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Abstract
Over the last years, graph signal processing has become a rich toolbox for treating data living on ir-
regular domains. Graphs can be used to model pairwise relationships and thus provide high flexibility
in modelling the structure of various problems. Many proposals were made to extend the traditional
concept of graphs in order to capture a problem-inherent structure even more accurately. Naturally,
each of these graph classes requires a suitably adapted mathematical framework.

A recent proposal of a novel graph class by Dittrich and Matz are so-called signature graphs. These
graphs model relationships in data by a non-negative scalar and a vector of signs, capturing an overall
distance/correlation in the data by the scalar part, as well as relationships of different features in the
data, each described by one sign in the sign vector. This model was shown to provide advantage over
ordinary weighted signed graphs in clustering tasks. Recently, it was discovered that the usefulness of
signature graphs can be leveraged when used in conjunction with involutions that describe symme-
tries in the data at hand.

In this thesis, we develop a framework to use signature graphs with compositional data, that is datasets
in which each datapoint describes a composition, e.g., chemical compounds of a sample. Since for such
data only proportions matter, statistical treatment of compositional data shall be invariant to scaling.
Therefore, traditional methods based on Euclidean geometry cannot be applied for a meaningful analy-
sis. Aitchison laid the foundations of compositional data analysis by defining a new geometry (Aitchi-
son geometry) which respects the principle of scale invariance among other advantageous properties.

After giving a more thorough introduction into the fundamentals of both, graph signal processing and
compositional data, we introduce novel linear and affine involutions in compositional data and propose
a new type of transform to the Euclidean vector space, which allows a convenient description of the
involutions in question. These involutions are parametrised, which makes them flexible in adapting
to the considered data, but also necessitates a knowledge of these parameters for meaningful applica-
tion. Thus, we proceed by developing methods to estimate the parameters in two scenarios: First, we
assume to know pairwise relations of a few datapoints a priori, i.e. the signature that is later charac-
terised by the signature graph. Based on this assumption we develop an involution estimator, which
is ultimately targeted for clustering applications. Then, we propose a method following the concepts
of blind source separation, which relies on prior information about the existence and non-existence of
statistical correlations between datapoints, targeted for interpolation tasks in a scenario were we have
a good understanding of the problems topology.

Based on the identified involution, we propose a method for learning a signature graph from com-
positional data. Two equivalent formulations are stated and rated according to their computational
costs. We then proceed to describe the clustering of the learned graph, going into the peculiarities of
signature graphs and the concept of balancedness in signature graphs. A numerical study proves the
advantage of using signature graphs over ordinary graphs as a basis for classification.

Finally, we deal with the problem of reconstructing graph signals on balanced signature graphs from
incomplete observations, i.e., interpolation. We start out by elucidating how the edge weights of a
signature graph can be learned from correlations in observed data. Furthermore, we discuss the issue
of balancing an unbalanced signature graph, before we present methods for bandlimited and Laplacian
reconstruction on signature graphs, and how they can be simplified if the graph is balanced. Numerical
experiments confirm the usefulness of our proposed methods.



iv

Kurzfassung
In den letzten Jahren ist das Feld der Signalverarbeitung auf Graphen aufgeblüht und stellt eine re-
iche Methodensammlung für Signale auf unregelmäßigen Domänen dar. Graphen können zur Model-
lierung paarweiser Relationen genutzt werden und bieten damit eine hohe Flexibilität in der Erfassung
von Strukturen, die verschiedensten Problemstellungen zugrunde liegen. Es wurden viele Vorschläge
zur Erweiterung des Konzepts traditioneller Graphen gemacht um die probleminhärenten Strukturen
noch akkurater abbilden zu können. Selbstverständlich erfordert jede dieser Graphklassen ein eigenes,
angepasstes, mathematisches Gerüst.

Ein neuerer Vorschlag von Dittrich und Matz für eine solche Graphklasse sind sogenannte Signatur-
graphen. Diese erlauben die Beschreibung von Relationen zwischen Datenpunkten durch einen Skalar
und einen Vektor aus Vorzeichen. Somit kann eine generelle Distanz/Korrelation zwischen Datenpunk-
ten und eine binäre Beschreibung mehrerer Merkmale der Daten als ähnlich oder gegensätzlich aus-
gedrückt werden. Es wurde gezeigt, dass in Clusteringanwendungen diese Beschreibung gegenüber
gewöhnlichen, signierten und gewichteten Graphen überlegen ist. Jüngst wurde auch gezeigt, dass
Signaturgraphen besonders zweckmäßig eingesetzt werden können, wenn gewisse Symmetrien im
Datensatz vorhanden sind, die mit Involutionen beschreibbar sind.

In dieser Arbeit entwickeln wir ein methodisches Gerüst zur Behandlung von Kompositionsdaten auf
Signaturgraphen. Kompositionsdaten beschreiben Teile eines Ganzen, z.B. die Zusammensetzung einer
chemischen Probe. Da bei solchen Daten nur die Proportionen zählen, sollte die statistische Behand-
lung von Kompositionsdaten invariant gegenüber Skalierung sein. Dies schließt Werkzeuge, die auf
der Annahme einer euklidischen Geometrie fußen, für eine aussagekräftige Analyse aus. Aitchison
hat das Feld der Kompositionsdaten begründet, indem er eine alternative Geometrie (die Aitchison-
Geometrie) erdacht hat, die unter anderem das Prinzip der Skalierungsinvarianz berücksichtigt.

Nachem wir eine umfassendere Einführung in Graphsignalverarbeitung und Kompositionsdaten
gegeben haben, widmen wir uns Involutionen in Kompositionsdaten. Wir geben die lineare und die
affine Involutionsklasse an und führen eine neuartige Transformation in den euklidischen Vektorraum
ein, die eine ergonomische mathematische Beschreibung besagter Involutionen erlaubt. Der Umstand,
dass diese Involutionsklassen parametrisiert sind, macht sie zwar flexibel in der Anpassung an unsere
Daten, erfordert aber gleichzeitig eine Kenntnis über die Parameter. Wir erarbeiten zwei Methoden
zur Parameterschätzung: Zuerst nehmen wir an, wir kennen von einer kleinen Menge von Daten-
punkten ihre Signaturrelation. Die abgeleitete Schätzung ist auf Clusteringanwendungen ausgelegt.
Der andere Schätzer nimmt Anleihen aus dem Gebiet der blinden Quellenseparation. Wir leiten dann
den Schätzwert aus der angenommenen Existenz bzw. Nichtexistenz paarweiser Korrelationen in den
Daten her. Diese Methode ist zugeschnitten auf Szenarien, in denen wir eine gute Kenntnis über die
dem Problem zugrundeliegende Topologie haben.

Auf Basis der identifizierten Involutionen schlagen wir eine Methode zum Lernen von Signaturgraphen
aus Kompositionsdaten vor. Zwei äquivalente Formulierungen werden angegeben und bezüglich ihres
Rechenaufwands verglichen. Sodann beschreiben wir das Clustering des gelernten Graphen, wobei
wir auf die Eigenheiten von Signaturgraphen und das Konzept der Balance auf diesen eingehen. Eine
numerische Studie zeigt, dass Signaturgraphen gewöhnlichen Graphen beim Clustering überlegen sein
können.

Abschließend befassen wir uns mit dem Problem der Rekonstruktion von unvollständigen Graphsig-
nalen auf balancierten Signaturgraphen, also Interpolation. Wir beschreiben, wie Kantengewichte aus
Korrelationen in beobachteten Daten geschätzt werden können. Außerdem diskutieren wir das Prob-
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lem des Balancierens eines unbalancierten Signaturgraphen, bevor wir Methoden zur bandlimitierten
und laplaceschen Rekonstruktion auf Signaturgraphen präsentieren und wie sich diese im Falle von
balancierten Graphen vereinfachen. Eine weitere numerische Studie veranschaulicht die Leistungs-
fähigkeit der entwickelten Methoden.
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Notation
We will introduce the notational conventions of this document by example.

Example Meaning

Scalar

Vector

Vector entry

Matrix

Matrix row

Matrix entry

All-one vector

Expectation operator

Set

Number set

Random variable

Indicator function



1 Introduction and Outline

We are undoubtedly living in a world that views data more and more as a resource of high value, which
has led sociologists to coin the term information age to describe the past decades [1]. Some experts call
data even the most valuable resource, superseding oil [2]. But not only is its value estimated higher
than ever, we are also confronted with an exponential increase in the quantity of data generated and
replicated worldwide [3]. These symptoms can be attributed to the success story of signal processing, a
field which developed numerous methods for the treatment of data, like analysis, alteration and com-
pression.

Traditionally, data has been viewed as numerical objects living on a regular domain, i.e. a domain
with order relations and a distance metric. Classical examples include audio, where the datasets are
recordings of the sound pressure along time. Order relations in time are described by the terms before
and after and distance is understood as delay. Many methods implicitly assume such a regular domain,
for example linear filter theory. However, the assumption of a regular domain is too strict for various
types of data. Think for instance about a dataset that describes the gross domestic product (GDP) per
capita of every country. The domain is now the set of countries, however there is no a priori notion
of order or distance between countries. Without any domain description, however, we are severely
limited in what we can do with the data.

A concept that has been proven effective to describe irregular domains are graphs. Graphs describe
pairwise relationships between objects, the so-called nodes. The pairwise relationship is expressed by
so-called edges, which connect two nodes [4, ch. 1.1]. In our GDP-per-country example we could think
of a graph, whose nodes represent a country each. If we assume that neighbouring countries exhibit a
correlation in the GDP it is sensible to add edges to our graph that represent the fact that the connected
nodes are neighbouring countries. The irregular domain described by the graph is still not providing
any notion of order, but a measure of distance can be defined, e.g. by the minimum number of edges
to pass between two nodes, which greatly improves our signal processing capabilities. For instance,
we can now check whether our GDP dataset is smooth over the graph, i.e., if neighbouring countries
exhibit a positive correlation in their GDP.

These ideas are the foundations of graph signal processing, a field of active research [5]. Many gener-
alisations have been proposed to the concept of graphs to achieve even more flexibility in modelling
the domain, e.g. hypergraphs, which are characterised by having edges that connect more than two
nodes [6] and multiplex graphs, which provide multiple edge sets [7]. The most basic extensions, how-
ever, are weighted and signed graphs, which assign (possibly negative) weights to the individual edges,
which allow to express additional information about the edge, e.g. how strongly correlated signals are
across the nodes that are connected by the edge.

Choosing the graph flavour is highly problem specific and depends on the relations that shall be rep-
resented by the graph. Naturally, the methods for signal processing change according to the graph type
chosen. In this work, we will focus on developing methods applicable to the novel model of signature
graphs, which are characterised by edges that have a tuple associated to them, consisting of an edge
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weight and a vector of signs [8]. Such signature graphs have been proven to be advantageous in the
context of data featuring symmetries that can be described by involutions [9].

