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Kurzfassung

In den letzten Jahren hat sich die Global Navigation Satellite System-Reflectometry
(GNSS-R) als vielversprechende Technologie für die Fernerkundung der Bodenfeuchte
herauskristallisiert, die einen kostengünstigen, aber noch sehr experimentellen Ansatz bie-
tet. Ein wesentliches Problem der von GNSS-R abgeleiteten Bodenfeuchtedatenprodukte
sind die erheblichen räumlich-zeitlichen Datenlücken, die für verschiedene Anwendungen
problematisch sein können. Diese Lücken können durch die Verwendung spatiotem-
poraler Interpolationsalgorithmen gemildert oder sogar beseitigt werden. Der derzeit
modernste spatiotemporale Interpolationsalgorithmus für GNSS-R-Bodenfeuchtedaten,
die Previously-Observed Behavior Interpolation (POBI), beruht auf dem Training eines
großen Ensembles von ortsspezifischen Regressionsmodellen, was zu Ineffizienzen bei der
Informationskodierung und Parameterspeicherung führt. Um diese Einschränkung zu
beheben, schlagen wir Deep Convolutional Spatiotemporal Interpolation (DCSTI) vor,
eine neuartige Lösung für das Problem der spatiotemporalen Interpolation von GNSS-R
Bodenfeuchtedaten. DCSTI nutzt Deep Learning, um ein einziges Regressionsmodell zu
trainieren, das sowohl die allgemeinen als auch die regionsspezifischen spatiotemporalen
Bodenfeuchtemuster lernen kann und somit an mehreren Orten anwendbar ist. Um diese
Lösung zu bewerten, führen wir vergleichende Experimente durch, bei denen sowohl POBI
als auch DCSTI verwendet werden, um spatiotemporale Lücken in Bodenfeuchtigkeits-
daten zu füllen, die von den CYGNSS-Satelliten der NASA gesammelt wurden. Unsere
Ergebnisse zeigen, dass DCSTI in der Lage ist, Interpolationsfehler zu erreichen, die mit
denen von POBI vergleichbar sind und dabei wesentlich weniger Parameter benötigt. Mit
diesen Ergebnissen versuchen wir, einen neuen Ansatz für die Verwendung von Deep
Learning bei der räumlich-zeitlichen Interpolation von GNSS-R-Daten zu entwickeln.
Insbesondere erwarten wir, dass dieser Ansatz signifikante Vorteile bei der Analyse von
Bodenfeuchtedaten aus zukünftigen GNSS-R Missionen wie ESA’s HydroGNSS bietet,
indem er Transfer-Learning-Techniken nutzt, um die Qualität zukünftiger Datenprodukte
zu verbessern.
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Abstract

In recent years, Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged
as a promising technology for remotely sensing soil moisture, offering a cost-effective, yet
still very experimental approach. A significant challenge posed by GNSS-R-derived soil
moisture data products is the presence of significant spatiotemporal data gaps, which can
be problematic for various applications. These gaps can be mitigated or even eliminated
through the usage spatiotemporal interpolation algorithms. The current state-of-the-art
spatiotemporal interpolation algorithm for GNSS-R soil moisture data, Previously-
Observed Behavior Interpolation (POBI), relies on the training of a large ensemble of
location-specific regression models, which leads to inefficiencies in information encoding
and parameter storage. To address this limitation, we propose Deep Convolutional
Spatiotemporal Interpolation (DCSTI), a novel solution for the problem of spatiotemporal
interpolation of GNSS-R soil moisture data. DCSTI employs deep learning to train a
single regression model that is capable of learning both the overall and the region-specific
spatiotemporal soil moisture patterns, thus being applicable across multiple locations. In
order to evaluate this solution, we conduct comparative experiments where both POBI
and DCSTI are used to fill spatiotemporal gaps in soil moisture data collected by NASA’s
CYGNSS satellites. Our results indicate that DCSTI is capable of achieving interpolation
error levels comparable to those offered by POBI, while also demanding substantially
fewer parameters. With these findings, we seek to establish a new framework for the
usage of deep learning in spatiotemporal interpolation of GNSS-R data. In particular,
we anticipate that this framework will offer significant benefits in the analysis of soil
moisture data from upcoming GNSS-R missions such as ESA’s HydroGNSS, leveraging
transfer learning techniques to enhance the quality of future data products.
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CHAPTER 1
Introduction

1.1 Motivation

As one of the 55 Essential Climate Variables (ECVs) currently listed by the World
Meteorological Organization’s Global Climate Observing System (GCOS) [BA12], Soil
Moisture (SM) is known to play a critical role in a myriad of natural and human-driven
phenomena within the Earth system. For fields like geography, hydrology, climatology
and other Earth sciences, the understanding of soil moisture dynamics can be seen both
as an end goal and as a valuable component in the modelling of related phenomena.
For fields like meteorology, agronomy and disaster management, knowledge about soil
moisture can deliver significant practical value to forecasting, planning and decision
making [LML+11] [SCD+10].

Thus, the ability to collect accurate, reliable and timely measurements of soil moisture is
relevant for a multitude of human endeavors, especially in times of accelerating climate
change. For many applications, it is also of great importance that the soil moisture
measurements are collected at a sampling rate that is sufficiently dense across both the
spatial and temporal domains, in a way that all the potentially relevant physical dynamics
are successfully captured. Moreover, several applications also require soil moisture data
products that provide an extensive spatial coverage, sometimes encompassing the entire
globe.

The notions of spatial and temporal distributions of the measurements within a soil
moisture data product are often aggregated, somewhat loosely, within the concept of a
product’s spatiotemporal resolution. Different methods of soil moisture data acquisition
have different strengths and weaknesses in terms of spatiotemporal resolution, and
choosing between methods usually involves a trade-off between spatial and temporal
sampling rates.
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1. Introduction

The most traditional technique for obtaining soil moisture measurements involves using
in-situ sensors [BSJ+19], which are sensors that must be directly installed in the locations
of interest and are able to measure the moisture of the soil directly adjacent to them,
with a very dense temporal sampling rate, but under a very limited spatial distribution.

Since the turn of the century, Remote Sensing (RS) systems have also become an
increasingly valuable tool for acquiring soil moisture data [dD16]. Those systems make
use of electromagnetic sensors embarked on Earth observation (EO) satellites and, with
the help of complex data processing and physical modelling pipelines, are able to “retrieve”
SM measurements at a distance, achieving a dense spatial distribution and a wide or even
global spatial coverage. This, however, comes the cost of a coarser sampling rate across
the time domain due to the long revisit intervals at each location. Of particular relevance
for remote sensing of soil moisture are the microwave sensors that are embarked on
satellite missions such as SMAP [ENO+10], SMOS [KWW+10] and ASCAT [WHK+13],
all of which have already yielded well-developed and mature SM data products with a
multitude of users in the scientific community, as well as in the private and public sectors.

Over the last decade, there has also been a growing interest in usage of Global Navigation
Satellite System-Reflectometry (GNSS-R) systems for the retrieval of SM measurements,
such as NASA’s CYGNSS mission [RUD+13] and ESA’s upcoming HydroGNSS mission
[UPC+21]. Unlike the traditional active microwave remote sensing satellites, GNSS-
R sensors work by “opportunistically” capturing signals which are emitted by Global
Navigation Satellite System (GNSS) satellites and then reflected by the Earth. In other
words, they are active remote sensing systems in which the multiple transmitters and
receivers are embarked on different satellites, in what is called a multistatic setup. This
lack of a built-in transmitter makes GNSS-R satellites relatively cheap to build and
launch, and thus allows for larger satellite constellations to be implemented. This, in
turn, leads to shorter revisit times and denser temporal sampling rates

While GNSS-R seems like a promising alternative for the design of future soil moisture
remote sensing missions, especially from a cost-benefit perspective, it is still considered
a very incipient and experimental technology. Further studies are required in order to
better understand the physical dynamics of GNSS-R-based soil moisture retrieval and
improve the quality and maturity of the data products derived from it.

Furthermore, the amount of soil moisture data derived from GNSS-R sources remains
relatively scarce. As of 2023, there is still just a limited amount of GNSS-R satellites in
operation, and most of those have spatiotemporal issues such as a limited geographic
coverage or a relatively short data record up to the present time. Therefore, the field
of GNSS-R-based remote sensing of soil moisture could also benefit from studies that
seek to understand how to best leverage and exploit the limited amount of data that is
currently available.
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1.2 Problem Statement and Aim of the Thesis

One of the most prevalent issues one faces when working with GNSS-R SM data products
is that of data sparsity. These products are usually provided in a “Datacube” format. In
general terms, a datacube is a multidimensional data array with dimensions that carry
spatial or temporal semantics. GNSS-R SM datacubes, especially those products derived
from small satellite constellations, might be considered too sparse for some applications,
with measurements distributed too sparsely across time and/or space. For instance, in
Figure 1.1, we show a temporal slice of a GNSS-R SM datacube derived from CYGNSS,
containing SM measurements collected globally over an entire day and projected onto a
map for better visibility. For applications that require daily or even sub-daily sampling
of soil moisture at specific locations, this coverage is clearly insufficient.

Figure 1.1: A temporal slice of a GNSS-R Soil Moisture datacube derived from the
Trackwise version of the IFAC ANN CYGNSS SM data product, containing soil moisture
retrievals collected over an entire day and binned into a 25km x 25km grid, and then
projected into a map using to facilitate visual understanding.

The most straightforward approach to tackle the sparsity of GNSS-R SM datacubes
would be to develop and launch larger constellations of satellites, which would in turn
lead to a denser spatial coverage and shorter location revisit times, i.e. a denser temporal
sampling rate. Naturally, that is often impractical or even infeasible due to budgetary
reasons, even within the context of GNSS-R systems. A more cost-effective solution
for mitigating datacube sparsity issues is employing Spatiotemporal Interpolation (STI)
techniques, which seek to use the known measurements to estimate the values in the

3



1. Introduction

empty datacube cells. This allows us to obtain less sparse datacubes, at the cost of an
increase in the overall uncertainty of the SM value they contain.

The spatiotemporal interpolation of GNSS-R soil moisture datacubes can be framed as
a regression problem, in which the target variable are soil moisture values of the cells
with missing data. The predictors are soil moisture values contained in the nonempty
cells in a volume around the cell whose value we want to estimate, also known as the
cell’s spatiotemporal neighborhood. In addition to those, the vector of predictors can
also be enriched with ancillary data describing spatiotemporal information about the cell,
such as its latitude and longitude coordinates, or even information derived from external
datasets such as land cover or vegetation density.

The current state-of-the-art for the spatiotemporal interpolation of GNSS-R data is
the Previously-Observed Behavior Interpolation (POBI) algorithm [Che23], which has
been used to interpolate reflectivity data collected by the GNSS-R sensors aboard the
CYGNSS constellation of satellites. It does so by training a large collection of highly
localized regressors which encode how each the reflectivity of each specific pixel along
the spatial grid behaves with respect to the reflectivity observed on its spatiotemporal
neighborhood.

While POBI has shown great success in interpolating CYGNSS reflectivity measurements,
its reliance on pixel-specific models requires the storage of a large number of parameters,
which occupies terabytes of disk space and creates a significant overhead at prediction
time, both in terms of I/O and computational costs. Moreover, if the calibration period
is changed or extended, it is necessary to retrain the POBI regressors from scratch on
the new period.

Considering that every regressor trained by POBI is essentially modeling the same
physical quantity, it should follow that, even if local factors like land cover and soil
type have a significant impact on the models, there should be some level of redundancy
among the dynamics that are captured across all local models. Thus, one possible path
for improving POBI would be exploiting these redundancies to create a single global
regressor which, with the help of ancillary data related to a cell’s location and timestamp,
is able to achieve a satisfactory performance while reducing storage space requirements
and decreasing overhead at prediction time. Given their intrinsic capability to capture
complex nonlinear patterns on high-dimensional data with spatially correlated features
and compress them into a single model, artificial neural networks emerge as a natural
candidate for this task.

In this thesis, we seek to address the problem of spatiotemporal interpolation of GNSS-R
soil moisture retrievals by developing a novel, deep-learning-based regression algorithm
which is able to generate unified, portable models that can be used across the entire
datacube, taking advantage of a neural network’s natural aptitude for compression.
Specifically, we aim to apply this method to datacubes derived from the “Trackwise”
version of the IFAC CYGNSS ANN SM data product [SPP+20] [SCC+22], which is
retrieved from reflectivity data collected by the GNSS-R sensors mounted on the CYGNSS
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constellation of satellites. In order to evaluate this new method, which we call Deep
Convolutional Spatiotemporal Interpolation (DCSTI), we benchmark it against POBI
applied to the same dataset. Additionally, we also evaluate the interpolated datacubes
that it produces by validating them against external SM data products derived from
independent sources.

1.3 Context of the Thesis: HydroGNSS

The experiments described within this thesis have been conducted as part of the de-
velopment phase of the HydroGNSS mission. HydroGNSS is a new GNSS-R satellite
constellation selected by the European Space Agency (ESA) as part of the Scout Program,
which seeks to finance the development of low-budget Earth observation missions that
can provide innovative scientific insights in an agile manner. Unlike the previous GNSS-R
satellite missions such as TechDemoSat-1 (TDS-1) and CYGNSS, which are sensitive to
soil moisture but were initially developed to measure observables over the oceans and
cryosphere, HydroGNSS is being designed with the primary intention of measuring soil
moisture and other land-based environmental variables. [UPC+21]

The development of HydroGNSS is being led by Surrey Satellite Technology (SSTL),
a private aerospace conglomerate based in the United Kingdom, along with a team of
science partners from universities and research institutions of several countries in Europe
which includes the Remote Sensing research group of TU Wien’s Department of Geodesy
and Geoinformation.

HydroGNSS is currently planned to be launched in late 2024. Consequently, there is still
no real data from that satellite which can be used for our experiments on spatiotemporal
interpolation. Due to the multiple similarities between both instruments, our experiments
will be performed with a SM data product derived from CYGNSS measurements.

While HydroGNSS provides several innovations over CYGNSS, like the coverage of the
extratropical latitudes, the budget constraints imposed by the Scout program requirements
have limited the constellation to the inclusion of only 2 satellites, contrasting with
CYGNSS’ grand total of 8. Thus, in order to emulate a HydroGNSS-like scenario, our
experiments are focused on performing spatiotemporal interpolation of data collected
by a subset of the CYGNSS constellation comprised of only 2 satellites. The fact that
CYGNSS has a higher total of satellites also gives us the advantage that we can use the
data extracted from the full CYGNSS constellation as ground truth values for training
spatiotemporal interpolation models and for an initial validation of their outputs, not
having to concern ourselves with inter-sensor biases that would emerge if using ground
truths derived from other satellites.

Thus, even though we are only working with CYGNSS data, we expect that the experi-
ments described within this thesis can pave the way for a spatiotemporal interpolation
framework that can also be adapted to HydroGNSS-derived data once it becomes available.

5



1. Introduction

1.4 Contribution
In this thesis we present DCSTI, a novel approach for addressing the problem of spa-
tiotemporal interpolation of GNSS-R-derived soil moisture data. DCSTI leverages deep
learning techniques to produce a unified regression model that is able to efficiently capture
both the overall spatiotemporal dynamics of soil moisture as well as location-specific
patterns. We then design and conduct an evaluation experiment that benchmarks DCSTI
against the state-of-the-art solution for spatiotemporal interpolation of GNSS-R-derived
soil moisture data, the POBI algorithm.

