high-performance, high-reliability, and low-power

consumption semiconductor devices can be continuously improved, as demanded

by the extremely high pace of innovation in micro- and nanoelectronics research.

Current transistors, as a representation of one of today’s most important semicon-

ductor devices, in modern processors have been made with nano-scale dimensions

for more than a decade [3], facing increasingly challenging obstacles with respect

to device dimensions and material limitations, requiring novel designs, e.g., gate-

all-around field effect transistors [4, 5], novel materials, e.g., 2D materials and

1

stacks thereof [6], and novel concepts for information processing using quantum

effects, e.g., qubits [7]. These developments require quantum transport models

to accurately describe the physical reality in these extremely scaled systems [8].

ViennaWD provides a two-dimensional (2D) Wigner particle Monte Carlo simula-

tor developed at the Institute for Microelectronics, TU Wien [9]. The theoretical

foundation for the implemented algorithms is the Wigner description from the field

of quantum mechanics, allowing the simulation of electron transport dynamics in

phase space and the study of decoherence processes [10, 11, 12]. ViennaWD has

been widely used to study novel quantum effects in solid-state single-electron sys-

tems [13, 14]. However, among the limitations are two key aspects that limit the

practical usability of the simulator:

• Input electric scalar potential profile limited to internal grid data structure:

No externally provided potential profile can be imported, which is likely

defined on a different discretization. Consequently, no interface to external

simulation tools is possible, thereby not allowing the simulation of cutting-

edge, practically relevant simulation scenarios defined by external tools.

• Single-valued effective mass applies to the entire simulation domain: Only

a single material for the entire simulation can be defined. This, obviously,

does not allow the simulation of modern heterostructure devices, such as

2D material stacks, which would require the assignment of different effective

masses to different parts of the simulation domain.

Therefore, this thesis focuses on overcoming these limitations by advancing the

code base accordingly. First, an interpolation routine was implemented to support

the loading of externally generated quantities, e.g., an electric scalar distribution.

The need for such a capability arises from ViennaWD’s inherent design, where the

simulation is performed on an equidistant 2D grid structure. Therefore, an arbi-

trary imported quantity must be defined on the internal simulation grid, which,

of course, is not the same grid used by the external source. To this end, dif-

ferent approaches to this interpolation problem were implemented and rigorously

evaluated. Second, to enable studying transport channels with different materi-

als, the effective mass, which is a key parameter entering the Wigner transport

2

equation, was implemented to be spatially dependent and assigned to the point

elements of the grid data structure. Together, these two advancements enable the

use of ViennaWD for the future study of practically more relevant, multi-material

nanoelectronic systems.

This work is structured as follows. Chapter 2, to set the stage, provides a

short overview of the Wigner formalism and the defining equation for quantum-

mechanical transport phenomena, the Wigner-transport equation (WTE). Fur-

thermore, a brief overview of the simulator is given, including software design

and implementation basics. Chapter 3 introduces the theory behind interpolation

techniques and discusses different implementation approaches. In Chapter 4, im-

plementing a spatial-dependent effective mass mechanism to the simulator will be

discussed, as well as certain implications. Simulations will be discussed using the

example of state-of-the-art semiconductor devices. In Chapter 5, the implemen-

tations are evaluated with the help of a set of representative simulations. Finally,

Chapter 6 summarizes this work and highlights the key contributions.

3

2 Wigner Background and the

Vienna WD simulator

Device TCAD for ultra-scaled devices has evolved into a complex endeavor, ne-

cessitating the integration of diverse models across electrical, optical, and thermal

domains spanning multiple scales [15]. This drives the need for multiscale, multi-

physics simulations and robust coupling of tools and models, particularly in com-

mercial TCAD development. Furthermore, advancements in models, especially in

accurately describing physics, propel TCAD development forward. Charge carrier

transport models are essential for studying device electrical performance. Still,

only a few devices have exploited the underlying quantum mechanical principles,

for example, resonant tunneling diodes [16, 17]. However, novel research fields,

such as electron quantum optics, exploit the wave nature of electrons for informa-

tion processing [18]. Understanding and designing quantum devices necessitates

sophisticated simulation tools, specifically electron transport simulation in semi-

conductors, a foundational capability in nanoelectronics research.

The ViennaWD simulator contributes to tackling this challenge by utilizing

the Wigner formalism for quantum mechanically modeling electron transport dy-

namics. The Wigner formalism is an attractive alternative (because of, e.g., re-

duced computational effort) to conventional modeling approaches based on the

Schrödinger equation [19] or non-equilibrium Green’s functions [20] and provides

an intuitive description of quantum mechanics, allowing the adoption of mod-

els (e.g., scattering) and analogies from semi-classical transport. Scattering in

quantum transport is imperative for studying decoherence processes of (entan-

gled) electron states, which is pivotal when utilizing quantum effects for device

operation [21]. Additionally, time-resolved quantum transport simulations offer

insights into the behavior of highly miniaturized circuits dominated by quantum

5

effects, such as oscillations, which would otherwise not be explainable by classical

theory. The Wigner-Boltzmann equation is the sole computationally viable for-

malism for scattering-aware, time-resolved quantum transport [22]. It has emerged

as a cornerstone for comprehensively studying electron transport and decoherence

in nanoscale structures. These simulations provide crucial insights into the dy-

namic behavior of quantum devices, thereby advancing our understanding of na-

noelectronic systems and paving the way for developing novel device designs with

enhanced functionality and performance [23].

2.1 Transport Models

To adequately describe the interactions of semiconductor devices and nanostruc-

tures with their environment through leads/contacts, phonons, or electromagnetic

fields, simulation tools must be able to capture these essential phenomena of

the system. The effect of these interactions, especially regarding their relative

strength compared to modern device dimensions, necessitates the description of

charge carriers via non-equilibrium distributions that can be determined by solv-

ing a transport equation describing the influence of external forces to obtain the

correct statistical properties of the system. A short overview (Figure 2.1) of the

essential semi-classical transport and quantum transport models [24] will be given

before the Wigner formalism, which bridges the two limiting transport regimes, is

introduced, and the Wigner Transport equation is motivated and presented.

The Boltzmann Transport Equation (BTE) (Equation (2.1)) [25] is the central

quantity in the realm of semi-classical microscopic transport and describes the

evolution of the distribution function 𝑓𝑏(r,k, t) of a particle in phase space r,k at

time t. One of the main advantages of the BTE is that it can be used to describe

both the ballistic and the diffusive transport regime.

𝑑𝑓𝑏
𝑑t

=
∂ 𝑓𝑏
∂ t

+
𝑑r(t)

𝑑t
𝛻r𝑓𝑏 +

𝑑k(t)

𝑑t
𝛻k𝑓𝑏 = C {𝑓𝑏(r,k, t)} (2.1)

But as mentioned previously, in today’s world of nano-electronics, the scale

of the devices is well below the extent to which classical models adequately de-

scribe the physical phenomena within them. Therefore, quantum transport models

6

Figure 2.1: Overview of the different microscopic transport models [22].

are necessary to describe the quantum effects of charge carriers in nanoelectronic

devices. Figure 2.1 shows some different approaches to the quantum transport

problem that have been pursued and will in the following be discussed briefly.

The Schrödinger equation 2.2 as the fundamental equation of motion describing

the evolution of a pure quantum state can be adapted to an open system necessary

to describe quantum transport [26].

iℏ
∂

∂ t
|𝜓⟩ = 𝐻 |𝜓⟩ , (2.2)

In Eq. (2.2), ℏ denotes the reduced Planck constant, |𝜓⟩ is the wave function of

the quantum state and 𝐻 the Hamiltonian operator.

However, the Schrödinger equation is only well-suited to describe ballistic trans-

port, and proposed models that include out-scattering have proven problematic in

their numerical implementation [27].

The density operator formalism, also known as the density matrix formalism, is

a powerful tool in quantum mechanics, particularly for dealing with mixed states

and open quantum systems. The evolution of the density operator 𝜌 as given in

equation 2.3,
𝜌(r, r′, t) = 𝜓*(r′, t)𝜓(r, t) (2.3)

7

, is governed by the Liouville/Von-Neumann equation

iℏ
∂

∂ t

𝜌 = [𝐻 , 𝜌], (2.4)

where [𝐻 , 𝜌] = 𝐻 𝜌− 𝜌𝐻 denotes the commutator bracket of 𝜌 and 𝐻, with 𝜌 the

density operator and 𝐻 the Hamiltonian of the system.

However, applying the density operator formalism to quantum transport has

some limitations. Such being the integration of positive-definite scattering opera-

tors into the Liouville/Von Neumann equation 2.4 and the non-local nature of the

density matrix, which makes the interpretation of the results more difficult [28].

2.1.1 Wigner Transport Equation (WTE)

The Wigner function, related to the density matrix through a unitary Fourier

transform, provides a phase space description of quantum mechanics. Analogous

to the semi-classical Boltzmann transport equation, the Wigner transport equation

describes the evolution of a Wigner function 𝑓w(r,k, t) [29] over time. Applying

the Wigner transform to the density operator yields the Wigner function,

𝑓w(r,k, t) =

∫︁ ∞

−∞
ds 𝑒−ik·s𝜌

(︁
r+

s

2
, r− s

2
, t
)︁

(2.5)

The Wigner function 𝑓w, defined over the phase space r,k, encompassing all

possible combinations of the position r and the wave-vector k assignable to a

particle [22], like the distribution function in the Boltzmann case, represents the

number of particles per unit volume at time t. However, the Wigner function

is not a proper probability density function since it may attain negative values,

manifesting the uncertainty relation in the phase space [30]. Regardless of the

above statement, the critical property∫︁ ∫︁
dr dk 𝑓w(r,k, t) = 1, ∀t (2.6)

of a probability distribution is still retained, which means that physical averages

can still be calculated using the same expressions as in the Boltzmann case, which

classifies the Wigner function as a so-called quasi-distribution function [22].

8

To arrive at the Wigner transport equation (WTE), the Wigner transformation

is similarly applied to the Liouville/Von-Neumann equation (see Equation (2.4)),

which describes the evolution of the density matrix and is given here already in

shifted coordinates and with the expanded Hamiltonian operator

∂

∂ t

𝜌
(︁
r+

s

2
, r− s

2
, t
)︁
=

1

iℏ

{︂
− ℏ2

2m*
∂2

∂r∂s
+
(︁
𝑉
(︁
r+

s

2

)︁
− 𝑉

(︁
r− s

2

)︁)︁}︂
𝜌
(︁
r+

s

2
, r− s

2
, t
)︁

(2.7)

, where 𝜌 denotes the density operator, m* the effective mass of the charge

carriers, and 𝑉 the electric potential. Yielding the evolution equation for the

associated Wigner function, the WTE (shown here for the electrostatic case and

in the absence of scattering)

∂

∂ t

𝑓w(r,k, t) +
ℏk
2m*

∂

∂r
𝑓w(r,k, t) =

∫︁
dk′ 𝑉w(r,k

′ − k, t)𝑓w(r,k, t) (2.8)

where,

𝑉w(r,k, t) = − 1

iℏ(2𝜋)3

∫︁
ds 𝑒is·(k−k′)

{︁
𝑉 (r− s

2
)− 𝑉 (r+

s

2
)
}︁

(2.9)

denotes the Wigner potential obtained via a Wigner transform of the electric po-

tential 𝑉 as shown in Equation (2.7).

Since practical simulations necessitate a finite domain, limits are imposed on

the integration of variables. This is achieved by assigning a finite value to the

integration variable with |𝐿| = 𝐿. Applying a finite value to the integration

bounds ±𝐿, termed an isotropic coherence length, results in a discretization of the

momentum space k, k → q∆k.

𝑓w(r,q∆k , t) =

1

𝐿

∑︁
q

𝑒−iqΔk·s𝜌(r− s, r+ s, t) (2.10)[︂
∂

∂ t
+

ℏq∆k

m* 𝛻r

]︂
𝑓w(r,q∆k , t) =

∑︁
q′

𝑉w(r,q− q′, t)𝑓w(r,q
′∆k , t) (2.11)

𝑉w(r,q∆k) =

1

i𝐿ℏ

∫︁ +𝐿/2

−𝐿/2

ds 𝑒i2qΔk·s{𝑉 (r+ s, r− s)} (2.12)

where q is an integer multi-index and ∆k = 𝜋 /𝐿, which denotes the resolution of

the discretized wave-vector [22].

9

2.1.2 Motivation for Wigner formalism-based simulations

The Wigner formalism, with its phase-space description, retains many classical

concepts and notions, which makes it a convenient approach to describing the

transport phenomena characterizing the evolution of charge carriers in nanostruc-

tures compared to other quantum-mechanical approaches, such as the Schrödinger

equation. Therefore, this allows for the adoption of models (e.g., scattering) and

analogies from semi-classical transport. Incorporating Boltzmann scattering mod-

els into the Wigner equation yields the Wigner-Boltzmann equation. The Wigner-

Boltzmann equation harmonizes the two theories and facilitates a smooth tran-

sition from purely quantum (ballistic) to classical (diffusive) transport depicted

in Fig. 2.1. The integration of this semi-classical scattering model into the WTE

was initially suggested in [31]. It was later justified through a thorough deriva-

tion for both phonon [32, 33] and impurity scattering, demonstrating that the

semi-classical scattering models can be seen as a limiting case of comprehensive

quantum models [34]. The Wigner formalism allows for a semi-classical depiction

of extended contact regions while also providing a quantum representation of a de-

vice’s active region [35]. Beyond computational electronics, the Wigner function is

widely utilized in numerous research areas, including quantum physics, quantum

optics, and quantum information processing [36, 37].

2.1.3 Stochastic Solution Techniques for the WTE

The Wigner-Boltzmann equation (WBE) is a partial differential equation (PDE)

in phase space, which is difficult to solve analytically. Due to this high dimen-

sionality, deterministic solutions are computationally expensive and require large

amounts of memory, making deterministic solution methods of the WBE particu-

larly challenging even on today’s hardware.

(︂
∂

∂ t
+ v𝑔(k)

)︂
𝑓w(r,k, t) =

∫︁
dk′ (𝑆(r,k,k′) + 𝑉w(r,k

′ − k))𝑓w(r,k
′, t) (2.13)

−𝜆(r,k)𝑓w(r,k, t) (2.14)

𝜆(r,k) =

∫︁
dk′ 𝑆(r,k′,k)𝑓w(r,k′, t) (2.15)

10

, where the first term denotes in-scattering and the second term denotes out-

scattering at rate 𝜆.

