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Kurzfassung

In der modernen Landwirtschaft ist die Kultivierung einer Fruchtfolge verschiedener
Pflanzen auf einem Feld für viele Landwirte der Standard. Richtig angewandt fördert
dieses Vorgehen nicht nur günstige Bodenbedingungen, sondern vermeidet auch das
Auftreten von Schädlingen und Unkraut und steigert die Ernteerträge. Über viele Jahre
hinweg haben Forschende versucht, das intuitive Wissen der Landwirte und den aktuellen
Stand der Agronomie in Regelwerke und Modelle zu überführen, um optimale Abfolgen
für die Fruchtfolge weltweit generieren zu können. Während regelbasierte Ansätze darauf
abzielten, Sequenzen zu schaffen, die keine Fruchtfolgeregeln verletzen, berücksichtig-
ten mathematische Modelle zusätzlich Durchschnittserträge und Marktbedingungen zur
Gewinnoptimierung. In jüngster Zeit haben Fortschritte in der Anwendung von Reinfor-
cement Learning (RL) auf dieses Problemfeld vielversprechende Ergebnisse erzielt. Dank
der Fähigkeit der Modelle, iterativ von ihrer Umgebung zu lernen, konnten für komplexe
mehrjährige Simulationsbedingungen optimale Fruchtfolgen gefunden werden, welche mit
bereits verwendeten Anbauplänen übereinstimmten. Ein wesentlicher Nachteil bestand
jedoch darin, dass die Agenten mehrere tausend Trainingsepisoden benötigten, um zu
einer stabilen und optimalen Leistung zu konvergieren. Um dieses Problem zu lösen,
erweitert dieses Projekt den vorgeschlagenen RL-Ansatz, um die Effizienz der Agenten
erheblich zu verbessern. Darüber hinaus sollen die Modelle in der Lage sein, mit exogener
Unsicherheit wie variierenden Erträgen und Marktbedingungen umzugehen. Auch im un-
trainierten Zustand sollten von den Agenten keine schlechteren Entscheidungen getroffen
werden als von erfahrenen Landwirten, um eine Akzeptanz bei der Nutzung der Agenten
in Entscheidungsunterstützungssystemen zu erreichen. Die implementierte Lösung wurde
in einer Simulationsumgebung trainiert und evaluiert. Die Simulation wurde mit Fokus
darauf erstellt, die relevantesten exogenen Effekte auf Ernteertrag und Gewinn abzubil-
den. Die Ergebnisse zeigen, dass es möglich ist, RL-Agenten mit hoher Proben-Effizienz
zu konstruieren, die in Entscheidungsunterstützungssystemen für Landwirte eingesetzt
werden können. Durch die Verwendung eines Soft Actor-Critic-Lernalgorithmus, die
Kombination mit einem symbolischen Planer zur Beschränkung der Pflanzenauswahl auf
passende Optionen und die Stabilisierung der frühen Trainingsphasen mit Wissen aus
anderen Fruchtfolge-Experimenten zeigt der Agent stetige Leistungsverbesserungen bei
geringem Risiko für den Landwirt, ungeeignete Pflanzen empfohlen zu bekommen. Dieses
Ergebnis stärkt die Position von Reinforcement Learning als eine sinnvolle Option im
Bereich der Fruchtfolge-Optimierung und eröffnet neue Wege für zukünftige Forschung.
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Abstract

In modern farming, cultivating a sequence of varying crops on a plot of land is the standard
for many farmers. This behaviour leads to better soil conditions, avoids pest and weed
occurrence and increases crop yields if done correctly. Since many years, researchers have
tried to convert the intuitional knowledge of farmers and the current state-of-the-art of
agronomy into rule systems and models that can generate optimal crop rotation sequences
for fields around the world. Rule-based approaches often focus on creating sequences
not violating any agronomical or crop rotation rules, mathematical models additionally
consider average yields and market conditions to optimize for profit. Recent advances in
applying Reinforcement Learning to this problem domain demonstrated promising results.
Due to the ability of the agents to learn iteratively from environments, optimal crop
cultivation sequences could be obtained for complex multi-year simulation conditions
which could match cultivation plans that were already in use. A major downside was
however the agents’ need for several thousand episodes of training to converge to a
stable and optimal performance. To address this issue, this thesis project extends the
proposed Reinforcement Learning approach to improve the sample efficiency of the agents
significantly. Additionally, the agents should be able to deal with exogenous uncertainty
like yield fluctuations and price and cost variability. Even in the untrained state, the
agents should not make worse decisions than experienced farmers in order to achieve
acceptance in the use of the agents in decision support systems before they have been
able to adapt to the respective environment. The implemented solution was trained and
evaluated on a simulation environment built to encompass the most relevant exogenous
conditions affecting crop yield and farming profit. The results from the evaluation
demonstrate that it is possible to construct RL agents with a high sample efficiency which
can be deployed in decision support systems for farmers. By using a Soft Actor-Critic
learning algorithm, combining it with a symbolic planner to restrict the crop selection
to viable choices and stabilizing early training with knowledge from other crop rotation
experiments, the agent shows steady performance improvements with a low risk for
farmers to receive recommendations for unsuitable crops on their fields. This result
fortifies the position of Reinforcement Learning as a viable option to address the problem
of crop rotation optimization and opens new paths for future research.
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CHAPTER 1
Introduction

1.1 Context & Motivation
Agriculture plays a central role in the nutrition of a large majority of people living on
our planet. It exists for more than 10.000 years in our world and has always been a
subject of improvement and optimization to achieve higher yields, farm more sustainably
and generate tastier and healthier products [Bri23]. There exist many levers to improve
crop yields and to use available resources more efficiently. Those include soil treatment,
water resource management, activity and resource scheduling as well as fertilizer and
pesticide usage. Modern decision support systems (DSS) for agriculture try to aggregate
those different fields into complete tools which support farmers during their everyday
business. They assist farmers with irrigation decisions, deliver weather predictions,
simulate crop growth under selected conditions and help coordinating and scheduling
production resources. In the context of Industry & Agriculture 4.0, those tools have
access to an abundance of data which can either be gathered locally via sensors and
cameras or can be accessed from databases containing regional data about the weather,
soil types and market conditions. More sophisticated systems can for example coordinate
autonomous drones to detect pest and weed infestations and locally apply pesticides or
gather and evaluate live sensor data from the fields [ZMBM20].

An important decision farmers need to make several times each year is what to grow
next on their plot of land. Intuitively, the crop with the highest profit margin would
be the best decision. Despite that, humans have already realized in the early days of
agriculture and farming practice that specific sequences of crops have higher yields than
just planting single crops on the same field repeatedly. Practices were already written
down during the Roman Times and nowadays, there exist many example sequences and
rule sets that farmers can orient on to plant crops and fruits with the highest yields in
the right order [Fra05]. Optimizing crop sequences to achieve the highest potential profit
falls in the problem domain of crop rotation planning. Having a DSS propose the optimal
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1. Introduction

next crop to plant is therefore a building block improving some aspects of farming which
can be integrated with other tools to optimize agricultural production.

Due to the advantages for the soil and it being a more sustainable approach towards
planting crops and fruits, crop rotation planning is often combined with organic farming.
Organic farming in Austria falls under EU guidelines. Among other things there are
strict rules forbidding certain types of fertilizers, pesticides and seeds which can as
a consequence inhibit the production of optimal yields [uR18]. Organic farming is
however connected with many benefits also attributed to crop rotation management like
environmental protection and a higher resilience to environmental changes [JAT+17].
From a financial perspective, organic farming practices are more expensive in labour
costs but on average lead to a price premium on the markets due to consumer behaviour
[CR15]. Additionally, they are subsidized by the Austrian government and the EU
[Rec22],[ECD18]. Under those circumstances, about 26% of all agricultural area in
Austria is already used for organic farming and surpasses the EU “Farm-to-Fork” strategy
to use 25% of the agricultural area organically until 2030 [Com20]. Using agricultural
expert knowledge and agronomical guidance to optimize crop selection for organic farming
can be another step to increase the attractiveness of organic farming when compared to
conventional farming.

The main problem with the previously mentioned rule sets is though, that they are too
generic for the diversity of different farm and market conditions. As an example, they
usually do not count in farm size, number of fields, soil characteristics, climate and
weather zones. Additionally, the crop rotation plans must be tailored to the farmer’s
available labour and equipment resources, as some crop types might be too much effort for
a small size farm. Legal requirements and regulations are another constraint that farmer’s
must adhere to depending on their location [PKB21]. Current rule-based algorithms for
crop rotation planning therefore lack generalizability. In the field of decision support
systems, there are many alternatives to rule-based algorithms though. Some of the
more prominent examples are quantitative optimization techniques like mathematical
modelling or linear programming, custom scoring systems or evolutionary algorithms
[SWT23]. In addition, there are recent advances in using Deep Reinforcement Learning
(Deep RL) agents for crop rotation optimization [FNFW23]. They can be trained on a
simulation environment to predict optimal crop sequences and are able to adapt to real
conditions when being used at an actual farm.

1.2 Problem Definition & Research Goals
A key issue with the previously mentioned quantitative optimization techniques is, that
they generalize similarly bad for the multitude of possible farm characteristics and
regional conditions which influence crop suitability and yield. Most techniques rely on a
set of input data including average yields for different crops, static market prices and
static effects on yield from crop rotation rules being followed or broken. Knowledge is
often gained from case studies on single farms over several years or from aggregated
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data. Studies from different regions indicate large variances in the observed results
[SSS11]. Additionally, many proposed methods do not include uncertainty impacting
variance in observed yields which represents a risk for farmers [ACC00]. To combat those
concerns, a model is necessary that can adapt to the real environment and represent
yields accurately on the farm-level instead of only using aggregates. It needs to be able
to consider uncertainty when proposing crops to grow and should be able to generalize
over different regions. A thorough check of the literature reveals that linear programming
approaches from the literature do not offer this set of features and evolutionary algorithms
similarly only allow optimizing goals for a fixed set of input data. The RL algorithm
proposed by Fenz et al. (2023) allows the user to let the model train further on the target
environment and therefore has an advantage in terms of adaptability [FNFW23]. A
problem is though that many Reinforcement Learning agents learn slowly and have a low
sample efficiency as they are usually trained until convergence on simulation environments
with computational resources being the only limiting factor. For the deployment of RL
agents in real environments, this sample efficiency needs to be improved drastically as
only one training sample can be generated per year and field and a typical number of
training steps for Reinforcement Learning would lead to the model only adapting to the
actual environment after hundreds of years. In summary, we can define the following
problems to be addressed by this master thesis project:

1. A crop rotation optimization model must be able to deal with uncertainty in the
input data and must be adaptable to be useable by farmers for individual farm
characteristics and different regions.

2. While the model is not adapted yet to individual farm characteristics due to the
lack of empirical data, it must follow expert knowledge and avoid adverse crop
rotation sequences.

3. The adaptation process to individual farm characteristics must happen in a reason-
able amount of time to make model usage viable for farmers.

One solution to those problems would be to pretrain the agent on a simulation environment
representative for the region the farm is located. This was also used by Fenz et al (2023)
to generate crop rotation sequences suitable to be used by farmers in Austria [FNFW23].
Afterwards, the trained model could be applied to select consequent crops to grow for
farms from that region and could be adapted individually for each farm setting with
continued learning from actual experience. Another idea to improve sample efficiency is
to use an approach called model-based Reinforcement Learning. Here, the RL agent is
additionally being trained on simulated trajectories produced by a transition model of
the environment instead of only using real experience for training. The transition model
itself is regularly updated with samples from the training environment. A model-based
RL method suitable for the crop rotation optimization problem was proposed by Janner
et al (2019) [JFZL19]. It uses an ensemble of Probabilistic Neural Networks to predict
next states and employs trajectory sampling with short rollouts as a planning method to
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1. Introduction

train a soft actor-critic agent selecting the next best action for the current state. The
method is called Model-based Policy Optimization (MBPO) and shows state-of-the-art
performance for uncertain environments with a lower number of environmental samples
than comparable model-free algorithms. A further feature to improve the sample efficiency
of the RL agent could be the usage of a hybrid model which combines the reasoning over
knowledge from crop rotation rules and recommendations based on expert knowledge
with an RL agent. The adaptation of the agent to the real environment can then be
sped up by limiting exploration to actions not breaking any rules. This will on one hand
accelerate the assessment of favourable actions for the specific farm environment but can
on the other hand prevent the selection of crops detrimental to the crop rotation and the
yields of following crops. The approach to formalize expert knowledge into constraints for
the RL agent used for this master thesis project is called answer set programming (ASP).
It is a form of declarative programming and can be utilized to find solutions satisfying
all rules and constraints of a problem formulation [GKK+11]. In the context of crop
rotation optimization, solutions would represent suitable crop rotation sequences the RL
agent can explore. As a last proposed feature, updates from neighbouring farms can be
utilized to accelerate model training. Agents could have access to more data from similar
conditions at the same time which would further improve the learning speed.
The construction of a hybrid model incorporating the proposed features is specified in
more detail in the methodical section of this thesis. The goal of this project is to evaluate
them and their effect on performance. Performance is defined in more detail in Section
3.3 and encompasses the average farming profit per crop rotation, the total farming
profit over the training run and the profit stability during deployment of the agent. The
evaluation is defined by the following research questions:

• RQ 1: To which extent can performance be improved by using the proposed features
in comparison to baselines?

– 1.1: By how much do hybrid systems combining a symbolic planner with an
RL agent show a better performance on crop rotation problems than simple
RL agents without rule-based planning?

– 1.2: To which extent can the use of more modern RL learning algorithms
like soft actor-critic learning improve performance when compared to deep Q
learning?

– 1.3: In which situations and by how much do hybrid systems combining
a symbolic planner with an RL agent show a better performance on crop
rotation problems than only using a symbolic planning system like answer set
programming to select crops to grow?

– 1.4: To which extent can performance be improved by using model-based RL
when compared to model-free methods?

– 1.5: To which extent can agent updates from neighbouring farms improve
performance in comparison to agents only updating from their own farm’s
experience?

4
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– 1.6: To which extent can agents already pretrained on other environments
improve performance when compared to agents without pretraining?

• RQ 2: To which extent can the use of probabilistic action selection by the RL agent
improve diversity of crop selection when compared to deterministic algorithms?

1.3 Structure of the work
The content of this master thesis is structured in the following way. Chapter 2 (Back-
ground and Related Work) delves into comprehensive and recent research on symbolic
planning algorithms, reinforcement learning and hybrid systems that integrate both
concepts. The discussion encompasses the distinction between model-free and model-
based reinforcement learning, the underlying principles of function approximation and
policy gradient methods and a review of recent studies about the evaluation of RL
models. Beyond establishing the foundational methods for the proposed hybrid model,
the chapter explores the theoretical and literary landscape surrounding crop rotation
planning and yield optimization. Additionally, a section is dedicated to various methods
in the literature aimed specifically at addressing the crop rotation optimization problem,
along with an exploration of research in related fields such as crop yield prediction and
predicting the next crop in a sequence of previous crops. In Chapter 3 (Experiment
Design), the focus lies on presenting the experimental setup in detail. This includes
a detailed explanation of the simulated environment employed for model training and
evaluation, an exploration of the algorithms underpinning the proposed hybrid model,
and a thorough examination of the evaluation procedure. The origins of assumptions
and settings in the simulation environment are outlined, with a clear exposition of their
impact on model rewards. Following this, the model characteristics and features are
specified in detail. It is explicitly stated how different types of crop rotation rules and
constraints are depicted in an Answer Set Program, which algorithms and techniques
are used to implement the RL agent, how both systems are combined and why the com-
plete model might perform better than the selection of baselines. Additionally, various
strategies for utilizing available experience are introduced, along with a description of
their implementation in the agents. Subsequently, the evaluation approach to answer the
research questions and to obtain significant results is defined. The section outlines the
baseline models used in the experiments, the performance indicators adopted as measures
and further experiment details. This information, supplemented by additional details
in the appendix, ensures the possibility for complete reproducibility of the results. In
Chapter 4 (Results), the outcomes of the study are presented and discussed in relation
to the research questions. Plausible explanations for the observed results are theorized.
In Chapter 5 (Summary), the findings from this project are summarized, contextualized
within the current research field, and the limitations of this work are stated. Possible
future research objectives building upon the findings from this project are identified.
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CHAPTER 2
Background and Related Work

In the following section, recent research about symbolic planning algorithms, reinforcement
learning and hybrid systems is discussed. The specifications of models and evaluation
metrics used in the project implementation are explained in more detail. In addition, the
chapter explores the topical domain of crop rotation planning and yield optimization. A
focus lies on methods addressing the crop rotation optimization problem, accompanied
by an exploration of research in related fields such as crop yield prediction and temporal
crop prediction. Those related fields are thematized to understand their relevance and
potential for crop rotation optimization algorithms.

2.1 Symbolic Planning
For the crop rotation optimization problem, it is key to find crop rotation sequences
following expert knowledge recommendations and constraints. This type of problem is
from the family of Boolean satisfiability problems with the objective to find stable models.
Approaches to solve this problem are called satisfiability solvers [GKK+11]. They provide
a combinatorial reasoning and search platform based on propositional logic. The goal
for the development of SAT solvers in the past years has been that they offer a highly
expressive knowledge representation while still being able to solve problems in worst-case
polynomial time. While polynomial time can still be problematic for large problems,
it was shown that most random-generated satisfiability problems could be solved in
close to linear time [MSL+92]. An SAT solving approach well suited for knowledge
representation and reasoning is called answer set programming (ASP). ASP is a form of
declarative programming to be able to solve NP-hard search problems. It originates from
the stable model semantics of logic programming introduced by Gelfold & Lifschitz (1988)
[GL88]. The user describes the problem with a high-level representation language which
is automatically translated into a low-level propositional representation. The problem
description contains rules and constraints whereas a collection of rules results in a unique
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2. Background and Related Work

stable model after solving if a solution is possible. A stable model therefore describes a
solution to the problem satisfying all rules and constraints.

A reward-winning solver for answer set programming named clingo was developed by
Gebser et al. (2011) [GKK+11]. It is part of the Potsdam answer set solving collection
(Potassco) which is continuously being developed since its first introduction. Clingo
mainly consists of two parts, a grounder named gringo [GKO+09] and a solver named
clasp [GKNS07]. The user defines the problem via the input language of gringo. The
grounder then translates the problem definition into a ground logic program which is
read by the solver clasp. The program is consequently simplified through preprocessing
by removing redundancies and solved afterwards. Possible solutions are presented to the
user.

The following paragraph introduces basic concepts in the input syntax for clingo aligned
with the current user guide for clingo [KKS12]. Answer set programs are usually defined
via an initial instance and an encoding applying to every instance. The instance describes
the specific setup, the encoding represents the rules constraining the solution to the
problem. In the field of crop rotation planning, the instance would for example be the
definition of the starting conditions with previously planted crops, market prices and
soil characteristics. The encoding would contain definitions about what a crop is, what
the possible actions are and how different subsequent actions are constrained by crop
rotation rules. These parts of the program are defined via facts, rules and constraints:

Fact: A0.
Rule: A0 :− L1, . . . , Ln

Constraint: :− L1, . . . , Ln

A fact A0 or the head A0 of a rule are atoms in the form of a constant or function. The
body behind the “:−“-symbol is a set of literals each being either positive or negative.
Facts are unconditionally true. Rules are true if all positive literals in the body are true
and all negative literals (with a “not“-prefix) are satisfied. Constraints filter solution
candidates. If a solution candidate does not fulfil all constraints, it is not an answer set /
solution to the problem. In the head of a rule or fact, several atoms can be divided by the
“;”-symbol, which means that the head holds true if at least one of the atoms is true. The
clingo syntax supports many additional constructs to aid the user in defining the answer
set program. Some examples are intervals and the pooling of terms, aggregates like sums
over numerical variables and conditional literals. Furthermore, it is possible to optimize
numerical variables in the answer set program via maximization or minimization.

2.2 Reinforcement Learning
2.2.1 Background
Reinforcement Learning (RL) as a practice had a revival in the early 1980s and focuses
on trial-and-error learning of a policy on the set of optimal control problems. A pop-
ular former method to solve those problems is called Dynamic Programming and was

8



2.2. Reinforcement Learning

introduced by Richard Bellman [Bel54],[Bel66]. Bellman also introduced the concept of
stochastic optimal control problems named Markov decision processes (MDPs) [Bel57].
Until now, most RL problems are formulated as MDPs. In an MDP, an agent starts in an
environmental state s and can select an action a. The agent then receives a reward r from
the environment and the environment updates to be in a new state s′. The interaction
between agent and environment leads to a sequence of actions and states called trajectory
[SB18].

Agent

Environment𝑅𝑡+1
𝑆𝑡+1

Figure 2.1: Agent-environment interaction in an MDP [SB18].

As Markov decision processes are stochastic, an action in a state can result in different
following states. The probability of entering those states is depicted by the four-argument
dynamics function p shown in formula 2.1.


s′∈S


r∈R

p(s′, r|s, a) = 1 (2.1)

By continuously interacting with the environment, the agent learns to adapt its policy to
achieve its objective, which is typically reward maximization. The total reward can be
divided into the immediate reward obtained from the environment and potential future
rewards. If no difference is made between those two, the expected return of a policy p
on a finite MDP can be formulated like in formula 2.2 where T is the final step of the
process:

Gt =̇ Rt+1 + Rt+2 + · · · + RT (2.2)

For continuing tasks, the expected reward could easily be infinite. To avoid this, a
discounting factor γ can be introduced to discount future rewards:

Gt =̇
∞

k=0
γkRt+k+1 (2.3)

Many RL methods involve the estimation of a value function which defines a value for
each state under a policy π:
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vπ(s) ←


a

π(s, a)
�
r (s, a) + γ


s′

p
�
s′��a, s

	
vπ(s′)

�
(2.4)

It calculates the expected value for a state over all possible actions with their selection
probabilities represented by policy π, the resulting immediate rewards r and the discounted
values of future states s′ with their transition probabilities p. The value function therefore
represents the expectation value of immediate and future rewards. As an alternative
to the value-function, action-state combinations can be described with an action-value
function q under policy π. The difference to the value function is that the action-value
function describes the value of selecting action a in state s. While the difference is mainly
formal, the action-value function depicted in formula 2.5 should be mentioned as it is
used by many popular RL algorithms:

qπ (s, a) ← r (s, a) +

s′

�
p

�
s′��a, s

	 
a′

π
�
a′��s′	 qπ

�
s′, a′	�

(2.5)

To find the value function under an optimal policy when a perfect model of the environment
is known, dynamic programming can be equipped. It can be counted as an early variant
of model-based RL [BD15],[SB18],[Wat89]. Dynamic programming was originally defined
by Bellman for a wide range of problems [Bel54]. In the context of reinforcement learning,
the algorithm alternatively evaluates the current policy until the value function converges
and then improves the policy to select the best action under the new value function for
each state. Even if the policy evaluation step is not run until convergence itself, this
procedure guarantees convergence to an optimal policy. While convergence is guaranteed,
environments with huge state spaces face the issue that it is only achieved after a long
computation time due to the algorithm’s need to visit every state. For many problems
though, observing every possible state is not necessary as many reachable states will lead
to suboptimal rewards and do not need to be explored in detail. Additionally, dynamic
programming can only be used if a perfect model of the environment is known, which is
unrealistic for most real-world applications.