From an analysis of our experiment results, which are described in more detail in Chapter
7, we have concluded that DCSTI demonstrates an interpolation performance comparable
to that of POBI. Moreover, it also effectively mitigates one of POBI’s main drawbacks,
the need for a substantial amount of parameters. Specifically, DCSTI was able to match
POBI’s performance while requiring a number of parameters that is smaller by one or two
orders of magnitude, depending on which dataset was in use. We expect this difference in
model size to become even more pronounced if a similar experiment is conducted using
datasets with higher spatial resolutions.

1.5 Thesis Outline
This thesis is organized as follows. Chapters 1 through 4 are predominantly concerned with
the theoretical backdrop of the research, covering multiple points related to spatiotemporal
interpolation of GNSS-R SM data and deep learning. In Chapter 1, we provide an overview
of the scope and objectives of this work. Chapter 2 explores a theoretical background
about remote sensing of soil moisture, GNSS-R systems and the CYGNSS constellation.
Chapter 3 focuses on the specific issue of spatiotemporal interpolation of GNSS-R SM
data and introduces POBI, the state-of-the-art algorithm for addressing this problem.
Chapter 4 delves into the foundations of neural networks and deep learning.

Chapters 5 through 7 focus on the practical aspects of this work, introducing a novel
solution to address the problem of spatiotemporal interpolation of GNSS-R SM data, and
describing the conduction of an experiment designed to evaluate the performance of this
solution. In Chapter 5, we introduce the DCSTI algorithm, which leverages deep learning
techniques to address the spatiotemporal interpolation of GNSS-R SM data. Chapter
6 outlines the design of an experiment which seeks to evaluate DCSTI, comparing its
performance with that of POBI. In Chapter 7, we discuss the results of this experiment.
Finally, Chapter 8 presents the concluding remarks of the thesis.
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CHAPTER 2
Remote Sensing of Soil Moisture

2.1 Soil Moisture
In a general sense, Soil Moisture (SM), also known as the soil’s water content, refers
to the amount of water that is present within the outer layers of the soil. As an
environmental variable, it plays an important role in a wide variety of processes, both
natural, human-driven, or a mixture of both.

For descriptive sciences dealing with physical phenomena within the Earth system, such
as physical geography, hydrology and climatology, the understanding of the soil moisture
spatiotemporal dynamics themselves can naturally be seen as an end goal. Furthermore,
this knowledge can also be a valuable component in the understanding and modelling of
some of their other objects of study, as soil moisture is known to be heavily involved in
the Earth’s water, energy and carbon cycles [SCD+10].

Soil moisture is also a known driver of short-term weather patterns [BCM+14], which
makes the near-real-time monitoring of soil moisture conditions a valuable tool for weather
forecasting and other activities within the scope of meteorology. As a consequence,
knowledge about soil moisture dynamics is also beneficial in fields like agronomy and
natural disaster management, where the planning and decision-making process heavily
relies on climatic and meteorological data.

Last, but not least, there is a strong correlation between soil moisture dynamics and
long-term climatic patterns. In times of exacerbated climate change, with increases in
greenhouse gas concentrations and with adverse events like droughts, floods and heatwaves
becoming more frequent, it is becoming more difficult to draw reliable inferences from
the climate data records from the previous centuries [SCD+10]. Thus, the extensive
monitoring of environmental variables like soil moisture can be extremely beneficial for
governments, supranational institutions, and other high-level actors who are required
to make informed decisions under increasing uncertainty. With this in mind, the World

7



2. Remote Sensing of Soil Moisture

Meteorological Organization’s Global Climate Observing System (GCOS) has decided to
include Soil Moisture in its list of Essential Climate Variables (ECVs) since 2010 [BA12].

The two main sources of soil moisture data are in-situ sensors and satellite observations.
In-situ sensors are devices that must be placed in direct contact with the soil sample of
interest, and are able to provide SM data at a very dense temporal sampling rate and at a
variety of soil depths, at the cost of a very sparse spatial coverage (see Section 2.2). Data
obtained through satellite observations comes with a much denser spatial distribution
and an extensive spatial coverage, sometimes spanning the entire globe. However, due to
limitations imposed by the satellites’ orbital periods, the observations are very coarsely
distributed across time.

2.1.1 Quantifying Soil Moisture
Strictly speaking, there are multiple ways to define soil moisture, and multiple metrics
that can be used to quantify it. The most straightforward metric used for this purpose is
the volumetric soil moisture (θv), which simply indicates the percentage of water that
is contained within a fixed volume of soil (Equation 2.1). In SI units, volumetric soil
moisture is measured in terms of m3m−3, with the numerator corresponding exclusively
to the volume of water and the denominator corresponding to the total volume of soil,
including the water. While this formulation theoretically allows volumetric soil moisture
to fluctuate between 0 and 1, the real-world measurements typically fall between 0.03
and 0.6 m3m−3.

θv = Vwater
Vtotal

(2.1)

For some applications, rather than measuring the absolute percentage of water contained
in the composition of a soil sample, it is more useful to quantify how close the soil is to
saturation, i.e. how close it is to having reached its maximum capacity for water retention.
In order to do this, one can analyse the degree of saturation (ms), which measures how
much of the space within the soil’s pores is occupied by water. The degree of saturation
is thus a function of both the volumetric soil moisture and the porosity level of the soil
under analysis, and can be computed by Equation 2.2, where θv is the volumetric soil
moisture in m3m−3 and ϕ is the porosity rate, also given in m3m−3. [WHK+13].

ms = θv

ϕ
(2.2)

Soil moisture can be measured at different soil depths, with each soil layer behaving
differently with respect to its spatiotemporal SM dynamics. In general, the outermost
layers of the soil tend to have very fast SM temporal dynamics, being highly susceptible
to rainfall events. The deeper layers, on the other hand, only interact with rainfall
indirectly, with the water flowing down from the outer layers. Because of this, the deeper
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layers are effectively integrating the SM fluctuations from the outer layers over time, and
thus exhibit a slower change rate in their SM dynamics [WLR99]. Most users of SM
data, especially within the fields of meteorology, climatology and agronomy, are mainly
interested in data collected at a depth ranging between 0 and 100 cm, which is known as
root-zone soil moisture.

2.2 In-Situ Sensing of Soil Moisture

The most traditional way to obtain soil moisture measurements is by using devices known
as in-situ sensors. These are devices that must be installed in direct contact with the soil
sample which they seek to measure, and are able to provide accurate and precise soil
moisture measurements at a very dense temporal sampling rate. [BSJ+19]

The main drawback of in-situ sensors is that they are limited to providing data about the
exact location in which they were installed, which, for spatial distribution purposes, is
referred to as a point scale. Multiple in-situ sensors might be required to reliably monitor
an area of interest, even if it is a small agricultural field, as using a single sensor could
bias the monitoring towards very localised phenomena happening in its vicinity. On a
regional or even global scale, it becomes economically infeasible to have an extensive
coverage of in-situ sensors, as they require substantial installation and maintenance
costs, especially in hard to access areas. Thus, while this method can be very effective
for monitoring specific locations of interest, particularly for farming purposes, it is not
suitable for applications that require soil moisture data with a dense spatial distribution
and a spatial coverage that spans large areas, such as climatology studies.

The spatial resolution coverage limitations that the usage of in-situ sensors imposes upon
large-scale soil moisture monitoring efforts can be mitigated by using earth observation
satellites and remote sensing techniques, which will be expanded upon in the next section.

2.3 Remote Sensing of Soil Moisture

In a strict sense, remote sensing refers to any activity that involves collecting data about
an object of interest, known as the observable, from a long distance and without physical
contact. Within the context of Earth sciences, the phrase “Remote Sensing” almost
always refers to the usage of electromagnetic radiation sensors embarked on aircraft or
Earth observation satellites to collect information about observables located on Earth.

As shown in Figure 2.1 remote sensing system can be considered either passive or active,
depending on the original source of the sensed signals. Passive systems do not require
a transmitter, receiving signals either emitted or reflected by their targets. In the case
of EO applications, this often consists of measuring electromagnetic radiation that was
originally emitted by the Sun and then reflected by objects on Earth. Active systems, on
the other hand, involve both a transmitter and a receiver. They use the transmitter to
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Figure 2.1: Simplified diagram of active and passive remote sensing systems used for
Earth observation. From [JASC23]

emit their own electromagnetic radiation in order to “illuminate” the target, and then
measure the signal that is reflected towards the receiver.

Both passive and active remote sensing systems are widely used for remote sensing of
environmental variables. In the case of soil moisture, a particular emphasis can be placed
on sensors that capture electromagnetic radiation in frequency bands between 0.3 and 300
GHz, known as the microwave domain. While there are other types of signals that can
be used for this purpose, such as optical sensors, Microwave Remote Sensing (MRS) has
an advantage in the fact that microwave signals in certain frequency bands are much less
attenuated by precipitation or cloud cover, effectively giving the corresponding microwave
sensors the ability to “see through” unfavourable weather conditions. While this is a
valuable characteristic in its own, it is particularly useful for monitoring observables whose
physical dynamics are typically intertwined with rainfall events, such as soil moisture and
floods. Moreover, unlike optical sensors, microwave sensors do not depend on illumination
from sunlight, and are thus not restricted to daytime observations. Additionally, they
are also able to penetrate vegetation canopies to a certain degree.

Remote sensors aboard EO satellites offer a very extensive spatial coverage, often
encompassing the entire globe. The spatial resolution they are able to provide varies
greatly, depending on the specific characteristics of the sensor and the satellite, and there
is typically a trade-off between a sensor’s spatial and temporal resolutions.

Due to physical constraints imposed by the interactions with electromagnetic waves and
the soil, MRS satellites are only able to collect soil moisture data from the outermost
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soil layers, typically between 0 and 5cm, which is known as Surface Soil Moisture (SSM).
This limitation can be circumvented by using models such as the Soil Water Index (SWI)
[WLR99], which seek to estimate the soil moisture at deeper layers by integrating surface
soil moisture data over time. Thus, remotely sensed SSM data products are valuable
even for applications that are mainly tied to root zone SM dynamics.

Remote microwave sensors cannot measure soil moisture directly. Instead, they measure
observables related to the backscatter of electromagnetic energy that is reflected from
the surface of the Earth. These are then converted into soil moisture estimates by
going through data processing pipelines derived from either explicit physical models or
black-box models obtained by means of machine learning. Those pipelines often also
benefit from using ancillary datasets containing information about variables that can
affect soil moisture dynamics or the interaction between microwaves and the surface,
such as quantitative data on vegetation density or categorical data on land use.

This process of using models to obtain soil moisture estimates from observations of
electromagnetic radiation is known as Data Retrieval (DR), and, accordingly, the soil
moisture estimates that it yields are also known as soil moisture retrievals. The data
retrieval process carries a considerable level of uncertainty, stemming from multiple
systemic and random sources, including, but not limited to:

• Assumptions and simplifications made in the modeling process, in the case of
explicit physical models;

• Inaccuracies within models created by machine learning algorithms;

• Interference from electromagnetic radiation used for telecommunication;

• The presence of large water bodies or multiple land cover types within the area
illuminated by an active sensor, known as the satellite’s footprint;

• Uncertainties carried over from ancillary data used in the modelling or retrieval
processes;

• Errors in model calibration;

• Instrument or measurement noise.

Because of those sources of uncertainty, one can expect less precision and accuracy from
remotely sensed soil moisture observations than from those obtained by more direct
measurement techniques, such as in-situ sensing. The temporal sampling rate of remotely
sensed soil moisture observations can also be too coarse for some applications, especially
those that need information about the fast-paced surface soil moisture dynamics following
quick rainfall events. Similarly, the spatial resolution of remotely sensed data is often
insufficient for applications involving the monitoring of meter-scale SM patterns, such as
irrigation management.
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2.4 Global Navigation Satellite Systems Reflectometry
(GNSS-R)

Satellite-based navigation systems have been in use since the mid-20th century, providing
geopositioning services with varying levels of precision, timeliness and spatial coverage
levels, for both military and civilian purposes. Among those systems, those that offer a
global spatial coverage are categorized as Global Navigation Satellite Systems (GNSS).
Strictly speaking, there are only four of such systems currently available, all of which are
being operated by state agencies [JWD22]. They are :

• Global Positioning System (GPS), developed by the United States of America
and currently operated by the U.S. Space Force, a branch of the American military;

• Global Navigation Satellite System (GLONASS), originally developed by
the Soviet Union and currently operated by Roscosmos, a state corporation of the
Russian Federation;

• BeiDou Navigation Satellite System (BDS), developed by the People’s Re-
public of China and operated by the China National Space Administration (CNSA);

• Galileo, developed by the European Union and operated by the European Space
Agency (ESA) and the European Union Agency for the Space Programme (EUSPA).

In 1993, [MN93] first proposed the utilization of the backscatter of GNSS signals to
extract information about the surfaces from which they were reflected. During the
following decades, multiple scientific studies have been conducted in order to leverage
those “signals of opportunity”, leading to the development of the Global Navigation
Satellite Systems Reflectometry (GNSS-R) concept. GNSS-R remote sensing systems
make use of microwave radiation receivers to capture electromagnetic signals which have
been originally emitted by GNSS satellites and then reflected by the surface of the Earth.
Those sensors are usually embarked on aircraft or Earth observation satellites (Figure
2.2).

Since GNSS-R satellites lack their own transmitters, they can be considered an example
of a passive remote sensing system. However, if framed as a component of a larger system
in conjunction with the GNSS satellites, then GNSS-R satellites can also be considered
an active remote sensing technology. Regardless of the interpretation, GNSS-R systems
effectively act as a multistatic radar, i.e. a radar system with multiple transmitters and
receivers, which are located far apart from each other.

The first GNSS-R applications sought to collect data over the oceans and cryosphere
[UPC+21]. In 2000, [MZKE00] conducted an experiment using aircraft-mounted GNSS
receivers to first demonstrate the sensitivity of such sensors to soil moisture. In 2016,
observations made over land by the GNSS-R satellite TDS-1 were also shown to be
sensitive to SM [CSZ+16] [CPP+16]. These results have paved the way for multiple
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Figure 2.2: Illustration of the GNSS-R concept, adapted from [UPC+21]

studies on the usage of spaceborne GNSS-R sensors for SM retrievals. As of February
2024, this research still primarily relies on satellite missions not originally designed for
monitoring SM, such as TDS-1 and CYGNSS. However, there are also new dedicated
missions going through their development phase, such as ESA’s upcoming HydroGNSS
constellation [UPC+21].

Albeit still an experimental technology for the purposes of monitoring soil moisture,
GNSS-R satellites are typically much cheaper than the spacecraft used in well-established
missions such as SMAP and SMOS. This facilitates the development of larger constel-
lations of satellites, which in turn provides shorter revisit times for each location and
facilitates the creation of SM data products with higher temporal resolutions.

2.4.1 The CYGNSS Mission

CYGNSS, which stands for Cyclone Global Navigation Satellite System, is a constellation
of eight identical low Earth orbit (LEO) GNSS-R satellites launched by NASA in 2016,
with the original purpose of monitoring the activity of cyclones in the intertropical regions.
All CYGNSS satellites are equipped with identical receivers, which are able to capture
L-band electromagnetic signals that were originally emitted by satellites of the GPS
constellation and then reflected by the surface of the Earth [RCL+18].