The WBE, as shown in equation Eq. (2.13), can be transformed into an ordinary

differential equation (ODE) by introducing Newton trajectories [22]. The resulting

equation parameterized by the time variable 𝜏 can then be formally integrated over

the interval 𝜏 = [t, t0] yielding the following equation:

𝑓w(r,k, t0) = 𝑓w ,i(r,k)𝑒
− ∫︀ t0

t 𝜇(R(y),k)dy (2.16)

+

∫︁ t0

t

dt′Γ(R(𝜏),k,k′, 𝜏)𝑓w(R(t′),k′, t′)𝑒−
∫︀ t0
t 𝜇(R(y),k)dy (2.17)

Γ(R(𝜏),k,k′, t) = 𝑆(R(𝜏),k,k′) + 𝑉w(R(𝜏),k′ − k) + 𝛾(R(𝜏))𝛿(k− k′) (2.18)

, here 𝛾(R(𝜏)) is the scattering rate associated with the Wigner potential and
R(𝜏) the trajectory of position.

This represents the integral form of the WBE. By recasting it as a Fredholm

integral equation, the concept of solving the WBE using Monte Carlo methods [38]

is introduced. Integral equations in the form of Fredholm integrals can characterize

a broad range of physical phenomena. Over time, a robust theory has developed

around solving these Fredholm integral equations using Monte Carlo algorithms.

The computational objective involves determining the statistical average of a

given physical quantity, denoted by 𝐴(r,k), at a specific time 𝑇 by employing the

Wigner function:

⟨𝐴𝑇 ⟩ =
∫︁

dr

∫︁
dk 𝑓w(r,k, 𝑇)𝐴(r,k) (2.19)

Expanding Eq. (2.19) into a Neumann Series allows the physical quantity to

be obtained by stochastic sampling of the Neumann series using numerical par-

ticles [38]. A particle progresses through free-flight and scattering until time T,

selecting a term in the series. The selected term’s contribution is determined by

sampling its associated integral. An algorithm for this task propagates numer-

ical particles along the trajectories, scatters them to different wave vectors, or

spawns additional particles. This approach, mirroring free-flight and scattering in

semi-classical Monte Carlo simulation, allows using established algorithms.

11

Wigner trajectories, which are defined via this formalism, where the action of

the Wigner potential operator is interpreted as scattering, give rise to the signed-

particle model where the Wigner potential is interpreted as a signed particle gen-

erator [10].

2.2 Wigner Signed Particle Solution Algorithm

As mentioned in the previous section, the Wigner-Boltzmann equation interpreted

as a Neumann series gives rise to the Wigner signed-particle model, as statistical

means of an arbitrary physical quantity can be represented by stochastic sampling

of the Neumann series using numerical particles. Here, as a variation of an affinity

model (for an overview of particle models used in quantum electron transport,

see [8]), only integer affinities with the values ±1 are considered in a generation

event. This leads to peculiarities and intricacies regarding the implementation and

parallelization of this algorithm. The following section will give an overview of the

algorithm’s structure and, unless otherwise stated, will follow the description of

Ellinghaus [22].

2.2.1 Program Structure

The program can be roughly divided into three general parts: Pre-processing, Sim-

ulation, and Post-processing. The program structure, specifically the simulation

part and the evolution algorithm, is illustrated in Fig. 2.2.

Pre-processing
Pre-processing is concerned with generating the required input files for the sim-

ulation. This is also where part of this thesis focuses on. In particular, quantities

must be mapped to the regular 2D mesh used in the simulator to incorporate ar-

bitrarily modeled or experimentally measured quantities needed in the simulation.

Therefore, it is necessary to have an easy-to-use pre-processing tool performing

this interpolation and mapping task.

12

Simulation
The simulation part is the actual simulation of the Wigner transport equation.

This is done by invoking a Monte Carlo method and the Wigner signed particle

approach. The basic steps of the solution process are initializing the system from

the input, setting up the geometry and potential profile, and setting the parame-

ters. To study and understand the system’s evolution through a change in material

parameters, the simulation also needs to set up the effective mass profile for the

system. This is the second part of the thesis focused on. The interpolation tool

is also introduced here within the simulation setup to allow for a more automated

approach to the task mentioned earlier.

The simulation’s main part is the evolution of the particles, which repeats within

a time loop until the total simulation time is reached. Since the problem is high-

dimensional and the simulation is computationally expensive, it is running in a

distributed fashion. Fortunately, semi-classical Monte Carlo codes parallelize effi-

ciently due to independent particles, but Wigner Monte Carlo codes require syn-

chronized communications for the critical annihilation step. The ViennaWD [39]

implementation uses an MPI-based domain decomposition on a distributed mem-

ory architecture, dividing the global simulation domain and particle ensemble into

uniformly sized subdomains and sub-ensembles. Each MPI process manages a sub-

domain and its corresponding sub-ensemble to minimize communication demand

from scattering events. Since the algorithm works via a Monte Carlo method,

the simulation is stochastic in nature, and therefore, the distribution process boils

down to non-interacting particles, sampling the initial distribution function, be-

ing distributed to the subdomains. Post-annihilation, each process checks for and

exchanges particles in overlapping subdomain boundaries, reducing the particle

ensemble size and communication load.

Therefore, the time-loop consists of the evolution, growth prediction, annihila-

tion, and particle transfer steps as depicted in Fig. 2.2.

Initialization: Initially, the distributor process loads the inputs that describe

the geometry and other parameters, such as the electric potential and the effective

mass. It then sets up an ensemble of N particles, which represent the initial con-

dition of the evolution problem, by assigning appropriate position and momentum

13

Figure 2.2: Flowchart of ViennaWD, based on Ellinghaus [22].

values. Following this, the distributor process distributes these particles to the

receiver processes based on the domain decomposition, along with the potential

profile, effective mass profile, and additional global parameters. Each process sub-

sequently initializes localized versions of the necessary data structures using the

initial values specific to its subdomain. A commonly used initial condition is the

Gaussian minimum uncertainty wave packet.

𝑓w(r,q) = N 𝑒xp

[︂
−(r− r0)

2

𝜎2

]︂
𝑒xp

[︀−(q∆k − k0)
2𝜎2

]︀
(2.20)

where r0 and k0 represent the mean position and the mean wave-vector, respec-

tively; 𝜎 is the standard spatial deviation and N represents a normalization con-

stant.

14

Evolution: Each process performs the evolution of its ensemble of particles for

a single time step in the evolution step. Each particle separately evolves in time

by the drift and scattering steps. During the drift phase, the particle propagates

a Newtonian trajectory with no forces acting on it, and the wave vector remains

constant. The new position is calculated by:

∂r =
ℏq∆k

m* min {𝜏 , 𝛿 t} (2.21)

This implies that the particle continues to drift until either the current time

step concludes, 𝛿 t represents the remaining time in the time step ∆t, or the next

scattering event occurs, symbolized by the free-flight time 𝜏 . The value of 𝜏 is

established by generating a uniformly distributed random number r, a character-

istic feature of the Monte Carlo method. As per Eq. (2.21), the particle is first

propagated and then scattered. A scattering event is selected, again through a

random variable r, from a normalized scattering table. This event could be either

a phonon-scattering event or a particle-generation event. In the former case, the

particle is scattered according to the chosen scattering mechanism, altering its

wave vector k. In the latter case, two additional particles with signs ±1 and wave-

vectors k± l are generated, with the offset l determined by the Wigner potential.

Growth Prediction: In the growth prediction step, each process predicts the

growth of its ensemble of particles after the evolution step. This becomes nec-

essary as continuous particle generation results in an exponential increase in the

number of particles present in the simulation. This would lead to an infeasible com-

putational burden; therefore, an annihilation step is later introduced to reduce the

number of particles.

To determine if this annihilation procedure will be performed in a subsequent

time step, each process performs a growth prediction for its sub-ensemble of par-

ticles after the evolution step and compares if the number of particles exceeds a

specific maximum. It is advisable to overestimate the particle increase. Therefore,

the maximum value of the generation rate 𝛾 for all particles is used, which yields

an upper bound on the particle growth:

𝑁t+Δt = 𝑁t

(︁
1 + max

i
𝛾(ri)∆t

)︁
(2.22)

15

where 𝑁t+Δt and 𝑁t represent the number of particles at times t + ∆t and t,

respectively, and ∆t is the time increment between two consecutive time steps.

Annihilation: In the annihilation process, all processes must simultaneously ex-

ecute their local annihilation step for particles within the subdomain, which is

crucial for maintaining the global statistics of the Wigner function. All processes

must reciprocate if any process necessitates an annihilation step based on its local

growth prediction. This synchronized operation is ensured by communicating each

process’s growth prediction result to the distributor process via an annihilation

flag. The distributor process collects these flags and, if any are true, broadcasts a

global annihilation flag, prompting all processes to perform an annihilation step.

If all flags are negative, no annihilation occurs. The actual annihilation is executed

based on phase space cells, each associated with a specific wave vector value as per

the semi-discrete Wigner equation (2.13). If two particles with opposite signs are

in the same cell, they annihilate each other and are removed from the ensemble,

as all particles within a cell are considered identical and indistinguishable because

of the Markovian nature of the Monte Carlo method.

Particle Transfer: After the annihilation step, a synchronization barrier ensures

that all transfers of particles located in the overlapping boundaries of the subdo-

mains are complete before the next time step commences. Performing the transfer

of particles after an annihilation step dramatically reduces the size of the particle

ensemble to be transferred, which is beneficial for the communication burden.

Post-Processing
The distributor process does not issue a global reduction step to collect the

resulting data to avoid a central communication bottleneck at the end of the sim-

ulation. Instead, at each output time step, each process writes the simulation

results of each subdomain to disks locally. This design decision necessitates merg-

ing the simulation results, handled by external scripts, in the post-processing step.

After all data has been merged, different post-processing steps, such as analysis,

examination, and evaluation, can then take place to reproduce the desired physical

quantities and visualize the simulation results.

16

2.3 Parallel Computing

Optimizing the numerical calculations in scientific computation is paramount to

obtaining simulation results in a reasonable amount of time. Since the increase

in clock speed of single-core processors has stagnated [40] since the start of the

millennium, parallel computation is now the primary method to speed up or even

enable expensive computational tasks.

In principle, Monte Carlo methods stand out for their "embarrassingly paral-

lel" nature, which indicates a high level of parallel efficiency that can be readily

achieved. This attribute arises from handling smaller subensembles independently

across separate computational units without necessitating communication. How-

ever, parallelizing the here-considered Wigner Monte Carlo implementation en-

counters complexities due to the annihilation step, which poses challenges on two

fronts. The annihilation step mandates synchronization among computational

units. This introduces a need for communication and synchronization among com-

putational units, detracting from the ideal scenario of independent parallelization.

The enormity of the numerical particles in the simulated particle ensemble, typi-

cally ranging from 106 to 108, underscores the need for a parallel solution scheme

to attain practical simulation runtimes. Consequently, parallelization techniques

become indispensable to enhance application performance.

Modern system architectures for high-performance computing (HPC) most com-

monly consist of several nodes, each comprising several processing units [41]. These

processing units can typically be a multi-core central processing unit (CPU),

a graphics processing unit (GPU), or a specialized accelerator such as a field-

programmable gate array (FPGA). An efficient utilization of high-performance

computation resources requires consideration of the memory layout and the com-

munication between the processing units. Since large (HPC) applications mainly

involve a distributed memory system, the following section provides a brief overview

of the Message Passing Interface (MPI), one of the most commonly used paral-

lelization techniques in scientific computing and used for the parallel execution of

ViennaWD.

17

Message Passing Interface (MPI) The stochastic solution method of Vien-

naWD is considered to necessitate data transfers between the computing units

since they cannot access the same memory on a distributed memory system.

MPI [42] is a standard that the MPI Forum maintains. It provides a commu-

nication layer for so-called processes, and software vendors provide different im-

plementations of the standard. An MPI process manages the scheduling of op-

erations and the allocation of processor resources [43]. Each process is assigned

to a distinct rank within an MPI communicator with which it can be uniquely

identified. A straightforward approach initializes an MPI program, and the work-

load is distributed using the distributor-receiver model. Here, one process called

the distributor manages the input and output, broadcasts instructions, receives

results from the receivers, and performs reduction operations at the end of a simu-

lation. The receivers, including the distributor process, perform their instructions

in parallel before returning the results to the distributor process.

The distributor-receiver model is also used in ViennaWD (Section 2.2.1), with

an important distinction being that the distributor process does not perform the

reduction step at the end of the simulation, but this is handled by external scripts,

which collect the results from the individual processes and merge them into a single

file as described in the paragraph Post-Processing in Section 2.2.1.

18

3 Interpolation

Interpolation plays a fundamental role in various scientific and engineering appli-

cations, serving as a tool to estimate values within a set of known data points.

In computational tasks, interpolation routines are indispensable for generating

continuous functions from discrete data, facilitating analysis, visualization, and

prediction. The aim of implementing an interpolation routine into ViennaWD is

to provide the possibility to perform a mapping of imported, arbitrary quantities

needed for a simulation onto the simulator’s grid data structure as described in

Section 2.2.1.

The focus will be on importing an electric potential or effective mass distribution

into ViennaWD since those are the main two quantities that will regularly be pro-

vided externally through experimental measurements or modeling. This problem

can be tackled by first interpolating the quantity on the external grid, also often

called knots or support knots in the mathematical literature [44]. This results in

an interpolating function whose values are known not only at the support knots

but also in the total domain of the quantity. Then, the interpolating function is

evaluated at the desired ViennaWD grid points. The following sections will briefly

introduce the theory behind interpolation, provide a short overview of the inter-

polation techniques used in this thesis, explain the reasoning behind the choice of

interpolation techniques, and provide a short overview of the implementation of

the interpolation routines.

3.1 Interpolation Background

Interpolation serves as a fundamental concept in mathematics, providing a means

to estimate values between known data points. It encompasses a diverse range of

19

techniques aimed at constructing continuous functions or curves that pass through

or approximate given discrete data points. The theoretical foundation of interpo-

lation draws upon various mathematical principles, including polynomial interpo-

lation, spline interpolation, and radial basis function interpolation, among others.

These methods leverage mathematical constructs such as polynomials, piecewise

functions, and radial basis functions to interpolate data points and approximate

the underlying behavior of a function or dataset. Through interpolation, data

can be analyzed, predicted, and visualized with enhanced accuracy and precision,

making it a cornerstone of computational sciences. Though the term interpolation

is used in a variety of contexts, its core objective is the following [45]:

Definition. Given (xi, 𝑓i), i = 0, . . . , n, find

p ∈ K : p(xi) = 𝑓i, i = 0, . . . , n (3.1)

In other words, the goal is to find an interpolating function p, belonging to some

fixed class of functions K that are defined at least on ∆ = [𝑎, 𝑏] (e.g., 𝑓 ∈ Pn the

set of algebraic polynomials of degree ≤ n), that matches the given data points
(xi, 𝑓i) for i = 0, . . . , n, where p(xi) = 𝑓i are given.

Here, xi is a set of points, and 𝑓i are the function values at those points. Applica-

tions are, for example:

• “Extrapolation”: typically 𝑓i = 𝑓(xi) for an (unknown) function 𝑓 . For
x̄ /∈ x0, . . . , xn the value p(x̄) yields an approximation to 𝑓(x̄).