2.2.2 Model-free Reinforcement Learning
To address this problem and to decrease the immense computational effort, Monte Carlo
(MC) methods can be utilized [KW09]. Instead of visiting every state, the algorithm only
samples trajectories from the environment and learns from those by averaging rewards for
each state-action pair. Formula 2.6 describes how to do value updates in an incremental
way with α as the learning rate:

qn+1 (St, At) = qn (St, At) + α[Gt − qn (St, At)] (2.6)

The action value is iteratively updated with the error term multiplied by α. The error
term is the difference between the experienced reward Gt after finishing the episode
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and the expected value qn (St, At) inferred from the action-value function. To promote
exploration and guarantee convergence in the limit while using a sampling approach,
several methods have been developed. A simple option is to select the starting state for
each episode randomly [SB18]. Another popular option is to use a behaviour policy for
action selection that is different from the target policy which is optimized. This approach
is called off-policy learning. A suitable behaviour policy for off-policy learning could
be an ϵ-greedy policy. This policy selects the estimated best action most of the time
but selects a random action with probability ϵ. By doing so, exploration of all states
is guaranteed. A problem with Monte Carlo methods is though, that the model must
wait before finishing an episode to learn. Therefore, MC methods cannot be used for
continuous learning. As a solution, temporal difference (TD) methods can be applied
[Sut88]. In contrast to Monte Carlo methods using the total reward from an episode to
update the value-function, TD methods can already update the policy after each step
by estimating the total reward via bootstrapping. The incremental learning is depicted
formula 2.7:

qn+1 (St, At) = qn (St, At) + α[Rt+1 + γqn (St+1, At+1) − qn (St, At)] (2.7)

The total episodic reward is exchanged with a sum of the immediate reward Rt+1 and the
discounted estimation γqn (St+1, At+1) of the action-value of the next state . In practice,
TD learning converges faster than MC methods due to the intra-episode learning. An
alternative to TD learning which is still widely used in its variants is Q-Learning. It was
introduced by Watkins in 1989 and is a form of off-policy TD learning. The agent selects
an action based on an ϵ-greedy policy but the action-values are updated for a greedy
policy as shown in formula 2.8 [Wat89].

qn+1 (St, At) = qn (St, At) + α[Rt+1 + γ maxa qn (St+1, a) − qn (St, At)] (2.8)

There is a variant of Q-Learning worth mentioning. Q-Learning suffers from an effect
called maximization bias which leads to the agent overestimating actions when rewards
are positive by chance. A solution to this issue is to train two action-value functions
independent of each other alternately. During the policy evaluation step, the bootstrapped
estimate is used from the respective other action-value function and is therefore unbiased.
In practice, convergence is improved for many examples and the method is available in
most popular reinforcement learning libraries.

2.2.3 Function Approximation & Policy Gradient Methods
The previously mentioned algorithms work well for tabular environments where each
state receives a single value from the value function. If states are represented by feature
vectors over several dimensions, an alternative value function must be used which is in a
parameterized functional form. A simple example would be a linear function mapping
the feature vector of a state to a single value by multiplying it with a weight vector.
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As the number of weights represents the number of dimensions which is typically much
smaller than the number of possible states, updates from single experiences will affect
the estimated values of many states. This generalization can make the learning more
efficient. As an example, the update for single-step TD Learning of a value function is
adapted to be similar to formula 2.9 [Sut88],[Li17]:

wn+1 = wn + α[Rt+1 + v̂ (St+1, wn) − v̂ (St, wn)]∇v̂(St, wn) (2.9)

The weights of the value function are modified via stochastic gradient descent to minimize
the error between the value estimation and the bootstrapped value. In the specific case
of combining function approximation with TD learning, one would speak of semi-gradient
descent due to the target also being an estimation [SB18]. Instead of relying on a linear
function to be able to represent values in a complex environment, it is also possible to
use other ways to transform the input feature vector. One example are artificial neural
networks. The weights of the neural network are learned and updated via backpropagation
[LTHS88]. A popular example from recent research has been demonstrated in 2015, when
Mnih et al. used a convolutional neural network to transform pixel-based images and
possible actions into action-values with an algorithm named Deep Q Learning (DQN)
[MKS+15]. The crop rotation optimization algorithm by Fenz et al. also used Deep Q
Learning to learn and predict action-values across the state space [FNFW23].

While the previously described methods learn an action-value function and choose the
action with the highest value in each state to follow an optimal policy, there is also another
way to select actions. Policy gradient methods learn a parameterized probabilistic policy
instead of a parameterized value function and select actions by sampling from the policy.
This represents another way of function approximation as the probability distribution
of selecting an action in each state is calculated from a function transforming the input
feature vector. The objective to maximize performance is achieved by continuously
adapting the function parameters θ via gradient ascent [SB18]:

θn+1 = θn + α �∇J(θn) (2.10)

�∇J(θn) is an estimate of the gradient of the performance with respect to θ. The advantage
of policy gradient methods is that the learned policies are not deterministic like a greedy
policy. Instead, actions with almost the same values have almost the same probability
to be selected by the agent after soft-maxing the action preferences. A version of this
approach is the REINFORCE algorithm proposed by Williams (1992) [Wil92]. It utilizes
an episodic Monte-Carlo approach by generating a complete episode and updates the
policy approximation parameters in the following way for each timestep t in the episode
with length T :

θn+1 = θn + αγtG∇lnπ(At|St, θn) (2.11)
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where

G =
T

k=t+1
yk−t−1Rk. (2.12)

With two changes, this method can be transformed into the Actor-Critic (AC) algorithm
first investigated by Witten (1977) [Wit77] and further developed by Barto et al. (1983)
[BSA83]. At first, a baseline can be subtracted from each reward to reduce variance. It
has been shown that the estimated value function for each state is a suitable baseline
as it is flexible, varies with state and represents the average value of a state. Actions
performing better than the average receive a positive reward, actions performing worse
receive a negative reward which leads to a lower probability for action selection. The
second change is, that the AC algorithm adopts bootstrapping by using estimated values
during one-step updates alike to TD learning. For each step t during an episode, the
one-step return δt is calculated [KT99]:

δt = Rt+1 + v̂ (St+1, wn) − v̂ (St, wn) (2.13)

It is used to update the value function weights w (like in value function approximation)
and the policy parameters θ:

wn+1 = wn + αwδt∇v̂ (St, wn) (2.14)

θn+1 = θn + αθγtδt∇lnπ(At|St, θn) (2.15)

A modern variant of the actor-critic algorithm which is used for this master thesis project
is the soft actor-critic (SAC) algorithm. It was developed by Haarnoja et al. (2018)
[HZAL18]. The objective function for the policy depicted in formula 2.16 is adapted to
include the entropy H of the policy πθ in addition to the rewards obtained by following
the policy:

J (π) =
T

t=0
E(st,at)∼ρπ

[r(st, at) + αH (πθ (·|st))] (2.16)

Here, θ are the parameters of the policy and ρπ denotes the state- and state-action-
marginals of the trajectory distribution induced by policy π. The inclusion of entropy in
the objective prevents agents from optimizing their policy to be almost deterministic.
Probabilities for sub-optimal actions are higher which promotes exploration. In practice,
the new part of the objective is integrated in the following way: During the policy
evaluation step representing the critic, the soft Q-value can be updated iteratively with
the following formula for individual states and actions:
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Qn+1(st, at) = r(st, at) + γEst+1 p[Vn(st+1)] (2.17)

where

Vn(st) = Eat∼π[Qn(st, at) − log π(at|st)] (2.18)

Here, the value function V contains the entropy part of the objective. The new policy is
calculated in the policy improvement step by minimizing the Kullback-Leibler divergence
between a policy from a set of possible policies Π corresponding to Gaussians and the
normalized exponential Q-function:

πn+1 = arg min DKL

π′ ∈ Π


π′(·|st)||exp(Qπn(st, ·))

Zπn(st)


(2.19)

A repeated alternation between policy evaluation and policy improvement leads to im-
provement in the tabular case. For the non-tabular case including function approximation,
which is used in the project, the updates must be applied to the function parameters
instead of updating the value functions and the policy directly for each state. During
each gradient step, the following gradients multiplied with a learning rate are subtracted
from the parameters:

Value-Function: ∇̂φJV (φ) = ∇φVφ(st)(Vφ(st) − Qϕ(st, at) + log πθ(at|st)) (2.20)

Action-Value-Function: ∇̂ϕJQ(ϕ) = ∇ϕQϕ(st, at)(Qϕ(st, at) − r(st, at) − γV φ̄(st))
(2.21)

Policy-Gradient: ∇̂θJπ (θ) = ∇θlogπθ (at|st)+(∇at logπθ (at|st) − ∇atQϕ (st, at)) ∇θfθ (ϵt; st)
(2.22)

The reparameterization trick is used to obtain an unbiased gradient estimator which
makes the policy gradient independent of the parameters of the policy function: The
action at in the policy is transformed with a neural network at = fθ(ϵt; st) where ϵt is
an input noise vector sampled from a fixed distribution. Additionally, instead of using
the current value-function to update the action-value-function, an exponentially moving
average φ̄ of the value network weights was used to stabilize training. They also apply
double Q-Learning to avoid overestimating the action-values during training. Further
details can be found in the original paper by Haarnoja et al. (2018) [HZAL18]. In
comparison to other actor-critic methods like TRPO [SLA+15], PPO [SWD+17] or A3C
[MBM+16], the SAC algorithm offers a higher stability and a better sample efficiency
while learning which is mainly due to the algorithm using off-policy learning and the
addition of entropy maximization in the objective.
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2.2.4 Model-based Reinforcement Learning

In contrast to model-free algorithms, model-based methods like dynamic programming
rely on samples simulated by a model representing the environment when updating the
policy. The model estimates the dynamics function of the MDP to predict the reward
and next state from a previous state and a selected action. Current popular state-of-
the-art models show that they can compete with model-free methods while having a
better sample efficiency [PKP20]. When agents learn from a transition model instead
of the real environment, it is called planning. An algorithm combining planning and
direct learning from experience was introduced by Sutton in 1991 and is named Dyna-Q
[Sut90],[Sut91]. The algorithm uses ϵ-greedy action selection and learns via Q-Learning
from the experience in a tabular setting. Additionally, a dynamics model is adapted to
represent the newly acquired transition too. After learning from real experience, the
agent learns for several steps from randomly selected previously observed states with
previously taken actions from those states. The model selects a previously experienced
transition for this state-action combination randomly to simulate the transition. In
non-tabular scenarios, the model would be trained to predict reward and next state
from the randomly selected previous state and action. As the agent is not limited to
learning from experience, Dyna-Q is more sample-efficient than common model-free
algorithms. On the downside, the dynamics model can be biased which will lead to a
biased value function and policy when learning from model samples. Instead of planning
with random transitions or in another variant planning with random trajectories from
experience, a model-based learner can also plan at decision time. This type of planning
always uses the current state as a starting position and starts sampling trajectories from
there. Decision-time planning is especially useful in applications without the need for fast
responses which would also be the case for a crop rotation planner [SB18]. The sampling
of trajectories is usually guided by some kind of heuristic. ϵ-greedy algorithms could
already be seen as a heuristic, but more sophisticated methods have become more popular
over time. A well-known example is the TD-Gammon bot by Tesauro [Tes94]. In later
versions, it uses a game-specific heuristic to plan games of Backgammon by selecting the
own best action depending on the values of the available opponents’ actions afterwards.
The authors also used trajectory sampling as a computationally more efficient variant,
which means that they did not analyse each possible trajectory over n steps but only
sampled n times from all possible trajectories [TG96]. Another popular rollout strategy
is called Monte Carlo Tree Search (MCTS). It was used by Silver et al. (2016) to train
an agent able to reliably beat human grandmasters in the game Go [SHM+16]. The key
idea behind the rollout strategy is to build a tree of actions starting with the current
state and expanding it repeatedly following a tree policy. The tree policy is backed up
by running simulations from the newly expanded state to the end of each episode to
receive a reward. Albeit highly popular model-based RL algorithms like AlphaGo can
be trained on simulated game environments with fully known rule sets [SHS+17], RL
agents learning on dynamics models reflecting real and highly complex environments
need to consider the uncertainty in the predicted next states and rewards [PKP20].
An agent possessing this capability was recently developed by Janner et al (2019). It
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uses an ensemble of Probabilistic Neural Networks to predict next states and applies
trajectory sampling with short rollouts as a planning method. The method is called
Model-based Policy Optimization (MBPO) and shows state-of-the-art performance for
uncertain environments with a low number of environmental samples when compared to
model-free algorithms [JFZL19]. The main features distinguishing it from other models
are a) the usage of an ensemble of probabilistic networks to predict environment dynamics
and b) limited rollout lengths to disconnect the model horizon from the task horizon.
The idea of using a bootstrapped ensemble of probabilistic networks was introduced by
Chua et al. (2018) in their PETS (Probabilistic Ensembles with Trajectory Sampling)
algorithm [CCML18]. Each probabilistic network parametrizes a Gaussian distribution
with diagonal covariance which can be sampled to predict the next state:

pθ(st+1, r|st, at) = N (µθ(st, at), Σθ(st, at)) (2.23)

The approach addresses both aleatoric uncertainty and epistemic uncertainty. Aleatoric
uncertainty describes the inherent uncertainty of the system. Epistemic uncertainty
describes the uncertainty of the trained dynamics function stemming from a lack of
data. In contrast to aleatoric uncertainty, epistemic uncertainty can be reduced with
a larger number of samples [CCML18]. The use of probabilistic neural networks in
the MBPO and PETS algorithms is appropriate to represent aleatoric uncertainty. By
using bootstrapped ensembles of probabilistic networks, epistemic uncertainty can be
represented. The parametric approach using neural networks is an alternative to earlier
works addressing uncertainty via Gaussian processes, which is non-parametric Bayesian
method [WHF05],[DR11]. While Gaussian processes outperform parametric approaches
for many types of environments due to them representing epistemic uncertainty more
successfully, parametric approaches revealed to be more suitable for high-dimensional
environments [MBP+23]. The MBPO algorithm mainly differs from the PETS algorithm
by using limited rollouts with random starting states and by simply applying the current
policy and dynamics model to sample trajectories. In the PETS algorithm, a particle-
based variant of model-predictive control (MPC) is used as the rollout method [CA07].
As an agent, the MBPO algorithm adopts a soft-actor critic algorithm.

2.2.5 Evaluation of Reinforcement Learning models
Modern Reinforcement Learning algorithms still have many issues with instability over
extrinsic factors like hyperparameters or codebases and intrinsic factors like random seeds
and environment characteristics. A study by Henderson et al. (2018) showed a large
variance in performance when varying those factors for modern actor-critic methods like
TRPO, PPO and DDPG [HIB+18]. The standard practice is to evaluate the models
with different randomly generated environments and get aggregated measures over all
validation runs. Most papers report their results from those runs as average point
estimates when comparing performance to baselines. Henderson et al. recommend to
additionally run significance tests like 2-sample t-tests or Kolmogorov-Smirnov tests and
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evaluate bootstrap percent differences with confidence intervals to compare performance
between algorithms. In a paper by Colas et al. (2018), they recommend running at least
20 different random seeds per test, using low significance levels, and performing Welch
t-tests instead of comparing bootstrap confidence intervals [CSO18]. Chan et al. (2020)
propose including reliability measures to complement typical performance measures when
comparing RL algorithms. They divide reliability into dispersion and risk and suggest
different procedures when testing those during and after training and across training
runs [CFC+19]. Dispersion is measured as the interquartile range (IQR – the difference
between the 25th and 75th percentile) over sliding windows during the training run, as the
IQR across training runs and as the IQR across evaluation runs with a fixed policy after
training. Risk is determined by the conditional value at risk (CVaR), which can also be
measured during training (e.g. on first-order differences), across training runs and across
evaluation runs. CVaR is defined as the average performance over runs in the lowest
α-quantile. Agarwal et al. (2021) suggest not using mean performance across runs as a
measure at all [ASC+21]. They find the interquartile mean to be more robust towards
outliers while still being more statistically efficient than the median. By combining many
of those suggested measures in a performance profile, it is possible to present performance,
variance in performance and algorithm reliability in a more precise way.

2.3 Hybrid Systems
For sequential decision-making, Rule-based Planning and Reinforcement Learning have
been two popular approaches that differ a lot in how they address the problem. Planning
has been favoured in the 20th century when the integration of expert-knowledge into au-
tomated systems seemed promising. Reinforcement Learning however focuses on learning
from experience without necessarily knowing anything about the environment beforehand.
In the field of agricultural crop rotation planning, it is key to improve the sample efficiency
of trained models as only a tiny amount of actual data can be gathered from a single plot
of land over several years. Reducing the need for data by integrating expert knowledge
into the model therefore seems to be a reasonable idea. To bridge the gap between expert
systems and purely data-driven models, current research proposes different ways on how
to mix both approaches into hybrid-models. Some approaches focus on reward-shaping
to include expert knowledge into the RL agent training [NBM+19],[DHFLHvH22], others
use rule-based planners as slow but more precise systems than the trained RL agent for
time-critical applications [GSR21],[GCF+22]. Another idea is to use symbolic planning on
high-level abstractions of the environment and solve each low-level step derived from the
symbolic plan with RL which is a concept similar to Hierarchical Reinforcement Learning
[GK05],[ESL19],[óIYIM19],[BM03]. A further paper suggests to use symbolic planning
to reduce the size of the exploration space for the RL agent [LIS16]. A reward-shaping
approach by Noothigattu et al. (2019) uses a hybrid strategy of two policies, one policy
learning from crafted rewards that represent human expert knowledge and another pure
RL policy which learns to maximize game rewards obtained from experience. A contextual
bandit acts as a meta controller and learns which policy to choose for action selection in
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which situation [NBM+19]. In a paper by den Hengst et al. (2021), they utilize symbolic
planning to calculate a potential for each state based on an abstract representation of the
MDP with safety constraints [DHFLHvH22]. This potential is included in the learning
process of an RL agent by shaping rewards. Actions leading to more progress towards
a goal defined by the symbolic planner receive a higher reward. Gulati et al. (2021)
built a system which decides on either using an RL agent, representing a fast system, or
an MCTS planner, representing a slow system with better performance [GSR21]. The
decision on which system to choose is made depending on how much time is available
to the agent to select the optimal action. In a game of Pac-Man, they hand-craft this
condition to be based on the proximity of enemies to the agent. Another paper uses a
similar technique but uses a meta-controller which assesses the confidence of the fast
system and chooses to run the slow system if there is enough time, and the confidence
of the fast system is low [GCF+22]. Earlier research by Grounds & Kudenko (2005)
combines an automated STRIPS planner with a Q-Learning agent [GK05],[FN71]. The
planner defines a sequence of high-level operations. The RL agent learns to solve each
operation on a low-level. A similar approach was pursued by ón Illanes et al. (2019)
[óIYIM19]. They use a symbolic planner to create a high-level partially ordered plan
out of options based on the temporal abstraction framework introduced by Sutton et al.
(1999) [SPS99]. A hierarchical RL agent subsequently learns to follow those options on a
lower level. Research by Leonetti et al. (2016) utilizes answer set programming as a type
of symbolic planning to create a sub-selection of possible strategies from expert knowledge
[LIS16]. The reinforcement learning agent is only allowed to select actions following
these strategies which reduces the possible exploration space and therefore improves
sample efficiency. An integrated approach of a planner and an RL agent comparable
to some variants of model-based reinforcement learning was proposed by Anthony et al.
(2017) [ATB17]. They use an MCTS planning agent as an expert policy and let it predict
reward targets on which a policy neural network can be trained. The policy network
learns to predict the action selection probabilities to be equal to the ratio of actions
selected during the MCTS planning for each state. Additionally, the trained policy
neural network influences selection probabilities during MCTS planning by adapting the
upper confidence bounds of state values. After enough planning steps, a value network
is trained on the targets from the MCTS planning too. The predicted values from the
value network are used as values for each node during MCTS planning instead of the
previously used upper confidence bounds. The trained hybrid model could significantly
outperform human experts and pure RL algorithms in a game of Hex. Most approaches
in the literature can either demonstrate an improved performance or a better sample
efficiency when integrating expert knowledge via planning into the learning process of
RL algorithms. A downside was shown when the constraints from expert knowledge
prevented the RL agent to explore actions leading to an optimal policy. In the context of
crop rotation planning, it is therefore important to lower the impact of expert knowledge
in parts of the state space where the agent already gathered much experience.
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2.4 Crop Rotation Planning
Crop rotation planning as a practice aids the farmer to select the right crop depending
on the current situation on his land. Different types of crops have different soil condition
preferences and modify soils towards optimal conditions for other crops when being
cultivated. While many farms around the world decide to run monocultures of the
financially most attractive crops in the region, this practice can diminish ground fertility
over a long period of time and reduce yields due to sub-optimal conditions. Already in
the early days of agriculture and farming practice, humans have realized that specific
sequences of crops have higher yields than just planting single crops on the same plot
repeatedly. Specific practices were already written down during the Roman Times and
nowadays, there exist many example sequences and rule sets that farmers can orient
on to plant crops and fruits with the highest yields in the right order [Fra05]. Those
rule sets are typically learnt from experience and represent expert knowledge. Schöning
et al (2023) state that “calculating an optimal crop rotation is a highly complex task,
which depends on various factors, ranging from biological essentials to socioeconomic
circumstances" [SWT23]. In conventional farming, disadvantages from monocultures
can be balanced out by providing the soil with the necessary nutrients from fertilizers.
This can however lead to nutrient leaching into ground water and affect the environment
negatively. Therefore, the EU government and many other countries in the world regularly
introduce further restrictive legislations to stop ground water pollution and promote
organic farming without the excessive use of fertilizers with financial subsidies. Due to
that, organic farming accounts for about 26% of all agricultural land in Austria, which
has already surpassed the EU’s “Farm-to-Fork” strategy to use 25% of the agricultural
area organically by 2030 [Com20]. In the following section, it will be analysed what
the characteristics of successful crop rotation management systems are and which rules
and expert knowledge are found in the literature to determine fitting crop sequences.
Additionally, different types of developed crop rotation optimization algorithms from the
literature are described with their advantages and disadvantages.