Despite being originally designed to monitor tropical cyclones by measuring wind speeds
over oceans, CYGNSS has also been demonstrated to be sensitive to several observables
over land, such as above-ground biomass and soil moisture [CS18]. Notably, CYGNSS is
also highly sensitive to the presence of inundation and inland water bodies, even when
those are covered by dense vegetation, as is often the case in tropical rainforest biomes
[NZS+17]. Since the original scope of the mission was to cover the intertropical regions,
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Figure 2.3: Artist’s rendition of a single CYGNSS satellite, from [RCL+18]

the CYGNSS satellites follow an orbit that spans latitudes between -35 and 35 degrees
[RUD+13], as shown in Figure 2.4.

Figure 2.4: Map demonstrating the spatial coverage of the CYGNSS constellation over a
period of 24 hours, from [RCLC+22]

While most traditional MRS satellites follow a deterministic data collection pattern,
revisiting each location in a repeating and predictable manner, CYGNSS is bound
to collecting measurements in a pseudo-random fashion, as for each observation the
geometrical arrangement of the transmitter, receiver and the reflection point will be
different [CS20]. Thus, in order to produce SM maps from CYGNSS, it is necessary
to define a spatiotemporal grid which we can use to aggregate multiple measurements
within predefined spatiotemporal cells.

Even though CYGNSS was originally designed to remain operational for only two years,
the mission is still active, having remained operational for over seven years as of February
2024. However, an unexpected failure of satellite FM06 in November 2022 has reduced the
number of active CYGNSS satellites from eight to seven. Thus, from that date onward,
the initial expectations regarding CYGNSS’ coverage and revisit times no longer hold.
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Nevertheless, the fact that we still have ~87% of the original constellation remaining after
a critical failure of one of its members highlights the value of deploying large constellations
of cheaper satellites, which facilitates risk mitigation in the long run.

Several SM data products have been developed from CYGNSS reflectivity data. Some of
these products employ a more explicit modelling approach, directly applying physical
principles [CS20], while others utilize machine learning in conjunction with external SM
data products to derive a black-box model that retrieves SM estimates from CYGNSS
reflectivity data [SPP+20] [RCS+21] [EKBG19]. For the experiments we have performed
in this thesis, we have used the “trackwise” version of the IFAC ANN CYGNSS SM data
product developed by Santi et al. [SPP+20]. For a detailed description of this product,
please refer to Section 6.2.

2.4.2 The HydroGNSS Mission

HydroGNSS is an upcoming GNSS-R mission commissioned by the European Space
Agency as part of its Scout Program, which seeks to finance the development of low-
budget and scientifically innovative Earth observation missions. As of February 2024,
HydroGNSS is still in its development phase, with the launch planned for the end of the
same year. The development of the mission is being led by Surrey Satellite Technology
(SSTL), in close cooperation with a team of science partners from several academic and
research institutions [UPC+21].

Figure 2.5: Map demonstrating the expected spatial coverage of HydroGNSS, as well as
the mean revisit time per location, from [UPC+21]

The HydroGNSS constellation is planned to contain 2 satellites, operating within a
near-polar orbit which allows them to cover the extratropical regions not covered by
CYGNSS (see Figure 2.5). The global mean revisit time has been calculated to be under
4 days, with a much denser temporal resolution in the boreal and polar regions. It will
collect signals emitted by both the Galileo and GPS constellations. Unlike CYGNSS,
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HydroGNSS is being designed primarily for applications over land, with the goal of
monitoring the following essential climate variables (ECVs):

• Surface Soil Moisture (SSM)

• Above-Ground Biomass (AGB)

• Surface Inundation

• Freeze/Thaw State

As mentioned in Section 1.3, even though the work described in this thesis utilizes
CYGNSS data, it has emerged as part of the HydroGNSS development efforts, in which
the Remote Sensing research group of TU Wien’s GEO department is involved as a
science partner. By understanding how spatiotemporal interpolation can improve the
quality of SM data products derived from subsets of the CYGNSS constellation, we hope
to introduce a framework that can also be applied to the HydroGNSS constellation and
perhaps other future GNSS-R missions.

2.5 Datacubes
Remotely sensed SM data products are often provided in the so-called “datacube” format.
In essence, a datacube consists of an N-dimensional data array, with N ≥ 3, in which
some or all dimensions encode some sort of spatiotemporal semantics. The most basic
case of a datacube would be a three-dimensional array with two spatial dimensions and a
temporal dimension.

The spatial dimensions of a datacube usually have their indices mapped to a well-
known system of spatial coordinates such as latitude and longitude, while the temporal
dimensions usually have their indices mapped to evenly-sampled timestamps. Thus, every
cell of a tridimensional SM datacube contains a measurement, which can also be empty,
as well as a spatial location and a timestamp, which are implicitly encoded in its indices.
In the context of georeferenced datacubes, specific (latitude, longitude) coordinate pairs
along the spatial axes are commonly referred to as “pixels”. As shown in Figure 2.6, a
subset of the datacube covering all pixels at a fixed timestamp is commonly referred to
as a timeslice, whereas a subset covering every timestamp at a single pixel is referred to
as that pixel’s timeseries. Similarly, a limited data volume that is spread across both the
spatial and temporal axes is known as a spatiotemporal neighborhood.

For some tasks, it is useful to think of a datacubes as a video-like data stream, with each
timeslice being a frame that displays a specific state of a time-dependent process that is
spread across space. For other tasks, it might be more convenient to think of datacubes as
multivariate timeseries, with each pixel along the spatial axes defining a different variable.
In practice, both of those analogies describe the same data structure, meaning that
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(a) Cell (b) Timeslice

(c) Timeseries (d) Spatiotemporal Neighborhood

Figure 2.6: Examples of datacube-related terminology, adapted from [LSGD23]
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techniques designed for both video processing and for multivariate timeseries processing
have the potential to deliver value to problems involving datacube processing.

Datacubes can also have more than three dimensions, which allows for a convenient
encoding of information from multiple channels or multiple variables, with a shared
spatiotemporal indexing. This shared index facilitates the execution of spatiotemporal
queries or operations, and can be leveraged by using hardware optimized for matrix
computations such as Graphical Processing Units (GPUs).
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CHAPTER 3
Previously-Observed Behavior

Interpolation

3.1 Interpolation of CYGNSS Datacubes
As shown in Figure 3.1, the observations made by CYGNSS are pseudo-randomly
distributed along tracks that roughly correspond to the projection on Earth of the orbits
followed by each CYGNSS satellite. The real footprint of each observation made by
CYGNSS is influenced by a myriad of factors, such as topography and incidence angle.
However, the minimum theoretical footprint of these observations has been estimated to
be of ∼ 0.5 km in the across-track direction. In the along-track direction, it is estimated
to be of ∼ 7 km until July 2019, when there was an update in the CYGNSS integration
time (see Section 6.2.2) that changed the theoretical along-track footprint length to ∼ 3.5
km. [CS20].

Thus, even though CYGNSS has relatively large number of satellites, providing a wide
spatial coverage and short average revisit times, the daily or sub-daily timeslices of
CYGNSS-derived datacubes still exhibit large spatial gaps between the tracks, especially
in the case of datacubes that bin observations in a high-resolution spatial grid. Moreover,
the pseudo-random spatial distribution of the measurements, which depends on the
trajectory of both the CYGNSS and the GPS satellites, does not guarantee fixed revisit
times for each location.

As a consequence of the existence of those gaps, datacubes with a higher spatial resolution
contain many pixels whose timeseries have multiple large and randomly-distributed
temporal gaps between consecutive observations. Many pixels of those datacubes will
also have a lower than daily average sampling rate. This is especially common in the
regions close to the equator, where due to the CYGNSS orbit geometry the tracks are
spread further apart from each other. Those issues can be problematic in applications
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Figure 3.1: Close-up of a timeslice extracted from a CYGNSS-derived SM datacube. In
this case, the datacube has been spatially binned along regular grid with a 9km resolution,
and temporally binned in 24h windows.
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within fields where a high temporal resolution is considered critical, such as meteorology
and disaster management.

In this thesis, we are seeking to address this issue by filling those gaps in the datacubes
with interpolation techniques. In general terms, interpolation consists in estimating an
unknown or missing value of a signal based on the known values in its vicinity. While it
can theoretically be performed in domains with an arbitrarily high dimensionality, the
most common applications involve domains ranging between one and three dimensions. In
our particular problem, we are working with signals that are a function of two spatial and
one temporal dimension, and thus we refer to the problem as spatiotemporal interpolation.
Interpolation can be framed as a regression problem, where the unknown value is the
response variable and the set of neighboring known values are the predictors.

As CYGNSS backscatter observations are very sensitive to surface soil moisture and the
presence of inland water bodies, CYGNSS-derived datacubes containing data about either
electromagnetic radiation or SM retrievals exhibit a high degree of spatial heterogeneity
and discontinuity, especially in regions with an abundance of rivers or lakes. Thus, a
large portion of the classic interpolation methods, such as linear or cubic interpolation,
are unable to perform well with with CYGNSS-derived datacubes, as they rely on rather
strong assumptions about the smoothness of the signal being interpolated [Che23]

3.2 Theoretical Basis - Temporal Stability of Soil Moisture

In general terms, Temporal Stability of Soil Moisture (TSSM) refers to a phenomenon in
which the temporal dynamics of soil moisture at the local level are strongly correlated to
the temporal dynamics of soil moisture at the regional scale in the surrounding area. In
this context, “local” usually refers timeseries extracted from point-scale measurements or
from pixels in high-resolution grids, while “regional” usually refers to the corresponding
pixels in a coarser grid, or even an aggregate timeseries averaged over the surrounding
spatial neighborhood.

TSSM was first introduced in 1985 through an analysis of in-situ data [VPDSBV85].
Since then, a multitude of regional studies have been conducted in order to analyze the
effects of TSSM under different environmental conditions and spatial scales [VVH+12].

In 2008, it was first demonstrated by Wagner et al. [WPD+08] that temporal stability can
also be observed in radar backscatter data collected by C-band microwave remote sensing
satellites. This result is a consequence of the well-established fact that the backscatter
of microwave signals over land is highly correlated with the dielectric constant of the
soil being illuminated. This constant, in turn, is a function of the water content of the
topmost 5 cm of soil, i.e. the surface soil moisture (SSM) [HUD+85]. This relationship
between microwave backscatter and SSM is usually linear, and also varies across space,
as it is influenced by location-dependent factors such as topography and vegetation
cover. It has been extensively exploited in the development of remotely sensed SM data
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products derived from microwave sensors such as those aboard SMAP [ENO+10] and
SMOS [KWW+10], and has also been observed in CYGNSS data [CS18][CS20]

The temporal stability of soil moisture acts as the underlying mechanism driving several
interpolation and downscaling algorithms designed for improving remotely sensed SM
data products. A notable example is the SCATSAR-SWI algorithm [BMPH+18], which
exploits the historic dynamics of localized spatiotemporal SM patterns of a high-resolution
product derived from the Sentinel-1 constellation to create a large collection of pixel-
specific downscaling parameters. Those parameters are then used to improve the spatial
resolution of coarser SM data products derived from the ASCAT constellation. TSSM is
also the driving factor behind POBI, a spatiotemporal interpolation algorithm designed
specifically for GNSS-R derived datacubes, which we will describe in detail in the following
section.

3.3 Previously-Observed Behavior Interpolation (POBI)

The Previously-Observed Behavior Interpolation algorithm (POBI) [Che23] is a spatial
interpolation solution that was specifically designed to address the challenges brought
by the spatiotemporal distribution of GNSS-R measurements. Conceptually, it takes
inspiration in autoregression, which is a timeseries forecasting technique that exploits a
variable’s historical relationship with its past values to estimate the current of future
observations. However, instead of simply exploiting the past temporal dynamics of
a pixel’s timeseries, POBI focuses on exploiting the correlations between that pixel’s
timeseries and those of the pixels its spatial neighborhood.

In essence, POBI trains a collection of highly localized, pixel-specific regression models
which rely on the historic relationship between the target pixel and a fixed-size spatial
neighborhood around it. After training, those models, which we will refer to as “POBI
Interpolators”, can be used to fill the empty cells of the datacube, provided that there
are enough known values in their respective neighborhoods to serve as input to the
models. While at prediction time POBI only performs spatial interpolation, it also relies
on temporal information at training time, and thus can be classified as a spatiotemporal
interpolation algorithm.

In the paper where it was introduced [Che23], POBI was applied to CYGNSS-derived
reflectivity data. More specifically, it was used to interpolate gaps in datacubes containing
information on the effective surface reflectivity (Γ). Γ is measured in dB and defined
for the CYGNSS instrument according to Equation 3.1. In this equation, Pr is the
peak value of the Delay-Doppler Map computed by CYGNSS at that location, λ is the
wavelength of the GPS signals, P t is the transmitted power, Gt and Gr are the gains of
the transmitting and receiving antennas, respectively. Rts is the distance between the
observation’s specular point and the GPS transmitter, and Rrs is the distance between
that point and the CYGNSS receiver. [CS20]
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Γ[dB] = 10 (log Pr − log Pt − log Gt − log Gr) + 20 (log(Rts + Rsr) − log λ + log 4π) (3.1)

Given the fact that Γ is strongly influenced by SMM, which is encapsulated in Equation 3.1
by the term Pr, and given the fact that POBI relies on the assumption that the temporal
relationship between each pair of neighboring pixels is stationary, it follows that POBI
also implicitly relies on the temporal stability of soil moisture to interpolate reflectivity
data from CYGNSS. Thus, we expect that POBI’s performance in interpolating CYGNSS
reflectivity datacubes to translate relatively well to SSM datacubes whose values have
been retrieved from CYGNSS reflectivity data.

3.3.1 POBI algorithm - Training
In order to model the spatiotemporal behavior of CYGNSS reflectivity or SSM retrievals
across space and time, POBI adopts a location-centric strategy, where a separate pre-
diction model or interpolator is trained for each pixel along the spatial grid used in the
datacube, modeling each pixel’s specific behavior with respect to its local neighborhood.
Those pixel-wise interpolators are, in essence, a weighted ensemble of linear regressors,
with one regressor per neighbor. It should be noted that, in the context of POBI, the
term “neighbor” refers not only to the pixels directly adjacent to the target pixel, but
rather to any pixels contained within the fixed-size spatial neighborhood. At prediction
time, a cell with missing data can be interpolated by feeding the known values in its
neighborhood to the corresponding regressors, and then performing a weighted mean
over the outputs of those.

Before training the POBI interpolators, the user must choose values for three hyperpa-
rameters:

• Neighborhood Length (ln): A POBI interpolator estimates a cell’s missing value from
the valid measurements that are available within that cell’s spatial neighborhood
in the same timeslice. This spatial neighborhood is defined as a square across the
spatial axes, with a discrete length ln, having the target cell in the center. Thus, ln
must be an odd integer greater than or equal to 3.

• Concurrency Window (wc): In order to establish the relationship between two
neighboring pixels, POBI has to find all instances of concurrent observations across
both of their timeseries. The co-occurrence window specifies how distant in time two
observations must be in order to be still considered concurrent, and will typically
take on values ranging between a few hours and a week.

• Minimum Concurrency Threshold (cmin): When training a POBI interpolator, we
want to avoid establishing spurious correlations due to a lack of enough concurrent
measurement between two neighbors. Thus, unless there are at least cmin concurrent
measurements between the target pixel and a neighbor’s timeseries, this neighbor
will be considered invalid and will be ignored by the interpolator at prediction time.
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The user must also select a calibration period which will be used to train the interpolators.
This period must be contained within the time span covered by the datacube, and ideally
cover multiple years, in a way that for each pixel there are a few examples of each season.
The calibration period, however, should not cover too much of the datacube’s available
time span, as a fair evaluation of POBI’s performance must be carried out using the
timeslices that were not used for training. This setup is equivalent to the standard
train/test split in a classic machine learning experiment.