• “Dense output/plotting of f”, if only the values 𝑓i = 𝑓(xi) are given (or, e.g.,

function evaluations are too expensive)

• Approximation of f: integration or differentiation of 𝑓 → integrate or differ-

entiate the interpolating function p

As motivated in the introduction to this chapter, the second example listed above

reflects the use case for this work. The interpolation of an arbitrary quantity to

the desired parameters of the simulation grid is an application of interpolation in

the sense of a dense output of 𝑓 .

20

Although the interpolated arbitrarily varying quantity considered will not be rep-

resented as an analytical function on the domain, it will still be referred to as 𝑓

in the following. The function 𝑓 is given by a set of points (xi, 𝑓i) for i = 0, ..., n,

where 𝑓i = 𝑓(xi) are given.

Many interpolation methods exist, each tailored to specific requirements such as

accuracy, computational efficiency, and smoothness of the interpolated function.

Classical techniques include [45]

• 0-th Order Interpolation: Constant interpolation

• 1-st Order Interpolation: Linear interpolation

• n-th Order Interpolation: Polynomial interpolation

While these methods are straightforward and widely applicable, they may suffer

from limitations such as overfitting or oscillations, especially with sparse or noisy

data [46]. To address these challenges, more advanced interpolation techniques

have been developed [47]. Splines, for instance, provide a flexible and smooth

interpolation by fitting piecewise polynomial functions to subsets of data points.

Cubic splines, in particular, are widely used due to their simplicity and ability to

maintain smoothness while passing through all data points [44].

In addition to spline-based methods, radial basis function interpolation offers

an alternative approach [48], employing localized basis functions centered at each

data point to construct the interpolated function. This technique is particularly

effective for irregularly spaced data or when the underlying data distribution is

not well-behaved.

Furthermore, machine learning-based interpolation methods, such as Kriging

and Gaussian processes [49], have gained popularity for their ability to capture

complex relationships in data while providing uncertainty estimates. These tech-

niques leverage statistical models to interpolate data points and make predictions

based on the underlying covariance structure. However, these are not further con-

sidered in this work but provide alternative avenues for future research.

Overall, the choice of interpolation routine depends on the characteristics of the

data, the desired accuracy, and computational constraints. In practice, combining

21

multiple methods or adapting existing techniques to specific problem domains often

leads to optimal interpolation results. The following sections will provide a short

overview of the interpolation methods investigated in this thesis.

3.1.1 Piece-wise interpolation / Splines

Since the problem considered is not to interpolate an analytical function 𝑓 but

rather an arbitrarily varying quantity, there is no imperative for using polynomial

interpolation routines of any order standalone of the shortcomings as mentioned

above. Therefore, spline interpolation, where for each subset of points to be inter-

polated through, a polynomial of order k is calculated, which in the most abstract

case can be of any order necessary to fit the data, is a promising approach.

Splines are piece-wise polynomials on a partition ∆ of an interval [𝑎, 𝑏]. The

partition ∆ is described by the knots 𝑎 = x0 < x1 < · · · xn = 𝑏. The elements in

this partition between the knots are denoted by 𝐼i = (xi, xi+1), i = 0, · · · , n − 1.

For a partition ∆, described by the knots xi, i = 0, . . . , n) and p, r ∈ 𝑁0, the spline

space 𝑆p,r(∆) is defined as

Definition.
𝑆p,r(∆) :=

{︀
u ∈ 𝐶r([𝑎, 𝑏]) |u|𝐼i ∈ Pp ∀i}︀ (3.2)

Given values 𝑓i, i = 0, · · · , n, s ∈ 𝑆p,r(∆) is said to be the interpolating spline if

s(xi) = 𝑓i, i = 0, . . . , n

The classical cubic spline space is given by the choices p = 3 and r = 2, meaning

that the piecewise polynomials are of third order; therefore, in P3 and that the

overall interpolating function is twice continuously differentiable therefore in C2.

The interpolation problem is therefore:

Definition.

Given 𝑓i, i = 0, . . . , n, (3.3)

find s ∈ 𝑆3,2(∆) (3.4)

such that s(xi) = 𝑓i, i = 0, . . . , n (3.5)

22

Since Eq. (3.5) represents a system of n+ 1 equations and 𝑑im𝑆3,2(∆) = n+ 3

there have to be additional constraints imposed. Equation (3.5) yields n+1 inter-

polation conditions. Hence, two more conditions have to be imposed. These two

extra conditions are selected depending on the application. One of the following

four choices is typically made [45]:

1. Complete/clamped spline: The user provides two additional values 𝑓 ′
0, 𝑓 n′ ∈

ℝ and imposes the following two additional conditions:

s′(x0) = 𝑓 ′
0, s′(xn) = 𝑓 ′

n. (3.6)

2. Periodic spline: one assumes 𝑓0 = 𝑓n and imposes additionally

s′(x0) = s′(xn), s′′(x0) = s′′(xn). (3.7)

3. Natural spline:
s′′(x0) = 0, s′′(xn) = 0. (3.8)

4. “not-a-knot condition”: one requires that the third derivative (jerk) of s at

the knots x1 and xn−1 to be zero:

lim
x→x1−

s′′′(x) = lim
x→x1+

s′′′(x), lim
x→xn−1−

s′′′(x) = lim
x→xn−1+

s′′′(x) (3.9)

In particular, the spline interpolation problem is uniquely solvable in each of

these cases.

3.1.2 Radial Basis Functions

Radial Basis Functions (RBFs) stand as a formidable tool in the realm of inter-

polation, offering a versatile and powerful approach to approximating unknown

functions from scattered data points [48]. Their widespread adoption stems from

their unique ability to capture complex relationships between data points while

circumventing some of the limitations associated with traditional interpolation

techniques [50]. RBFs are especially known for their use in mesh-free interpola-

tion. Although the interpolation problem discussed is not inherently mesh-free, the

23

added convenience and reassurance of this functionality are not to be overlooked.

RBF interpolation originated in the 1970s [51] and has since been successfully used

in a variety of fields such as geophysics, computer graphics, medical imaging, fi-

nance, environmental modeling, aerospace engineering, and machine learning [52].

This highlights the versatility of RBFs in diverse interpolation scenarios.

The interpolant takes the form of a weighted sum of RBFs where the approxi-

mating function y(x) is represented as a sum of n RBFs, each associated with a

different center xi, and weighted by an appropriate coefficient 𝜆i. Therefore, the

interpolation problem takes the form:

Definition.

Given 𝑓i, i = 0, . . . , n, (3.10)

find s(x), x ∈ ℝ𝑑 (3.11)

such that s(xi) = 𝑓i, i = 0, . . . , n (3.12)

s(x) =
n∑︁

i=1

𝜆i𝜑(|x− xi|), x ∈ ℝ𝑑 (3.13)

with
n∑︁

i=1

𝜆i𝜑(xj − xi) = 𝑓j (3.14)

Some classical choices for RBF kernels can be seen in Table 3.1 with r = ‖x− xi‖.

Radial Basis Function 𝜑(x)

Gaussians 𝑒−(𝑐r)2

Polyharmonic r2k−1

r2kl o𝑔(r)

Mulitquadratics
√
r2 + 𝑐2

Table 3.1: Classic types of RBFs

24

3.2 Implementation

Considering the circumstance that the externally provided quantities will, in gen-

eral, not represent an analytical function and further that we can not make any

assumptions on the sampling of the quantity, meaning we cannot assume whether

the provided quantity will satisfy any particular conditions as to spacing or den-

sity, the choice was made to use spline interpolation techniques and RBFs going

forward. Bivariate spline interpolation and RBF interpolation were chosen as they

are of considerable interest, in particular, in scattered data fitting, the construc-

tion and reconstruction of surfaces [53, 48] and further, since there exist many

well-maintained and optimized libraries that have these methods of interpolation

implemented. Two choices arise for the implementation. They are (1) integrating

an implementation routine into the simulator and (2) a standalone implementation

used in a pre-processing step. For the standalone implementation, it was decided

to work with Python [54] as it is already in use in the simulator’s post-processing

step. For the implementation focused on integration within Vienna WD itself, it

is therefore evident that it was implemented in C [55], as this is the program-

ming language that the Vienna WD simulation kernel is written in. A readily

available and well-maintained library for Python is the SciPy library [56], which

offers an interpolate module with all the discussed methods in place. In C, the

off-the-shelf available resource for interpolation is the GSL library [57]. However,

for bivariate interpolation, GSL only offers the possibility of spline interpolations

of linear and cubic order. Therefore, these will be the only methods compared to

the Python implementation. In the following, both approaches will be presented,

with a discussion of the implications on the workflow of each approach and the

findings presented later in Chapter 5. The workflow of each implementation is

visualized in Fig. 3.1 as a flowchart and will be used in the following to present

the algorithms and explain their workings. A flowchart is a type of diagram that

represents a workflow or process [58], in this case, a diagrammatic representation

of an algorithm, a step-by-step approach to solving a task. In Fig. 3.1, trapezoidal

nodes describe input from the user that is necessary when invoking the program,

and yellow nodes describe the sections where the program interacts with the out-

side through input from the user or output to the operating system. Grey nodes

25

describe the different stages within the program, where the interpolation step is

highlighted in a darker shade.

(a) Python (b) C

Figure 3.1: Flowcharts describing the program algorithm for the implementation

of different interpolation routines in Python (a) and C (b).

3.2.1 Interpolation using SciPy in Python

As previously mentioned in Section 3.2, two different types of interpolation within

the Python SciPy library are looked into. These are the previously mentioned

spline interpolations where the SciPy library offers the RectBivariateSpline method

for interpolating an arbitrary quantity on a rectangular mesh. The other inter-

polation method investigated is the RBF interpolation, where SciPy provides the
RBFInterpolator method.

26

The implementation of both methods will be presented collectively in the follow-

ing, while only the key differences of the specific method used for the interpolation

itself will be pointed out. The implementation of the interpolation routine was

done as standalone Python script interpolation.py and further as Python note-

book [59] interpolation.ipynb. Since both implementations are identical in their

functionality, only the standalone script will be discussed in the following. The

script is divided into three parts:

1. The first part is concerned with the import of the necessary modules and

data.

2. The second part is concerned with the interpolation of the quantity using
SciPy routines from scipy.interpolate.

3. The third part is concerned with plotting and exporting the interpolated

quantity.

Import of modules and data
The import of modules and user data is visualized in Fig. 3.1a as the yellow

node at the top of the flowchart. The modules imported are shown in Listing 3.1:

• os: for extraction of file arguments

• sys: for the handling of command line arguments

• numpy: for the handling of arrays

• scipy.interpolate: for the interpolation routines

• matplotlib.pyplot: for the plotting of the interpolated quantity

1 import os

2 import sys

3 import numpy as np

4 from scipy.interpolate import RectBivariateSpline as RBS

5 from scipy.interpolate import RBFInterpolator as RBF

6 import matplotlib.pyplot as plt

Listing 3.1: Import of necessary modules

27

The first module to be imported is os. It is used to discern whether the command

line argument for the input file has the correct extension. sys is used to provide

the functionality of using command line arguments within the Python program.
NumPy [60] included as numpy, provides essential numerical computing capabilities

to Python. Specifically, it is an array object capable of handling multiple dimen-

sions alongside a plethora of associated objects. Complementing this, NumPy
boasts an extensive collection of functions tailored for swift operations on arrays

encompassing mathematical, logical, sorting, selection, input/output operations,

and beyond. The sub-package scipy.interpolate is part of the SciPy library.
SciPy is a comprehensive collection of mathematical algorithms and convenience

functions built on top of NumPy, adding high-level commands and classes for

data manipulation and visualization. Specifically, scipy.interoplate provides

us with interpolation classes, functions, and the accompanying evaluation meth-

ods. matplotlib.pylot provides the visualization interface from Matplotlib [61].

After importing all necessary libraries and packages, the script proceeds to de-

clare all the variables needed for the interpolation routine, depending on the com-

mand line arguments. This is done using the length of sys.argv and the command

line arguments themselves, as shown in Listing 3.2. The command line arguments

are:

• sys.argv[1] data: Data to be interpolated

• sys.argv[2] working path: Path to write results to

• sys.argv[3] mesh_size: Mesh size for the evaluation

1 print(f"USING {sys.argv [1]} WITH MESH SIZE {sys.argv [3]}

2 WRITING TO {sys.argv [2]}")

3 data = np.genfromtxt(sys.argv[1], delimiter=’ ’,

4 skip_header =1)

5 working_path = sys.argv [2]

6 mesh_size_x = float(sys.argv [3])

7 mesh_size_y = float(sys.argv [3])

Listing 3.2: Data import from command line arguments

28

The data to be interpolated is read from the file given in sys.argv[1] using numpy

.genfromtxt and stored in the variable data. This is represented in Fig. 3.1a by

the grey, rectangular node after the yellow initialization node. Data is assumed

to arrive as a CSV, as used in the simulator. This is checked, and if the provided

file is not of the right type, the program raises an error and returns as shown in

Listing 3.3.

1 if file_extension.lower () != ’.csv’:

2 print("Error: The file is not a CSV file.")

3 sys.exit (1)

Listing 3.3: File extension check

The working path is given in sys.argv[2] and is used to write the interpolated

quantity to the filesystem. To construct the evaluation grid, the mesh size is

given in sys.argv[3] and is used to create the evaluation grid for the interpolation

routine. Though the mesh size is given as a single value, the interpolation routine

could support different mesh sizes in the x and y directions. Therefore, the mesh

size is split into two values mesh_size_x and mesh_size_y, which are then used to

create an evaluation grid. This is done to future-proof the routine for the case

that different mesh sizes in the x and y directions are needed at a later point in

the development of ViennaWD.

Interpolation
The second part of the script is concerned with the interpolation using the SciPy

routine RectBivariateSpline or the SciPy routine RBFInterpolator provided

in the scipy.interpolate package. To this end, the routines require the grid

points or support knots as well as the values of the quantity considered at those

grid points. Therefore, the data is later split into the x and y values of the quantity

and the quantity values themselves according to the respective requirements of the

routines RectBivariateSpline and RBFInterpolator.

The data points of the interpolation data are stored in the variable data, and

the evaluation grid is created using the mesh size given in sys.argv[3]. Therefore,

the x and y values are scanned for their minimum and maximum values, and the

evaluation grids are created using the mesh sizes, represented in Fig. 3.1a by the

29

second light grey, rectangular node. This is done via the numpy.arange function,

which creates an array of values from a given start value to a given end value with

a given step size, which in our case is the mesh size. The new data points are then

stored in the variables Xnew and Ynew and are used to further create the evaluation

mesh grids via numpy.meshgrid, where numpy.meshgrid returns a list of coordinate

matrices from coordinate vectors. This is shown in Listing 3.4, where further the

mesh grid is then saved as xnew and ynew.