2.4.1 Crop Rotation Management Systems
For many large farms in the world, crop rotation management systems play a huge role in
supporting the farmer making decisions about managing his farm. Some tools only focus
on the crop selection aspect while others include decision support for optimal cultivation
dates and scheduling of supportive farm operations like ploughing, tilling, or applying
fertilizer and pesticides. A large variety of crop rotation management tools can be found
in the literature. They are based on different optimization or planning methods, different
types of input data or were developed with different objectives. There exist sophisticated
and expensive CRM tools with large-scale commercial farms as their target group. They
are often part of entire software ecosystems for farmers which supply them with guidance
and data-driven insights for the daily farm work [ZMBM20]. For small-scale farmers,
those tools are often not affordable, and they rely their decision-making on experience
or cheaper tools promoted by academia or governmental bodies. The adoption of those
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software tools is influenced by a variety of factors. The tools need to select crops suitable
to the farm which also achieve high gross margins. They need to be easy to use for IT
laymen and should not be too expensive to justify their purchase. In addition, they
should be adaptable enough to match the farmers’ habits [SWT23]. Many tools take
this into account and predict appropriate crop sequences while considering external
uncertainty like weather conditions and dynamic crop markets. Margins and yields
are sometimes predicted by using average regional yields, costs and prices. In other
tools, yields are simulated with a simulation software like DSSAT [HPB+19]. Crop
succession effects are either predefined by experts, represented by rules and agronomic
filters, or determined by aggregated indicators which typically adapt predicted yields
to be higher or lower depending on the previously cultivated crops [DSG+12]. For
optimization, many algorithms rely on mathematical modelling techniques like linear
programming. Some older research utilizes constraint-based sequence generation while
newer methods experiment with evolutionary algorithms or reinforcement learning to
address the combinatorial problem. To enhance the ease of use, some tools opt for
automatic data gathering and only need a location or ZIP code to extract regional data
from other sources. Other tools necessitate the user to add data about soil characteristics,
water content, fertilizer use and planting dates and allow pre-selecting crop options to
restrain the search space. Most methods have net income as the only optimization target,
others try to include more metrics like crop diversity, cost minimization and nutrient
balance. As outputs, the tools deliver crop sequences for specified fields. Some tools also
include a custom spatial allocation of crops onto the total farmable area. Visualizations
about crop yield predictions, allocation maps and legislation compliance are sometimes
part of the usable tool too [SWT23]. From a critical point of view, many models lack
important features to be fully used as reliable and user-friendly crop management systems.
In an older review by Dury et al. (2012), these issues are addressed in detail [DSG+12].
One drawback is that using net income as the sole optimization target does not reflect
farmers’ decisions as they usually consider several different objectives and do a multi-
criteria assessment before deciding for a new crop to grow. Additionally, even when
models consider uncertainty for factors like weather or market dynamics, those factors are
represented as static probabilities which do not change over time. The authors estimate
this to be unrealistic as market conditions usually change continuously and the climatic
circumstances are subject to change as well with climate change elevating temperatures
around the world and increasing probabilities for extreme weather events. Another
downside of most tools is that they are specialized for single regions of the world and lack
adaptability to other regions. Some do not offer open-source access to change the internal
model settings, others are partially adaptable, but the necessary input data format is
not found for other regions and would need a fundamental data preparation step before
usage. The authors suggest improving future models by formalizing the cropping plan
decision via an integrative modelling framework which considers all levels of temporal
and spatial dimensions instead of relying on static and deterministic procedures. They
propose to build a better understanding of crop production dynamics and include the
typical farmer’s decision process when constructing models.
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2.4.2 Crop Rotation Rules
The effects from previous crops on succeeding cultivation and the needs of different plants
to achieve optimal yields have been studied thoroughly. Nowadays, there exists a plethora
of guidelines aggregated by researchers or governmental bodies to support farmers in
their decision making. For this master thesis, those guidelines and discoveries can be used
to guide decision making in an automated fashion. The following section is split into the
topics cover crops, nutrient effects, water & irrigation management, soil management and
pest & weed management and will be summarized into general crop rotation principles.
The subtopics are not strictly isolated but rather show dependencies and synergies between
different farming practices. There are many other factors influencing the optimization
of farming operations which are not directly related to crop rotation planning and are
therefore beyond the scope of this chapter. This aggregation of knowledge shall help in
understanding why specific rules and constraints were included in the model to predict
beneficial crop sequences.

Cover Crops
In many farming guidelines and support books, there are chapters focusing on the use of
cover crops and legumes in organic farming and the benefits when being integrated into
crop rotations [MVE+00]. In organic farming, they are often planted after cash crops
to prepare the ground for the next crop. In colder climate conditions with less time to
grow between harvest and winter, it is also common practice to interseed cover crops
into already well matured cash crops when moisture levels are high enough and the right
tools are available on the farm. Cover crops can also be grown for a whole year or even
several years to let the soil recover after years of intensive cultivation. The cultivation of
cover crops for one or multiple years is often combined with their usage as forage or green
manure and can yield a profit. It was regularly shown in different research settings that
cover crops improve yields of follow-up cash crops by 10-20% on average although this
value can vary a lot depending on soil conditions and on the type of farming operations
carried out on the field. In general, wetter regions had more constant responses than
drier regions, especially when break crops replaced fallow in dry conditions [KCKL08].
The reasons for that are manifold. Cover crops prevent erosion of soils when compared to
leaving the land bare by reducing fallow periods which can lead to soil degradation. They
improve biological and physical properties of the soil by producing biopores and supply
important nutrients like nitrogen, phosphorus and potassium in the form of soil organic
matter. Additionally, they fixate nitrogen from previous crop residue, prevent nitrate
leaching into ground water and reduce nitrous oxide from emitting into the atmosphere
[RHB+16]. Many cover crops are competitive against different weed types and prevent
their growth. Furthermore, they break pest cycles and can improve soil water availability
[KCKL08],[BJL+11]. Often, a mix of different cover crops is sown to benefit from their
diverse effects on the soil. Those mixtures are more flexible as less fertility-dependent
plants in the mix grow better on low-fertility soils whereas plants with higher nitrogen
needs will dominate in high-fertility soils. Cover crops can be divided into legumes, grass
cover-crops and other types like the botanical family of brassicas or buckwheat. Some
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legumes like soybeans or common beans can be grown during summer and are killed
by harsh winter conditions. Others like hairy vetch, winter field peas or crimson clover
survive in colder climates to deliver a soil cover over the winter months. Some of them
like red clover, white clover or alfalfa are used as perennial cover crops for longer periods
without the cultivation of a cash crop. Grass cover crops are usually more resistant than
legumes but offer less nutritional value when used as forage. They include annual cereals
like rye or winter wheat or forage grasses like ryegrass and are more likely to increase
soil organic matter when grown to full maturity. Brassicas like rapeseed, oilseed radish
or mustard are planted in late fall and are especially good against pests in the soil like
root pathogens or nematodes due to their biofumigation potential [MVE+00].

Nutrient Effects
Nitrogen, phosphorus, and potassium are minerals most commonly deficient in soils.
There are other essential minerals necessary to grow plants, but they are less common to
deplete in organic agriculture [MVE+00]. A good strategy is to regularly test mineral
concentrations for those three elements in the soil and balance nutrient import and export
to keep levels within an optimal range. In organic farming, nutrients can be added to the
ground by planting crops with a nutrient surplus like legumes. Applying animal manure
or silage is an alternative if available. Those amendments release their nutrients slowly
during decomposition. They are usually not as effective as synthetic fertilizers but often
leave the soil in a healthier state afterwards. Some care is recommended with animal
composts as a regular fertilization as their use can lead to high phosphorous levels in the
soil which can be detrimental to some plants [BJL+11]. Additionally, nutrients can be
washed out of the soil and leach into ground water. This effect is stronger if nutrients
are available in high concentrations due to a sequence of crops with a nutrient surplus or
due to over-fertilization. An EU directive set limits to the amount of nitrogen per liter of
ground water which resulted in national laws enforcing those limits with potential fines
for crossing the thresholds [Com91]. To combat nutrient loss, an avoidance of longer
periods of bare land is recommended. Cultivated plants can pick up nutrients through
their roots and thereby fixate them in the ground [AE08]. Forage crops or cover crops
can be turned into silage to apply this “green manure” full of nutrients at a later point
in time. Alternatively, they can be tilled into the ground right before another crop is
planted which can pick up the nutrients from the decomposing plant residue. The actual
amount of nutrients a crop can offer to the next crop is determined by the amount of
nitrogen the crop could pick up and fixate, by the maturity of the legume when it is
incorporated into the ground, whether the whole plant or only the root system stays
in the field and by the environmental conditions affecting the decomposition rate of
the residue. The farmer should not wait too long before sowing a follow-up crop to
avoid nutrient loss again. Maintaining a soil pH in an optimal range is an additional
support to prevent nutrient leaching. When nitrogen levels are too high, risk for diseases
increases as well and lodging can occur, which is the bending of grain crop stems near
ground level and results in significant yield loss. A paper by Bachinger et al. (2003)
offers a calculation help to determine the amount of nitrogen import and export for
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different soil qualities and crop types [BZ03]. They include nitrogen fixation, leaching
and volatilization, degressive nitrogen mineralization of crop residues, manure effects and
rainfall as influencing factors in their calculations. For cover crop mixtures, the authors
adapt their calculation to include the share of legumes growing in the plot, as a higher
share will lead to a higher amount of nitrogen fixation.

Water & Irrigation Management
Water & irrigation management is another building block in organic agriculture. In the
US, average crop yields of irrigated farms are greater than yields on dryland farms by
118% for wheat and 30% for corn on average [MVE+00]. This large difference stems
from the crops’ disparate water needs. Crops with high-water needs like rice, soybean or
wheat are usually grown in regions with good access to water resources whereas crops like
potatoes or corn are also favoured in drier regions. Farmers should additionally consider
the water needs of cover crops, as a cover crop consuming a high amount of water might
leave the soil too dry for the next crop to grow well. Using water from rainfall is typically
the best-case scenario as an intensive artificial irrigation can lead to an accumulation of
salts in the soil, is more expensive and necessitates a large source of water close to the
farm.

Soil Management
Different soil types are classified by their ratio of sand, clay and silt. Heavier soils
contain a higher share of clay and silt while lighter soils consist primarily out of sand. In
heavier soils, soil aggregates can develop more easily which capture nutrients and store
water. However, heavier soils face a higher risk of soil compaction when heavy machinery
is operated on them. This can be detrimental to plant growth due to the roots of
following crops not reaching the deeper layers of the soil. Sandier soils on the other hand
have a much lower water capacity which can be problematic in drier regions or during
periods of drought. To sustain a healthy soil, there are several management practices
recommended. It is beneficial to enrich the soil with nutrients and soil organic matter
through the incorporation of crop residues. This loosens up the ground by improving
the microbiome which also results in the aggregation of soil particles, a better drainage
and aeration. Some crops leave more organic matter in the soil than others. Annual
row-crops which are transported away for sale after harvest leave the ground with less
organic matter than before their cultivation. Moreover, they have a lower density of
roots in the ground and during harvest, exposed parts of the soil are subject to traffic
by agricultural machinery and to rainfall [BJL+11]. Perennial legumes, grasses and
legume-grass forage crops increase soil organic matter instead. A thorough recovery of
soils is generally achieved with perennial cover crops like alfalfa. Generally, if only parts
of the plant are harvested and the rest is incorporated into the ground, more soil organic
matter is available afterwards. Additionally, soils on organic farms demonstrate higher
soil quality represented by higher water storage capacity and more soil organic matter
when compared to conventional farms. The main reason for that is the use of diverse crop
rotations with cover crops and applications of organic compost [LD99]. Furthermore,
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healthy soils should contain a minimal number of pests, be free of toxins and have
sufficient depth before a compact soil layer [MVE+00]. Acidic soils should be treated with
limestone to raise the pH to an optimal level. Conventional tillage and the use of heavy
machinery should be limited as it speeds up soil degradation and compaction. A higher
soil compaction will negatively influence aeration and drainage, can lead to higher pest
damage, shallower plant roots and necessitates further tillage. To combat this, a regular
integration of crops with deep rooting systems into crop rotations is recommended, as this
loosens up the deeper layers of the soil and they move nutrients from the deeper layers
into the plant’s top growth [BJL+11]. Different types of organic matter have different
decomposition rates which affects how quickly their nutrients become available to the
plants. The decomposition rate is also affected by the carbon to nitrogen ratio of the
amendment, the temperature and moisture levels and the soil type. While green manures
and silage decompose faster, composts are more stable with a slower decomposition rate.

Pest & Weed Occurence
To avoid the occurrence of pests and weeds, the soil should stay healthy and nutrient
levels should be kept in balance. As a general guideline, crops susceptible to pests should
not be grown in the following years after pest occurrence to let the pests slowly die off.
Pests which can infect a multitude of hosts can persist in the field through a variety
of crops though, and a farmer must sometimes use other management techniques to
prevent further spread and yield loss. This can include the utilization of organic pesticides
or the beneficial biochemical effects of specific crops against several pest types. For
example, some crops propagate beneficial fungi spore counts which support the avoidance
of parasitic infections. Others are competitive when growing next to weeds and keep
weed seed numbers low. A high biological activity in the soil also reduces weed seed
numbers [MVE+00]. Some cover crops can behave as unwanted “volunteer” weeds in the
next season if allowed to grow seeds. They need to be tilled into the soil before seeding
or can be killed by harsh winter conditions when grown as cover crops over the colder
months [BJL+11]. If weed infestation still occurs after those counter-measures, it can still
be suppressed by growing a perennial crop or by mowing repeatedly to prevent seeding.

Crop Rotation Principles
Most of the knowledge from the previous chapters can be distilled into generalist crop
rotation recommendations which is necessary to formalize constraints and rules for an
automated model to follow. In this section, we present them as recommendations, the
specific constraints for the hybrid model are formulated in the section “Experiment
Design”. Those recommendations can be found in an aggregated form in several books
about crop rotation principles and organic farming [MVE+00],[BJL+11],[Nan16]:

• Nutrient levels should stay balanced by growing a mixture of crops importing
nutrients into and crops exporting nutrients from the soil. Regular soil testing can
help determine the need for further amendments.
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• In organic crop rotations, a pattern of nutrient- and soil-building crops should
be followed by crops with a high nutrient demand. After this step, less nutrient-
demanding crops should be grown before returning to soil-building crops.

• Crops should be grown both in warm and cold seasons as this will reduce the time
for weeds to grow.

• Winter cover crops should be grown before summer cash crops as they can be tilled
in right before cultivating the new crop. Winter-killed cover crops should be grown
before early-season crops as yield losses due to competition can be avoided.

• The same crop should not be grown on the same plot of land in consecutive years
to avoid pest infestation. This also holds true for crops from the same botanical
family.

• If a specific pest has already occurred, avoid potential host plants for the next
years.

• At least one deep-rooted crop (e.g. alfalfa, sunflowers) should be grown during a
rotation to gather nutrients and water from deeper soil layers and improve physical
soil properties.

• Multiple crops leaving lots of residues should be grown during a crop rotation to
promote the incorporation of organic matter into the soil.

• In drier regions or during periods without a lot of rainfall or artificial irrigation, not
too many crops with a high-water demand should be grown in sequence to avoid
follow-up crops lacking water to grow.

• When crops in a rotation sequence are mainly grown for soil-building or nutrient-
building purposes (e.g. clover/rye) without any harvested goods being sold, the
incurred costs should be lower than the additional gain in yield from following
crops.

• In specific market conditions, breaking crop rotation rules can be beneficial but
often creates more risk in the long run.

To support farmers besides recommending crop rotation practices, many books and
recommendation sheets provided by governmental bodies give an overview about the
characteristics and needs of different crops. Characteristics relevant for a crop rotation
model found in those sources are the botanical family of the plant, the harvested part of
the plant, net removal or gain of nitrogen, phosphorus and potassium, cold and drought
tolerance, required soil pH, soil type preference and the degree of weed competition.
Additionally, aggregated lists describing all hosts for common pests can be found in the
literature [BJL+11],[Fre03],[BZ07]. Another helpful tool is an indicator matrix which
rates the suitability of pre-crop-post-crop sequences [Kol08b]. The suitability is usually
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a combination of previously mentioned effects including planting and harvesting dates,
cross-infections of pests, weed suppression and nutrient balance effects. Those sheets
often contain recommended breaks between growing the same crop on the same plot of
land [JC19]. A recommendation document by Stein-Bachinger & Reckling (2013) gives
insight into the effects of different crops on the soil, the erosion risk when growing a plant
and characteristics for different types of manures [SBRG13].

2.4.3 Crop Yield Prediction & Simulation
Several papers in the literature describe methods to predict the yield of grown crops
under specified conditions. Yield prediction is important under the context of crop
rotation planning as only with precise yield predictions, the net profit of growing and
selling a crop can be calculated accurately. As the focus of this work lies in developing
a crop rotation optimization model, only the model types and the features used to
predict crop yields are analysed in this section without going into too much detail. A
review by van Klompenburg et al. (2020) states that the most popular types of input
data to accurately predict yields can be grouped into the following feature groups: Soil
information includes soil type, pH value, cation exchange capacity and the area of
production. Plant features contain the type of plant, the crop density, the average growth
and weight of the plant. Weather conditions are described by the amount of rainfall, the
humidity, the intensity of solar radiation and the wind speed. Most papers assessed by
the review use nutrient concentrations of nitrogen and potassium in the soil to predict
yields. Concentrations of other elements like magnesium, phosphorus, zinc, sulphur,
boron, calcium and manganese were used by some researchers but less frequently. Other
popular features were the type and amount of irrigation and fertilization [VKKC20].
With regard to the models used, the review states the tendency of older research towards
linear regression and classical machine learning models like random forest regression,
support vector machines and gradient boosting tree regression [SDH+18],[CUM19]. More
complex models in use are artificial neural networks. Some methods use Long-Short-Term-
Memory (LSTM) networks to include a temporal dimension in sequential predictions
[SAC+20],[WTD+18],[JHZ+20], others combine it with convolutional neural networks
(CNN) to infer from visual data like satellite images [WHFY20],[YSH+19],[TOdSMJZ20].
LSTMs can become especially useful to pick up temporal crop rotation effects from
previous crops planted on the same plot. Although using image data can be helpful when
predicting yields after cultivation, it will not help predictions made before a crop was
planted. One approach uses Reinforcement Learning to predict crop yield but cannot
demonstrate significant performance improvements when compared to an LSTM with
the same input data [EV20].

2.4.4 Crop Rotation Optimization Methods
Crop rotation optimization methods focus on recommending the next crop to plant or
to deliver complete crop rotation plans for farmers to follow. They pursue the same
objective as this thesis project. In the following section, popular crop rotation models
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are presented in detail by outlining their methodical approach, by describing the data
used to calibrate the model and by assessing their applicability for farmers.

Rule-Based Methods
As crop rotation planning has existed for a long time, there is also a lot of less recent
research targeting this problem. Many older methods approach the problem by converting
expert knowledge into rules readable by symbolic planning systems or constraints for
mathematical modelling formalizations. Nevo et al. (1994) propose an integrated system
which combines linear programming with a PROLOG-based constraint logic to do the
planning. The logic system contains the expert knowledge which cannot be easily
integrated into the linear programming problem. The system optimizes for net profit and
adapt yields when logical rules are fulfilled or broken [NOP94]. Another popular approach
was proposed by Dogliotti et al. (2003). Their model is primarily rule-based and filters
all possible crop sequences to only keep those which fulfill all rules. Their ruleset contains
timing constraints about optimal sowing and harvesting dates and intercrop periods.
Additionally, they include maximum growing frequencies for crops in a rotation and the
filter balances nutrient uptake and loss as well as the effects of crops on soil health. The
tool then calculates the yields for all suitable crop rotations by using average values of
gross margin for each fruit from the region and proposes the sequences with the highest
expected yields to the farmer [DRVI03]. A similar approach was pursued by Bachinger
& Zander (2007). In addition to filtering suitable crop rotations, they include other crop
production activities like tillage, pre- & post-crop activities or manuring and combine
them into operational sequences. Filters including those activities like “no manure after
a legume-crop” are used as well. The model then predicts expected yields, postharvest
NO3-leaching, weed & pest risks, soil quality and the nutrient balance for each sequence.
Yields are calculated with a polynomial trend function for different crops with parameters
derived from yield data and expert knowledge. The calculation of nitrogen balances is the
same as the one used in the recommendation sheet by Stein-Bachinger & Reckling (2013)
[SBRG13]. Economic performance is calculated as a formula connecting costs, yield and
prices. As inputs, it only uses the German soil index, the mean annual precipitation
and the mean precipitation during the winter half of the year to make data input easy
for farmers. The tool is able to select economically and agronomically sustainable crop
rotations suitable to the conditions of farms in the region of the study [BZ07]. A newer
publication by Reckling et al. (2016) formalizes this approach further and proposes a
cropping system assessment framework which can generalize over regions when suitable
input data is found [RHB+16]. They tested it by evaluating the effects of legumes on
sustainability factors like nitrogen leaching and volatilization by comparing cropping
systems with and without legume crops in different European regions.