Figure 3.2: Linear regressions computed in the process of training a POBI Interpolator
for a single pixel, from [Che23]

The training of a POBI interpolator for a given pixel p is conducted as follows: For each
pixel q within the neighborhood of p’ as defined by ln, we search the timeseries of both
pixels for all instances of concurrent valid measurements mp and mq in both p and q.
The concurrency threshold is defined by the hyperparameter wc. If the number of co-
occurrences between p and q is equal to or greater than cmin, we treat all co-occurrences
as data points in a two-dimensional plane, and fit a line between the measurements in p
and q as illustrated in Figure 3.2. From this linear regression, we compute the slope a,
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the intercept b, the correlation coefficient r and the residual standard deviation u. Thus,
POBI stores four parameters per neighbor per pixel.

The total number of parameters required by POBI can thus be computed by Equation
3.2, where npixels is the total amount of pixels in the grid.

nparams = 4 · npixels · l2n (3.2)

In order to optimize disk usage and memory I/O, the pixels where SSM is not well
defined, such as oceans or inland water bodies, can be safely ignored. This reduces the
number of pixels for which we need to store parameters, albeit by no more than one order
of magnitude. Strictly speaking, it is also not mandatory to store the residual standard
deviation u of each pixel pair, as this parameter is not used for performing interpolation
at prediction time, but rather just as an indication of the uncertainty of the relationship
that has been established between the pixels in the pair. Thus, the lower bound for the
number of parameters required by a POBI ensemble is given by Equation 3.3, where rv

is the ratio of valid pixels within the spatial grid used in the datacube.

nparams = 3 · npixels · rv · l2n (3.3)

3.3.2 POBI algorithm - Prediction and Evaluation
At prediction time, POBI estimates the value of an empty cell by applying Equation 3.4.
Just like in the original POBI paper, the equation is defined in terms of Γ̂, but can also
be applied to SSM measurements without any changes in its structure.

Γ̂ =
�nv

i=1 wi(aiΓi + bi)�n
i=1 wi

(3.4)

In this equation, the parameters ai, bi and wi of neighbor i are derived directly from the
offline parameter database computed at training time, with wi = r2

i . The index i only
cycles through cells with valid data in them, and thus the number of valid neighbors
nv changes for every cell, and is bounded by l2n. In the case of cells with very few valid
measurements available in their neighborhood, the prediction quality can potentially be
compromised, especially if all of the available measurements are located in pixels whose
correlation coefficients with respect to the target cell’s pixel are low. Thus, it can be
beneficial to define a minimum threshold for the number of valid measurements that are
required to run a prediction.

If there are significant data gaps remaining in the datacube after a first pass of POBI,
the algorithm can also be applied recursively. However, this may degrade the overall data
quality of the interpolated datacube, as each recursion step will compound the prediction
uncertainties.
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The performance of the POBI interpolators can be measured with standard regression
error metrics such as MSE or RMSE, with the ground truth values coming from in-situ
data, remotely sensed data from other satellites, or even data from CYGNSS itself, if
POBI is being used to interpolate datacubes from a subset of the CYGNSS constellation
(see Chapter 5).

When using ground truths from sources other than CYGNSS, it is important to remove
the bias between the two datasets, which can be done using techniques such as mean
subtraction or CDF-matching [GDA+20]. A popular metric that simultaneously performs
debiasing and error measurement is the unbiased RMSE (ubRMSE), shown in Equation
3.5. It essentially computes the RMSE between two signals, after mitigating sensor bias
by removing the mean value of each signal.

ubRMSE =

���� 1
N

N�
i=1

[(Xi − X̄)(Yi − Ȳ )]2 (3.5)

3.4 Challenges and Mitigation Strategies
The main drawback of any spatiotemporal interpolation algorithm, including POBI, is
that it will fail to capture atypical events whose temporal or spatial extent is short enough
to be entirely contained within spatiotemporal gaps in the datacube. In the context of
soil moisture, this phenomenon could materialize, for instance, in the form of a brief
rainfall event that is not expected at that area or season, causing a temporary uptick in
the SM timeseries of pixels in that area. If that rainfall event’s spatiotemporal extent is
small enough that it is completely contained within a gap in the datacube, there is no
way that an interpolation algorithm can estimate it properly.

In essence, this issue is a manifestation of the Nyquist-Shannon sampling theorem, which
is one of the tenets of digital signal processing theory. In general terms, this theorem
states that, in order to completely capture the information of an analog signal in the
form of a digital signal, the analog signal must be discretized at a sampling frequency at
least twice as high as the highest frequency present among its spectral components.

While this limitation does not invalidate the usefulness of interpolation in geospatial data
products, care must be taken by users whose applications require a faithful representation
of those atypical events.

One particular drawback of POBI is the amount of parameters that the complete ensemble
of POBI interpolators requires, as specified in Equation 3.2. While the effectiveness of
POBI’s location-centric approach has already been demonstrated through validation
against external datasets [Che23], the algorithm’s method of encoding information is not
very memory-efficient. As each POBI interpolator must individually encode both the
general physical dynamics of the observable and the local relationships between the pixels
within the corresponding neighborhood. Thus, even though each POBI interpolator
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can only be applied to its corresponding pixel, all of them are carrying some level of
redundant information about the physics of the same physical quantity.

A potential strategy to mitigate those redundancies, performing spatiotemporal interpo-
lation in a more memory efficiency manner, would be training a “global” model. This
model would encode both the basic physical dynamics of the observable and the spa-
tially varying phenomena that arise from different environmental conditions and local
geographic features. Such an interpolator would be applicable to every pixel, and thus
would be able to better compress information by eliminating the need to re-encode the
base dynamics of the observable multiple times.

Due to their inherent capacity for modelling intricate and nonlinear functions while com-
pressing a high volume of information derived from complex datasets, neural networks
emerge as a natural candidate for achieving these goals. The convolutional family of
neural network architectures is particularly well-equipped to handle spatiotemporal neigh-
borhoods, as they are optimized for dealing with data volumes in which the volumetric
pixels contain complex semantic relationships with their neighbors.

In Chapter 4, we will provide further background on neural networks. Then, in Chapter
5, we will , and propose a neural network architecture aimed at solving the problem of
STI for GNSS-R data, while addressing some of the drawbacks of POBI.
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CHAPTER 4
Neural Networks and Deep

Spatiotemporal Interpolation

4.0.1 Artificial Neural Networks
The first studies on the bioinspired computational models that originated the modern
Artificial Neural Networks (ANNs or simply NNs) date back to 1943, when McCulloch
and Pitts published a paper [MP43] using propositional logic to provide a mathematical
description of the behavior of neural networks. During the rest of the 20th century, a
considerable amount of research was conducted in ANN theory and practice, with several
novel artificial neural network architectures being proposed and implemented on the
computer systems that were available.

The most prevalent of those architectures was the Multilayer Perceptron (MLP), which
is composed of an ensemble of artificial neuron units individually known as Perceptrons
(see Figure 4.1). In a classic MLP, the artificial neurons are grouped into layers, with
each neuron in layer n receiving as inputs the output information from every neuron
in layer n − 1, but not receiving inputs from other neurons in the same layer or in the
subsequent layers. Thus, as the information only flows in one direction, they are classified
as Feedforward Neural Networks (FNNs).

In most cases, neural networks are trained by using variations of Stochastic Gradient
Descent (SGD), an algorithm which uses local gradients to iteratively search for local
minima of a loss function applied to the model’s parameter vector. As it would be very
costly to compute the steps of SGD analytically, they are typically approximated through
an automatic differentiation algorithm called Backpropagation [Lin76] [RHW86].

In order to compute a SGD step, the Backpropagation algorithm starts from the value
of the loss function with respect to the model’s prediction over a subset of the training
data. It then estimates the gradient of the loss function with respect to each element
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Figure 4.1: The Perceptron artificial neuron, which uses learnable weights to perform
a linear combination of the components of the input vector. The result of this linear
combination is used as input to an activation function f , whose output is also the final
output of the neuron

of the model’s current parameter vector, starting from the output nodes and iteratively
progressing towards the input nodes. In this process, it efficiently re-utilizes the precom-
puted value of gradient with respect to the “later” neurons to speed up the application
of the chain rule when computing the gradients of the “earlier” neurons.

Initially, NNs found some employment in a wide range of domains, especially in problems
related to prediction and pattern recognition. Those applications of NNs, however, were
often bounded in their scope and scalability by hardware limitations, as the training
of NNs typically involves high computational costs, even when using backpropagation.
Another obstacle for their wide adoption was high cost of collecting enough labeled
training data, which remains a meaningful challenge in many problem domains.

From the 1990s onwards, steady advances of modern hardware capabilities have made the
training of larger and more complex neural networks more feasible. An important driver
of this process was the adoption of Graphical Processing Units (GPUs) as the hardware
substrate for model training. Even though GPUs were originally developed for graphical
processing, finding ample usage, for instance, in the videogame industry, the fact that
they are optimized for matrix-based computations made them an ideal candidate for
accelerating the linear algebra operations involved in the backpropagation algorithm.

In 2012, a Convolutional Neural Network (CNN) called Alexnet [KSH12] won the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC), a yearly competition of
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object recognition systems [RDS+15]. CNNs take as inputs data volumes with spatially
distributed information, such as RGB images, and make use of the so-called convolutional
layers to perform trainable feature extraction on the raw inputs. The extracted features
are then fed to an inference block, which can be trained for a variety of tasks, such as
classification or regression. In Section 4.1, CNNs will be described in greater detail.

While CNNs had already been successfully employed to solve small-scale image processing
tasks [LBD+89], Alexnet’s performance in the ILSVRC was particularly remarkable as it
was the first time that a neural network had achieved such a high performance in this
rather difficult challenge, and with a considerable advantage over the other competitors.
That result ushered a significant surge in the usage of NNs in the fields of image processing
and computer vision, with powerful convolutional models being trained on GPU hardware
and redefining the state-of-the-art for tasks like image classification and segmentation.

The breakthroughs that CNNs, Transformers [VSP+17] and other contemporary neural
network architectures brought to multiple fields in the 2010s and 2020s roughly coincide
in time with the increasing adoption of the term “Deep Learning” (DL) in both technical
and nontechnical media. While there is no formal definition for the term, Deep Learning
generally refers to the usage of neural networks that contain a large number of stacked
layers, performing multiple composed transformations when processing their inputs.
Although there is no consensus on the number of layers that a NN needs to have in
order to be considered “deep”, this designation tends to be used to contrast modern
architectures with the more “shallow” NNs that were commonplace in the early years of
the field. Machine learning models that are not based on NNs, such as KNN or SVM
classifiers, are also often referred to as shallow models. In practice, the term “Deep
Learning” has become synonymous with the usage of neural networks to solve machine
learning tasks.

Even though the term “neural network” remains, modern NNs have deviated a lot from
their original inspirations in the behavior of biological neurons. In a stricter sense, they
can be better described as a family of computational models constructed by composed
and differentiable computational units, whose parameters can be trained by optimization
algorithms to approximate the behavior of a wide range of non-linear functions.

4.1 Convolutional Neural Networks
Convolutional Neural Networks were first introduced in the start of the 1980s [Fuk80],
finding some limited employment in simple image processing tasks which did not require
excessive computational power, such as identifying handwritten postal codes [LBD+89].
After Alexnet [KSH12] won the ILSVRC, convolutional models started to gain traction
in the image processing and computer vision domains, changing the state of the art for
tasks like image classification, image segmentation and object detection [KSZQ20].

CNNs incorporate the concept of representation learning, which consists of using trainable
feature extractors that can learn how to best convert the features of the input data into
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a new representation that is more convenient for a machine learning model to process
[BCV13]. This is achieved by using what are called convolutional layers (CLs). Each
CL has nc channels, a width w and a height h. Each channel has w ∗ h neurons, and
they all share the same trainable weights. The weights of each channel are trained to
encode spatial filters, which at prediction time are convolved with the CL’s input to
produce activation maps that indicate areas in the input which share a high similarity
with the filter’s weights. In practice, when convolutional layers are stacked sequentially,
this behavior allows for the training of hierarchical filter banks, where the higher-level
filters build upon the abstractions provided by the lower ones in order to detect more
complex patterns.

In essence, CNNs are optimized to perform inference over inputs that manifest themselves
as discretized data volumes with spatial structure, where the positional relationship
between each volumetric pixel and its neighborhood carries meaningful information.
The most prevalent applications of CNNs take as inputs RGB images, which consist of
data volumes with a shape (3,h,w), where h is the image’s height and w is the image’s
width. This, however, is only a special case of the class of inputs a CNN can process, as
convolutional layers can take as input volumes with an arbitrary number of channels.

The most simple CNN architecture for classification and regression contains one convolu-
tional block, focused on feature extraction, followed by a fully-connected block, focused
on inference. The convolutional block consists of a sequence of convolutional layers,
taking as input the raw data and providing as output an alternative representation of
this data in a new feature space. The fully-connected block is, in essence, a feedforward
neural network, taking the transformed data as input and providing a prediction as
output. Both blocks are trained simultaneously with SGD and backpropagation, in a
way that the model learns to both extract convenient features from the raw data and
perform satisfactory inference on those.

The feature extractors of some modern CNNs like Highway Networks [SGS15], ResNets
[HZRS16] and DenseNets [HLVDMW17] include shortcut connections that can bypass
convolutional layers, creating multiple possible paths through which information can flow
through (see Figure 4.2). Intuitively, the shortcut connections allow the training process
to focus on finding convolutional kernels that are capable of enriching the information
provided by the preceding layer, instead of simply converting it into a new representation
with higher levels of abstraction. In practice, this allows for the training of deeper and
more powerful NNs.

4.2 DenseNets
The DenseNet [HLVDMW17] is a CNN architecture that takes inspiration in the shortcut
connections used by ResNet (Figure 4.2), but replacing the identity summation approach
with a concatenation of feature maps along the channel dimension. The overarching
architecture of a DenseNet is similar to that of a traditional CNN, containing a feature
extraction component followed by an inference component.
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Figure 4.2: Diagram of the residual block used in ResNets, where the input tensor is
combined with the output of the convolutional layers by addition. From [HZRS16]

Figure 4.3: Overview of a dense block. Every dense layer takes as input a concatenation
of the outputs of all previous dense layers within the block. From [HLVDMW17]

The core element of a DenseNet’s feature extractor is the dense block, which contains a set
of sequentially arranged convolutional layers. Within a dense block, every convolutional
layer ln receives as input the concatenation of the original input of the dense block with
the outputs of all the layers between l1 and ln−1. This behavior can be modeled as
shown in Equation 4.1, where H(·) denotes the nonlinear transformation performed by a
convolutional layer, x0 denotes the input of the dense block, xi denotes the output of the
convolutional layer li and , denotes concatenation along the channel dimension.

xn = H([x0, x1, . . . , xn−1]) (4.1)

Dense blocks often combine the convolutions with auxiliary operations for responsible for
regularization, such as batch normalization or dropout. In most cases, the convolutional
layer is also succeeded by an activation function such as Sigmoid or ReLU. As suggested
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in the original DenseNet paper [HLVDMW17], all of those operations can be included in
the definition of H(·), thus facilitating notation.