1 x_min , x_max = data [: ,0][0] , data [: ,0][-1]

2 y_min , y_max = data [: ,1][0] , data [: ,1][-1]

3
4 Xnew = np.arange(x_min , x_max+mesh_size_x , step=mesh_size_x)

5 Ynew = np.arange(y_min , y_max+mesh_size_y , step=mesh_size_y)

6 xnew , ynew = np.meshgrid(Xnew , Ynew)

Listing 3.4: Evaluation grid setup

The interpolating function is then constructed using the RectBivariateSpline
and RBFInterpolator routines from the package scipy.interpolate respectively.

At this stage, the invocation of the two functions, visualized by the dark grey node

in Fig. 3.1a, differs slightly.

• scipy.interpolate.RectBivariateSpline requires the unique x and y values

of the original grid in strictly ascending order as 1-D arrays’ of size nx and
ny, respectively, to set up the support knots for the interpolating function

and the function values are to be supplied as a 2D array of function values

at those grid points of size (nx, ny), where nx, ny is the number of gridpoints

in each dimension

• RBFInterpolator, on the other hand, requires the grid points to be passed as

a 2D array with dimensions (nx · ny, 2). Therefore, the function values must

also be supplied in the same manner as a 1-D array of size (nx · ny, 1).

For the spline interpolation, the order of the underlying spline space can be chosen

at this point, and for the RBF-Interpolator, the underlying RBFs 𝜑(x). The

interpolating function is then stored in the variable interpf to avoid unnecessary

30

recalculation of the interpolation function when evaluation at different intervals is

necessary.

For the evaluation, the interpolating function interpf is called with the evalu-

ation mesh grids xnew and ynew as arguments for the spline routine RBS and with
new_grid for the RBF routine RBF, as the interpolating function again requires dif-

ferent invocations. This process step is visualized as the last grey node in Fig. 3.1a.

The function call and evaluation for both the spline and RBF methods are shown

in Listing 3.5 and 3.6, respectively.

1 interpf = RBS(x, y, z, kx=order , ky=order)

2 interp_data = interpf(xnew , ynew , grid=False)

Listing 3.5: Interpolation and Evaluation of the spline method

1 interpf = RBF(XY , Z, kernel=order , epsilon =0.5)

2 interp_data = interpf(new_grid)

Listing 3.6: Interpolation and Evaluation of the RBF method

Plotting and exporting
The third part of the script is concerned with plotting and exporting the inter-

polated quantity. A new filename for the output is constructed using the working

path given in sys.argv[2], the filename of the input data given in sys.argv[1],

and the mesh size given in sys.argv[3]. The interpolated data is then saved to

the new file using numpy.savetxt as shown in Listing 3.7.

1 file = sys.argv [1]. split("/")[-1]. split(".")[0]

2 save_file = working_path + file +

3 "_intp_RBF_ {}_{}. csv".format(order , mesh_size_x)

4 np.savetxt(save_file ,

5 np.concatenate ((xnew.reshape(xnew.size , 1),

6 ynew.reshape(xnew.size , 1),

7 interp_data.reshape(xnew.size , 1)), axis =1),

8 fmt = ’%1.4e’, delimiter=’ ’, newline=’\n’,

9 header=’x y z’, comments=’’)

Listing 3.7: Data export to file system

31

Finally, the interpolated quantity is plotted using matplotlib.pyplot and saved to

the working path using matplotlib.pyplot.savefig as shown in Listing 3.8. As

this process requires outside communication with the filesystem, it is visualized

as the bottom yellow node in Fig. 3.1a. This is done via the use of a boolean

variable plot, which is set to False by default. It would allow the use of another

command line argument if deemed necessary. Since the feature of plotting the

input and output data is, however, only of use for debugging reasons and is not

needed for the interpolation itself in a production environment, the feature was

not implemented.

1 if plot:

2 save_plot_output = working_path + file +

3 "_output_RBF_ {}_{}. png".format(order , mesh_size_x)

4 fig = plt.figure(figsize = [12 ,12])

5 ax = plt.axes(projection=’3d’)

6 ax.plot_surface(xnew , ynew , interp_data , cmap=’viridis ’)

7 ax.set_xlabel(’x’)

8 ax.set_ylabel(’y’)

9 ax.set_zlabel(’z’)

10 fig.savefig(save_plot_output)

Listing 3.8: Visualization of data

3.2.2 C - GSL

For the interpolation using C, the GSL subroutine gsl/gsl_interp2d.h and
gsl/gsl_spline2d.h from the GSL library was used. The routine uses an instance

of bicubic or bilinear splines (gsl_interp2d_bicubic, gsl_interp2d_bilinear)

together with the number of support knots in each dimension to create an inter-

polation object consisting of an underlying spline supported on these knots.

The interpolation routine was implemented as a standalone C script interpolation.c
and, further, as a feature to be used within the simulator. Since both implementa-

tions are identical in their functionality, only the standalone script will be discussed

in the following. Figure 3.1b shows the program flow for the standalone imple-

mentation in C, with a short note on the simulator implementation at the end of

32

the chapter. The script is divided into three parts:

1. The first part is concerned with the import of the necessary modules.

2. The second part consists of the different functions used in the main routine.

3. The main routine itself.

Import of modules
The first part of the script is concerned with the import of the necessary modules,

as shown in Listing 3.9. The modules imported are:

• stdio.h: for the handling of command line arguments

• stdlib.h: for the handling of arrays

• gsl/math.h: for the interpolation routine

• gsl/gsl_interp2d.h: for the interpolation routine

• gsl/gsl_spline2d.h: for the interpolation routine

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <gsl/gsl_math.h>

4 #include <gsl/gsl_interp2d.h>

5 #include <gsl/gsl_spline2d.h>

Listing 3.9: Inclusion of necessary headers

stdio.h provides the necessary functionality to handle the input provided when

invoking the program. stlib.h provides the required functionalities for dynamic

memory allocation. Specifically, the function malloc and the data type size_t.
gsl/math.h is needed to calculate the new grid structure. gsl/gsl_interp2d.h

and gsl/gsl_spline2d.h are the header files from the GSL library that are needed

to perform the interpolation task. gsl/gsl_spline.h provides the basis spline

object that is used within gsl/gsl_interp2d.h to set up and calculate the inter-

polating spline function.

33

Functions
The second part of the program is concerned with the different functions used

for the main routine. The functions are:

• read_csv(x_array, y_array, z_array, filename, scan, size)

• countDistinct(array, N)

• configure_spline(x_array, y_array_y, z_array, n_x, n_y, spline)

Since within C for dynamic memory allocation, defined as a procedure in which

the size of a data structure is changed during the runtime, necessitates a call to

either malloc or calloc, the function read_csv, shown in Listing 3.10, is called

several times. The function is called with pointers to the containers for the x, y

and z values (xp, yp, zp), the filename as provided via command line input, an

integer scan used to discern whether to read or to scan the file, as well as an

integer pointer size for use if the function is called to scan a file.

The initial call to the function scans the file for the number of lines and stores it

in the variable size. This is done to allocate the memory for the arrays x, y, and
z, which is done in the main routine and accomplished via the boolean variable
scan that either initiates a scan of the file and writes the resulting number of lines

to size or reads the content and writes it to the appropriate container. After

reallocating the memory associated with the pointers x, y, and z, the read_csv

function is called again to read the data from the file and store it in the respective

arrays.

1 void read_csv(double* xp , double* yp , double* zp ,

2 char* filename , int scan , int* size)

3 {

4 float nodePositionX , nodePositionY , quantity;

5 FILE* fp = fopen(filename , "r");

6 int line = 0;

7
8 if (!fp) printf("Can’t open file %s\n", filename);

9
10 int retval = fscanf(fp , "%*[^\n]\n");

34

11 if(retval == -1) printf("[ERROR]\n");

12
13 if(scan){

14 while (fscanf(fp , "%f %f %f\n", &nodePositionX ,

15 &nodePositionY , &quantity) != EOF)

16 {line ++;}

17 *size = line;

18 }

19 else{

20 while (fscanf(fp , "%f %f %f\n", &nodePositionX ,

21 &nodePositionY , &quantity) != EOF)

22 {

23 xp[line] = nodePositionX;

24 yp[line] = nodePositionY;

25 zp[line] = quantity;

26 line ++;

27 }

28 fclose(fp);

29 }

30 }

Listing 3.10: Function to read or scan CSV from file

Since the number of distinct values in the arrays x and y, which are the number

of support knots in each direction, cannot be known in advance, it is necessary to

calculate them separately. The function countDistinct (Listing 3.11) is used to

count the number of distinct values x and y in the arrays x and y and return the

respective number of unique entries for later use in the main routine. The routine

is called with the array arr and the size of the array n to be inspected.

1 size_t countDistinct(double* arr , size_t n)

2 {

3 int res = 1;

4 for (int i = 1; i < n; i++) {

5 int j = 0;

6 for (j = 0; j < i; j++)

35

7 if (arr[i] == arr[j])

8 break;

9 if (i == j)

10 res ++;

11 }

12 return res;

13 }

Listing 3.11: Function to count number of distinct values in an array

The function configure_spline (Listing 3.12) configures the spline object used

for the interpolation routine. To this end, the function takes the arrays x, y, and
z as well as the number of support knots in the x and y direction (nx, ny) and a

spline object spline as arguments. With gsl_spline2d_set, the structure of the

interpolating polynomial on the support knots is created, and each support knot is

assigned a value from the array z. With gsl_spline2d_init, the spline object is

then initialized to the given values of the support knots, i.e., their x and y values

in the original grid.

1 void configure_spline(double* x, double* y, double* z,

2 int nx , int ny , gsl_spline2d *spline)

3 {

4 size_t i, j;

5 double *z_smth = malloc(nx * ny * sizeof(double));

6 double *xvals = malloc(nx * sizeof(double));

7 double *yvals = malloc(ny * sizeof(double));

8
9 for (i = 0; i < nx; i++) {

10 for (j = 0; j < ny; j++) {

11 gsl_spline2d_set(spline , z_smth , i, j, z[j*nx + i]);

12 }

13 }

14
15 j = 0;

16 for (i = 0; i < nx*ny; i++) {

17 if (i%ny == 0)

36

18 {

19 xvals[j] = x[i];

20 j++;

21 }

22 }

23 for (i = 0; i < ny; i++)

24 {

25 yvals[i] = y[i];

26 }

27 gsl_spline2d_init(spline , xvals , yvals , z, nx , ny);

28 }

Listing 3.12: Function to configure spline object

Main routine
The program requires the following arguments to be supplied when invoking

it. These are the quantities to be interpolated, supplied as a CSV file with three

columns, where the first two columns describe the grid point and the third column

the value of the quantity at each grid point. The first two columns, meaning the
x and y values of the grid, are required to be in strictly ascending order. This is

necessary because the GSL routines for the interpolation require the provided grid

points to be in strictly ascending order. Therefore, this constraint on the input

is imposed to avoid a costly sorting algorithm within the implementation. The

second user input required is the new mesh size to generate the evaluation grid on

which the interpolating function shall be evaluated. The third user input required

is the path to which the interpolated quantity is written.

Via the variables inputFile, working_path, and mesh_size_x/y, the user input

when calling the program is saved. The main routine then begins to initialize all

necessary objects and allocate all necessary memory (Listing 3.13). The required

external input to the program is given by the grey trapezoidal node in Fig. 3.1b,

while the initialization is represented by the yellow node.

1 const gsl_interp2d_type *T = gsl_interp2d_bilinear/

gsl_interp2d_bicubic;

2 char* inputFile = argv [1];

37

3 char* working_path = argv [2];

4 double mesh_size_x = atof(argv [3]);

5 double mesh_size_y = atof(argv [3]);

6
7 int Nx , Ny;

8 int i, j;

9 int nx , ny;

10
11 const int PATH_LENGTH = 256;

12
13 int scan = 1;

14 int* size = malloc(sizeof(int));

15
16 double range_x;

17 double range_y;

18
19 FILE *filePntr;

20 char filenameINTP[PATH_LENGTH];

21
22 double* xa = malloc(sizeof(double));

23 double* ya = malloc(sizeof(double));

24 double* za = malloc(sizeof(double));

Listing 3.13: Initialization from user provided arguments and declaration of

necessary variables

The arrays xa and ya will contain the x and y values of the original grid, and

the array za will contain the value of the externally provided quantity to be in-

terpolated at those points. As mentioned previously, via the use of the boolean

variable scan, the function read_csv is called twice, with the appropriate memory

allocation in between. This is represented in Fig. 3.1b by the first two grey nodes

after the yellow initialization node. The data is then read from the file and stored

in the arrays xa, ya, and za, which are in a further scan used to count the number

of distinct values in the arrays xa and ya as shown in Listing 3.14.

38

1 read_csv(xa , ya , za , inputFile , scan , size);

2 xa = realloc(xa , *size * sizeof(double));

3 ya = realloc(ya , *size * sizeof(double));

4 za = realloc(za , *size * sizeof(double));

5
6 if (xa == NULL || ya == NULL || za == NULL)

7 { printf("Error reallocating memory\n"); }

8
9 scan = 0;

10 read_csv(xa , ya , za , inputFile , scan , size);

Listing 3.14: Reallocation of data array memory as ascertained by read_csv

The number of distinct values in the arrays xa and ya is then stored in the variables
nx and ny. This is done with the previously mentioned function countDistinct

and is represented in Fig. 3.1b as a grey node. This step allows us to extract

our grid from the input data. With this information, the spline object can now

be set up (Listing 3.15). A gsl_spline2d instance spline is declared using the
gsl_spline2d_alloc function. It is called with the desired type of spline 𝑇 and

the number of support knots in the x and y directions. Further, two accelerator

objects are created using the gsl_interp_accel_alloc function.

1 nx = countDistinct(xa , *size); /* x grid points */

2 ny = countDistinct(ya , *size); /* y grid points */

3
4 gsl_spline2d *spline = gsl_spline2d_alloc(T, nx , ny);

5 gsl_interp_accel *xacc = gsl_interp_accel_alloc ();

6 gsl_interp_accel *yacc = gsl_interp_accel_alloc ();

7
8 configure_spline(xa , ya , za , nx , ny , spline);

Listing 3.15: Determination of grid structure and initialization of spline and

accelerator objects

The method with which the spline object is initialized is either gsl_interp2d_bilinear
for piecewise linear interpolation or gsl_interp2d_bicubic for the classic cubic

spline interpolation method. The spline object is configured using the configure_spline

39

function as shown in Listing 3.15, line 8. It is called with the containers containing

the grid data (x, y) and the value at each grid point (z), as well as with the pre-

viously calculated number of support knots in each direction (nx, ny) and the

created spline instance spline. Again, this represents the grey node in Fig. 3.1b
directly above the dark grey interpolation node.

The number of grid points in each direction for the evaluation grid, Nx, Ny,

is calculated using the mesh size provided via user input through the variables
mesh_size_x, mesh_size_y as shown in Listing 3.16.