In particular, we will study applications of signature graphs in conjunction with compositional data,
which is data that describes parts of a whole and occurs in various fields, e.g. chemical analysis, voting
data and demographics. Due to the inherent constraint that all parts must add up to a constant and no
part can be negative, the data is not living in a subspace of . is renders the statistical treatment of
such data with standard tools impossible. In 1982, John Aitchison laid the foundations for dealing with
such data in a sensible way by introducing a vector space structure tailored to compositional data [10].

We will start this work by giving a brief introduction into the topics of compositional data and graph
signal processing (Chapter 2). ereaer, we will delve into the issue of involutions in compositional
data (Chapter 3). Not only will we state parametric classes of involutions, but also explore how to
estimate their parameters based on observed data. A semi-supervised and a blind method will be pre-
sented.

Chapter 4 is concerned with the classification of compositional data using signature graphs. We will
explore how a signature graph can be learned from data, given the identified involution. Two equiv-
alent methods of calculation will be stated and subsequently compared with regard to their computa-
tional cost. In the next step we cluster the learned graph considering the specifics of signature graphs
and conduct a numerical study of the proposed methods in comparison with ad hoc methods. e
chapter is closed with a remark on how to adapt the methods when dealing with multiple realisations
of the data.

Chapter 5 proposes a framework for interpolation of graph signals on balanced graphs. We will assume
to know the topology of the graph but not the edge weights and discuss a strategy to learn them from
observations. A method for balancing an unbalanced graph is discussed in preparation for the actual
interpolation that will rely on the balancedness to lower its computational burden. We conclude with
a numerical analysis of the proposed methods.
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is chapter is concerned with compiling various mathematical concepts that will be fundamental for
the rest of the work. It aims to provide sufficient information for understanding the remaining work
without geing lost in unnecessary detail. In Section 2.1, the framework for working on compositional
data is introduced, largely based on the works of Aitchison [10] and on [11]. Section 2.2 is concerned
with introducing graph theory, i.e., the treatise of datasets characterised by pairwise relations.

2.1 Compositional Data
e field of compositional data is concerned with the description of and operation on data that repre-
sents shares of a whole. Examples include electoral data where the sum of percentages per party is
known to be 100 or the quantitative chemical analysis of a mixture whose mass components add up
to the overall mass of the sample.

It is natural to describe the data as vectors with the dimension , which denotes the number of com-
ponents. We have the additional constraint that the sum over the components equals a fixed amount

. is  depends on the chosen unit and is rather arbitrary. For instance, a poll result might be rep-
resented in percent per party or in number of voters per party, resulting in  or  being
the number of voters, but both representations essentially convey the same information. Operations
on the data should therefore only consider proportions of the entries rather than absolute numbers.
Furthermore, it is sensible to disallow negative components, which are meaningless in the context of
compositional data. In fact, it is common practice to only allow strictly positive entries in order to
allow easier mathematical treatment.

2.1.1 Vector Space Structure

e data is represented traditionally by row vectors and lives in the so-called simplex  which is
formally defined as follows:

Definition 2.1 (Simplex):

From this definition it is immediately clear that using Euclidean geometry in connection with the sim-
plex does not yield a vector space, as, for instance, the inverse element with regard to addition will
have negative entries and thus does not live on the simplex . However, the simplex space can be
elevated to a vector space by definition of alternative bivariate operations under which  is closed. A
popular choice of these operations constitute the Aitchison geometry, named in honour of its inventor,
which will be treated subsequently [10]. First and foremost we will have a look at the closure, which
is an essential building block for more advanced operations.
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Definition 2.2 (Closure):

e closure is an operation that normalises the 1-norm of a given vector with strictly positive entries
to . It is best understood as a projection of the vector  in the first orthant onto the simplex  along
a ray, which intersects with the origin.

Based on the closure we can now define the two operations that constitute the vector space structure.
First we will look at the equivalent of ordinary addition.

Definition 2.3 (Perturbation):

We can also equivalently write for every entry  of 

e perturbation can be viewed as an analogon to the sum in Euclidean space: Two vectors on the
simplex are combined to form a new vector on it such that  constitutes an Abelian group:
Commutativity and associativity hold, a neutral element exists and there exists an inverse element for
any element in . e neutral element can be shown straightforwardly to be , i.e., the
elements of  are

e inverse element of  is given by

or equivalently by

We confirm this statement by evaluating the perturbation of an arbitrary vector with its inverse, i.e.,
 with elements

As expected, every entry of the resulting vector equals , i.e., the entries of the neutral element w.r.t.
the perturbation. is also motivates the introduction of another operator  that perturbs the first
argument with the inverse of the second,
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e second operation that constitutes a vector space has also two operands, however, one is a scalar.
It can be thought of as the equivalent of ordinary multiplication.

Definition 2.4 (Powering):

e powering operation resembles a scalar multiplication in the Euclidean domain, as its properties are
directly transferable (the distributive laws holds in conjunction with the perturbation operation, 
yields the identity operation, composition of subsequent powerings is equivalent to multiplication of
the scalars and one final powering operation). For convenience, we define the order of operations such
that powerings are evaluated before perturbations.

Additionally, it is even possible to define an inner product [11, ch. 3.3], thus turning  into an inner
product space.

Definition 2.5 (Inner product):

Consequently, it is possible to introduce the induced norm as

2.1.2 Transforms

e simplex as the domain of compositional data is an ad hoc choice based on our general understand-
ing of compositions. However, as seen in the previous section, the mathematical treatment is rather
complex and unintuitive. Multiple transforms to the Euclidean space have been discussed in the liter-
ature, of which two will be presented in the following due to their relevance to this work.

We have seen that the perturbation, which is analogous to addition in the Euclidean vector space, is
based on entry-wise products of its arguments and the powering, which resembles a scalar multipli-
cation, relies on taking entry-wise powers. Knowing that the logarithm relates products to sums and
powers to multiplications, it seems natural to transform the vectors from the simplex by element-wise
logarithms into a new domain. Additionally, we know that the logarithm is bijective, and therefore
this transform is invertible. Augmented with a pre-normalisation factor we obtain

Definition 2.1 (Centred logratio transform):

e centred logratio (clr) transform relates every vector entry to the geometric mean  over all
entries and then applies the natural logarithm to each ratio aerwards. We can reformulate the entries
of  as
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erefore we can understand the clr transform as generalised log-likelihood ratio, specifically as the
average pairwise log-likelihood ratio.

e inverse transform is given as

or equivalently

is function is well-known in the context of machine learning as somax function.

As intended, the clr transform relates the vector space structure of the simplex described in the pre-
vious section to the Euclidean vector space: A perturbation in the simplex domain is equivalent to
an addition in the clr domain and powering on the simplex to multiplication. Furthermore, the inner
product and consequently the induced norm are related to their respective counterpart [11, ch. 4.3],

Another interesting property can be revealed by summing over the vector in the clr domain:

e sum is always zero, which means that the admissible vectors live in a hyperplane that is orthogonal
to the all-ones vector and contains the origin. is subspace has dimensionality  which is not
too surprising, since the simplex itself is also a manifold of dimension .

Equipped with this knowledge, it is possible to construct orthonormal bases in the clr domain, i.e.,
for the described subspace of , and then transform them to the simplex domain using the inverse
clr transform. ey retain their property of orthonormality across domains due to the equivalence
of the inner product (cf. (17)). e  orthonormal clr basis vectors can be grouped into a matrix

 where the row sums are zero and  consequently.

is motivates the introduction of the isometric logratio (ilr) transform, which builds on the clr trans-
form and an orthonormal basis [12].
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Definition 2.2 (Isometric logratio transform):

As the basis  can be chosen arbitrarily (within the mentioned limits), the ilr transform is not re-
ally one transform but a whole set of transforms. It is viewed best as a coefficient expansion of the
compositional vector  with respect to the chosen basis. us, it can be computed equivalently with
operations of the Aitchison geometry,

e inverse ilr transform can thus also be wrien either by means of the inverse clr or as a linear
combination in the simplex domain:

As the ilr transform is related to the clr transform only by an orthonormal basis expansion, its prop-
erties translate well to the ilr transform,

2.1.3 Endomorphisms

Based on the importance of matrix multiplication in Euclidean spaces, it is sensible to look for an
analogous operation in the realm of compositional data. Particular interest lies in endomorphisms, i.e.,
mappings from  to . ere are two approaches to this, one operating directly in the simplex
domain and one exhibiting the ilr representation, thus being dependent on the choice of the basis .
e laer one is presented first.

Definition 2.1 (Endomorphism via ilr):

Another approach is to take inspiration from the conventional vector matrix product and translate it
to the basic operations of the Aitchison geometry, i.e., replacing sums by multiplications and multipli-
cations by powers:

Since there is no guarantee that , a subsequent application of the closure on  is necessary.
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Definition 2.2 (Direct endomorphism):

Working in the simplex domain however comes at a price: Different choices of  lead to the same
operation, e.g., the operation is invariant to the addition of constant rows to the rows of . is hap-
pens because this addition only introduces a scaling of  which is cancelled out by the closure.

e two endomorphisms are closely related to one another. In fact, it is possible to find a suitable 
for every , so that the operations are equivalent.

is derivation makes use of the fact that multiplying the all-ones vector  with  yields the
zero vector, as the column sums of  are zero by construction.

Be aware of the fact that the inverse statement is not true: A direct endomorphism can not always be
represented by an endomorphism via ilr, because it is not necessarily possible to decompose a generic
matrix  into the product . is is obvious, because named product has at most rank ,
as , but  can even have a rank of , due to its larger dimension. e condition
when the decomposition is possible can be made even more precise: Since  has row sums of zero,

 can only have row and column sums of zero, as well. us  has to fulfil this criterion in
order to be decomposable and to express the associated operation in terms of the ilr.

2.2 Graph Theory
Graph theory is one of the main topics in discrete mathematics. It deals - as the name implies - with
graphs, which are structures, that model pairwise relationships between a set of arbitrary objects [4,
ch. 1.1].
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Definition 2.1 (Graph): A graph  formally consists of a set of vertices  (also called nodes)
and a set of edges ,

e edges express pairwise relationships between vertices. e definition stated above addresses
specifically undirected simple graphs, i.e., graphs, whose edges have no assigned direction and connect
two distinct nodes (no loops). us far, we can only make a binary statement about the relationship of
two nodes – either they are connected by an edge or not. It is, however, oen beneficial to express the
relationship between nodes on a more fine grained spectrum. Traditionally, this is done by assigning
a non-negative weight to each edge, which can be interpreted as strength of the link between the two
vertices it connects, as a distance between them, or as a measure of similarity. e weight function

 is used to describe the edge weights.