An important hyperparameter to consider when designing a DenseNet is the growth
rate k, which controls the number of channels in the output of all convolutional layers
across the network. As those outputs get concatenated to each other within the dense
blocks, it is important to choose a value of k that is large enough to provide satisfactory
performance, but small enough to keep the model within reasonable bounds.

Figure 4.4: High level diagram of the DenseNet architecture, demonstrating an use case
where it is employed in image classification. Adapted from [HLVDMW17]

In order to improve the scalability of the model’s size, regardless of the value chosen for k,
DenseNets also employ a transition block between each dense block and the subsequent
one. A transition block contains two essential components: a 1x1 convolution layer,
which reduces the dimensionality of the feature maps along the channel dimension, and a
pooling layer, which reduces the dimensionality along the width and height dimensions.
Those blocks can also include regularization elements such as batch normalization. This
design allows the dimensionality of the feature maps to get progressively reduced as
information flows through the DenseNet, avoiding an excessive number of parameters
that could lead to unnecessary complexity.
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CHAPTER 5
Deep Spatiotemporal

Interpolation

5.1 General Considerations
Neural networks can also be trained to solve spatiotemporal interpolation problems,
provided that there are enough ground-truth data available for the training process, either
acquired from real-world sources or by employing data synthesis methods. Architectures
that are optimized for performing inference on data volumes, such as those from the
CNN family, are especially proficient in dealing with spatiotemporal information from
the geospatial domain. This proficiency stems from the underlying structure of this type
of data, which usually involves high levels of interdependence between pixels that are
in close spatiotemporal proximity. Architectures designed for dealing with sequential
phenomena, such as recurring neural networks or attention-based models, can also be
valuable for performing STI on geospatial data, due to their proficiency in capturing
dependencies along the temporal axis.

In this thesis, we present a NN-based spatiotemporal interpolation solution specifically
tailored to the problem of filling gaps in GNSS-R-derived datacubes, particularly those
containing soil moisture data derived from CYGNSS. With this solution, we seek to
address some of the drawbacks of POBI, which is the state-of-the-art technique for
performing STI on GNSS-R-derived datacubes (see Section 3.4). Mainly, we seek to have
a unified regression model that is able to perform STI “globally” across the datacube,
regardless of location-dependent environmental conditions and time-dependent trends
such as rainfall seasonality. While this model does not have to disregard such conditions,
location-specific and time-specific ancillary data regarding the target pixel must be
encoded within the input vectors provided to the unified model, instead of being used
as a mechanism for choosing between one of multiple location-specific models in a large
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ensemble. This allows the model to somewhat emulate POBI’s ability to encode location-
specific knowledge, while also mitigating redundancies by exploiting a neural network’s
ability to compress information applicable to multiple regions of the datacube within a
smaller set of parameters.

5.1.1 Related Work
Multiple studies have explored the application of neural networks to perform spatial,
temporal or spatiotemporal interpolation on soil moisture data. Some works, such as
[FVS+20], only conduct interpolation along the temporal axis, treating each pixel along
the spatial axes as an isolated problem. This particular study, which also deals with SM
data, makes use of Long Short-Term Memory (LSTM) recurrent networks to perform
temporal SM interpolation in a pixel-wise fashion over a 200-hectare field, with a high
spatial resolution. [ISM+23] also addresses the interpolation of soil moisture through
deep learning, but employs a different approach. In this study, which focuses on the
region around a railroad in eastern Canada, the interpolation of SM is only performed
along the spatial axes, making use of Radial Basis Function Neural Networks (RBFN).

A large body of work on deep learning-based interpolation of geospatial data has also
been developed outside the scope of Soil Moisture data. [VJF+21], for instance, uses
Convolutional Autoencoders to interpolate gaps in remotely sensed sea surface sediment
concentration data over a fixed region off the coast of France. [DYS+19] trains a Deep
Convolutional Generative Adversarial Network (DCGAN) to perform purely spatial
interpolation of remotely sensed sea surface temperature data, treating the interpolation
task as an image inpainting problem. [VKT+21] developed an attention-based neural
network interpolator that is capable of modelling both spatial and temporal dynamics,
effectively performing spatiotemporal interpolation, and applied it to surface spectral
reflectance data over Greenland and Australia.

Kirkwood et al. [KEPO22] employ a convolutional architecture to perform spatial
interpolation of point-scale measurements of calcium concentration, producing spatially
dense maps of this same variable. Their model takes two parallel inputs. The first one
is a two-dimensional matrix containing spatial information about the relative elevation
around the pixel of interest, which is directly supplied to a convolutional feature extractor.
The second input is a vector of ancillary location information which is concatenated to
the flattened output of the convolutional block before being supplied to the inference
block. Thus, the model effectively learns to interpolate a point-scale dataset by learning
how to estimate calcium concentration based on inputs from a different set of variables.

5.1.2 Proposed Solution - Deep Convolutional Spatiotemporal
Interpolation

Much of the research in NN-based interpolation of geospatial data relies on the existence
of gapless patches of data which can be used as ground-truth information for model
training. In order to have corresponding input data, it is common to introduce artificial
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gaps on the ground-truth patches. This approach is especially prevalent in work involving
generative models such as GANs or Variational Autoencoders. In the context of CYGNSS
datacube interpolation, it is trivial to acquire patches with gaps to use as input data,
but we are challenged with the lack of a gap-free version of the CYGNSS datacube from
which complete ground-truths could be extracted for every input.

A rather straightforward approach to overcome this issue would be obtaining ground-truth
information from external data products that contain fewer or no spatiotemporal gaps.
Those could be data products derived from other remote sensing systems, such as SMAP
or SMOS, or even model data such as ERA-5 Land [MSDAP+21]. However, when working
with data that originated from different sensors or different data retrieval pipelines, it is
crucial to address the effect of the biases that exist between the products (see Section 2.3).
In our specific use case, failing to correct those biases would result in an interpolation
model which fills the gaps in CYGNSS datacubes with SSM predictions influenced by
the biases from the external dataset. Consequently, the data in the interpolated cells
would follow a slightly different distribution from that observed in the known values.
Therefore, enforcing the constraint of using CYGNSS-derived SM in both the input and
output vectors would significantly simplify the complexity of data preprocessing, while
mitigating a potential source of additional uncertainty in our modelling.

With these considerations in mind, we propose novel strategy for performing STI on
GNSS-R data, for which we have coined the name Deep Convolutional Spatiotemporal
Interpolation (DCSTI). It takes inspiration from two sources: POBI’s autoregression-
based approach of training models using only CYGNSS data, and the CNN-based cell-wise
interpolation process proposed by Kirkwood et al. [KEPO22].

This strategy consists of training a deep learning-based spatiotemporal interpolation
model that is not focused on filling entire spatiotemporal gaps in one pass. Instead, it uses
a CNN to perform interpolation across the datacube by treating each empty cell as its
own individual regression problem. For each empty cell, the regression uses as predictors
the valid observations that can be found within cell’s spatiotemporal neighborhood (see
Figure 5.1). This can be done by treating the spatiotemporal neighborhood as a data
volume and providing it as input to the model’s convolutional block. The specific shape
of the neighborhood used as input to the model is treated as a hyperparameter.

Our proposed model can also take as a secondary input an array containing location-
dependent or time-dependent ancillary data, such as the target cell’s spatial coordinates,
timestamp, or even land cover information. This array is concatenated with the output
of the convolutional block, with the result of this concatenation serving as input to the
inference block. Here, we adopt a slightly different approach from that of Kirkwood et
al., making the usage of such ancillary data optional. In practice, the choice of whether
to use any ancillary inputs and the choice of which ancillary data to include are also
treated as hyperparameters.

Thus, in the simplest case, the input vector of a DCSTI model is the spatiotemporal
neighborhood around the empty cell of interest. Depending on hyperparameter choices,
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Figure 5.1: Overview of the DCSTI setup, along with its inputs and output vectors. The
[,] operator denotes a concatenation of tensors

the input vector can also be a combination of two parallel inputs: the aforementioned
spatiotemporal neighborhood, and an array of cell-specific ancillary data. In both cases,
the output vector is simply a ground-truth value for the cell of interest.

In order to obtain ground-truths for training a DCSTI model, we could adopt the naive
solution of introducing artificial gaps across the already gap-ridden datacube, and then
using the known values of those artificial gaps as output vectors. However, in order to
make the corresponding spatiotemporal inputs similar to a real-world scenario, those gaps
can not have arbitrary shapes. Rather, they would have to resemble the gaps naturally
caused by a lack of enough satellite tracks to cover the entire datacube. This gap shape is
not trivial to simulate, especially in areas where a large amount of tracks are overlapped.

In order to streamline this process, a more elegant solution is to extract the input and
output vectors from two separate datacubes. The output datacube DCout, contains data
retrieved from all 8 satellites that comprise CYGNSS. The input datacube DCin, on
the other hand, consists of a datacube that only contains SM data retrieved from a
small subset of the CYGNSS constellation, which we will refer to as a subconstellation.
Both DCin and DCout should be three-dimensional, with the same temporal and spatial
coverage, in such a way that there is a 1-to-1 spatiotemporal correspondence between
any pair of cells that have the same indices in both datacubes.

While DCout still contains significant spatiotemporal gaps, those are much smaller than
the ones found in DCin. Thus, there will be a large number of cells which contain
valid SM information in DCout, while being empty in DCin. By querying input and
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output vectors corresponding to all of those cells, we are able to build a dataset whose
input vectors contain spatiotemporal volumes with realistic satellite coverage gaps, and
whose output vectors contain ground-truth knowledge derived from the same satellite
constellation. The process by which we obtain those datacubes will be detailed in Section
6.2.1.

By splitting both datacubes along the temporal axis into a training set, a validation
set and a testing set, it is possible to conduct a classic supervised learning training and
evaluation process with the DCSTI model. In Chapter 6, we describe an experiment
in which we train both DCSTI and POBI on the same CYGNSS-derived dataset. In
Chapter 7, the results of this experiment are analyzed.
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CHAPTER 6
Experiment Design

6.1 Preliminaries
In this chapter, we will describe an experiment whose primary goal is to evaluate the
performance of the proposed DCSTI algorithm in the task of performing STI on CYGNSS-
derived datacubes. In this experiment, we will treat STI as a regression problem, and
train both DCSTI neural networks and a POBI ensemble to solve it.

As POBI is considered the state-of-the-art solution for performing STI on GNSS-R
datacubes, our aim is to use it as a benchmark against which DCSTI can be evaluated.
While both algorithms have fundamental differences in their training and prediction
processes, they essentially tackle the same problem. Thus, we aim to establish comparable
experiment setups for both algorithms, despite the constraints that arise from their
inherent differences.

The experiment will be divided into two phases. In Phase 1, we will train both POBI
and DCSTI on the same training set and evaluate them against the same training set
using RMSE as an error metric. In Phase 2, we will use both the trained POBI ensemble
and the trained DCSTI model from Phase 1 to fully interpolate the gaps of the same
CYGNSS-derived datacube. Then, as a secondary evaluation, both of those interpolated
datacubes will be validated against ground-truth values derived from external data
products derived from other remote sensing systems. In order to do this, we will use
metrics that are recommended in the SM validation literature for comparing data from
different sources, such as the ubRMSE and the Pearson Correlation Coefficient [GDA+20].

6.1.1 Choice of Observable
Beyond evaluating the performance of DCSTI, our experiment also has a secondary goal,
which is producing a trained interpolation model that can more easily be adapted for
usage with upcoming GNSS-R missions such as HydroGNSS by means of transfer learning.
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Unfortunately, the assessment of this goal will only be possible once the HydroGNSS
constellation has become operational and provided users with enough data. Thus, even
though we will make some preliminary preparations for this purpose, concrete evaluations
of model transferability will only be conducted in future studies, once the required data
is available.

Transferring a regression model between two data domains is not a trivial task, and
gets progressively more difficult based on how disjoint those domains are. Thus, one of
the challenges that could arise when trying to adapt an interpolation model trained on
CYGNSS reflectivity data to a new domain, such as HydroGNSS reflectivity data, is that
electromagnetic backscatter observables such as the Γ measurements that were used in
the original POBI paper [Che23] are highly coupled to individual sensor characteristics.

Conversely, volumetric SSM estimates retrieved from reflectivity observations made by
two different sensors will be the result of different data processing pipelines, but always
refer to the same physical quantity. While there are certainly a multitude of sensor-
dependent and modelling-dependent uncertainties and biases embedded in SSM retrievals,
the domain difference between CYGNSS-derived and HydroGNSS-derived SSM data will
be much smaller than the one observed in electromagnetic backscatter data.

Thus, building upon our inference that POBI’s high performance in interpolating reflec-
tivity data is partially driven by the physical dynamics of SSM (see Section 3.2), we have
decided not to perform our interpolation experiments with electromagnetic reflectivity
observables such as Γ, but rather to interpolate SSM retrievals directly.

6.1.2 Spatial Resolution Scenarios

We have decided to run both phases of the experiment twice, using two different spatial
resolution scenarios. The first one will employ a datacube with the spatial dimensions
discretized along a 36 km regular grid. This resolution is close to the one used by
coarser-resolution SM products such as those derived from SMAP and SMOS, facilitating
external validation against such products in Phase 2. The second scenario will employ a
datacube with a 9 km regular grid, which is closer to CYGNSS’ theoretical along-track
resolution of either 3.5 km or 7 km (see Section 6.2.2), but still coarse enough to prevent
the spatiotemporal data volumes in DCSTI’s input vectors from becoming too sparse.
Additionally, this resolution is also coarse enough to ensure that the training processes of
both POBI and DCSTI do not incur prohibitive computational costs.

Furthermore, this dual-grid approach allows us to analyze DCSTI’s performance in
interpolating SSM along two different spatial scales, which are both characterized by
their own distinct spatial SM dynamics. For simplicity’s sake, those two versions of the
experiment will henceforth be denoted as the 9 km experiment and the 36 km experiment.
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6.2 IFAC-TW Data Product

Among the several CYGNSS-derived data products that are currently available, one that
is particularly well suited for our experiment setup is a secondary version of the “IFAC
CYGNSS ANN SM” data product [SPP+20][SCC+22], known as “IFAC CYGNSS ANN
SM Trackwise”, which we will refer to as IFAC-TW for simplicity.

Unlike the main version of the “IFAC CYGNSS ANN SM” product, IFAC-TW is not
provided as a datacube, but rather in a tabular format, consisting of a list of geolocated
CYGNSS-derived soil moisture retrievals. Each entry in this list contains an individual
volumetric SSM retrieval, as well as data on the time and location of the observation.
Furthermore, each entry also contains a track identification number that indicates which
of the 8 CYGNSS satellites performed the observation, hence the name “Trackwise”.
Table 6.1, provides a detailed description of the variables contained in each entry of this
data product.

Variable Contents
Latitude Approximate latitude of the measurement,

with a precision of up to decimals of degrees
Longitude Approximate longitude of the measurement,

with a precision of up to decimals of degrees
Date Date in which the measurement was taken

Second of Day (SoD) Number of seconds since the start of
the day in which the measurement was taken

Satellite ID ID of the CYGNSS satellite from which the measurement
originated, ranging from 1 to 8

Soil Moisture Volumetric soil moisture measurement in m−3/m−3,
ranging from 0 to 1

Table 6.1: Description of the variables in the initial CYGNSS SM dataset

The IFAC-TW data product aligns well with our specific requirements. First, it contains
data on SSM retrievals instead of reflectivity, which would improve the transferability
of pre-trained DCSTI models, as argued in Section 6.1.1. Furthermore, the satellite
identification flags allow us to extract subsets of IFAC-TW that only include observations
derived from specific subconstellations of CYGNSS. Provided that we have a mechanism
for converting the tabular data into SSM datacubes (see Section 6.2.1), it is trivial to
obtain two subsets of IFAC-TW that can be readily converted into an input datacube
DCin and an output datacube DCout following the criteria established in Section 5.1.2.