1 range_x = xa[*size -1] - xa[0];

2 range_y = ya[*size -1] - ya[0];

3 Nx = floor(range_x / mesh_size_x) + 1;

4 Ny = floor(range_y / mesh_size_y) + 1;

Listing 3.16: Calculation of evaluation grid dimensions

The interpolated quantity is evaluated on the evaluation grid using gsl_spline2d_eval.

The evaluation points are constructed in a nested loop using the previously calcu-

lated dimensions Nx, Ny as shown in Listing 3.17. The function is called with the

spline object, the x and y values of the evaluation grid, and the accelerator objects

as arguments. In Fig. 3.1b, this is represented by the dark grey node above the

bottom yellow node where the interpolated data is written to a file using fprintf.

1 for (i = 0; i < Nx; ++i)

2 {

3 double yj = ya[0] + (ya[nx -1] - ya[0]) * i / (Ny -1);

4 for (j = 0; j < Ny; ++j)

5 {

6 double xi = xa[0] + (xa[*size -1] - xa[0]) * j / (Nx -1);

7 double zij = gsl_spline2d_eval(spline , yj , xi , xacc , yacc

);

8 fprintf(filePntr , "%e %e %e\n", xi , yj , zij);

9 }

10 fprintf(filePntr , "\n");

11 }

Listing 3.17: Evaluation of interpolating spline

40

Integration into ViennaWD
To incorporate the functionality into ViennaWD, the decision was made to in-

clude a variable in the input LUA file, interpolate, to discern whether the in-

terpolation routine shall be called or not. The LUA file is used to communicate

all relevant simulation parameters, e.g., mesh size, size of the simulation domain,

boundary conditions, etc., to the simulator and is passed as a command line argu-

ment when the simulation program is invoked. The additional variable internally

is added as an additional integer member to the C struct geometry_t, which is a

composite data type that defines a physically grouped list of variables under one

name in a block of memory. Specifically, in this case, the struct geometry_t groups

the necessary variables to describe the device geometry as shown in Listing 3.18.

1 { char is2D;

2 char bcType [4];

3 unsigned short int Kmax [3];

4 unsigned short int nNodes [2];

5 unsigned short int nNodes_global [2];

6 unsigned short int domain_overlap;

7 unsigned short int kDimensions;

8 unsigned short int annihilationSpatialScaling;

9 double meshSize;

10 double cellVol;

11 double deviceWidth;

12 double Lx[2];

13 double Ly[2];

14 double Lx_global [2];

15 double Ly_global [2];

16 double Lcoh;

17 double Lcutoff;

18 double delK;

19 double hbarDelkM;

20 unsigned short int eff_mass_profile;

21 int interp ;} geometry_t;

Listing 3.18: Geometry struct used in ViennaWD

41

Depending on this variable, the interpolation is triggered. The interpolation

result is then again written to the filesystem so that the interpolated quantity

is available for inspection after the simulation has been completed. In this con-

text, the main routine from the standalone implementation has been substituted

by the function interpolate shown in Listing 3.19. interpolate has the same

functionality as the standalone implementation with the important distinction

that it is not provided with command line input but rather with the following

parameters. inputFile, which is the variable that has the quantities filename

stored, working_path for writing the interpolated quantity to the filesystem, and
geometry, which is the struct mentioned before, that holds the information about

the required mesh size as a member meshSize.

1 void interpolate(const char *inputFile ,

2 const char *working_path ,

3 const geometry_t *geometry)

Listing 3.19: Interpolation function called in the setup process

The routine is called in the setup process of the simulator. The distributor process

is responsible for setting up all the necessary data structures before populating

them with the input data and then broadcasting them to the receiver processes.

Therefore, when the distributor process initially initializes the electric potential,

the routine is triggered depending on the aforementioned newly introduced variable
interpolate before the program continues as normal to read the now interpolated

quantity from the file system.

42

4 Effective Mass

Serving as a fundamental concept in condensed matter physics, semiconductor

physics, and materials science, the effective mass encapsulates the behavior of

charge carriers within a material [62, 63]. Its meticulous consideration within sim-

ulations facilitates a deeper understanding of complex phenomena, enabling re-

searchers and engineers to make informed decisions and predictions regarding the

performance and behavior of materials, devices, and systems. Modern nanoelec-

tronic devices, such as gate-all-around field effect transistors (GAAFETs), consist

of many different materials. This is because different properties are needed for each

specific part of such devices. With semiconducting 2D materials currently in con-

tention to potentially outperform silicon [64] based field-effect transistors (FETs),

with dimensions scaled down to a few atomic layers, these new nanoelectronic

devices have to operate at high electric fields and therefore require suitable insula-

tors. At such minuscule scales, defects are inevitable at the interfaces between the

materials. However, such interfacial defects substantially increase the leakage cur-

rents through the gate insulators and thus degrade the desired performance gain

of such designs [6]. Figure 4.1 shows the effects of interfacial defects as scattering

centers and how they can severely degrade the mobility and substantially increase

the leakage currents through hexagonal boron nitride (hBN) insulator layers. To

study these and other effects, a modern simulator must be able to simulate the

transport of charge carriers through different types of materials. The mobility of

charge carriers, electrons, and holes in these different materials is characterized by

their effective mass [65]. In many semiconductors (Ge, Si, GaAs, ...), the band

structure for ideal lattices, without crystal defects or impurities, can be locally

expressed as

𝐸(k) = 𝐸0 +
∂2𝐸

∂k2
(4.1)

43

Figure 4.1: Interface of black phosphorus (P, purple) with SiO2 (Si, yellow; O, red),

illustrating the effect of hexagonal boron nitride (hbN) interlayers to

sufficiently suppress Coulomb scattering and remote phonon scattering

in the underlying oxide to assure high mobilities. [6]. Reprinted with

permission from Knobloch et al., Nature Electronics 4.2 (2021), pp.

98–108, Copyright 2021 Springer Nature.

Thus, in these simple cases, the effective mass is given by the curvature of the

band structure at the local extremum [65]:

m* = ℏ2
1

∂2𝐸
∂k2

(4.2)

The description of charge carriers with their respective effective masses m* allows

them to be treated with the Wigner equation, introduced in Eq. (2.13), describing

ballistic carrier transport. In this simple assumption, the effective mass is taken to

be isotropic over each material. This allows for the implementation of the effective

mass into the simulator on a grid-based approach.

In Fig. 4.2, again, a flowchart for ViennaWD is presented where dark grey nodes

highlight the process steps in which adaptations have been made to incorporate

the effective mass into the simulator.

44

Figure 4.2: Flowchart describing the additions and effects of the effective mass

functionality into Vienna WD.

45

4.1 Implementation

The following data structures were amended to support the functionality in the

simulator. The struct physical_quantities combines quantities defined at each

mesh node, such as, for example, the potential, the effective mass, but also the

density and the current. physical_quantities were augmented by the mem-

ber effective_mass to provide the appropriate storage container. The struct
geometry was augmented with an identifier eff_mass_profile to either trigger

the effective mass routine or set it to default at each grid point. This is visualized

in Fig. 4.2 in the first dark grey node at the top of the flowchart. The simulator

had to be extended with routines that were implemented in a standalone module
eff_mass.c, that introduces the following functions:

• Initialization function: iiiEffMassProfile

• Extracting function: readEffMass

• Reset function: resetEffMass

• Global allocation function: globalEffMassAlloc

Initialization function (iiiEffMassProfile) is called by the distributor process

of the main routine, and the function header is shown in Listing 4.1. It takes as

parameters the structures physical_quantities, which are needed to later store

the information from the input file in the according container, geometry with the

information whether an effective mass profile was loaded or not and for further

use in the save function. Further parameters are the inputFile that holds the

information where the effective mass will be read from the file system and working

path, again needed for the save function.

1 void iiiEffMassProfile(phys_quant_t *phys_quants ,

2 geometry_t *geometry ,

3 const char *inputFile ,

4 const char *working_path)

Listing 4.1: Initialization function for the point-based effective mass

46

The above-mentioned save function for the effective mass (saveEffMass) function-

ality is added to the respective module save_funcs.c and handles the output, in

this case of the effective mass, to the filesystem.

Extracting function (readEffMass) reads the effective mass from inputFile.

The function first goes on to check whether the file can be opened and then further

if the file contains information. If both are true, the function then proceeds to read

line by line from inputFile, and the data is saved to the member effective_mass
of the struct physical_quantities. The function header is shown in Listing 4.2.

1 void readEffMass(const char *inputFile ,

2 const geometry_t * geometry ,

3 phys_quant_t *phys_quants)

Listing 4.2: Extraction function used to read the data from file into the appropriate

member in struct geometry

Reset function (resetEffMass) resets the effective mass to the default value.

The function header is shown in Listing 4.3.

1 void resetEffMass(const geometry_t * geometry ,

2 phys_quant_t *phys_quants)

Listing 4.3: Reset function

Global allocation function (globalEffMassAlloc) is a function that allocates

memory for the global effective mass necessary when running the program in a

parallel fashion to distribute the user input to the receiver processes, and the

function header is shown in Listing 4.4.

1 void globalEffMassAlloc(double *** global_effMass ,

2 unsigned short int data_rows ,

3 unsigned short int data_cols ,

4 char destroy)

Listing 4.4: Global allocation for distributed memory calculations

47

In addition to the considerations within the simulator itself, several peripheral

tools were introduced and altered. To construct the geometries of different material

structures characterized by their effective mass, a Python notebook was developed

that allows the user to easily and rapidly prototype new geometries and directly

visualize them within the notebook, thus providing an easy-to-use tool in the setup

of new simulations. Further, the post-processing step was augmented to support

the newly introduced functionality.

4.2 Implications

As already introduced in Section 2.1.1, the effective mass enters the Wigner equa-

tion as presented earlier in Eq. (2.7). Within ViennaWD, this affects the propaga-

tion of the particles that sample the initial wavefunction and is shown in Fig. 4.2
in the second highlighted node and in Listing 4.5. At each time step, the parti-

cle drifts for duration 𝜏 before either the particle is scattered or the end of the

time step is reached. In this drift phase, the new particle position is calculated

depending on the particle momentum at the start of that timestep.

1 particle_position_x = C * particle_momentum_x /

2 effMass_factor[i,j] * tau

3 particle_position_y = C * particle_momentum_y /

4 effMass_factor[i,j] * tau

Listing 4.5: Calculation of new particle postition depending on local effective mass

Here, effMass_factor is the effective mass at the current grid point in terms of
m𝑐, the charge carrier rest mass, particle_momentum the particle momentum in
x and y direction respectively for the particle, and 𝐶 a constant containing the

necessary unit conversions. Here, the effective mass is a multiplier that enters the

equation inversely. In the above equation shown in listing 4.5, a higher effective

mass effectively reduces the momentum of the particle, and therefore, the position

that the particle arrives at after the drift phase is nearer to its origin than for a

particle that at its grid point observes a lower effective mass.

48

5 Evaluation

First, two very different test functions are introduced, which are representative of

arbitrary quantities that might be encountered in a simulation workflow with Vi-

ennaWD. Such quantities are, for example, the electric potential that was recorded

externally as an example of a relatively smooth and slowly varying quantity. A

smooth test function will be introduced to validate the interpolation routines inves-

tigated on such data. However, noncontinuous quantities such as modeled electric

potentials, effective mass profiles, and descriptions of geometries might also be

encountered. A simple step function to evaluate the implemented interpolation

routines on such data will be introduced as well. Further, a measure for the in-

terpolation error is introduced, and using the introduced measure, it is discussed

visually and quantitatively whether the interpolation methods investigated hold

up to the different challenges faced in a representative workflow.

Second, ViennaWD simulations of a single minimum uncertainty wave packet

traversing different materials using the implemented position-dependent effective

mass routines will be shown. Different geometries will be investigated to validate

the implementation and explain the effect a spatially varying effective mass has

on such a wave packet.

5.1 Interpolation

Two very different sets of data points were chosen to discern the applicability

of the interpolation to data that might be encountered within a typical TCAD

simulation workflow. A step function consisting of two distinct plateaus such as

might be encountered when interpolating material structures such as an effective

mass profile. Further, a smooth function consisting of several Gaussian peaks and

49

troughs was constructed to test the applicability of the interpolation routines on

smooth data. Such data might be encountered when trying to fit an experimentally

measured electric potential onto the grid necessary to verify physical quantities

with ViennaWD. For both choices of the test function, the implementations were

tested for different amounts of grid refinement, particularly for 10, 4, 2, and 4/3

times denser grids than the original.

To introduce some metric to compare the different interpolation techniques

against each other, the following measure is introduced:

‖𝐴‖1 =
∑︀

i,j |𝑎i,j|
‖𝐴‖ (5.1)

Here 𝑎i,j are taken to be the pointwise differences between the analytical values for

the test quantity at gridpoint i, j and ‖𝐴‖ is the size of 𝐴, meaning the number

of grid points. This measure ensures that the calculated sum of pointwise errors

is appropriately weighed with the number of data points, therefore allowing for a

comparison of the interpolation approaches on different grid refinements.

5.1.1 Step

In Fig. 5.1 (a), (c), and (e) show the evaluation of the interpolating spline func-

tion on two times denser grids for the Python implementation, for (a) bilinear, (c)

bicubic, (e) biquintic interpolation order respectively. (b), (d) shows the evalua-

tion of the interpolating spline function using the C -GSL implementation for (b)

bilinear and (d) bicubic order, respectively. (f) shows the step function that was

used as input for the interpolation routines. Figure 5.2 shows the evaluation of

the interpolating RBF function on a two times denser grid for (a) the linear order

polynomial basis function and (b) the cubic order polynomial basis function. (c)

for the quintic order polynomial basis function. (d) for the Gaussian basis func-

tion. All interpolations were performed for the step function as in Fig. 5.1 (f).

In Fig. 5.1, oscillations in the evaluated interpolation functions for orders of the

interpolating polynomial higher than k = 1 are observed. These oscillations stem

from the fact that polynomials of higher order have the inherent condition that the

higher derivatives of the interpolating polynomial have to be piecewise continuous.

As seen in Fig. 5.1 (a), (b), the interpolation using first-order polynomials does

50

Figure 5.1: Interpolation results for Python and GSL routines for a step function.

not experience this behavior. These are both linear methods. Though no oscilla-

tions are observed for these very simple interpolation routines, it can be noticed

51

Figure 5.2: Interpolation results for the Python RBF implementation for a step

function.

that between the grid points along the x direction closest to the step, instead of

a vertical surface, a linear behavior between the two values of the plateaus of the

quantity is introduced.

For the third-order polynomial interpolations, which are Fig. 5.1 (c) and Fig. 5.1
(d), minor oscillations of the interpolated quantity around the grid points closest

to the step are visible. Compared to the aforementioned relatively slow rise in the

52

quantity for the linear interpolation methods, a steeper rise, reconstructing the

original step better, is generated at the expense of introduced oscillations. A fur-

ther increase in polynomial order for the interpolation shows even more oscillations

present in the interpolated quantity without meaningful gains to the reconstruction

of the step.