Mathematical Modelling
In the past 20 years, there has been an abundance of research focusing on crop rotation
optimization with mathematical modelling as its method. Mathematical modelling is a
form of quantitative optimization which uses rules in form of equations and constraints
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to represent real-world problems. It is therefore similar to purely rule-based approaches
in how it handles constraints. Instead of only looking for potential solutions satisfying all
constraints, mathematical modelling can be used to maximize or minimize selected targets.
A simple version of the method is proposed by dos Santos et al. (2010) [dSCAS10]. Several
crops have known demands which need to be fulfilled. Crops have different planting
and harvesting dates and they include constraints like the need for cover crops, fallow
periods and minimum breaks between two cultivations of the same crop. While fulfilling
all constraints, the solver optimizes for yield. The method used is a column generation
heuristic. Further research by the same authors introduces the aspect of adjacency
constraints when planning for multiple adjacent plots at the same time [dSMAS11].
Another method includes similar constraints but optimizes for minimal area of land
use while fulfilling all constraints. It utilizes a heuristic to accelerate the optimization
of possible crop sequences [APS15]. Detlefsen & Jensen (2007) show, that the issue of
having an overly large number of possible crop sequences can be improved by using
network flows. Although the method only makes use of a limited number of features, it
shows that the model still performs relatively fast with an increasing number of potential
crops to select [DJ07]. Research by Filippi et al. (2017) considers uncertainty in its
linear programming model by including market price and yield variability. Instead of
optimizing for a static gross margin, the model optimizes the conditional value at risk
(CVaR) which is the average yield over the worst quantile of simulation runs. By doing
so, the model can output crop sequences with the lowest amount of risk, which might
be the preference of some farmers [FMS17]. Another linear programming model which
is used in a complete crop rotation management system was developed by Pahmeyer
et al. (2019). Besides typical agronomical constraints, they include regional legislation
and automate data acquisition to improve user experience. Additionally, they allow
manual value adjustment for users to customize the tool [PKB21]. A method proposed
by Boyabathli et al. (2019) extends the concept of crop rotation management by letting
the model propose an allocation of farmland. They incorporate revenue uncertainty into
the model to be able to show the importance of growing more than one crop at the same
time to mitigate risk [BNZ19]. A robust optimization method used by Fikry et al. (2021)
must deal with uncertainty in market demand and water availability besides yield and
price uncertainty. Market demand is a constraint they introduce which forces the model
to plan in minimum amounts of some crops [FEG21].

Evolutionary Algorithms & Meta-Heuristics
Many of the presented mathematical modelling approaches rely on linear solvers or
heuristics to find optimal crop sequences. However, the size of the search space can be
too large if many different crops are available to be selected by the farmer. To address
this issue, some researchers focus on using meta-heuristics like evolutionary algorithms.
Pavón, Brunelli & von Lücken (2009) show that the crop rotation optimization problem
can be solved with multi-objective evolutionary algorithms. Besides maximizing net
profit, their model can minimize total investment cost and economic risk, maximize
nutrient accumulation in soils and maximize crop diversification in subsequent seasons
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and on adjacent parcels. The model uses average yield data from a single farm for five
different crops. The authors test three different evolutionary algorithms and compare
the result with a linear programming method. The models output a pareto-optimal
solution set so that the user can decide afterwards which objectives are more impor-
tant [PBvL09]. An extension of this work from 2021 includes more objectives like the
minimization of fallow periods and adds nutritional demands for each crop and soil treat-
ment costs [vLAR21]. Both papers show that evolutionary algorithms outperform the
linear programming method in terms of finding diverse and optimal solutions. Another
study from 2011 shows similar results when using pareto-based evolutionary algorithms
to optimize plant selection for greenhouses in Spain [MBG+11]. In 2014, Chetty &
Adewumi used another meta-heuristic method to solve the crop planning problem. They
employed swarm intelligence techniques like the firefly algorithm and glowworm swarm
optimization to optimize revenue and minimize costs under restricted water usage [CA13].

Reinforcement Learning
While most of the previously mentioned papers include expert knowledge via constraints
and optimize for yield or revenue, they often do not consider the effects of previous
crops on the following crops’ yields. Many methods have the static constraint to not
grow the same crop continuously, some use a constraint to make sure that crops with
high nutrient needs are grown after crops with a high nutrient import. While this
static approach guarantees that solutions do not break constraints, the effect on yield
if breaking a constraint is rarely included in the models. Particularly for soil building
measures, short-term effects can rarely be observed but a healthy soil will improve
yields in the long run [MVE+00]. A suitable approach to address this problem can be
Reinforcement Learning. Due to the usage of value functions representing discounted
future gains instead of only focusing on the next reward, Reinforcement Learning models
learn to plan strategies which are also suitable across longer sequences of cultivated
crops. The concept of Reinforcement Learning only showed up sparely in the context
of crop rotation optimization. An already mentioned paper used it for yield prediction
[EV20], another publication from 2004 mentions using it without going into too much
methodical detail [OWC04]. Recent research by Fenz et. al (2023) applied the method to
predict optimal crop rotation sequences [FNFW23]. The authors let a deep Q learning
agent train on two different simulation environments. One environment is built upon
information from a slightly modified crop succession indicator matrix by Kolbe (2006)
[Kol06]. The second environment uses a crop suitability matrix based on predictions of
the Normalized Difference Vegetation Index (NDVI) representing yield performance. The
matrix was generated by Fenz et al. (2023) via an XGBoost regressor predicting NDVI
values from clustered weather and soil information by training with NDVI values for the
same fields from previous years in Austria [FNH+23]. The model adds constraints to the
training by shaping rewards in the simulation environment. Average yields obtained from
Austrian farms are used as a baseline. They are increased depending on the pre-crop effect
obtained from the suitability matrix or penalized if the pre-crop-post-crop combination
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is not recommended. Additionally, crops increase or decrease a pre-defined nitrogen
balance according to average values from the literature. If the nitrogen balance falls below
zero, another penalty is added to the reward. The crop rotation sequences proposed by
both models were validated by expert farmers. Many sequences were realistic with some
unrealistic pre-crop-post-crop combinations in between.

2.4.5 Crop Rotation Prediction from Previous Crops
Besides optimizing crop selection for the next season’s yield, there has also been research
about the prediction of crop types planted on fields using the crop types of previous years
as input. The research focuses on predicting complete cover maps for selected regions.
Sources for input data are usually from Land Parcel Identification Systems which detect
crop types via satellite images after the crops have already grown. They are typically
published yearly by government agencies for different regions. A method by Schönhart et
al. (2011) integrates this observed land use data with agronomic criteria from expert
knowledge and applies the trained model to more than 500 farms in Austrian’s region
called "Mostviertel". The crop rotations are selected by having the highest agronomic
score based on regionally specific crop rotation tables. The predictions are then evaluated
by their area-weighted deviations from reality [SSS11]. Research from 2015 used historical
cover maps to predict crop cover in France for the following years via Markov logic models
[OID15]. For those models, historical crop rotations are used as weighted rules. If
selecting a crop in the next year matches many of those rules, there is a high probability
for the choice to be correct. Using this approach, an accuracy of about 60% was achieved
to predict the next crop correctly. Newer research with the same goal made use of deep
learning to predict the next states. An approach by Zhang et al. (2019) generates a
binary encoding of crops planted in previous years for each pixel of the input data and
predicts the next crop with a fully connected network using this input data [ZDLG19].
A more sophisticated approach by Yaramasu et al. (2020) utilizes a spatio-temporal
autoencoder. A pretrained convolutional neural network is used to learn spatial patterns
and encode the input data into a lower-dimensional space representing spatial information
about the fields and crops used. The temporal information is added by encoding the
spatial representations from several years into a single tensor of spatial-temporal features.
Afterwards, a deconvoluting decoder architecture uses this information to predict the
crop type for each pixel in an input-sized image again [YBP20]. Both of those newer
approaches show better performance than the Markov logic model but still suffer from
noise inside of the input data where some crops were not identified correctly from satellite
images. A helpful idea was realized in research by Abernethy et al. (2023). They start by
aggregating pixels from input data into custom-shaped polygons representing individual
plots of land. By doing so, they remove noise and lower the amount of redundant
training data. A gradient-boosting decision tree ensemble model is used afterwards to
predict the next crop type for each field [ABB+23]. These more modern techniques show
promising results with 70-90% accuracy when predicting the next crop, depending on
region and crop type. Higher results are typically achieved for regions with simpler crop
rotations (e.g. corn-soybean-corn) and crops that are planted more commonly. Being
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able to predict the next crops on fields before the new season starts is helpful when
estimating the total amount of produce being offered on the markets after the harvest.
For individual fields, this type of crop selection might be able to predict suitable crops
according to previous and common crop rotations. It however does not take into account
field characteristics and dynamic factors like weather, costs and market prices. This
might lead to the predicted crops being a sub-optimal choice. It could rather be helpful
as a support model to estimate the supply of different crops in agricultural markets when
deciding for a new crop to plant. Crop types with a high estimated supply might be
unattractive to grow for an individual farmer. Conversely, a well trained crop rotation
optimization model for individual farms might make the region-wide predictions more
precise.
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CHAPTER 3
Experiment Design

In this chapter, the evaluation approach to answer the research questions and to obtain
significant results from the experiments run during this project is discussed. It contains
a description of the simulation environment implemented to run experiments and an
explanation from which data sources the assumptions and values in the environment
stem. Furthermore, it is specified in detail which models are used as baselines in the
experiments, which performance indicators are used as measures and further experiment
details are stated to give the reader a thorough understanding of the work. Thus, and
with further information in the appendix, a complete reproducibility of the results is
possible.

3.1 Simulation Environment
A simulation environment to run experiments should be able to reflect all relevant effects
from a real environment on crop yield and the farm’s profits. This is necessary to make
sure that agents performing greatly under simulation conditions can perform comparably
well in real-life conditions when being used for decision support. To achieve this, the
simulation environment used for all experiments is an extended more complex version of
the simulation environment used by Fenz et al. (2023) [FNFW23]. Their environment
relies on the previously selected crop as the key information to select the next crop. It
calculates the total reward for a crop rotation by adding up the individual crops’ static
yields multiplied with positive multipliers and penalty factors. Positive multipliers and
penalties are obtained by mapping the pre-crop-post-crop pairs to the Kolbe matrix,
which gives each combination a rating regarding its effect on yield [Kol06]. Factors
between 0.8 and 1.2 are in use. In addition, their environment tracks nitrogen levels
starting from an initial value for each crop rotation sequence representing an episode and
penalizes crop rotations heavily when the nitrogen levels go below 0. Furthermore, the
maximum number of individual crops in a crop rotation are counted as well as minimum
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crop breaks for individual crops. It is also tracked if root crops are followed by non-root
crops and if the maximum frequency of legume cultivation is surpassed. Crop rotations
breaking any of those rules result in a high static negative penalty added onto the total
yield.

The environment used for this project reuses or extends the concepts in the following
way:

• Crop suitability factor: The suitability of pre- and post-crop combinations is
again rated by a slightly updated Kolbe matrix penalizing non-suitable combinations
with a yield factor of 0.8 and rewarding highly beneficial combinations with a factor
of 1.2 [Kol06],[LfU08]. Less suitable combinations are penalized with a factor of
0.9, slightly beneficial combinations receive a factor of 1.1. The suitability matrix
is depicted in Figure 3.1.

Figure 3.1: Kolbe matrix rating each pre-crop-post-crop combination. The values
multiplied with 10% are used as factors increasing or decreasing the yield obtained from
the following crop. For example, a value of 2 leads to a 20% yield increase for the
following crop.

• Crop break factors: Each crop and specific groups of crops are assigned minimum
breaks from the literature. If those minimum breaks are violated by cultivating the
same crop or a crop from one of those groups too early again, the expected yield is
reduced through a factor representing the severity of the violation. The severity
factor is calculated by a heuristic which follows the following logic examples:

– When a crop is cultivated at time t but has already been cultivated at time
t−1 with a minimum crop break of 2 years, the yield is penalized more severely
than when the crop has only been cultivated at time t − 2.

– When a crop is cultivated at time t but has already been cultivated at time
t−1 with a minimum crop break of 2 years, the yield is penalized more severely
than when the minimum crop break would only be 1 year.

34



3.1. Simulation Environment

– When a crop is cultivated at time t but has already been cultivated twice
at time t − 1 and t − 2 with a minimum crop break of 2 years, the yield is
penalized more severely than when the crop has been cultivated only once at
time t − 1.

The complete heuristic can be found in the source code in the provided git repository
[Wag23]. The underlying data about minimum crop breaks for different crop types
was obtained from the literature [LB16],[SBRG13]. It is summarized in Figure 3.2.

Figure 3.2: Minimum crop breaks in years and maximum frequencies for all crops.

• Crop maximum frequency factors: Each crop and specific groups of crops
are assigned maximum frequencies from the literature [NW15],[JC19]. The exact
values can be found in Figure 3.2. If those maximum frequencies are violated
by cultivating the same crop or a crop from one of those groups too often, the
expected yield is reduced through a factor representing the severity of the violation.
The severity factor fmf is calculated as depicted in equation 3.1 for single crop
maximum frequencies, where c is the count of the crop in the time window, cmax is
the maximum count in the time window and w is the window length. It is only
applied if a maximum frequency rule is violated in the current step:

fmf = 1 −


c − cmax

w


, if c > cmax (3.1)

This makes sure that a stronger violation of the rule leads to a heavier penalization.
A similar logic applies to maximum frequencies related to groups of crops and can
be found in the source code [Wag23].
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• Nitrogen, phosphorus and potassium effects: During the time crops grow,
they consume minerals from the air and the soil to insert into their biological matter.
Organic farmers selling off their harvested crops typically combat this draining effect
by fertilizing the ground before each cultivation. The three main minerals necessary
to sustain a fertile soil are nitrogen, phosphorus and potassium. In the simulation
environment, it is assumed that missing amounts of those minerals are added via
fertilization before each new crop cultivation. In addition, the postdelivery effect
of high humus ratios and pre-crop effects on nitrogen levels are included in the
simulation environment. As different crop types have different nutrient needs, it
can be beneficial for the agent to select less nutrient-demanding crops or even
nutrient-donating crops like legumes when fertilization costs are high. Another
defined restriction is that nitrogen fertilization is limited to 170kg N per hectare
and season, which is in accordance with Austrian agricultural laws [inf23]. If a crop
needs more nitrogen than what is available in the soil after fertilization, the yield is
limited by the available nitrogen amount. Information about the nutrient needs of
different crop types was extracted from the literature and farming guideline sheets
[KDO+22].

Furthermore, other environment effects representing real-life conditions for farms are
introduced:

• Crop sowing date factor: Crop types have different common sowing dates in a
specific region. While there is a certain time window for them to obtain optimal
yields, missing that window will leave the crop with less time to grow sufficiently
and can lead to lower yields. Additionally, all crop types have an earliest harvesting
date as the crop would not be developed enough for harvest before that time.
Due to this, some pre-crop-post-crop combinations automatically cause a yield
reduction in the post-crop due to the second crop’s latest sowing date being before
the first crops earliest harvesting date. The cultivation and harvesting dates were
obtained from several different farming guidelines and are set as static values in the
simulation environment for each crop type [agr23],[get23],[Ste24]. For each week
the second crop cannot be planted after its latest sowing date, the yield is reduced
by 20% with a maximum reduction of 100% after 5 weeks. Albeit only using a
heuristic, yield reduction values are in accordance with values from the literature
when considering that yield reduction is only applied when the crop is cultivated
after the latest possible date from the recommended range [RKE09]. The specific
weeks for sowing and harvest are depicted in Figure 3.3.

• Humus factor: For different soil types, there is a minimum viable amount of
humus to obtain optimal crop yields. Lower humus ratios leave the soil in a barren
state. Some crop types have a humus building effect, others are detrimental to
the amount of humus in the soil. It is therefore key for a farmer to balance out
those effects and keep a fertile soil. The humus building and leaching effects for all

36



3.1. Simulation Environment

Figure 3.3: Crop options from the simulation environment with characteristics used
during simulation.

crop types were obtained from the literature [Kol08a],[FBM20]. They are listed in
Figure 3.3. Additionally, organic fertilization leads to an increase in soil organic
matter and a higher humus ratio which is considered in the calculation of the new
humus value after cultivation. Each created simulation environment starts with
an initial humus ratio common for the respective ground type. If the humus ratio
goes below a certain threshold, the cultivated crops’ yields are negatively affected.
The penalty is more severe the further the actual humus ratio deviates from the
threshold. Detrimental effects on yield are in accordance with literature and are
defined to be most severe at a 70% yield loss [Kol12],[Wie24].

• Ground type and humidity: Different crop types have different ground type and
humidity needs. Some crops are more drought resistant than others; some crops
need heavier soils than others [JC19]. The simulation environment can therefore be
set to one of three ground types (light, medium, heavy) and one of two humidity
settings (dry, humid). Crop yields are adapted depending on the crop’s suitability
to the environment’s ground type. The experiments are run for all combinations
of those settings to determine if some agents perform better in more restrictive
conditions like a light soil und dry weather.
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Additionally, the following effects are included to introduce uncertainty into the envi-
ronment:

• Profit calculation: Instead of optimizing for yields, the environment returns profit
per hectare calculated by multiplying price and yield and subtracting variable and
fixed costs.

• To introduce uncertainty into the environment, yields, prices and costs are sampled
from distributions. The same crop rotation in the same environment can therefore
lead to different profits in each run. This increases complexity for the agents but
represents real life conditions in a more realistic way.

• Yield uncertainty: Average yields for an environment are sampled from normal
distributions representing the crop yields observed in Austria in the previous eight
years [GHL+23]. Those average yields represent a plot of land’s condition for crops
to grow. During each step in an environment, actual yields are sampled again from
a normal distribution using these average yields as a mean and a lower standard
deviation than the one used to sample average yields. This leads to relatively stable
yet partially uncertain yields during the crop rotation sequence.

• Price & cost uncertainty: Prices, variable cost factors and fixed costs are determined
for each crop individually at the creation of an environment by sampling initial
values from distributions representing those parameters for crops in Austria from the
previous eight years [GHL+23]. For each step in the environment, prices, variable
cost factors and fixed costs are simulated with the Geometric Brownian Motion
process method which is commonly used as a simple method to simulate stock
prices and growth scenarios [HB16]. Each price or cost movement is characterized
by its percentage drift µ and its percentage volatility σ. Those parameters are
calculated in the following way for a sequence of n values:

µ = 1
n − 1

n−1
i=1

δi, with δi = xi+1−xi

xi
(3.2)

σ = 1
n − 1

n−1
i=1

(δi − µ) (3.3)

The next simulated value St+1 is calculated as depicted in formula 3.4:

St+1 = St · exp


µ − σ2

2

�
+ σN (0, 1)

�
(3.4)

Average prices, costs and profits from Austria which are used as baseline values are
shown in Figure 3.4. Some crops have a higher profit potential but also represent
higher costs and therefore a higher risk. If the yield is heavily reduced for those
crops, it leads to a high financial loss for the farmer.
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Figure 3.4: Average profits, revenues and costs per hectare for each crop option.

An example for price and cost information as well as nutrient needs for winter wheat in
Austria between 2015 and 2022 can be examined in Figure 3.5. The data was gathered
from the Austrian agricultural profit margin database and the Bavarian agricultural
institute for each individual crop [GHL+23],[KDO+22]. The yellow fields are original
data, the white fields exhibit values calculated from the original data.

Figure 3.5: Price & cost information, nutrient needs and average profit of winter wheat
in Austria between 2015 and 2022 [GHL+23].

The complete simulation process is shown schematically in Figure 3.6. The step function
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receives an action as input. A raw yield value is sampled for the selected crop. Then,
the factors representing soil conditions and potentially violated crop rules are calculated.
The raw yield is multiplied with all factors to obtain the adapted yield. This yield value
is multiplied with the current crop price and current costs are subtracted which results
in the profit. After each step, the soil conditions are updated according to the selected
action and adapted yield. Prices and costs are updated via a Geometric Brownian Motion
process. The flattened matrix representing the last five cultivated crops is updated to
include the newly selected crop. With each step from the environment, the agent receives
a new reward represented by the profit and moves to a new state. State information
contains nutrient levels, the current week in the year, the ground and humidity type,
the humus ratio, variable costs for organic fertilizers, crop prices, fixed sowing and other
costs and the one-hot encoded matrix representing the last five cultivated crops:

state

0-2
3
4
5
6

7-9
10-34
35-58
59-82

93-192

N, P & K levels
Week of year
Ground type
Humidity type
Humus %
N, P & K variable costs
Crop prices
Fixed sowing costs
Fixed other costs
OHE matrix previous 5 crops

dim descrip�on

ac�on samples raw yield

crop suitability factor
crop break factors
crop frequency factors
crop sowing date factor
humus factor
ground type factor
humidity factor

calculates

adapted yield

profitcalculates

GBM simula�on
for cost & price 
development

is mul�plied with

base value for

determine soil condi�ons & week
& update previous crop matrix

Figure 3.6: Single step of simulation environment.

The simulation environment allows the agent to select from 24 different crops as actions.
The range of crops encompasses legumes like clover, alfalfa, peas or soybeans, cereals like
wheat, rye, corn or barley, root crops like potatoes or sugar beet and other crops like
sunflowers or rapeseed. The crops are selected to span a wide range of characteristics
regarding their soil-building effects, water needs, cultivation dates and nutrient needs.
Further information about the crop characteristics can be found in Figure 3.3. To stay
within the scope of a master thesis project, it was decided to not include cover crops in
the simulation. Although an addition of cover crops would lead to further optimization
potential, it would also add more restrictions to the crop rotations as the cultivation
of cover crops would reset the minimum breaks between individual crops and botanical
families.
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3.2. Model Specifications

3.2 Model Specifications
In this chapter, the algorithms and features behind the proposed model are explained.
The simulation environment is used as a training setting for a variety of different RL
models including some or all of those features. The following sections describe the
RL learning algorithms in use and how they are combined with a dynamics model for
model-based RL. It is also explicitly stated how different types of crop rotation rules and
constraints are depicted in an answer set program, how both systems are combined and
why the complete model should perform better than the selection of baselines.