The IFAC-TW product has a temporal coverage ranging from August 2018 to September
2021, amounting to a total of approximately three years. In terms of spatial coverage, the
observations are restricted to latitudes between −35◦ and 35◦, as the CYGNSS orbital
path was designed to cover only the intertropical regions (see Section 2.4.1).
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The SSM estimates contained in IFAC-TW were retrieved from CYGNSS reflectivity data
through a machine learning model. Specifically, Santi et al. trained a feedforward neural
network to predict SSM estimates from input vectors containing a combination of Γ, SNR
and location-specific ancillary data such as elevation land cover information. The output
vectors were SMAP-derived SM estimates obtained from the SMAP L3 Radiometer
Global Daily dataset [OC23b]. For a complete description of the training process of this
model, as well as evaluation results, please refer to [SPP+20] and [SCC+22].

6.2.1 Preprocessing

As discussed in Section 5.1.2, the training of DCSTI requires two tridimensional SM
datacubes, denoted as DCin and DCout, from which we will extract input vectors and
output vectors, respectively. Both of them should have two spatial dimensions and one
temporal dimension, using the same spatial grid and same timestamp quantization, and
having the same extent in each dimension. Specifically, every cell from DCin must have
identical spatial and temporal coordinates to those of the cell with corresponding indices
in DCout. The key difference between them is that while DCout contains SSM estimates
retrieved from all 8 CYGNSS satellites, DCin only contains data collected by a smaller
subconstellation.

In order to make the extraction of tridimensional subconstellation datacubes flexible, we
have decided to initially convert the tabular data of IFAC-TW into a four-dimensional
datacube with the shape (channel, time, latitude, longitude), with the channel determining
which satellite originated the measurement. In practical terms, this four-dimensional
datacube can be understood as an array of eight tridimensional datacubes. Each of those
contains the observations performed by a single CYGNSS satellite. Thus, a tridimensional
datacube with the observations performed by an arbitrary subconstellation of CYGNSS,
can be obtained by simply filtering the channel dimension to only include the indices of the
desired satellites, and then computing a mean along the channel dimension. In practice,
this is simply an element-wise averaging of the tridimensional datacubes corresponding
to the satellites of interest.

Thus, to convert IFAC-TW to a datacube format, all entries have to be quantized along
four dimensions. The quantization of the channel dimension is straightforward, as its
coordinates already consist of 8 discrete values. With respect to the spatial dimensions,
we have opted to bin the measurements according to the the 9 km and 36 km versions of
the EASE 2.0 regular grid [BBH+12], depending on which spatial resolution scenario we
are working with (see Section 6.1.2).

The time dimension has been quantized into daily bins. This decision stems from
CYGNSS’ data collection pattern, which involves observations that can be made at
arbitrary times during the day. As SSM measurements at a given location can potentially
fluctuate a lot between daytime and nighttime, the usage of 24h bins increases the chances
that a pixel’s timeseries contains less noisy representations of daily SSM patterns.
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Thus, in practical terms, our 4-dimensional datacube consists of an array of 8 identically-
shaped three-dimensional tensors. Every cell of each of those tensors is either empty or
contains a simple mean of all SSM measurements that were collected by the corresponding
CYGNSS satellite within a 9 km × 9 km or a 36 km × 36 km window, over the course
of an entire day. In order to obtain a tridimensional datacube that encompasses the
observations made by an arbitrary subconstellation of CYGNSS, we must simply perform
an element-wise averaging of the relevant tridimensional tensors.

6.2.2 Data issues
In this section, we will delve into some of the data issues, caveats and challenges that we
have encountered over the course of the work with the IFAC-TW data. Some of them
required additional processing steps after the conversion of IFAC-TW into a datacube
format, and some of them required special precautions to be taken during the split of the
data for the training of POBI and DCSTI (see Section 6.3.1).

Integration Time

When a microwave receiver embarked on a remote sensing satellite makes an observation,
it collects electromagnetic radiation during a specific time period known as integration
time. Due to the satellite’s relative movement with respect to the observed surface, this
integration time has an impact on the shape of the satellite’s footprint, changing its
length in the along-track direction and consequently impacting the along-track spatial
resolution.

(a) Histogram of the distances between con-
secutive observations within a track, aggre-
gating data from two separate days. In or-
ange, a day with the old integration time.
In blue, a day the new integration time.

(b) An example of the sampling rates pro-
vided by both integration times over the
same area. The blue tracks are from a day
with the old integration time, while the red
tracks are from a day with the new integra-
tion time.

Figure 6.1: Changes in the spatial distribution of CYGNSS observations between the
two integration times
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In July 2019, the integration time of the CYGNSS satellites was halved from 1 s to 0.5 s.
As a consequence, the theoretical along-track footprint of the sensors was reduced from 7
km to 3.5 km (see Figure 6.1). This alteration of the average along-track sampling rate
of CYGNSS can impose a challenge on the training process of DCSTI, as it affects the
overall spatiotemporal distribution of valid pixels within the data volumes used as input
vectors, making the problem domain harder to model. In order to mitigate this issue,
we have carefully designed the training, validation and testing sets in a way that they
include data collected under both integration time regimes.

Constellation Size

In November 2022 an unexpected communication failure of satellite FM06 has reduced
the number of active CYGNSS satellites from eight to seven. This has directly affected
the average temporal resolution of CYGNSS data, as well as the constellation’s spatial
coverage patterns. As the current version of the IFAC-TW product only covers the
period between August 2018 and September 2021, this disruption has no impact on our
experiments. Thus, we only mention this incident here for the sake of completeness.

Filtering of Invalid Pixels

In order to mitigate several data quality issues, we have developed a pixel validity mask
that filters out observations from certain pixels based on latitude, hydrology or climatic
conditions. In practice, it just replaces any non-empty cells in those locations with empty
values.

Due to physical limitations, microwave remote sensing systems are unable to reliably
measure the water content of soil obstructed by snow or ice cover. Thus, in order to
ensure the overall data quality and validity, cells that contain snow or ice cover should
always be masked out of the SM datacubes. As the data we are working with is restricted
to the latitudes between −35◦ and 35◦, the vast majority of cells obstructed by snow or
ice are located in regions with high elevation, such as the Andes or the Himalayas. In
order to simplify the snow and ice masking process, we have opted to filter out from the
4-dimensional CYGNSS datacube any observations made at locations with an elevation
higher than 3000 m.

In a similar vein, the concept of soil moisture is inherently ill-defined for observations
collected over inland water bodies, as the observed surface does not in fact constitute
soil. In practice, CYGNSS observations made over inland water bodies such as rivers
and lakes tend to have a very high reflectivity value, which data retrieval models can
erroneously interpret as elevated soil moisture levels. In order to mitigate the amount of
those problematic retrievals in our data, we have filtered out from the datacube all the
cells corresponding to pixels where more than 20% of the area is covered by permanent
water bodies. This same filtering rule also effectively drops any pixels over oceans, or
coastline pixels predominantly covered by the sea.
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Retrieval Artifacts

(a) Global IFAC-TW SSM climatology, computed from the entire time span of a datacube with a
9 km grid and data from the entire CYGNSS constellation

(b) Close-up of artifacts in North America (c) Close-up of artifacts in Western Africa

Figure 6.2: The IFAC-TW SSM climatology contains multiple artifacts that do not match
with known real-world SSM spatial patterns, with sharp discontinuities that manifest as
polygons or straight lines spanning hundreds of kilometers

When performing studies involving environmental variables such as soil moisture, it is
standard practice to compute long-term statistical moments of the variable. As part
of a preliminary exploratory data analysis of IFAC-TW, we have computed a pixelwise
temporal mean of SSM across the entire dataset, which in the context of Earth sciences is
often referred to as a “climatology” of the variable. The main purpose of computing this
climatology was to perform an informal visual examination of the SSM patterns across
the globe, aiming to verify if they match the patterns observed in the climatologies of
well-established SM data products.

Through this visual analysis of the IFAC-TW climatology, we have ascertained that most
regions exhibited spatial SSM patterns that matched our expectations. However, we have
encountered multiple instances of anomalous and abrupt spatial fluctuations of average
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SSM that, when plotted on a map, ultimately manifest as large straight lines or arbitrary
geometric shapes spread across vast swaths of land, not resembling any natural features
that can influence SSM patterns (see Figure 6.2).

This type of artifact is commonly caused by biases introduced by incorporating categorical
data in the data retrieval algorithm, such as discretized land cover information. In our
specific case, this is also likely to be the origin of the artifacts, as the SSM estimates
contained in IFAC-TW were retrieved from reflectivity data through a neural network
that includes land cover data in its input vectors. Due to the black-box nature of this
retrieval algorithm, isolating and mitigating this bias in the data would pose a significant
challenge.

Therefore, we have decided to treat those artifacts as inherent errors in the data, acknowl-
edging them, within the limited bounds of our experiment, as parts of the ground-truth.
Thus, we will refrain from any attempts to steer the models away from fitting to those
errors, as that would stray the learning away from what we consider to be the ground-
truth.

6.3 Experiment Design - Phase 1
In Phase 1, we will perform a classic machine learning experiment to compare the
performance of two algorithms, namely POBI and DCSTI, in the execution of the same
spatiotemporal interpolation task. In essence, this task consists of solving an individual
regression problem instance for each empty pixel of a tridimensional CYGNSS SSM
datacube containing spatiotemporal gaps.

In order to evaluate the regression performance of both algorithms, we have split the
four-dimensional IFAC-TW datacube along the temporal dimension into a training slice,
a validation slice and a test slice. Both algorithms have been trained exclusively on
data from training slice, and had their performance measured on data from the test slice
according to the RMSE criterion. The validation slice has been used for hyperparameter
tuning. In the case of DCSTI, it was also used as a tool for assessing convergence and
overfitting during the training of neural networks

Both POBI and DCSTI operate in an analogous fashion when performing inference, having
the same output domain and effectively solving the same problem of producing a fully
interpolated tridimensional datacube. However, those two algorithms have fundamental
differences in their input vectors at both training and prediction time.

The training of POBI only requires a single datacube, from which the historical spa-
tiotemporal relationships between all relevant pair of pixels are extracted. This datacube
can also be the source of the testing data used to evaluate the POBI ensemble, provided
that training and testing data are extracted from disjoint temporal slices of the datacube.

Conversely, the training of DCSTI requires the usage of two datacubes DCin and DCout,
with input vectors being extracted from DCin and output vectors being extracted from
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DCout. As outlined in Section 5.1.2, DCin must be derived from a subconstellation with
a lower cardinality than the one from which DCout is derived. This requirement of two
separate datacubes applies to training, validation and testing data.

In order to run a single inference at prediction time, the only input that POBI requires
is a two-dimensional array containing the known values surrounding the cell of interest
at its exact temporal index. DCSTI, on the other hand, utilizes a tridimensional tensor
extracted from the vicinity of the cell of interest.

As part of the effort to keep the experiment setup as consistent as possible between POBI
and DCSTI, we seek to provide both algorithms with the same amount of ground-truth
knowledge at training time. Therefore, we train the POBI models using the same DCout

as the one used to extract the output vectors used in the training of DCSTI. Specifically,
we will use all eight CYGNSS satellites to generate this DCout, thus maximizing the
ground-truth information available to both algorithms. This specific datacube will
henceforth be denoted as DCfull.

While the training of DCSTI could in principle be conducted with a DCin derived from
a CYGNSS subconstellation with any cardinality between 1 and 7, our focus will be
on the scenario where the subconstellation has a cardinality of 2. The rationale behind
this decision is that we seek to closely align our experiment with the use case of the
HydroGNSS constellation, which will be comprised of a total of 2 satellites.

As mentioned in Section 6.1.2, the entire experiment will be conducted twice, using
two separate datacubes derived from IFAC-TW, using two different spatial grids for
discretizing the spatial dimensions. They are, respectively, the 9km and the 36km versions
of the EASE 2.0 grid.

In both resolution scenarios, the evaluation of the trained POBI and DCSTI models
has been conducted by having them fully interpolate an IFAC-TW datacube derived
from a subconstellation with a cardinality of 2. Then, the RMSE of the testing slice was
computed with respect to the same slice from DCfull.

The subconstellation used in this evaluation process is specifically composed by the
CYGNSS satellites FM03 and FM04. Those satellites were selected randomly, as a
preliminary analysis of statistical moments from several IFAC-TW datacubes with a
cardinality of 2 revealed that all satellite pairs yield data with the same overall distribution.
The tridimensional CYGNSS SSM datacube derived from FM03 and FM04 will henceforth
be denoted as DC3,4

6.3.1 Data Split
The IFAC-TW dataset encompasses approximately three years of data, ranging from
August 2018 to September 2021. When temporally partitioning an IFAC-TW-derived
datacube into training, testing and validation sets, a common strategy would be to define
a fixed proportion of IFAC-TW’s time span to be assigned to each subset. Subsequently,
the time indices could be randomly allocated according to those proportions, employing
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a very fine or even individual granularity. However, for this particular experiment, we
cannot adopt such a strategy for a variety of reasons.

Firstly, the training of POBI involves establishing correlations between long-term SSM
timeseries of neighboring pixels, and thus the training set must consist of a long sequence
of consecutive days.

Secondly, the input vectors of DCSTI contain spatiotemporal volumes that must cover
several days along the time dimension, meaning that the splitting granularity must be
coarse enough that such input volumes can be entirely contained within slices of either
subset.

Thirdly, we want all three slices to be equally distributed across all seasons of the year,
as SSM patterns are known to exhibit a high degree of seasonality.

Lastly, due to the changes that happened to the CYGNSS integration time in 2019
(see Section 6.2.2), we have two distinct spatial distributions of observations along the
IFAC-TW time period, and it would be important to account for this variability in all
three data subsets.

Therefore, while recognizing that the usage of a fixed data split can introduce some level
of bias to the experiment results, we have opted for a compromise where we manually
construct a fixed. This decision stems from an effort to find a balance between potential
bias and the need to address all of the constraints listed above.

Figure 6.3: Diagram of the data split employed in Phase 1. The data was split temporally,
with a monthly granularity, seeking to ensure a balanced distribution of integration time
and temporal seasonality across all three subsets.

This split, shown in Figure 6.3, allocates the entirety of 2019 and 2020 as the training
set. The remaining time has been partitioned at a monthly granularity between the
testing and validation sets, following a ratio of 2:1. The testing and validation months
are alternated in order to ensure that both of those subsets have samples spread across
all seasons. All three subsets have approximately a quarter of their time indices derived
from the period characterized by the old CYGNSS integration time. The months of
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August and September from 2019 have been dropped from the data in order to facilitate
the construction of this manual split.

6.3.2 Phase 1 - POBI
As outlined in Section 3.3.1, the POBI algorithm has three main hyperparameters: the
Neighborhood Length (ln), the Concurrency Window (wc), and the Minimum Concurrency
Threshold (cmin). As training POBI with a single hyperparameter configuration is already
computationally expensive, especially in the case of the 9 km experiment, we have opted
for using a fixed value of 1 day for wc and a minimum of 3 points for cmin.