In recent years, however, the concept of graphs with negative edge weights gained traction, so-called
signed graphs, which can not only express strong similarities between vertices but also strong dissim-
ilarities or opponents. eir advantage has been proven in countless scenarios [13]. e extension to
signed graphs has led to the definition of the concept of balancedness by Harary [14]. It expresses
whether every cycle (a list of edges, such that consecutive edges – as well as first and last one – share
a common node) in the graph has an even number of negative edges. When, for instance, the graph
describing friend and foe relations with positive and negative edges respectively, is balanced, we can
view this as a generalisation of the proverb “the enemy of my enemy is my friend”. As we will see
later, balancedness has strong implications for classification and interpolation tasks.

An even more recent development considers graphs with vector valued edge weights, called multiplex
graphs [15]. In particular, this work will deal with signature graphs, whose edge weights underlay an
additional constraint: An edge vector is only admissible, if all of its entries share the same absolute
value and may thus only differ in the sign [16]. Equivalently, these edge weights can be viewed as
a tuple consisting of a positive real number and a binary vector from the alphabet . is al-
lows to indicate the overall strength of a link with the real number while expressing the similarity/
dissimilarity of the nodes regarding multiple features with lile memory overhead. For our analytical
description of the weight function, we will however persist on the former viewpoint,

For convenience, we will denote the scalar weight part by  and the sign vector by

2.2.1 Algebraic Representation

Graphs can also be represented in terms of matrices [4, ch. 2.3]. A popular choice is the so-called ad-
jacency matrix , with elements
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In a graph of  vertices there can be at most  edges, but normally the number of edges
is much smaller, which makes this matrix sparse.

As the adjacency matrix only represents the structure of the graph, but not the edge weights, it is
sensible to replace the ones in the adjacency matrix with the corresponding weights. is leads to the
weight matrix  with elements

Since only undirected graphs are considered, the adjacency matrix and the weight matrix are sym-
metric.

Note that the diagonal elements of  and  are all zero, as no edges from a vertex to itself are allowed.
e degree matrix  on the other hand is a purely diagonal matrix whose values are chosen
as the sum of all absolute edge weights incident on a vertex,

is allows the definition of the Laplacian matrix  which plays an important role for many graph
related tasks,

Transferring the concept of the weight matrix to signature graphs yields a three-dimensional tensor.
It can be viewed as  layers of weight matrices that all exhibit the same sparsity structure. e degree
matrix  on the other hand is equal for all layers by construction. It is thus possible to define  dif-
ferent Laplacian matrices  – one for each layer.

Another matrix description is given by the incidence matrix , whose columns each describe one edge
. It is element-wise defined by

Interestingly we can calculate the Laplacian from  by .

2.2.2 Learning

Learning or constructing a graph means building up a graph from a set of data points, i.e., considering
them as vertices and installing edges between them, typically based on some defined distance function
[17]. e most common schemes are the -NN construction, where every vertex is connected to its 
nearest neighbours, and the -NN construction, where every vertex is connected to all other vertices
that lie no farther away from it than some radius . ese methods rely on the calculation of all pair-
wise distances between the  nodes and thus have a complexity of . More efficient algorithms
were proposed, like [18], where only an approximation to the -NN graph is computed, but with a
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significant lower complexity. It is sensible, to also assign weights in this process, for instance the cal-
culated distance between nodes. Especially when learning signature graphs, however, it is necessary to
distinguish between the function that is used in assessing the distance between nodes and the function
for assigning edge weights as they operate on different image sets (  vs. ).

2.2.3 Classification

In the context of graphs, classification or clustering is the operation of partitioning the set of graph
vertices  into  disjoint subsets  to , such that the following two criteria are met [19]:

In other words, every vertex of the graph is assigned exactly one label from 1 to . Furthermore, this
dissection should be optimal with respect to a predefined criterion. For example, one could demand
to minimise the summed up weight of edges between vertices of different sets, yielding the so-called
minimum cut [20]. In the realm of signed graphs it might be beneficial to construct a cost function,
that penalises positive edges between different subsets and negative edges within subsets. Indeed, if
the graph is balanced, a perfect solution for  can be achieved in the sense that only negative
edges are cut [21]. Oen, it is necessary to also exclude trivial solutions like empty subsets, e.g., by
rewarding balancedness of the subsets’ cardinalities.

To simplify the minimum cut problem several relaxations were proposed, of which the so-called spec-
tral clustering techniques are very popular [22]. e method we will use is based on the eigenvectors
of the Laplacian  associated to the smallest eigenvalues. For two clusters and a non-signed graph,
it comes down to assigning each vertex to either of two groups based on the sign of the correspond-
ing entry in the second eigenvector (sorted ascending by the corresponding eigenvalue). For signed
graphs, the first eigenvector is used. For signature graphs it is reasonable to apply this method on
every layer, i.e., based on every . is yields  different binary labels for every vertex and thus a
partition into  clusters [16].

2.2.4 Graph Signals and the Graph Fourier Transform

Up to this point we have predominantly dealt with numerical quantities on the graph in the context
of edges, i.e., edge weights (the exception being learning where we start off with nodes derived from
datapoints). In the following we assign (possibly vector valued) quantities to the every vertex. is
assignment constitutes a so-called graph signal.

For example every node could be representing one sensor in a sensor network and would be connected
to the nodes that correspond to the spatially nearest sensors by edges. When we take a measurement
across the sensor network, we would get one signal value per node, i.e., a graph signal. Such a graph
signal can be represented by a matrix  where every row corresponds to a node of the graph. In the
case of scalar signals the matrix degenerates to a vector .

Driven by the convenience of the Fourier transform in signal processing over regular domains, we look
for an analogon in graph signals [4, ch. 3]. Recall that the Fourier transform is a basis expansion with
orthonormal basis vectors which are sorted in an ascending order w.r.t. the frequency they represent.
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us, we are also looking for an orthonormal basis of the graph signal, however we have to specify
how the concept of frequency shall translate to graph signals.

One way to understand frequency of a time series is to look at the similarity of adjacent signal values:
If the signal values are close to each other, we call the signal low frequency and if big changes in signal
value occur between neighbouring samples we speak of a high frequency. To asses this property in
graph signals we can express the variation as the sum over the squared signal value differences across
edges, weighted with the edges weight,

It can be shown that this is equivalent to the quadratic form over the Laplacian,

However, there is a flaw with this formulation, which does not comply with our understanding of
frequency: e signals variation changes when scaling the signal. A normalisation based on the graph
signals energy solves this problem, yielding the Rayleigh quotient

Knowing that the Rayleigh quotient computes the eigenvalues of  if we plug in its eigenvectors and
that said eigenvectors are orthogonal, motivates the use of the eigenvectors as basis vectors for the
graph Fourier transform (GFT). e corresponding eigenvalues then constitute their frequencies. We
will denote the matrix whose columns correspond to the normalised eigenvectors of  sorted ascend-
ing in terms of the corresponding eigenvalues by . Note that for unsigned graphs, as  is positive
semidefinite all frequencies  are non-negative and the first is exactly zero, corresponding to some
sort of DC signal. In fact, it can be shown that the corresponding eigenvector is the all-ones vector .
ese properties match very well with our intuition about frequency and the Fourier transform, which
is now formally defined as

with its inverse being

2.2.5 Interpolation

As we are blessed with a variety of convenient signal processing techniques in regular domains (time
series, images etc.), we might look for analoga applicable to the graph domain. Interpolation is one of
the concepts that we aim to transfer and describes the reconstruction of a graph signal from incom-
plete data, i.e., unknown entries in . As this would be impossible without additional constraints, it
is common practice to enforce some sort of signal smoothness for the reconstructed signal. We call a
graph signal smooth when the values of connected nodes are similar.

Interpolation is not one method but a whole class of methods that act on incomplete graph signals.
ese methods can be grouped into two distinct categories, local and global methods respectively:
Local methods estimate a missing value solely by its neighbouring nodes, while global methods in-
corporate the whole signal into the estimation. e former clearly are computationally favourable
but perform worse than the global methods in general due to the missing information [23]. Another
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categorisation of methods stems from how they deal with the existing values: ey may either be
considered to be the ground truth or corrupted by noise. In the laer case, the interpolation method
also performs some denoising resulting in a graph signal that in general does not retain its values at
observed nodes.

Formally, we can express the observed signal as a matrix multiplication of the complete, yet unknown
graph signal  with a selector matrix that dismisses the not observed data,

with the  selector matrix  built-up from the standard basis vectors corresponding to the
observed nodes ,

Here,  is the number of vertices that are sampled.

Signal smoothness can be straightforwardly achieved by enforcing that the reconstructed graph signal
lives in the subspace spanned only by the first  eigenvectors of the Laplacian, which correspond to
small signal variations, i.e., some measure of smoothness, as we have seen in the previous section. To
perform this bandlimited interpolation we introduce the matrix  which contains only the
first  columns of . e reconstructed signal is expressed by

If we select as many basis vectors as we have observed values, , a reconstruction is possible
such that the reconstructed signal matches the incomplete signal at the observed nodes, i.e., no de-
noising takes place.

Note that the graph Fourier transform  has only  entries, whereas  has  entries. As we
want to enforce equality of the observed signal and the estimated signal we can write,

which leads to the Fourier domain estimate

us the reconstructed signal is given by

When  we have more samples than degrees of freedom. us, we resort to approximate equal-
ity in the least squares sense. e solution looks similar to (46), however, the inverse is replaced by the
le pseudoinverse [24],

Another way to face the task of interpolation is by seing up an optimisation problem that finds a
signal that is maximally smooth while simultaneously explaining the observed signal as good as pos-
sible [4, ch. 4.3.5]. is can be formally wrien as
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with the yet to be determined penalty function , which basically represents a measure of non-
smoothness and a factor  which adjusts the relative importance of smoothness versus closeness to
the observation.

A reasonable proposal for the penalty function is to use a weighted sum over the squared differences
between adjacent nodes,

e idea behind this is to use the difference of the nodes when the edge is positive, but at the sum for
negative edges. We can also express this function using the incidence matrix,

Using this penalty function, we arrive at the so called Laplacian reconstruction,

which is a quadratic optimisation problem and can be solved analytically by



3 Involutions in Compositional Data

An involution is an endomorphism, that yields the identity map upon composition with itself. A sim-
ple example in the real domain is the sign flip, which yields the original number, when applied twice.
As shown in [9], signature graphs provide a powerful framework in connection with involutions. In
this chapter we will, therefore, discuss classes of involutions on compositional data, namely the linear,
the affine, and the nonlinear involution. en, we will concentrate on affine involutions, which are
parametrised, and study two methods on how these parameters can be estimated.