Though RBFs are said to limit these oscillations [46], they can still be observed

in Fig. 5.2 for each of the four basis functions evaluated. The three RBF inter-

polations with polynomial kernel Fig. 5.2 (a-c), do all reconstruct the step rather

successfully. However, oscillations are introduced not only perpendicular to the

step function but also in the axis along the edge. This can be attributed to the use

of RBFs, which are symmetric about the grid point on which they are located and

are known to experience the "Runge phenomenon" [46]. These edge oscillations

reduce visibly for higher order polynomial RBFs as seen in Fig. 5.2 (b) and Fig. 5.2
(c). However, the third and fifth-order polynomial RBFs produce noticeably more

oscillations in the interpolated quantity perpendicular to the step.

Further, a Gaussian kernel was evaluated for the RBF implementation as intro-

duced in Table 3.1. This was tested for a variety of different values of the constant
𝑐 present in the Gaussian kernel, with a value of 𝑐 = 0.5 producing some of the

best results. Again, oscillations were reduced directly at the edge of the step;

however, the oscillations perpendicular to the step increased noticeably. This phe-

nomenon is, for example, tackled in [66], but will not be delved into here and will

be discussed at the end of the chapter in Section 5.1.4.

5.1.2 Smooth

Figure 5.3 (a), (c), and (e) show the evaluation of the interpolating spline function

on six times denser grids for the Python implementation, for (a) bilinear, (c) bicu-

bic, (e) biquintic interpolation order respectively. (b), (d) shows the evaluation of

the interpolating spline function using the C -GSL implementation for (b) bilinear

and (d) bicubic order, respectively. (f) shows the smooth test function that was

used as input for the interpolation routines. Figure 5.4 shows the evaluation of the

interpolating RBF function on a six times denser grid for (a) the linear order poly-

nomial basis function, (b) the cubic order polynomial basis function, (c) for the

53

Figure 5.3: Interpolation results for Python and GSL routines for a smooth func-

tion.

54

Figure 5.4: Interpolation results for the Python RBF implementation for a smooth

function.

quintic order polynomial basis function, and (d) for the Gaussian basis function.

All interpolations were performed for the smooth test function as in Fig. 5.3(f).

The smooth test function was evaluated on two different sets of data points: once

using the previously used 30 grid points per direction and again using only ten

grid points per direction. Visualized in Fig. 5.3 and Fig. 5.4 is the interpolation on

the sparser dataset, as the differences in interpolation methods are more visible.

55

In Fig. 5.3, all interpolation methods implemented visually perform the inter-

polation as expected. The previously observed oscillations do not arise for any of

the spline interpolation methods, regardless of their underlying polynomial order.

Further, there also aren’t any oscillations visible for the implementation of the

RBF interpolation Fig. 5.4. Therefore, both interpolation methods are viable for

interpolating an arbitrary quantity that is sufficiently smooth on the domain.

Though all methods now reproduce the test function without oscillations, there

is still a visible difference in reconstruction quality. In both the spline and RBF

reconstructions, the linear kernels Fig. 5.3 (a), (b) and Fig. 5.4 (a) interpolate

the sampled conglomerate of Gaussian functions Fig. 5.3 (f) visibly rough. Since

the test function is sampled sparsely, the extrema are not on top of the analytical

extrema, and the linear kernels, as they do not contain information about the

surrounding shape of the test function, are therefore not able to reconstruct the

analytical extrema very well. In contrast to the linear kernels the cubic kernels

Fig. 5.3 (c), (d), Fig. 5.4 (b) and the quintic kernels Fig. 5.3 (e), Fig. 5.4 (c)

reconstruct the analytical result very well. In Fig. 5.4 (d), the Gaussian kernel

again is not able to reconstruct the analytical function very well, as the method,

in a sense, too accurately samples the test function and therefore reproduces the

input very well without capturing the overall behavior of the data.

5.1.3 Error Analysis

In Fig. 5.5 for both the smooth and the step test function, the error measure

introduced in Eq. (5.1) is shown for different mesh refinements. In Fig. 5.5a, the

error measure is relatively large when compared to the error measures observed in

Fig. 5.5b. For the discontinuous test function, also referred to as the step function,

the different interpolation methods and the different polynomial orders for those

methods vary significantly. The visual impression made above that the method

of RBFs with a Gaussian kernel produces the most oscillations is represented here

again, as it can be clearly seen that the method (Python RBF: gaussian) performs

slightly worse in the error measure compared to the other kernels. The two methods

using underlying quintic polynomials, namely the biquintile spline interpolation

and the RBF interpolation with the quintic polynomial kernel that visually also

56

(a) Step function

(b) Smooth function

Figure 5.5: Error plots for both the step test function in (a) and the smooth

test function in (b). The errors shown are calculated as explained

in Eq. (5.1).

did not perform very well do also not measure well in their respective error (Python

RBF/RBS: quintic). All three routines can be compared for the methods based

on third-order polynomials, as this is also a supported method in the GSL library.

57

Figure 5.6: Error plot for the sparsely sampled smooth test function.

These methods (Python RBF/RBS: cubic and CPP: bicubic) in the error measure

perform better, supporting the previous visual observation. The RBF with the

underlying linear kernel is the best measuring method, and the two bilinear spline

implementations for C and Python again perform identically.

For the smooth test function, the error measure for all interpolation methods

is significantly lower than for the discontinuous step function. This supports the

visual observation made previously. Further, again, the two linear spline interpola-

tion methods in C and Python perform slightly better than the other interpolation

methods investigated. For the smooth test function, the interpolation was further

tested on a much sparser initial grid structure, where the number of grid points in

each dimension was reduced threefold. In Fig. 5.6, a clear difference is now visible

in the performance of the different interpolation methods. Again, the higher-order

polynomial kernel for RBF interpolation, as well as the higher-order spline in-

terpolation, show a higher error for all mesh refinements than the methods with

underlying linear kernels or polynomials. However, in contrast to the measure-

ments before, the Gaussian kernel for the RBF method with the same constant
𝑐 = 0.5 now outperforms the linear kernels.

58

5.1.4 Findings

From a measurement point of view, the classical cubic spline and the piecewise

linear spline performed the best when applied to both the discontinuous and the

smooth test functions. Further, no evidence has been found that higher order

interpolation or RBF interpolation describes rapidly varying quantities with any

meaningful improvements, if even when compared to the other mentioned meth-

ods. The Gaussian kernel for the RBF showed great applicability when the initial

data was relatively sparse, reconstructing the smooth test function most accu-

rately. However, when the domain is sampled more often, the Gaussian method

falls behind other kernels and methods used, both visually and qualitatively. Fur-

ther, consistent results of the method cannot be guaranteed without tuning the

parameter 𝑐 to the specific problem.

Though the visualization of the interpolated data has been implemented in the
Python script as well, one cannot overlook the simplicity with which the tuning

of interpolation parameters can be achieved using Python Notebooks. However,

one clear advantage to using the interpolation routine within the simulator itself

is that the mesh size used within the simulator has to match the mesh size used to

evaluate the interpolating spline. With the integrated implementation, this is en-

sured trivially, as the parameter is taken directly from the underlying Lua file used

in the setup of the simulation. When using the stand-alone implementations in a

pre-processing workflow, the operator currently has to manually make sure that

these two parameters are indeed the same to avoid unnecessary re-evaluations of

the interpolation. Depending on the type of use, the stand-alone or the integrated

implementations might be preferred, with a strong argument for the stand-alone

implementation being that, especially in the early stages of setting up new simula-

tions, the interpolation might not be needed at all since the simulator will already

receive all relevant quantities in the correct format and therefore the design as a

lean simulator with only the core features integrated might be preferred.

Therefore, the conclusion can be drawn that for the variety of different quanti-

ties that might be encountered, linear interpolation methods are sufficient for the

reconstruction of an externally provided quantity that is sufficiently smooth. Fur-

ther, they avoid oscillations when encountering discontinuities, therefore sampling

59

the parts of the domain next to said discontinuities ideally, with the only drawback

being the reduced reproduction capability of steep gradients. Both implementa-

tions offer an acceptable degree of user-friendliness. From a user interaction point

of view, it may come down to taste and design principles, whether one or the other

is preferred.

5.2 Effective Mass

To show the influence of different effective masses on the transport properties of

the material, proof of concept simulations were performed with the implemented

techniques.

All ViennaWD 2D simulations were done with a single wave packet traversing

representative geometries and were initialized as a minimum-uncertainty Gaussian

distribution with initial momentum along the center line of the simulation box in
y-direction, with a FWHM of 7, 065nm. The simulations were performed with a

time-step of 0.1𝑓 s and a grid size of 0.5nm.

5.2.1 Contact

This simulation was done with the effective mass as shown above in Fig. 5.7 with

a value of 0.48 for Molybdenum di-sulfide (MoS2) [67] and 1.1 for Gold (Au) [68].

In Fig. 5.8 the electron density of a single wave-packet traversing a MoS2 - Au
contact at 20𝑓 s, 35𝑓 s, 55𝑓 s, and 90𝑓 s simulation time is shown. The simulation

was done without the potential to show the influence of the effective mass on

the wave packet. Therefore, a broadening of the wave packet due to the change

in effective mass as the Gaussian wave packet reaches the (MoS2) - Au contact

can be observed Fig. 5.8 (t=55 fs). The wave packet broadens due to the change

in effective mass and the resulting change in its group velocity. Since Au has a

higher effective mass than MoS2, the momentum of the wave packet is reduced in

its direction of motion.

60

Figure 5.7: Effective mass for the MoS2-Au contact.

5.2.2 Barrier

In Fig. 5.9, a Au layer was sandwiched between a MoS2 and Gallium Arsenide

(GaAs) layer, where the effective mass of GaAs is taken as 0.067 [69]. Again,

in Fig. 5.10, the electron density is shown at different representative timesteps.

In Fig. 5.10 (t=30 fs), the wave packet starts entering the simulation domain

symmetrically in the MoS2 layer. In Fig. 5.10 (t=70 fs), the wave packet then

broadens as seen previously in Fig. 5.8 (t=55 fs) when entering the Au region

of the simulation domain. However, the wave packet then gets stretched back

into a nearly symmetrical shape again. Further, the elongated wave packet that

was previously relatively concentrated now broadens significantly within the GaAs
region.

61

Figure 5.8: Electron density of a single wave-packet traversing a MoS2-Au contact

at 20𝑓 s, 35𝑓 s, 55𝑓 s and 90𝑓 s simulation time.

5.2.3 Intricate

In Fig. 5.11, an artificial benchmark case with several different materials is shown.

The values for each distinct region are, however, no longer directly correlated to

actual materials but rather are within a range of effective masses encountered

in nanoelectronic devices. The rationale behind this particular artificial setup is

loosely linked to the fact that modern nanoelectronic devices are built of various

intricate shapes and geometries. This benchmark case is thus a testament to this

62

Figure 5.9: Effective mass for the Au barrier.

development. These geometries include intricate patterns of dopant distributions,

gate structures, and interconnects on semiconductor substrates, as well as isolation

regions. Figure 5.12 shows the evolution of the minimum uncertainty wave packet

through this complex geometry. In Fig. 5.12 (t=50 fs), the initial symmetrical wave

packet can already be seen wrapping around the trapezoidal region to the right of

the simulation domain. However, when we consult Fig. 5.11, we can see that this is

a region of very low effective mass, meaning that the mobility of the charge carriers

in this region is a magnitude higher than in the surrounding regions. Therefore,

the phenomenon observed is actually that part of the wave packet that reaches

this region first rapidly crosses it and reconstitutes at the interface with the region

diagonally through the geometry Fig. 5.12 (t=75 fs). In Fig. 5.12 (t=65 fs), at a

63

Figure 5.10: Electron density of a single wave-packet traversing a MoS2-Au-GaAs
contact at 30𝑓 s, 50𝑓 s, 70𝑓 s, 90𝑓 s, 110𝑓 s and 130𝑓 s simulation time.

64

Figure 5.11: Effective mass for artificial benchmark case.

timestep between those two observations, it is clearly visible that part of the wave

function is located within the highly conductive region. In Fig. 5.12 (t=85 fs), the

wave packet as it has fully crossed over into the middle of the simulation domain

can be seen and now appears as a spun version. This appearance can be linked

to the different amounts of time that parts of the wave packet have spent within

the high mobility region of the simulation domain. Finally, in Fig. 5.12 (t=140

fs), the wave packet reaches the end of the simulation domain with a region of

higher charge carrier mobility to the right and a region of low mobility to the left.

The final wave packet is, therefore, a highly distorted representation of the initial

symmetrical wave packet.

65

Figure 5.12: Electron density of a single wave-packet traversing intricate patterns

of different materials as shown in Fig. 5.11 at 50𝑓 s, 65𝑓 s, 75𝑓 s, 85𝑓 s,
125𝑓 s and 140𝑓 s simulation time.

66

6 Summary

Finally, an overview of the two key contributions to ViennaWD, namely (1) the

addition of an interpolation mechanism that can be used within the simulator and

also as a standalone pre-processing step to map an arbitrary quantity onto the

required grid structure of ViennaWD and (2) the inclusion of the spatially varying

effective mass into the framework of the simulator is given. The findings that

can be taken away from the results presented in Chapter 5 will be discussed in

the following, with further implementation ideas and recommendations regarding

the future development and possible applications of the new capabilities will be

discussed.

Interpolation
In the previous section Section 5.1, evaluations of different interpolation routines

were compared using an appropriate measure. Using linear spline interpolation

provides us with the most optimal result for discontinuous interpolation tasks. The

linear spline interpolation cannot produce any oscillations in the regions next to the

discontinuity, and therefore, the surrounding regions are rendered continuous as in

the original geometry. Thus, the lack of reconstruction of the step representing the

discontinuity is a worthwhile trade-off for the gained reconstruction of the other

features. In light of the observation that the linear spline interpolation in both the
GSL and Python implementation performs best in the measure used, the decision

to use linear spline interpolation as the default interpolation method is further

supported. Further emphasis is added as the linear spline interpolation performs

equally as well as the other interpolation methods when measured for the smooth

test quantity. However, this measure depends significantly on the sampling of the

original quantity. The number of grid points sampling the original quantity was

chosen to represent the test function relatively precisely, which is also expected

67

from any experimentally measured quantities or previously modeled data on a

slightly different grid. RBFs did not result in any meaningful improvements to the

error measure used. On the contrary, some choices for the RBF kernel performed

worse than the comparable basis functions for splines. However, the point can be

made that when the experimental quantity in consideration is not sampled at a

regular grid or only a minimal number of scattered data points is available, using

RBFs is more or less without option. Therefore, the conclusion is that the use of a

higher-order basis function for both the RBF and the spline interpolation methods

is not necessary for the expected quantities that the interpolation routine will be

applied to at the time of writing and that the use of linear spline interpolation

is sufficient. Further extensions to this approach might include studying different

interpolation methods, such as the Akima interpolation, or even machine learning

approaches [49].