Then, in both the 9 km and 36 km experiments, the POBI ensemble was trained according
to the procedure described in Section 3.3.1, using the following values for ln: {3, 5, 7, 9,
11, 13, 15, 17}. As specified in Sections 6.3 and 6.3.1, the training data for POBI was
derived from 2019 and 2020, using DCfull as a data source.

In order to optimize the value of ln, those 8 hyperparameter configurations of the POBI
ensemble were used to fully interpolate the validation months of CYGNSS SSM datacubes
derived from 2 satellites. We then computed the average RMSE of the interpolated
validation set with respect to the corresponding dates in DCfull. In both the 36 km
and 9 km cases, this analysis revealed ln = 9 to be the most favorable choice within the
examined range. Higher values of ln yielded no significant improvement with respect to
RMSE on validation data, and substantially increased the number of parameters required
by the POBI ensemble.

Finally, in both the 9 km and 36 km cases, the ln = 9 version of the POBI ensemble was
used to interpolate DC3,4. Then, the RMSE between the test slice of those interpolated
datacubes and the test slices of the corresponding versions of DCfull were computed.
For detailed analysis of those results, please refer to Section 7.2.

6.3.3 Phase 1 - DCSTI
As mentioned in Section 6.1.1, this study has a secondary goal of producing an STI model
that can be adapted for the upcoming HydroGNSS mission by means of transfer learning.
Thus, in order to approach the observation distribution of HydroGNSS, we have focused
both the 36 km and 9 km DCSTI experiments on the case where DCin is derived from
a subconstellation with cardinality 2, while DCout is derived from the entire CYGNSS
constellation.

In order to increase the amount of data for the training and validation sets, we extract
input vectors from multiple parallel realizations of DCin, employing all possible pairs of
CYGNSS satellites. Thus, each non-empty cell of DCfull might be used as an output
vector in combination with multiple different input vectors extracted from different
realizations of DCin.

As shown in Figure 6.4, the DCSTI experiment pipeline in Phase 1 starts with querying
all cases of empty cells in any realization of DCin with a corresponding non-empty cell

51



6. Experiment Design

in DCfull. From those cells, we extract input vectors comprised of their spatiotemporal
surroundings and output vectors comprised simply of the known value form DCfull. If
the appropriate hyperparameters have been toggled, the input vectors also include an
array of ancillary information.

Those input/output pairs are then split into training, testing and validation sets according
to the criteria established in Section 6.3.1. Once the data split is completed, we proceed
to train multiple CNN regressors to map from the input vectors to the output vectors,
with each of those models having its own unique hyperparameter configuration.

Figure 6.4: Flowchart of the DCSTI modelling pipeline in Phase 1

All models were trained from scratch, without employing transfer learning from pre-
trained models designed for general-purpose image processing tasks. This decision stems
from the fact that the target domain of this study is significantly different from general
imaging domain in terms of underlying data semantics. Moreover, in most cases, our
input data volumes have more than three channel dimensions, which in the imaging
domain usually refer to RGB channels, and in our domain correspond to time indices.

To evaluate the performance of each hyperparameter configuration, we have employed a
classic supervised learning setup for neural network training: after each model reached
convergence on periodic evaluations against subsets of the validation set, they were
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evaluated against the entirety of the validation set according to the RMSE.

Finally, just like we did for POBI, the DCSTI models that achieved the highest perfor-
mance in each resolution scenario were used to fully interpolate the corresponding version
of DC3,4. Then, the RMSE between the test slice of those interpolated datacubes and
the corresponding test slices in both versions of DCfull were computed. For a detailed
analysis of those results, please refer to Section 7.2.

In the following subsections, we will outline some considerations about the hyperparameter
tuning process for DCSTI. For a complete rundown of the hyperparameters that yielded
the best-performing DCSTI model for each spatial resolution scenario, please refer to
Section 7.1.

Hyperparameter Tuning - Input Vectors

The shape of the spatiotemporal volume around the cell of interest in each input vector
is an important hyperparameter, characterized by split six different values. Those values
represent the number of cells to be included around the cell of interest along each direction
of the three spatiotemporal dimensions. During our hyperparameter search, we focused
on configurations where no cells from timestamps posterior to that of the cell of interest
were included. This choice stems from an attempt to produce an interpolation model
that does not rely on knowledge of the future at prediction time, and thus can be used
for applications requiring near-real-time data delivery.

The inclusion of ancillary data in the input vectors, and the choice of which ancillary
data sources to use, are also hyperparameters that require tuning. We have included
three possible sources of ancillary data in our hyperparameter space:

• Spatial coordinates of the cell of interest, encoded as latitude and longitude values;

• Temporal coordinates of the cell of interest, encoded as the day of the year;

• Land cover information of the cell of interest, obtained from the MODIS/Terra
Land Cover dataset [BK11].

Hyperparameter Tuning - Architecture

The hyperparameter space of convolutional neural networks is challenging to explore,
as it contains a high number of dimensions, many of which have their existence depend
on the values taken by other dimensions. For instance, it would only make sense to
optimize the length of the third hidden layer of a CNN’s fully-connected block if said
block has a number of hidden layers greater than or equal to three. Thoroughly exploring
such a hyperparameter space requires a substantial amount of computational resources,
especially in cases where training a single model takes a long time. Moreover, the
nondeterministic nature of SGD might require multiple training runs with a single hyper-
parameter configuration in order to obtain an appropriate grasp of that configuration’s
performance.
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With the computational resources that were made available for this study, training a neural
network to convergence requires approximately one full day for the 9 km experiment,
and approximately 5 hours for the 36 km experiment. Thus, in light of the challenges
outlined above, we have defined a limited hyperparameter space to explore for each
experiment, and manually adjusted the ranges and granularity of those spaces according
to improvements or setbacks that were empirically encountered along the search process.

Specifically, we have narrowed down the neural network architecture search to three
options: standard CNNs, ResNets and DenseNets. For each architecture, a few different
values were attempted for hyperparameters such as the number of layers and growth rate.
The model architectures we used in this study were either implemented from scratch
using the PyTorch library [PGM+19] or adapted from the open-source architecture
implementations provided by the same library, modifying them to better suit our specific
needs.

6.4 Experiment Design - Phase 2
In Phase 2 of the experiments conducted in this study, we seek to validate the four
fully-interpolated versions of DC3,4 against external soil moisture data products. In order
to establish a baseline, we have also validated both versions of DCfull against the same
data. Thus, Phase 2 involves a total of six datacubes, including:

• The 36 km version of DC3,4, fully interpolated by the best-performing 36 km POBI
model;

• The 36 km version of DC3,4, fully interpolated by the best-performing 36 km DCSTI
model;

• The 36 km version of DCfull, without any interpolation;

• The 9 km version of DC3,4, fully interpolated by the best-performing 9 km POBI
model;

• The 9 km version of DC3,4, fully interpolated by the best-performing 9 km DCSTI
model;

• The 9 km version of DCfull, without any interpolation.

For this phase, we no longer make the distinction between training, validation and testing
slices, but rather evaluate the entire interpolated datacubes against external data.

The rationale for also validating those datacubes against external data lies in the still
experimental and evolving nature of GNSS-R technology for monitoring soil moisture.
Although our primary focus is improving the quality of GNSS-R data products by means
of spatiotemporal interpolation, we also seek to contribute to a deeper understanding of
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the inherent issues contained in the GNSS-R data itself. We acknowledge, for instance,
that the data we regard as ground-truth within the bounds of Phase 1 might contain an
unexpectedly high level of error with respect to the real-world observables, as hinted by
the artifacts described in Section 6.2.2.

Thus, in order to provide a secondary means of model evaluation, we resort to external
data derived from other more mature remotely sensed SM data products, which have
already undergone more extensive modeling, calibration and validation studies, and are
thus likely to carry a lower level of uncertainty and deviation from the real-world values.
This comparison could, in theory, allow us to better assess the degree to which POBI and
DCSTI improve or degrade the quality of the CYGNSS data, and how the uncertainties
found in the interpolated data compare with the uncertainty that is already embedded
in the ground truths used to train those models.

All six of the validation experiments of Phase 2 have been conducted within QA4SM
[GDA+20], an online platform for validation and quality assurance of SM data products
which is available at https://qa4sm.eu (last accessed on March 20, 2024). With
the aid of QA4SM, we can compute time-oriented validation metrics for each pixel, the
corresponding timeseries between multiple datacubes. We are mainly concerned with
two metrics, which are commonplace in the SM validation literature [GDA+20].

The first one is the ubRMSE (Equation 6.1), which seeks to compute the RMSE between
two corresponding timeseries derived from different sensors after removing the bias that
exists between both sources.

ubRMSE =

���� 1
N
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i=1

[(Xi − X̄)(Yi − Ȳ )]2 (6.1)

The second one is the Pearson correlation coefficient (Equation 6.2), which seeks to
quantify the strength of a correlation between two timeseries.
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For a complete summary of the results of Phase 2, please refer to Section 7.3.
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CHAPTER 7
Results and Discussion

7.1 Final Hyperparameter Configurations
In this section, we will briefly describe the hyperparameter configurations of the models
that were picked during the hyperparameter search of Phase 1 to be evaluated on test
data. Those models are not necessarily the ones that displayed the best possible RMSE
on validation data, but rather those that have struck the most balanced compromise
during our hyperparameter exploration, combining a validation RMSE on par with the
overall best-performing models while requiring a reasonably small number of parameters.

7.1.1 POBI Hyperparameters
After conducting the hyperparameter search procedure described in Section 6.3.2, with
fixed values for wc and cmin, we reached the conclusion that a neighborhood length of 9
provides an ideal balance between validation RMSE and model size. While higher values
of ln provide marginal improvements in the validation RMSE, they unfortunately lead to
a dramatic increase in model size, as an increase in ln leads to a quadratic increase in
the number of parameters required by the POBI ensemble. This trend of diminishing
returns at ln = 9 was observed in both the 9 km and 36 km experiments, and therefore
the incumbent POBI hyperparameter configuration for both cases is the one shown in
Table 7.1.

Variable Value
ln 9 pixels
wc 1 day

cmin 3 points

Table 7.1: Incumbent hyperparemeter configuration for POBI

57



7. Results and Discussion

7.1.2 DCSTI Hyperparameters
Similarly to the POBI case, our exploration indicated that some regions of the DCSTI
hyperparameter space yield a good balance between validation RMSE and model size
in both the 9 km and 36 km experiments. Although marginal improvements could be
achieved by fine-tuning the architecture hyperparameters of each resolution scenario,
we have opted for maintaining a certain consistency between the values used in both
cases, keeping them identical unless a specific hyperparameter change yielded significant
improvements in validation RMSE.

Ultimately, as shown in Tables 7.3 and 7.2, the main difference between the incumbent
architectures that were selected for the 9 km and 36 km cases lies in the shape of the
data volumes contained in the input vectors. This also has an indirect impact on the
dimensions of the feature maps used throughout the dense blocks, as their widths and
heights are not defined explicitly, but rather as a function of the input volume’s width
and height.

In Tables 7.3 and 7.2, the shape of the input volume is described by the number of cells
that are extracted from around the cell of interest in each direction. They are listed in
the following order: number of cells in the past, number of cells in the future, number of
cells to the west, number of cells to the east, number of cells to the north, number of
cells to the south.

For both resolution scenarios, we have focused our hyperparameter exploration on input
volume shapes that do not include any pixels from the future, thus allowing the trained
models to be used for applications that require near-real-time data delivery. In the case
of the 9 km experiment, we sought to use input volumes with longer widths and heights
along the spatial dimensions, as the pixels in the 9 km grid correspond to a smaller land
area than the pixels in the 36 km grid.

Parameter Value
Input Volume Shape [14,0,8,8,8,8]
Ancillary Data None
Architecture DenseNet
Dense Block Sizes [2,4,8,4]
Growth Rate 32
Fully Connected Layers [512, 1]

Table 7.2: Incumbent hyperparameter configuration for DCSTI: 36 km Experiment

A noteworthy finding of our hyperparameter exploration was that ResNets can achieve a
validation RMSE on par with that of the DenseNet configurations listed above, but only
when using input vectors that include ancillary data such as spatial coordinates and land
cover information. Thus, even though ResNets usually require fewer parameters than
DenseNets, in the context of this problem this model size advantage would come at the
cost of including additional data streams. Ultimately, we opted for using an architecture
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7.2. Phase 1 Results - RMSE on test data

Parameter Value
Input Volume Shape [14,0,14,14,14,14]
Ancillary Data None
Architecture DenseNet
Dense Block Sizes [2,4,8,4]
Growth Rate 32
Fully Connected Block Sizes [512, 1]

Table 7.3: Incumbent hyperparameter configuration for DCSTI: 9 km Experiment

that requires a higher number of parameters, but offers a simpler data pipeline that
minimizes data dependencies.

7.2 Phase 1 Results - RMSE on test data
In this section we will discuss the performance of the trained models described in Section
7.1 when performing spatiotemporal interpolation of cells in the test slice of DC3,4,
which is derived exclusively from the IFAC-TW observations collected by the CYGNSS
satellites FM03 and FM04, as outlined in Section 6.3. We measure this performance by
computing the element-wise RMSE between the fully interpolated DC3,4 and a ground-
truth datacube DCfull which is derived from the entire constellation. Since DCfull has
not undergone any interpolation, it still retains some spatiotemporal gaps, and thus
the RMSE is only computed at cells for which there is valid ground-truth information
available.

Tables 7.5 and 7.4 present the test RMSE results for the 9km and 36km experiments,
respectively. We also include the number of parameters required by each model, along
with the order of magnitude of this same number in order to simplify the table’s readability.
In the case of POBI, the number of parameters is computed according to Equation 3.3,
which defines the lower bound for the number of parameters required by a POBI ensemble.
In the case of DCSTI, we directly report the number of trainable parameters contained
within the neural networks selected for evaluation. In the histograms contained in Figure
7.3, we display the pixel-wise RMSE distributions of both methods.
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7. Results and Discussion

(a) Timeslice of DC3,4 (9 km) (b) Timeslice of DCfull (9 km)

(c) Timeslice of DC3,4 (9 km), interpolated
via POBI

(d) Timeslice of DC3,4 (9 km), interpolated
via DCSTI

Figure 7.1: Comparison of the same timeslice across all four datacubes involved in the 9
km scenario of Phase 1. In order to facilitate the visualization of the non-interpolated
tracks, we have zoomed into a specific region in northeastern Brazil
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7.2. Phase 1 Results - RMSE on test data

Method RMSE Number of Model Number of Model Parameters,
Parameters, Total Order of Magnitude

POBI 0.017318 13,909,920 107

DCSTI 0.016842 1,802,913 106

Table 7.4: Performance and Model Size Comparison for 36 km Experiment

Method RMSE Number of Model Number of Model Parameters,
Parameters, Total Order of Magnitude

POBI 0.018894 226,498,320 108

DCSTI 0.018156 2,581,153 106

Table 7.5: Performance and Model Size Comparison for 9 km Experiment

(a) RMSE on test data, 36 km scenario (b) RMSE on test data, 9 km scenario

Figure 7.2: Comparison of the RMSE of both POBI and DCSTI on test data, in both
spatial resolution scenarios

Through an analysis of the values in Tables 7.4 and 7.5 and the distributions depicted in
the histograms in Figure 7.3 it becomes evident that, in both experiments, the chosen
DCSTI model was able to outperform the chosen POBI ensemble with respect to the
RMSE on test data. Figure 7.2 further illustrates this point, showing non-overlapping
95% confidence intervals for the RMSE in both experiments, indicating that there is a
statistically significant difference in the performance of both models according to this
criterion. The statistical significance of this difference was further confirmed through a
paired t-test, with p-values smaller than 0.001.