3.1 Motivation from 
To find involutions for compositional data we will draw some inspiration from known involutions in

. e simplest involution in  is the matrix product with an involutory matrix.

Definition 3.1 (Involutory matrix): An involutory matrix  is a square matrix that is inverse to itself
[25, ch. 3.1],

As the matrix is self inverse, twofold multiplication of it with a vector  is equivalent to the
unity map,

It can be shown that the eigenvalues of such an involutory matrix are either  or . Hence, the matrix
is diagonalisable into a so-called signature matrix , which is a diagonal matrix with only  on the
main diagonal,

e columns of  are eigenvectors of .

3.2 The Skewed Logratio Transform
e most straightforward way to find a class of involutions for compositional data is by using in-
volutory matrices in the ilr domain (cf. Definition 2.1). e interplay between the chosen basis

 and the involutory matrix  will be examined in the fol-
lowing:

It is helpful to understand that  is the right pseudoinverse  of  since . Now we
introduce  with its right pseudoinverse  as
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e involution can the be wrien more compactly as

 inherits some properties of  by construction: It is a  by  matrix, whose row sums equal
zero and it has full row rank. ere is however no guarantee for orthogonality of , let alone ortho-
normality. us, the rows of  represent a skewed basis in general. Likewise,  has column sums of
zero by construction and has dimension .

e structural resemblance of (58) with (56), which was based on the ilr endomorphism, justifies the
relaxation of the ilr transform to its superset, which we will call skewed logratio (slr) transform.

Definition 3.1 (Skewed logratio transform):

Its inverse can be calculated in analogy to the inverse ilr transform as a linear combination of the basis
vectors in either the simplex domain or the clr domain,

3.3 Classes of Involutions in Compositional Data

3.3.1 Linear Involutions

As a result from Section 3.2, every linear involution in Aitchison geometry can be simply described as
element-wise sign flips in the slr domain, when an appropriate oblique basis  is chosen:

As seen above, the slr transform is a linear transform of the clr transform, but unlike the ilr transform
it is - due to its oblique basis - not an isometric transform, i.e., distances are not preserved. Still, it is
possible to relate the inner product and norm in the slr domain to operations that are directly applied
in the simplex:
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us, we can define the norm as

Apparently, the Gramian  of  has to be taken into account. e derivation makes use of the fact
that it is possible to split up every  into , but the final result does not depend on this decom-
position.

From a computational perspective it would be interesting to get rid of the asymmetry present in (62).
Luckily,  is symmetric and positive semidefinite by construction as a product of two matrices that are
transposed versions of each other. erefore, its square root  is defined, real and can be computed
from the eigendecomposition  as

Obviously,  is symmetric and positive semidefinite by construction, too.  itself has column
and row sums of zero only. is implies that  fulfils this property, as well. We can prove that
by contradiction: Let us assume that  contains rows, whose entries do not sum up to zero, i.e.,

. Exploiting the symmetry of  we can then look at the norm of  and see that

But this contradicts our assumption of . Analogously, we can argue about the column sums of
. is allows us to formally express  as the product

Now, we can reformulate the inner product as follows:

Exploiting the identities from (62) we can rewrite the inner product as

e norm is then given by

We also want to describe the linear involution without switching domains, i.e., only with operations
that work on the simplex representation of the data, which leads to
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To show that (70) is actually an involution, we will calculate , but to ease the calculation, we
will substitute  by

is is no restriction to generality as every vector on  can be represented like that (note the con-
ceptual similarity to the clr, however we have omied the closure). We can then apply the involution,

Now, let us apply the involution another time,

Let us take a closer look at the expression : It constitutes the th column of the matrix product

We have used the fact that  constitutes a projection matrix that projects into the row space of .
Since we know that  has full rank and its kern is the span of , we can reformulate the projection
as , where  is the projection matrix onto ,

Now we can evaluate  where  denotes the th standard basis vector,
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e second factor in this equation does not depend on , appears in every entry of the resulting vector
and can therefore be omied, as the subsequent closure normalises the result anyway. We can thus
simplify  to

It remains to analyse the product of the powers of , yielding

since we know that the column sums of  are zero. us, we arrive at the desired result,

3.3.2 Alternative Derivation

We can also look for an involution in the clr domain, i.e., a class of involutory matrices
 that maps vectors that are orthogonal to  onto a vector, that is orthogo-

nal to , as well. Mathematically we can express this as follows:

e involution can be viewed as a three-step operation consisting of a basis expansion, potential in-
version of coefficients and linear combination of the basis vectors according to the transformed coeffi-
cients. As we choose the diagonal entries of  individually, it is necessary that the subspace ,
that shall remain intact, is represented only by one single basis vector. Otherwise, we would have to
invert all coefficients that have part in representing  together.

Without loss of generality we thus demand that the first  rows of  are orthogonal to ,
i.e., have a row sum of zero. is automatically enforces that the last column of  lives in .
e last coefficient is thus always zero, when starting out with a  orthogonal to . Hence, we can
neglect the last column of , the last row of  and reduce the dimension of  to , each
represented with a tick:

is expression happens to have the same structure as (61) and is therefore equivalent. Looking back
at (56) reveals that  and  as well as  and  are related by the ilr basis ,
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3.3.3 Affine Involutions

e linear involution presented above can be understood as mirroring points on the simplex in a set of
coordinates around the neutral element . It can be slightly augmented to become an affine
involution, which can be understood once again as mirroring operation, but with respect to another
centre point , i.e., the origin of the coordinate axes is shied to :

One can easily see that if  is an involution,  has to be also involutory,

3.3.4 Nonlinear Involutions

Motivated by the structure of the previously introduced involutions, we can observe that complex
involutions can be constructed by using bijective transformations and a signature matrix. Let us con-
sider the possibly nonlinear, but bijective mapping  with its inverse . Let us
furthermore assume that the set  is closed with respect to matrix multiplications with . us, an
involution can be constructed as

It is easy to show that  is indeed an involution by composition with itself,

e mapping  can be interpreted as a deskewing operation, that enforces axial symmetries around
the origin.

Note that the linear and the affine involution are special cases, where the transformation  is a
linear or an affine function respectively – hence their name.

Finding a plausible involution underlying the observed data presupposes prior knowledge about the
data, e.g., some basic understanding of underlying symmetries or a statistical model of it. In the fol-
lowing, we will concentrate on the class of affine involutions, for they are analytically treatable and
serve as an example for presenting a methodology that may be translated to nonlinear cases.
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3.4 Identification from Labelled Data
Identifying an involution is mandatory before any graph can be learned. In case of the affine involution
this comes down to finding a reflection point  and a suitable basis . In general,
these have to be learned from labelled data. In the context of signature graphs, the possible labels are
the  binary vectors , with the index  specifying the label. us, the number
of clusters is upper bounded due to the dimension of the data.

3.4.1 Data Model

In order to derive a method for estimating the parameters of the affine involution, it is helpful to pos-
tulate a statistical data model:

We assume that the support of  is roughly contained in one orthant.

Looking at this model in the clr domain reveals an affine structure,

Without loss of generality, we assume . is is justified by the fact, that we want to estimate
, which can incorporate arbitrary scaling. us, the model can be split up further as follows, with

 denoting the random fluctuation of  around :

In preparation of the estimation task, let  be a matrix whose rows contain labelled data points in the
clr domain,  the matrix with the corresponding labels and  the realisations of the random fluctu-
ation:

3.4.2 Least-Squares Estimation

A naive problem formulation for the application of least squares is given by

All parameters that we want to estimate are grouped in one matrix that enters the equation linearly.
e noise is skewed, but this is usually not a problem, as we can apply weighted least squares, a method
specifically targeting such cases. However, there is a flaw: We can not make any assumption about the
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noise covariance, in order to set the weights of a weighted least square estimation, because it depends
on , which we want to estimate.

In order to apply a meaningful least squares estimation to the problem, the model has to be reformu-
lated, so that the noise part appears isolated, i.e., without postmultiplication by . For that reason we
postmultiply by its right pseudoinverse in order to get

where 

Instead of estimating  and  directly, we will estimate  and , which can be transformed to the
former quantities straightforwardly. Minimising the norm of  yields the well-known linear least
squares estimator:

However, this reveals that the problem is ill-posed, since the inverse is not defined. Due to the fact,
that the rows of  are valid vectors in the clr domain, the respective row sum is always zero, which
makes  column rank deficient by construction. In other words, the solution to the minimisation task
is not unique, since adding arbitrary constant columns to the columns of a given solution  does
not impair its optimality.

Hence, we can place additional constraints on the column sums of , which is quite fortunate. Up
until now we have ignored the fact that  has to be a valid slr basis, i.e., that its row sums must be
zero. is translates to its right pseudoinverse  having only column sums of zero by construction.
e opposite statement is true as well, making the constraint  necessary and sufficient for
a valid solution.

Now, we need to find a way to incorporate the constraint into the problem formulation. We can for-
mulate it in analogy to our model as

We can then add this as a row to our observation matrix  and label matrix :

Performing the estimation task is now guaranteed to yield a valid solution, i.e. a , whose column
sums are zero. Note that they are not approximately zero, but exactly, since we have constrained a
degree of freedom of the previous ambiguous solution. e estimator in the new matrices is given by
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For a numerical evaluation of the presented methods performance, please see Section 4.4.3.

3.4.3 Further Remarks

e basis  that is to be estimated by the preceding equations shall have  linearly independent
rows and therefore  has  linearly independent columns. Based on the estimation equation
this is only possible if  has full column rank (  being rank deficient is unlikely as it incorporates
random quantities).

However, this criterion is not strict enough to acquire a meaningful solution. We can show this by
assuming the noiseless case, i.e., . e model for  then degenerates as follows:

To uniquely identify  and  we must ensure that  has full column rank. is criterion has
two (non-sufficient) implications: e labelled data must at least include  different labels and every
column of  has to comprise positive and negative ones. Especially for large  this conjuncture is a
huge improvement over previous identification proposals, that necessitate labelled data from all 
clusters [9].

When additional information about the statistical properties of  is available, it might be beneficial to
resort to weighted least squares in order to anticipate the possibility of having different coefficients of
variation (CV) per entry, defined as

As we have forced , we have implicitly assumed that all  are equal,
when using ordinary least squares. If we use weighted least squares, however, we can consider differ-
ent variances. Equivalently, we can change the assumption of  to

us the implicitly assumed variances are all one, as shown by

and we can proceed by application of ordinary least squares. e label matrix  has to be adapted by
postmultiplication with , to reflect our assumption.