• Deep Q Learning (DQN): The DQN agent was already applied by Fenz et al.
to a less complex simulation environment and is commonly used for discrete action
spaces and large state spaces [FNFW23]. As a type of temporal difference learning,
it predicts the action values of all possible actions with a neural network and learns
from obtained rewards and its own estimations of action values in future states.
The agent makes use of off-policy learning by slowly filling a replay buffer with
experiences made in the simulation environment and learning the model weights
during each step with a sampled batch of former experience from the buffer. The
action selection is performed with an ϵ-greedy policy selecting the action with the
highest action value in most cases and sometimes picking a random action with a
chance ϵ.

• Soft Actor-Critic (SAC): The SAC algorithm is part of the policy gradient
family of algorithms with a probabilistic action selection. It maximizes the entropy-
regularized advantage function during learning and outputs a probability distribu-
tion over the actions, as described in section 2.2.c. The selected action is sampled
from the distribution. As the original SAC algorithm was designed for a continuous
action space, some adaptions needed to be made to the cost functions as proposed
by the literature [Chr19].

The learning algorithms are further adapted by adding variations from the literature that
proved to be beneficial towards sample efficiency and stability. One of those variations is
to add soft updates [MKS+15]. Applying this variation, there is a distinction between
local and target Q networks for the DQN algorithm and between local and target critic
networks for the SAC algorithm. Local networks are trained directly by minimizing the
loss function via gradient descent. The bootstrapped action values Qϕ(St+1) for those
updates are inferred from the target network. After each training step, the target network
weights are updated to be a weighted average of the current target network weights and
the updated local network weights. The weighting factor τ determines the strength of
the update with 0 < τ < 1. Lower values for τ result in a slower alignment between local
and target network weights and make training more stable. Another option to increase
stability is to use double Q-learning instead of only having a single network to predict
Q-values [VHGS16]. In the literature, it is shown that Q-value estimations from single
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estimators are commonly overestimated. By having two networks initialized and trained
separately, the target Q-value can be the minimum of both network’s estimations and
the bias can be reduced. For this project, soft updates for both the DQN and the SAC
agent are used as well as double-Q-learning for the SAC agent. As a result, two local and
two target networks are used by the SAC agent. To improve sample efficiency during
training, agents are not trained directly on the current experience but learn on a batch
of previous experiences gathered in a replay buffer [Lin92]. Experiences saved in this
buffer represent a state St, action a, the received reward r, the next state St+1, and a
flag d signalling if the episode is finished or not. By doing so, the networks can make
use of batch-wise gradient descent. While experiences can be sampled uniformly from
the replay buffer in theory, there is a more efficient method to sample experience called
prioritized experience replay [SQAS15]. Here, state transitions are not sampled
from all experiences uniformly. Experienced transitions with a higher expected learning
effect are sampled with a higher probability. The learning effect is represented by the
temporal difference (TD) error for each sample calculated during the last training step it
was used for. As bias is introduced into the learning process by not sampling uniformly,
the technique is used together with importance sampling to correct for bias. Prioritized
experience replay is affected by two parameters α and β. The sampling probabilities P
are calculated as depicted in formula 3.5 with the priority π representing the last TD
error obtained from using transition i as a target:

P (i) = pα
i�

k pα
k

(3.5)

A higher value for α results in samples with a higher priority being sampled even more
often. The importance sampling weights multiplied with the TD errors during training
on the sampled batch are calculated as depicted in formula 3.6 with N being the current
size of the replay buffer:

wi =
 1

N · P (i)

β

(3.6)

A higher value for β results in a larger bias correction with β = 1 being the maximum.
Both the DQN and the SAC algorithm use prioritized experience replay to train on the
replay buffer. The complete algorithm for the DQN agent representing a full training
run is depicted as pseudo-code in algorithm 3.1:

The Q network parameters are updated with experience from the replay buffer as soon
as there are enough samples to fill a batch with size n. The update function is depicted
in algorithm 3.2:
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Algorithm 3.1: DQN Learning Algorithm with Prioritized Replay and Soft
Updates
1 Initialize ϵ-decay schedule, soft update parameter τ ∈ [0, 1], β-annealing schedule,

Q local network Ql
ϕ, Q target network Qt

ψ, environment dataset Denv, initial
state St

2 for N epochs do
3 Initialize state St

4 Calculate ϵ from ϵ-decay schedule
5 for E steps do
6 Sample random number e uniformly from range [0, 1]
7 if e ≤ ϵ then
8 Select crop at randomly from possible crops
9 end

10 else
11 Select crop at according to the formula at = arg maxa Ql

ϕ(St, a)
12 end
13 Cultivate crop at in simulation environment; Obtain profit r, next state

St+1, and episode finish indicator d; Add full transition (St, at, r, St+1, d)
to Denv with priority p = pmax where pmax is the current highest priority
in Denv

14 Update local Q network parameters ϕ on environment data Denv with
prioritized replay (Algorithm 3.2)

15 Soft-update Q target network parameters: ψ = τϕ + (1 − τ)ψ
16 St = St+1
17 end
18 end

Algorithm 3.2: Update function of DQN learning algorithm with prioritized
replay
1 Calculate β from β-annealing schedule
2 Sample batch with size n from Denv with probability P (i) = pα

i�
k

pα
k

for each
sample i

3 Calculate sampling weight for each sample i: wi = [P (i) · len(Denv)]−β and
normalize the weights w̄i = wi

maxj∈n wj

4 for each sample i with data (St,i, at,i, ri, St+1,i, di) do
5 Calculate Q learning error:

δi = ri + (1 − di)γ maxa Qt
ϕ(St+1,i, a) − Ql

ϕ(St,i, at,i)
6 Update the priority of the sample to be equal to the Q learning error
7 end
8 Calculate loss from Q learning errors: L = 1

n

�n
i (δi · w̄i)2

9 Update local Q network parameters ϕ via gradient descent with loss L
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Here, the parameters α and β are used as described in the previous section. The
bootstrapped action value for the next state is only used for the target function if the
finish indicator di of sample i is not 1. For the SAC agent, the algorithm is similar in
many steps except for action selection and agent update depicted in algorithm 3.3:

Algorithm 3.3: SAC learning algorithm with prioritized replay and soft updates
1 Initialize temperature κ-decay schedule, soft update parameter τ ∈ [0, 1],

β-annealing schedule, local critic networks Ql
ϕ1

and Ql
ϕ2

, target critic networks
Qt

ψ1
and Qt

ψ2
, actor network Γχ, environment dataset Denv

2 for N epochs do
3 Initialize state St

4 Calculate temperature κ from κ-decay schedule
5 for E steps do
6 Sample crop at from probability distribution Γχ(St)
7 Cultivate crop at in simulation environment; Obtain profit r, next state

St+1, and episode finish indicator d; Add full transition (St, at, r, St+1, d)
to Denv with priority p = pmax, where pmax is the current highest priority
in Denv

8 Update local critic network parameters ϕ1 and ϕ2 and actor network
parameters χ on environment data Denv with prioritized replay
(Algorithm 3.4)

9 Soft-update target critic network parameters for both networks:
ψj = τϕj + (1 − τ)ψj for j ∈ {1, 2}

10 St = St+1
11 end
12 end

The update function for the SAC agent is depicted in algorithm 3.4. It proved to be
helpful to avoid importance sampling during the update step. The decay schedules are
dependent on the number of episodes nrun set for the training run. They are defined in
formula 3.7 with n being the current episode number and the other parameters set in
the hyperparameter configuration. The schedule begins with a value close to ιstart and
converges towards ιend with an increasing n.

f (n, ιend, ιstart, nrun) = ιend + (ιstart − ιend)e− n
ιdecay (3.7)

The β-annealing schedule depicted in formula 3.8 is only dependent on hyperparameter
ιrate. The schedule slowly converges to 1 with an increasing episode number n:

f (n, ιrate) = 1 − e−ιrate·n (3.8)
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Algorithm 3.4: Update function of SAC learning algorithm with prioritized
replay
1 Calculate β from β-annealing schedule.
2 Sample batch with size n from Denv with the probability P (i) = pα

i�
k

pα
k

for each
sample i

3 Calculate sampling weight for each sample i: wi = [P (i) · len(Denv)]−β and
normalize the weights w̄i = wi

maxj∈n wj

4 for each sample i with data (St,i, at,i, ri, St+1,i, di) do
5 Calculate soft state values:

ϑi = Γχ(St+1,i)T
�
min


Qt

ψ1
(St+1,i), Qt

ψ2
(St+1,i)


− κ log Γχ(St+1,i)

�
6 Calculate critic learning errors: δi,j = ri + (1 − di)γϑi − Qt

ϕj
(St,i, at,i) for

j ∈ {1, 2}
7 Calculate minimum delta: ∆i,min = min(δi,1, δi,2)
8 Update the priority of the sample to be equal to the minimum delta:

pi = ∆i,min
9 end

10 Calculate critic losses from critic learning errors: LQ,j = 1
n

�n
i (δi,j)2 for j ∈ {1, 2}

11 Update local critic network parameters ϕj via gradient descent with losses LQ,j

for j ∈ {1, 2}
12 Calculate actor loss:

LΓ = 1
n

�n
i Γχ(St+1,i)T

�
κ log Γχ(St,i) − min


Qt

ϕ1
(St,i), Qt

ϕ2
(St,i)

�
13 Update actor network parameters χ via gradient descent with loss LΓ

3.2.1 Model-based Reinforcement Learning

An option to improve sample efficiency is to use model-based reinforcement learning.
The theory behind model-based RL is, that the agent has access to additional experience
simulated by a dynamics model trained to predict the profit and the next state from an
environment state and the crop selected for cultivation. The method implemented for
this project is called Model-based Policy Optimization (MBPO) and was introduced by
Janner et al. in 2019 [JFZL19]. Some adaptions are made to fit the context but the main
features of using an ensemble of neural networks to predict environment dynamics and the
limitation of rollout length are kept. Instead of parametrizing a Gaussian distribution for
each state, an ensemble of Bayesian neural networks (BNNs) is used to predict the target
values directly. This keeps the original idea of probabilistic modelling while allowing a
larger number of input dimensions than the original MBPO algorithm and was already
proposed in 2016 by Gal et al. to improve other Bayesian approaches in model-based RL
[GMR16]. The pseudocode for the model-based training is aligned with the algorithm
developed by Janner et al. and shown in algorithm 3.5 for the SAC agent:
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Algorithm 3.5: Model-Based Policy optimization with Bayesian Neural Net-
works and a SAC learning algorithm
1 Initialize temperature κ-decay schedule, soft update parameter τ ∈ [0, 1],

β-annealing schedule, local critic networks Ql
ϕ1

and Ql
ϕ2

, target critic networks
Qt

ψ1
and Qt

ψ2
, actor network Γχ, environment dataset Denv, ensemble of mdyn

predictive models Λl,ωl
, model dataset Dmodel

2 Create an experience dataset Dpretrain filled with M transitions of experience
obtained from randomly selecting crops filtered by crop rotation rules to
cultivate on the simulation environment

3 Pretrain each model Λl,ωl
on different sampled batches from Dpretrain for

Npretrain steps via gradient descent
4 for N epochs do
5 Initialize state St

6 Calculate κ from κ-decay schedule
7 for E steps do
8 Sample crop at from probability distribution Γχ(St)
9 Cultivate crop at in simulation environment; Obtain profit r, next state

St+1, and episode finish indicator d; Add full transition (St, at, r, St+1, d)
to Denv with priority p = pmax, where pmax is the current highest priority
in Denv

10 Update local critic network parameters ϕ1 and ϕ2 and actor network
parameters χ on environment data Denv with prioritized replay

11 Soft-update target critic network parameters: ψj = τϕj + (1 − τ)ψj for
j ∈ {1, 2}

12 Train each model Λl,ωl
on different sampled batches from Denv for N steps

via gradient descent
13 for M model rollouts do
14 Sample st uniformly from Denv

15 Perform k-step model rollout starting from st using crop selection from
actor network Γχ and a randomly selected dynamics model Λl,ωl

for
each step; add the obtained experience to Dmodel

16 end
17 for X training steps do
18 Update local critic network parameters ϕ1 and ϕ2 and actor network

parameters χ on model data Dmodel without prioritized replay
19 Soft-update target critic network parameters: ψj = τϕj + (1 − τ)ψj for

j ∈ {1, 2}
20 end
21 St = St+1
22 end
23 end
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The update function of the SAC agent when training on model data does not use
prioritized replay and works similarly otherwise. The variant with the DQN agent differs
in step 8 and 15 where action-selection is ϵ-greedy and in step 10 and 18 where only
the action-value function is updated instead of actor and critic. By using an ensemble
of dynamics models and training them with different bootstrapped samples from Denv,
epistemic uncertainty can be modelled. The aleatoric uncertainty is represented by the
probabilistic nature of BNNs that are used as dynamics models. Although agents training
on actual experience make use of prioritized experience replay, experience from the
model memory Dmodel is sampled uniformly to make sure that high loss samples are not
prioritized. This avoids that inferred transitions far from reality are not weighted more
heavily due to the high divergence between the agent prediction and the simulated target.
As it is realistic to assume that experience from the target field and neighbouring fields
as well as characteristics and knowledge from the literature were already gathered before
training an agent on a new field, the dynamics models used during the experiments are
pretrained on experience from 500 10-step episodes simulated on the same environment
with random actions filtered by crop rotation rules. Those experiences represent previous
years of cultivation from the region without the use of a decision support system but
farmer’s knowledge about crop rotation rules from the literature.

3.2.2 Symbolic Planning

Another feature of the proposed hybrid model is to use symbolic planning to reduce the
number of viable crop options the agent can select from. The planning step used for the
models could therefore also be seen as a filtering mechanism. The filter determines from
the current state which crops would be suitable to cultivate without breaking any crop
rotation rules or other restrictions. The filtering query is written in the syntax of the
answer set solving framework clingo [GKK+11]. It checks if any minimum crop breaks or
maximum frequencies would be violated by cultivating a crop, if there is enough time
to sow the crop and if the humus ratio in the soil after cultivation is higher than the
minimum threshold. As a result, all viable crops are returned. The following examples in
table 3.1 show how information from crop rotation rules is depicted in the clingo syntax.
Information about crop properties, maximum frequencies and minimum breaks is defined
as facts. The current state is encoded into facts as well. The filtering rules are defined as
rules. The actual code can be found in the accompanying GitHub repository [Wag23].

During action selection, the possible actions for the agent are filtered by this method
with a chance represented by parameter λ. λ decreases over time during training to
allow more experienced agents to perform more exploration. If no possible actions are
found after filtering, the agent selects an action without the filter. Aside from the action
selection step, the filtering is used during the agent update step. For the DQN agent, the
target value for the update is the sum of the reward and the discounted action-value of
the greedy action for the next state. Instead of simply using the greedy action, the greedy
action after filtering is used to calculate the action-value for the next state. Algorithm 3.6
describes a training run for hybrid DQN agents with symbolic planning. The difference
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Table 3.1: Description of clingo syntax used to represent crop rotation rules.
Type Natural language description Clingo syntax
General Facts
Static Fact There are 24 different crops to select from. action(0..23).
Static Fact The last 5 years are defined as timestamps. previous_time(-5..-1).
Static Fact The humus equivalent property of crop 0 (clover grass) has value 1300. property(0, humus_equivalent, 1300).
Static Fact Crop 0 has a minimum crop break of 2 years. cropbreak(0, single, -1).

cropbreak(0, single, -2).
Static Fact The botanical groups for maximum frequencies (MF) are “ge”, “geohne-

maishaferhirse”, “weizentriticale”.
mfgroup((ge;geohnemaishaferhirse;weizentriticale)).

Static Fact Crop 10 is in the MF groups “ge”, “geohnemaishaferhirse” and “weizen-
triticale”.

crop_mfgroups(10,
(ge;geohnemaishaferhirse;weizentriticale)).

Static Fact MF Group “weizentriticale” contains crops 6, 7, 8 & 10. mf_group_block(weizentriticale, (6;7;8;10), -3..-1).
The range for the MF group “weizentriticale” spans the last 3 years.

Static Fact The maximum number of crops from the MF group “weizentriticale”
cultivated in the time range of the MF group is 1.

mf_group_block_max_count(weizentriticale, 1).

Static Fact Crop 0 is in the crop break (AP) groups “blatt”,”fl”,”l”. apgroups(0, (blatt;fl;l)).
Static Fact AP Group “fl” contains crops 0 & 1. ap_group_block(fl, (0;1), -5..-1).

The minimum break for the AP group “fl” is the last 5 years.
Facts from the current state
Dynamic
Fact

The current week is week 20. week_info(20).

Dynamic
Fact

The ground type is 0 (medium). ground_type_info(0).

Dynamic
Fact

The humidity type is 0 (dry). drywet_info(0).

Dynamic
Fact

The current humus equivalent soil ratio is 2570. The humus equivalent
minimum threshold is 2000.

humus_info(2570,2000).

Dynamic
Fact

Crop 0 was cultivated three years ago. previous_actions_info(-3,0)

Minimum crop break filtering
Static Rule If a crop A was planted during the time range of its individual crop

break, it is “blocked_by_previous”.
blocked_by_previous(A) :- action(A),
previous_actions_info(X,A), cropbreak(A, single, X).

Static Rule If a crop A is in any AP group APG and was planted during the time
range of the crop break of APG, it is “blocked_by_ap_group”.

blocked_by_ap_group(A) :- apgroups(A,APG),
previous_actions_info(X,Y), ap_group_block(APG, Y, X).

Maximum frequency group filtering
Static Rule If a crop A is in the MF group MFG and was planted at time Y within

the time range of MFG, the group block of MFG at time Y is active.
mf_group_block_active(MFG, Y) :-
mf_group_block(MFG, A, Y), previous_actions_info(Y,A).

Static Rule The count of MF group MFG is equal to the number of active group
blocks of MFG.

count_mf_group(MFG, C) :- C = #count {Y :
mf_group_block_active(MFG, Y)}, mfgroup(MFG).

Static Rule Any crop A is blocked by an MF group MFG if the count C of the MF
group is equal or higher than the maximum count of the MF group. Any
crop A is generally “blocked_by_mf_group” if it is blocked by at least
one MF group.

blocked_by_mf_group(A) :- action(A), crop_mfgroups(A,
MFG), count_mf_group(MFG, C),
mf_group_block_max_count(MFG, MC), C+1 > MC.

Property filters
Static Rule Any crop A is “blocked_by_week” if it is a winter crop and its latest

sowing week is equal or smaller than the current week.
blocked_by_week(A) :- action(A), property(A,
latest_sowing, LS), week_info(W), W > LS-1, property(A,
summercrop, SC), SC == 0.

Static Rule Any crop A is “blocked_by_humus” if its humus equivalent HE is smaller
than 0 and the sum of HE and the current humus equivalent ratio HL is
smaller or equal than the humus equivalent minimum threshold.

blocked_by_humus(A) :- action(A), property(A,
humus_equivalent, HE), humus_info(HL, HML), HL+HE
<= HML, HE<0.

Action filtering rule
Static Rule Any crop A is a solution candidate if it is not “blocked_by_previous”,

not “blocked_by_ap_group”, not “blocked_by_mf_group”, not
“blocked_by_week” and not “blocked_by_humus”.

immediate_candidate(A) :- action(A), not
blocked_by_previous(A), not blocked_by_ap_group(A),
not blocked_by_mf_group(A), not blocked_by_week(A),
not blocked_by_humus(A).
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to DQN agents without symbolic planning is marked in bold.

Algorithm 3.6: DQN Learning Algorithm with Symbolic Planning, Prioritized
Replay and Soft Updates
1 Initialize ϵ-decay schedule, λ-decay schedule; soft update parameter τ ∈ [0, 1],

β-annealing schedule; Q local network Ql
ϕ, Q target network Qt

ψ, environment
dataset Denv

2 for N epochs do
3 Initialize state St

4 Calculate ϵ from ϵ-decay schedule; Calculate λ from λ-decay schedule
5 for E steps do
6 Sample random numbers e and l uniformly from range [0, 1]
7 if l ≤ λ then
8 A′ = A, with A as the action space spanning all possible crops
9 end

10 else
11 Filter action space A with the symbolic planner to receive a

subset A′.
12 end
13 if e ≤ ϵ then
14 Select crop at randomly from A′.
15 end
16 else
17 Select crop at according to the formula at = arg maxa∈A′ Ql

ϕ(St, a)
18 end
19 Cultivate crop at in simulation environment; Obtain profit r, next state

St+1 and episode finish indicator d; Add full transition (St, at, r, St+1, d)
to Denv with priority pi = pmax where pmax is the current highest
priority in Denv

20 Update local Q network parameters ϕ on environment data Denv

with prioritized replay (Algorithm 3.7)
21 Soft-update Q target network parameters ψ = τϕ + (1 − τ)ψ
22 St = St+1
23 end
24 end

The update function is adapted as shown in algorithm 3.7.