Nevertheless, it is important to recognize that the performance of both DCSTI and POBI
can be very sensitive to hyperparameter choices and data quality issues, and there is a
possibility that the most favorable regions of the hyperparameter space have not been
explored in either method. Thus, despite observing a statistically significant performance
difference between both methods in this specific experiment, we consider this difference
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7. Results and Discussion

(a) Pixel-wise RMSE on test data, 36 km
scenario

(b) Pixel-wise RMSE on test data, 9 km
scenario

Figure 7.3: Histogram of the pixel-wise RMSE of POBI and DCSTI on test data, in both
spatial resolution scenarios

to be small enough that it could potentially be bridged or even reversed by means of a
more thorough hyperparameter optimization process.

Consequently, while our findings suggest that DCSTI can achieve a lower RMSE than that
offered by POBI in this problem instance, we opt for exercising caution in making strong
assertions about this performance difference. Therefore, we conclude that both methods
have demonstrated the potential to achieve a comparable performance in addressing the
spatiotemporal interpolation problem with the IFAC-TW dataset.

However, despite having only achieved an equivalent performance to that of POBI with
regards to the test data RMSE, DCSTI was remarkably successful in mitigating one of
the major drawbacks of POBI, which is the requirement of a high number of parameters
in order to model the spatiotemporal dynamics of SSM. Specifically, DCSTI requires 1
order of magnitude fewer parameters than POBI in the 36 km scenario, and 2 orders of
magnitude fewer parameters in the 9 km scenario. As the number of parameters required
by a POBI ensemble depends on both the width and height of the spatial grid that is
used in the datacube of interest, this gap in model size between the two methods is
likely to increase even further if we apply them to datacubes that employ spatial grids
with higher resolutions. Thus, we conclude that DCSTI is able to provide a significant
advantage over POBI in terms of model size and resource requirements.

Moreover, as DCSTI makes use of a neural network to solve the STI problem, it carries
the potential for a quick adaptation to novel, albeit similar, problem domains by means
of transfer learning. This could, for instance, be exploited in the development of data
products derived from HydroGNSS SSM retrievals, once the satellites have become
operational. POBI, in contrast, would require the accumulation of a long data record from
the sensor before it can be trained to interpolate datacubes derived from it. Regardless,
while the HydroGNSS data is still not available for transfer learning experiments, this
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7.2. Phase 1 Results - RMSE on test data

assertion remains a conjecture.

7.2.1 Spatial Distribution of Errors
While we refrain from making strong statements about DCSTI generally outperforming
POBI, we hypothesize that DCSTI may be more robust to fitting to some of the inherent
errors that are observed in the ground-truth data. This conjecture stems from the notion
that, since POBI’s modeling of spatiotemporal SSM patterns is heavily location-centric,
it would be more prone to encode pixel-specific artifacts such as the ones described
in Section 6.2.2. DCSTI, on the other hand, seeks to model a more location-agnostic
representation of the spatiotemporal SSM dynamics, and thus could be less likely to be
affected by pixel-specific issues. It should also be noted, however, that neural networks
are very prone to overfitting, and thus DCSTI could still be vulnerable to this problem.

To investigate this hypothesis, we have computed the pixel-wise RMSE values for both
POBI and DCSTI. This process consists of computing the RMSE between the interpolated
timeseries and the ground-truth timeseries at each pixel in the datacube’s spatial grid,
obtaining a two-dimensional array of pixel-wise error levels. These arrays can then be
projected on a map for better visibility, as shown in Figure 7.4. In this text, we will only
display the maps corresponding to the 9 km experiment, as their higher resolution allows
for a clearer depiction of spatial patterns than that offered by their 36 km counterparts.

In both the POBI and DCSTI error maps, the artifacts described in Section 6.2.2 are
easily visible, suggesting that both algorithms are somewhat robust to the inclusion of
such errors in their modeling of SSM dynamics. However, as shown in Figure 7.5, the
artifacts are more clearly visible in the DCSTI error map, indicating that the DCSTI-
interpolated datacubes exhibit a greater departure from the ground-truth values of those
locations. This suggests that DCSTI has been more effective in avoiding the inclusion of
such undesirable artifacts in its modeling of SSM dynamics.

It should be noted that the error intensities depicted in pixel-wise RMSE maps should
not be interpreted at face value as a measure of the model’s performance across different
macro-regions. This is because regions with low SSM variance will lead the models to
make small prediction errors, whereas regions with higher SSM variance may lead the
model to make more significant errors. It would not be meaningful, for instance, to
compare a model’s performance over the Sahara desert, which is characterized by a low
SSM variance, with its performance in more humid regions such as the Amazon rainforest,
where SSM patterns can fluctuate intensely and rapidly due to rainfall events and other
environmental phenomena. Nevertheless, despite their limitations, pixel-wise RMSE
maps remain valuable for discerning which are the most problematic areas within the
scope of bounded regions with mostly homogeneous environmental conditions.
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7. Results and Discussion

Figure 7.4: Pixe-lwise RMSE of POBI-interpolated (left) and DCSTI-interpolated (right)
versions of DC3,4 with respect to DCfull
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7.2. Phase 1 Results - RMSE on test data

(a) Zoomed-in pixel-wise POBI RMSE on
test data over parts of the Middle East

(b) Zoomed-in pixel-wise DCSTI RMSE on
test data over parts of the Middle East

(c) Zoomed-in pixel-wise POBI RMSE on
test data over parts of North America

(d) Zoomed-in pixel-wise DCSTI RMSE on
test data over parts of North America

Figure 7.5: Zoomed in pixel-wise RMSE maps over two regions that contain a particularly
high density of the ground-truth errors described in Section 6.2.2. The left column
displays the pixel-wise RMSE maps for the POBI-interpolated datacubes. The right
column displays the pixel-wise RMSE maps for the DCSTI-interpolated datacubes.
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7. Results and Discussion

7.3 Phase 2 Results - Validation against external data
For Phase 2 of this study, we have conducted a secondary evaluation experiment in
which we have validated a total of six CYGNSS SSM datacubes derived from external
data sources. Specifically, for both spatial resolution scenarios, we have performed an
external validation of the ground-truth datacube DCfull, as well as the fully-interpolated
datacubes produced by both POBI and DCSTI. In Phase 2, we perform a validation
along the entirety of the time span covered by IFAC-TW, rather than restricting our
analysis to the test slices defined in Section 6.3.1.

We have validated all three 36 km datacubes against SM data derived from SMAP.
Specifically, we have used the SMAP SPL2SMP data product [OC23a], which employs the
same 36 km version of the EASE 2.0 Grid that has is employed by our 36 km CYGNSS
SSM datacubes. For the 9 km case, we have validated all three datacubes against
SSM estimates from ERA5-Land [MSDAP+21], a dataset produced by a meteorological
reanalysis model. ERA5-Land also offers a nominal spatial resolution of 9 km, but
employs a different grid from the one we have used in the IFAC-TW datacubes.

Figures 7.6 and 7.7 show the pixel-wise Pearson correlation coefficient and unbiased
RMSE maps obtained in the validation of the fully-interpolated datacubes from the 36
km and 9 km spatial resolution scenarios, respectively. In both of those scenarios, the
validations of POBI and DCSTI have yielded maps with very similar error intensities
and spatial error patterns. This provides further evidence that a DCSTI model is able to
encapsulate the same problem domain knowledge as a POBI ensemble, but in a better
compressed and more resource-efficient format.

In Figure 7.8, we display the global ubRMSE and Pearson correlation coefficients of all six
datacubes with respect to the external data they were validated against. In both spatial
resolution scenarios, neither POBI nor DCSTI was able to provide a statistically significant
improvement over the ground-truth datacube with respect to those metrics. Nevertheless,
it is important to note that both methods were able to provide fully-interpolated datacubes
with a negligible amount of spatiotemporal gaps, while still maintaining the same level of
uncertainty that DCfull carries with respect to the “higher-order” ground-truths derived
from more mature data products.

Additionally, such improvement of spatial coverage and temporal resolution, which was
achieved without compromising data quality, has been obtained by applying POBI
and DCSTI to DC3,4, which only contains observations made by 25% of the CYGNSS
constellation. While it is important to acknowledge that the development of the models
that are able to generate such high-quality interpolated datacubes from DC3,4 relies
on ground-truth knowledge extracted from the entire constellation, such ground-truth
knowledge could also be derived from external sources, as long as inter-sensor bias issues
are properly addressed during data preprocessing. Thus, this result suggests that we are
well-positioned for developing HydroGNSS interpolation models once the HydroGNSS
satellites becomes operational.
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7.3. Phase 2 Results - Validation against external data

(a) Pixel-wise ubRMSE (POBI vs SMAP) (b) Pixel-wise ubRMSE (DCSTI vs SMAP)

(c) Pixel-wise R (POBI vs SMAP) (d) Pixel-wise R (DCSTI vs SMAP)

Figure 7.6: Results of the external validation of the POBI-interpolated and DCSTI-
interpolated DC3,4 datacubes in the 36 km spatial resolution scenario. On the first row,
we display the pixel-wise unbiased RMSE (ubRMSE). On the second row, we display the
pixel-wise Pearson correlation coefficient (R). For this resolution, we have validated the
IFAC-TW datacubes against data from SMAP
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7. Results and Discussion

(a) Pixel-wise ubRMSE (POBI vs ERA5-
Land)

(b) Pixel-wise ubRMSE (DCSTI vs ERA5-
Land)

(c) Pixel-wise R (POBI vs ERA5-Land) (d) Pixel-wise R (DCSTI vs ERA5-Land)

Figure 7.7: Results of the external validation of the POBI-interpolated and DCSTI-
interpolated DC3,4 datacubes in the 9 km spatial resolution scenario. On the first row,
we display the pixel-wise unbiased RMSE (ubRMSE). On the second row, we display the
pixel-wise Pearson correlation coefficient (R). For this resolution, we have validated the
IFAC-TW datacubes against data from ERA5-Land
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7.3. Phase 2 Results - Validation against external data

(a) ubRMSE between all three 36 km dat-
acubes and SMAP data

(b) ubRMSE between all three 9 km dat-
acubes and ERA5-Land data

(c) R between all three 36 km datacubes and
SMAP data

(d) R between all three 9 km datacubes and
ERA5-Land data

Figure 7.8: Results of the external validation of DCfull, as well as the POBI-interpolated
and DCSTI-interpolated versions of DC3,4 in each spatial resolution scenario. In the first
row, we display the global unbiased RMSE (ubRMSE) of all three datacubes with respect
to external data in each spatial resolution scenario. In the second row, we display the
global Pearson correlation coefficient (R) of all three datacubes with respect to external
data in each spatial resolution scenario.
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CHAPTER 8
Conclusion

In this thesis we propose DCSTI, a novel solution for the problem of spatiotemporal
interpolation of GNSS-R-derived soil moisture data. DCSTI employs deep learning to
produce a unified regression model that encapsulates the overall spatiotemporal dynamics
of soil moisture, while also being flexible enough to deal with location-specific patterns.
DCSTI has shown comparable performance to that of POBI, the current state-of-the-art
algorithm for addressing this problem. Notably, it does so while also mitigating one of
POBI’s main limitations: the requirement of a large model size. DCSTI achieves this
by employing a single neural network which is able to compress considerable domain
knowledge about spatiotemporal SM patterns within a relatively small number of param-
eters. This contrasts with POBI’s approach, which consists of building an ensemble of
location-specific regression models designed to encode the relative SM patterns between
neighboring pixels. Although every model within the POBI ensemble seeks to capture
the behavior of the same environmental variable, each one of them must be able to do so
independently. Thus, the ensemble makes an inefficient usage of computational resources
by storing redundant information across multiple regressors.
These conclusions stem from an experiment that evaluated DCSTI in two steps, which
we denote as Phase 1 and Phase 2. In Phase 1, both DCSTI and POBI have been
trained to perform spatiotemporal interpolation of CYGNSS SSM datacubes derived
from the IFAC-TW dataset. After training, both models were used to interpolate the
spatiotemporal gaps of a datacube derived from a small subconstellation of CYGNSS.
The quality of those two fully-interpolated datacubes was evaluated by comparing them
to a third CYGNSS SSM datacube derived from the entire CYGNSS constellation, which,
for the purposes of this experiment, is considered to contain ground-truth values. This
evaluation was based on the RMSE of the interpolated cells within a temporal slice of
the datacube that was reserved as a holdout test set, and thus was not included in the
training of either POBI or DCSTI. This process was carried out twice, using both a 36
km and a 9 km spatial grid.
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8. Conclusion

The analysis of the results of Phase 1 shows us that DCSTI was able to reach a lower
test data RMSE than POBI by a statistically significant, yet very narrow margin. Given
the uncertainties involved in the hyperparameter tuning of both algorithms, we refrain
from making definitive statements about DCSTI outperforming POBI with respect to the
RMSE, and instead conclude that both methods are capable of achieving comparable error
levels. It is worth noting, however, that DCSTI is able to achieve such a performance
while requiring significantly fewer parameters - specifically, one order of magnitude
fewer parameters than POBI on the 36 km scenario, and two orders of magnitude fewer
parameters on the 9 km scenario.

In Phase 2, fully-interpolated datacubes produced by the models trained in the previous
phase were validated against data from external sources. The ground-truth datacubes
used in Phase 1 were also included in this validation procedure, in order to provide a
baseline for the other two. In both the 36 km and 9 km scenarios, we have found no
statistically significant difference between the errors observed in the three datacubes with
respect to the external data. We have assessed this through two metrics: the unbiased
RMSE and the Pearson correlation coefficient.

The findings of this thesis open up several avenues for further research. From the results of
Phase 2, we have evidence that both POBI and DCSTI have a good potential to improve
the spatial coverage and temporal sampling rate of GNSS-R-derived SM datacubes, while
also maintaining acceptable data quality standards. Nevertheless, the extent to which
these gap-filling algorithms are actually able to enhance the informational content of
the datacubes still remains an open question. Investigating this issue would require the
development of a theoretical framework that offers a clear definition of information gain
within the context of spatiotemporal interpolation of Earth observation data, along with
a methodology on how to properly quantify it.

Additionally, there are also prospects for data fusion research. This includes, for instance,
investigating extensions of the DCSTI framework that incorporate spatiotemporal data
from different satellites into the model’s input vectors. These extended versions of DCSTI
could potentially be even more effective in addressing the spatiotemporal interpolation
problem. Furthermore, the framework could also be adapted to tasks like short-term
forecasting or enhancing the spatial resolution of datasets devoid of spatiotemporal gaps.

Looking ahead, once the HydroGNSS constellation becomes operational and starts
delivering SM data, there will be a compelling opportunity to explore the feasibility of
utilizing transfer learning to address the spatiotemporal interpolation of SM datacubes.
This would involve fine-tuning a DCSTI model, initially trained on CYGNSS data, to
address the problem domain presented by HydroGNSS.

Ultimately, we anticipate that the findings and perspectives presented in this thesis will
be valuable in the development and refinement of spatiotemporal interpolation techniques,
further empowering the Earth observation community’s ability to extract value from
emerging soil moisture data sources.
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