Apart from that, if the labelled data is corrupted by additive noise, it might be necessary to refrain
from ordinary least squares and rather use methods of total least squares [26].
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3.5 Blind Identification
In scenarios where we do not have any labelled data we have to resort to other methods in order to
identify the involution. We will see that an estimation of the involution is still possible under rather
vague assumptions about the correlation inherent in the data. Specifically, we will presuppose an un-
signed graph derived from our knowledge about the targeted problem and assume that connected
nodes exhibit a correlation. Imagine, for instance, a sensor network. e corresponding graph may be
derived by -NN construction based on the spatial distances of the sensors. In such a scenario it is
sensible to assume that sensors close to each other yield correlated readouts, given that the measured
quantities exhibit a spatial correlation and the correlation distance is smaller than the sensor distances.

3.5.1 Model assumptions

In order to formalise the ideas above, we start out by establishing an unsigned graph  with
. A vector valued signal on that graph can then be expressed by the matrix

e th row represents the signal value at the th node. We furthermore assume that the signal values
at every node are derived from  uncorrelated sources  in the slr domain,

Furthermore we expect a correlation between signal values in the form

In other words, we are looking for an slr representation of our observed simplex-valued graph signal
such that  is uncorrelated across layers and adjacent signal values are correlated only on a per-layer
basis. is correlation of adjacent nodes can be either positive or negative, depending on the diagonal
values of . One can think of these correlations as colouring of the underlying random process.

We are interested in estimating , but for the sake of simplicity we will assume that we have trans-
formed our observed data to the ilr domain by some arbitrary basis  and only estimate the basis 
instead of  directly. is approach is justified as we can represent every valid skewed basis

 by this product as long as  is a valid ilr basis (cf. Section 3.3.1). us, the graph signal in the ilr
domain becomes

with
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For the sake of notational simplification we will substitute  by  in the following:

3.5.2 Problem formulation

We are now looking for a basis  that explains the observed data best under the assumption of un-
correlated entries in . Or, to put it differently, we want to recover the  uncorrelated sources
that are mixed by multiplication with  in (106), which is equivalent to finding  and multiplying our
observations with its inverse. is problem has gained much aention in the recent years under the
name of blind signal separation, as it arises for instance in MIMO communication systems [27, ch. 1].

A first step to tackle it is to look at the autocorrelations of the signal at node ,

Instead of yielding  directly we can only estimate its Gramian by empirical estimation of the auto-
correlation matrix over  observations indexed by ,

For beer accuracy and as  is independent of  it is also sensible to average the estimates
 over all nodes,

Decomposing the symmetric, positive definite matrix  into , however, is ambiguous, which
stems from the fact that any  with  being unitary is also a valid decomposition, as

A popular choice for such a decomposition is the Cholesky decomposition [28, p. 143], which yields
an upper triangular matrix  such that . If we have estimated  by this method we have
reduced the problem to finding a unitary matrix  such that . In the literature, there exist
two approaches to solving this problem: Either we assume that the sources are non-Gaussian and use
higher order statistics or we exploit the fact that the sources are non-white, yet independent processes
[27, ch. 1.3]. We will choose the laer route, since our model is inherently non-white as argued above.

Under the assumption that our estimate  is close to the true correlation matrix  we can whiten
the observed data by postmultiplication with the inverse of ,
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erefore,  can be understood as linear combination of the orthonormal rows of , with the coeffi-
cients being derived from individual sources. Due to the orthonormality of the rows we have already
decorrelated/whitened the sources by this step. ere is nothing more to be gained by looking at the
autocorrelation.

Let us now have a look at the cross correlations between signals of adjacent nodes:

for . e signature matrix  can assume  different values as every of the 
diagonal entries can either be  or , but as  and  yield the same  up to a sign
flip and  being also only a scalar factor we expect at most  truly distinct matrices .

Le and right multiplication of (112) with  and  respectively yields

Although we do not know the exact value of the right-hand side of (113), we know that it has to be
diagonal. erefore our problem of estimating , given the cross-correlation  is equivalent to
searching for a  that diagonalises every .

Note, however, that this criterion leaves  still ambiguous with regard to a permutation matrix and
a sign matrix as both do not change the structure of the right-hand side of (113) when premultiplied
to a valid . is fact does not bother us, because a permutation and possible sign flip of the entries
in  still leaves the sources separated. Furthermore, we need to encounter cross-correlations 
that correspond to  pairwise linear independent matrices  for a meaningful estimation [27,
ch. 7.3].

3.5.3 Joint Diagonalisation

As we only have access to estimated cross-correlation matrices , we can not expect to find an
orthonormal matrix  that exactly diagonalises all  jointly. A common expedient is to resort to
approximate joint diagonalisation [27, ch. 7.4]. To formulate the underlying optimisation problem, let
us first introduce the  operator. It operates on a matrix and yields the sum over all squared off-
diagonal elements,

When  is zero,  is perfectly diagonal. By this argument, we are interested in minimising
 jointly for all . As  yields non-negative numbers, an obvious way to

express the joint minimisation is to minimise over the sum,

A proven method to perform this optimisation in an iterative manner is based on the Givens rotation
matrix [28, p. 215] , which can be defined element-wise as
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e Givens rotation matrix describes a rotation by  in one plane determined by  and . e matrix
is orthonormal and we can express every orthonormal matrix as a composition of subsequent Givens
rotations in different planes. e idea is now to iteratively pre- and postmultiply the matrices we want
to diagonalise by  and  until we reach a satisfactory diagonalisation of all cross-correlation matri-
ces. Due to the structure of the Givens rotation, every rotation only affects two off-diagonal elements
and is parametrised by a single scalar quantity . erefore, it is easy to calculate the ideal  in every
iteration step.

Let us denote the matrices we get in each iteration step  by . As starting value we set
 as these are the matrices we want to diagonalise jointly. In every iteration step we

select a pair  by sweeping over all possible combinations with . We can now
calculate the product

e elements of  are given by

Only two off-diagonal elements are affected by the rotation in the th iteration step. ey evaluate to

As no other diagonal elements are affected by the th Givens rotation, the minimisation in the th
iteration step reads

For solving this optimisation task we introduce a substitution to decrease notational complexity:
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Inserting these substitutions and some trigonometric relations, we can rephrase the optimisation prob-
lem as

To optimise for  we calculate the derivative and set it to zero:

We have divided by  to get the last identity in (124). is is reasonable because we expect the
solution to converge to  over the iterations and thus divide by a non-zero number. Now we are
confronted with a quadratic formula in  which has the solutions

As one solution presents a maximum we have to select the correct one carefully. Instead of evaluating
a second derivative of the objective function or inserting the solutions back into the objective function,
we will resort to a more elegant though less rigorous argument: Towards the converged solution we
expect only small angular values of  and also small values for off-diagonal elements, i.e.,  and

 become small as they are quadratic functions in the off-diagonal elements. Furthermore,  is
linear in the off-diagonal elements and thus is expected to decrease as well, tough not as strongly. e
possible solutions thus are approximately given by

Clearly choosing a minus sign in front of the square root gives a large result for  in terms of
magnitude and thus an angle near  for . We expect a small angle, though. Hence we choose the
solution with the added square root.

Realising that

leads us to our final result,
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Having found a recipe for calculating the optimal  in every iteration step, we now can state the whole
iteration: e initialisation reads

e th iteration step can be performed by a Givens rotation with angle

e values of  and  should be swept over all admissible pairs . e algorithm con-
verges towards no additional rotations, i.e., . A reasonable stopping criterion is to check if
every  of the last sweep over  and  has fallen below a predefined threshold.

e matrix  of the last iteration is then the cumulative composition of all rotations that
were performed to approximately diagonalise all empirical correlation matrices. Our estimate of the
basis  is thus given by

And for the slr basis matrix we get

For a numerical evaluation of the method see Section 5.4.
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In this chapter we will look into the problem of clustering compositional data using signature graphs.
e first step of learning the graph from the data will be formulated in the simplex, as well as in the slr
domain. Next we will evalute, which method is of computational advantage by counting operations.
Having learned the graph, we deal with the particularities of clustering balanced graphs in Section 4.3.
e chapter is closed by a numerical study to show the advantage of the proposed framework over ad
hoc methods.

4.1 Learning the Graph
As highlighted in Section 2.2.2 common graph learning algorithms need to assess some sort of dis-
tance between data points. erefore, it is our task to formulate a bivariate function, that yields a
(typically non-negative) value from an ordered set, which is then used by the learning algorithm to
decide whether to place an edge between any two vertices or not. However, in the case of signed and
signature graphs this distance cannot be used as a means to determine the weights of the newly placed
edges. us, we need to design a separate bivariate function, that yields values from .

Let us first reiterate the family of involutions  (cf. (83)). A reasonable foundation for both, the
distance function  and the edge weight function , is to find the involution , that
minimises the distance  between  and :

Note that, although we recycle the symbol , it shall not be interpreted as a matrix that denotes a
specific label, but rather as a description of the relationship between the labels of two clusters. Based
on  we can then introduce the edge weight and distance functions:

e selected learning scheme, makes use of  in order to asses whether to place an edge between
any two nodes. In the case of -NN learning, for instance, every node is connected to its  nearest
neighbours based on this distance metric. If the learning scheme decides to place an edge  is
used to calculate the edge weight. As we want to construct a signature graph, every edge weight must
be composed of a scalar weight part and a sign vector. Using the inverse distance as the scalar part is
reasonable, when viewing the edge weights as a measure of (dis)similarity. e sign vector  on the
other hand describes which involution has explained the relation between  and  best. It is given by
the diagonal elements of .
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4.1.1 Reformulation in the Slr Domain

As we chose the -norm for assessing distances, it is possible to reformulate the equations from above
easily in the slr domain with basis . We therefore introduce the slr counterparts for the offset vector

, as well as the two vectors we want to compare,

Applying these relations to (133), we get

As we have shown in (63), a -norm in the simplex domain can be related directly to a regular 2-norm
in the slr domain, which entails

4.2 Computational Considerations
In this section, we are going to investigate, which of the presented approaches shall be taken as a basis
for graph learning from the standpoint of computational efficiency. e main question we want to
answer is whether the distance computations shall be performed in the simplex domain or in the slr
domain. e -NN or -NN learning [17] are expected to have quadratic complexity in the node count,
as the distance between any pair of nodes has to be calculated. is emphasises the importance of fast
distance calculations. Since the prior identification of the involution typically takes only a fraction of
the data into account, we can and will neglect its impact on computation time.