A similar approach is carried out for the SAC agent. Action selection is restricted by the
filter too. Actions that are filtered out by the answer set solver are assigned probabilities
of 0 in the modified policy. During critic updates, the soft state-values are calculated
with the adapted policy π′ (St+1,i) as shown in algorithm 3.8.
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3. Experiment Design

Algorithm 3.7: Update function of DQN learning algorithm with symbolic
planning and prioritized replay
1 Calculate β from β-annealing schedule
2 Sample batch with size n from Denv with probability P (i) = pα

i�
k

pα
k

for each
sample i

3 Calculate sampling weight for each sample i: wi = [P (i) · len(Denv)]−β and
normalize the weights w̄i = wi

maxj∈n wj

4 for each sample i with data (St,i, at,i, ri, St+1,i, di) do
5 Filter action space A with the symbolic planner based on next state

St+1,i to receive a subset A′

6 Calculate Q learning error:
δi = ri + (1 − di)γmaxa∈A′ Qt

ϕ(St+1,i, a) − Ql
ϕ(St,i, at,i)

7 Update the priority of the sample to be equal to the Q learning error
8 end
9 Calculate loss from Q learning errors: L = 1

n

�n
i (δi · w̄i)2

10 Update local Q network parameters ϕ via gradient descent with loss L

Algorithm 3.8: Update function of SAC learning algorithm with symbolic
planning and prioritized replay
1 Calculate β from β-annealing schedule.
2 Sample batch with size n from Denv with the probability P (i) = pα

i�
k

pα
k

for each
sample i

3 Calculate sampling weight for each sample i: wi = [P (i) · len(Denv)]−β and
normalize the weights w̄i = wi

maxj∈n wj

4 for each sample i with data (St,i, at,i, ri, St+1,i, di) do
5 Filter action space A with the symbolic planner based on next state

St+1,i to receive a subset A′

6 Calculate crop probabilities for next state π(St+1,i) = Γχ(St+1,i); set
the probability of each crop not in A′ to 0 to obtain π′(St+1,i);
normalize π′ (St+1,i) = π′(St+1,i)�m

k
π′

k
(St+1,i)

with m being the number of
crops

7 Calculate soft state values:
ϑi = π′(St+1,i)T

�
min


Qt

ψ1
(St+1,i), Qt

ψ2
(St+1,i)


− κ log

�
π′(St+1,i)

	�
8 Calculate critic learning errors: δi,j = ri + (1 − di)γϑi − Qt

ϕj
(St+1,i, at,i) for

j ∈ {1, 2}
9 Calculate minimum delta: ∆i,min = min(δi,1, δi,2)

10 Update the priority of the sample to be equal to the minimum delta:
pi = ∆i,min

11 end
12 Calculate critic losses from critic learning errors: LQ,j = 1

n

�n
i (δi,j)2 for j ∈ {1, 2}

13 Update local critic network parameters ϕj via gradient descent with losses LQ,j

for j ∈ {1, 2}
14 Calculate actor loss:

LΓ = 1
n

�n
i Γχ(St+1,i)T

�
κ log Γχ(St,i) − min


Qt

ϕ1
(St,i), Qt

ϕ2
(St,i)

�
15 Update actor network parameters χ via gradient descent with loss LΓ
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3.2.3 Neighbour experiments
As it would be common to exchange information about suitable crops with your neighbours
or even share experience and data about previously cultivated crops, it is examined if an
agent can learn from experience obtained from neighbouring fields to improve sample
efficiency further. Another use case would be a farmer with more than one plot of land.
To evaluate this research question, it is assumed that neighbouring plots of land have
similar soil and humidity conditions and the average yields obtained from cultivated
crops are alike as well. To simulate differences between different plots of land, the average
yields of the neighbouring fields are adapted as depicted in formula 3.9:

µnb = N (µorig, (1 − ρnb) · σorig) , 0.5 < ρ < 0.99 (3.9)

This results in sampled yields from neighbouring environments with a higher similarity ρ
to the target environment to be closer in their distribution to the target environment’s
yield distribution than neighbouring environments with a lower similarity. Experience
is generated by creating neighbour environments with random similarities to the target
environment and then simulating 10-year long crop sequences on those neighbouring
environments until a replay buffer with 5000 experienced transitions is filled. Actions are
selected randomly from the action space filtered by the answer set solver to represent
action selection by a farmer with knowledge in crop rotation rules. The obtained
transitions are saved into a prioritized replay buffer with the similarity ρnb as the priority.
This leads to experience from more similar neighbour environments to be sampled more
often and to be weighted more heavily in the calculation of the actor and critic losses.
Agent updates from neighbour experience are carried out after each normal training step
to stabilize learning. As it is also realistic to assume that experience from neighbouring
fields was already gathered before training an agent on a new field, the experience is used
to pretrain the agents too before they start training on the actual environment. The
full training run algorithm in pseudo-code is depicted in algorithm 3.9, the neighbour
experience filling step in algorithm 3.10 and the update function from the neighbour
experience buffer in algorithm 3.11.
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Algorithm 3.9: SAC learning algorithm with prioritized replay, soft updates,
and neighbor experience
1 Initialize temperature κ-decay schedule, soft update parameter τ ∈ [0, 1],

β-annealing schedule; local critic networks Ql
ϕ1

and Ql
ϕ2

, target critic networks
Qt

ψ1
and Qt

ψ2
, actor network Γχ, environment dataset Denv, neighbor experience

dataset Dneighbor

2 Fill neighbor experience buffer Dneighbor with experience (Algorithm 3.10)
3 for Nnb_training training steps do
4 Update local critic network parameters ϕ1 and ϕ2 and actor

network parameters χ on neighbor experience data Dneighbor with
prioritized replay

5 end
6 for N epochs do
7 Initialize state St

8 Calculate κ from κ-decay schedule
9 for E steps do

10 Sample crop at from probability distribution Γχ(St)
11 Cultivate crop at in simulation environment; Obtain profit r, next state

St+1, and episode finish indicator d; Add full transition (St, at, r, St+1, d)
to Denv with priority pi = pmax, where pmax is the current highest
priority in Denv

12 Update local critic network parameters ϕ1 and ϕ2 and actor network
parameters χ on environment data Denv with prioritized replay
(Algorithm 3.11)

13 Update local critic network parameters ϕ1 and ϕ2 and actor
network parameters χ on neighbor experience data Dneighbor

with prioritized replay
14 Soft-update target critic network parameters ψj = τϕj + (1 − τ)ψj with

j ∈ {1, 2}
15 St = St+1
16 end
17 end
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3.2. Model Specifications

Algorithm 3.10: Neighbour experience filling step
1 for i in range(Nneighbours) do
2 Create a copy NBE of the simulation environment with average crop yields

µorig

3 Sample random number ρnb uniformly from range [0.5, 0.99]
4 Determine new average yields for each crop k in NBE:

µnb,k = N (µorig,k, (1 − ρnb) · σorig,k)
5 Initialize state St in NBE
6 for E steps do
7 Filter action space A with the symbolic planner to receive a subset A′

8 Select crop at randomly from A′

9 Cultivate crop at in NBE; Obtain profit r, next state St+1, and episode
finish indicator d

10 Add full transition (St, at, r, St+1, d) to Dneighbour with priority pi = ρnb

St = St+1
11 end
12 end

Algorithm 3.11: Update function of SAC learning algorithm with prioritized
replay from neighbour experience buffer
1 Sample batch with size n from Dneighbour with the probability P (i) = pα

i�
k

pα
k

for
each sample i

2 for each sample i with data (St,i, at,i, ri, St+1,i, di) do
3 Calculate soft state values:

ϑi = Γχ(St+1,i)T
�
min


Qt

ψ1
(St+1,i), Qt

ψ2
(St+1,i)


− κ log Γχ(St+1,i)

�
4 Calculate critic learning errors: δi,j = ri + (1 − di)γϑi − Qt

ϕj
(St+1,i, at,i) for

j ∈ {1, 2}
5 end
6 Calculate critic losses from critic learning errors: LQ,j = 1

n

�n
i (δi,j · P (i))2 for

j ∈ {1, 2}
7 Update local critic network parameters ϕj via gradient descent with losses LQ,j

for j ∈ {1, 2}
8 Calculate actor loss:

LΓ = 1
n

�n
i P (i) · Γχ(St+1,i)T

�
κ log Γχ(St,i) − min


Qt

ϕ1
(St,i), Qt

ϕ2
(St,i)

�
9 Update actor network parameters χ via gradient descent with loss LΓ

In summary, the agent training process is depicted in Figure 3.7. The state St is fed into
the RL agent and the automated planner. The planner also receives a list of constraints c
to adhere to. The RL agent infers a probabilistic policy π for this state. The automated
planner identifies actions which would violate constraints and filters them out of the
restricted action space A′. The restricted actions are penalized in the policy to result in
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an adapted policy π′. During simulation, an action at is sampled from the adapted policy.
The environment returns a reward r and a new state St+1. The full transition including
previous state, selected action, reward, next state and filtered action space is added to
the replay buffer. Additionally, the previous state St, the selected action at, the next
state St+1 and the reward r are used to update the dynamics model of the environment.
With the help of the hybrid model for action selection, the dynamics model can plan
for k-length predicted trajectories and fill the model experience buffer. The RL agent is
updated by training on experience batches from the real experience buffer, the model
experience buffer and the neighbour experience buffer.

Hybrid Model

RL agent

Symbolic 
Planner

(Simulated)
EnvironmentPolicy Adapted

Policy
Selected
Ac�on

Reward Next State

State

Rules

Dynamics 
Model

Experience Buffer

Filtered
ac�on space

Predicted 
Reward

Predicted
Next State

Model Experience Buffer

Neighbour Experience Buffer

δ
Update

Figure 3.7: Schematic representation of the hybrid model selecting crops and receiving
updates.

3.3 Evaluation
To evaluate the proposed models and answer the research questions, several experimental
setups need to be tested. The first research question is about comparing performance
between different model specifications. Performance can be measured in many ways for RL
agents, as was presented in Section 2.2.5. A performance profile made from a set of different
performance measures gives insight under which circumstances models perform better or
worse and which models are most suitable under real life conditions. The model trainings
are run for 180 episodes with each model setting. The hyperparameters for evaluation
are determined by running an optuna hyperparameter optimization pipeline for 1 hour
with model-free and for 2 hours with model-based agents (due to a longer computation
time). The pipelines are trained for 90 episodes in each run and new hyperparameter
settings are tested until the time limit is reached. The optimal hyperparameters can be
observed in Figure 3.8.

After hyperparameter optimization, training performance evaluation is carried out with
the best hyperparameter configuration for 20 different seeds per agent type in the same
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3.3. Evaluation

Figure 3.8: Optimal hyperparameter configurations for all model settings.

environment setting with the same ground type and humidity and allows for a robust
significance testing as proposed by Colas et al [CSO18]. Additionally, each model setting
is trained for 900 episodes on 5 different seeds and a single environment setting to see if
they converge to an even higher average performance when being trained for much longer.
All model settings are compared against random action selection and filtered random
action selection to observe the impact of training RL agents instead of only following a
simple rule-based approach or not following any rules at all. The performance measures
selected for analysing training performance are the following:

• Mean episodic profit: Main performance measurement.

• Conditional Value at Risk (CvaR): Average value of the lowest 30% quantile
of total profits to analyse risk when training this model setting.

• Normalized interquartile range (IQR) of performance: Indicator of relative
profit/performance variance during and across training runs.

The mean episodic profit is additionally summed up to obtain the cumulative profit.
The performance is averaged over all runs with the same agent type. The CVaR is
only calculated for the cumulative profit over runs to compare between average runs
and the worst 30% of runs. The interquartile range of performance is calculated for
low-pass-filtered profits across runs according to the proposed evaluation of reliability
by Chan et al. (2019) [CFC+19]. By using a low-pass filter before calculating the IQR,
the effect of intra-run variance is reduced. The low-pass filter in use is calculated in the
following way with ri being the total profit of episode i. The parameter η is set to 0.05
to achieve a strong intra-run variance reduction without losing too much information.
The calculation of the low-pass-filtered reward is depicted in formulas 3.10 and 3.11.

ri = αri−1 + β(ri − ri−1) (3.10)

α = (2 − η)
(2 + η) , β = η

(2 + η) (3.11)
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The second reliability measure proposed by them is to calculate the IQR for detrended
performance during runs. Detrending is carried out by calculating the difference between
one episode’s profit and the next as depicted in formula 3.12.

∆i = ri − ri−1 (3.12)

Afterwards, the interquartile range of detrended performance over a time window of 15
episodes in each run is calculated. Both the IQR across and the IQR during runs are
normalized by dividing them by the 95th percentile of total profits. This is done to ensure
that only variance relative to the total profit is compared as a higher absolute fluctuation
is expected if agents demonstrate a higher performance. The described measures are
compared visually to evaluate trends in model performance. Additionally, mean values
and distributions for the following episode ranges are obtained via bootstrap sampling.

• First 20 episodes: Indicators on how well and stable an agent learns without
much experience.

• Last 30 episodes: Indicators on how well the algorithm converges towards viable
and stable policies in later stages of training.

• Total run: Indicators for overall performance and reliability.

By sampling from the original runs with replacement, it is possible to generate confidence
intervals for the obtained metrics. The number of bootstrap samples is 50.000 for each
agent type. The interquartile range across runs is calculated over each sample of runs
individually. To analyse the significance in metric differences, permutation tests are
used [Goo13]: All tests between the mean values of two different agent types are run by
setting the mean difference of their metrics across all runs as a threshold. Then, the
metrics from each run of both agent types are concatenated, permuted and split in half
to obtain samples under the null hypothesis that the per-run metrics from both agent
types stem from the same distribution. This is repeated 1000 times and the number
of permuted mean differences more extreme in the target direction than the previously
set threshold is counted. Dividing this number by 1000 results in the p-value for the
hypothesis test. P-values smaller than 0.05 are interpreted as significant, values smaller
than 0.01 are interpreted as highly significant. For the IQR across runs, a variant of
this test is used with the IQRs being calculated after the permutation and splitting
step. Another relevant evaluation is to test how well the agents perform when being
pretrained on one environment and then being deployed on another environment. To
test this, agents pretrained for 180 episodes on one environment are run on 5 other
environments for 90 episodes each. Performance measures for these tests are again mean
profit, conditional value at risk and the normalized interquartile profit range during and
across runs. Results from this evaluation show which agent types are most suitable for
pretraining agents that can be used on other environments. A last step during evaluation
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is to test how diverse crop selection is under different model settings. This evaluation is
used to answer research question 2. Crop diversity is measured as the Shannon entropy
over all selected actions during training. It is evaluated across full training runs and for
the first 20 and last 30 episodes.
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CHAPTER 4
Results & Discussion

In the following section, the outcomes of the study are presented. At first, an individual
training run is examined in detail and it is shown how the proposed model architecture
fares when compared against a fixed crop rotation suitable for the environment. Then,
agent performance is compared for all agent types and subsequently discussed regarding
the research questions. Plausible explanations for the observed results are theorized.

4.1 Detailed examination of individual training runs
At first, we examine a single training run of the proposed hybrid model to understand
the level of profit variance the agent must deal with while learning a beneficial policy. In
Figure 4.1, it can be observed how the agent slowly improves after the first 30 episodes
and rather consistently outperforms the random action selection across the whole training
run. All episode results after episode 35 exhibit an at least positive total reward. The
batch size for all experiments was set to 256. As the agents do not train before having
enough experience in the buffer to fill one batch, the actual learning and policy updating
only starts after episode 25. On the right side of Figure 4.1, the episodic profits from
applying the same crop sequence in every episode can be observed. The crop sequence
in use was obtained by running a complete training run for 500 episodes on the same
environment and then finding the crop sequence resulting in the highest episodic profit.
The sequence in use cultivated the following crops in order: potato, sugar beet, grass,
potato, grass, potato, sugar beet, potato, grass, potato. Although the fixed crop sequence
policy regularly exhibits high episodic profits in our simulation environment, it does not
adapt its crop selection to different prices and costs and might have issues in real market
conditions. This would in this example be the case if the market price for potatoes and
sugar beet decreases significantly.

When examining individual episodes of the SAC agent with symbolic planning and
neighbour experience closer in Figures 4.2, 4.3 and 4.4, a more detailed image of agent
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Figure 4.1: Left: Single training run of SAC agent using symbolic planning and neighbour
experience in an example environment with a medium ground type and wet conditions
when compared to random action selection. Right: Performance comparison of selecting
the same crop sequence in each training episode against random crop selection. The crop
sequence in use was the one with the highest profit in a training run over 500 episodes
with the same agent in the same environment.

behaviour appears. During both episodes, the agent starts by cultivating cash crops like
winter wheat, potato or sugar beet. Crop rotation rules are generally adhered to, which
might be either due to the action filtering mechanism of the symbolic planner or the
agent already having learned not to break crop rotation rules due to reduced yields. In
episode 135, the agent however violates the minimum break rule to cultivate potatoes
twice in year 1 and year 4 and then again in year 6 and year 8. The resulting profits are
high which justifies the behaviour economically.
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Figure 4.2: Left: Individual profits during episode 135 of the example environment. Right:
Individual profits during episode 136 of the example environment.

In both episodes, a sequence of cash crops lowering the humus soil ratio is followed by
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4.1. Detailed examination of individual training runs

Figure 4.3: Individual crops’ profits, week of year, nitrogen level and humus ratio after
cultivation as well as reduction factors obtained from the simulation environment after
cultivating the crops in episode 135 of the example environment.

Figure 4.4: Individual crops’ profits, week of year, nitrogen level and humus ratio after
cultivation as well as reduction factors obtained from the simulation environment after
cultivating the crops in episode 136 of the example environment.

cultivating grass as an intermediate crop not affecting any minimum breaks but instead
building up the soil humus ratio. Immediately after grass cultivation, another cash crop
is planted in episode 135 whereas soybeans are cultivated in episode 136 which have a
positive effect on the humus soil ratio and improve the yield of the following sugar beet
cultivation. Both example episodes show a general trend towards cultivating the main
cash crops sugar beet and potato and then cultivating crops from other botanical families
until the cash crops can be cultivated again without violating minimum crop breaks.
While the behaviour follows a similar pattern in both episodes, the total episodic profit is
different. A reason for that might be that the available cash crops have lower prices over
many time steps in episode 136 and the complete episode has a lower profit potential
overall. This theory is underlined by examples like year 2 in episode 136 where the profit
from potato cultivation is rather low even though the yield factor is high with a value
close to 1.3. This is in contrast to year 8 of episode 135 where the profit is about 500
€/ha higher even though the yield factor is as low as 0.76.

While these examples help to understand how agents might behave during episodes,
it is necessary to aggregate average performance and reliability metrics across runs to
observe general trends. In Figure 4.5, the mean episodic training rewards of the SAC
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agent with symbolic planning and neighbour experience is compared to random crop
selection and the best crop sequences obtained from the first 5, 10, 20, 50, 100 and 500
training episodes. It is apparent that the agent only finds crop sequence highly suitable
for the environment after enough training time. Only after about 150 episodes, the SAC
agent does not improve anymore. It then exhibits equal mean rewards as the best crop
sequence obtained after 100 episodes and clearly outperforms sequences obtained from
earlier points during the training run. By only focusing on fixed crop sequences during
farming, a huge learning potential would therefore be dismissed.
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Figure 4.5: Mean training rewards across 20 different runs for the SAC agent with
symbolic planning and neighbour experience when compared to random crop selection
and the best crop rotation sequences obtained from the first 5, 10, 20, 50, 100 and 500
episodes.

4.2 General comparison of different agent types
In Figure 4.6, the bootstrapped sample distribution of mean total profits after 180
episodes are shown for different agent types. As an example, all hybrid agents using
a symbolic planner (suffix “symbolic”) show a consistently better mean cumulative
performance after 180 episodes than their non-symbolic counterparts. When taking a
look at the mean cumulative profits plotted against the episode numbers in Figure 4.7, it
is noticeable that hybrid agents using a symbolic filtering mechanism gain a head start
by immediately performing well from the start whereas RL agents without symbolic
planning need more episodes to find actions resulting in higher profits. A possible
explanation is the restricted exploration ability of hybrid agents. While non-symbolic
RL agents without any experience try out highly unsuitable actions, the hybrid agents
have a higher probability to immediately find rewarding actions and receive a positive
reinforcement from them. Additionally, agent updates during training are more efficient
as the bootstrapped action-values for the next states only include actions following crop
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4.2. General comparison of different agent types

rotation rules. Due to that, those values become more precise in earlier episodes of
the training run as the actions from the filtered action space are sampled more often.
Furthermore, a negative bias from the bootstrapped action values during early training
is avoided for the SAC agents when unsuitable actions might still have a high probability
to be selected. The highest difference in mean cumulative profits is observed between
symbolic and non-symbolic model-based RL agents. The non-symbolic model-based
versions do not seem to learn at all with the SAC agent performing just as bad as random
action selection and the model-based DQN agent performing even worse. This effect
could stem from the dynamics model learning from state transitions with a high ratio of
badly performing early training episodes. Due to the low number of experiences with
high profits in the training batches, the dynamics model possibly does not generalize well
for suitable state-action pairs. This could result in the agents only receiving negative
reinforcement and getting stuck in local optima. Additionally, it might be hard to find
a suitable hyperparameter configuration for those agent types and the time limit of
two hours resulted in a non-performing configuration. In contrast, the action filtering
mechanism of the hybrid models allows the dynamics models to train on more transitions
with high profits which might lead to a better precision when predicting beneficial
state-action pairs.
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Figure 4.6: Bootstrapped distribution of mean total profits after 180 episodes across
training runs.
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Figure 4.7: Mean cumulative profits across training runs for all agent types.
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Figure 4.8: Mean bootstrapped total profits across runs for all agent types (left) and
significance indicators for pair-wise performance differences of mean bootstrapped total
profits across runs for all agent types (right). Dark green symbolizes that the agent from
the row has a highly significantly better performance than the agent from the column
with a p-value < 0.01. Light green marks a significant positive difference with a p-value
smaller than 0.05. Dark and light red fields represent the mirrored relationship and are
included to make the plot easier to read. Grey fields mark two agents which were not
significantly different in performance during the permutation test.

It is necessary to check the visual results for statistically significant differences. In Figure
4.8, the mean bootstrapped total profits across runs including their confidence intervals
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4.2. General comparison of different agent types

are shown for all agent types. The significant differences in mean total profits between
two agents are marked in the right chart. In the context of comparing symbolic to
non-symbolic agents, it can be observed that all symbolic agents perform better with a
highly significant difference than their non-symbolic counterparts.

Examining the CVaR cumulative profits in Figure 4.9, a similar image appears. The
mean cumulative profits for the lowest 30% quantile are lower than the mean cumulative
profits across all runs but the relative differences between different agent types stay alike.
This shows that most agents exhibit a stable performance across runs. Runs with a lower
cumulative reward might additionally be affected by lower prices and higher costs even
though the agents still select the best possible actions.
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Figure 4.9: CVaR of cumulative profits across training runs for all agent types.