Effective Mass
Implementing the effective mass (Chapter 4) into ViennaWD resulted in the

simulations presented in Section 5.2. For the example of three different geometries

that might be encountered in modern-day nanoelectronic structures, simulations

of a minimum-uncertainty wave packet were performed. These simulations showed

that not only simplistic changes from one material to another, as presented in Sec-

tion 5.2.1, but also very intricate geometries, such as presented in Section 5.2.3,

can be modeled. Not only was the implementation of the effective mass into

ViennaWD successful, as can be verified with the proof of concept simulations

mentioned before, but an easy-to-use Python program now exists to set up such

geometries. The simulations showed that the shape of a wave packet traversing

such a domain can be manipulated by constructing different geometries. In fur-

ther research, this mechanism could be used in conjunction with an applied electric

potential to study ever more complex physical phenomena. In particular, intro-

ducing different materials into ViennaWD simulations could help study leakage

currents through insulating layers in currently researched field effect devices such

as GAAFETs and FinFETs.

68

Bibliography

[1] D.E. Stevenson and R.M. Panoff. “Experiences in building the Clemson

Computational Sciences Program”. In: Supercomputing ’90:Proceedings of the

1990 ACM/IEEE Conference on Supercomputing. 1990, pp. 366–375. doi:
10.1109/SUPERC.1990.130043.

[2] Dragica Vasileska and Stephen M. Goodnick. “Computational electronics”.

In: Materials Science and Engineering: R: Reports 38.5 (2002), pp. 181–

236. issn: 0927-796X. doi: https://doi.org/10.1016/S0927-796X(02)

00039-6. url: https://www.sciencedirect.com/science/article/pii/

S0927796X02000396.

[3] David K Ferry et al. “A review of quantum transport in field-effect transis-

tors”. In: Semiconductor Science and Technology 37.4 (Feb. 2022), p. 043001.
doi: 10.1088/1361-6641/ac4405. url: https://dx.doi.org/10.1088/

1361-6641/ac4405.

[4] J.P. Colinge et al. “Silicon-on-insulator ’gate-all-around device’”. In: Inter-

national Technical Digest on Electron Devices. 1990, pp. 595–598. doi: 10.

1109/IEDM.1990.237128.

[5] Jin Yong Oh et al. “Demonstration of gate-all-around FETs based on sus-

pended CVD-grown silicon nanowires”. In: 2013 IEEE SOI-3D-Subthreshold

Microelectronics Technology Unified Conference (S3S). 2013, pp. 1–2. doi:
10.1109/S3S.2013.6716567.

[6] Theresia Knobloch et al. “The performance limits of hexagonal boron nitride

as an insulator for scaled CMOS devices based on two-dimensional materi-

als”. In: Nature Electronics 4.2 (2021), pp. 98–108.

i

https://doi.org/10.1109/SUPERC.1990.130043
https://doi.org/https://doi.org/10.1016/S0927-796X(02)00039-6
https://doi.org/https://doi.org/10.1016/S0927-796X(02)00039-6
https://www.sciencedirect.com/science/article/pii/S0927796X02000396
https://www.sciencedirect.com/science/article/pii/S0927796X02000396
https://doi.org/10.1088/1361-6641/ac4405
https://dx.doi.org/10.1088/1361-6641/ac4405
https://dx.doi.org/10.1088/1361-6641/ac4405
https://doi.org/10.1109/IEDM.1990.237128
https://doi.org/10.1109/IEDM.1990.237128
https://doi.org/10.1109/S3S.2013.6716567

[7] J.S. Tsai, Y. Nakamura, and Yu. Pashkin. “The first solid state qubit”. In:
58th DRC. Device Research Conference. Conference Digest (Cat. No.00TH8526).

2000, pp. 93–94. doi: 10.1109/DRC.2000.877104.

[8] David K Ferry, Xavier Oriols, and Josef Weinbub. Quantum Transport in

Semiconductor Devices. IOP Publishing, 2023. doi: 10.1088/978-0-7503-

5237-6. url: https://dx.doi.org/10.1088/978-0-7503-5237-6.

[9] Josef Weinbub, Paul Ellinghaus, and Mihail Nedjalkov. “Domain decom-

position strategies for the two-dimensional Wigner Monte Carlo Method”.

In: Journal of Computational Electronics 14.4 (2015), pp. 922–929. doi:
10.1007/s10825-015-0730-0. url: https://doi.org/10.1007/s10825-

015-0730-0.

[10] M. Nedjalkov et al. “Wigner Function Approach”. In: Nano-Electronic De-

vices: Semiclassical and Quantum Transport Modeling. Ed. by Dragica Vasileska

and Stephen M. Goodnick. New York, NY: Springer New York, 2011, pp. 289–

358. doi: 10.1007/978-1-4419-8840-9_5. url: https://doi.org/10.

1007/978-1-4419-8840-9_5.

[11] J. Weinbub and D. K. Ferry. “Recent advances in Wigner function ap-

proaches”. In: Applied Physics Reviews 5.4 (2018), p. 041104. doi: 10.1063/

1.5046663. url: https://doi.org/10.1063/1.5046663.

[12] David K Ferry and Mihail Nedjalkov. The Wigner Function in Science and

Technology. IOP Publishing, 2018. doi: 10.1088/978-0-7503-1671-2.
url: https://dx.doi.org/10.1088/978-0-7503-1671-2.

[13] Mauro Ballicchia, Josef Weinbub, and Mihail Nedjalkov. “Electron evolu-

tion around a repulsive dopant in a quantum wire: coherence effects”. In:
Nanoscale 10 (48 2018), pp. 23037–23049. doi: 10.1039/C8NR06933F.

[14] Josef Weinbub, Mauro Ballicchia, and Mihail Nedjalkov. “Gate-controlled

electron quantum interference logic”. In: Nanoscale 14 (2022), pp. 13520–

13525. doi: 10.1039/D2NR04423D.

ii

https://doi.org/10.1109/DRC.2000.877104
https://doi.org/10.1088/978-0-7503-5237-6
https://doi.org/10.1088/978-0-7503-5237-6
https://dx.doi.org/10.1088/978-0-7503-5237-6
https://doi.org/10.1007/s10825-015-0730-0
https://doi.org/10.1007/s10825-015-0730-0
https://doi.org/10.1007/s10825-015-0730-0
https://doi.org/10.1007/978-1-4419-8840-9_5
https://doi.org/10.1007/978-1-4419-8840-9_5
https://doi.org/10.1007/978-1-4419-8840-9_5
https://doi.org/10.1063/1.5046663
https://doi.org/10.1063/1.5046663
https://doi.org/10.1063/1.5046663
https://doi.org/10.1088/978-0-7503-1671-2
https://dx.doi.org/10.1088/978-0-7503-1671-2
https://doi.org/10.1039/C8NR06933F
https://doi.org/10.1039/D2NR04423D

[15] C. Tavernier et al. “TCAD modeling challenges for 14nm FullyDepleted SOI

technology performance assessment”. In: 2015 International Conference on

Simulation of Semiconductor Processes and Devices (SISPAD). 2015, pp. 4–

7. doi: 10.1109/SISPAD.2015.7292244.

[16] Jian Ping Sun et al. “Resonant tunneling diodes: models and properties”. In:
Proceedings of the IEEE 86.4 (1998), pp. 641–660. doi: 10.1109/5.663541.

[17] L. L. Chang, L. Esaki, and R. Tsu. “Resonant tunneling in semiconductor

double barriers”. In: Applied Physics Letters 24.12 (June 1974), pp. 593–595.
issn: 0003-6951. doi: 10.1063/1.1655067. eprint: https://pubs.aip.

org/aip/apl/article-pdf/24/12/593/18429549/593_1_online.pdf.
url: https://doi.org/10.1063/1.1655067.

[18] Christopher Bäuerle et al. “Coherent control of single electrons: a review of

current progress”. In: Reports on Progress in Physics 81.5 (2018), p. 056503.
doi: 10.1088/1361-6633/aaa98a.

[19] Craig S. Lent and David J. Kirkner. “The quantum transmitting boundary

method”. In: Journal of Applied Physics 67.10 (May 1990), pp. 6353–6359.
issn: 0021-8979. doi: 10.1063/1.345156. eprint: https://pubs.aip.org/

aip/jap/article-pdf/67/10/6353/18634383/6353_1_online.pdf.
url: https://doi.org/10.1063/1.345156.

[20] Mahdi Pourfath. The non-equilibrium Green’s function method for nanoscale

device simulation. Vol. 3. Springer, 2014.

[21] M. Nedjalkov et al. “Physical scales in the Wigner–Boltzmann equation”. In:
Annals of Physics 328 (2013), pp. 220–237. issn: 0003-4916. doi: https:

/ / doi . org / 10 . 1016 / j . aop . 2012 . 10 . 001. url: https : / / www .

sciencedirect.com/science/article/pii/S0003491612001558.

[22] Paul Ellinghaus. “Two-dimensional Wigner Monte Carlo simulation for time-

resolved quantum transport with scattering”. PhD thesis. Wien, 2016. doi:
https://doi.org/10.34726/hss.2016.35764.

iii

https://doi.org/10.1109/SISPAD.2015.7292244
https://doi.org/10.1109/5.663541
https://doi.org/10.1063/1.1655067
https://pubs.aip.org/aip/apl/article-pdf/24/12/593/18429549/593_1_online.pdf
https://pubs.aip.org/aip/apl/article-pdf/24/12/593/18429549/593_1_online.pdf
https://doi.org/10.1063/1.1655067
https://doi.org/10.1088/1361-6633/aaa98a
https://doi.org/10.1063/1.345156
https://pubs.aip.org/aip/jap/article-pdf/67/10/6353/18634383/6353_1_online.pdf
https://pubs.aip.org/aip/jap/article-pdf/67/10/6353/18634383/6353_1_online.pdf
https://doi.org/10.1063/1.345156
https://doi.org/https://doi.org/10.1016/j.aop.2012.10.001
https://doi.org/https://doi.org/10.1016/j.aop.2012.10.001
https://www.sciencedirect.com/science/article/pii/S0003491612001558
https://www.sciencedirect.com/science/article/pii/S0003491612001558
https://doi.org/https://doi.org/10.34726/hss.2016.35764

[23] J. Weinbub and D. K. Ferry. “Recent advances in Wigner function ap-

proaches”. In: Applied Physics Reviews 5.4 (Oct. 2018), p. 041104. issn:

1931-9401. doi: 10.1063/1.5046663. eprint: https://pubs.aip.org/

aip/apr/article-pdf/doi/10.1063/1.5046663/13187645/041104_1\

_online.pdf. url: https://doi.org/10.1063/1.5046663.

[24] Ansgar Jüngel. Transport equations for semiconductors. eng. Lecture notes

in physics. Berlin [u.a.]: Springer, 2009. isbn: 3540895256. doi: https://

doi.org/10.1007/978-3-540-89526-8.

[25] F. Poupaud. “About Boltzmann Equations for Transport Modeling in Semi-

conductors”. In: Simulation of Semiconductor Devices and Processes. Ed. by

Siegfried Selberherr, Hannes Stippel, and Ernst Strasser. Vienna: Springer

Vienna, 1993, pp. 17–20. isbn: 978-3-7091-6657-4.

[26] Craig S. Lent and David J. Kirkner. “The quantum transmitting boundary

method”. In: Journal of Applied Physics 67.10 (May 1990), pp. 6353–6359.
issn: 0021-8979. doi: 10.1063/1.345156. eprint: https://pubs.aip.org/

aip/jap/article-pdf/67/10/6353/8010618/6353_1_online.pdf.
url: https://doi.org/10.1063/1.345156.

[27] Robert Kosik. “Numerical challenges on the road to NanoTCAD”. PhD the-

sis. 2004.

[28] Fausto Rossi and Tilmann Kuhn. “Theory of ultrafast phenomena in pho-

toexcited semiconductors”. In: Rev. Mod. Phys. 74 (3 Aug. 2002), pp. 895–

950. doi: 10.1103/RevModPhys.74.895. url: https://link.aps.org/

doi/10.1103/RevModPhys.74.895.

[29] E. Wigner. “On the Quantum Correction For Thermodynamic Equilibrium”.

In: Phys. Rev. 40 (5 June 1932), pp. 749–759. doi: 10.1103/PhysRev.40.

749. url: https://link.aps.org/doi/10.1103/PhysRev.40.749.

[30] Dietrich Leibfried, Tilman Pfau, and Christopher Monroe. “Shadows and

Mirrors: Reconstructing Quantum States of Atom Motion”. In: Physics Today
51.4 (Apr. 1998), pp. 22–28. issn: 0031-9228. doi: 10.1063/1.882256.

eprint: https://pubs.aip.org/physicstoday/article-pdf/51/4/22/

8312867/22_1_online.pdf. url: https://doi.org/10.1063/1.882256.

iv

https://doi.org/10.1063/1.5046663
https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/1.5046663/13187645/041104_1_online.pdf
https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/1.5046663/13187645/041104_1_online.pdf
https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/1.5046663/13187645/041104_1_online.pdf
https://doi.org/10.1063/1.5046663
https://doi.org/https://doi.org/10.1007/978-3-540-89526-8
https://doi.org/https://doi.org/10.1007/978-3-540-89526-8
https://doi.org/10.1063/1.345156
https://pubs.aip.org/aip/jap/article-pdf/67/10/6353/8010618/6353_1_online.pdf
https://pubs.aip.org/aip/jap/article-pdf/67/10/6353/8010618/6353_1_online.pdf
https://doi.org/10.1063/1.345156
https://doi.org/10.1103/RevModPhys.74.895
https://link.aps.org/doi/10.1103/RevModPhys.74.895
https://link.aps.org/doi/10.1103/RevModPhys.74.895
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://link.aps.org/doi/10.1103/PhysRev.40.749
https://doi.org/10.1063/1.882256
https://pubs.aip.org/physicstoday/article-pdf/51/4/22/8312867/22_1_online.pdf
https://pubs.aip.org/physicstoday/article-pdf/51/4/22/8312867/22_1_online.pdf
https://doi.org/10.1063/1.882256

[31] William R. Frensley. “Boundary conditions for open quantum systems driven

far from equilibrium”. In: Rev. Mod. Phys. 62 (3 July 1990), pp. 745–791.
doi: 10.1103/RevModPhys.62.745. url: https://link.aps.org/doi/10.

1103/RevModPhys.62.745.

[32] A. D’Amico et al. From Nanostructures to Nanosensing Applications: Pro-

ceedings of the International School of Physics "Enrico Fermi", Varenna

on Lake Como, Villa Monastero, 20-30 July 2004. From Nanostructures to

Nanosensing Applications: Proceedings of the International School of Physics

"Enrico Fermi", Varenna on Lake Como, Villa Monastero, 20-30 July 2004.