4.2.1 Simplifications

It can be seen that - due to the affine structure of the involution - the offsets  and  are subtracted
from the datapoints. erefore, it is beneficial to compute this difference once for every datapoint up
front instead of doing it for every possible distance. We mark the quantities aer removal of the offset
by a tick, both in the simplex and in the slr domain,

Applying this substitution to (133) and (136), we get simplified expressions for the norm in both do-
mains,
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where we used 

To minimise the respective norms, one could calculate the norm for every possible , but such an
exhaustive search is not necessary in the slr formulation. e additive structure of the norm allows
spliing the minimisation into  independent minimisations – one for every vector entry:

We have used the fact that the quadratic function is monotonic increasing for non-negative arguments.
us, the minimisation can also be performed over the squared norm and since the resulting sum has
only non-negative summands that are decoupled, every summand can be minimised individually. Be-
cause  can only be chosen as  or , the summands are minimised if  and  have the same
sign. us, the distance-minimising signs  are given by

where

Note that this sign function is modified to accommodate for the case of a zero as argument, in which
case both choices of  yield the same summand, making its choice arbitrary.

Unfortunately, the -norm does not exhibit such an exploitable structure in the simplex domain, leav-
ing only the possibility of exhaustive search among  different choices for .

4.2.2 Operation Counts

We can now calculate how many elementary mathematical operations are necessary for learning the
graph, i.e., to acquire the distance between any two vertices. e additional cost of the graph construc-
tion algorithm, for instance -NN (cf. Section 2.2.2), is not of interest in this comparison as it does not
depend on how the distances were acquired.

e elementary operations are addition (or equivalently subtraction), multiplication, division, power,
logarithm and boolean exclusive or (XOR). We assume the compositional data to be from  and the
number of data points/vertices to be .

e calculation can be split into two stages: First, every data point is preconditioned, e.g., by subtract-
ing an offset. is is obviously done once per vertex and thus  times. Aerwards, the actual distances
are calculated, which will be performed , assuming the distance metric is commutative in its
operands.

e preconditioning in the simplex domain consists of a subtraction in the compositional sense, i.e., a
perturbation. Looking at Definition 2.3 reveals that  multiplications have to be performed inside the
closure and the closure itself amounts to  additions and  divisions according to Definition 2.2.
is totals to  multiplications,  divisions and  additions.

Calculation of the squared -norm equals the calculation of the inner product defined in Definition 2.5.
At first glance it looks like  logarithms have to be calculated, but once again we can exploit the
structure of the problem to reduce the computational effort:
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us, we would only have to take  logarithms, perform  subtraction,  multiplications and
 additions per inner product, but as we were able to express the -norm as a symmetric inner

product (cf. (69)), we can replace  by  in the Aitchison inner product for an even stronger simplifi-
cation,

is leaves us with only  logarithms,  additions, 1 subtraction and  products.

According to Definition 2.2, applying the direct endomorphism to  amounts to  powers and
 products inside the closure as well as  additions and  divisions for the closure it-

self. We will assume that all  as well as  are precomputed and thus do not include them into
our record. For calculating the squared -norm we need to compute two of these endomorphisms, a
perturbation, and an inner product. e total amounts per operation can be seen in Table 1. Bear in
mind that the total amounts still have to be multiplied by , as the norm must be evaluated with
all possible  for minimisation.

Working in the slr domain poses a higher upfront cost, because every data vector needs to be converted
to it first. As we can see from Definition 3.1 we have to compute the clr transform first. Once again, we
can optimise the canonical Definition 2.1 for simpler computation. Recall that the clr transform made
use of

e clr transform can then be rewrien as
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is reformulation eradicated all multiplications and the power. We are le with  logarithms, 
additions, one multiplications and  subtractions per vertex. Additionally,  is postmultiplied to
the clrs, which amounts to another  multiplications and  additions. Finally,  is
subtracted from every vertex, which amounts to another  subtractions. Table 2 compiles these
results.

Operation Amount Add/Sub Mult Div Log Pow

Inner product 1

Endomorphism 2

Perturbation 1

Total

Table 1: Operation counts in the simplex.

Operation Amount Add/Sub Mult Div Log Pow

Clr 1

Matrix product ( ) 1

Difference ( ) 1

Total

Table 2: Operation counts for switching to the slr domain.

e computational costs for determining the optimum sign flip vector  per node pair are exception-
ally low. It suffices to apply the bitwise XOR to the sign bits of the slr vector entries. Calculating the
squared norm adds the complexity of  subtractions,  multiplications and  additions.

e final results are collected in Table 3 and show that working in the slr domain is truly advantageous
due to mainly two reasons: e minimisation can be simplified drastically and complex operations like
the logarithm and the power do not appear in the learning stage, which has quadratical complexity on
its own, but only in the preparational step, that in itself has linear complexity.

Operation Amount Add/Sub Mult Div Log Pow XOR

Upfront
simplex

Learning
simplex

Upfront slr

Learning slr

Table 3: Comparison of operation counts for simplex- and slr-based learning.
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4.3 Clustering
e idea behind clustering signature graphs is to cluster every layer individually into two vertex sets.
is can be thought of as annotating every node with  binary labels, one for every layer. is
gives  possible combinations for labels and thus results effectively in a clustering with up to 
clusters.

As clustering in the case of a balanced graph is well understood [21], we will proceed to show that a
graph constructed according to Section 4.1 is in fact balanced.

4.3.1 Inherent Balancedness

A signed graph is called balanced if the number of negative edges in every cycle is even (cf. Sec-
tion 2.2.3). Balancedness is an interesting property in the context of clustering, as it is equivalent to
stating that the vertex set can be divided into two disjoint sets such that every edge between sets is
negative while every edge connecting two nodes in the same set is positive.

e property of balancedness was also translated to signature graphs. ere it means that a graph is
balanced if and only if every layer (which is a simple, signed graph) is balanced. us, we can prove the
overall balancedness of the learned graph if we can show that every layer is balanced by construction.

e argument is understood best in the slr domain aer subtracting : e sample space is ,
which means that all samples can be ascribed to one of  orthants (if we neglect the case of data
vectors with at least one zero entry, which oen has zero probability anyway). As seen in the previous
section, we can perform the minimisation, which determines the signature vector, element-wise,

is means the following: If the datapoints  and  live on different sides of the hyperplane that is
defined by having the th vector entry equal 0, then the edge sign on the th layer is negative, or else
positive. erefore, we have a dichotomy of vertices, having either negative or positive values as th
vector entry: Every edge connecting two vertices on the same side of the hyperplane is positive and
edges that cross the hyperplane are negative. is makes the th layer balanced, i.e., every layer, and
thus the whole graph.

ese insights prove that classification based on the above graph construction yields no beer results
than classifying based on the orthant, in which any datapoint lies.

4.4 Numerical Experiments
e objective of this section is to validate the previously discussed strategies to deal with the classifi-
cation of composite data based on numerical studies. A comparison with ad-hoc methods that neglect
the structure inherent to compositional data will be performed.
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4.4.1 Data Synthesis

To synthesise data we use the data model introduced in (87), i.e., we sample some distribution, multiply
by the sign matrix, add an offset and apply the inverse slr transform. We chose a distribution derived
from an independent, identically distributed (i.i.d.), normal random vector  as follows:

is can be understood as a rescaling of the normal distribution, i.e., an augmentation of its variance,
based on the direction of the sampled value. us, the sigma neighbourhoods do not form spheres
centred around  in the 2-norm sense but in the 6-norm sense. We define the signal-to-noise ratio
(SNR) based on the variance of  as .

e basis  and the offset  are also randomly drawn for every data set. e entries of  are sampled
from a uniform distribution in the interval . To randomly generate the basis vectors, we first
sample a zero-mean i.i.d. standard normal distribution and then project these vectors to the hyperplane
normal to  in order to acquire valid basis vectors. To prevent numerical instabilities we will not allow
that any pair of basis vectors exhibits an absolute cosine similarity of more than  and no basis vector
with a norm less than . ese properties are enforced by rejecting sampled basis vectors that do not
comply.

4.4.2 Exemplary Plots

e case  is most suitable for visually representing the previously discussed data generation: We
start out in the slr domain, i.e., aer sampling 100 values from  per cluster, multiplying them with the
corresponding sign matrix from their right side and translating all resulting points by a fixed vector

. e resulting plot is shown in Figure 1.

It is apparent that the four clusters exhibit a good separation in the slr domain. e implicit basis
(indicated by the yellow vectors) is orthogonal, describing two axes of symmetry – however these axes
do not intersect in the origin due to the deterministic offset . e 1σ, 2σ and 3σ neighbourhoods are
highlighted in light grey.

For the sake of completeness, we also provide a plot in an arbitrary ilr domain, given by Figure 2. e
basis was chosen to be

In this representation, the two vectors that represented the translated standard basis vectors in the slr
domain, are no longer orthogonal. Accordingly, the point clouds are skewed.
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Figure 1: Data in the slr domain.

Figure 2: Data in the ilr domain.
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Figure 3: Data in the clr domain.

Looking at the same data in the clr domain also reveals a notable skew, as the chosen basis (denoted
in yellow) is not orthonormal. All points lay in the plane orthogonal to . In Figure 3 we chose an
orthographic projection that has this plane as projection plane. As all transforms up to this point were
linear, the clusters are well separated, still.

Figure 4: Data in the simplex domain.

Finally, Figure 4 shows the data in the simplex domain. Due to the nonlinear relationship between the
clr domain and the simplex, scaling basis vectors in the clr – or powering vectors to speak in terms of
the simplex – leads to the yellow curves, instead of straight lines. Especially towards the border of the
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simplex, the density of the datapoints increases w.r.t. their pre-transformed counterparts, with fatal
consequences: If the blue and green clusters were not marked differently, they could be misunderstood
for being one joint cluster, if we would use the euclidean norm as distance measure.

4.4.3 Performance of the Involution Estimation

We will look at different variations w.r.t. the number of pre-labelled nodes and analyse the performance
of the estimation described in Section 3.4 over different SNR values. As a performance metric we chose
the normalised Frobenius norm and the 2-norm for the errors in  and  respectively,

As the offset and the basis are chosen randomly, the resulting estimation errors are random variables,
too. We will characterise them by their (empirical) mean in the following plots. e dimension was set
to  and the number of labelled data points is marked with . Only 4 distinct labels were used,
each assigned to  datapoints.

Figure 5 and Figure 6 show the results. It is seen that the estimation performance improves with in-
creasing SNR. We observe severe improvement in the low SNR regime when going from  to

, whereas the number of labelled vectors plays hardly any role for the performance at high SNR
values. e errors roughly decrease by an order of magnitude per 20 dB for high SNRs.

SNR
Figure 5: Mean estimation errors in .
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SNR
Figure 6: Mean estimation errors in .

4.4.4 Comparison of Clustering Methods

We will look at different approaches to clustering data and their performance in terms of the misclas-
sification rate. e data model of the previous section is used here as well to generate datapoints. We
once again work with a dimension of  and adopted the same definition of the SNR as before. e
test data was generated for all  clusters, with 100 points each, totalling to 800 datapoints per
test set. For the identification, we randomly drew  datapoints from the set, with the only condition
of  having full rank.