To illuminate this more precisely, we examine the cumulative performance over 900
episodes in Figure 4.10. Over a longer period, the performance of most agents remains
stable. Within the DQN-based agents, the model-free symbolic agent and the model-
free non-symbolic agent gradually improve performance. This results in the model-free
non-symbolic agent to overtake the model-based symbolic agent and the symbolic agent
using neighbour updates after about 500 episodes. The theory behind is that model-free
algorithms are less stabilized by neighbour updates or the dynamics model generalizing
for unseen transitions. While this instability is adverse in the early stage of training, it is
useful much later when other algorithms already converged to a stable but not necessarily
optimal policy.

In Figure 4.11, the mean profits over the first 20 episodes across runs are shown with
significance indicators for pairwise performance differences obtained by permutation
tests. The variance across bootstrap samples is relatively low which is confirmed by the
significance indicators. In general, agents learning fast and stable, which includes most
symbolic agents, perform well over the first 20 episodes and show significant performance
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Figure 4.10: Mean cumulative profits across runs for all agent types over 900 episodes.

differences to agents not picking up good policies fast. Symbolic model-free agents seem to
converge more slowly to good performances than agent types using neighbour experience
or a pretrained dynamics model. Many agents in the middle of the field do not show any
significant differences in performance towards each other over the early episodes. Some
outliers like the three non-symbolic DQN agents perform particularly bad which shows
that the DQN algorithm has trouble finding suitable actions early without any external
guidance.
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Figure 4.11: Mean bootstrapped profits over the first 20 episodes across runs and
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over the first 20 episodes across runs for all agent types.
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4.2. General comparison of different agent types

Over the last 30 episodes of the training runs, this image changes, as depicted in Figure
4.12. The non-symbolic DQN agents (with the model-based variant as an exception)
picked up a viable strategy and were able to perform better than their non-symbolic
SAC counterparts. In the top of the field, the symbolic SAC agents showed a similar and
significantly better performance than all other agent types with symbolic DQN agents
right behind. Non-symbolic agents in general were significantly worse than symbolic
agents in mean performance over the last 30 episodes of training runs.
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Figure 4.12: Mean bootstrapped profits over the last 30 episodes across runs and
significance indicators for pair-wise performance differences of mean bootstrapped profits
over the last 30 episodes across runs for all agent types.

Regarding the reliability of agents, no obvious trends between different agent types
can be observed. Agents that generally perform badly seem to have a slightly higher
normalized IQR of performance across runs, which can be observed in Figure 4.13 and
Figure 4.14. A reason might be that most of those agents’ training runs are stuck in a
cycle of only selecting the same action for each step in an episode. As some actions lead
to higher costs on average while others represent lower costs, the range of performance
across runs is higher than for agents, which select the most suitable actions for each run
and find optimized crop rotation sequences for their respective environments. Similarly,
agents performing badly have slightly higher normalized IQRs of performance during
runs depicted in Figure 4.15 and Figure 4.16. This could be the result of agents not
reacting to different prices and costs which vary during and across episodes. A general
baseline of variance between and during runs will also be the result of varying prices
and costs for different crop types which represents a realistic scenario in real life. Well
performing agents can guarantee a suitable crop selection even if exogenous conditions are
not optimal. This behaviour is demonstrated by many of the symbolic agents. Another
insight gained by visualizing the normalized IQRs of performance across runs is that all
agent types show a higher performance variance across runs during the early episodes of
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training. It shows that agents become more stable after several episodes of training and
converge to stable and similar performances across runs in the long term.
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Figure 4.13: Mean normalized low-pass-filtered IQR of training rewards across runs for
all DQN-based agents.
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Figure 4.15: Mean normalized IQR within windows of detrended training rewards during
runs for all DQN-based agents.
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Figure 4.16: Mean normalized IQR within windows of detrended training rewards during
runs for all SAC-based agents.

The results depicted in the previous plots were obtained from environments with a
medium ground type and a high humidity. Other settings should result in the agents
selecting different crops more suitable to the changed environment. A comparison of
applying random action selection to environments with different soil types and humidity
is shown in Figure 4.17. The highest profits are obtained within humid environments and
heavy soils. Dry environments generally have a lower expected yield and therefore perform
worse. In Figure 4.18, the performance curves for agents training on an environment
with bad conditions with a light soil and low humidity can be examined. The relative
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differences between the mean total profits of the agents are similar to training on better
environmental conditions with the exception that all non-symbolic agents obtain a lower
mean cumulative reward after 180 episodes than the filtered random action selection.
A reason might be that unrestricted exploration leads to more unfavourable actions in
harsher environments.
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Figure 4.17: Mean cumulative training rewards across runs with random action selection
for different environment settings.
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Figure 4.18: Mean cumulative training rewards across runs for all agents with light soil
and low humidity.

After obtaining a general overview about the performance and reliability of different
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4.3. Research question 1.1: Profit and reliability differences between hybrid systems and pure
RL agents

algorithms and agent features, a more detailed comparison is structured into sections
related to the individual research questions.

4.3 Research question 1.1: Profit and reliability differences
between hybrid systems and pure RL agents

Research question 1.1 is about analysing performance differences between hybrid systems
combining a rule-based planner with an RL agent and pure RL agents. In Figure 4.19, it
becomes clear that all symbolic agent versions perform significantly better than their
non-symbolic counterparts when comparing total profits across runs. The performance
differences are particularly high for the model-based versions. Significant differences are
symbolized by the horizontal lines under the pairs of bars. Dark green represents the
mean of the right bar being significantly higher than mean of the left bar with a p-value
smaller than 0.01. Light green represents the same relationship with a p-value smaller
than 0.05. Light red and dark red represent the opposite relationship with p-values of 0.05
and 0.01 respectively. Examining the average episodic performances during the first 20
and last 30 episodes of training runs in Figure 4.20 explains the difference in performance
in more detail. The difference already appears in the first 20 episodes for all agents
except the model-free SAC versions. Especially the symbolic agents using neighbour
experience or a dynamics model profit from those features whereas the non-symbolic
variants do not experience any significant improvements from them. In the late episodes,
this advantage is expanded. Particularly the model-free non-symbolic variants improve
their mean episodic performance greatly.
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Figure 4.19: Direct comparison of mean total profits across runs from symbolic and
non-symbolic versions of different agent types.

Regarding the reliability measures, no trend between symbolic and non-symbolic agent
types can be determined for the normalized IQR of performance across runs depicted
in Figure 4.21. For the first 20 episodes and last 30 episodes, no observable significant
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Figure 4.20: Direct comparison of average training rewards per episode for the first
20 (left) and last 30 episodes (right) of training runs from symbolic and non-symbolic
versions of different agent types.

difference between most symbolic and non-symbolic agents is detected as the confidence
intervals are too large.
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Figure 4.21: Direct comparison of mean normalized IQRs across runs for the first 20 (left)
and last 30 episodes (right) of training runs from symbolic and non-symbolic versions of
different agent types.

When comparing the IQRs of detrended performance during runs in Figure 4.22, there is
an at least significant difference between the symbolic and non-symbolic versions of each
agent type which can be explained by the more stable training performance of symbolic
agents in the early training episodes. In the last 30 episodes, this significant difference is
still observed for some agent types like the model-based DQN agent, while other agent
types show no significant difference in IQRs anymore after training performance has
stabilized.
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Figure 4.22: Direct comparison of mean normalized IQRs within windows of detrended
training rewards during runs for the first 20 (left) and last 30 episodes (right) of training
runs from symbolic and non-symbolic versions of different agent types.

4.4 Research question 1.2: Profit and reliability
differences between Deep Q Learning (DQN) and
Soft-Actor Critic (SAC) agents

Research question 1.2 focuses on investigating the performance disparities between DQN
agents and their counterparts utilizing the SAC algorithm. It is expected that the more
modern SAC algorithm is superior to the DQN agent in performance even though it
is modified to work for discrete settings for which it was not originally designed for.
This expected trend is confirmed by examining the bootstrapped mean total profits
depicted in Figure 4.6 and in more detail in Figure 4.23, particularly for symbolic RL
agents. Symbolic SAC agents, encompassing model-free and model-based agents and
those incorporating neighbour experience, exhibit significantly higher mean total profits
than their corresponding DQN counterparts.

Furthermore, DQN agents display a higher variance across bootstrap samples, indicating
a less stable learning process. Analysis of mean total reward curves in Figure 4.10 reveals
a swifter learning process for symbolic SAC agents compared to symbolic DQN agents.
Upon comparing symbolic model-free SAC and DQN variants in Figure 4.24, no significant
difference in mean performance is observed for the initial 20 episodes though. For symbolic
model-based variants, the DQN agent even outperforms the SAC agent. However, the
symbolic SAC agent using neighbour experience already outperforms the respective DQN
agent significantly in the first 20 episodes. Over the last 30 episodes, all three symbolic
SAC agents consistently demonstrate significantly higher mean performance than their
DQN counterparts, a trend confirmed in longer training runs where SAC agents maintain
their advantage.
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Figure 4.23: Direct comparison of mean total profits across training runs from DQN and
SAC agents.
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Figure 4.24: Direct comparison of average training rewards per episode for the first 20
(left) and last 30 episodes (right) of training runs from DQN and SAC agents.

In contrast, for non-symbolic agents, which are generally underperforming compared to
their symbolic counterparts, this pattern is reversed. While non-symbolic model-free SAC
agents with and without neighbour experience initially perform well with a significantly
higher mean performance than their DQN counterparts, this advantage diminishes during
training. Non-symbolic DQN agents without a dynamics model exhibit significantly
higher mean performance over the last 30 episodes of the training runs. Especially
model-free DQN agents exhibit improvement over longer training runs of 900 episodes,
converging to a higher average performance per episode. This phenomenon may be linked
to the more random nature of ϵ-greedy exploration in DQN agents for long training
runs compared to the probabilistic action selection of SAC agents, allowing for ongoing
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optimization potential in late training stages. Model-based non-symbolic variants, on
the other hand, perform equally or worse than random action selection, showing no
discernible learning process. Reliability differences between DQN and SAC agents are
minimal, with DQN agents displaying a slightly higher IQR of performance across runs
depicted in Figure 4.25. Due to the high variance between permutation tests, most
differences are not significant. Only the model-free agents with neighbour experience
exhibit a significant difference over the first 20 episodes.
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Figure 4.25: Direct comparison of mean normalized IQRs across runs for the first 20
(left) and last 30 episodes (right) of training runs from DQN and SAC agents.

When focusing on the IQR of performance during runs in Figure 4.26, a mixed impression
appears. DQN agents again exhibit a slightly higher normalized IQR during runs over
the first 20 episodes with the model-free non-symbolic agents being an exception. The
symbolic agents also do not exhibit large differences. Over the last 30 episodes, the
differences become mostly smaller.

In summary, the SAC algorithm proves to be more adept at learning from the crop
rotation environment, consistently delivering superior performance across the training
runs. Particularly the symbolic variants demonstrate rapid learning with few samples
and converge to high average performances in the long run. Notably, without the use of a
symbolic planner to filter suitable actions, the model-free DQN agent and the DQN agent
with neighbour experience converge to a higher mean performance than non-symbolic
SAC agents after an initially more unstable start.
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Figure 4.26: Direct comparison of mean normalized IQRs within windows of detrended
training rewards during runs for the first 20 (left) and last 30 episodes (right) of training
runs from DQN and SAC agents.

4.5 Research question 1.3: Profit and reliability differences
between hybrid RL agents and symbolic planning

Research Question 1.3 aims to scrutinize performance variations among hybrid RL
agents, such as the symbolic model-free DQN and SAC agents, in comparison to a purely
symbolic planner. Figure 4.6 provides a visual representation of the bootstrapped mean
total profits for these agents and the symbolic planner named "only filtered." Notably,
there is a substantial disparity in total profits, with the hybrid agents demonstrating a
significant performance superiority over the filtering mechanism based on crop rotation
and cultivation rules (Figure 4.6). Although the symbolic planner outperforms the
model-free hybrid agents significantly in the first 20 episodes (Figure 4.11), its average
performance stagnates and is surpassed by the learning agents after about 30 episodes
during training. Over the last 30 episodes, the mean performance of the hybrid agents
is significantly higher than that of the symbolic planner. This trend is even more
pronounced in extended training runs spanning 900 episodes, where symbolic RL agents
continuously enhance their performance across the majority of episodes (Figure 4.10).
Turning attention to reliability, an analysis of the normalized IQRs of performance across
training runs reveals no significant difference between the symbolic planner and the
hybrid agents. However, the hybrid agents exhibit a significantly lower normalized IQR
of detrended performance during runs compared to the symbolic planner. It is important
to note that this difference may be attributed to normalization, given the utilization of
higher 95%-quantiles of performance by the hybrid agents for this purpose.

In summary, the findings underscore the substantial performance advantages of hybrid RL
agents over the symbolic planner. While the symbolic planner initially outperforms the
model-free hybrid agents, their learning capabilities enable them to surpass the symbolic
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planner in later episodes. This performance superiority is particularly pronounced in
extended training runs, demonstrating the continuous improvement of symbolic RL
agents.

4.6 Research question 1.4: Profit and reliability differences
between model-based and model-free agents

Research question 1.4 focuses on examining disparities in performance between model-
based and model-free agent types. An examination of the bootstrapped mean total profits
after 180 episodes (Figure 4.6) reveals that model-based symbolic agents outperform their
model-free symbolic counterparts. However, it is observed that model-based non-symbolic
agents exhibit no discernible improvement in performance and, in fact, manifest poorer
performance than their model-free non-symbolic counterparts.

Statistical evaluation of these performance distinctions underscores the significance of
our findings. Specifically, the symbolic model-based SAC agent demonstrates a superior
performance, with high statistical significance, in comparison to its model-free variant
when assessing total profits in Figure 4.27. Conversely, the model-based non-symbolic
DQN agent exhibits a significantly inferior performance compared to its model-free
counterpart. For both symbolic DQN and non-symbolic SAC variants, no statistically
significant differences in performance between the model-free and model-based versions
are evident across all runs.
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Figure 4.27: Direct comparison of mean total profits across training runs from model-free
and model-based agents.

A closer inspection of average profits during the initial 20 and final 30 episodes of each
run, as presented in Figure 4.28, provides a nuanced perspective. Model-based symbolic
variants of the SAC and DQN agent swiftly acquire a useful policy, demonstrating
significantly better performance in the initial 20 episodes (Figure 4.11) compared to
their model-free counterparts. The main reason behind that could be the pretraining of
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the dynamics model which leads to the simulated trajectories being precise and aiding
the agent in learning policies faster. As training progresses, model-free variants begin
learning suitable policies, with the model-free symbolic DQN agent exhibiting significantly
higher average performance in the last 30 episodes of the training run. This trend holds
true for longer training runs with 900 episodes, where it outperforms its model-based
counterpart by a substantial margin. For non-symbolic agents, there is no significant
average performance difference in the first 20 episodes. However, both model-free variants
significantly outperform their model-based counterparts in the last 30 episodes (Figure
4.12). A reason might be that the non-symbolic agents usually gather much unrewarding
experience in early episodes which is then used to train the dynamics model. Without
the filtering mechanism of the symbolic planner, no contrasting positive experiences are
gathered and the dynamics model never learns to simulate rewarding transitions.
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Figure 4.28: Direct comparison of average training rewards per episode for the first
20 (left) and last 30 episodes (right) of training runs from model-free and model-based
agents.

An examination of the reliability of model-based agents yields additional insights. There
are no significant differences in the IQR of performance across runs between model-based
and model-free agents, irrespective of observing the first 20 or the last 30 episodes (Figure
4.29). Considering the intra-run IQRs of performance in Figure 4.30, model-based agents
consistently exhibit significantly higher values than their model-free counterparts over the
first 20 episodes. This might be influenced by the dynamics model’s need to adapt from
pretrained experience to the current environment. During this adaptation period, the
simulated transitions might vary more strongly from actual experience than in the middle
of the training run. During the last 30 episodes, this effect is not observed anymore
although the model-free non-symbolic DQN agent demonstrates a significantly lower
intra-run IQR of performance than its model-based counterpart. This is probably affected
by the generally inferior performance of the model-based non-symbolic DQN agent with
a continuously deteriorating mean performance over the training run.

In summary, it can be asserted that the superior performance of model-based symbolic
agents stems from their early utilization of the dynamics model to refine policies. Over
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Figure 4.29: Direct comparison of mean normalized IQRs across runs for the first 20 (left)
and last 30 episodes (right) of training runs from model-free and model-based agents.
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Figure 4.30: Direct comparison of mean normalized IQRs within windows of detrended
training rewards during runs for the first 20 (left) and last 30 episodes (right) of training
runs from model-free and model-based agents.

time, model-free variants learn policies that can match or even surpass their model-based
counterparts, as exemplified by the symbolic DQN agent. In contrast, non-symbolic
agents do not exhibit proficiency in learning suitable policies when coupled with a
dynamics model. Although the theoretical expectation is that using a dynamics model
would enhance the reliability and stability of agents, the observed interquartile ranges of
performance during runs suggest that pretrained dynamics models contribute to increased
performance variance in early episodes. This might primarily be due to the need for
fine-tuning of the dynamics model in the early episodes of the training runs which can
lead to partially misleading agent updates.
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4.7 Research question 1.5: Profit and reliability
improvements when using experience from
neighbouring farms

In research question 1.5, the objective is to discern the impact of agents leveraging
experience acquired from adjacent plots or neighbouring farmers within their vicinity.
An evaluation of the bootstrapped mean total profits across all runs, depicted in Figure
4.6, illuminates the influence of neighbour experience on symbolic and non-symbolic
agents. Both symbolic agents exhibit a significant performance boost when incorporating
neighbour experience, evidenced by a notably higher total reward across all episodes
compared to their counterparts devoid of updates from neighbouring farms. Conversely,
the non-symbolic agents encounter challenges in learning from transitions not directly
obtained from their own environment which is alike to observations made with model-
based variants. Specifically, the non-symbolic DQN agent demonstrates a significantly
lower mean total reward when utilizing neighbour experience. In contrast, the non-
symbolic SAC agent with neighbour experience exhibits a marginally improved and less
variable mean total reward, although this improvement is not statistically significant
compared to its variant without neighbour experience.
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Figure 4.31: Direct comparison of mean total profits across training runs from agents
with and without utilization of neighbour experience.

A closer examination of cumulative reward curves in Figure 4.7 unveils distinct per-
formance profiles. The symbolic DQN agent utilizing neighbour experience initially
outperforms its variant relying solely on direct updates, experiences a brief dip in average
performance, but subsequently demonstrates accelerated improvement in the middle of
the training run. Over the initial 20 training episodes, it achieves a significantly superior
average performance compared to its version without neighbour updates, but by the
end of the training run, the average performance aligns with that of its variant without
neighbour updates, with no significant difference observed in Figure 4.32. The symbolic
SAC agent consistently exhibits more stable learning with neighbour updates, outper-
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4.7. Research question 1.5: Profit and reliability improvements when using experience from
neighbouring farms

forming its counterpart without such updates significantly in the first 20 episodes but
showing no significant performance difference by the end of the training run. Conversely,
the non-symbolic DQN agent performs significantly better without neighbour updates
throughout the entire training run. For the non-symbolic SAC agent, no significant
differences in performance are noted over the first 20 and last 30 episodes. Examining
longer training runs reveals that the stabilization effect of using neighbour updates leads
to worse average performance in the later stages of training. Only the symbolic SAC
agent benefits from the neighbour updates even in the very late stage of training.
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Figure 4.32: Direct comparison of average training rewards per episode for the first 20
(left) and last 30 episodes (right) of training runs from agents with and without utilization
of neighbour experience.

Considering reliability, no significant differences in IQRs of performance across runs
(Figure 4.33) are observed with one exception: the non-symbolic DQN agent using
neighbour experience exhibits a significantly higher IQR across runs for the first 20
episodes of training. This discrepancy may be attributed to performance deterioration in
the early stages of training in some runs, leading to heightened variance in performance
across runs. Analysing intra-run performance variance in Figure 4.34, the utilization of
neighbour experience results in significantly higher IQRs of detrended performance in
the early episodes for all agents except the non-symbolic SAC agent. This phenomenon
is explained by the need for agents to adapt from neighbour experience to experience
obtained in their own environment, introducing performance differences between episodes.
In later episodes of the training run, this effect has mostly diminished.

In summary, leveraging neighbour experience proves advantageous for agents already
learning in a stable manner by using a symbolic planner. However, as agents accumulate
more experience from their actual environment over time, this advantage diminishes for
the symbolic DQN agent. Additionally, the performance variance within runs during
early training is higher when using neighbour experience as agents need to adapt from
neighbour experience to their own farm’s experience.
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Figure 4.33: Direct comparison of mean normalized IQRs across runs for the first 20 (left)
and last 30 episodes (right) of training runs from agents with and without utilization of
neighbour experience.
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Figure 4.34: Direct comparison of mean normalized IQRs within windows of detrended
training rewards during runs for the first 20 (left) and last 30 episodes (right) of training
runs from agents with and without utilization of neighbour experience.

4.8 Research question 1.6: Profit and reliability
improvements when comparing agents with or without
pretraining

Research question 1.6 investigates the comparison between agents pretrained on a distinct
environment and subsequently deployed on the target environment against agents without
any pretraining. Pretrained agents underwent 180 episodes of learning on an environment
with a similar ground type and humidity but different average yields. Following this
pretraining, they were deployed on the target environment and continued training for an
additional 90 episodes. Analysing the means of cumulative profits across runs on the
target environment provides insights into the advantages of allowing agents to pretrain
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4.8. Research question 1.6: Profit and reliability improvements when comparing agents with or
without pretraining

before deployment. Symbolic agents in particular benefit significantly from pretraining,
likely attributed to their ability to learn a beneficial policy during pretraining, a benefit
not assured for non-symbolic agents with more unstable training performances. Figure
4.35 and Figure 4.36 illustrate that symbolic agents which acquired reasonable policies
during pretraining could build upon them in the subsequent test runs.
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Figure 4.35: Mean cumulative profits across training runs for all DQN agents with and
without pretraining.
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Figure 4.36: Mean cumulative profits across training runs for all SAC agents with and
without pretraining.