IOS Press, 2005. isbn: 9781586035273. url: https://books.google.at/

books?id=PeXjB0eyP7sC.

[33] M. Nedjalkov et al. “Unified particle approach to Wigner-Boltzmann trans-

port in small semiconductor devices”. In: Phys. Rev. B 70 (11 Sept. 2004),

p. 115319. doi: 10.1103/PhysRevB.70.115319. url: https://link.aps.

org/doi/10.1103/PhysRevB.70.115319.

[34] Damien Querlioz and Philippe Dollfus. “The Wigner Monte Carlo Method for

Nanoelectronic Devices: A Particle Description of Quantum Transport and

Decoherence”. In: The Wigner Monte Carlo Method for Nanoelectronic De-

vices: A Particle Description of Quantum Transport and Decoherence (Mar.

2013). doi: 10.1002/9781118618479.

[35] V. Sverdlov et al. “Current transport models for nanoscale semiconductor

devices”. In: Materials Science and Engineering: R: Reports 58.6 (2008),

pp. 228–270. issn: 0927-796X. doi: https://doi.org/10.1016/j.mser.

2007.11.001. url: https://www.sciencedirect.com/science/article/

pii/S0927796X07001088.

[36] J. Weinbub and D. K. Ferry. “Recent advances in Wigner function ap-

proaches”. In: Applied Physics Reviews 5.4 (Oct. 2018), p. 041104. issn:

1931-9401. doi: 10.1063/1.5046663. eprint: https://pubs.aip.org/

aip/apr/article-pdf/doi/10.1063/1.5046663/13187645/041104_1\

_online.pdf. url: https://doi.org/10.1063/1.5046663.

v

https://doi.org/10.1103/RevModPhys.62.745
https://link.aps.org/doi/10.1103/RevModPhys.62.745
https://link.aps.org/doi/10.1103/RevModPhys.62.745
https://books.google.at/books?id=PeXjB0eyP7sC
https://books.google.at/books?id=PeXjB0eyP7sC
https://doi.org/10.1103/PhysRevB.70.115319
https://link.aps.org/doi/10.1103/PhysRevB.70.115319
https://link.aps.org/doi/10.1103/PhysRevB.70.115319
https://doi.org/10.1002/9781118618479
https://doi.org/https://doi.org/10.1016/j.mser.2007.11.001
https://doi.org/https://doi.org/10.1016/j.mser.2007.11.001
https://www.sciencedirect.com/science/article/pii/S0927796X07001088
https://www.sciencedirect.com/science/article/pii/S0927796X07001088
https://doi.org/10.1063/1.5046663
https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/1.5046663/13187645/041104_1_online.pdf
https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/1.5046663/13187645/041104_1_online.pdf
https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/1.5046663/13187645/041104_1_online.pdf
https://doi.org/10.1063/1.5046663

[37] David K Ferry and Mihail Nedjalkov. The Wigner Function in Science and

Technology. 2053-2563. IOP Publishing, 2018. isbn: 978-0-7503-1671-2. doi:
10.1088/978-0-7503-1671-2. url: https://dx.doi.org/10.1088/978-

0-7503-1671-2.

[38] Gurov Todor Dimov Ivan. “ Monte Carlo Algorithm for Solving Integral

Equations with Polynomial Non-Linearity. Parallel Implementation”. In: (2000).
issn: 0204-9805.

[39] ViennaWD – Wigner Ensemble Monte Carlo Simulator. url: https://

viennawd.sourceforge.%20net..

[40] “In: The Salishan Conference on High Speed Computing”. In: 2011. url:
http://www.lanl.gov/conferences/salishan/.

[41] Thomas Sterling, Matthew Anderson, and Maciej Brodowicz. “Chapter 2 -

HPC Architecture 1: Systems and Technologies”. In: High Performance Com-

puting. Ed. by Thomas Sterling, Matthew Anderson, and Maciej Brodow-

icz. Boston: Morgan Kaufmann, 2018, pp. 43–82. isbn: 978-0-12-420158-

3. doi: https://doi.org/10.1016/B978- 0- 12- 420158- 3.00002-

2. url: https : / / www . sciencedirect . com / science / article / pii /

B9780124201583000022.

[42] MPI: A Message-Passing Interface Standard, Version 4.0. 2021. url: https:

//www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

[43] M. Anderson T. Sterling and M. Brodowicz. High Performance Computing:

Modern Systems and Practices. Elsevier, 2018. isbn: 978-0-12-420158-3.

[44] Günther Nürnberger. Approximation by spline functions. eng. Berlin [u.a.]:

Springer, 1989. isbn: 3540516182.

[45] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. “Polynomial Interpola-

tion”. In: Numerical Mathematics. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2007, pp. 333–377. isbn: 978-3-540-49809-4. doi: 10.1007/978-3-

540-49809-4_8. url: https://doi.org/10.1007/978-3-540-49809-4_8.

vi

https://doi.org/10.1088/978-0-7503-1671-2
https://dx.doi.org/10.1088/978-0-7503-1671-2
https://dx.doi.org/10.1088/978-0-7503-1671-2
https://viennawd.sourceforge.%20net.
https://viennawd.sourceforge.%20net.
http://www.lanl.gov/conferences/salishan/
https://doi.org/https://doi.org/10.1016/B978-0-12-420158-3.00002-2
https://doi.org/https://doi.org/10.1016/B978-0-12-420158-3.00002-2
https://www.sciencedirect.com/science/article/pii/B9780124201583000022
https://www.sciencedirect.com/science/article/pii/B9780124201583000022
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1007/978-3-540-49809-4_8
https://doi.org/10.1007/978-3-540-49809-4_8
https://doi.org/10.1007/978-3-540-49809-4_8

[46] Bengt Fornberg and Julia Zuev. “The Runge phenomenon and spatially vari-

able shape parameters in RBF interpolation”. In: Computers Mathematics

with Applications 54.3 (2007), pp. 379–398. issn: 0898-1221. doi: https:

/ / doi . org / 10 . 1016 / j . camwa . 2007 . 01 . 028. url: https : / / www .

sciencedirect.com/science/article/pii/S0898122107002210.

[47] M. J. D. Powell. Approximation Theory and Methods. Cambridge University

Press, 1981.

[48] Robert Schaback. “Creating Surfaces from Scattered Data Using Radial Basis

Functions”. In: 1995.

[49] Jin Li et al. “Application of machine learning methods to spatial interpo-

lation of environmental variables”. In: Environmental Modelling Software
26.12 (2011), pp. 1647–1659. issn: 1364-8152. doi: https://doi.org/10.

1016/j.envsoft.2011.07.004. url: https://www.sciencedirect.com/

science/article/pii/S1364815211001654.

[50] Damiana Lazzaro and Laura Bacchelli Montefusco. “Radial basis functions

for the multivariate interpolation of large scattered data sets”. In: Journal

of Computational and Applied Mathematics 140 (2002), pp. 521–536. url:
https://api.semanticscholar.org/CorpusID:53383888.

[51] Rolland L. Hardy. “Multiquadric equations of topography and other irregu-

lar surfaces”. In: Journal of Geophysical Research (1896-1977) 76.8 (1971),

pp. 1905–1915. doi: https://doi.org/10.1029/JB076i008p01905. eprint:
https : / / agupubs . onlinelibrary . wiley . com / doi / pdf / 10 . 1029 /

JB076i008p01905. url: https://agupubs.onlinelibrary.wiley.com/

doi/abs/10.1029/JB076i008p01905.

[52] Richard Franke. “Scattered data interpolation: tests of some methods”. In:
Mathematics of Computation 38 (1982), pp. 181–200. url: https://api.

semanticscholar.org/CorpusID:8290519.

[53] G. Nürnberger and F. Zeilfelder. “Developments in bivariate spline interpola-

tion”. In: Journal of Computational and Applied Mathematics 121.1 (2000),

pp. 125–152. issn: 0377-0427. doi: https://doi.org/10.1016/S0377-

vii

https://doi.org/https://doi.org/10.1016/j.camwa.2007.01.028
https://doi.org/https://doi.org/10.1016/j.camwa.2007.01.028
https://www.sciencedirect.com/science/article/pii/S0898122107002210
https://www.sciencedirect.com/science/article/pii/S0898122107002210
https://doi.org/https://doi.org/10.1016/j.envsoft.2011.07.004
https://doi.org/https://doi.org/10.1016/j.envsoft.2011.07.004
https://www.sciencedirect.com/science/article/pii/S1364815211001654
https://www.sciencedirect.com/science/article/pii/S1364815211001654
https://api.semanticscholar.org/CorpusID:53383888
https://doi.org/https://doi.org/10.1029/JB076i008p01905
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JB076i008p01905
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JB076i008p01905
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB076i008p01905
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB076i008p01905
https://api.semanticscholar.org/CorpusID:8290519
https://api.semanticscholar.org/CorpusID:8290519
https://doi.org/https://doi.org/10.1016/S0377-0427(00)00346-0
https://doi.org/https://doi.org/10.1016/S0377-0427(00)00346-0

0427(00)00346- 0. url: https://www.sciencedirect.com/science/

article/pii/S0377042700003460.

[54] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts

Valley, CA: CreateSpace, 2009. isbn: 1441412697.

[55] Brian W Kernighan and Dennis M Ritchie. The C programming language.

2006.

[56] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:
10.1038/s41592-019-0686-2.

[57] Brian Gough. GNU scientific library reference manual. Network Theory Ltd.,

2009.

[58] Information processing – Documentation symbols and conventions for data,

program and system flowcharts, program network charts and system resources

charts. Standard. Geneva, CH: International Organization for Standardiza-

tion, Mar. 1985.

[59] Brian E. Granger and Fernando Pérez. “Jupyter: Thinking and Storytelling

With Code and Data”. In: Computing in Science Engineering 23.2 (2021),

pp. 7–14. doi: 10.1109/MCSE.2021.3059263.

[60] Charles R. Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url:
https://doi.org/10.1038/s41586-020-2649-2.

[61] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in

Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[62] Massimo V. Fischetti et al. “Semiclassical and Quantum Electronic Trans-

port in Nanometer-Scale Structures: Empirical Pseudopotential Band Struc-

ture, Monte Carlo Simulations and Pauli Master Equation”. In: Nano-Electronic

Devices: Semiclassical and Quantum Transport Modeling. Ed. by Dragica

Vasileska and Stephen M. Goodnick. New York, NY: Springer New York,

2011, pp. 183–247. isbn: 978-1-4419-8840-9. doi: 10.1007/978-1-4419-

8840-9_3. url: https://doi.org/10.1007/978-1-4419-8840-9_3.

viii

https://doi.org/https://doi.org/10.1016/S0377-0427(00)00346-0
https://doi.org/https://doi.org/10.1016/S0377-0427(00)00346-0
https://www.sciencedirect.com/science/article/pii/S0377042700003460
https://www.sciencedirect.com/science/article/pii/S0377042700003460
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/978-1-4419-8840-9_3
https://doi.org/10.1007/978-1-4419-8840-9_3
https://doi.org/10.1007/978-1-4419-8840-9_3

[63] Cristina Medina-Bailon et al. “Impact of the Effective Mass on the Mobility

in Si Nanowire Transistors”. In: 2018 International Conference on Simulation

of Semiconductor Processes and Devices (SISPAD). 2018, pp. 297–300. doi:
10.1109/SISPAD.2018.8551630.

[64] Deji Akinwande et al. “Graphene and two-dimensional materials for silicon

technology”. In: Nature 573.7775 (2019), pp. 507–518.

[65] Otfried Madelung. “Fundamentals”. In: Introduction to Solid-State Theory.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1978, pp. 1–16. isbn: 978-3-

642-61885-7. doi: 10.1007/978-3-642-61885-7_1. url: https://doi.

org/10.1007/978-3-642-61885-7_1.

[66] John P. Boyd and Fei Xu. “Divergence (Runge Phenomenon) for least-

squares polynomial approximation on an equispaced grid and Mock–Chebyshev

subset interpolation”. In: Applied Mathematics and Computation 210.1 (2009),

pp. 158–168. issn: 0096-3003. doi: https://doi.org/10.1016/j.amc.

2008.12.087. url: https://www.sciencedirect.com/science/article/

pii/S0096300308009867.

[67] Kristen Kaasbjerg, Kristian Thygesen, and Karsten Jacobsen. “Phonon-Limited

Mobility in n-Type Single-Layer MoS2 from First Principles”. In: Physi-

cal Review B (Condensed Matter and Materials Physics) 85 (Mar. 2012),

p. 115317. doi: 10.1103/PhysRevB.85.115317.

[68] N.W. Ashcroft and N.D. Mermin. Solid State Physics. HRW international

editions. Holt, Rinehart and Winston, 1976. isbn: 9780030839931. url:
https://books.google.at/books?id=oXIfAQAAMAAJ.

[69] P. Lawaetz. “Valence-Band Parameters in Cubic Semiconductors”. In: Phys.

Rev. B 4 (10 Nov. 1971), pp. 3460–3467. doi: 10.1103/PhysRevB.4.3460.
url: https://link.aps.org/doi/10.1103/PhysRevB.4.3460.

ix

https://doi.org/10.1109/SISPAD.2018.8551630
https://doi.org/10.1007/978-3-642-61885-7_1
https://doi.org/10.1007/978-3-642-61885-7_1
https://doi.org/10.1007/978-3-642-61885-7_1
https://doi.org/https://doi.org/10.1016/j.amc.2008.12.087
https://doi.org/https://doi.org/10.1016/j.amc.2008.12.087
https://www.sciencedirect.com/science/article/pii/S0096300308009867
https://www.sciencedirect.com/science/article/pii/S0096300308009867
https://doi.org/10.1103/PhysRevB.85.115317
https://books.google.at/books?id=oXIfAQAAMAAJ
https://doi.org/10.1103/PhysRevB.4.3460
https://link.aps.org/doi/10.1103/PhysRevB.4.3460

Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde.

Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind

unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In–

noch im Ausland in gleicher oder in ähnlicher Form in anderen Prüfungsverfahren

vorgelegt.

Ort, Datum

Unterschrift

Name

	Introduction
	Wigner Background and the Vienna WD simulator
	Transport Models
	Wigner Transport Equation (WTE)
	Motivation for Wigner formalism-based simulations
	Stochastic Solution Techniques for the WTE

	Wigner Signed Particle Solution Algorithm
	Program Structure

	Parallel Computing

	Interpolation
	Interpolation Background
	Piece-wise interpolation / Splines
	Radial Basis Functions

	Implementation
	Interpolation using SciPy in Python
	C - GSL

	Effective Mass
	Implementation
	Implications

	Evaluation
	Interpolation
	Step
	Smooth
	Error Analysis
	Findings

	Effective Mass
	Contact
	Barrier
	Intricate

	Summary
	Bibliography