Four methods will be compared, all relying on -NN learning a graph with  and subsequent
spectral clustering. e first and most naive method is based on constructing an unsigned graph in
the simplex domain, i.e., with the Euclidean norm as distance measure. e edge weights  are the
dampened inverses of the distances d, calculated by

e second method is a slight modification in the sense that the distance is measured in the clr domain,
or, in other words, the Aitchison distance is used to assess the nearest neighbours and corresponding
edge weights (once again dampened). In the third case, an unsigned graph was built using the data-
points transferred to the slr domain. e preferred method, however, is to construct a signature graph
over the datapoints using the distance in the slr domain. In order to transform the datapoints to the slr
domain, we used four different bases  and offsets , respectively, either based on perfect knowledge
or on estimations with 1% ( ), 2% ( ) and 3% ( ) known labels.

For each SNR, 1000 runs were performed with subsequent averaging over the misclassification rate.
As the cluster labels might be permuted w.r.t. the ground truth, the assessment of the misclassification
rate was based on the Hungarian algorithm [29].
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Figure 7: Misclassification rate of different methods based on spectral clustering over SNR.
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Figure 8: Misclassification rate of different methods based on spectral clustering over SNR, logarithmic
representation.

Figure 7 and Figure 8 compare the misclassification rates for the methods described above: Zero mis-
classification is impossible to achieve using unsigned graphs, even in the high SNR regime, as we
always hit a boom at around 18%. However, the performance in the medium SNR regime gets beer,
moving from simplex to clr and finally to slr (with perfect knowledge about the involution).

Signature graphs, on the other hand, achieve flawless classification in the high SNR regime. Depending
on the number of preallocated labels for estimating the involution, the method performs differently in
the transient area, converging to the lower bound, which uses perfect knowledge about the involution.
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4.5 Multiple Samples
Up to now we have assumed to have only one datapoint per node. However, we might face the situ-
ation that multiple datapoints are assigned to one node, for instance multiple measurements of one
sensor at different points in time, that can be modelled as sampled random variables. Asserting the
distance between them, in order to learn the graph, must therefore incorporate an expectation. We
straightforwardly extend our previous notion of distance directly in the simplified slr domain:

When working with the sampled data, i.e., multiple realisations of  and , we have to replace the
expectation and covariance operations in (152) by their empirical counterparts. e th entry of the
sign vector is now dependent on the sign of the covariance between the th components in the random
vectors instead of relying on the sign of their product. In the case of a single sample, however, the
empirical covariance falls back to a simple product, thus being compatible to our previous approach.

It is noteworthy that a graph learned based on this extended framework is not guaranteed to be bal-
anced any longer. is stems from the fact, that three scalar random variables can have pairwise cor-
relations that are negative and thus potentially form a cycle with three negative edges as the following
example shows.

Let  be a zero-mean random vector with two entries and identity covariance matrix,

Consider now the transformed random vector  with

e correlation of this vector then equals
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As all off-diagonal elements are negative, every pairwise correlation of the entries in  is negative.
Looking at three generic scalars, on the other hand, it is impossible that every pair of them has different
signs, governing balancedness if they form a cycle.



5 Interpolation

In this chapter we will look at common interpolation strategies in the context of signature graphs. We
will start out with an unsigned, unweighted graph, which will then be altered to become a signature
graph, based on observed data. In the second part of this chapter we will discuss how to interpolate
partly observed signals on this graph and discover computational advantages that can be exploited in
the case of balanced graphs. e chapter is closed with a numerical study that indicates the function-
ality of the provided methods.

5.1 Learning Edge Weights
Let us face the following scenario: We observe a compositional-valued graph signal, for instance from
a sensor network that measures the compounds of a gas at different locations. Based on our knowl-
edge about the spatial distribution of the sensors we build a graph that expresses our expectation of
pairwise correlations by unweighted edges. For instance, we might build the graph using -NN con-
struction as we expect that sensors in close proximity to each other exhibit some sort of correlation.
We neither specify how they are correlated nor how strong of a correlation we expect. As we have seen
in Section 3.5, we can proceed to identify the basis, which separates our signal into  mutually
uncorrelated components and constitutes the involution.

Once we have performed this identification based on observed data, we aim to alter the graph in two
ways: As the graph structure was just derived from an educated guess about the signals behaviour,
it might be beneficial to now also incorporate the empirical knowledge from our observed data in it.
is can be done by removing edges between nodes for which we have estimated a low correlation.
Furthermore, we want to add signature weights to the edges that we keep.

Let us denote the slr basis identified according to Section 3.5 by  and the  observed graph signals
used for this identification task by

e data transformed to the slr domain is denoted by

Our initial graph shall be called . We now define the weight function,
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based on the empirical correlations,

Note that we can also directly pull these empirical correlations from intermediate results of the iden-
tification task, i.e., without explicitly calculating . ey are given by the diagonal elements of the
matrix  in the last iteration of the joint diagonalisation (see (130)),

In the next step we remove edges, which have a low weight aached. For the subsequent interpolation
low-weight edges do not play a significant role and could therefore be kept, however, it might be ben-
eficial from a computational perspective to make the Laplacian more sparse without losing essential
information. We can describe this step by introducing a modified weight function,

e threshold  has to be chosen carefully. One way to asses a suitable value is to plot a histogram of
the weight magnitudes  and look for a phase transition in it.

5.2 Balanced Signature Graphs
As we will see in Section 5.3, balanced signature graphs provide computational advantages over un-
balanced signature graphs when we apply common interpolation strategies. Although balancedness
seems like a rather strict constraint, it is actually oen encountered in real world data, e.g., in social
networks [30]. If we are provided with an unbalanced graph (for instance by construction as described
in the previous section) we might raise the question if it is at least approximately balanced and, if so,
how we can balance it.

5.2.1 Assessing Unbalancedness Quantitatively

Under the assumption that our layer decorrelation efforts in the involutions identification were suc-
cessful, it is reasonable to look at the graph layers independently, each constituting an ordinary signed
graph. Recall that we call a signature graph balanced if and only if all layers are individually balanced.
us we can asses the potential unbalancedness of our signature graph by looking at the unbalanced-
ness of every layer.

Two measures were proposed in the literature for characterising unbalancedness of a signed graph:
e straightforward measure – at least by definition – is the frustration index . It is the minimum
number of edge changes we have to perform to convert our unbalanced graph into a balanced one.
Although being an easy to grasp definition, calculation of  turns out to be NP-hard. is is due to the
fact that it is related to the Max-Cut problem, which is known to be NP-hard in itself [31].
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Another measure, which is computationally feasible, but not as simple to interpret is the so-called
algebraic conflict. It is the smallest eigenvalue  of the Laplacian . e reasoning behind this
is that a balanced graph has exactly zero as smallest eigenvalue [32] and a near-zero value, therefore,
indicates approximate balancedness. Indeed, according to [33, ch. 4], adding a normalisation relates
the algebraic conflict approximatively to the frustration index by

If this approximative frustration index is significantly lower than the number of edges  on all layers
of the graph we can assume approximate balancedness.

5.2.2 Balancing the Graph

e problem of balancing a signed graph is closely related to computing the frustration index: We look
for the smallest set of edges we need to alter to arrive at a signed graph. In fact, we can reduce the
problem of calculating the frustration index to the graph balancing problem, as the frustration index
is a by-product of the balancing problem, simply as the sum of all changed edges. erefore, it is NP-
hard as well.

Commonly, edge signs are flipped in order to arrive at a balanced graph, however this seems wrong
in the context of interpolation, as our graph then contains edges that do not conform with our prior
observations and thus do not provide a good model on which to base the interpolation. It is much more
favourable to discard edges rather than altering them. Ultimately, the underlying problem does not
change as edge removal and sign flip both resolve the same conflict in the signed graph.

As exact evaluation of the problem is already infeasible for signed graphs, we can not expect to find
a feasible solution in the realm of signature graphs. Note that the balancing problem on signature
graphs is not decomposable into layer-wise signed graph balancing problems. is is due to the fact
that changing the same edge at two different layers should not be penalised as two edge changes but
rather as one. is couples the problems inextricably.

Multiple balancing algorithms on unweighted signed graphs were proposed by Diao [31]. We will adapt
his local search algorithm to weighted signature graphs, but let us first look into the original formula-
tion by Diao et al. as a starting point: e algorithm begins by seing up two vertex sets,  and

. e goal is now to move vertices between sets such that the number of negative edges between
sets is as high as possible, while the edges between vertices in the same set are preferably positive. e
algorithm does this by iterating repeatedly over the vertices  and checks whether it might be
favourable to move the vertex from one set to the other. If so, the vertex is moved. Clearly, this might
only converge to a local solution of the underlying optimisation problem. At the end we either flip the
edge signs that do not agree with the vertex partition or discard them as proposed previously.

e algorithm can be equivalently reformulated in terms of vertex labels, i.e., we store the vertices
affiliation with one of the sets as a label local to the node. We assign the label  to the th node
to mark a vertex in  and  for one in . is allows us to formulate the local optimisation in
terms of labels,
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is can be understood as a voting procedure in which all nodes  adjacent to node  vote for a their
label if  and for the opposite label if . e extension to weighted graphs
is now achieved straight forwardly, by admiing real values as weights. e voting analogy remains
intact, but edges with larger weight have more impact.

Moving to signature graphs with  layers, we have to maintain  sets or equivalently labels
of dimension . e local optimisation now reads

with  being the indicator function and  denoting the Hadamard product.  and  shall be
understood according to the convention introduced in Section 2.2. Unfortunately, this minimisation
does not decompose into layer-wise minimisations, which is no surprise as we have argued above
already. For small , we can approach it in a brute-force manner, but for larger  the minimisation
becomes infeasible to the authors best knowledge.

e rest of the algorithm is adapted accordingly: Edges that do not comply with the converged solution
are removed, yielding the new edge set of the balanced graph,

5.3 Interpolation on Balanced Signature Graphs
e two interpolation methods described in Section 2.2.5 will next be examined in the context of sig-
nature graphs. e general idea is that we perform the interpolation layer by layer as the basis identi-
fication has already untangled the inter-layer correlations.