Significant total reward differences between pretrained and non-pretrained counterparts
are observed for those agents, with model-free agents exhibiting the highest performance
disparities due to their greater instability but more thorough exploration which is
advantageous over extended training periods and when adapting between pretraining
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4. Results & Discussion

and target environment policies. (Figure 4.37). Non-symbolic agents present a more
nuanced perspective. Agents that struggled to find suitable policies during pretraining,
such as model-based DQN and SAC agents, performed even worse with pretraining.
Conversely, agents with an initially unstable start during pretraining but improvement
in later steps, such as model-free DQN and SAC agents with and without neighbour
experience, leveraged the pretraining experience in target runs, exhibiting significant
differences in total profits between pretrained and non-pretrained agents.
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Figure 4.37: Direct comparison of mean total profits across training runs from all agents
with and without pretraining.

Confirmation of this impression is found in mean profits over the first 20 episodes in Figure
4.38, revealing significant positive differences between pretrained and non-pretrained
agents for all symbolic agents except the model-based DQN agent. Among non-symbolic
agents, only the model-based variants exhibit a negative effect from pretraining. In the
last 30 episodes, albeit smaller, differences in mean performance between pretrained and
non-pretrained agents remain significant, with only the symbolic model-based DQN agent
and the DQN agent with neighbour experience showing no significant differences.

While the IQRs of performance across runs (Figure 4.39) show no stable trend between
pretrained and non-pretrained agents, the IQRs of performance during runs provide a
different perspective in Figure 4.40. Non-symbolic agents without pretraining display a
higher performance variance during early episodes, indicating the need to learn a suitable
policy. Conversely, symbolic model-free agents exhibit a higher performance variance
during early episodes when pretrained than when not pretrained. These differences
diminish during the late episodes of the target run, with pretrained symbolic model-
free agents even displaying a lower performance variance than their non-pretrained
counterparts.
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Figure 4.38: Direct comparison of average training rewards per episode for the first
20 (left) and last 30 episodes (right) of training runs from all agents with and without
pretraining.
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Figure 4.39: Direct comparison of mean normalized IQRs across runs for the first 20 (left)
and last 30 episodes (right) of training runs from all agents with and without pretraining.

In summary, pretraining proves highly beneficial for agents capable of learning rewarding
policies in another environment. Agents with more unstable learning or no learning at all
struggle to derive significant benefits from additional learning time. The positive effect
of pretraining remains impactful during later stages in the target environment for most
agents.
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Figure 4.40: Direct comparison of mean normalized IQRs within windows of detrended
training rewards during runs from agents with and without utilization of neighbour
experience.

4.9 Research question 2: Comparison of crop selection
diversity between SAC and DQN agents

For the final research question, we investigate whether the utilization of the probabilistic
action selection of policy gradient reinforcement learning agents, such as the SAC
algorithm, results in a higher crop diversity compared to the use of semi-deterministic
agents like the DQN agent, which selects random actions with a probability ϵ. Crop
diversity in a training run is quantified using the Shannon entropy, with the highest
possible entropy nearing 3.18, reflecting equal selection probabilities for each crop.
Entropy values below 2.5 indicate a scenario where only half of the possible crops are
equally selected, while the other half is never chosen. The overall high entropy values are
attributed to agents being trained on various 10-step episodes, each starting with different
prices and costs, rendering different crops viable in different episodes. A first comparison
between DQN and SAC agents in Figure 4.41 suggests that non-symbolic SAC agents
exhibit a slightly higher entropy across runs than their DQN counterparts, with mixed
results for symbolic agents. Notably, non-symbolic agents, in general, demonstrate a
significantly broader diversity of crops, consistent with their less restricted action space
and the option to select actions breaking crop rotation rules. Plotting the mean total
rewards against the mean entropy across runs in Figure 4.42 demonstrates a correlation
between a lower entropy and a higher total performance. Agents with a well-learned
policy tend to stick to it, resulting in a lower crop diversity. Symbolic SAC agents
stand out with a higher reward-to-entropy ratio than the average agent, suggesting that
SAC agents with probabilistic action selection can achieve a high crop diversity while
maintaining high total profits. In contrast, DQN agents are positioned at or below the
regression line, indicating a lower reward-to-entropy ratio than the average.
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Figure 4.41: Direct comparison of mean entropy across runs from all agents.
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Figure 4.42: Scatter plot of mean total profits across training runs against mean entropies
across runs for all agents.

A detailed examination of entropy across runs for the first 20 and the last 30 episodes
provides further insights into agents’ action selection behaviour in Figure 4.43. SAC
agents consistently exhibit a higher mean entropy across runs in the initial 20 episodes
compared to their DQN counterparts. In the last 30 episodes, mean entropy values largely
align with those measured over all episodes. The higher entropy in the early episodes is
an effect of the probabilistic policy which has not yet learned higher weights for more
rewarding actions. Conversely, even with a high initial ϵ value in DQN training, the
tendency toward exploration decreases over the first 20 episodes, resulting in a lower crop

87



4. Results & Discussion

diversity. This stronger inclination toward exploration may also contribute to symbolic
SAC agents learning suitable policies more rapidly, evident in their higher total profits
compared to symbolic DQN agents.

m
od

el
-f
re

e

m
od

el
-b

as
ed

ne
ig

hb
ou

r

sy
m

bo
lic

, m
od

el
-f
re

e

sy
m

bo
lic

, m
od

el
-b

as
ed

sy
m

bo
lic

, n
ei
gh

bo
ur

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
a
n
 e

n
tr

o
p
y
 a

c
ro

s
s
 f

ir
s
t 

2
0
 r

u
n
s dqn

sac

m
od

el
-f
re

e

m
od

el
-b

as
ed

ne
ig

hb
ou

r

sy
m

bo
lic

, m
od

el
-f
re

e

sy
m

bo
lic

, m
od

el
-b

as
ed

sy
m

bo
lic

, n
ei
gh

bo
ur

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
a
n
 e

n
tr

o
p
y
 a

c
ro

s
s
 l
a
s
t 

3
0
 r

u
n
s dqn

sac

Figure 4.43: Direct comparison of mean entropy across runs for the first 20 (left) and
last 30 (right) episodes from all agents.

In summary, a clear trend emerges, indicating that SAC agents generate a higher crop
diversity during training with their probabilistic action selection than the DQN agents.
Furthermore, a correlation is established between high total profits and lower mean
entropies across runs, underscoring that agents with well-established policies tend to
select rewarding actions more frequently, whereas agents struggling to find effective
strategies continue to explore different actions in the later stages of training.
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CHAPTER 5
Summary

In this final chapter, the findings from the project are summarized in section 5.1,
contextualized within the current research field in section 5.2, and the limitations of
this work are stated in section 5.3. Possible future research objectives building upon the
findings from this project are identified. The results lead to a positive recommendation
towards the use of hybrid reinforcement learning agents in decision support systems to
recommend crops to farmers. Some uncertainty remains due to the use of a simulation
environment instead of training agents on a real environment, but the results promote
future research following a similar direction.

5.1 Conclusion
In this section, the results and insights obtained during this project are summarized.
Previous approaches addressing crop rotation optimization focused on static problem
formulations and environments and could give general guidance on which crop rotation
sequences are suitable to maximize yields and profit. Many utilized rule-based algorithms
or mathematical modelling to solve the problem. A more modern approach by Fenz et al.
introduced Reinforcement Learning to the problem field [FNFW23]. Their solution showed
great performance in selecting suitable crops to cultivate next and in generating viable
crop rotation sequences after being trained on a simulation environment. However, the
agent needed many episodes of rather unstable learning to converge to this performance
in most training runs. As a single step in an environment represents a full year, an agent’s
need for several 1000 episodes to converge to a good performance makes it unviable to
train under real-life conditions. Furthermore, the simulation environment the RL agents
trained on had static rewards and did not incorporate yield and price uncertainty from
real-life environments. The goal of this thesis project was therefore to find out if it is
possible to implement an RL agent that can adapt to individual farm conditions, can
deal with exogenous uncertainty, is sample efficient enough to reduce the need for real
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experience by a large factor and only select crops during exploration which would not
violate any expert’s advice or contradict common farming knowledge. The proposed
solution which was implemented and evaluated during this thesis project contained the
following features:

• Application of a modern Reinforcement Learning algorithm to learn which crops
are optimal to grow in different states.

• Integration of a symbolic planner into the Reinforcement Learning process to guide
exploration and avoid highly detrimental actions.

• Addition of a dynamics model which can simulate further transitions for the agent to
learn from and incorporate the uncertainty of a real environment in its simulations.

• Utilization of experience from other farms to speed up learning.

• Pretraining of agents on simulated experience before deployment.

The implemented solutions containing those features were compared with baselines to
evaluate the effectiveness of the proposed features on performance and reliability. Across
various simulated environments, all proposed features demonstrated enhancements in
performance throughout different training runs. Furthermore, the majority of these
features exhibited stable learning patterns, with runs in the lowest 30% quantile of
performance only marginally lagging behind the agents’ mean performances across all
runs. However, some agent types did not acquire any knowledge about which crops are
beneficial towards farming profit. Delving deeper into the evaluation, all research ques-
tions were answered thoroughly. Research question 1 focused on potential performance
improvements when using the proposed features in comparison to a baseline and was
divided into six sub-questions:

RQ 1.1: By how much do hybrid systems combining a symbolic planner with an RL agent
show a better performance on crop rotation problems than simple RL agents without
rule-based planning?
The biggest positive impact on performance was achieved by the introduction of a symbolic
planner to restrict the exploration space and improve the precision of next-state target
value predictions in the RL algorithms. Agents learned significantly faster by selecting
beneficial actions early and more often. A negative bias for all action-values from the
early selection of many unrewarding actions could therefore be avoided. This assumedly
had a positive impact on the precision of policy evaluation during the training runs.
Although it was theorized that the restriction of the action space would lead to a lower
mean performance after convergence than when using unrestricted agents, the hybrid
agents outperformed their non-symbolic counterparts even in late episodes of training runs.
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RQ 1.2: To which extent can the use of more modern RL learning algorithms like soft
actor-critic learning improve performance when compared to deep Q learning?
The comparison between soft actor-critic and deep Q learning agents demonstrated that
the use of the SAC algorithm proved to be more beneficial in combination with a symbolic
planner. Particularly during late stages of training, it exhibited a significantly better
mean performance than its DQN counterpart with a rather equal performance during
early episodes of training runs. Without the restricted action space, it was the opposite
way. The SAC agents performed better in early stages while becoming relatively worse to
the DQN variants in late training episodes. The theory behind is that non-symbolic SAC
agents already have a more guided exploration in early episodes due to the difference in
action selection probabilities while the DQN agent explores completely randomly if the ϵ-
condition is met. In terms of reliability, both learning algorithms exhibited similar results.

RQ 1.3: In which situations and by how much do hybrid systems combining a symbolic
planner with an RL agent show a better performance on crop rotation problems than only
using a symbolic planning system like answer set programming to select crops to grow?
The symbolic planner was used to filter for actions that would not violate any crop
rotation rules or have a detrimental effect on soil conditions. To differentiate between the
performance improvement achieved by using this filtering mechanism and the performance
improvement from the RL agent learning on the environment, a comparison was made
between randomly selecting actions from the filtered action space as a baseline and letting
the RL agents select actions from the filtered action space. Regarding total performance,
all hybrid RL agents outperformed the baseline significantly which demonstrates a positive
effect of using RL agents beyond rule-based planning. While the baseline exhibited a
constant mean performance, the RL agents improved over the course of the training runs.
However, the model-free symbolic RL agents were outperformed by the random filtered
action selection in the first 20 episodes, when the agents did not yet learn enough from
the environment to select beneficial actions. Hybrid agents utilizing neighbour experience
or a dynamics model did not have those cold start difficulties and immediately exhibited
a higher mean performance than the baseline.

RQ 1.4: To which extent can performance be improved by using model-based RL when
compared to model-free methods?
In research question 1.4, it was evaluated by which amount performance can be improved
by supporting the RL algorithms with a pretrained dynamics model simulating expe-
riences that the agents can use to train more. In theory, using model-based RL helps
to stabilize training although it can hamper performance improvement if the dynamics
model does not reflect the real environment precisely enough. The results showed that the
non-symbolic model-based agents performed particularly badly. A reason might be that
the dynamics model is only fed unrewarding experiences and generalizes badly for poten-
tially rewarding state-action pairs. The agents then only receive negative reinforcement
and never become able to differentiate between good and bad actions. In contrast, the
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symbolic model-based agents performed well. Their main advantage was observed in the
early episodes during training runs where they allowed the agent to already train while
the replay buffer for real experiences was being filled. In later episodes, this advantage
diminished and the stabilization effect led to the model-based agents converging to lower
mean performances than their model-free counterparts.

RQ 1.5: To which extent can agent updates from neighbouring farms improve performance
in comparison to agents only updating from their own farm’s experience?
The effects from using experience from neighbouring farms were in many ways similar
to the effects from using a dynamics model. Non-symbolic agents had trouble making
use of neighbour experience while symbolic agents could stabilize and improve their own
learning during the early stages of training. In contrast to the agents using a dynamics
model, many agents utilizing neighbour experience did not exhibit negative effects from
this feature in later episodes. A reason for that could be that direct experience from
neighbouring fields and plots of land will never be extremely far from reality whereas
unrealistic transitions simulated by a faulty dynamics model would have a much bigger
negative impact on learning.

RQ 1.6: To which extent can agents already pretrained on other environments improve
performance when compared to agents without pretraining?
In research question 1.6, the effect of pretraining agents on another environment before
deployment was evaluated. Agents that were pretrained on a different environment
and that were able to learn a viable policy for this environment could transfer their
embedded knowledge to other environments and profit from the pretraining. A high mean
performance in the last episodes of the pretraining run allowed the agents to transfer the
knowledge to the new environment with only little adaptation needed. Agents with a
rather unstable training like non-symbolic or model-free agents could benefit the most
from the pretraining step as the early instability during learning in the target environment
could be avoided. Additionally, SAC agents could profit more from pretraining than their
DQN counterparts.

RQ 2: To which extent can the use of probabilistic action selection by the RL agent
improve diversity of crop selection when compared to deterministic algorithms?
Research question 2 was about evaluating if the probabilistic action selection mechanism
of SAC agents led to a higher crop diversity which is generally thought to be beneficial
for the soil condition and the ecosystem around the plot of land. The crop diversity was
measured via the Shannon entropy. The results demonstrated that most training runs
resulted in a relatively high crop diversity when compared to a monoculture. A general
trend was that higher training performances resulted in a lower crop diversity. A reason
might be that well-performing agents focus on selecting the best options while disregard-
ing sub-optimal crops. Agents with a less viable policy select more exploring options
which results in a higher crop diversity over the run. In addition to this information, the
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research question could be answered and the theory behind it could be confirmed: it was
observed that SAC agents have a higher reward-to-entropy ratio than DQN agents which
means that they select a larger variety of crops while maintaining a high performance.
Particularly during early episodes, the crop diversity of SAC agents is significantly higher.

To summarize the findings, it can be noted that all proposed features of the hybrid
RL algorithm showed better performance when compared to a baseline not containing
the respective features. The symbolic planner in particular proved to a useful addition
to stabilize training in early episodes and could improve the cumulative profits of the
agent during deployment significantly. The more modern SAC algorithm proved to be
better than the DQN baseline, especially when combined with the symbolic planner.
The addition of a dynamics model simulating transitions proved to be useful in early
episodes but was detrimental in later training. A similar observation was made with the
introduction of neighbour experience. An advantage of this feature was however that
no negative effects were observed in the later episodes of training runs. Pretraining the
agents proved to be beneficial for all agents that were able to improve during training
runs. Regarding reliability of different agent types, it could be observed that agents
with a lower cumulative performance exhibited a slightly higher normalized performance
variance across runs. This variance was especially high during early episodes of training
runs. Instability during runs was also relatively high for many agents. An explanation is
the inherent uncertainty of the simulation environment which leads to different profits
under the same conditions and cultivated crop sequences. Hybrid agents could signifi-
cantly lower this intra-run variance with the support of a symbolic planner. The use of
neighbour experience made the first 20 episodes in training runs less stable as agents
needed to adapt from the foreign experience to its own farm’s experience.

A recommended setting to apply agents to real-life environments would be to choose
an agent combining the soft actor-critic learning algorithm with a symbolic planner
reflecting expert knowledge and crop rotation rules. If possible, it would be beneficial to
include information about cultivated crops, yields and field conditions from the region
and integrate it into the agent training in form of a replay buffer for neighbour experience.
Another option to guarantee a higher stability and good performance immediately after
deployment would be to pretrain the agent in a simulation environment which is as
realistic as possible in predicting transitions and yields from different crops. If the
adoption of such a model as a decision support system would be more widespread, reusing
an agent already deployed and trained on another plot of land with similar conditions
would also be a viable strategy. The model-based approach exhibited mixed results.
Although the cumulative performance and particularly the mean performance in early
episodes was significantly better when using a dynamics model, this was only achievable
after pretraining the dynamics model before the training run. The stabilization effects
which were the main reason to incorporate a dynamics model into the algorithm could
not be observed. It is therefore questionable if the use of a model-based approach with a
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dynamics model pretrained on experience is superior to using the available experience
to pretrain the agent directly. The comparison between using neighbour experience
and using a dynamics model showed that only the use of a dynamics model led to a
performance stagnation of SAC agents in the late stage of training. It is not recommended
to immediately deploy model-free hybrid agents to a real environment without any kind
of pretraining on a semi-realistic simulation environment. The results demonstrated that
model-free agents had cold start issues even with the use of a symbolic planner. The
main reason behind that is the empty replay buffer which can only be used for training
after the number of gathered experiences is larger than the sample batch size.

5.2 Contributions to Research Field
Farmers around the world need to consider every year which crops to plant on their field.
To make a thoughtful decision, they consider many exogenous factors like soil and climate
conditions, weed & pest occurrences in previous years, market prices and costs, and the
crop cultivation histories of their fields. Present research tries to support farmers in
this endeavour by creating models and planners which can generate viable crop rotation
sequences and optimize crop selection for yield and profit. As many approaches use static
information and rule-based systems, their useability in reactive decision support systems
is limited. A recent advance by Fenz et al. in using Reinforcement Learning to find
optimal crop rotation sequences showed promising results [FNFW23]. However, their goal
to generate suitable sequences after training the RL agents until convergence interfered
with the ability to integrate those agents directly into systems adapting to live data and
changing conditions. The need for several thousand training episodes until convergence
made the agents unfit for decision support in an untrained state. In this thesis, it was
researched if it is possible to improve the sample efficiency and stability of the current
state-of-the-art RL algorithm in such a way that it might be suitable to be integrated
into a live support system for crop rotation decisions. Several features were proposed
and evaluated: The use of more modern RL algorithms, a hybrid approach combining
reinforcement learning and symbolic planning, model-based reinforcement learning, the
utilization of foreign experience and the pretraining of agents before deployment. As
the evaluation on actual plots of land would take many years, the agents were trained
and tested on simulation environments comparable to the one used by Fenz et al. Since
the simulation environment they used did not encompass the full complexity of real-life
conditions and all effects of different crop sequences, it was modified and extended with
new crop rotation and soil condition effects derived from the literature. The results from
the evaluation demonstrated that it is indeed possible to construct RL agents which
could be deployed as decision support systems for farmers. By using a soft actor-critic
learning algorithm, combining it with a symbolic planner to restrict the crop selection
to viable choices and stabilizing early training with knowledge from other crop rotation
experiments, the agent showed steady performance improvements with a low risk for the
farmer to cultivate highly unsuitable crops on their fields. This result fortifies the position
of reinforcement learning as a viable solution to the field of crop rotation optimization
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and opens new paths for future research.

5.3 Limitations and Future Work
While the results of this project are promising, some methodical details leave room for
uncertainty which can be closed by future research. To begin with, there will always
be room for improvement when using simulation environments. Real-life effects on crop
yields and market conditions are more complex than their reflected versions in simulations.
Many exogenous factors like weather, market dynamics, soil characteristics or water and
nutrient availability can be quantified in some level of detail but will always behave dif-
ferently and less predictable in the real world than in a simulated system. As an example,
the simulated rules and assumptions with an effect on crop yield used in the project’s
experiments were mostly static and linear; the factors for yield reductions induced by
the violation of crop rotation rules were only deducted by logical reasoning and were not
extracted from reliable experimental research. Future research could address these issues
and focus on implementing a more precise simulation environment to see if the results
from this project can be reproduced in those scenarios too. Many crop dynamics tools like
DSSAT are available open source to simulate crop yields under different conditions and
could be used as further input for a training environment [HPB+19]. Besides potential
improvements in precision, an extended simulation environment could encompass the
cultivation of cover crops between main crops, a more detailed water and soil management
and the addition of suitable farming operations for specific crop types. This extension
would increase complexity a lot but also offer more guidance for inexperienced farmers
when the agents are performing well.

Another field of evaluation would be to test agents pretrained on simulation environments
using the proposed hybrid agent on small test plots of land in long-term experiments
and find out if they reproduce the results obtained from this thesis project. A further
limitation of this work stems from the assumption that experience from neighbouring
fields to pretrain the model or a dynamics model in a model-based approach would already
be available in the format used in this project. While there are possible ways to measure
soil conditions like nutrient balance and humus ratio, the measurement process is often
tedious and expensive. Many farmers therefore rely solely on their experience, market
prices and the weather to select crops to cultivate and could not offer any substantial
amount of reliable experience to use for pretraining. A dense aggregation of quantitative
results from field experiments and case studies from the literature could be another future
work to create a shared and central knowledge base available for future research efforts.
Another advantage of this would be, that the standardized data could act as a benchmark
to compare different proposed solutions in the field of crop rotation optimization. Further
work in this research domain could encompass an enhancement of RL training algorithms,
the integration of more model features improving sample efficiency, training speed and
stability and a more standardized evaluation framework considering farmers’ needs and
success criteria for a viable decision support system.
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