5.3.1 Bandlimited Reconstruction

e bandlimited reconstruction assumes that only a limited number  of graph Fourier basis vectors
are excited. Lets recall (47),

Remember that  is the matrix that formally dismisses all unobserved values of the graph signal and
 is containing only the first  graph Fourier basis vectors. e interpolation comes down to calcu-

lating a matrix vector product.  is the same for every layer, as we either observe the full signal at a
node, or none, but  generally differs across layers. In the special case of balanced graphs, however,
it can be show that , and therefore , is indeed equal across the layers up to a row-wise sign flip
[8]. erefore we can always express the graph Fourier basis of a balanced graph by a product of the
graph Fourier basis belonging to the unsigned counterpart  and a diagonal sign flip matrix ,

Inserting this relation into (166), yields
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As  and  both are diagonal and square by construction, they commute. Furthermore, we note
that  and introduce  such that

 is the sign flip matrix  reduced to observed nodes and can be formally calculated from  and ,

We can now write the reconstruction as

(171) shows that the interpolation of a signed graph can be performed by flipping the the signs of the
signal values according to , interpolating over the unsigned graph and finally flipping the signs of
the interpolated signal again.

e computational gains are obvious: We only need to calculate the Laplacians eigenvectors once for
the unsigned graph, in contrast to layer-wise. Furthermore, the pseudo-inverse has to be calculated
only once. Additionally, we need the matrix , but its calculation is not very expensive: One way
would be to acquire the diagonal elements of  from the sign paern of the first eigenvector. Another
option is to use the labels that were assigned by the balancing algorithm presented in the previous
section.

5.3.2 Laplacian Reconstruction

In the same spirit we want to reduce the problem of Laplacian reconstruction on balanced signature
graphs. Let us recall for that purpose the reconstructor from (52):

Naively, we have to calculate the term called interpolator for every layer individually. Once again the
idea is to exploit the fact that the eigenvectors only switch signs when switching to the unsigned ver-
sion of the graph, while the eigenvalues do not change at all. As we can decompose the Laplacian into

we can also use the sign switching matrix defined in the previous section to state the relationship
between the balanced signed and the unsigned graph (  now takes the role of ),

us, we can write the interpolation as

Once again arguing that the expression  is diagonal and that  self-inverse as well as diagonal,
we can pull  out,
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We encounter the same structure as in the bandlimited case with all the mentioned benefits: e in-
terpolation on the signed graph comes down to an interpolation on the unsigned graph with anterior
and posterior sign switches in the respective graph signals.

5.4 Numerical Experiments
In this section, we evaluate the performance of the blind involution identification independently, as
well as the bandlimited interpolation method presented in Section 5.3. e creation of the synthetic
graph signals used is described next.

5.4.1 Data Synthesis

As we want to apply a method from Section 5.3, we will work on balanced graphs only. e starting
point of the signals synthesis is an unsigned unweighted graph. In our case, we used a graph repre-
senting the municipalities of Austria (in prospect of future work on demographic/voting data). Each
vertex represents one municipality. e edges were constructed by -NN construction with 
and using the spatial distance between municipality centres as metric. e graph has 2118 vertices,
12216 edges and is connected.

Since we want to interpolate on the graph, signals on it must exhibit some sort of smoothness. To gen-
erate them, we first calculate the  first eigenvectors of the graph Laplacian, , which will
serve as the signal’s basis, that ensures low-pass behaviour. e first stage of the signal generation is
to draw a random matrix  with entries distributed standard normally and independent.
We then calculate the matrix product,

By this construction, the values across columns of  are uncorrelated, but the columns in itself feature
a correlation induced by the graph structure.  is now a graph signal, with each row belonging to one
node of the graph.

Connected nodes tend to exhibit positive correlations, but the signals we are interested in shall also
show some strong negative correlations between adjacent nodes, that we can characterise with signa-
ture graphs conveniently. e idea is now to flip the sign of some signal values. If only one of two
adjacent nodes gets flipped, the positive correlation along the connecting edge becomes negative. Fur-
thermore, this enforces balancedness by construction. We will describe the sign flip operation as a
Hadamard product,
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e matrix  is constructed randomly, by starting out with an all ones matrix and flipping every en-
try with a probability of , but it remains constant across all observations, as it is part of the graphs
description. One may think of the sign flips as an introduction of deterministic high frequency com-
ponents into the signal.

Still  is uncorrelated across layers/columns, i.e., our interpolation problem might still be solved by
looking at individual layers on the graph and perform interpolation tasks on each layer individually.
e logical next step is to postmultiply by a randomly chosen but constant basis 
to get

or in compositional terms, to transform the data to the simplex with basis ,

Recall from Section 3.5.1 that  and  are related by an ilr basis ,

Having established a framework to generate the graph signals  or  with the desired properties of
inter-layer correlations based on  and intra-layer correlations based on the graphs structure we may
now direct our aention to a performance evaluation of the blind basis identification.

5.4.2 Identification Performance

To evaluate the performance of the basis identification, we want to calculate the error between the
estimated basis  and the ground truth that we have used for synthesis. However, a mere subtraction
of the two matrices with subsequent calculation of the Frobenius norm is not viable, as the estimated
basis is ambiguous with respect to a permutation, scaling and column-wise sign flips (cf. Section 3.5.2).

To deal with the scaling aspect, we start out by normalising  and ,

e error can then be defined as

with the unknown permutation and sign-flip matrix . To guess the correct  we make use of the
following ad hoc method. We postmultiply the content of the norm, which we expect to be close to ,
by the inverse of ,

As , we can reformulate this identity as
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e right-hand side therefore gives an approximation to the transposed permutation matrix. To convert
 to a valid permutation matrix we look for the position of the entry in  with the largest magnitude

and decide that our permutation matrix  is  at this position, depending on the sign of that entry
in . en we proceed to do the same for the largest value in  excluding the row and column of
the previously selected position. We keep iterating this step, always excluding all previously selected
rows and columns from the search set until we exclude the whole matrix. en we are le with a valid
signed permutation matrix . We do not give a guarantee that this solution is optimal in the sense

when encountering large estimation errors.

For the sign flip probability we have chosen . is results in a probability of 32% that any
given edge is negative, as the underlying probability that the nodes connected by an edge have differ-
ent signs can be calculated by

For every number of observations we have run the estimation over 1000 different randomly generated
signals using the first 10% of eigenvectors. We then have calculated the sample mean and median of
the errors . ey are depicted in Figure 9 on a log-log scale.

As expected, we observe a decrease in the error with increasing observation data. In the case of the
median error the decrease is linear in the log-log representation. e mean error also initially decreases
linearly, but hits a plateau at 10 observations and 2% relative error energy. is behaviour suggests
that we encounter an error distribution with large outliers that shi the mean up but do not affect the
median performance.

Observations 

Er
ro

r 

mean
median

Figure 9: Mean and median estimation errors in .
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5.4.3 Interpolation Performance

Let us now turn our aention to the actual interpolation. We keep using the signal synthesis described
in Section 5.4.1, but decrease the graph’s size to reduce the computational burden. is is done by
selecting the subgraph that describes Upper Austria exclusively, leaving us with 438 vertices and 2360
edges.

As we know that the synthesised signal is bandlimited, we will focus on bandlimited reconstruction.
We are using 10% of the eigenvectors for both, synthesis and reconstruction. Furthermore, we assume
perfect knowledge about the graph instead of learning it from the observed data, in order to assess the
interpolation performance individually. e involution, on the other hand, was estimated from  full
observations.

e actual reconstruction is performed on signals of which we have discarded half of the signal values
by random selection. e reconstruction error is calculated as error norm between the actual signal 
and its reconstruction ,

A normalisation to the signal energy is imperative for a fair comparison,

e results are displayed in Figure 10 by means of three sample statistics – mean, median and min-
imum.

Observations 
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Figure 10: Mean and median and minimum reconstruction errors.
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It is once again obvious that there is a large spread between median and mean performance. erefore,
we want to examine the underlying reasons for the occurrence of large interpolation errors. To do so,
we have ploed the interpolation error  over the involution estimation error  in Figure 11.
And indeed we find a fairly strong correlation between these errors. us, we conclude that the inter-
polation is quite sensitive to errors in the basis of the involution and a good estimate of the involution
is of utmost importance for a successful reconstruction.

Error 

Er
ro

r 

Figure 11: Bandlimited reconstruction error over involution estimation error.



6 Conclusion and Outlook

is chapter’s aim is to recall our findings in the three areas, involutions in compositional data, classi-
fication, and interpolation. We also want to point towards open questions that could not be answered in
the context of this work and might provide starting points for future research about signature graphs.

6.1 Involutions
We have identified the class of linear and affine involutions in compositional data. Furthermore, we
have introduced the slr transform as a tool for interpreting these involutions as well as a preparatory
stage for subsequent graph learning. A data model adapted to the necessities of compositional data
was stated and used as a foundation for the identification of the involution’s basis by means of labelled
data. We then took another perspective on the identification task were we assumed to know which
datapoints exhibit a significant pairwise correlation, e.g., from knowing the topological structure of an
underlying graph. Methods from blind source estimation were transferred towards application over
the graph domain as a means to identify a linear involution. Both methods were proven to work, how-
ever the blind estimation exhibits a large gap between mean and median performance. It is yet to be
investigated what causes the seldom but large increase in error and how it can be eventually prevented
– especially since we have shown that minimising the error is crucial for good interpolation results.

6.2 Classification
With regard to classification, we have shown a method to learn a signature graph from compositional
data given the involution. Learning in the slr domain, as opposed to the simplex domain, was shown
to be computationally advantageous as the combinatorial minimisation occurring in the distance cal-
culation can be solved analytically in the slr domain. e proposed learning method was proven to
produce balanced graphs, making perfect layer-wise clustering possible. In a numerical study we have
shown the advantage of signature graphs for clustering synthetic data over simple unsigned graphs.

Using ordinary graphs for clustering relies on the concept of sparse embedding: e -dimensional
relation between vector valued datapoints is reduced to a one-dimensional distance. With -layered
signature graphs on the other hand, we express the relationship between  distinct features of the
datapoints. In this work, we have chosen the extreme case of , i.e., we did not perform a re-
duction in dimension at all, which somehow contradicts the original idea of a sparse embedding for
graph clustering. Also, the requirement on the symmetries in the data may be to strict for many real
world datasets.

erefore, we think that the middle ground of using signature graphs with  is a promising ap-
proach which shall be looked into in the future and that for two reasons: It beer catches the spirit
of sparse embedding and it is less demanding on the symmetries in the data. In fact, the symmetries
must only be present in the sparse embedding of the data. How to design such an embedding is yet to
be explored in depth.
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6.3 Interpolation
Our main contribution to the untouched field of interpolation on signature graphs was the transfer
of common reconstruction methods on ordinary graphs – namely Laplacian and bandlimited recon-
struction – to signature graphs. Significant simplifications in the calculation could be achieved under
the condition of balancedness. This motivated the statement of an approximate criterion whether a
signature graph is nearly balanced. We also transferred an algorithm to balance signed graphs for its
use in the realm of signature graphs. A numerical study of the bandlimited reconstruction was con-
ducted and has uncovered a strong dependency between the quality of the involution’s estimate and
the performance of the bandlimited interpolation. How to decrease the interpolations sensitivity to
errors in the involution’s description is yet to be investigated.
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